ARMFastISel.cpp revision 0435661582c5ccbd3984a710850fc8bc8939e566
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMRegisterInfo.h"
20#include "ARMTargetMachine.h"
21#include "ARMSubtarget.h"
22#include "ARMConstantPoolValue.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/Analysis.h"
30#include "llvm/CodeGen/FastISel.h"
31#include "llvm/CodeGen/FunctionLoweringInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineConstantPool.h"
35#include "llvm/CodeGen/MachineFrameInfo.h"
36#include "llvm/CodeGen/MachineMemOperand.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/Support/CallSite.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/GetElementPtrTypeIterator.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48using namespace llvm;
49
50static cl::opt<bool>
51DisableARMFastISel("disable-arm-fast-isel",
52                    cl::desc("Turn off experimental ARM fast-isel support"),
53                    cl::init(false), cl::Hidden);
54
55extern cl::opt<bool> EnableARMLongCalls;
56
57namespace {
58
59  // All possible address modes, plus some.
60  typedef struct Address {
61    enum {
62      RegBase,
63      FrameIndexBase
64    } BaseType;
65
66    union {
67      unsigned Reg;
68      int FI;
69    } Base;
70
71    int Offset;
72    unsigned Scale;
73    unsigned PlusReg;
74
75    // Innocuous defaults for our address.
76    Address()
77     : BaseType(RegBase), Offset(0), Scale(0), PlusReg(0) {
78       Base.Reg = 0;
79     }
80  } Address;
81
82class ARMFastISel : public FastISel {
83
84  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
85  /// make the right decision when generating code for different targets.
86  const ARMSubtarget *Subtarget;
87  const TargetMachine &TM;
88  const TargetInstrInfo &TII;
89  const TargetLowering &TLI;
90  ARMFunctionInfo *AFI;
91
92  // Convenience variables to avoid some queries.
93  bool isThumb;
94  LLVMContext *Context;
95
96  public:
97    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
98    : FastISel(funcInfo),
99      TM(funcInfo.MF->getTarget()),
100      TII(*TM.getInstrInfo()),
101      TLI(*TM.getTargetLowering()) {
102      Subtarget = &TM.getSubtarget<ARMSubtarget>();
103      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
104      isThumb = AFI->isThumbFunction();
105      Context = &funcInfo.Fn->getContext();
106    }
107
108    // Code from FastISel.cpp.
109    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
110                                   const TargetRegisterClass *RC);
111    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
112                                    const TargetRegisterClass *RC,
113                                    unsigned Op0, bool Op0IsKill);
114    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
115                                     const TargetRegisterClass *RC,
116                                     unsigned Op0, bool Op0IsKill,
117                                     unsigned Op1, bool Op1IsKill);
118    virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
119                                      const TargetRegisterClass *RC,
120                                      unsigned Op0, bool Op0IsKill,
121                                      unsigned Op1, bool Op1IsKill,
122                                      unsigned Op2, bool Op2IsKill);
123    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
124                                     const TargetRegisterClass *RC,
125                                     unsigned Op0, bool Op0IsKill,
126                                     uint64_t Imm);
127    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
128                                     const TargetRegisterClass *RC,
129                                     unsigned Op0, bool Op0IsKill,
130                                     const ConstantFP *FPImm);
131    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
132                                      const TargetRegisterClass *RC,
133                                      unsigned Op0, bool Op0IsKill,
134                                      unsigned Op1, bool Op1IsKill,
135                                      uint64_t Imm);
136    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
137                                    const TargetRegisterClass *RC,
138                                    uint64_t Imm);
139
140    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
141                                                unsigned Op0, bool Op0IsKill,
142                                                uint32_t Idx);
143
144    // Backend specific FastISel code.
145    virtual bool TargetSelectInstruction(const Instruction *I);
146    virtual unsigned TargetMaterializeConstant(const Constant *C);
147    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
148
149  #include "ARMGenFastISel.inc"
150
151    // Instruction selection routines.
152  private:
153    bool SelectLoad(const Instruction *I);
154    bool SelectStore(const Instruction *I);
155    bool SelectBranch(const Instruction *I);
156    bool SelectCmp(const Instruction *I);
157    bool SelectFPExt(const Instruction *I);
158    bool SelectFPTrunc(const Instruction *I);
159    bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
160    bool SelectSIToFP(const Instruction *I);
161    bool SelectFPToSI(const Instruction *I);
162    bool SelectSDiv(const Instruction *I);
163    bool SelectSRem(const Instruction *I);
164    bool SelectCall(const Instruction *I);
165    bool SelectSelect(const Instruction *I);
166    bool SelectRet(const Instruction *I);
167
168    // Utility routines.
169  private:
170    bool isTypeLegal(const Type *Ty, MVT &VT);
171    bool isLoadTypeLegal(const Type *Ty, MVT &VT);
172    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr);
173    bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr);
174    bool ARMComputeAddress(const Value *Obj, Address &Addr);
175    void ARMSimplifyAddress(Address &Addr, EVT VT);
176    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
177    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
178    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
179    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
180    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
181    unsigned ARMSelectCallOp(const GlobalValue *GV);
182
183    // Call handling routines.
184  private:
185    bool FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
186                        unsigned &ResultReg);
187    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
188    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
189                         SmallVectorImpl<unsigned> &ArgRegs,
190                         SmallVectorImpl<MVT> &ArgVTs,
191                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
192                         SmallVectorImpl<unsigned> &RegArgs,
193                         CallingConv::ID CC,
194                         unsigned &NumBytes);
195    bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
196                    const Instruction *I, CallingConv::ID CC,
197                    unsigned &NumBytes);
198    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
199
200    // OptionalDef handling routines.
201  private:
202    bool isARMNEONPred(const MachineInstr *MI);
203    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
204    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
205    void AddLoadStoreOperands(EVT VT, Address &Addr,
206                              const MachineInstrBuilder &MIB);
207};
208
209} // end anonymous namespace
210
211#include "ARMGenCallingConv.inc"
212
213// DefinesOptionalPredicate - This is different from DefinesPredicate in that
214// we don't care about implicit defs here, just places we'll need to add a
215// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
216bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
217  const TargetInstrDesc &TID = MI->getDesc();
218  if (!TID.hasOptionalDef())
219    return false;
220
221  // Look to see if our OptionalDef is defining CPSR or CCR.
222  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
223    const MachineOperand &MO = MI->getOperand(i);
224    if (!MO.isReg() || !MO.isDef()) continue;
225    if (MO.getReg() == ARM::CPSR)
226      *CPSR = true;
227  }
228  return true;
229}
230
231bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
232  const TargetInstrDesc &TID = MI->getDesc();
233
234  // If we're a thumb2 or not NEON function we were handled via isPredicable.
235  if ((TID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
236       AFI->isThumb2Function())
237    return false;
238
239  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i)
240    if (TID.OpInfo[i].isPredicate())
241      return true;
242
243  return false;
244}
245
246// If the machine is predicable go ahead and add the predicate operands, if
247// it needs default CC operands add those.
248// TODO: If we want to support thumb1 then we'll need to deal with optional
249// CPSR defs that need to be added before the remaining operands. See s_cc_out
250// for descriptions why.
251const MachineInstrBuilder &
252ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
253  MachineInstr *MI = &*MIB;
254
255  // Do we use a predicate? or...
256  // Are we NEON in ARM mode and have a predicate operand? If so, I know
257  // we're not predicable but add it anyways.
258  if (TII.isPredicable(MI) || isARMNEONPred(MI))
259    AddDefaultPred(MIB);
260
261  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
262  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
263  bool CPSR = false;
264  if (DefinesOptionalPredicate(MI, &CPSR)) {
265    if (CPSR)
266      AddDefaultT1CC(MIB);
267    else
268      AddDefaultCC(MIB);
269  }
270  return MIB;
271}
272
273unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
274                                    const TargetRegisterClass* RC) {
275  unsigned ResultReg = createResultReg(RC);
276  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
277
278  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
279  return ResultReg;
280}
281
282unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
283                                     const TargetRegisterClass *RC,
284                                     unsigned Op0, bool Op0IsKill) {
285  unsigned ResultReg = createResultReg(RC);
286  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
287
288  if (II.getNumDefs() >= 1)
289    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
290                   .addReg(Op0, Op0IsKill * RegState::Kill));
291  else {
292    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
293                   .addReg(Op0, Op0IsKill * RegState::Kill));
294    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
295                   TII.get(TargetOpcode::COPY), ResultReg)
296                   .addReg(II.ImplicitDefs[0]));
297  }
298  return ResultReg;
299}
300
301unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
302                                      const TargetRegisterClass *RC,
303                                      unsigned Op0, bool Op0IsKill,
304                                      unsigned Op1, bool Op1IsKill) {
305  unsigned ResultReg = createResultReg(RC);
306  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
307
308  if (II.getNumDefs() >= 1)
309    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
310                   .addReg(Op0, Op0IsKill * RegState::Kill)
311                   .addReg(Op1, Op1IsKill * RegState::Kill));
312  else {
313    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
314                   .addReg(Op0, Op0IsKill * RegState::Kill)
315                   .addReg(Op1, Op1IsKill * RegState::Kill));
316    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
317                           TII.get(TargetOpcode::COPY), ResultReg)
318                   .addReg(II.ImplicitDefs[0]));
319  }
320  return ResultReg;
321}
322
323unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
324                                       const TargetRegisterClass *RC,
325                                       unsigned Op0, bool Op0IsKill,
326                                       unsigned Op1, bool Op1IsKill,
327                                       unsigned Op2, bool Op2IsKill) {
328  unsigned ResultReg = createResultReg(RC);
329  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
330
331  if (II.getNumDefs() >= 1)
332    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
333                   .addReg(Op0, Op0IsKill * RegState::Kill)
334                   .addReg(Op1, Op1IsKill * RegState::Kill)
335                   .addReg(Op2, Op2IsKill * RegState::Kill));
336  else {
337    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
338                   .addReg(Op0, Op0IsKill * RegState::Kill)
339                   .addReg(Op1, Op1IsKill * RegState::Kill)
340                   .addReg(Op2, Op2IsKill * RegState::Kill));
341    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
342                           TII.get(TargetOpcode::COPY), ResultReg)
343                   .addReg(II.ImplicitDefs[0]));
344  }
345  return ResultReg;
346}
347
348unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
349                                      const TargetRegisterClass *RC,
350                                      unsigned Op0, bool Op0IsKill,
351                                      uint64_t Imm) {
352  unsigned ResultReg = createResultReg(RC);
353  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
354
355  if (II.getNumDefs() >= 1)
356    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
357                   .addReg(Op0, Op0IsKill * RegState::Kill)
358                   .addImm(Imm));
359  else {
360    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
361                   .addReg(Op0, Op0IsKill * RegState::Kill)
362                   .addImm(Imm));
363    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
364                           TII.get(TargetOpcode::COPY), ResultReg)
365                   .addReg(II.ImplicitDefs[0]));
366  }
367  return ResultReg;
368}
369
370unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
371                                      const TargetRegisterClass *RC,
372                                      unsigned Op0, bool Op0IsKill,
373                                      const ConstantFP *FPImm) {
374  unsigned ResultReg = createResultReg(RC);
375  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
376
377  if (II.getNumDefs() >= 1)
378    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
379                   .addReg(Op0, Op0IsKill * RegState::Kill)
380                   .addFPImm(FPImm));
381  else {
382    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
383                   .addReg(Op0, Op0IsKill * RegState::Kill)
384                   .addFPImm(FPImm));
385    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
386                           TII.get(TargetOpcode::COPY), ResultReg)
387                   .addReg(II.ImplicitDefs[0]));
388  }
389  return ResultReg;
390}
391
392unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
393                                       const TargetRegisterClass *RC,
394                                       unsigned Op0, bool Op0IsKill,
395                                       unsigned Op1, bool Op1IsKill,
396                                       uint64_t Imm) {
397  unsigned ResultReg = createResultReg(RC);
398  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
399
400  if (II.getNumDefs() >= 1)
401    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
402                   .addReg(Op0, Op0IsKill * RegState::Kill)
403                   .addReg(Op1, Op1IsKill * RegState::Kill)
404                   .addImm(Imm));
405  else {
406    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
407                   .addReg(Op0, Op0IsKill * RegState::Kill)
408                   .addReg(Op1, Op1IsKill * RegState::Kill)
409                   .addImm(Imm));
410    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
411                           TII.get(TargetOpcode::COPY), ResultReg)
412                   .addReg(II.ImplicitDefs[0]));
413  }
414  return ResultReg;
415}
416
417unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
418                                     const TargetRegisterClass *RC,
419                                     uint64_t Imm) {
420  unsigned ResultReg = createResultReg(RC);
421  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
422
423  if (II.getNumDefs() >= 1)
424    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
425                   .addImm(Imm));
426  else {
427    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
428                   .addImm(Imm));
429    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
430                           TII.get(TargetOpcode::COPY), ResultReg)
431                   .addReg(II.ImplicitDefs[0]));
432  }
433  return ResultReg;
434}
435
436unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
437                                                 unsigned Op0, bool Op0IsKill,
438                                                 uint32_t Idx) {
439  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
440  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
441         "Cannot yet extract from physregs");
442  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
443                         DL, TII.get(TargetOpcode::COPY), ResultReg)
444                 .addReg(Op0, getKillRegState(Op0IsKill), Idx));
445  return ResultReg;
446}
447
448// TODO: Don't worry about 64-bit now, but when this is fixed remove the
449// checks from the various callers.
450unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
451  if (VT == MVT::f64) return 0;
452
453  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
454  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
455                          TII.get(ARM::VMOVRS), MoveReg)
456                  .addReg(SrcReg));
457  return MoveReg;
458}
459
460unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
461  if (VT == MVT::i64) return 0;
462
463  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
464  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
465                          TII.get(ARM::VMOVSR), MoveReg)
466                  .addReg(SrcReg));
467  return MoveReg;
468}
469
470// For double width floating point we need to materialize two constants
471// (the high and the low) into integer registers then use a move to get
472// the combined constant into an FP reg.
473unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
474  const APFloat Val = CFP->getValueAPF();
475  bool is64bit = VT == MVT::f64;
476
477  // This checks to see if we can use VFP3 instructions to materialize
478  // a constant, otherwise we have to go through the constant pool.
479  if (TLI.isFPImmLegal(Val, VT)) {
480    unsigned Opc = is64bit ? ARM::FCONSTD : ARM::FCONSTS;
481    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
482    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
483                            DestReg)
484                    .addFPImm(CFP));
485    return DestReg;
486  }
487
488  // Require VFP2 for loading fp constants.
489  if (!Subtarget->hasVFP2()) return false;
490
491  // MachineConstantPool wants an explicit alignment.
492  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
493  if (Align == 0) {
494    // TODO: Figure out if this is correct.
495    Align = TD.getTypeAllocSize(CFP->getType());
496  }
497  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
498  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
499  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
500
501  // The extra reg is for addrmode5.
502  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
503                          DestReg)
504                  .addConstantPoolIndex(Idx)
505                  .addReg(0));
506  return DestReg;
507}
508
509unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
510
511  // For now 32-bit only.
512  if (VT != MVT::i32) return false;
513
514  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
515
516  // If we can do this in a single instruction without a constant pool entry
517  // do so now.
518  const ConstantInt *CI = cast<ConstantInt>(C);
519  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getSExtValue())) {
520    unsigned Opc = isThumb ? ARM::t2MOVi16 : ARM::MOVi16;
521    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
522                            TII.get(Opc), DestReg)
523                    .addImm(CI->getSExtValue()));
524    return DestReg;
525  }
526
527  // MachineConstantPool wants an explicit alignment.
528  unsigned Align = TD.getPrefTypeAlignment(C->getType());
529  if (Align == 0) {
530    // TODO: Figure out if this is correct.
531    Align = TD.getTypeAllocSize(C->getType());
532  }
533  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
534
535  if (isThumb)
536    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
537                            TII.get(ARM::t2LDRpci), DestReg)
538                    .addConstantPoolIndex(Idx));
539  else
540    // The extra immediate is for addrmode2.
541    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
542                            TII.get(ARM::LDRcp), DestReg)
543                    .addConstantPoolIndex(Idx)
544                    .addImm(0));
545
546  return DestReg;
547}
548
549unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
550  // For now 32-bit only.
551  if (VT != MVT::i32) return 0;
552
553  Reloc::Model RelocM = TM.getRelocationModel();
554
555  // TODO: No external globals for now.
556  if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) return 0;
557
558  // TODO: Need more magic for ARM PIC.
559  if (!isThumb && (RelocM == Reloc::PIC_)) return 0;
560
561  // MachineConstantPool wants an explicit alignment.
562  unsigned Align = TD.getPrefTypeAlignment(GV->getType());
563  if (Align == 0) {
564    // TODO: Figure out if this is correct.
565    Align = TD.getTypeAllocSize(GV->getType());
566  }
567
568  // Grab index.
569  unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
570  unsigned Id = AFI->createPICLabelUId();
571  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, Id,
572                                                       ARMCP::CPValue, PCAdj);
573  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
574
575  // Load value.
576  MachineInstrBuilder MIB;
577  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
578  if (isThumb) {
579    unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
580    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
581          .addConstantPoolIndex(Idx);
582    if (RelocM == Reloc::PIC_)
583      MIB.addImm(Id);
584  } else {
585    // The extra immediate is for addrmode2.
586    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
587                  DestReg)
588          .addConstantPoolIndex(Idx)
589          .addImm(0);
590  }
591  AddOptionalDefs(MIB);
592  return DestReg;
593}
594
595unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
596  EVT VT = TLI.getValueType(C->getType(), true);
597
598  // Only handle simple types.
599  if (!VT.isSimple()) return 0;
600
601  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
602    return ARMMaterializeFP(CFP, VT);
603  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
604    return ARMMaterializeGV(GV, VT);
605  else if (isa<ConstantInt>(C))
606    return ARMMaterializeInt(C, VT);
607
608  return 0;
609}
610
611unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
612  // Don't handle dynamic allocas.
613  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
614
615  MVT VT;
616  if (!isLoadTypeLegal(AI->getType(), VT)) return false;
617
618  DenseMap<const AllocaInst*, int>::iterator SI =
619    FuncInfo.StaticAllocaMap.find(AI);
620
621  // This will get lowered later into the correct offsets and registers
622  // via rewriteXFrameIndex.
623  if (SI != FuncInfo.StaticAllocaMap.end()) {
624    TargetRegisterClass* RC = TLI.getRegClassFor(VT);
625    unsigned ResultReg = createResultReg(RC);
626    unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
627    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
628                            TII.get(Opc), ResultReg)
629                            .addFrameIndex(SI->second)
630                            .addImm(0));
631    return ResultReg;
632  }
633
634  return 0;
635}
636
637bool ARMFastISel::isTypeLegal(const Type *Ty, MVT &VT) {
638  EVT evt = TLI.getValueType(Ty, true);
639
640  // Only handle simple types.
641  if (evt == MVT::Other || !evt.isSimple()) return false;
642  VT = evt.getSimpleVT();
643
644  // Handle all legal types, i.e. a register that will directly hold this
645  // value.
646  return TLI.isTypeLegal(VT);
647}
648
649bool ARMFastISel::isLoadTypeLegal(const Type *Ty, MVT &VT) {
650  if (isTypeLegal(Ty, VT)) return true;
651
652  // If this is a type than can be sign or zero-extended to a basic operation
653  // go ahead and accept it now.
654  if (VT == MVT::i8 || VT == MVT::i16)
655    return true;
656
657  return false;
658}
659
660// Computes the address to get to an object.
661bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
662  // Some boilerplate from the X86 FastISel.
663  const User *U = NULL;
664  unsigned Opcode = Instruction::UserOp1;
665  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
666    // Don't walk into other basic blocks unless the object is an alloca from
667    // another block, otherwise it may not have a virtual register assigned.
668    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
669        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
670      Opcode = I->getOpcode();
671      U = I;
672    }
673  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
674    Opcode = C->getOpcode();
675    U = C;
676  }
677
678  if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
679    if (Ty->getAddressSpace() > 255)
680      // Fast instruction selection doesn't support the special
681      // address spaces.
682      return false;
683
684  switch (Opcode) {
685    default:
686    break;
687    case Instruction::BitCast: {
688      // Look through bitcasts.
689      return ARMComputeAddress(U->getOperand(0), Addr);
690    }
691    case Instruction::IntToPtr: {
692      // Look past no-op inttoptrs.
693      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
694        return ARMComputeAddress(U->getOperand(0), Addr);
695      break;
696    }
697    case Instruction::PtrToInt: {
698      // Look past no-op ptrtoints.
699      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
700        return ARMComputeAddress(U->getOperand(0), Addr);
701      break;
702    }
703    case Instruction::GetElementPtr: {
704      Address SavedAddr = Addr;
705      int TmpOffset = Addr.Offset;
706
707      // Iterate through the GEP folding the constants into offsets where
708      // we can.
709      gep_type_iterator GTI = gep_type_begin(U);
710      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
711           i != e; ++i, ++GTI) {
712        const Value *Op = *i;
713        if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
714          const StructLayout *SL = TD.getStructLayout(STy);
715          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
716          TmpOffset += SL->getElementOffset(Idx);
717        } else {
718          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
719          for (;;) {
720            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
721              // Constant-offset addressing.
722              TmpOffset += CI->getSExtValue() * S;
723              break;
724            }
725            if (isa<AddOperator>(Op) &&
726                (!isa<Instruction>(Op) ||
727                 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
728                 == FuncInfo.MBB) &&
729                isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
730              // An add (in the same block) with a constant operand. Fold the
731              // constant.
732              ConstantInt *CI =
733              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
734              TmpOffset += CI->getSExtValue() * S;
735              // Iterate on the other operand.
736              Op = cast<AddOperator>(Op)->getOperand(0);
737              continue;
738            }
739            // Unsupported
740            goto unsupported_gep;
741          }
742        }
743      }
744
745      // Try to grab the base operand now.
746      Addr.Offset = TmpOffset;
747      if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
748
749      // We failed, restore everything and try the other options.
750      Addr = SavedAddr;
751
752      unsupported_gep:
753      break;
754    }
755    case Instruction::Alloca: {
756      const AllocaInst *AI = cast<AllocaInst>(Obj);
757      DenseMap<const AllocaInst*, int>::iterator SI =
758        FuncInfo.StaticAllocaMap.find(AI);
759      if (SI != FuncInfo.StaticAllocaMap.end()) {
760        Addr.BaseType = Address::FrameIndexBase;
761        Addr.Base.FI = SI->second;
762        return true;
763      }
764      break;
765    }
766  }
767
768  // Materialize the global variable's address into a reg which can
769  // then be used later to load the variable.
770  if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
771    unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
772    if (Tmp == 0) return false;
773
774    Addr.Base.Reg = Tmp;
775    return true;
776  }
777
778  // Try to get this in a register if nothing else has worked.
779  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
780  return Addr.Base.Reg != 0;
781}
782
783void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT) {
784
785  assert(VT.isSimple() && "Non-simple types are invalid here!");
786
787  bool needsLowering = false;
788  switch (VT.getSimpleVT().SimpleTy) {
789    default:
790      assert(false && "Unhandled load/store type!");
791    case MVT::i1:
792    case MVT::i8:
793    case MVT::i16:
794    case MVT::i32:
795      // Integer loads/stores handle 12-bit offsets.
796      needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
797      break;
798    case MVT::f32:
799    case MVT::f64:
800      // Floating point operands handle 8-bit offsets.
801      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
802      break;
803  }
804
805  // If this is a stack pointer and the offset needs to be simplified then
806  // put the alloca address into a register, set the base type back to
807  // register and continue. This should almost never happen.
808  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
809    TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass :
810                              ARM::GPRRegisterClass;
811    unsigned ResultReg = createResultReg(RC);
812    unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
813    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
814                            TII.get(Opc), ResultReg)
815                            .addFrameIndex(Addr.Base.FI)
816                            .addImm(0));
817    Addr.Base.Reg = ResultReg;
818    Addr.BaseType = Address::RegBase;
819  }
820
821  // Since the offset is too large for the load/store instruction
822  // get the reg+offset into a register.
823  if (needsLowering) {
824    ARMCC::CondCodes Pred = ARMCC::AL;
825    unsigned PredReg = 0;
826
827    TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass :
828      ARM::GPRRegisterClass;
829    unsigned BaseReg = createResultReg(RC);
830
831    if (!isThumb)
832      emitARMRegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
833                              BaseReg, Addr.Base.Reg, Addr.Offset,
834                              Pred, PredReg,
835                              static_cast<const ARMBaseInstrInfo&>(TII));
836    else {
837      assert(AFI->isThumb2Function());
838      emitT2RegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
839                             BaseReg, Addr.Base.Reg, Addr.Offset, Pred, PredReg,
840                             static_cast<const ARMBaseInstrInfo&>(TII));
841    }
842    Addr.Offset = 0;
843    Addr.Base.Reg = BaseReg;
844  }
845}
846
847void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
848                                       const MachineInstrBuilder &MIB) {
849  // addrmode5 output depends on the selection dag addressing dividing the
850  // offset by 4 that it then later multiplies. Do this here as well.
851  if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
852      VT.getSimpleVT().SimpleTy == MVT::f64)
853    Addr.Offset /= 4;
854
855  // Frame base works a bit differently. Handle it separately.
856  if (Addr.BaseType == Address::FrameIndexBase) {
857    int FI = Addr.Base.FI;
858    int Offset = Addr.Offset;
859    MachineMemOperand *MMO =
860          FuncInfo.MF->getMachineMemOperand(
861                                  MachinePointerInfo::getFixedStack(FI, Offset),
862                                  MachineMemOperand::MOLoad,
863                                  MFI.getObjectSize(FI),
864                                  MFI.getObjectAlignment(FI));
865    // Now add the rest of the operands.
866    MIB.addFrameIndex(FI);
867
868    // ARM halfword load/stores need an additional operand.
869    if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
870
871    MIB.addImm(Addr.Offset);
872    MIB.addMemOperand(MMO);
873  } else {
874    // Now add the rest of the operands.
875    MIB.addReg(Addr.Base.Reg);
876
877    // ARM halfword load/stores need an additional operand.
878    if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
879
880    MIB.addImm(Addr.Offset);
881  }
882  AddOptionalDefs(MIB);
883}
884
885bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr) {
886
887  assert(VT.isSimple() && "Non-simple types are invalid here!");
888  unsigned Opc;
889  TargetRegisterClass *RC;
890  switch (VT.getSimpleVT().SimpleTy) {
891    // This is mostly going to be Neon/vector support.
892    default: return false;
893    case MVT::i16:
894      Opc = isThumb ? ARM::t2LDRHi12 : ARM::LDRH;
895      RC = ARM::GPRRegisterClass;
896      break;
897    case MVT::i8:
898      Opc = isThumb ? ARM::t2LDRBi12 : ARM::LDRBi12;
899      RC = ARM::GPRRegisterClass;
900      break;
901    case MVT::i32:
902      Opc = isThumb ? ARM::t2LDRi12 : ARM::LDRi12;
903      RC = ARM::GPRRegisterClass;
904      break;
905    case MVT::f32:
906      Opc = ARM::VLDRS;
907      RC = TLI.getRegClassFor(VT);
908      break;
909    case MVT::f64:
910      Opc = ARM::VLDRD;
911      RC = TLI.getRegClassFor(VT);
912      break;
913  }
914  // Simplify this down to something we can handle.
915  ARMSimplifyAddress(Addr, VT);
916
917  // Create the base instruction, then add the operands.
918  ResultReg = createResultReg(RC);
919  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
920                                    TII.get(Opc), ResultReg);
921  AddLoadStoreOperands(VT, Addr, MIB);
922  return true;
923}
924
925bool ARMFastISel::SelectLoad(const Instruction *I) {
926  // Verify we have a legal type before going any further.
927  MVT VT;
928  if (!isLoadTypeLegal(I->getType(), VT))
929    return false;
930
931  // See if we can handle this address.
932  Address Addr;
933  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
934
935  unsigned ResultReg;
936  if (!ARMEmitLoad(VT, ResultReg, Addr)) return false;
937  UpdateValueMap(I, ResultReg);
938  return true;
939}
940
941bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr) {
942  unsigned StrOpc;
943  switch (VT.getSimpleVT().SimpleTy) {
944    // This is mostly going to be Neon/vector support.
945    default: return false;
946    case MVT::i1: {
947      unsigned Res = createResultReg(isThumb ? ARM::tGPRRegisterClass :
948                                               ARM::GPRRegisterClass);
949      unsigned Opc = isThumb ? ARM::t2ANDri : ARM::ANDri;
950      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
951                              TII.get(Opc), Res)
952                      .addReg(SrcReg).addImm(1));
953      SrcReg = Res;
954    } // Fallthrough here.
955    case MVT::i8:
956      StrOpc = isThumb ? ARM::t2STRBi12 : ARM::STRBi12;
957      break;
958    case MVT::i16:
959      StrOpc = isThumb ? ARM::t2STRHi12 : ARM::STRH;
960      break;
961    case MVT::i32:
962      StrOpc = isThumb ? ARM::t2STRi12 : ARM::STRi12;
963      break;
964    case MVT::f32:
965      if (!Subtarget->hasVFP2()) return false;
966      StrOpc = ARM::VSTRS;
967      break;
968    case MVT::f64:
969      if (!Subtarget->hasVFP2()) return false;
970      StrOpc = ARM::VSTRD;
971      break;
972  }
973  // Simplify this down to something we can handle.
974  ARMSimplifyAddress(Addr, VT);
975
976  // Create the base instruction, then add the operands.
977  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
978                                    TII.get(StrOpc))
979                            .addReg(SrcReg, getKillRegState(true));
980  AddLoadStoreOperands(VT, Addr, MIB);
981  return true;
982}
983
984bool ARMFastISel::SelectStore(const Instruction *I) {
985  Value *Op0 = I->getOperand(0);
986  unsigned SrcReg = 0;
987
988  // Verify we have a legal type before going any further.
989  MVT VT;
990  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
991    return false;
992
993  // Get the value to be stored into a register.
994  SrcReg = getRegForValue(Op0);
995  if (SrcReg == 0) return false;
996
997  // See if we can handle this address.
998  Address Addr;
999  if (!ARMComputeAddress(I->getOperand(1), Addr))
1000    return false;
1001
1002  if (!ARMEmitStore(VT, SrcReg, Addr)) return false;
1003  return true;
1004}
1005
1006static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1007  switch (Pred) {
1008    // Needs two compares...
1009    case CmpInst::FCMP_ONE:
1010    case CmpInst::FCMP_UEQ:
1011    default:
1012      // AL is our "false" for now. The other two need more compares.
1013      return ARMCC::AL;
1014    case CmpInst::ICMP_EQ:
1015    case CmpInst::FCMP_OEQ:
1016      return ARMCC::EQ;
1017    case CmpInst::ICMP_SGT:
1018    case CmpInst::FCMP_OGT:
1019      return ARMCC::GT;
1020    case CmpInst::ICMP_SGE:
1021    case CmpInst::FCMP_OGE:
1022      return ARMCC::GE;
1023    case CmpInst::ICMP_UGT:
1024    case CmpInst::FCMP_UGT:
1025      return ARMCC::HI;
1026    case CmpInst::FCMP_OLT:
1027      return ARMCC::MI;
1028    case CmpInst::ICMP_ULE:
1029    case CmpInst::FCMP_OLE:
1030      return ARMCC::LS;
1031    case CmpInst::FCMP_ORD:
1032      return ARMCC::VC;
1033    case CmpInst::FCMP_UNO:
1034      return ARMCC::VS;
1035    case CmpInst::FCMP_UGE:
1036      return ARMCC::PL;
1037    case CmpInst::ICMP_SLT:
1038    case CmpInst::FCMP_ULT:
1039      return ARMCC::LT;
1040    case CmpInst::ICMP_SLE:
1041    case CmpInst::FCMP_ULE:
1042      return ARMCC::LE;
1043    case CmpInst::FCMP_UNE:
1044    case CmpInst::ICMP_NE:
1045      return ARMCC::NE;
1046    case CmpInst::ICMP_UGE:
1047      return ARMCC::HS;
1048    case CmpInst::ICMP_ULT:
1049      return ARMCC::LO;
1050  }
1051}
1052
1053bool ARMFastISel::SelectBranch(const Instruction *I) {
1054  const BranchInst *BI = cast<BranchInst>(I);
1055  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1056  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1057
1058  // Simple branch support.
1059
1060  // If we can, avoid recomputing the compare - redoing it could lead to wonky
1061  // behavior.
1062  // TODO: Factor this out.
1063  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1064    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1065      MVT VT;
1066      const Type *Ty = CI->getOperand(0)->getType();
1067      if (!isTypeLegal(Ty, VT))
1068        return false;
1069
1070      bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1071      if (isFloat && !Subtarget->hasVFP2())
1072        return false;
1073
1074      unsigned CmpOpc;
1075      switch (VT.SimpleTy) {
1076        default: return false;
1077        // TODO: Verify compares.
1078        case MVT::f32:
1079          CmpOpc = ARM::VCMPES;
1080          break;
1081        case MVT::f64:
1082          CmpOpc = ARM::VCMPED;
1083          break;
1084        case MVT::i32:
1085          CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1086          break;
1087      }
1088
1089      // Get the compare predicate.
1090      ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1091
1092      // We may not handle every CC for now.
1093      if (ARMPred == ARMCC::AL) return false;
1094
1095      unsigned Arg1 = getRegForValue(CI->getOperand(0));
1096      if (Arg1 == 0) return false;
1097
1098      unsigned Arg2 = getRegForValue(CI->getOperand(1));
1099      if (Arg2 == 0) return false;
1100
1101      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1102                              TII.get(CmpOpc))
1103                      .addReg(Arg1).addReg(Arg2));
1104
1105      // For floating point we need to move the result to a comparison register
1106      // that we can then use for branches.
1107      if (isFloat)
1108        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1109                                TII.get(ARM::FMSTAT)));
1110
1111      unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1112      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1113      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1114      FastEmitBranch(FBB, DL);
1115      FuncInfo.MBB->addSuccessor(TBB);
1116      return true;
1117    }
1118  }
1119
1120  unsigned CmpReg = getRegForValue(BI->getCondition());
1121  if (CmpReg == 0) return false;
1122
1123  // Re-set the flags just in case.
1124  unsigned CmpOpc = isThumb ? ARM::t2CMPri : ARM::CMPri;
1125  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1126                  .addReg(CmpReg).addImm(0));
1127
1128  unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1129  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1130                  .addMBB(TBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
1131  FastEmitBranch(FBB, DL);
1132  FuncInfo.MBB->addSuccessor(TBB);
1133  return true;
1134}
1135
1136bool ARMFastISel::SelectCmp(const Instruction *I) {
1137  const CmpInst *CI = cast<CmpInst>(I);
1138
1139  MVT VT;
1140  const Type *Ty = CI->getOperand(0)->getType();
1141  if (!isTypeLegal(Ty, VT))
1142    return false;
1143
1144  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1145  if (isFloat && !Subtarget->hasVFP2())
1146    return false;
1147
1148  unsigned CmpOpc;
1149  unsigned CondReg;
1150  switch (VT.SimpleTy) {
1151    default: return false;
1152    // TODO: Verify compares.
1153    case MVT::f32:
1154      CmpOpc = ARM::VCMPES;
1155      CondReg = ARM::FPSCR;
1156      break;
1157    case MVT::f64:
1158      CmpOpc = ARM::VCMPED;
1159      CondReg = ARM::FPSCR;
1160      break;
1161    case MVT::i32:
1162      CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1163      CondReg = ARM::CPSR;
1164      break;
1165  }
1166
1167  // Get the compare predicate.
1168  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1169
1170  // We may not handle every CC for now.
1171  if (ARMPred == ARMCC::AL) return false;
1172
1173  unsigned Arg1 = getRegForValue(CI->getOperand(0));
1174  if (Arg1 == 0) return false;
1175
1176  unsigned Arg2 = getRegForValue(CI->getOperand(1));
1177  if (Arg2 == 0) return false;
1178
1179  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1180                  .addReg(Arg1).addReg(Arg2));
1181
1182  // For floating point we need to move the result to a comparison register
1183  // that we can then use for branches.
1184  if (isFloat)
1185    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1186                            TII.get(ARM::FMSTAT)));
1187
1188  // Now set a register based on the comparison. Explicitly set the predicates
1189  // here.
1190  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCi : ARM::MOVCCi;
1191  TargetRegisterClass *RC = isThumb ? ARM::rGPRRegisterClass
1192                                    : ARM::GPRRegisterClass;
1193  unsigned DestReg = createResultReg(RC);
1194  Constant *Zero
1195    = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1196  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1197  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1198          .addReg(ZeroReg).addImm(1)
1199          .addImm(ARMPred).addReg(CondReg);
1200
1201  UpdateValueMap(I, DestReg);
1202  return true;
1203}
1204
1205bool ARMFastISel::SelectFPExt(const Instruction *I) {
1206  // Make sure we have VFP and that we're extending float to double.
1207  if (!Subtarget->hasVFP2()) return false;
1208
1209  Value *V = I->getOperand(0);
1210  if (!I->getType()->isDoubleTy() ||
1211      !V->getType()->isFloatTy()) return false;
1212
1213  unsigned Op = getRegForValue(V);
1214  if (Op == 0) return false;
1215
1216  unsigned Result = createResultReg(ARM::DPRRegisterClass);
1217  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1218                          TII.get(ARM::VCVTDS), Result)
1219                  .addReg(Op));
1220  UpdateValueMap(I, Result);
1221  return true;
1222}
1223
1224bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1225  // Make sure we have VFP and that we're truncating double to float.
1226  if (!Subtarget->hasVFP2()) return false;
1227
1228  Value *V = I->getOperand(0);
1229  if (!(I->getType()->isFloatTy() &&
1230        V->getType()->isDoubleTy())) return false;
1231
1232  unsigned Op = getRegForValue(V);
1233  if (Op == 0) return false;
1234
1235  unsigned Result = createResultReg(ARM::SPRRegisterClass);
1236  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1237                          TII.get(ARM::VCVTSD), Result)
1238                  .addReg(Op));
1239  UpdateValueMap(I, Result);
1240  return true;
1241}
1242
1243bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1244  // Make sure we have VFP.
1245  if (!Subtarget->hasVFP2()) return false;
1246
1247  MVT DstVT;
1248  const Type *Ty = I->getType();
1249  if (!isTypeLegal(Ty, DstVT))
1250    return false;
1251
1252  unsigned Op = getRegForValue(I->getOperand(0));
1253  if (Op == 0) return false;
1254
1255  // The conversion routine works on fp-reg to fp-reg and the operand above
1256  // was an integer, move it to the fp registers if possible.
1257  unsigned FP = ARMMoveToFPReg(MVT::f32, Op);
1258  if (FP == 0) return false;
1259
1260  unsigned Opc;
1261  if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1262  else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1263  else return 0;
1264
1265  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1266  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1267                          ResultReg)
1268                  .addReg(FP));
1269  UpdateValueMap(I, ResultReg);
1270  return true;
1271}
1272
1273bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1274  // Make sure we have VFP.
1275  if (!Subtarget->hasVFP2()) return false;
1276
1277  MVT DstVT;
1278  const Type *RetTy = I->getType();
1279  if (!isTypeLegal(RetTy, DstVT))
1280    return false;
1281
1282  unsigned Op = getRegForValue(I->getOperand(0));
1283  if (Op == 0) return false;
1284
1285  unsigned Opc;
1286  const Type *OpTy = I->getOperand(0)->getType();
1287  if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1288  else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1289  else return 0;
1290
1291  // f64->s32 or f32->s32 both need an intermediate f32 reg.
1292  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1293  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1294                          ResultReg)
1295                  .addReg(Op));
1296
1297  // This result needs to be in an integer register, but the conversion only
1298  // takes place in fp-regs.
1299  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1300  if (IntReg == 0) return false;
1301
1302  UpdateValueMap(I, IntReg);
1303  return true;
1304}
1305
1306bool ARMFastISel::SelectSelect(const Instruction *I) {
1307  MVT VT;
1308  if (!isTypeLegal(I->getType(), VT))
1309    return false;
1310
1311  // Things need to be register sized for register moves.
1312  if (VT != MVT::i32) return false;
1313  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1314
1315  unsigned CondReg = getRegForValue(I->getOperand(0));
1316  if (CondReg == 0) return false;
1317  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1318  if (Op1Reg == 0) return false;
1319  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1320  if (Op2Reg == 0) return false;
1321
1322  unsigned CmpOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1323  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1324                  .addReg(CondReg).addImm(1));
1325  unsigned ResultReg = createResultReg(RC);
1326  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCr : ARM::MOVCCr;
1327  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1328    .addReg(Op1Reg).addReg(Op2Reg)
1329    .addImm(ARMCC::EQ).addReg(ARM::CPSR);
1330  UpdateValueMap(I, ResultReg);
1331  return true;
1332}
1333
1334bool ARMFastISel::SelectSDiv(const Instruction *I) {
1335  MVT VT;
1336  const Type *Ty = I->getType();
1337  if (!isTypeLegal(Ty, VT))
1338    return false;
1339
1340  // If we have integer div support we should have selected this automagically.
1341  // In case we have a real miss go ahead and return false and we'll pick
1342  // it up later.
1343  if (Subtarget->hasDivide()) return false;
1344
1345  // Otherwise emit a libcall.
1346  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1347  if (VT == MVT::i8)
1348    LC = RTLIB::SDIV_I8;
1349  else if (VT == MVT::i16)
1350    LC = RTLIB::SDIV_I16;
1351  else if (VT == MVT::i32)
1352    LC = RTLIB::SDIV_I32;
1353  else if (VT == MVT::i64)
1354    LC = RTLIB::SDIV_I64;
1355  else if (VT == MVT::i128)
1356    LC = RTLIB::SDIV_I128;
1357  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1358
1359  return ARMEmitLibcall(I, LC);
1360}
1361
1362bool ARMFastISel::SelectSRem(const Instruction *I) {
1363  MVT VT;
1364  const Type *Ty = I->getType();
1365  if (!isTypeLegal(Ty, VT))
1366    return false;
1367
1368  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1369  if (VT == MVT::i8)
1370    LC = RTLIB::SREM_I8;
1371  else if (VT == MVT::i16)
1372    LC = RTLIB::SREM_I16;
1373  else if (VT == MVT::i32)
1374    LC = RTLIB::SREM_I32;
1375  else if (VT == MVT::i64)
1376    LC = RTLIB::SREM_I64;
1377  else if (VT == MVT::i128)
1378    LC = RTLIB::SREM_I128;
1379  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1380
1381  return ARMEmitLibcall(I, LC);
1382}
1383
1384bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1385  EVT VT  = TLI.getValueType(I->getType(), true);
1386
1387  // We can get here in the case when we want to use NEON for our fp
1388  // operations, but can't figure out how to. Just use the vfp instructions
1389  // if we have them.
1390  // FIXME: It'd be nice to use NEON instructions.
1391  const Type *Ty = I->getType();
1392  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1393  if (isFloat && !Subtarget->hasVFP2())
1394    return false;
1395
1396  unsigned Op1 = getRegForValue(I->getOperand(0));
1397  if (Op1 == 0) return false;
1398
1399  unsigned Op2 = getRegForValue(I->getOperand(1));
1400  if (Op2 == 0) return false;
1401
1402  unsigned Opc;
1403  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1404  switch (ISDOpcode) {
1405    default: return false;
1406    case ISD::FADD:
1407      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1408      break;
1409    case ISD::FSUB:
1410      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1411      break;
1412    case ISD::FMUL:
1413      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1414      break;
1415  }
1416  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1417  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1418                          TII.get(Opc), ResultReg)
1419                  .addReg(Op1).addReg(Op2));
1420  UpdateValueMap(I, ResultReg);
1421  return true;
1422}
1423
1424// Call Handling Code
1425
1426bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src,
1427                                 EVT SrcVT, unsigned &ResultReg) {
1428  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
1429                           Src, /*TODO: Kill=*/false);
1430
1431  if (RR != 0) {
1432    ResultReg = RR;
1433    return true;
1434  } else
1435    return false;
1436}
1437
1438// This is largely taken directly from CCAssignFnForNode - we don't support
1439// varargs in FastISel so that part has been removed.
1440// TODO: We may not support all of this.
1441CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1442  switch (CC) {
1443  default:
1444    llvm_unreachable("Unsupported calling convention");
1445  case CallingConv::Fast:
1446    // Ignore fastcc. Silence compiler warnings.
1447    (void)RetFastCC_ARM_APCS;
1448    (void)FastCC_ARM_APCS;
1449    // Fallthrough
1450  case CallingConv::C:
1451    // Use target triple & subtarget features to do actual dispatch.
1452    if (Subtarget->isAAPCS_ABI()) {
1453      if (Subtarget->hasVFP2() &&
1454          FloatABIType == FloatABI::Hard)
1455        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1456      else
1457        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1458    } else
1459        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1460  case CallingConv::ARM_AAPCS_VFP:
1461    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1462  case CallingConv::ARM_AAPCS:
1463    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1464  case CallingConv::ARM_APCS:
1465    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1466  }
1467}
1468
1469bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1470                                  SmallVectorImpl<unsigned> &ArgRegs,
1471                                  SmallVectorImpl<MVT> &ArgVTs,
1472                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1473                                  SmallVectorImpl<unsigned> &RegArgs,
1474                                  CallingConv::ID CC,
1475                                  unsigned &NumBytes) {
1476  SmallVector<CCValAssign, 16> ArgLocs;
1477  CCState CCInfo(CC, false, TM, ArgLocs, *Context);
1478  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1479
1480  // Get a count of how many bytes are to be pushed on the stack.
1481  NumBytes = CCInfo.getNextStackOffset();
1482
1483  // Issue CALLSEQ_START
1484  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1485  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1486                          TII.get(AdjStackDown))
1487                  .addImm(NumBytes));
1488
1489  // Process the args.
1490  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1491    CCValAssign &VA = ArgLocs[i];
1492    unsigned Arg = ArgRegs[VA.getValNo()];
1493    MVT ArgVT = ArgVTs[VA.getValNo()];
1494
1495    // We don't handle NEON/vector parameters yet.
1496    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1497      return false;
1498
1499    // Handle arg promotion, etc.
1500    switch (VA.getLocInfo()) {
1501      case CCValAssign::Full: break;
1502      case CCValAssign::SExt: {
1503        bool Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1504                                         Arg, ArgVT, Arg);
1505        assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
1506        Emitted = true;
1507        ArgVT = VA.getLocVT();
1508        break;
1509      }
1510      case CCValAssign::ZExt: {
1511        bool Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1512                                         Arg, ArgVT, Arg);
1513        assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
1514        Emitted = true;
1515        ArgVT = VA.getLocVT();
1516        break;
1517      }
1518      case CCValAssign::AExt: {
1519        bool Emitted = FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1520                                         Arg, ArgVT, Arg);
1521        if (!Emitted)
1522          Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1523                                      Arg, ArgVT, Arg);
1524        if (!Emitted)
1525          Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1526                                      Arg, ArgVT, Arg);
1527
1528        assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
1529        ArgVT = VA.getLocVT();
1530        break;
1531      }
1532      case CCValAssign::BCvt: {
1533        unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1534                                 /*TODO: Kill=*/false);
1535        assert(BC != 0 && "Failed to emit a bitcast!");
1536        Arg = BC;
1537        ArgVT = VA.getLocVT();
1538        break;
1539      }
1540      default: llvm_unreachable("Unknown arg promotion!");
1541    }
1542
1543    // Now copy/store arg to correct locations.
1544    if (VA.isRegLoc() && !VA.needsCustom()) {
1545      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1546              VA.getLocReg())
1547      .addReg(Arg);
1548      RegArgs.push_back(VA.getLocReg());
1549    } else if (VA.needsCustom()) {
1550      // TODO: We need custom lowering for vector (v2f64) args.
1551      if (VA.getLocVT() != MVT::f64) return false;
1552
1553      CCValAssign &NextVA = ArgLocs[++i];
1554
1555      // TODO: Only handle register args for now.
1556      if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
1557
1558      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1559                              TII.get(ARM::VMOVRRD), VA.getLocReg())
1560                      .addReg(NextVA.getLocReg(), RegState::Define)
1561                      .addReg(Arg));
1562      RegArgs.push_back(VA.getLocReg());
1563      RegArgs.push_back(NextVA.getLocReg());
1564    } else {
1565      assert(VA.isMemLoc());
1566      // Need to store on the stack.
1567      Address Addr;
1568      Addr.BaseType = Address::RegBase;
1569      Addr.Base.Reg = ARM::SP;
1570      Addr.Offset = VA.getLocMemOffset();
1571
1572      if (!ARMEmitStore(ArgVT, Arg, Addr)) return false;
1573    }
1574  }
1575  return true;
1576}
1577
1578bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1579                             const Instruction *I, CallingConv::ID CC,
1580                             unsigned &NumBytes) {
1581  // Issue CALLSEQ_END
1582  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1583  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1584                          TII.get(AdjStackUp))
1585                  .addImm(NumBytes).addImm(0));
1586
1587  // Now the return value.
1588  if (RetVT != MVT::isVoid) {
1589    SmallVector<CCValAssign, 16> RVLocs;
1590    CCState CCInfo(CC, false, TM, RVLocs, *Context);
1591    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1592
1593    // Copy all of the result registers out of their specified physreg.
1594    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
1595      // For this move we copy into two registers and then move into the
1596      // double fp reg we want.
1597      EVT DestVT = RVLocs[0].getValVT();
1598      TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1599      unsigned ResultReg = createResultReg(DstRC);
1600      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1601                              TII.get(ARM::VMOVDRR), ResultReg)
1602                      .addReg(RVLocs[0].getLocReg())
1603                      .addReg(RVLocs[1].getLocReg()));
1604
1605      UsedRegs.push_back(RVLocs[0].getLocReg());
1606      UsedRegs.push_back(RVLocs[1].getLocReg());
1607
1608      // Finally update the result.
1609      UpdateValueMap(I, ResultReg);
1610    } else {
1611      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1612      EVT CopyVT = RVLocs[0].getValVT();
1613      TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1614
1615      unsigned ResultReg = createResultReg(DstRC);
1616      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1617              ResultReg).addReg(RVLocs[0].getLocReg());
1618      UsedRegs.push_back(RVLocs[0].getLocReg());
1619
1620      // Finally update the result.
1621      UpdateValueMap(I, ResultReg);
1622    }
1623  }
1624
1625  return true;
1626}
1627
1628bool ARMFastISel::SelectRet(const Instruction *I) {
1629  const ReturnInst *Ret = cast<ReturnInst>(I);
1630  const Function &F = *I->getParent()->getParent();
1631
1632  if (!FuncInfo.CanLowerReturn)
1633    return false;
1634
1635  if (F.isVarArg())
1636    return false;
1637
1638  CallingConv::ID CC = F.getCallingConv();
1639  if (Ret->getNumOperands() > 0) {
1640    SmallVector<ISD::OutputArg, 4> Outs;
1641    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
1642                  Outs, TLI);
1643
1644    // Analyze operands of the call, assigning locations to each operand.
1645    SmallVector<CCValAssign, 16> ValLocs;
1646    CCState CCInfo(CC, F.isVarArg(), TM, ValLocs, I->getContext());
1647    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
1648
1649    const Value *RV = Ret->getOperand(0);
1650    unsigned Reg = getRegForValue(RV);
1651    if (Reg == 0)
1652      return false;
1653
1654    // Only handle a single return value for now.
1655    if (ValLocs.size() != 1)
1656      return false;
1657
1658    CCValAssign &VA = ValLocs[0];
1659
1660    // Don't bother handling odd stuff for now.
1661    if (VA.getLocInfo() != CCValAssign::Full)
1662      return false;
1663    // Only handle register returns for now.
1664    if (!VA.isRegLoc())
1665      return false;
1666    // TODO: For now, don't try to handle cases where getLocInfo()
1667    // says Full but the types don't match.
1668    if (TLI.getValueType(RV->getType()) != VA.getValVT())
1669      return false;
1670
1671    // Make the copy.
1672    unsigned SrcReg = Reg + VA.getValNo();
1673    unsigned DstReg = VA.getLocReg();
1674    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
1675    // Avoid a cross-class copy. This is very unlikely.
1676    if (!SrcRC->contains(DstReg))
1677      return false;
1678    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1679            DstReg).addReg(SrcReg);
1680
1681    // Mark the register as live out of the function.
1682    MRI.addLiveOut(VA.getLocReg());
1683  }
1684
1685  unsigned RetOpc = isThumb ? ARM::tBX_RET : ARM::BX_RET;
1686  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1687                          TII.get(RetOpc)));
1688  return true;
1689}
1690
1691unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) {
1692
1693  // Darwin needs the r9 versions of the opcodes.
1694  bool isDarwin = Subtarget->isTargetDarwin();
1695  if (isThumb) {
1696    return isDarwin ? ARM::tBLr9 : ARM::tBL;
1697  } else  {
1698    return isDarwin ? ARM::BLr9 : ARM::BL;
1699  }
1700}
1701
1702// A quick function that will emit a call for a named libcall in F with the
1703// vector of passed arguments for the Instruction in I. We can assume that we
1704// can emit a call for any libcall we can produce. This is an abridged version
1705// of the full call infrastructure since we won't need to worry about things
1706// like computed function pointers or strange arguments at call sites.
1707// TODO: Try to unify this and the normal call bits for ARM, then try to unify
1708// with X86.
1709bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
1710  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
1711
1712  // Handle *simple* calls for now.
1713  const Type *RetTy = I->getType();
1714  MVT RetVT;
1715  if (RetTy->isVoidTy())
1716    RetVT = MVT::isVoid;
1717  else if (!isTypeLegal(RetTy, RetVT))
1718    return false;
1719
1720  // For now we're using BLX etc on the assumption that we have v5t ops.
1721  if (!Subtarget->hasV5TOps()) return false;
1722
1723  // TODO: For now if we have long calls specified we don't handle the call.
1724  if (EnableARMLongCalls) return false;
1725
1726  // Set up the argument vectors.
1727  SmallVector<Value*, 8> Args;
1728  SmallVector<unsigned, 8> ArgRegs;
1729  SmallVector<MVT, 8> ArgVTs;
1730  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1731  Args.reserve(I->getNumOperands());
1732  ArgRegs.reserve(I->getNumOperands());
1733  ArgVTs.reserve(I->getNumOperands());
1734  ArgFlags.reserve(I->getNumOperands());
1735  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1736    Value *Op = I->getOperand(i);
1737    unsigned Arg = getRegForValue(Op);
1738    if (Arg == 0) return false;
1739
1740    const Type *ArgTy = Op->getType();
1741    MVT ArgVT;
1742    if (!isTypeLegal(ArgTy, ArgVT)) return false;
1743
1744    ISD::ArgFlagsTy Flags;
1745    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1746    Flags.setOrigAlign(OriginalAlignment);
1747
1748    Args.push_back(Op);
1749    ArgRegs.push_back(Arg);
1750    ArgVTs.push_back(ArgVT);
1751    ArgFlags.push_back(Flags);
1752  }
1753
1754  // Handle the arguments now that we've gotten them.
1755  SmallVector<unsigned, 4> RegArgs;
1756  unsigned NumBytes;
1757  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1758    return false;
1759
1760  // Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops.
1761  // TODO: Turn this into the table of arm call ops.
1762  MachineInstrBuilder MIB;
1763  unsigned CallOpc = ARMSelectCallOp(NULL);
1764  if(isThumb)
1765    // Explicitly adding the predicate here.
1766    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1767                         TII.get(CallOpc)))
1768                         .addExternalSymbol(TLI.getLibcallName(Call));
1769  else
1770    // Explicitly adding the predicate here.
1771    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1772                         TII.get(CallOpc))
1773          .addExternalSymbol(TLI.getLibcallName(Call)));
1774
1775  // Add implicit physical register uses to the call.
1776  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1777    MIB.addReg(RegArgs[i]);
1778
1779  // Finish off the call including any return values.
1780  SmallVector<unsigned, 4> UsedRegs;
1781  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1782
1783  // Set all unused physreg defs as dead.
1784  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1785
1786  return true;
1787}
1788
1789bool ARMFastISel::SelectCall(const Instruction *I) {
1790  const CallInst *CI = cast<CallInst>(I);
1791  const Value *Callee = CI->getCalledValue();
1792
1793  // Can't handle inline asm or worry about intrinsics yet.
1794  if (isa<InlineAsm>(Callee) || isa<IntrinsicInst>(CI)) return false;
1795
1796  // Only handle global variable Callees that are direct calls.
1797  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1798  if (!GV || Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel()))
1799    return false;
1800
1801  // Check the calling convention.
1802  ImmutableCallSite CS(CI);
1803  CallingConv::ID CC = CS.getCallingConv();
1804
1805  // TODO: Avoid some calling conventions?
1806
1807  // Let SDISel handle vararg functions.
1808  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1809  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1810  if (FTy->isVarArg())
1811    return false;
1812
1813  // Handle *simple* calls for now.
1814  const Type *RetTy = I->getType();
1815  MVT RetVT;
1816  if (RetTy->isVoidTy())
1817    RetVT = MVT::isVoid;
1818  else if (!isTypeLegal(RetTy, RetVT))
1819    return false;
1820
1821  // For now we're using BLX etc on the assumption that we have v5t ops.
1822  // TODO: Maybe?
1823  if (!Subtarget->hasV5TOps()) return false;
1824
1825  // TODO: For now if we have long calls specified we don't handle the call.
1826  if (EnableARMLongCalls) return false;
1827
1828  // Set up the argument vectors.
1829  SmallVector<Value*, 8> Args;
1830  SmallVector<unsigned, 8> ArgRegs;
1831  SmallVector<MVT, 8> ArgVTs;
1832  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1833  Args.reserve(CS.arg_size());
1834  ArgRegs.reserve(CS.arg_size());
1835  ArgVTs.reserve(CS.arg_size());
1836  ArgFlags.reserve(CS.arg_size());
1837  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1838       i != e; ++i) {
1839    unsigned Arg = getRegForValue(*i);
1840
1841    if (Arg == 0)
1842      return false;
1843    ISD::ArgFlagsTy Flags;
1844    unsigned AttrInd = i - CS.arg_begin() + 1;
1845    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1846      Flags.setSExt();
1847    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1848      Flags.setZExt();
1849
1850         // FIXME: Only handle *easy* calls for now.
1851    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1852        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1853        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1854        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1855      return false;
1856
1857    const Type *ArgTy = (*i)->getType();
1858    MVT ArgVT;
1859    if (!isTypeLegal(ArgTy, ArgVT))
1860      return false;
1861    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1862    Flags.setOrigAlign(OriginalAlignment);
1863
1864    Args.push_back(*i);
1865    ArgRegs.push_back(Arg);
1866    ArgVTs.push_back(ArgVT);
1867    ArgFlags.push_back(Flags);
1868  }
1869
1870  // Handle the arguments now that we've gotten them.
1871  SmallVector<unsigned, 4> RegArgs;
1872  unsigned NumBytes;
1873  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1874    return false;
1875
1876  // Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops.
1877  // TODO: Turn this into the table of arm call ops.
1878  MachineInstrBuilder MIB;
1879  unsigned CallOpc = ARMSelectCallOp(GV);
1880  // Explicitly adding the predicate here.
1881  if(isThumb)
1882    // Explicitly adding the predicate here.
1883    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1884                         TII.get(CallOpc)))
1885          .addGlobalAddress(GV, 0, 0);
1886  else
1887    // Explicitly adding the predicate here.
1888    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1889                         TII.get(CallOpc))
1890          .addGlobalAddress(GV, 0, 0));
1891
1892  // Add implicit physical register uses to the call.
1893  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1894    MIB.addReg(RegArgs[i]);
1895
1896  // Finish off the call including any return values.
1897  SmallVector<unsigned, 4> UsedRegs;
1898  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1899
1900  // Set all unused physreg defs as dead.
1901  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1902
1903  return true;
1904
1905}
1906
1907// TODO: SoftFP support.
1908bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
1909
1910  switch (I->getOpcode()) {
1911    case Instruction::Load:
1912      return SelectLoad(I);
1913    case Instruction::Store:
1914      return SelectStore(I);
1915    case Instruction::Br:
1916      return SelectBranch(I);
1917    case Instruction::ICmp:
1918    case Instruction::FCmp:
1919      return SelectCmp(I);
1920    case Instruction::FPExt:
1921      return SelectFPExt(I);
1922    case Instruction::FPTrunc:
1923      return SelectFPTrunc(I);
1924    case Instruction::SIToFP:
1925      return SelectSIToFP(I);
1926    case Instruction::FPToSI:
1927      return SelectFPToSI(I);
1928    case Instruction::FAdd:
1929      return SelectBinaryOp(I, ISD::FADD);
1930    case Instruction::FSub:
1931      return SelectBinaryOp(I, ISD::FSUB);
1932    case Instruction::FMul:
1933      return SelectBinaryOp(I, ISD::FMUL);
1934    case Instruction::SDiv:
1935      return SelectSDiv(I);
1936    case Instruction::SRem:
1937      return SelectSRem(I);
1938    case Instruction::Call:
1939      return SelectCall(I);
1940    case Instruction::Select:
1941      return SelectSelect(I);
1942    case Instruction::Ret:
1943      return SelectRet(I);
1944    default: break;
1945  }
1946  return false;
1947}
1948
1949namespace llvm {
1950  llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
1951    // Completely untested on non-darwin.
1952    const TargetMachine &TM = funcInfo.MF->getTarget();
1953
1954    // Darwin and thumb1 only for now.
1955    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
1956    if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() &&
1957        !DisableARMFastISel)
1958      return new ARMFastISel(funcInfo);
1959    return 0;
1960  }
1961}
1962