ARMFastISel.cpp revision 564857f776084a85b6b4bf0c896fd60c69d0c521
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMRegisterInfo.h"
20#include "ARMTargetMachine.h"
21#include "ARMSubtarget.h"
22#include "ARMConstantPoolValue.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/Analysis.h"
30#include "llvm/CodeGen/FastISel.h"
31#include "llvm/CodeGen/FunctionLoweringInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineConstantPool.h"
35#include "llvm/CodeGen/MachineFrameInfo.h"
36#include "llvm/CodeGen/MachineMemOperand.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/Support/CallSite.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/GetElementPtrTypeIterator.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48using namespace llvm;
49
50static cl::opt<bool>
51DisableARMFastISel("disable-arm-fast-isel",
52                    cl::desc("Turn off experimental ARM fast-isel support"),
53                    cl::init(false), cl::Hidden);
54
55namespace {
56
57  // All possible address modes, plus some.
58  typedef struct Address {
59    enum {
60      RegBase,
61      FrameIndexBase
62    } BaseType;
63
64    union {
65      unsigned Reg;
66      int FI;
67    } Base;
68
69    int Offset;
70    unsigned Scale;
71    unsigned PlusReg;
72
73    // Innocuous defaults for our address.
74    Address()
75     : BaseType(RegBase), Offset(0), Scale(0), PlusReg(0) {
76       Base.Reg = 0;
77     }
78  } Address;
79
80class ARMFastISel : public FastISel {
81
82  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
83  /// make the right decision when generating code for different targets.
84  const ARMSubtarget *Subtarget;
85  const TargetMachine &TM;
86  const TargetInstrInfo &TII;
87  const TargetLowering &TLI;
88  ARMFunctionInfo *AFI;
89
90  // Convenience variables to avoid some queries.
91  bool isThumb;
92  LLVMContext *Context;
93
94  public:
95    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
96    : FastISel(funcInfo),
97      TM(funcInfo.MF->getTarget()),
98      TII(*TM.getInstrInfo()),
99      TLI(*TM.getTargetLowering()) {
100      Subtarget = &TM.getSubtarget<ARMSubtarget>();
101      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
102      isThumb = AFI->isThumbFunction();
103      Context = &funcInfo.Fn->getContext();
104    }
105
106    // Code from FastISel.cpp.
107    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
108                                   const TargetRegisterClass *RC);
109    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
110                                    const TargetRegisterClass *RC,
111                                    unsigned Op0, bool Op0IsKill);
112    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
113                                     const TargetRegisterClass *RC,
114                                     unsigned Op0, bool Op0IsKill,
115                                     unsigned Op1, bool Op1IsKill);
116    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
117                                     const TargetRegisterClass *RC,
118                                     unsigned Op0, bool Op0IsKill,
119                                     uint64_t Imm);
120    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
121                                     const TargetRegisterClass *RC,
122                                     unsigned Op0, bool Op0IsKill,
123                                     const ConstantFP *FPImm);
124    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
125                                    const TargetRegisterClass *RC,
126                                    uint64_t Imm);
127    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
128                                      const TargetRegisterClass *RC,
129                                      unsigned Op0, bool Op0IsKill,
130                                      unsigned Op1, bool Op1IsKill,
131                                      uint64_t Imm);
132    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
133                                                unsigned Op0, bool Op0IsKill,
134                                                uint32_t Idx);
135
136    // Backend specific FastISel code.
137    virtual bool TargetSelectInstruction(const Instruction *I);
138    virtual unsigned TargetMaterializeConstant(const Constant *C);
139    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
140
141  #include "ARMGenFastISel.inc"
142
143    // Instruction selection routines.
144  private:
145    bool SelectLoad(const Instruction *I);
146    bool SelectStore(const Instruction *I);
147    bool SelectBranch(const Instruction *I);
148    bool SelectCmp(const Instruction *I);
149    bool SelectFPExt(const Instruction *I);
150    bool SelectFPTrunc(const Instruction *I);
151    bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
152    bool SelectSIToFP(const Instruction *I);
153    bool SelectFPToSI(const Instruction *I);
154    bool SelectSDiv(const Instruction *I);
155    bool SelectSRem(const Instruction *I);
156    bool SelectCall(const Instruction *I);
157    bool SelectSelect(const Instruction *I);
158    bool SelectRet(const Instruction *I);
159
160    // Utility routines.
161  private:
162    bool isTypeLegal(const Type *Ty, MVT &VT);
163    bool isLoadTypeLegal(const Type *Ty, MVT &VT);
164    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr);
165    bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr);
166    bool ARMComputeAddress(const Value *Obj, Address &Addr);
167    void ARMSimplifyAddress(Address &Addr, EVT VT);
168    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
169    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
170    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
171    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
172    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
173
174    // Call handling routines.
175  private:
176    bool FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
177                        unsigned &ResultReg);
178    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
179    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
180                         SmallVectorImpl<unsigned> &ArgRegs,
181                         SmallVectorImpl<MVT> &ArgVTs,
182                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
183                         SmallVectorImpl<unsigned> &RegArgs,
184                         CallingConv::ID CC,
185                         unsigned &NumBytes);
186    bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
187                    const Instruction *I, CallingConv::ID CC,
188                    unsigned &NumBytes);
189    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
190
191    // OptionalDef handling routines.
192  private:
193    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
194    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
195    void AddLoadStoreOperands(EVT VT, Address &Addr,
196                              const MachineInstrBuilder &MIB);
197};
198
199} // end anonymous namespace
200
201#include "ARMGenCallingConv.inc"
202
203// DefinesOptionalPredicate - This is different from DefinesPredicate in that
204// we don't care about implicit defs here, just places we'll need to add a
205// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
206bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
207  const TargetInstrDesc &TID = MI->getDesc();
208  if (!TID.hasOptionalDef())
209    return false;
210
211  // Look to see if our OptionalDef is defining CPSR or CCR.
212  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
213    const MachineOperand &MO = MI->getOperand(i);
214    if (!MO.isReg() || !MO.isDef()) continue;
215    if (MO.getReg() == ARM::CPSR)
216      *CPSR = true;
217  }
218  return true;
219}
220
221// If the machine is predicable go ahead and add the predicate operands, if
222// it needs default CC operands add those.
223// TODO: If we want to support thumb1 then we'll need to deal with optional
224// CPSR defs that need to be added before the remaining operands. See s_cc_out
225// for descriptions why.
226const MachineInstrBuilder &
227ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
228  MachineInstr *MI = &*MIB;
229
230  // Do we use a predicate?
231  if (TII.isPredicable(MI))
232    AddDefaultPred(MIB);
233
234  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
235  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
236  bool CPSR = false;
237  if (DefinesOptionalPredicate(MI, &CPSR)) {
238    if (CPSR)
239      AddDefaultT1CC(MIB);
240    else
241      AddDefaultCC(MIB);
242  }
243  return MIB;
244}
245
246unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
247                                    const TargetRegisterClass* RC) {
248  unsigned ResultReg = createResultReg(RC);
249  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
250
251  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
252  return ResultReg;
253}
254
255unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
256                                     const TargetRegisterClass *RC,
257                                     unsigned Op0, bool Op0IsKill) {
258  unsigned ResultReg = createResultReg(RC);
259  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
260
261  if (II.getNumDefs() >= 1)
262    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
263                   .addReg(Op0, Op0IsKill * RegState::Kill));
264  else {
265    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
266                   .addReg(Op0, Op0IsKill * RegState::Kill));
267    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
268                   TII.get(TargetOpcode::COPY), ResultReg)
269                   .addReg(II.ImplicitDefs[0]));
270  }
271  return ResultReg;
272}
273
274unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
275                                      const TargetRegisterClass *RC,
276                                      unsigned Op0, bool Op0IsKill,
277                                      unsigned Op1, bool Op1IsKill) {
278  unsigned ResultReg = createResultReg(RC);
279  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
280
281  if (II.getNumDefs() >= 1)
282    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
283                   .addReg(Op0, Op0IsKill * RegState::Kill)
284                   .addReg(Op1, Op1IsKill * RegState::Kill));
285  else {
286    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
287                   .addReg(Op0, Op0IsKill * RegState::Kill)
288                   .addReg(Op1, Op1IsKill * RegState::Kill));
289    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
290                           TII.get(TargetOpcode::COPY), ResultReg)
291                   .addReg(II.ImplicitDefs[0]));
292  }
293  return ResultReg;
294}
295
296unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
297                                      const TargetRegisterClass *RC,
298                                      unsigned Op0, bool Op0IsKill,
299                                      uint64_t Imm) {
300  unsigned ResultReg = createResultReg(RC);
301  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
302
303  if (II.getNumDefs() >= 1)
304    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
305                   .addReg(Op0, Op0IsKill * RegState::Kill)
306                   .addImm(Imm));
307  else {
308    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
309                   .addReg(Op0, Op0IsKill * RegState::Kill)
310                   .addImm(Imm));
311    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
312                           TII.get(TargetOpcode::COPY), ResultReg)
313                   .addReg(II.ImplicitDefs[0]));
314  }
315  return ResultReg;
316}
317
318unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
319                                      const TargetRegisterClass *RC,
320                                      unsigned Op0, bool Op0IsKill,
321                                      const ConstantFP *FPImm) {
322  unsigned ResultReg = createResultReg(RC);
323  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
324
325  if (II.getNumDefs() >= 1)
326    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
327                   .addReg(Op0, Op0IsKill * RegState::Kill)
328                   .addFPImm(FPImm));
329  else {
330    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
331                   .addReg(Op0, Op0IsKill * RegState::Kill)
332                   .addFPImm(FPImm));
333    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
334                           TII.get(TargetOpcode::COPY), ResultReg)
335                   .addReg(II.ImplicitDefs[0]));
336  }
337  return ResultReg;
338}
339
340unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
341                                       const TargetRegisterClass *RC,
342                                       unsigned Op0, bool Op0IsKill,
343                                       unsigned Op1, bool Op1IsKill,
344                                       uint64_t Imm) {
345  unsigned ResultReg = createResultReg(RC);
346  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
347
348  if (II.getNumDefs() >= 1)
349    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
350                   .addReg(Op0, Op0IsKill * RegState::Kill)
351                   .addReg(Op1, Op1IsKill * RegState::Kill)
352                   .addImm(Imm));
353  else {
354    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
355                   .addReg(Op0, Op0IsKill * RegState::Kill)
356                   .addReg(Op1, Op1IsKill * RegState::Kill)
357                   .addImm(Imm));
358    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
359                           TII.get(TargetOpcode::COPY), ResultReg)
360                   .addReg(II.ImplicitDefs[0]));
361  }
362  return ResultReg;
363}
364
365unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
366                                     const TargetRegisterClass *RC,
367                                     uint64_t Imm) {
368  unsigned ResultReg = createResultReg(RC);
369  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
370
371  if (II.getNumDefs() >= 1)
372    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
373                   .addImm(Imm));
374  else {
375    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
376                   .addImm(Imm));
377    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
378                           TII.get(TargetOpcode::COPY), ResultReg)
379                   .addReg(II.ImplicitDefs[0]));
380  }
381  return ResultReg;
382}
383
384unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
385                                                 unsigned Op0, bool Op0IsKill,
386                                                 uint32_t Idx) {
387  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
388  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
389         "Cannot yet extract from physregs");
390  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
391                         DL, TII.get(TargetOpcode::COPY), ResultReg)
392                 .addReg(Op0, getKillRegState(Op0IsKill), Idx));
393  return ResultReg;
394}
395
396// TODO: Don't worry about 64-bit now, but when this is fixed remove the
397// checks from the various callers.
398unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
399  if (VT == MVT::f64) return 0;
400
401  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
402  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
403                          TII.get(ARM::VMOVRS), MoveReg)
404                  .addReg(SrcReg));
405  return MoveReg;
406}
407
408unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
409  if (VT == MVT::i64) return 0;
410
411  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
412  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
413                          TII.get(ARM::VMOVSR), MoveReg)
414                  .addReg(SrcReg));
415  return MoveReg;
416}
417
418// For double width floating point we need to materialize two constants
419// (the high and the low) into integer registers then use a move to get
420// the combined constant into an FP reg.
421unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
422  const APFloat Val = CFP->getValueAPF();
423  bool is64bit = VT == MVT::f64;
424
425  // This checks to see if we can use VFP3 instructions to materialize
426  // a constant, otherwise we have to go through the constant pool.
427  if (TLI.isFPImmLegal(Val, VT)) {
428    unsigned Opc = is64bit ? ARM::FCONSTD : ARM::FCONSTS;
429    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
430    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
431                            DestReg)
432                    .addFPImm(CFP));
433    return DestReg;
434  }
435
436  // Require VFP2 for loading fp constants.
437  if (!Subtarget->hasVFP2()) return false;
438
439  // MachineConstantPool wants an explicit alignment.
440  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
441  if (Align == 0) {
442    // TODO: Figure out if this is correct.
443    Align = TD.getTypeAllocSize(CFP->getType());
444  }
445  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
446  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
447  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
448
449  // The extra reg is for addrmode5.
450  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
451                          DestReg)
452                  .addConstantPoolIndex(Idx)
453                  .addReg(0));
454  return DestReg;
455}
456
457unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
458
459  // For now 32-bit only.
460  if (VT != MVT::i32) return false;
461
462  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
463
464  // If we can do this in a single instruction without a constant pool entry
465  // do so now.
466  const ConstantInt *CI = cast<ConstantInt>(C);
467  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getSExtValue())) {
468    unsigned Opc = isThumb ? ARM::t2MOVi16 : ARM::MOVi16;
469    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
470                            TII.get(Opc), DestReg)
471                    .addImm(CI->getSExtValue()));
472    return DestReg;
473  }
474
475  // MachineConstantPool wants an explicit alignment.
476  unsigned Align = TD.getPrefTypeAlignment(C->getType());
477  if (Align == 0) {
478    // TODO: Figure out if this is correct.
479    Align = TD.getTypeAllocSize(C->getType());
480  }
481  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
482
483  if (isThumb)
484    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
485                            TII.get(ARM::t2LDRpci), DestReg)
486                    .addConstantPoolIndex(Idx));
487  else
488    // The extra immediate is for addrmode2.
489    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
490                            TII.get(ARM::LDRcp), DestReg)
491                    .addConstantPoolIndex(Idx)
492                    .addImm(0));
493
494  return DestReg;
495}
496
497unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
498  // For now 32-bit only.
499  if (VT != MVT::i32) return 0;
500
501  Reloc::Model RelocM = TM.getRelocationModel();
502
503  // TODO: No external globals for now.
504  if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) return 0;
505
506  // TODO: Need more magic for ARM PIC.
507  if (!isThumb && (RelocM == Reloc::PIC_)) return 0;
508
509  // MachineConstantPool wants an explicit alignment.
510  unsigned Align = TD.getPrefTypeAlignment(GV->getType());
511  if (Align == 0) {
512    // TODO: Figure out if this is correct.
513    Align = TD.getTypeAllocSize(GV->getType());
514  }
515
516  // Grab index.
517  unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
518  unsigned Id = AFI->createConstPoolEntryUId();
519  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, Id,
520                                                       ARMCP::CPValue, PCAdj);
521  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
522
523  // Load value.
524  MachineInstrBuilder MIB;
525  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
526  if (isThumb) {
527    unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
528    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
529          .addConstantPoolIndex(Idx);
530    if (RelocM == Reloc::PIC_)
531      MIB.addImm(Id);
532  } else {
533    // The extra immediate is for addrmode2.
534    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
535                  DestReg)
536          .addConstantPoolIndex(Idx)
537          .addImm(0);
538  }
539  AddOptionalDefs(MIB);
540  return DestReg;
541}
542
543unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
544  EVT VT = TLI.getValueType(C->getType(), true);
545
546  // Only handle simple types.
547  if (!VT.isSimple()) return 0;
548
549  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
550    return ARMMaterializeFP(CFP, VT);
551  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
552    return ARMMaterializeGV(GV, VT);
553  else if (isa<ConstantInt>(C))
554    return ARMMaterializeInt(C, VT);
555
556  return 0;
557}
558
559unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
560  // Don't handle dynamic allocas.
561  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
562
563  MVT VT;
564  if (!isLoadTypeLegal(AI->getType(), VT)) return false;
565
566  DenseMap<const AllocaInst*, int>::iterator SI =
567    FuncInfo.StaticAllocaMap.find(AI);
568
569  // This will get lowered later into the correct offsets and registers
570  // via rewriteXFrameIndex.
571  if (SI != FuncInfo.StaticAllocaMap.end()) {
572    TargetRegisterClass* RC = TLI.getRegClassFor(VT);
573    unsigned ResultReg = createResultReg(RC);
574    unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
575    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
576                            TII.get(Opc), ResultReg)
577                            .addFrameIndex(SI->second)
578                            .addImm(0));
579    return ResultReg;
580  }
581
582  return 0;
583}
584
585bool ARMFastISel::isTypeLegal(const Type *Ty, MVT &VT) {
586  EVT evt = TLI.getValueType(Ty, true);
587
588  // Only handle simple types.
589  if (evt == MVT::Other || !evt.isSimple()) return false;
590  VT = evt.getSimpleVT();
591
592  // Handle all legal types, i.e. a register that will directly hold this
593  // value.
594  return TLI.isTypeLegal(VT);
595}
596
597bool ARMFastISel::isLoadTypeLegal(const Type *Ty, MVT &VT) {
598  if (isTypeLegal(Ty, VT)) return true;
599
600  // If this is a type than can be sign or zero-extended to a basic operation
601  // go ahead and accept it now.
602  if (VT == MVT::i8 || VT == MVT::i16)
603    return true;
604
605  return false;
606}
607
608// Computes the address to get to an object.
609bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
610  // Some boilerplate from the X86 FastISel.
611  const User *U = NULL;
612  unsigned Opcode = Instruction::UserOp1;
613  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
614    // Don't walk into other basic blocks unless the object is an alloca from
615    // another block, otherwise it may not have a virtual register assigned.
616    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
617        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
618      Opcode = I->getOpcode();
619      U = I;
620    }
621  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
622    Opcode = C->getOpcode();
623    U = C;
624  }
625
626  if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
627    if (Ty->getAddressSpace() > 255)
628      // Fast instruction selection doesn't support the special
629      // address spaces.
630      return false;
631
632  switch (Opcode) {
633    default:
634    break;
635    case Instruction::BitCast: {
636      // Look through bitcasts.
637      return ARMComputeAddress(U->getOperand(0), Addr);
638    }
639    case Instruction::IntToPtr: {
640      // Look past no-op inttoptrs.
641      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
642        return ARMComputeAddress(U->getOperand(0), Addr);
643      break;
644    }
645    case Instruction::PtrToInt: {
646      // Look past no-op ptrtoints.
647      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
648        return ARMComputeAddress(U->getOperand(0), Addr);
649      break;
650    }
651    case Instruction::GetElementPtr: {
652      Address SavedAddr = Addr;
653      int TmpOffset = Addr.Offset;
654
655      // Iterate through the GEP folding the constants into offsets where
656      // we can.
657      gep_type_iterator GTI = gep_type_begin(U);
658      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
659           i != e; ++i, ++GTI) {
660        const Value *Op = *i;
661        if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
662          const StructLayout *SL = TD.getStructLayout(STy);
663          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
664          TmpOffset += SL->getElementOffset(Idx);
665        } else {
666          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
667          SmallVector<const Value *, 4> Worklist;
668          Worklist.push_back(Op);
669          do {
670            Op = Worklist.pop_back_val();
671            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
672              // Constant-offset addressing.
673              TmpOffset += CI->getSExtValue() * S;
674            } else if (isa<AddOperator>(Op) &&
675                       isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
676              // An add with a constant operand. Fold the constant.
677              ConstantInt *CI =
678                cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
679              TmpOffset += CI->getSExtValue() * S;
680              // Add the other operand back to the work list.
681              Worklist.push_back(cast<AddOperator>(Op)->getOperand(0));
682            } else
683              goto unsupported_gep;
684          } while (!Worklist.empty());
685        }
686      }
687
688      // Try to grab the base operand now.
689      Addr.Offset = TmpOffset;
690      if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
691
692      // We failed, restore everything and try the other options.
693      Addr = SavedAddr;
694
695      unsupported_gep:
696      break;
697    }
698    case Instruction::Alloca: {
699      const AllocaInst *AI = cast<AllocaInst>(Obj);
700      DenseMap<const AllocaInst*, int>::iterator SI =
701        FuncInfo.StaticAllocaMap.find(AI);
702      if (SI != FuncInfo.StaticAllocaMap.end()) {
703        Addr.BaseType = Address::FrameIndexBase;
704        Addr.Base.FI = SI->second;
705        return true;
706      }
707      break;
708    }
709  }
710
711  // Materialize the global variable's address into a reg which can
712  // then be used later to load the variable.
713  if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
714    unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
715    if (Tmp == 0) return false;
716
717    Addr.Base.Reg = Tmp;
718    return true;
719  }
720
721  // Try to get this in a register if nothing else has worked.
722  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
723  return Addr.Base.Reg != 0;
724}
725
726void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT) {
727
728  assert(VT.isSimple() && "Non-simple types are invalid here!");
729
730  bool needsLowering = false;
731  switch (VT.getSimpleVT().SimpleTy) {
732    default:
733      assert(false && "Unhandled load/store type!");
734    case MVT::i1:
735    case MVT::i8:
736    case MVT::i16:
737    case MVT::i32:
738      // Integer loads/stores handle 12-bit offsets.
739      needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
740      break;
741    case MVT::f32:
742    case MVT::f64:
743      // Floating point operands handle 8-bit offsets.
744      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
745      break;
746  }
747
748  // If this is a stack pointer and the offset needs to be simplified then
749  // put the alloca address into a register, set the base type back to
750  // register and continue. This should almost never happen.
751  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
752    TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass :
753                              ARM::GPRRegisterClass;
754    unsigned ResultReg = createResultReg(RC);
755    unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
756    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
757                            TII.get(Opc), ResultReg)
758                            .addFrameIndex(Addr.Base.FI)
759                            .addImm(0));
760    Addr.Base.Reg = ResultReg;
761    Addr.BaseType = Address::RegBase;
762  }
763
764  // Since the offset is too large for the load/store instruction
765  // get the reg+offset into a register.
766  if (needsLowering) {
767    ARMCC::CondCodes Pred = ARMCC::AL;
768    unsigned PredReg = 0;
769
770    TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass :
771      ARM::GPRRegisterClass;
772    unsigned BaseReg = createResultReg(RC);
773
774    if (!isThumb)
775      emitARMRegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
776                              BaseReg, Addr.Base.Reg, Addr.Offset,
777                              Pred, PredReg,
778                              static_cast<const ARMBaseInstrInfo&>(TII));
779    else {
780      assert(AFI->isThumb2Function());
781      emitT2RegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
782                             BaseReg, Addr.Base.Reg, Addr.Offset, Pred, PredReg,
783                             static_cast<const ARMBaseInstrInfo&>(TII));
784    }
785    Addr.Offset = 0;
786    Addr.Base.Reg = BaseReg;
787  }
788}
789
790void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
791                                       const MachineInstrBuilder &MIB) {
792  // addrmode5 output depends on the selection dag addressing dividing the
793  // offset by 4 that it then later multiplies. Do this here as well.
794  if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
795      VT.getSimpleVT().SimpleTy == MVT::f64)
796    Addr.Offset /= 4;
797
798  // Frame base works a bit differently. Handle it separately.
799  if (Addr.BaseType == Address::FrameIndexBase) {
800    int FI = Addr.Base.FI;
801    int Offset = Addr.Offset;
802    MachineMemOperand *MMO =
803          FuncInfo.MF->getMachineMemOperand(
804                                  MachinePointerInfo::getFixedStack(FI, Offset),
805                                  MachineMemOperand::MOLoad,
806                                  MFI.getObjectSize(FI),
807                                  MFI.getObjectAlignment(FI));
808    // Now add the rest of the operands.
809    MIB.addFrameIndex(FI);
810
811    // ARM halfword load/stores need an additional operand.
812    if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
813
814    MIB.addImm(Addr.Offset);
815    MIB.addMemOperand(MMO);
816  } else {
817    // Now add the rest of the operands.
818    MIB.addReg(Addr.Base.Reg);
819
820    // ARM halfword load/stores need an additional operand.
821    if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
822
823    MIB.addImm(Addr.Offset);
824  }
825  AddOptionalDefs(MIB);
826}
827
828bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr) {
829
830  assert(VT.isSimple() && "Non-simple types are invalid here!");
831  unsigned Opc;
832  TargetRegisterClass *RC;
833  switch (VT.getSimpleVT().SimpleTy) {
834    // This is mostly going to be Neon/vector support.
835    default: return false;
836    case MVT::i16:
837      Opc = isThumb ? ARM::t2LDRHi12 : ARM::LDRH;
838      RC = ARM::GPRRegisterClass;
839      break;
840    case MVT::i8:
841      Opc = isThumb ? ARM::t2LDRBi12 : ARM::LDRBi12;
842      RC = ARM::GPRRegisterClass;
843      break;
844    case MVT::i32:
845      Opc = isThumb ? ARM::t2LDRi12 : ARM::LDRi12;
846      RC = ARM::GPRRegisterClass;
847      break;
848    case MVT::f32:
849      Opc = ARM::VLDRS;
850      RC = TLI.getRegClassFor(VT);
851      break;
852    case MVT::f64:
853      Opc = ARM::VLDRD;
854      RC = TLI.getRegClassFor(VT);
855      break;
856  }
857  // Simplify this down to something we can handle.
858  ARMSimplifyAddress(Addr, VT);
859
860  // Create the base instruction, then add the operands.
861  ResultReg = createResultReg(RC);
862  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
863                                    TII.get(Opc), ResultReg);
864  AddLoadStoreOperands(VT, Addr, MIB);
865  return true;
866}
867
868bool ARMFastISel::SelectLoad(const Instruction *I) {
869  // Verify we have a legal type before going any further.
870  MVT VT;
871  if (!isLoadTypeLegal(I->getType(), VT))
872    return false;
873
874  // See if we can handle this address.
875  Address Addr;
876  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
877
878  unsigned ResultReg;
879  if (!ARMEmitLoad(VT, ResultReg, Addr)) return false;
880  UpdateValueMap(I, ResultReg);
881  return true;
882}
883
884bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr) {
885  unsigned StrOpc;
886  switch (VT.getSimpleVT().SimpleTy) {
887    // This is mostly going to be Neon/vector support.
888    default: return false;
889    case MVT::i1: {
890      unsigned Res = createResultReg(isThumb ? ARM::tGPRRegisterClass :
891                                               ARM::GPRRegisterClass);
892      unsigned Opc = isThumb ? ARM::t2ANDri : ARM::ANDri;
893      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
894                              TII.get(Opc), Res)
895                      .addReg(SrcReg).addImm(1));
896      SrcReg = Res;
897    } // Fallthrough here.
898    case MVT::i8:
899      StrOpc = isThumb ? ARM::t2STRBi12 : ARM::STRBi12;
900      break;
901    case MVT::i16:
902      StrOpc = isThumb ? ARM::t2STRHi12 : ARM::STRH;
903      break;
904    case MVT::i32:
905      StrOpc = isThumb ? ARM::t2STRi12 : ARM::STRi12;
906      break;
907    case MVT::f32:
908      if (!Subtarget->hasVFP2()) return false;
909      StrOpc = ARM::VSTRS;
910      break;
911    case MVT::f64:
912      if (!Subtarget->hasVFP2()) return false;
913      StrOpc = ARM::VSTRD;
914      break;
915  }
916  // Simplify this down to something we can handle.
917  ARMSimplifyAddress(Addr, VT);
918
919  // Create the base instruction, then add the operands.
920  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
921                                    TII.get(StrOpc))
922                            .addReg(SrcReg, getKillRegState(true));
923  AddLoadStoreOperands(VT, Addr, MIB);
924  return true;
925}
926
927bool ARMFastISel::SelectStore(const Instruction *I) {
928  Value *Op0 = I->getOperand(0);
929  unsigned SrcReg = 0;
930
931  // Verify we have a legal type before going any further.
932  MVT VT;
933  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
934    return false;
935
936  // Get the value to be stored into a register.
937  SrcReg = getRegForValue(Op0);
938  if (SrcReg == 0) return false;
939
940  // See if we can handle this address.
941  Address Addr;
942  if (!ARMComputeAddress(I->getOperand(1), Addr))
943    return false;
944
945  if (!ARMEmitStore(VT, SrcReg, Addr)) return false;
946  return true;
947}
948
949static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
950  switch (Pred) {
951    // Needs two compares...
952    case CmpInst::FCMP_ONE:
953    case CmpInst::FCMP_UEQ:
954    default:
955      // AL is our "false" for now. The other two need more compares.
956      return ARMCC::AL;
957    case CmpInst::ICMP_EQ:
958    case CmpInst::FCMP_OEQ:
959      return ARMCC::EQ;
960    case CmpInst::ICMP_SGT:
961    case CmpInst::FCMP_OGT:
962      return ARMCC::GT;
963    case CmpInst::ICMP_SGE:
964    case CmpInst::FCMP_OGE:
965      return ARMCC::GE;
966    case CmpInst::ICMP_UGT:
967    case CmpInst::FCMP_UGT:
968      return ARMCC::HI;
969    case CmpInst::FCMP_OLT:
970      return ARMCC::MI;
971    case CmpInst::ICMP_ULE:
972    case CmpInst::FCMP_OLE:
973      return ARMCC::LS;
974    case CmpInst::FCMP_ORD:
975      return ARMCC::VC;
976    case CmpInst::FCMP_UNO:
977      return ARMCC::VS;
978    case CmpInst::FCMP_UGE:
979      return ARMCC::PL;
980    case CmpInst::ICMP_SLT:
981    case CmpInst::FCMP_ULT:
982      return ARMCC::LT;
983    case CmpInst::ICMP_SLE:
984    case CmpInst::FCMP_ULE:
985      return ARMCC::LE;
986    case CmpInst::FCMP_UNE:
987    case CmpInst::ICMP_NE:
988      return ARMCC::NE;
989    case CmpInst::ICMP_UGE:
990      return ARMCC::HS;
991    case CmpInst::ICMP_ULT:
992      return ARMCC::LO;
993  }
994}
995
996bool ARMFastISel::SelectBranch(const Instruction *I) {
997  const BranchInst *BI = cast<BranchInst>(I);
998  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
999  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1000
1001  // Simple branch support.
1002
1003  // If we can, avoid recomputing the compare - redoing it could lead to wonky
1004  // behavior.
1005  // TODO: Factor this out.
1006  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1007    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1008      MVT VT;
1009      const Type *Ty = CI->getOperand(0)->getType();
1010      if (!isTypeLegal(Ty, VT))
1011        return false;
1012
1013      bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1014      if (isFloat && !Subtarget->hasVFP2())
1015        return false;
1016
1017      unsigned CmpOpc;
1018      unsigned CondReg;
1019      switch (VT.SimpleTy) {
1020        default: return false;
1021        // TODO: Verify compares.
1022        case MVT::f32:
1023          CmpOpc = ARM::VCMPES;
1024          CondReg = ARM::FPSCR;
1025          break;
1026        case MVT::f64:
1027          CmpOpc = ARM::VCMPED;
1028          CondReg = ARM::FPSCR;
1029          break;
1030        case MVT::i32:
1031          CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1032          CondReg = ARM::CPSR;
1033          break;
1034      }
1035
1036      // Get the compare predicate.
1037      ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1038
1039      // We may not handle every CC for now.
1040      if (ARMPred == ARMCC::AL) return false;
1041
1042      unsigned Arg1 = getRegForValue(CI->getOperand(0));
1043      if (Arg1 == 0) return false;
1044
1045      unsigned Arg2 = getRegForValue(CI->getOperand(1));
1046      if (Arg2 == 0) return false;
1047
1048      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1049                              TII.get(CmpOpc))
1050                      .addReg(Arg1).addReg(Arg2));
1051
1052      // For floating point we need to move the result to a comparison register
1053      // that we can then use for branches.
1054      if (isFloat)
1055        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1056                                TII.get(ARM::FMSTAT)));
1057
1058      unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1059      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1060      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1061      FastEmitBranch(FBB, DL);
1062      FuncInfo.MBB->addSuccessor(TBB);
1063      return true;
1064    }
1065  }
1066
1067  unsigned CmpReg = getRegForValue(BI->getCondition());
1068  if (CmpReg == 0) return false;
1069
1070  // Re-set the flags just in case.
1071  unsigned CmpOpc = isThumb ? ARM::t2CMPri : ARM::CMPri;
1072  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1073                  .addReg(CmpReg).addImm(0));
1074
1075  unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1076  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1077                  .addMBB(TBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
1078  FastEmitBranch(FBB, DL);
1079  FuncInfo.MBB->addSuccessor(TBB);
1080  return true;
1081}
1082
1083bool ARMFastISel::SelectCmp(const Instruction *I) {
1084  const CmpInst *CI = cast<CmpInst>(I);
1085
1086  MVT VT;
1087  const Type *Ty = CI->getOperand(0)->getType();
1088  if (!isTypeLegal(Ty, VT))
1089    return false;
1090
1091  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1092  if (isFloat && !Subtarget->hasVFP2())
1093    return false;
1094
1095  unsigned CmpOpc;
1096  unsigned CondReg;
1097  switch (VT.SimpleTy) {
1098    default: return false;
1099    // TODO: Verify compares.
1100    case MVT::f32:
1101      CmpOpc = ARM::VCMPES;
1102      CondReg = ARM::FPSCR;
1103      break;
1104    case MVT::f64:
1105      CmpOpc = ARM::VCMPED;
1106      CondReg = ARM::FPSCR;
1107      break;
1108    case MVT::i32:
1109      CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1110      CondReg = ARM::CPSR;
1111      break;
1112  }
1113
1114  // Get the compare predicate.
1115  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1116
1117  // We may not handle every CC for now.
1118  if (ARMPred == ARMCC::AL) return false;
1119
1120  unsigned Arg1 = getRegForValue(CI->getOperand(0));
1121  if (Arg1 == 0) return false;
1122
1123  unsigned Arg2 = getRegForValue(CI->getOperand(1));
1124  if (Arg2 == 0) return false;
1125
1126  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1127                  .addReg(Arg1).addReg(Arg2));
1128
1129  // For floating point we need to move the result to a comparison register
1130  // that we can then use for branches.
1131  if (isFloat)
1132    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1133                            TII.get(ARM::FMSTAT)));
1134
1135  // Now set a register based on the comparison. Explicitly set the predicates
1136  // here.
1137  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCi : ARM::MOVCCi;
1138  TargetRegisterClass *RC = isThumb ? ARM::rGPRRegisterClass
1139                                    : ARM::GPRRegisterClass;
1140  unsigned DestReg = createResultReg(RC);
1141  Constant *Zero
1142    = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1143  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1144  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1145          .addReg(ZeroReg).addImm(1)
1146          .addImm(ARMPred).addReg(CondReg);
1147
1148  UpdateValueMap(I, DestReg);
1149  return true;
1150}
1151
1152bool ARMFastISel::SelectFPExt(const Instruction *I) {
1153  // Make sure we have VFP and that we're extending float to double.
1154  if (!Subtarget->hasVFP2()) return false;
1155
1156  Value *V = I->getOperand(0);
1157  if (!I->getType()->isDoubleTy() ||
1158      !V->getType()->isFloatTy()) return false;
1159
1160  unsigned Op = getRegForValue(V);
1161  if (Op == 0) return false;
1162
1163  unsigned Result = createResultReg(ARM::DPRRegisterClass);
1164  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1165                          TII.get(ARM::VCVTDS), Result)
1166                  .addReg(Op));
1167  UpdateValueMap(I, Result);
1168  return true;
1169}
1170
1171bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1172  // Make sure we have VFP and that we're truncating double to float.
1173  if (!Subtarget->hasVFP2()) return false;
1174
1175  Value *V = I->getOperand(0);
1176  if (!(I->getType()->isFloatTy() &&
1177        V->getType()->isDoubleTy())) return false;
1178
1179  unsigned Op = getRegForValue(V);
1180  if (Op == 0) return false;
1181
1182  unsigned Result = createResultReg(ARM::SPRRegisterClass);
1183  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1184                          TII.get(ARM::VCVTSD), Result)
1185                  .addReg(Op));
1186  UpdateValueMap(I, Result);
1187  return true;
1188}
1189
1190bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1191  // Make sure we have VFP.
1192  if (!Subtarget->hasVFP2()) return false;
1193
1194  MVT DstVT;
1195  const Type *Ty = I->getType();
1196  if (!isTypeLegal(Ty, DstVT))
1197    return false;
1198
1199  unsigned Op = getRegForValue(I->getOperand(0));
1200  if (Op == 0) return false;
1201
1202  // The conversion routine works on fp-reg to fp-reg and the operand above
1203  // was an integer, move it to the fp registers if possible.
1204  unsigned FP = ARMMoveToFPReg(MVT::f32, Op);
1205  if (FP == 0) return false;
1206
1207  unsigned Opc;
1208  if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1209  else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1210  else return 0;
1211
1212  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1213  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1214                          ResultReg)
1215                  .addReg(FP));
1216  UpdateValueMap(I, ResultReg);
1217  return true;
1218}
1219
1220bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1221  // Make sure we have VFP.
1222  if (!Subtarget->hasVFP2()) return false;
1223
1224  MVT DstVT;
1225  const Type *RetTy = I->getType();
1226  if (!isTypeLegal(RetTy, DstVT))
1227    return false;
1228
1229  unsigned Op = getRegForValue(I->getOperand(0));
1230  if (Op == 0) return false;
1231
1232  unsigned Opc;
1233  const Type *OpTy = I->getOperand(0)->getType();
1234  if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1235  else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1236  else return 0;
1237
1238  // f64->s32 or f32->s32 both need an intermediate f32 reg.
1239  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1240  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1241                          ResultReg)
1242                  .addReg(Op));
1243
1244  // This result needs to be in an integer register, but the conversion only
1245  // takes place in fp-regs.
1246  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1247  if (IntReg == 0) return false;
1248
1249  UpdateValueMap(I, IntReg);
1250  return true;
1251}
1252
1253bool ARMFastISel::SelectSelect(const Instruction *I) {
1254  MVT VT;
1255  if (!isTypeLegal(I->getType(), VT))
1256    return false;
1257
1258  // Things need to be register sized for register moves.
1259  if (VT != MVT::i32) return false;
1260  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1261
1262  unsigned CondReg = getRegForValue(I->getOperand(0));
1263  if (CondReg == 0) return false;
1264  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1265  if (Op1Reg == 0) return false;
1266  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1267  if (Op2Reg == 0) return false;
1268
1269  unsigned CmpOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1270  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1271                  .addReg(CondReg).addImm(1));
1272  unsigned ResultReg = createResultReg(RC);
1273  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCr : ARM::MOVCCr;
1274  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1275    .addReg(Op1Reg).addReg(Op2Reg)
1276    .addImm(ARMCC::EQ).addReg(ARM::CPSR);
1277  UpdateValueMap(I, ResultReg);
1278  return true;
1279}
1280
1281bool ARMFastISel::SelectSDiv(const Instruction *I) {
1282  MVT VT;
1283  const Type *Ty = I->getType();
1284  if (!isTypeLegal(Ty, VT))
1285    return false;
1286
1287  // If we have integer div support we should have selected this automagically.
1288  // In case we have a real miss go ahead and return false and we'll pick
1289  // it up later.
1290  if (Subtarget->hasDivide()) return false;
1291
1292  // Otherwise emit a libcall.
1293  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1294  if (VT == MVT::i8)
1295    LC = RTLIB::SDIV_I8;
1296  else if (VT == MVT::i16)
1297    LC = RTLIB::SDIV_I16;
1298  else if (VT == MVT::i32)
1299    LC = RTLIB::SDIV_I32;
1300  else if (VT == MVT::i64)
1301    LC = RTLIB::SDIV_I64;
1302  else if (VT == MVT::i128)
1303    LC = RTLIB::SDIV_I128;
1304  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1305
1306  return ARMEmitLibcall(I, LC);
1307}
1308
1309bool ARMFastISel::SelectSRem(const Instruction *I) {
1310  MVT VT;
1311  const Type *Ty = I->getType();
1312  if (!isTypeLegal(Ty, VT))
1313    return false;
1314
1315  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1316  if (VT == MVT::i8)
1317    LC = RTLIB::SREM_I8;
1318  else if (VT == MVT::i16)
1319    LC = RTLIB::SREM_I16;
1320  else if (VT == MVT::i32)
1321    LC = RTLIB::SREM_I32;
1322  else if (VT == MVT::i64)
1323    LC = RTLIB::SREM_I64;
1324  else if (VT == MVT::i128)
1325    LC = RTLIB::SREM_I128;
1326  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1327
1328  return ARMEmitLibcall(I, LC);
1329}
1330
1331bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1332  EVT VT  = TLI.getValueType(I->getType(), true);
1333
1334  // We can get here in the case when we want to use NEON for our fp
1335  // operations, but can't figure out how to. Just use the vfp instructions
1336  // if we have them.
1337  // FIXME: It'd be nice to use NEON instructions.
1338  const Type *Ty = I->getType();
1339  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1340  if (isFloat && !Subtarget->hasVFP2())
1341    return false;
1342
1343  unsigned Op1 = getRegForValue(I->getOperand(0));
1344  if (Op1 == 0) return false;
1345
1346  unsigned Op2 = getRegForValue(I->getOperand(1));
1347  if (Op2 == 0) return false;
1348
1349  unsigned Opc;
1350  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1351  switch (ISDOpcode) {
1352    default: return false;
1353    case ISD::FADD:
1354      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1355      break;
1356    case ISD::FSUB:
1357      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1358      break;
1359    case ISD::FMUL:
1360      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1361      break;
1362  }
1363  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1364  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1365                          TII.get(Opc), ResultReg)
1366                  .addReg(Op1).addReg(Op2));
1367  UpdateValueMap(I, ResultReg);
1368  return true;
1369}
1370
1371// Call Handling Code
1372
1373bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src,
1374                                 EVT SrcVT, unsigned &ResultReg) {
1375  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
1376                           Src, /*TODO: Kill=*/false);
1377
1378  if (RR != 0) {
1379    ResultReg = RR;
1380    return true;
1381  } else
1382    return false;
1383}
1384
1385// This is largely taken directly from CCAssignFnForNode - we don't support
1386// varargs in FastISel so that part has been removed.
1387// TODO: We may not support all of this.
1388CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1389  switch (CC) {
1390  default:
1391    llvm_unreachable("Unsupported calling convention");
1392  case CallingConv::Fast:
1393    // Ignore fastcc. Silence compiler warnings.
1394    (void)RetFastCC_ARM_APCS;
1395    (void)FastCC_ARM_APCS;
1396    // Fallthrough
1397  case CallingConv::C:
1398    // Use target triple & subtarget features to do actual dispatch.
1399    if (Subtarget->isAAPCS_ABI()) {
1400      if (Subtarget->hasVFP2() &&
1401          FloatABIType == FloatABI::Hard)
1402        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1403      else
1404        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1405    } else
1406        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1407  case CallingConv::ARM_AAPCS_VFP:
1408    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1409  case CallingConv::ARM_AAPCS:
1410    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1411  case CallingConv::ARM_APCS:
1412    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1413  }
1414}
1415
1416bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1417                                  SmallVectorImpl<unsigned> &ArgRegs,
1418                                  SmallVectorImpl<MVT> &ArgVTs,
1419                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1420                                  SmallVectorImpl<unsigned> &RegArgs,
1421                                  CallingConv::ID CC,
1422                                  unsigned &NumBytes) {
1423  SmallVector<CCValAssign, 16> ArgLocs;
1424  CCState CCInfo(CC, false, TM, ArgLocs, *Context);
1425  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1426
1427  // Get a count of how many bytes are to be pushed on the stack.
1428  NumBytes = CCInfo.getNextStackOffset();
1429
1430  // Issue CALLSEQ_START
1431  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1432  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1433                          TII.get(AdjStackDown))
1434                  .addImm(NumBytes));
1435
1436  // Process the args.
1437  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1438    CCValAssign &VA = ArgLocs[i];
1439    unsigned Arg = ArgRegs[VA.getValNo()];
1440    MVT ArgVT = ArgVTs[VA.getValNo()];
1441
1442    // We don't handle NEON parameters yet.
1443    if (VA.getLocVT().isVector() && VA.getLocVT().getSizeInBits() > 64)
1444      return false;
1445
1446    // Handle arg promotion, etc.
1447    switch (VA.getLocInfo()) {
1448      case CCValAssign::Full: break;
1449      case CCValAssign::SExt: {
1450        bool Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1451                                         Arg, ArgVT, Arg);
1452        assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted;
1453        Emitted = true;
1454        ArgVT = VA.getLocVT();
1455        break;
1456      }
1457      case CCValAssign::ZExt: {
1458        bool Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1459                                         Arg, ArgVT, Arg);
1460        assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted;
1461        Emitted = true;
1462        ArgVT = VA.getLocVT();
1463        break;
1464      }
1465      case CCValAssign::AExt: {
1466        bool Emitted = FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1467                                         Arg, ArgVT, Arg);
1468        if (!Emitted)
1469          Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1470                                      Arg, ArgVT, Arg);
1471        if (!Emitted)
1472          Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1473                                      Arg, ArgVT, Arg);
1474
1475        assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted;
1476        ArgVT = VA.getLocVT();
1477        break;
1478      }
1479      case CCValAssign::BCvt: {
1480        unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1481                                 /*TODO: Kill=*/false);
1482        assert(BC != 0 && "Failed to emit a bitcast!");
1483        Arg = BC;
1484        ArgVT = VA.getLocVT();
1485        break;
1486      }
1487      default: llvm_unreachable("Unknown arg promotion!");
1488    }
1489
1490    // Now copy/store arg to correct locations.
1491    if (VA.isRegLoc() && !VA.needsCustom()) {
1492      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1493              VA.getLocReg())
1494      .addReg(Arg);
1495      RegArgs.push_back(VA.getLocReg());
1496    } else if (VA.needsCustom()) {
1497      // TODO: We need custom lowering for vector (v2f64) args.
1498      if (VA.getLocVT() != MVT::f64) return false;
1499
1500      CCValAssign &NextVA = ArgLocs[++i];
1501
1502      // TODO: Only handle register args for now.
1503      if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
1504
1505      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1506                              TII.get(ARM::VMOVRRD), VA.getLocReg())
1507                      .addReg(NextVA.getLocReg(), RegState::Define)
1508                      .addReg(Arg));
1509      RegArgs.push_back(VA.getLocReg());
1510      RegArgs.push_back(NextVA.getLocReg());
1511    } else {
1512      assert(VA.isMemLoc());
1513      // Need to store on the stack.
1514      Address Addr;
1515      Addr.BaseType = Address::RegBase;
1516      Addr.Base.Reg = ARM::SP;
1517      Addr.Offset = VA.getLocMemOffset();
1518
1519      if (!ARMEmitStore(ArgVT, Arg, Addr)) return false;
1520    }
1521  }
1522  return true;
1523}
1524
1525bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1526                             const Instruction *I, CallingConv::ID CC,
1527                             unsigned &NumBytes) {
1528  // Issue CALLSEQ_END
1529  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1530  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1531                          TII.get(AdjStackUp))
1532                  .addImm(NumBytes).addImm(0));
1533
1534  // Now the return value.
1535  if (RetVT != MVT::isVoid) {
1536    SmallVector<CCValAssign, 16> RVLocs;
1537    CCState CCInfo(CC, false, TM, RVLocs, *Context);
1538    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1539
1540    // Copy all of the result registers out of their specified physreg.
1541    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
1542      // For this move we copy into two registers and then move into the
1543      // double fp reg we want.
1544      EVT DestVT = RVLocs[0].getValVT();
1545      TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1546      unsigned ResultReg = createResultReg(DstRC);
1547      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1548                              TII.get(ARM::VMOVDRR), ResultReg)
1549                      .addReg(RVLocs[0].getLocReg())
1550                      .addReg(RVLocs[1].getLocReg()));
1551
1552      UsedRegs.push_back(RVLocs[0].getLocReg());
1553      UsedRegs.push_back(RVLocs[1].getLocReg());
1554
1555      // Finally update the result.
1556      UpdateValueMap(I, ResultReg);
1557    } else {
1558      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1559      EVT CopyVT = RVLocs[0].getValVT();
1560      TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1561
1562      unsigned ResultReg = createResultReg(DstRC);
1563      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1564              ResultReg).addReg(RVLocs[0].getLocReg());
1565      UsedRegs.push_back(RVLocs[0].getLocReg());
1566
1567      // Finally update the result.
1568      UpdateValueMap(I, ResultReg);
1569    }
1570  }
1571
1572  return true;
1573}
1574
1575bool ARMFastISel::SelectRet(const Instruction *I) {
1576  const ReturnInst *Ret = cast<ReturnInst>(I);
1577  const Function &F = *I->getParent()->getParent();
1578
1579  if (!FuncInfo.CanLowerReturn)
1580    return false;
1581
1582  if (F.isVarArg())
1583    return false;
1584
1585  CallingConv::ID CC = F.getCallingConv();
1586  if (Ret->getNumOperands() > 0) {
1587    SmallVector<ISD::OutputArg, 4> Outs;
1588    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
1589                  Outs, TLI);
1590
1591    // Analyze operands of the call, assigning locations to each operand.
1592    SmallVector<CCValAssign, 16> ValLocs;
1593    CCState CCInfo(CC, F.isVarArg(), TM, ValLocs, I->getContext());
1594    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
1595
1596    const Value *RV = Ret->getOperand(0);
1597    unsigned Reg = getRegForValue(RV);
1598    if (Reg == 0)
1599      return false;
1600
1601    // Only handle a single return value for now.
1602    if (ValLocs.size() != 1)
1603      return false;
1604
1605    CCValAssign &VA = ValLocs[0];
1606
1607    // Don't bother handling odd stuff for now.
1608    if (VA.getLocInfo() != CCValAssign::Full)
1609      return false;
1610    // Only handle register returns for now.
1611    if (!VA.isRegLoc())
1612      return false;
1613    // TODO: For now, don't try to handle cases where getLocInfo()
1614    // says Full but the types don't match.
1615    if (TLI.getValueType(RV->getType()) != VA.getValVT())
1616      return false;
1617
1618    // Make the copy.
1619    unsigned SrcReg = Reg + VA.getValNo();
1620    unsigned DstReg = VA.getLocReg();
1621    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
1622    // Avoid a cross-class copy. This is very unlikely.
1623    if (!SrcRC->contains(DstReg))
1624      return false;
1625    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1626            DstReg).addReg(SrcReg);
1627
1628    // Mark the register as live out of the function.
1629    MRI.addLiveOut(VA.getLocReg());
1630  }
1631
1632  unsigned RetOpc = isThumb ? ARM::tBX_RET : ARM::BX_RET;
1633  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1634                          TII.get(RetOpc)));
1635  return true;
1636}
1637
1638// A quick function that will emit a call for a named libcall in F with the
1639// vector of passed arguments for the Instruction in I. We can assume that we
1640// can emit a call for any libcall we can produce. This is an abridged version
1641// of the full call infrastructure since we won't need to worry about things
1642// like computed function pointers or strange arguments at call sites.
1643// TODO: Try to unify this and the normal call bits for ARM, then try to unify
1644// with X86.
1645bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
1646  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
1647
1648  // Handle *simple* calls for now.
1649  const Type *RetTy = I->getType();
1650  MVT RetVT;
1651  if (RetTy->isVoidTy())
1652    RetVT = MVT::isVoid;
1653  else if (!isTypeLegal(RetTy, RetVT))
1654    return false;
1655
1656  // For now we're using BLX etc on the assumption that we have v5t ops.
1657  if (!Subtarget->hasV5TOps()) return false;
1658
1659  // Set up the argument vectors.
1660  SmallVector<Value*, 8> Args;
1661  SmallVector<unsigned, 8> ArgRegs;
1662  SmallVector<MVT, 8> ArgVTs;
1663  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1664  Args.reserve(I->getNumOperands());
1665  ArgRegs.reserve(I->getNumOperands());
1666  ArgVTs.reserve(I->getNumOperands());
1667  ArgFlags.reserve(I->getNumOperands());
1668  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1669    Value *Op = I->getOperand(i);
1670    unsigned Arg = getRegForValue(Op);
1671    if (Arg == 0) return false;
1672
1673    const Type *ArgTy = Op->getType();
1674    MVT ArgVT;
1675    if (!isTypeLegal(ArgTy, ArgVT)) return false;
1676
1677    ISD::ArgFlagsTy Flags;
1678    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1679    Flags.setOrigAlign(OriginalAlignment);
1680
1681    Args.push_back(Op);
1682    ArgRegs.push_back(Arg);
1683    ArgVTs.push_back(ArgVT);
1684    ArgFlags.push_back(Flags);
1685  }
1686
1687  // Handle the arguments now that we've gotten them.
1688  SmallVector<unsigned, 4> RegArgs;
1689  unsigned NumBytes;
1690  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1691    return false;
1692
1693  // Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops.
1694  // TODO: Turn this into the table of arm call ops.
1695  MachineInstrBuilder MIB;
1696  unsigned CallOpc;
1697  if(isThumb)
1698    CallOpc = Subtarget->isTargetDarwin() ? ARM::tBLXi_r9 : ARM::tBLXi;
1699  else
1700    CallOpc = Subtarget->isTargetDarwin() ? ARM::BLr9 : ARM::BL;
1701  // Explicitly adding the predicate here.
1702  MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1703                       TII.get(CallOpc)))
1704        .addExternalSymbol(TLI.getLibcallName(Call));
1705
1706  // Add implicit physical register uses to the call.
1707  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1708    MIB.addReg(RegArgs[i]);
1709
1710  // Finish off the call including any return values.
1711  SmallVector<unsigned, 4> UsedRegs;
1712  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1713
1714  // Set all unused physreg defs as dead.
1715  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1716
1717  return true;
1718}
1719
1720bool ARMFastISel::SelectCall(const Instruction *I) {
1721  const CallInst *CI = cast<CallInst>(I);
1722  const Value *Callee = CI->getCalledValue();
1723
1724  // Can't handle inline asm or worry about intrinsics yet.
1725  if (isa<InlineAsm>(Callee) || isa<IntrinsicInst>(CI)) return false;
1726
1727  // Only handle global variable Callees that are direct calls.
1728  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1729  if (!GV || Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel()))
1730    return false;
1731
1732  // Check the calling convention.
1733  ImmutableCallSite CS(CI);
1734  CallingConv::ID CC = CS.getCallingConv();
1735
1736  // TODO: Avoid some calling conventions?
1737
1738  // Let SDISel handle vararg functions.
1739  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1740  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1741  if (FTy->isVarArg())
1742    return false;
1743
1744  // Handle *simple* calls for now.
1745  const Type *RetTy = I->getType();
1746  MVT RetVT;
1747  if (RetTy->isVoidTy())
1748    RetVT = MVT::isVoid;
1749  else if (!isTypeLegal(RetTy, RetVT))
1750    return false;
1751
1752  // For now we're using BLX etc on the assumption that we have v5t ops.
1753  // TODO: Maybe?
1754  if (!Subtarget->hasV5TOps()) return false;
1755
1756  // Set up the argument vectors.
1757  SmallVector<Value*, 8> Args;
1758  SmallVector<unsigned, 8> ArgRegs;
1759  SmallVector<MVT, 8> ArgVTs;
1760  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1761  Args.reserve(CS.arg_size());
1762  ArgRegs.reserve(CS.arg_size());
1763  ArgVTs.reserve(CS.arg_size());
1764  ArgFlags.reserve(CS.arg_size());
1765  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1766       i != e; ++i) {
1767    unsigned Arg = getRegForValue(*i);
1768
1769    if (Arg == 0)
1770      return false;
1771    ISD::ArgFlagsTy Flags;
1772    unsigned AttrInd = i - CS.arg_begin() + 1;
1773    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1774      Flags.setSExt();
1775    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1776      Flags.setZExt();
1777
1778         // FIXME: Only handle *easy* calls for now.
1779    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1780        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1781        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1782        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1783      return false;
1784
1785    const Type *ArgTy = (*i)->getType();
1786    MVT ArgVT;
1787    if (!isTypeLegal(ArgTy, ArgVT))
1788      return false;
1789    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1790    Flags.setOrigAlign(OriginalAlignment);
1791
1792    Args.push_back(*i);
1793    ArgRegs.push_back(Arg);
1794    ArgVTs.push_back(ArgVT);
1795    ArgFlags.push_back(Flags);
1796  }
1797
1798  // Handle the arguments now that we've gotten them.
1799  SmallVector<unsigned, 4> RegArgs;
1800  unsigned NumBytes;
1801  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1802    return false;
1803
1804  // Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops.
1805  // TODO: Turn this into the table of arm call ops.
1806  MachineInstrBuilder MIB;
1807  unsigned CallOpc;
1808  if(isThumb)
1809    CallOpc = Subtarget->isTargetDarwin() ? ARM::tBLXi_r9 : ARM::tBLXi;
1810  else
1811    CallOpc = Subtarget->isTargetDarwin() ? ARM::BLr9 : ARM::BL;
1812  // Explicitly adding the predicate here.
1813  MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1814                               TII.get(CallOpc)))
1815        .addGlobalAddress(GV, 0, 0);
1816
1817  // Add implicit physical register uses to the call.
1818  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1819    MIB.addReg(RegArgs[i]);
1820
1821  // Finish off the call including any return values.
1822  SmallVector<unsigned, 4> UsedRegs;
1823  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1824
1825  // Set all unused physreg defs as dead.
1826  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1827
1828  return true;
1829
1830}
1831
1832// TODO: SoftFP support.
1833bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
1834
1835  switch (I->getOpcode()) {
1836    case Instruction::Load:
1837      return SelectLoad(I);
1838    case Instruction::Store:
1839      return SelectStore(I);
1840    case Instruction::Br:
1841      return SelectBranch(I);
1842    case Instruction::ICmp:
1843    case Instruction::FCmp:
1844      return SelectCmp(I);
1845    case Instruction::FPExt:
1846      return SelectFPExt(I);
1847    case Instruction::FPTrunc:
1848      return SelectFPTrunc(I);
1849    case Instruction::SIToFP:
1850      return SelectSIToFP(I);
1851    case Instruction::FPToSI:
1852      return SelectFPToSI(I);
1853    case Instruction::FAdd:
1854      return SelectBinaryOp(I, ISD::FADD);
1855    case Instruction::FSub:
1856      return SelectBinaryOp(I, ISD::FSUB);
1857    case Instruction::FMul:
1858      return SelectBinaryOp(I, ISD::FMUL);
1859    case Instruction::SDiv:
1860      return SelectSDiv(I);
1861    case Instruction::SRem:
1862      return SelectSRem(I);
1863    case Instruction::Call:
1864      return SelectCall(I);
1865    case Instruction::Select:
1866      return SelectSelect(I);
1867    case Instruction::Ret:
1868      return SelectRet(I);
1869    default: break;
1870  }
1871  return false;
1872}
1873
1874namespace llvm {
1875  llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
1876    // Completely untested on non-darwin.
1877    const TargetMachine &TM = funcInfo.MF->getTarget();
1878
1879    // Darwin and thumb1 only for now.
1880    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
1881    if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() &&
1882        !DisableARMFastISel)
1883      return new ARMFastISel(funcInfo);
1884    return 0;
1885  }
1886}
1887