ARMISelDAGToDAG.cpp revision 18f30e6f5e80787808fe1455742452a5210afe07
1//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an instruction selector for the ARM target.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ARM.h"
15#include "ARMAddressingModes.h"
16#include "ARMTargetMachine.h"
17#include "llvm/CallingConv.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/CodeGen/SelectionDAGISel.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/Target/TargetOptions.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Compiler.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35
36using namespace llvm;
37
38static cl::opt<bool>
39UseRegSeq("neon-reg-sequence", cl::Hidden,
40          cl::desc("Use reg_sequence to model ld / st of multiple neon regs"),
41          cl::init(true));
42
43//===--------------------------------------------------------------------===//
44/// ARMDAGToDAGISel - ARM specific code to select ARM machine
45/// instructions for SelectionDAG operations.
46///
47namespace {
48class ARMDAGToDAGISel : public SelectionDAGISel {
49  ARMBaseTargetMachine &TM;
50
51  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
52  /// make the right decision when generating code for different targets.
53  const ARMSubtarget *Subtarget;
54
55public:
56  explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm,
57                           CodeGenOpt::Level OptLevel)
58    : SelectionDAGISel(tm, OptLevel), TM(tm),
59    Subtarget(&TM.getSubtarget<ARMSubtarget>()) {
60  }
61
62  virtual const char *getPassName() const {
63    return "ARM Instruction Selection";
64  }
65
66  /// getI32Imm - Return a target constant of type i32 with the specified
67  /// value.
68  inline SDValue getI32Imm(unsigned Imm) {
69    return CurDAG->getTargetConstant(Imm, MVT::i32);
70  }
71
72  SDNode *Select(SDNode *N);
73
74  bool SelectShifterOperandReg(SDNode *Op, SDValue N, SDValue &A,
75                               SDValue &B, SDValue &C);
76  bool SelectAddrMode2(SDNode *Op, SDValue N, SDValue &Base,
77                       SDValue &Offset, SDValue &Opc);
78  bool SelectAddrMode2Offset(SDNode *Op, SDValue N,
79                             SDValue &Offset, SDValue &Opc);
80  bool SelectAddrMode3(SDNode *Op, SDValue N, SDValue &Base,
81                       SDValue &Offset, SDValue &Opc);
82  bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
83                             SDValue &Offset, SDValue &Opc);
84  bool SelectAddrMode4(SDNode *Op, SDValue N, SDValue &Addr,
85                       SDValue &Mode);
86  bool SelectAddrMode5(SDNode *Op, SDValue N, SDValue &Base,
87                       SDValue &Offset);
88  bool SelectAddrMode6(SDNode *Op, SDValue N, SDValue &Addr, SDValue &Align);
89
90  bool SelectAddrModePC(SDNode *Op, SDValue N, SDValue &Offset,
91                        SDValue &Label);
92
93  bool SelectThumbAddrModeRR(SDNode *Op, SDValue N, SDValue &Base,
94                             SDValue &Offset);
95  bool SelectThumbAddrModeRI5(SDNode *Op, SDValue N, unsigned Scale,
96                              SDValue &Base, SDValue &OffImm,
97                              SDValue &Offset);
98  bool SelectThumbAddrModeS1(SDNode *Op, SDValue N, SDValue &Base,
99                             SDValue &OffImm, SDValue &Offset);
100  bool SelectThumbAddrModeS2(SDNode *Op, SDValue N, SDValue &Base,
101                             SDValue &OffImm, SDValue &Offset);
102  bool SelectThumbAddrModeS4(SDNode *Op, SDValue N, SDValue &Base,
103                             SDValue &OffImm, SDValue &Offset);
104  bool SelectThumbAddrModeSP(SDNode *Op, SDValue N, SDValue &Base,
105                             SDValue &OffImm);
106
107  bool SelectT2ShifterOperandReg(SDNode *Op, SDValue N,
108                                 SDValue &BaseReg, SDValue &Opc);
109  bool SelectT2AddrModeImm12(SDNode *Op, SDValue N, SDValue &Base,
110                             SDValue &OffImm);
111  bool SelectT2AddrModeImm8(SDNode *Op, SDValue N, SDValue &Base,
112                            SDValue &OffImm);
113  bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
114                                 SDValue &OffImm);
115  bool SelectT2AddrModeImm8s4(SDNode *Op, SDValue N, SDValue &Base,
116                              SDValue &OffImm);
117  bool SelectT2AddrModeSoReg(SDNode *Op, SDValue N, SDValue &Base,
118                             SDValue &OffReg, SDValue &ShImm);
119
120  // Include the pieces autogenerated from the target description.
121#include "ARMGenDAGISel.inc"
122
123private:
124  /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for
125  /// ARM.
126  SDNode *SelectARMIndexedLoad(SDNode *N);
127  SDNode *SelectT2IndexedLoad(SDNode *N);
128
129  /// SelectVLD - Select NEON load intrinsics.  NumVecs should be
130  /// 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
131  /// loads of D registers and even subregs and odd subregs of Q registers.
132  /// For NumVecs <= 2, QOpcodes1 is not used.
133  SDNode *SelectVLD(SDNode *N, unsigned NumVecs, unsigned *DOpcodes,
134                    unsigned *QOpcodes0, unsigned *QOpcodes1);
135
136  /// SelectVST - Select NEON store intrinsics.  NumVecs should
137  /// be 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
138  /// stores of D registers and even subregs and odd subregs of Q registers.
139  /// For NumVecs <= 2, QOpcodes1 is not used.
140  SDNode *SelectVST(SDNode *N, unsigned NumVecs, unsigned *DOpcodes,
141                    unsigned *QOpcodes0, unsigned *QOpcodes1);
142
143  /// SelectVLDSTLane - Select NEON load/store lane intrinsics.  NumVecs should
144  /// be 2, 3 or 4.  The opcode arrays specify the instructions used for
145  /// load/store of D registers and even subregs and odd subregs of Q registers.
146  SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad, unsigned NumVecs,
147                          unsigned *DOpcodes, unsigned *QOpcodes0,
148                          unsigned *QOpcodes1);
149
150  /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
151  SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
152
153  /// SelectCMOVOp - Select CMOV instructions for ARM.
154  SDNode *SelectCMOVOp(SDNode *N);
155  SDNode *SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
156                              ARMCC::CondCodes CCVal, SDValue CCR,
157                              SDValue InFlag);
158  SDNode *SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
159                               ARMCC::CondCodes CCVal, SDValue CCR,
160                               SDValue InFlag);
161  SDNode *SelectT2CMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
162                              ARMCC::CondCodes CCVal, SDValue CCR,
163                              SDValue InFlag);
164  SDNode *SelectARMCMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
165                               ARMCC::CondCodes CCVal, SDValue CCR,
166                               SDValue InFlag);
167
168  SDNode *SelectConcatVector(SDNode *N);
169
170  /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
171  /// inline asm expressions.
172  virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
173                                            char ConstraintCode,
174                                            std::vector<SDValue> &OutOps);
175
176  /// PairDRegs - Form a quad register from a pair of D registers.
177  ///
178  SDNode *PairDRegs(EVT VT, SDValue V0, SDValue V1);
179
180  /// PairDRegs - Form a quad register pair from a pair of Q registers.
181  ///
182  SDNode *PairQRegs(EVT VT, SDValue V0, SDValue V1);
183
184  /// QuadDRegs - Form a quad register pair from a quad of D registers.
185  ///
186  SDNode *QuadDRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
187
188  /// QuadQRegs - Form 4 consecutive Q registers.
189  ///
190  SDNode *QuadQRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
191
192  /// OctoDRegs - Form 8 consecutive D registers.
193  ///
194  SDNode *OctoDRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3,
195                    SDValue V4, SDValue V5, SDValue V6, SDValue V7);
196};
197}
198
199/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
200/// operand. If so Imm will receive the 32-bit value.
201static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
202  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
203    Imm = cast<ConstantSDNode>(N)->getZExtValue();
204    return true;
205  }
206  return false;
207}
208
209// isInt32Immediate - This method tests to see if a constant operand.
210// If so Imm will receive the 32 bit value.
211static bool isInt32Immediate(SDValue N, unsigned &Imm) {
212  return isInt32Immediate(N.getNode(), Imm);
213}
214
215// isOpcWithIntImmediate - This method tests to see if the node is a specific
216// opcode and that it has a immediate integer right operand.
217// If so Imm will receive the 32 bit value.
218static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
219  return N->getOpcode() == Opc &&
220         isInt32Immediate(N->getOperand(1).getNode(), Imm);
221}
222
223
224bool ARMDAGToDAGISel::SelectShifterOperandReg(SDNode *Op,
225                                              SDValue N,
226                                              SDValue &BaseReg,
227                                              SDValue &ShReg,
228                                              SDValue &Opc) {
229  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N);
230
231  // Don't match base register only case. That is matched to a separate
232  // lower complexity pattern with explicit register operand.
233  if (ShOpcVal == ARM_AM::no_shift) return false;
234
235  BaseReg = N.getOperand(0);
236  unsigned ShImmVal = 0;
237  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
238    ShReg = CurDAG->getRegister(0, MVT::i32);
239    ShImmVal = RHS->getZExtValue() & 31;
240  } else {
241    ShReg = N.getOperand(1);
242  }
243  Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
244                                  MVT::i32);
245  return true;
246}
247
248bool ARMDAGToDAGISel::SelectAddrMode2(SDNode *Op, SDValue N,
249                                      SDValue &Base, SDValue &Offset,
250                                      SDValue &Opc) {
251  if (N.getOpcode() == ISD::MUL) {
252    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
253      // X * [3,5,9] -> X + X * [2,4,8] etc.
254      int RHSC = (int)RHS->getZExtValue();
255      if (RHSC & 1) {
256        RHSC = RHSC & ~1;
257        ARM_AM::AddrOpc AddSub = ARM_AM::add;
258        if (RHSC < 0) {
259          AddSub = ARM_AM::sub;
260          RHSC = - RHSC;
261        }
262        if (isPowerOf2_32(RHSC)) {
263          unsigned ShAmt = Log2_32(RHSC);
264          Base = Offset = N.getOperand(0);
265          Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
266                                                            ARM_AM::lsl),
267                                          MVT::i32);
268          return true;
269        }
270      }
271    }
272  }
273
274  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB) {
275    Base = N;
276    if (N.getOpcode() == ISD::FrameIndex) {
277      int FI = cast<FrameIndexSDNode>(N)->getIndex();
278      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
279    } else if (N.getOpcode() == ARMISD::Wrapper &&
280               !(Subtarget->useMovt() &&
281                 N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
282      Base = N.getOperand(0);
283    }
284    Offset = CurDAG->getRegister(0, MVT::i32);
285    Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
286                                                      ARM_AM::no_shift),
287                                    MVT::i32);
288    return true;
289  }
290
291  // Match simple R +/- imm12 operands.
292  if (N.getOpcode() == ISD::ADD)
293    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
294      int RHSC = (int)RHS->getZExtValue();
295      if ((RHSC >= 0 && RHSC < 0x1000) ||
296          (RHSC < 0 && RHSC > -0x1000)) { // 12 bits.
297        Base = N.getOperand(0);
298        if (Base.getOpcode() == ISD::FrameIndex) {
299          int FI = cast<FrameIndexSDNode>(Base)->getIndex();
300          Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
301        }
302        Offset = CurDAG->getRegister(0, MVT::i32);
303
304        ARM_AM::AddrOpc AddSub = ARM_AM::add;
305        if (RHSC < 0) {
306          AddSub = ARM_AM::sub;
307          RHSC = - RHSC;
308        }
309        Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC,
310                                                          ARM_AM::no_shift),
311                                        MVT::i32);
312        return true;
313      }
314    }
315
316  // Otherwise this is R +/- [possibly shifted] R.
317  ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::ADD ? ARM_AM::add:ARM_AM::sub;
318  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(1));
319  unsigned ShAmt = 0;
320
321  Base   = N.getOperand(0);
322  Offset = N.getOperand(1);
323
324  if (ShOpcVal != ARM_AM::no_shift) {
325    // Check to see if the RHS of the shift is a constant, if not, we can't fold
326    // it.
327    if (ConstantSDNode *Sh =
328           dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
329      ShAmt = Sh->getZExtValue();
330      Offset = N.getOperand(1).getOperand(0);
331    } else {
332      ShOpcVal = ARM_AM::no_shift;
333    }
334  }
335
336  // Try matching (R shl C) + (R).
337  if (N.getOpcode() == ISD::ADD && ShOpcVal == ARM_AM::no_shift) {
338    ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0));
339    if (ShOpcVal != ARM_AM::no_shift) {
340      // Check to see if the RHS of the shift is a constant, if not, we can't
341      // fold it.
342      if (ConstantSDNode *Sh =
343          dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
344        ShAmt = Sh->getZExtValue();
345        Offset = N.getOperand(0).getOperand(0);
346        Base = N.getOperand(1);
347      } else {
348        ShOpcVal = ARM_AM::no_shift;
349      }
350    }
351  }
352
353  Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
354                                  MVT::i32);
355  return true;
356}
357
358bool ARMDAGToDAGISel::SelectAddrMode2Offset(SDNode *Op, SDValue N,
359                                            SDValue &Offset, SDValue &Opc) {
360  unsigned Opcode = Op->getOpcode();
361  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
362    ? cast<LoadSDNode>(Op)->getAddressingMode()
363    : cast<StoreSDNode>(Op)->getAddressingMode();
364  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
365    ? ARM_AM::add : ARM_AM::sub;
366  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
367    int Val = (int)C->getZExtValue();
368    if (Val >= 0 && Val < 0x1000) { // 12 bits.
369      Offset = CurDAG->getRegister(0, MVT::i32);
370      Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
371                                                        ARM_AM::no_shift),
372                                      MVT::i32);
373      return true;
374    }
375  }
376
377  Offset = N;
378  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N);
379  unsigned ShAmt = 0;
380  if (ShOpcVal != ARM_AM::no_shift) {
381    // Check to see if the RHS of the shift is a constant, if not, we can't fold
382    // it.
383    if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
384      ShAmt = Sh->getZExtValue();
385      Offset = N.getOperand(0);
386    } else {
387      ShOpcVal = ARM_AM::no_shift;
388    }
389  }
390
391  Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
392                                  MVT::i32);
393  return true;
394}
395
396
397bool ARMDAGToDAGISel::SelectAddrMode3(SDNode *Op, SDValue N,
398                                      SDValue &Base, SDValue &Offset,
399                                      SDValue &Opc) {
400  if (N.getOpcode() == ISD::SUB) {
401    // X - C  is canonicalize to X + -C, no need to handle it here.
402    Base = N.getOperand(0);
403    Offset = N.getOperand(1);
404    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32);
405    return true;
406  }
407
408  if (N.getOpcode() != ISD::ADD) {
409    Base = N;
410    if (N.getOpcode() == ISD::FrameIndex) {
411      int FI = cast<FrameIndexSDNode>(N)->getIndex();
412      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
413    }
414    Offset = CurDAG->getRegister(0, MVT::i32);
415    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32);
416    return true;
417  }
418
419  // If the RHS is +/- imm8, fold into addr mode.
420  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
421    int RHSC = (int)RHS->getZExtValue();
422    if ((RHSC >= 0 && RHSC < 256) ||
423        (RHSC < 0 && RHSC > -256)) { // note -256 itself isn't allowed.
424      Base = N.getOperand(0);
425      if (Base.getOpcode() == ISD::FrameIndex) {
426        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
427        Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
428      }
429      Offset = CurDAG->getRegister(0, MVT::i32);
430
431      ARM_AM::AddrOpc AddSub = ARM_AM::add;
432      if (RHSC < 0) {
433        AddSub = ARM_AM::sub;
434        RHSC = - RHSC;
435      }
436      Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32);
437      return true;
438    }
439  }
440
441  Base = N.getOperand(0);
442  Offset = N.getOperand(1);
443  Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32);
444  return true;
445}
446
447bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
448                                            SDValue &Offset, SDValue &Opc) {
449  unsigned Opcode = Op->getOpcode();
450  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
451    ? cast<LoadSDNode>(Op)->getAddressingMode()
452    : cast<StoreSDNode>(Op)->getAddressingMode();
453  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
454    ? ARM_AM::add : ARM_AM::sub;
455  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
456    int Val = (int)C->getZExtValue();
457    if (Val >= 0 && Val < 256) {
458      Offset = CurDAG->getRegister(0, MVT::i32);
459      Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32);
460      return true;
461    }
462  }
463
464  Offset = N;
465  Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32);
466  return true;
467}
468
469bool ARMDAGToDAGISel::SelectAddrMode4(SDNode *Op, SDValue N,
470                                      SDValue &Addr, SDValue &Mode) {
471  Addr = N;
472  Mode = CurDAG->getTargetConstant(0, MVT::i32);
473  return true;
474}
475
476bool ARMDAGToDAGISel::SelectAddrMode5(SDNode *Op, SDValue N,
477                                      SDValue &Base, SDValue &Offset) {
478  if (N.getOpcode() != ISD::ADD) {
479    Base = N;
480    if (N.getOpcode() == ISD::FrameIndex) {
481      int FI = cast<FrameIndexSDNode>(N)->getIndex();
482      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
483    } else if (N.getOpcode() == ARMISD::Wrapper &&
484               !(Subtarget->useMovt() &&
485                 N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
486      Base = N.getOperand(0);
487    }
488    Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
489                                       MVT::i32);
490    return true;
491  }
492
493  // If the RHS is +/- imm8, fold into addr mode.
494  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
495    int RHSC = (int)RHS->getZExtValue();
496    if ((RHSC & 3) == 0) {  // The constant is implicitly multiplied by 4.
497      RHSC >>= 2;
498      if ((RHSC >= 0 && RHSC < 256) ||
499          (RHSC < 0 && RHSC > -256)) { // note -256 itself isn't allowed.
500        Base = N.getOperand(0);
501        if (Base.getOpcode() == ISD::FrameIndex) {
502          int FI = cast<FrameIndexSDNode>(Base)->getIndex();
503          Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
504        }
505
506        ARM_AM::AddrOpc AddSub = ARM_AM::add;
507        if (RHSC < 0) {
508          AddSub = ARM_AM::sub;
509          RHSC = - RHSC;
510        }
511        Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
512                                           MVT::i32);
513        return true;
514      }
515    }
516  }
517
518  Base = N;
519  Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
520                                     MVT::i32);
521  return true;
522}
523
524bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Op, SDValue N,
525                                      SDValue &Addr, SDValue &Align) {
526  Addr = N;
527  // Default to no alignment.
528  Align = CurDAG->getTargetConstant(0, MVT::i32);
529  return true;
530}
531
532bool ARMDAGToDAGISel::SelectAddrModePC(SDNode *Op, SDValue N,
533                                       SDValue &Offset, SDValue &Label) {
534  if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
535    Offset = N.getOperand(0);
536    SDValue N1 = N.getOperand(1);
537    Label  = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
538                                       MVT::i32);
539    return true;
540  }
541  return false;
542}
543
544bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDNode *Op, SDValue N,
545                                            SDValue &Base, SDValue &Offset){
546  // FIXME dl should come from the parent load or store, not the address
547  DebugLoc dl = Op->getDebugLoc();
548  if (N.getOpcode() != ISD::ADD) {
549    ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
550    if (!NC || NC->getZExtValue() != 0)
551      return false;
552
553    Base = Offset = N;
554    return true;
555  }
556
557  Base = N.getOperand(0);
558  Offset = N.getOperand(1);
559  return true;
560}
561
562bool
563ARMDAGToDAGISel::SelectThumbAddrModeRI5(SDNode *Op, SDValue N,
564                                        unsigned Scale, SDValue &Base,
565                                        SDValue &OffImm, SDValue &Offset) {
566  if (Scale == 4) {
567    SDValue TmpBase, TmpOffImm;
568    if (SelectThumbAddrModeSP(Op, N, TmpBase, TmpOffImm))
569      return false;  // We want to select tLDRspi / tSTRspi instead.
570    if (N.getOpcode() == ARMISD::Wrapper &&
571        N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
572      return false;  // We want to select tLDRpci instead.
573  }
574
575  if (N.getOpcode() != ISD::ADD) {
576    if (N.getOpcode() == ARMISD::Wrapper &&
577        !(Subtarget->useMovt() &&
578          N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
579      Base = N.getOperand(0);
580    } else
581      Base = N;
582
583    Offset = CurDAG->getRegister(0, MVT::i32);
584    OffImm = CurDAG->getTargetConstant(0, MVT::i32);
585    return true;
586  }
587
588  // Thumb does not have [sp, r] address mode.
589  RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
590  RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
591  if ((LHSR && LHSR->getReg() == ARM::SP) ||
592      (RHSR && RHSR->getReg() == ARM::SP)) {
593    Base = N;
594    Offset = CurDAG->getRegister(0, MVT::i32);
595    OffImm = CurDAG->getTargetConstant(0, MVT::i32);
596    return true;
597  }
598
599  // If the RHS is + imm5 * scale, fold into addr mode.
600  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
601    int RHSC = (int)RHS->getZExtValue();
602    if ((RHSC & (Scale-1)) == 0) {  // The constant is implicitly multiplied.
603      RHSC /= Scale;
604      if (RHSC >= 0 && RHSC < 32) {
605        Base = N.getOperand(0);
606        Offset = CurDAG->getRegister(0, MVT::i32);
607        OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
608        return true;
609      }
610    }
611  }
612
613  Base = N.getOperand(0);
614  Offset = N.getOperand(1);
615  OffImm = CurDAG->getTargetConstant(0, MVT::i32);
616  return true;
617}
618
619bool ARMDAGToDAGISel::SelectThumbAddrModeS1(SDNode *Op, SDValue N,
620                                            SDValue &Base, SDValue &OffImm,
621                                            SDValue &Offset) {
622  return SelectThumbAddrModeRI5(Op, N, 1, Base, OffImm, Offset);
623}
624
625bool ARMDAGToDAGISel::SelectThumbAddrModeS2(SDNode *Op, SDValue N,
626                                            SDValue &Base, SDValue &OffImm,
627                                            SDValue &Offset) {
628  return SelectThumbAddrModeRI5(Op, N, 2, Base, OffImm, Offset);
629}
630
631bool ARMDAGToDAGISel::SelectThumbAddrModeS4(SDNode *Op, SDValue N,
632                                            SDValue &Base, SDValue &OffImm,
633                                            SDValue &Offset) {
634  return SelectThumbAddrModeRI5(Op, N, 4, Base, OffImm, Offset);
635}
636
637bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDNode *Op, SDValue N,
638                                           SDValue &Base, SDValue &OffImm) {
639  if (N.getOpcode() == ISD::FrameIndex) {
640    int FI = cast<FrameIndexSDNode>(N)->getIndex();
641    Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
642    OffImm = CurDAG->getTargetConstant(0, MVT::i32);
643    return true;
644  }
645
646  if (N.getOpcode() != ISD::ADD)
647    return false;
648
649  RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
650  if (N.getOperand(0).getOpcode() == ISD::FrameIndex ||
651      (LHSR && LHSR->getReg() == ARM::SP)) {
652    // If the RHS is + imm8 * scale, fold into addr mode.
653    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
654      int RHSC = (int)RHS->getZExtValue();
655      if ((RHSC & 3) == 0) {  // The constant is implicitly multiplied.
656        RHSC >>= 2;
657        if (RHSC >= 0 && RHSC < 256) {
658          Base = N.getOperand(0);
659          if (Base.getOpcode() == ISD::FrameIndex) {
660            int FI = cast<FrameIndexSDNode>(Base)->getIndex();
661            Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
662          }
663          OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
664          return true;
665        }
666      }
667    }
668  }
669
670  return false;
671}
672
673bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDNode *Op, SDValue N,
674                                                SDValue &BaseReg,
675                                                SDValue &Opc) {
676  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N);
677
678  // Don't match base register only case. That is matched to a separate
679  // lower complexity pattern with explicit register operand.
680  if (ShOpcVal == ARM_AM::no_shift) return false;
681
682  BaseReg = N.getOperand(0);
683  unsigned ShImmVal = 0;
684  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
685    ShImmVal = RHS->getZExtValue() & 31;
686    Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal));
687    return true;
688  }
689
690  return false;
691}
692
693bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDNode *Op, SDValue N,
694                                            SDValue &Base, SDValue &OffImm) {
695  // Match simple R + imm12 operands.
696
697  // Base only.
698  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB) {
699    if (N.getOpcode() == ISD::FrameIndex) {
700      // Match frame index...
701      int FI = cast<FrameIndexSDNode>(N)->getIndex();
702      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
703      OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
704      return true;
705    } else if (N.getOpcode() == ARMISD::Wrapper &&
706               !(Subtarget->useMovt() &&
707                 N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
708      Base = N.getOperand(0);
709      if (Base.getOpcode() == ISD::TargetConstantPool)
710        return false;  // We want to select t2LDRpci instead.
711    } else
712      Base = N;
713    OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
714    return true;
715  }
716
717  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
718    if (SelectT2AddrModeImm8(Op, N, Base, OffImm))
719      // Let t2LDRi8 handle (R - imm8).
720      return false;
721
722    int RHSC = (int)RHS->getZExtValue();
723    if (N.getOpcode() == ISD::SUB)
724      RHSC = -RHSC;
725
726    if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
727      Base   = N.getOperand(0);
728      if (Base.getOpcode() == ISD::FrameIndex) {
729        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
730        Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
731      }
732      OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
733      return true;
734    }
735  }
736
737  // Base only.
738  Base = N;
739  OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
740  return true;
741}
742
743bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDNode *Op, SDValue N,
744                                           SDValue &Base, SDValue &OffImm) {
745  // Match simple R - imm8 operands.
746  if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::SUB) {
747    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
748      int RHSC = (int)RHS->getSExtValue();
749      if (N.getOpcode() == ISD::SUB)
750        RHSC = -RHSC;
751
752      if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
753        Base = N.getOperand(0);
754        if (Base.getOpcode() == ISD::FrameIndex) {
755          int FI = cast<FrameIndexSDNode>(Base)->getIndex();
756          Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
757        }
758        OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
759        return true;
760      }
761    }
762  }
763
764  return false;
765}
766
767bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
768                                                 SDValue &OffImm){
769  unsigned Opcode = Op->getOpcode();
770  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
771    ? cast<LoadSDNode>(Op)->getAddressingMode()
772    : cast<StoreSDNode>(Op)->getAddressingMode();
773  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N)) {
774    int RHSC = (int)RHS->getZExtValue();
775    if (RHSC >= 0 && RHSC < 0x100) { // 8 bits.
776      OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
777        ? CurDAG->getTargetConstant(RHSC, MVT::i32)
778        : CurDAG->getTargetConstant(-RHSC, MVT::i32);
779      return true;
780    }
781  }
782
783  return false;
784}
785
786bool ARMDAGToDAGISel::SelectT2AddrModeImm8s4(SDNode *Op, SDValue N,
787                                             SDValue &Base, SDValue &OffImm) {
788  if (N.getOpcode() == ISD::ADD) {
789    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
790      int RHSC = (int)RHS->getZExtValue();
791      // 8 bits.
792      if (((RHSC & 0x3) == 0) &&
793          ((RHSC >= 0 && RHSC < 0x400) || (RHSC < 0 && RHSC > -0x400))) {
794        Base   = N.getOperand(0);
795        OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
796        return true;
797      }
798    }
799  } else if (N.getOpcode() == ISD::SUB) {
800    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
801      int RHSC = (int)RHS->getZExtValue();
802      // 8 bits.
803      if (((RHSC & 0x3) == 0) && (RHSC >= 0 && RHSC < 0x400)) {
804        Base   = N.getOperand(0);
805        OffImm = CurDAG->getTargetConstant(-RHSC, MVT::i32);
806        return true;
807      }
808    }
809  }
810
811  return false;
812}
813
814bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDNode *Op, SDValue N,
815                                            SDValue &Base,
816                                            SDValue &OffReg, SDValue &ShImm) {
817  // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
818  if (N.getOpcode() != ISD::ADD)
819    return false;
820
821  // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
822  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
823    int RHSC = (int)RHS->getZExtValue();
824    if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
825      return false;
826    else if (RHSC < 0 && RHSC >= -255) // 8 bits
827      return false;
828  }
829
830  // Look for (R + R) or (R + (R << [1,2,3])).
831  unsigned ShAmt = 0;
832  Base   = N.getOperand(0);
833  OffReg = N.getOperand(1);
834
835  // Swap if it is ((R << c) + R).
836  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg);
837  if (ShOpcVal != ARM_AM::lsl) {
838    ShOpcVal = ARM_AM::getShiftOpcForNode(Base);
839    if (ShOpcVal == ARM_AM::lsl)
840      std::swap(Base, OffReg);
841  }
842
843  if (ShOpcVal == ARM_AM::lsl) {
844    // Check to see if the RHS of the shift is a constant, if not, we can't fold
845    // it.
846    if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
847      ShAmt = Sh->getZExtValue();
848      if (ShAmt >= 4) {
849        ShAmt = 0;
850        ShOpcVal = ARM_AM::no_shift;
851      } else
852        OffReg = OffReg.getOperand(0);
853    } else {
854      ShOpcVal = ARM_AM::no_shift;
855    }
856  }
857
858  ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32);
859
860  return true;
861}
862
863//===--------------------------------------------------------------------===//
864
865/// getAL - Returns a ARMCC::AL immediate node.
866static inline SDValue getAL(SelectionDAG *CurDAG) {
867  return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32);
868}
869
870SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) {
871  LoadSDNode *LD = cast<LoadSDNode>(N);
872  ISD::MemIndexedMode AM = LD->getAddressingMode();
873  if (AM == ISD::UNINDEXED)
874    return NULL;
875
876  EVT LoadedVT = LD->getMemoryVT();
877  SDValue Offset, AMOpc;
878  bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
879  unsigned Opcode = 0;
880  bool Match = false;
881  if (LoadedVT == MVT::i32 &&
882      SelectAddrMode2Offset(N, LD->getOffset(), Offset, AMOpc)) {
883    Opcode = isPre ? ARM::LDR_PRE : ARM::LDR_POST;
884    Match = true;
885  } else if (LoadedVT == MVT::i16 &&
886             SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
887    Match = true;
888    Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
889      ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
890      : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
891  } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
892    if (LD->getExtensionType() == ISD::SEXTLOAD) {
893      if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
894        Match = true;
895        Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
896      }
897    } else {
898      if (SelectAddrMode2Offset(N, LD->getOffset(), Offset, AMOpc)) {
899        Match = true;
900        Opcode = isPre ? ARM::LDRB_PRE : ARM::LDRB_POST;
901      }
902    }
903  }
904
905  if (Match) {
906    SDValue Chain = LD->getChain();
907    SDValue Base = LD->getBasePtr();
908    SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG),
909                     CurDAG->getRegister(0, MVT::i32), Chain };
910    return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32,
911                                  MVT::Other, Ops, 6);
912  }
913
914  return NULL;
915}
916
917SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) {
918  LoadSDNode *LD = cast<LoadSDNode>(N);
919  ISD::MemIndexedMode AM = LD->getAddressingMode();
920  if (AM == ISD::UNINDEXED)
921    return NULL;
922
923  EVT LoadedVT = LD->getMemoryVT();
924  bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
925  SDValue Offset;
926  bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
927  unsigned Opcode = 0;
928  bool Match = false;
929  if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
930    switch (LoadedVT.getSimpleVT().SimpleTy) {
931    case MVT::i32:
932      Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
933      break;
934    case MVT::i16:
935      if (isSExtLd)
936        Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
937      else
938        Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
939      break;
940    case MVT::i8:
941    case MVT::i1:
942      if (isSExtLd)
943        Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
944      else
945        Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
946      break;
947    default:
948      return NULL;
949    }
950    Match = true;
951  }
952
953  if (Match) {
954    SDValue Chain = LD->getChain();
955    SDValue Base = LD->getBasePtr();
956    SDValue Ops[]= { Base, Offset, getAL(CurDAG),
957                     CurDAG->getRegister(0, MVT::i32), Chain };
958    return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32,
959                                  MVT::Other, Ops, 5);
960  }
961
962  return NULL;
963}
964
965/// PairDRegs - Form a quad register from a pair of D registers.
966///
967SDNode *ARMDAGToDAGISel::PairDRegs(EVT VT, SDValue V0, SDValue V1) {
968  DebugLoc dl = V0.getNode()->getDebugLoc();
969  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
970  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
971  if (llvm::ModelWithRegSequence()) {
972    const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 };
973    return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4);
974  }
975  SDValue Undef =
976    SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0);
977  SDNode *Pair = CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
978                                        VT, Undef, V0, SubReg0);
979  return CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
980                                VT, SDValue(Pair, 0), V1, SubReg1);
981}
982
983/// PairQRegs - Form 4 consecutive D registers from a pair of Q registers.
984///
985SDNode *ARMDAGToDAGISel::PairQRegs(EVT VT, SDValue V0, SDValue V1) {
986  DebugLoc dl = V0.getNode()->getDebugLoc();
987  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
988  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
989  const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 };
990  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4);
991}
992
993/// QuadDRegs - Form 4 consecutive D registers.
994///
995SDNode *ARMDAGToDAGISel::QuadDRegs(EVT VT, SDValue V0, SDValue V1,
996                                   SDValue V2, SDValue V3) {
997  DebugLoc dl = V0.getNode()->getDebugLoc();
998  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
999  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
1000  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32);
1001  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32);
1002  const SDValue Ops[] = { V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3 };
1003  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 8);
1004}
1005
1006/// QuadQRegs - Form 4 consecutive Q registers.
1007///
1008SDNode *ARMDAGToDAGISel::QuadQRegs(EVT VT, SDValue V0, SDValue V1,
1009                                   SDValue V2, SDValue V3) {
1010  DebugLoc dl = V0.getNode()->getDebugLoc();
1011  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
1012  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
1013  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, MVT::i32);
1014  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, MVT::i32);
1015  const SDValue Ops[] = { V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3 };
1016  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 8);
1017}
1018
1019/// OctoDRegs - Form 8 consecutive D registers.
1020///
1021SDNode *ARMDAGToDAGISel::OctoDRegs(EVT VT, SDValue V0, SDValue V1,
1022                                   SDValue V2, SDValue V3,
1023                                   SDValue V4, SDValue V5,
1024                                   SDValue V6, SDValue V7) {
1025  DebugLoc dl = V0.getNode()->getDebugLoc();
1026  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
1027  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
1028  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32);
1029  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32);
1030  SDValue SubReg4 = CurDAG->getTargetConstant(ARM::dsub_4, MVT::i32);
1031  SDValue SubReg5 = CurDAG->getTargetConstant(ARM::dsub_5, MVT::i32);
1032  SDValue SubReg6 = CurDAG->getTargetConstant(ARM::dsub_6, MVT::i32);
1033  SDValue SubReg7 = CurDAG->getTargetConstant(ARM::dsub_7, MVT::i32);
1034  const SDValue Ops[] ={ V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3,
1035                         V4, SubReg4, V5, SubReg5, V6, SubReg6, V7, SubReg7 };
1036  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 16);
1037}
1038
1039/// GetNEONSubregVT - Given a type for a 128-bit NEON vector, return the type
1040/// for a 64-bit subregister of the vector.
1041static EVT GetNEONSubregVT(EVT VT) {
1042  switch (VT.getSimpleVT().SimpleTy) {
1043  default: llvm_unreachable("unhandled NEON type");
1044  case MVT::v16i8: return MVT::v8i8;
1045  case MVT::v8i16: return MVT::v4i16;
1046  case MVT::v4f32: return MVT::v2f32;
1047  case MVT::v4i32: return MVT::v2i32;
1048  case MVT::v2i64: return MVT::v1i64;
1049  }
1050}
1051
1052SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, unsigned NumVecs,
1053                                   unsigned *DOpcodes, unsigned *QOpcodes0,
1054                                   unsigned *QOpcodes1) {
1055  assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
1056  DebugLoc dl = N->getDebugLoc();
1057
1058  SDValue MemAddr, Align;
1059  if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align))
1060    return NULL;
1061
1062  SDValue Chain = N->getOperand(0);
1063  EVT VT = N->getValueType(0);
1064  bool is64BitVector = VT.is64BitVector();
1065
1066  unsigned OpcodeIndex;
1067  switch (VT.getSimpleVT().SimpleTy) {
1068  default: llvm_unreachable("unhandled vld type");
1069    // Double-register operations:
1070  case MVT::v8i8:  OpcodeIndex = 0; break;
1071  case MVT::v4i16: OpcodeIndex = 1; break;
1072  case MVT::v2f32:
1073  case MVT::v2i32: OpcodeIndex = 2; break;
1074  case MVT::v1i64: OpcodeIndex = 3; break;
1075    // Quad-register operations:
1076  case MVT::v16i8: OpcodeIndex = 0; break;
1077  case MVT::v8i16: OpcodeIndex = 1; break;
1078  case MVT::v4f32:
1079  case MVT::v4i32: OpcodeIndex = 2; break;
1080  case MVT::v2i64: OpcodeIndex = 3;
1081    assert(NumVecs == 1 && "v2i64 type only supported for VLD1");
1082    break;
1083  }
1084
1085  SDValue Pred = getAL(CurDAG);
1086  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1087  if (is64BitVector) {
1088    unsigned Opc = DOpcodes[OpcodeIndex];
1089    const SDValue Ops[] = { MemAddr, Align, Pred, Reg0, Chain };
1090    std::vector<EVT> ResTys(NumVecs, VT);
1091    ResTys.push_back(MVT::Other);
1092    SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 5);
1093    if (!llvm::ModelWithRegSequence() || NumVecs < 2)
1094      return VLd;
1095
1096    SDValue RegSeq;
1097    SDValue V0 = SDValue(VLd, 0);
1098    SDValue V1 = SDValue(VLd, 1);
1099
1100    // Form a REG_SEQUENCE to force register allocation.
1101    if (NumVecs == 2)
1102      RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
1103    else {
1104      SDValue V2 = SDValue(VLd, 2);
1105      // If it's a vld3, form a quad D-register but discard the last part.
1106      SDValue V3 = (NumVecs == 3)
1107          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1108          : SDValue(VLd, 3);
1109      RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
1110    }
1111
1112    assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
1113    for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
1114      SDValue D = CurDAG->getTargetExtractSubreg(ARM::dsub_0+Vec,
1115                                                 dl, VT, RegSeq);
1116      ReplaceUses(SDValue(N, Vec), D);
1117    }
1118    ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, NumVecs));
1119    return NULL;
1120  }
1121
1122  EVT RegVT = GetNEONSubregVT(VT);
1123  if (NumVecs <= 2) {
1124    // Quad registers are directly supported for VLD1 and VLD2,
1125    // loading pairs of D regs.
1126    unsigned Opc = QOpcodes0[OpcodeIndex];
1127    const SDValue Ops[] = { MemAddr, Align, Pred, Reg0, Chain };
1128    std::vector<EVT> ResTys(2 * NumVecs, RegVT);
1129    ResTys.push_back(MVT::Other);
1130    SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 5);
1131    Chain = SDValue(VLd, 2 * NumVecs);
1132
1133    // Combine the even and odd subregs to produce the result.
1134    if (llvm::ModelWithRegSequence()) {
1135      if (NumVecs == 1) {
1136        SDNode *Q = PairDRegs(VT, SDValue(VLd, 0), SDValue(VLd, 1));
1137        ReplaceUses(SDValue(N, 0), SDValue(Q, 0));
1138      } else {
1139        SDValue QQ = SDValue(QuadDRegs(MVT::v4i64,
1140                                       SDValue(VLd, 0), SDValue(VLd, 1),
1141                                       SDValue(VLd, 2), SDValue(VLd, 3)), 0);
1142        SDValue Q0 = CurDAG->getTargetExtractSubreg(ARM::qsub_0, dl, VT, QQ);
1143        SDValue Q1 = CurDAG->getTargetExtractSubreg(ARM::qsub_1, dl, VT, QQ);
1144        ReplaceUses(SDValue(N, 0), Q0);
1145        ReplaceUses(SDValue(N, 1), Q1);
1146      }
1147    } else {
1148      for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
1149        SDNode *Q = PairDRegs(VT, SDValue(VLd, 2*Vec), SDValue(VLd, 2*Vec+1));
1150        ReplaceUses(SDValue(N, Vec), SDValue(Q, 0));
1151      }
1152    }
1153  } else {
1154    // Otherwise, quad registers are loaded with two separate instructions,
1155    // where one loads the even registers and the other loads the odd registers.
1156
1157    std::vector<EVT> ResTys(NumVecs, RegVT);
1158    ResTys.push_back(MemAddr.getValueType());
1159    ResTys.push_back(MVT::Other);
1160
1161    // Load the even subregs.
1162    unsigned Opc = QOpcodes0[OpcodeIndex];
1163    const SDValue OpsA[] = { MemAddr, Align, Reg0, Pred, Reg0, Chain };
1164    SDNode *VLdA = CurDAG->getMachineNode(Opc, dl, ResTys, OpsA, 6);
1165    Chain = SDValue(VLdA, NumVecs+1);
1166
1167    // Load the odd subregs.
1168    Opc = QOpcodes1[OpcodeIndex];
1169    const SDValue OpsB[] = { SDValue(VLdA, NumVecs),
1170                             Align, Reg0, Pred, Reg0, Chain };
1171    SDNode *VLdB = CurDAG->getMachineNode(Opc, dl, ResTys, OpsB, 6);
1172    Chain = SDValue(VLdB, NumVecs+1);
1173
1174    if (llvm::ModelWithRegSequence()) {
1175      SDValue V0 = SDValue(VLdA, 0);
1176      SDValue V1 = SDValue(VLdB, 0);
1177      SDValue V2 = SDValue(VLdA, 1);
1178      SDValue V3 = SDValue(VLdB, 1);
1179      SDValue V4 = SDValue(VLdA, 2);
1180      SDValue V5 = SDValue(VLdB, 2);
1181      SDValue V6 = (NumVecs == 3)
1182          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,RegVT),
1183                    0)
1184          : SDValue(VLdA, 3);
1185      SDValue V7 = (NumVecs == 3)
1186          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,RegVT),
1187                    0)
1188          : SDValue(VLdB, 3);
1189      SDValue RegSeq = SDValue(OctoDRegs(MVT::v8i64, V0, V1, V2, V3,
1190                                         V4, V5, V6, V7), 0);
1191
1192      // Extract out the 3 / 4 Q registers.
1193      assert(ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
1194      for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
1195        SDValue Q = CurDAG->getTargetExtractSubreg(ARM::qsub_0+Vec,
1196                                                   dl, VT, RegSeq);
1197        ReplaceUses(SDValue(N, Vec), Q);
1198      }
1199    } else {
1200      // Combine the even and odd subregs to produce the result.
1201      for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
1202        SDNode *Q = PairDRegs(VT, SDValue(VLdA, Vec), SDValue(VLdB, Vec));
1203        ReplaceUses(SDValue(N, Vec), SDValue(Q, 0));
1204      }
1205    }
1206  }
1207  ReplaceUses(SDValue(N, NumVecs), Chain);
1208  return NULL;
1209}
1210
1211SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, unsigned NumVecs,
1212                                   unsigned *DOpcodes, unsigned *QOpcodes0,
1213                                   unsigned *QOpcodes1) {
1214  assert(NumVecs >=1 && NumVecs <= 4 && "VST NumVecs out-of-range");
1215  DebugLoc dl = N->getDebugLoc();
1216
1217  SDValue MemAddr, Align;
1218  if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align))
1219    return NULL;
1220
1221  SDValue Chain = N->getOperand(0);
1222  EVT VT = N->getOperand(3).getValueType();
1223  bool is64BitVector = VT.is64BitVector();
1224
1225  unsigned OpcodeIndex;
1226  switch (VT.getSimpleVT().SimpleTy) {
1227  default: llvm_unreachable("unhandled vst type");
1228    // Double-register operations:
1229  case MVT::v8i8:  OpcodeIndex = 0; break;
1230  case MVT::v4i16: OpcodeIndex = 1; break;
1231  case MVT::v2f32:
1232  case MVT::v2i32: OpcodeIndex = 2; break;
1233  case MVT::v1i64: OpcodeIndex = 3; break;
1234    // Quad-register operations:
1235  case MVT::v16i8: OpcodeIndex = 0; break;
1236  case MVT::v8i16: OpcodeIndex = 1; break;
1237  case MVT::v4f32:
1238  case MVT::v4i32: OpcodeIndex = 2; break;
1239  case MVT::v2i64: OpcodeIndex = 3;
1240    assert(NumVecs == 1 && "v2i64 type only supported for VST1");
1241    break;
1242  }
1243
1244  SDValue Pred = getAL(CurDAG);
1245  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1246
1247  SmallVector<SDValue, 10> Ops;
1248  Ops.push_back(MemAddr);
1249  Ops.push_back(Align);
1250
1251  if (is64BitVector) {
1252    if (llvm::ModelWithRegSequence() && NumVecs >= 2) {
1253      SDValue RegSeq;
1254      SDValue V0 = N->getOperand(0+3);
1255      SDValue V1 = N->getOperand(1+3);
1256
1257      // Form a REG_SEQUENCE to force register allocation.
1258      if (NumVecs == 2)
1259        RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
1260      else {
1261        SDValue V2 = N->getOperand(2+3);
1262        // If it's a vld3, form a quad D-register and leave the last part as
1263        // an undef.
1264        SDValue V3 = (NumVecs == 3)
1265          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1266          : N->getOperand(3+3);
1267        RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
1268      }
1269
1270      // Now extract the D registers back out.
1271      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, VT,
1272                                                   RegSeq));
1273      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, VT,
1274                                                   RegSeq));
1275      if (NumVecs > 2)
1276        Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_2, dl, VT,
1277                                                     RegSeq));
1278      if (NumVecs > 3)
1279        Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_3, dl, VT,
1280                                                     RegSeq));
1281    } else {
1282      for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1283        Ops.push_back(N->getOperand(Vec+3));
1284    }
1285    Ops.push_back(Pred);
1286    Ops.push_back(Reg0); // predicate register
1287    Ops.push_back(Chain);
1288    unsigned Opc = DOpcodes[OpcodeIndex];
1289    return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), NumVecs+5);
1290  }
1291
1292  EVT RegVT = GetNEONSubregVT(VT);
1293  if (NumVecs <= 2) {
1294    // Quad registers are directly supported for VST1 and VST2,
1295    // storing pairs of D regs.
1296    unsigned Opc = QOpcodes0[OpcodeIndex];
1297    if (llvm::ModelWithRegSequence() && NumVecs == 2) {
1298      // First extract the pair of Q registers.
1299      SDValue Q0 = N->getOperand(3);
1300      SDValue Q1 = N->getOperand(4);
1301
1302      // Form a QQ register.
1303      SDValue QQ = SDValue(PairQRegs(MVT::v4i64, Q0, Q1), 0);
1304
1305      // Now extract the D registers back out.
1306      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT,
1307                                                   QQ));
1308      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT,
1309                                                   QQ));
1310      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_2, dl, RegVT,
1311                                                   QQ));
1312      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_3, dl, RegVT,
1313                                                   QQ));
1314      Ops.push_back(Pred);
1315      Ops.push_back(Reg0); // predicate register
1316      Ops.push_back(Chain);
1317      return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), 5 + 4);
1318    } else {
1319      for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
1320        Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT,
1321                                                     N->getOperand(Vec+3)));
1322        Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT,
1323                                                     N->getOperand(Vec+3)));
1324      }
1325      Ops.push_back(Pred);
1326      Ops.push_back(Reg0); // predicate register
1327      Ops.push_back(Chain);
1328      return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(),
1329                                    5 + 2 * NumVecs);
1330    }
1331  }
1332
1333  // Otherwise, quad registers are stored with two separate instructions,
1334  // where one stores the even registers and the other stores the odd registers.
1335  if (llvm::ModelWithRegSequence()) {
1336    // Form the QQQQ REG_SEQUENCE.
1337    SDValue V[8];
1338    for (unsigned Vec = 0, i = 0; Vec < NumVecs; ++Vec, i+=2) {
1339      V[i]   = CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT,
1340                                              N->getOperand(Vec+3));
1341      V[i+1] = CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT,
1342                                              N->getOperand(Vec+3));
1343    }
1344    if (NumVecs == 3)
1345      V[6] = V[7] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1346                                                   dl, RegVT), 0);
1347
1348    SDValue RegSeq = SDValue(OctoDRegs(MVT::v8i64, V[0], V[1], V[2], V[3],
1349                                       V[4], V[5], V[6], V[7]), 0);
1350
1351    // Store the even D registers.
1352    assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
1353    Ops.push_back(Reg0); // post-access address offset
1354    for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1355      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0+Vec*2, dl,
1356                                                   RegVT, RegSeq));
1357    Ops.push_back(Pred);
1358    Ops.push_back(Reg0); // predicate register
1359    Ops.push_back(Chain);
1360    unsigned Opc = QOpcodes0[OpcodeIndex];
1361    SDNode *VStA = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(),
1362                                          MVT::Other, Ops.data(), NumVecs+6);
1363    Chain = SDValue(VStA, 1);
1364
1365    // Store the odd D registers.
1366    Ops[0] = SDValue(VStA, 0); // MemAddr
1367    for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1368      Ops[Vec+3] = CurDAG->getTargetExtractSubreg(ARM::dsub_1+Vec*2, dl,
1369                                                  RegVT, RegSeq);
1370    Ops[NumVecs+5] = Chain;
1371    Opc = QOpcodes1[OpcodeIndex];
1372    SDNode *VStB = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(),
1373                                          MVT::Other, Ops.data(), NumVecs+6);
1374    Chain = SDValue(VStB, 1);
1375    ReplaceUses(SDValue(N, 0), Chain);
1376    return NULL;
1377  } else {
1378    Ops.push_back(Reg0); // post-access address offset
1379
1380    // Store the even subregs.
1381    for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1382      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT,
1383                                                   N->getOperand(Vec+3)));
1384    Ops.push_back(Pred);
1385    Ops.push_back(Reg0); // predicate register
1386    Ops.push_back(Chain);
1387    unsigned Opc = QOpcodes0[OpcodeIndex];
1388    SDNode *VStA = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(),
1389                                          MVT::Other, Ops.data(), NumVecs+6);
1390    Chain = SDValue(VStA, 1);
1391
1392    // Store the odd subregs.
1393    Ops[0] = SDValue(VStA, 0); // MemAddr
1394    for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1395      Ops[Vec+3] = CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT,
1396                                                  N->getOperand(Vec+3));
1397    Ops[NumVecs+5] = Chain;
1398    Opc = QOpcodes1[OpcodeIndex];
1399    SDNode *VStB = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(),
1400                                          MVT::Other, Ops.data(), NumVecs+6);
1401    Chain = SDValue(VStB, 1);
1402    ReplaceUses(SDValue(N, 0), Chain);
1403    return NULL;
1404  }
1405}
1406
1407SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
1408                                         unsigned NumVecs, unsigned *DOpcodes,
1409                                         unsigned *QOpcodes0,
1410                                         unsigned *QOpcodes1) {
1411  assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
1412  DebugLoc dl = N->getDebugLoc();
1413
1414  SDValue MemAddr, Align;
1415  if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align))
1416    return NULL;
1417
1418  SDValue Chain = N->getOperand(0);
1419  unsigned Lane =
1420    cast<ConstantSDNode>(N->getOperand(NumVecs+3))->getZExtValue();
1421  EVT VT = IsLoad ? N->getValueType(0) : N->getOperand(3).getValueType();
1422  bool is64BitVector = VT.is64BitVector();
1423
1424  // Quad registers are handled by load/store of subregs. Find the subreg info.
1425  unsigned NumElts = 0;
1426  int SubregIdx = 0;
1427  bool Even = false;
1428  EVT RegVT = VT;
1429  if (!is64BitVector) {
1430    RegVT = GetNEONSubregVT(VT);
1431    NumElts = RegVT.getVectorNumElements();
1432    SubregIdx = (Lane < NumElts) ? ARM::dsub_0 : ARM::dsub_1;
1433    Even = Lane < NumElts;
1434  }
1435
1436  unsigned OpcodeIndex;
1437  switch (VT.getSimpleVT().SimpleTy) {
1438  default: llvm_unreachable("unhandled vld/vst lane type");
1439    // Double-register operations:
1440  case MVT::v8i8:  OpcodeIndex = 0; break;
1441  case MVT::v4i16: OpcodeIndex = 1; break;
1442  case MVT::v2f32:
1443  case MVT::v2i32: OpcodeIndex = 2; break;
1444    // Quad-register operations:
1445  case MVT::v8i16: OpcodeIndex = 0; break;
1446  case MVT::v4f32:
1447  case MVT::v4i32: OpcodeIndex = 1; break;
1448  }
1449
1450  SDValue Pred = getAL(CurDAG);
1451  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1452
1453  SmallVector<SDValue, 10> Ops;
1454  Ops.push_back(MemAddr);
1455  Ops.push_back(Align);
1456
1457  unsigned Opc = 0;
1458  if (is64BitVector) {
1459    Opc = DOpcodes[OpcodeIndex];
1460    if (llvm::ModelWithRegSequence()) {
1461      SDValue RegSeq;
1462      SDValue V0 = N->getOperand(0+3);
1463      SDValue V1 = N->getOperand(1+3);
1464      if (NumVecs == 2) {
1465        RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
1466      } else {
1467        SDValue V2 = N->getOperand(2+3);
1468        SDValue V3 = (NumVecs == 3)
1469          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1470          : N->getOperand(3+3);
1471        RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
1472      }
1473
1474      // Now extract the D registers back out.
1475      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, VT,
1476                                                   RegSeq));
1477      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, VT,
1478                                                   RegSeq));
1479      if (NumVecs > 2)
1480        Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_2, dl, VT,
1481                                                     RegSeq));
1482      if (NumVecs > 3)
1483        Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_3, dl, VT,
1484                                                     RegSeq));
1485    } else {
1486      for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1487        Ops.push_back(N->getOperand(Vec+3));
1488    }
1489  } else {
1490    // Check if this is loading the even or odd subreg of a Q register.
1491    if (Lane < NumElts) {
1492      Opc = QOpcodes0[OpcodeIndex];
1493    } else {
1494      Lane -= NumElts;
1495      Opc = QOpcodes1[OpcodeIndex];
1496    }
1497
1498    if (llvm::ModelWithRegSequence()) {
1499      SDValue RegSeq;
1500      SDValue V0 = N->getOperand(0+3);
1501      SDValue V1 = N->getOperand(1+3);
1502      if (NumVecs == 2) {
1503        RegSeq = SDValue(PairQRegs(MVT::v4i64, V0, V1), 0);
1504      } else {
1505        SDValue V2 = N->getOperand(2+3);
1506        SDValue V3 = (NumVecs == 3)
1507          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1508          : N->getOperand(3+3);
1509        RegSeq = SDValue(QuadQRegs(MVT::v8i64, V0, V1, V2, V3), 0);
1510      }
1511
1512      // Extract the subregs of the input vector.
1513      unsigned SubIdx = Even ? ARM::dsub_0 : ARM::dsub_1;
1514      for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1515        Ops.push_back(CurDAG->getTargetExtractSubreg(SubIdx+Vec*2, dl, RegVT,
1516                                                     RegSeq));
1517    } else {
1518      // Extract the subregs of the input vector.
1519      for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1520        Ops.push_back(CurDAG->getTargetExtractSubreg(SubregIdx, dl, RegVT,
1521                                                     N->getOperand(Vec+3)));
1522    }
1523  }
1524  Ops.push_back(getI32Imm(Lane));
1525  Ops.push_back(Pred);
1526  Ops.push_back(Reg0);
1527  Ops.push_back(Chain);
1528
1529  if (!IsLoad)
1530    return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), NumVecs+6);
1531
1532  std::vector<EVT> ResTys(NumVecs, RegVT);
1533  ResTys.push_back(MVT::Other);
1534  SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(),NumVecs+6);
1535
1536  if (llvm::ModelWithRegSequence()) {
1537    // Form a REG_SEQUENCE to force register allocation.
1538    SDValue RegSeq;
1539    if (is64BitVector) {
1540      SDValue V0 = SDValue(VLdLn, 0);
1541      SDValue V1 = SDValue(VLdLn, 1);
1542      if (NumVecs == 2) {
1543        RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
1544      } else {
1545        SDValue V2 = SDValue(VLdLn, 2);
1546        // If it's a vld3, form a quad D-register but discard the last part.
1547        SDValue V3 = (NumVecs == 3)
1548          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1549          : SDValue(VLdLn, 3);
1550        RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
1551      }
1552    } else {
1553      // For 128-bit vectors, take the 64-bit results of the load and insert
1554      // them as subregs into the result.
1555      SDValue V[8];
1556      for (unsigned Vec = 0, i = 0; Vec < NumVecs; ++Vec, i+=2) {
1557        if (Even) {
1558          V[i]   = SDValue(VLdLn, Vec);
1559          V[i+1] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1560                                                  dl, RegVT), 0);
1561        } else {
1562          V[i]   = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1563                                                  dl, RegVT), 0);
1564          V[i+1] = SDValue(VLdLn, Vec);
1565        }
1566      }
1567      if (NumVecs == 3)
1568        V[6] = V[7] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1569                                                     dl, RegVT), 0);
1570
1571      if (NumVecs == 2)
1572        RegSeq = SDValue(QuadDRegs(MVT::v4i64, V[0], V[1], V[2], V[3]), 0);
1573      else
1574        RegSeq = SDValue(OctoDRegs(MVT::v8i64, V[0], V[1], V[2], V[3],
1575                                   V[4], V[5], V[6], V[7]), 0);
1576    }
1577
1578    assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
1579    assert(ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
1580    unsigned SubIdx = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
1581    for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1582      ReplaceUses(SDValue(N, Vec),
1583                  CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, RegSeq));
1584    ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, NumVecs));
1585    return NULL;
1586  }
1587
1588  // For a 64-bit vector load to D registers, nothing more needs to be done.
1589  if (is64BitVector)
1590    return VLdLn;
1591
1592  // For 128-bit vectors, take the 64-bit results of the load and insert them
1593  // as subregs into the result.
1594  for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
1595    SDValue QuadVec = CurDAG->getTargetInsertSubreg(SubregIdx, dl, VT,
1596                                                    N->getOperand(Vec+3),
1597                                                    SDValue(VLdLn, Vec));
1598    ReplaceUses(SDValue(N, Vec), QuadVec);
1599  }
1600
1601  Chain = SDValue(VLdLn, NumVecs);
1602  ReplaceUses(SDValue(N, NumVecs), Chain);
1603  return NULL;
1604}
1605
1606SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N,
1607                                                     bool isSigned) {
1608  if (!Subtarget->hasV6T2Ops())
1609    return NULL;
1610
1611  unsigned Opc = isSigned ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
1612    : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
1613
1614
1615  // For unsigned extracts, check for a shift right and mask
1616  unsigned And_imm = 0;
1617  if (N->getOpcode() == ISD::AND) {
1618    if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
1619
1620      // The immediate is a mask of the low bits iff imm & (imm+1) == 0
1621      if (And_imm & (And_imm + 1))
1622        return NULL;
1623
1624      unsigned Srl_imm = 0;
1625      if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
1626                                Srl_imm)) {
1627        assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
1628
1629        unsigned Width = CountTrailingOnes_32(And_imm);
1630        unsigned LSB = Srl_imm;
1631        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1632        SDValue Ops[] = { N->getOperand(0).getOperand(0),
1633                          CurDAG->getTargetConstant(LSB, MVT::i32),
1634                          CurDAG->getTargetConstant(Width, MVT::i32),
1635          getAL(CurDAG), Reg0 };
1636        return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
1637      }
1638    }
1639    return NULL;
1640  }
1641
1642  // Otherwise, we're looking for a shift of a shift
1643  unsigned Shl_imm = 0;
1644  if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
1645    assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
1646    unsigned Srl_imm = 0;
1647    if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
1648      assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
1649      unsigned Width = 32 - Srl_imm;
1650      int LSB = Srl_imm - Shl_imm;
1651      if (LSB < 0)
1652        return NULL;
1653      SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1654      SDValue Ops[] = { N->getOperand(0).getOperand(0),
1655                        CurDAG->getTargetConstant(LSB, MVT::i32),
1656                        CurDAG->getTargetConstant(Width, MVT::i32),
1657                        getAL(CurDAG), Reg0 };
1658      return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
1659    }
1660  }
1661  return NULL;
1662}
1663
1664SDNode *ARMDAGToDAGISel::
1665SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
1666                    ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
1667  SDValue CPTmp0;
1668  SDValue CPTmp1;
1669  if (SelectT2ShifterOperandReg(N, TrueVal, CPTmp0, CPTmp1)) {
1670    unsigned SOVal = cast<ConstantSDNode>(CPTmp1)->getZExtValue();
1671    unsigned SOShOp = ARM_AM::getSORegShOp(SOVal);
1672    unsigned Opc = 0;
1673    switch (SOShOp) {
1674    case ARM_AM::lsl: Opc = ARM::t2MOVCClsl; break;
1675    case ARM_AM::lsr: Opc = ARM::t2MOVCClsr; break;
1676    case ARM_AM::asr: Opc = ARM::t2MOVCCasr; break;
1677    case ARM_AM::ror: Opc = ARM::t2MOVCCror; break;
1678    default:
1679      llvm_unreachable("Unknown so_reg opcode!");
1680      break;
1681    }
1682    SDValue SOShImm =
1683      CurDAG->getTargetConstant(ARM_AM::getSORegOffset(SOVal), MVT::i32);
1684    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
1685    SDValue Ops[] = { FalseVal, CPTmp0, SOShImm, CC, CCR, InFlag };
1686    return CurDAG->SelectNodeTo(N, Opc, MVT::i32,Ops, 6);
1687  }
1688  return 0;
1689}
1690
1691SDNode *ARMDAGToDAGISel::
1692SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
1693                     ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
1694  SDValue CPTmp0;
1695  SDValue CPTmp1;
1696  SDValue CPTmp2;
1697  if (SelectShifterOperandReg(N, TrueVal, CPTmp0, CPTmp1, CPTmp2)) {
1698    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
1699    SDValue Ops[] = { FalseVal, CPTmp0, CPTmp1, CPTmp2, CC, CCR, InFlag };
1700    return CurDAG->SelectNodeTo(N, ARM::MOVCCs, MVT::i32, Ops, 7);
1701  }
1702  return 0;
1703}
1704
1705SDNode *ARMDAGToDAGISel::
1706SelectT2CMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
1707                    ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
1708  ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
1709  if (!T)
1710    return 0;
1711
1712  if (Predicate_t2_so_imm(TrueVal.getNode())) {
1713    SDValue True = CurDAG->getTargetConstant(T->getZExtValue(), MVT::i32);
1714    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
1715    SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
1716    return CurDAG->SelectNodeTo(N,
1717                                ARM::t2MOVCCi, MVT::i32, Ops, 5);
1718  }
1719  return 0;
1720}
1721
1722SDNode *ARMDAGToDAGISel::
1723SelectARMCMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
1724                     ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
1725  ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
1726  if (!T)
1727    return 0;
1728
1729  if (Predicate_so_imm(TrueVal.getNode())) {
1730    SDValue True = CurDAG->getTargetConstant(T->getZExtValue(), MVT::i32);
1731    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
1732    SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
1733    return CurDAG->SelectNodeTo(N,
1734                                ARM::MOVCCi, MVT::i32, Ops, 5);
1735  }
1736  return 0;
1737}
1738
1739SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDNode *N) {
1740  EVT VT = N->getValueType(0);
1741  SDValue FalseVal = N->getOperand(0);
1742  SDValue TrueVal  = N->getOperand(1);
1743  SDValue CC = N->getOperand(2);
1744  SDValue CCR = N->getOperand(3);
1745  SDValue InFlag = N->getOperand(4);
1746  assert(CC.getOpcode() == ISD::Constant);
1747  assert(CCR.getOpcode() == ISD::Register);
1748  ARMCC::CondCodes CCVal =
1749    (ARMCC::CondCodes)cast<ConstantSDNode>(CC)->getZExtValue();
1750
1751  if (!Subtarget->isThumb1Only() && VT == MVT::i32) {
1752    // Pattern: (ARMcmov:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
1753    // Emits: (MOVCCs:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
1754    // Pattern complexity = 18  cost = 1  size = 0
1755    SDValue CPTmp0;
1756    SDValue CPTmp1;
1757    SDValue CPTmp2;
1758    if (Subtarget->isThumb()) {
1759      SDNode *Res = SelectT2CMOVShiftOp(N, FalseVal, TrueVal,
1760                                        CCVal, CCR, InFlag);
1761      if (!Res)
1762        Res = SelectT2CMOVShiftOp(N, TrueVal, FalseVal,
1763                               ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
1764      if (Res)
1765        return Res;
1766    } else {
1767      SDNode *Res = SelectARMCMOVShiftOp(N, FalseVal, TrueVal,
1768                                         CCVal, CCR, InFlag);
1769      if (!Res)
1770        Res = SelectARMCMOVShiftOp(N, TrueVal, FalseVal,
1771                               ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
1772      if (Res)
1773        return Res;
1774    }
1775
1776    // Pattern: (ARMcmov:i32 GPR:i32:$false,
1777    //             (imm:i32)<<P:Predicate_so_imm>>:$true,
1778    //             (imm:i32):$cc)
1779    // Emits: (MOVCCi:i32 GPR:i32:$false,
1780    //           (so_imm:i32 (imm:i32):$true), (imm:i32):$cc)
1781    // Pattern complexity = 10  cost = 1  size = 0
1782    if (Subtarget->isThumb()) {
1783      SDNode *Res = SelectT2CMOVSoImmOp(N, FalseVal, TrueVal,
1784                                        CCVal, CCR, InFlag);
1785      if (!Res)
1786        Res = SelectT2CMOVSoImmOp(N, TrueVal, FalseVal,
1787                               ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
1788      if (Res)
1789        return Res;
1790    } else {
1791      SDNode *Res = SelectARMCMOVSoImmOp(N, FalseVal, TrueVal,
1792                                         CCVal, CCR, InFlag);
1793      if (!Res)
1794        Res = SelectARMCMOVSoImmOp(N, TrueVal, FalseVal,
1795                               ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
1796      if (Res)
1797        return Res;
1798    }
1799  }
1800
1801  // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
1802  // Emits: (MOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
1803  // Pattern complexity = 6  cost = 1  size = 0
1804  //
1805  // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
1806  // Emits: (tMOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
1807  // Pattern complexity = 6  cost = 11  size = 0
1808  //
1809  // Also FCPYScc and FCPYDcc.
1810  SDValue Tmp2 = CurDAG->getTargetConstant(CCVal, MVT::i32);
1811  SDValue Ops[] = { FalseVal, TrueVal, Tmp2, CCR, InFlag };
1812  unsigned Opc = 0;
1813  switch (VT.getSimpleVT().SimpleTy) {
1814  default: assert(false && "Illegal conditional move type!");
1815    break;
1816  case MVT::i32:
1817    Opc = Subtarget->isThumb()
1818      ? (Subtarget->hasThumb2() ? ARM::t2MOVCCr : ARM::tMOVCCr_pseudo)
1819      : ARM::MOVCCr;
1820    break;
1821  case MVT::f32:
1822    Opc = ARM::VMOVScc;
1823    break;
1824  case MVT::f64:
1825    Opc = ARM::VMOVDcc;
1826    break;
1827  }
1828  return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5);
1829}
1830
1831SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) {
1832  // The only time a CONCAT_VECTORS operation can have legal types is when
1833  // two 64-bit vectors are concatenated to a 128-bit vector.
1834  EVT VT = N->getValueType(0);
1835  if (!VT.is128BitVector() || N->getNumOperands() != 2)
1836    llvm_unreachable("unexpected CONCAT_VECTORS");
1837  DebugLoc dl = N->getDebugLoc();
1838  SDValue V0 = N->getOperand(0);
1839  SDValue V1 = N->getOperand(1);
1840  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
1841  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
1842  const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 };
1843  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4);
1844}
1845
1846SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
1847  DebugLoc dl = N->getDebugLoc();
1848
1849  if (N->isMachineOpcode())
1850    return NULL;   // Already selected.
1851
1852  switch (N->getOpcode()) {
1853  default: break;
1854  case ISD::Constant: {
1855    unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
1856    bool UseCP = true;
1857    if (Subtarget->hasThumb2())
1858      // Thumb2-aware targets have the MOVT instruction, so all immediates can
1859      // be done with MOV + MOVT, at worst.
1860      UseCP = 0;
1861    else {
1862      if (Subtarget->isThumb()) {
1863        UseCP = (Val > 255 &&                          // MOV
1864                 ~Val > 255 &&                         // MOV + MVN
1865                 !ARM_AM::isThumbImmShiftedVal(Val));  // MOV + LSL
1866      } else
1867        UseCP = (ARM_AM::getSOImmVal(Val) == -1 &&     // MOV
1868                 ARM_AM::getSOImmVal(~Val) == -1 &&    // MVN
1869                 !ARM_AM::isSOImmTwoPartVal(Val));     // two instrs.
1870    }
1871
1872    if (UseCP) {
1873      SDValue CPIdx =
1874        CurDAG->getTargetConstantPool(ConstantInt::get(
1875                                  Type::getInt32Ty(*CurDAG->getContext()), Val),
1876                                      TLI.getPointerTy());
1877
1878      SDNode *ResNode;
1879      if (Subtarget->isThumb1Only()) {
1880        SDValue Pred = getAL(CurDAG);
1881        SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
1882        SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() };
1883        ResNode = CurDAG->getMachineNode(ARM::tLDRcp, dl, MVT::i32, MVT::Other,
1884                                         Ops, 4);
1885      } else {
1886        SDValue Ops[] = {
1887          CPIdx,
1888          CurDAG->getRegister(0, MVT::i32),
1889          CurDAG->getTargetConstant(0, MVT::i32),
1890          getAL(CurDAG),
1891          CurDAG->getRegister(0, MVT::i32),
1892          CurDAG->getEntryNode()
1893        };
1894        ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
1895                                       Ops, 6);
1896      }
1897      ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
1898      return NULL;
1899    }
1900
1901    // Other cases are autogenerated.
1902    break;
1903  }
1904  case ISD::FrameIndex: {
1905    // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
1906    int FI = cast<FrameIndexSDNode>(N)->getIndex();
1907    SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1908    if (Subtarget->isThumb1Only()) {
1909      return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, TFI,
1910                                  CurDAG->getTargetConstant(0, MVT::i32));
1911    } else {
1912      unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
1913                      ARM::t2ADDri : ARM::ADDri);
1914      SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
1915                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
1916                        CurDAG->getRegister(0, MVT::i32) };
1917      return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
1918    }
1919  }
1920  case ISD::SRL:
1921    if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
1922      return I;
1923    break;
1924  case ISD::SRA:
1925    if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true))
1926      return I;
1927    break;
1928  case ISD::MUL:
1929    if (Subtarget->isThumb1Only())
1930      break;
1931    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1932      unsigned RHSV = C->getZExtValue();
1933      if (!RHSV) break;
1934      if (isPowerOf2_32(RHSV-1)) {  // 2^n+1?
1935        unsigned ShImm = Log2_32(RHSV-1);
1936        if (ShImm >= 32)
1937          break;
1938        SDValue V = N->getOperand(0);
1939        ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
1940        SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
1941        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1942        if (Subtarget->isThumb()) {
1943          SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
1944          return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6);
1945        } else {
1946          SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
1947          return CurDAG->SelectNodeTo(N, ARM::ADDrs, MVT::i32, Ops, 7);
1948        }
1949      }
1950      if (isPowerOf2_32(RHSV+1)) {  // 2^n-1?
1951        unsigned ShImm = Log2_32(RHSV+1);
1952        if (ShImm >= 32)
1953          break;
1954        SDValue V = N->getOperand(0);
1955        ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
1956        SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
1957        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1958        if (Subtarget->isThumb()) {
1959          SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
1960          return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 6);
1961        } else {
1962          SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
1963          return CurDAG->SelectNodeTo(N, ARM::RSBrs, MVT::i32, Ops, 7);
1964        }
1965      }
1966    }
1967    break;
1968  case ISD::AND: {
1969    // Check for unsigned bitfield extract
1970    if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
1971      return I;
1972
1973    // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
1974    // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
1975    // are entirely contributed by c2 and lower 16-bits are entirely contributed
1976    // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
1977    // Select it to: "movt x, ((c1 & 0xffff) >> 16)
1978    EVT VT = N->getValueType(0);
1979    if (VT != MVT::i32)
1980      break;
1981    unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
1982      ? ARM::t2MOVTi16
1983      : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
1984    if (!Opc)
1985      break;
1986    SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
1987    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1988    if (!N1C)
1989      break;
1990    if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
1991      SDValue N2 = N0.getOperand(1);
1992      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
1993      if (!N2C)
1994        break;
1995      unsigned N1CVal = N1C->getZExtValue();
1996      unsigned N2CVal = N2C->getZExtValue();
1997      if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
1998          (N1CVal & 0xffffU) == 0xffffU &&
1999          (N2CVal & 0xffffU) == 0x0U) {
2000        SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
2001                                                  MVT::i32);
2002        SDValue Ops[] = { N0.getOperand(0), Imm16,
2003                          getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
2004        return CurDAG->getMachineNode(Opc, dl, VT, Ops, 4);
2005      }
2006    }
2007    break;
2008  }
2009  case ARMISD::VMOVRRD:
2010    return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32,
2011                                  N->getOperand(0), getAL(CurDAG),
2012                                  CurDAG->getRegister(0, MVT::i32));
2013  case ISD::UMUL_LOHI: {
2014    if (Subtarget->isThumb1Only())
2015      break;
2016    if (Subtarget->isThumb()) {
2017      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2018                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2019                        CurDAG->getRegister(0, MVT::i32) };
2020      return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32,Ops,4);
2021    } else {
2022      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2023                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2024                        CurDAG->getRegister(0, MVT::i32) };
2025      return CurDAG->getMachineNode(ARM::UMULL, dl, MVT::i32, MVT::i32, Ops, 5);
2026    }
2027  }
2028  case ISD::SMUL_LOHI: {
2029    if (Subtarget->isThumb1Only())
2030      break;
2031    if (Subtarget->isThumb()) {
2032      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2033                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
2034      return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32,Ops,4);
2035    } else {
2036      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2037                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2038                        CurDAG->getRegister(0, MVT::i32) };
2039      return CurDAG->getMachineNode(ARM::SMULL, dl, MVT::i32, MVT::i32, Ops, 5);
2040    }
2041  }
2042  case ISD::LOAD: {
2043    SDNode *ResNode = 0;
2044    if (Subtarget->isThumb() && Subtarget->hasThumb2())
2045      ResNode = SelectT2IndexedLoad(N);
2046    else
2047      ResNode = SelectARMIndexedLoad(N);
2048    if (ResNode)
2049      return ResNode;
2050
2051    // VLDMQ must be custom-selected for "v2f64 load" to set the AM5Opc value.
2052    if (Subtarget->hasVFP2() &&
2053        N->getValueType(0).getSimpleVT().SimpleTy == MVT::v2f64) {
2054      SDValue Chain = N->getOperand(0);
2055      SDValue AM5Opc =
2056        CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::ia, 4), MVT::i32);
2057      SDValue Pred = getAL(CurDAG);
2058      SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2059      SDValue Ops[] = { N->getOperand(1), AM5Opc, Pred, PredReg, Chain };
2060      MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2061      MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
2062      SDNode *Ret = CurDAG->getMachineNode(ARM::VLDMQ, dl,
2063                                           MVT::v2f64, MVT::Other, Ops, 5);
2064      cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
2065      return Ret;
2066    }
2067    // Other cases are autogenerated.
2068    break;
2069  }
2070  case ISD::STORE: {
2071    // VSTMQ must be custom-selected for "v2f64 store" to set the AM5Opc value.
2072    if (Subtarget->hasVFP2() &&
2073        N->getOperand(1).getValueType().getSimpleVT().SimpleTy == MVT::v2f64) {
2074      SDValue Chain = N->getOperand(0);
2075      SDValue AM5Opc =
2076        CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::ia, 4), MVT::i32);
2077      SDValue Pred = getAL(CurDAG);
2078      SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2079      SDValue Ops[] = { N->getOperand(1), N->getOperand(2),
2080                        AM5Opc, Pred, PredReg, Chain };
2081      MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2082      MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
2083      SDNode *Ret = CurDAG->getMachineNode(ARM::VSTMQ, dl, MVT::Other, Ops, 6);
2084      cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
2085      return Ret;
2086    }
2087    // Other cases are autogenerated.
2088    break;
2089  }
2090  case ARMISD::BRCOND: {
2091    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2092    // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
2093    // Pattern complexity = 6  cost = 1  size = 0
2094
2095    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2096    // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
2097    // Pattern complexity = 6  cost = 1  size = 0
2098
2099    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2100    // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
2101    // Pattern complexity = 6  cost = 1  size = 0
2102
2103    unsigned Opc = Subtarget->isThumb() ?
2104      ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
2105    SDValue Chain = N->getOperand(0);
2106    SDValue N1 = N->getOperand(1);
2107    SDValue N2 = N->getOperand(2);
2108    SDValue N3 = N->getOperand(3);
2109    SDValue InFlag = N->getOperand(4);
2110    assert(N1.getOpcode() == ISD::BasicBlock);
2111    assert(N2.getOpcode() == ISD::Constant);
2112    assert(N3.getOpcode() == ISD::Register);
2113
2114    SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
2115                               cast<ConstantSDNode>(N2)->getZExtValue()),
2116                               MVT::i32);
2117    SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
2118    SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
2119                                             MVT::Flag, Ops, 5);
2120    Chain = SDValue(ResNode, 0);
2121    if (N->getNumValues() == 2) {
2122      InFlag = SDValue(ResNode, 1);
2123      ReplaceUses(SDValue(N, 1), InFlag);
2124    }
2125    ReplaceUses(SDValue(N, 0),
2126                SDValue(Chain.getNode(), Chain.getResNo()));
2127    return NULL;
2128  }
2129  case ARMISD::CMOV:
2130    return SelectCMOVOp(N);
2131  case ARMISD::CNEG: {
2132    EVT VT = N->getValueType(0);
2133    SDValue N0 = N->getOperand(0);
2134    SDValue N1 = N->getOperand(1);
2135    SDValue N2 = N->getOperand(2);
2136    SDValue N3 = N->getOperand(3);
2137    SDValue InFlag = N->getOperand(4);
2138    assert(N2.getOpcode() == ISD::Constant);
2139    assert(N3.getOpcode() == ISD::Register);
2140
2141    SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
2142                               cast<ConstantSDNode>(N2)->getZExtValue()),
2143                               MVT::i32);
2144    SDValue Ops[] = { N0, N1, Tmp2, N3, InFlag };
2145    unsigned Opc = 0;
2146    switch (VT.getSimpleVT().SimpleTy) {
2147    default: assert(false && "Illegal conditional move type!");
2148      break;
2149    case MVT::f32:
2150      Opc = ARM::VNEGScc;
2151      break;
2152    case MVT::f64:
2153      Opc = ARM::VNEGDcc;
2154      break;
2155    }
2156    return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5);
2157  }
2158
2159  case ARMISD::VZIP: {
2160    unsigned Opc = 0;
2161    EVT VT = N->getValueType(0);
2162    switch (VT.getSimpleVT().SimpleTy) {
2163    default: return NULL;
2164    case MVT::v8i8:  Opc = ARM::VZIPd8; break;
2165    case MVT::v4i16: Opc = ARM::VZIPd16; break;
2166    case MVT::v2f32:
2167    case MVT::v2i32: Opc = ARM::VZIPd32; break;
2168    case MVT::v16i8: Opc = ARM::VZIPq8; break;
2169    case MVT::v8i16: Opc = ARM::VZIPq16; break;
2170    case MVT::v4f32:
2171    case MVT::v4i32: Opc = ARM::VZIPq32; break;
2172    }
2173    SDValue Pred = getAL(CurDAG);
2174    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2175    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2176    return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
2177  }
2178  case ARMISD::VUZP: {
2179    unsigned Opc = 0;
2180    EVT VT = N->getValueType(0);
2181    switch (VT.getSimpleVT().SimpleTy) {
2182    default: return NULL;
2183    case MVT::v8i8:  Opc = ARM::VUZPd8; break;
2184    case MVT::v4i16: Opc = ARM::VUZPd16; break;
2185    case MVT::v2f32:
2186    case MVT::v2i32: Opc = ARM::VUZPd32; break;
2187    case MVT::v16i8: Opc = ARM::VUZPq8; break;
2188    case MVT::v8i16: Opc = ARM::VUZPq16; break;
2189    case MVT::v4f32:
2190    case MVT::v4i32: Opc = ARM::VUZPq32; break;
2191    }
2192    SDValue Pred = getAL(CurDAG);
2193    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2194    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2195    return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
2196  }
2197  case ARMISD::VTRN: {
2198    unsigned Opc = 0;
2199    EVT VT = N->getValueType(0);
2200    switch (VT.getSimpleVT().SimpleTy) {
2201    default: return NULL;
2202    case MVT::v8i8:  Opc = ARM::VTRNd8; break;
2203    case MVT::v4i16: Opc = ARM::VTRNd16; break;
2204    case MVT::v2f32:
2205    case MVT::v2i32: Opc = ARM::VTRNd32; break;
2206    case MVT::v16i8: Opc = ARM::VTRNq8; break;
2207    case MVT::v8i16: Opc = ARM::VTRNq16; break;
2208    case MVT::v4f32:
2209    case MVT::v4i32: Opc = ARM::VTRNq32; break;
2210    }
2211    SDValue Pred = getAL(CurDAG);
2212    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2213    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2214    return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
2215  }
2216
2217  case ISD::INTRINSIC_VOID:
2218  case ISD::INTRINSIC_W_CHAIN: {
2219    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2220    switch (IntNo) {
2221    default:
2222      break;
2223
2224    case Intrinsic::arm_neon_vld1: {
2225      unsigned DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
2226                              ARM::VLD1d32, ARM::VLD1d64 };
2227      unsigned QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
2228                              ARM::VLD1q32, ARM::VLD1q64 };
2229      return SelectVLD(N, 1, DOpcodes, QOpcodes, 0);
2230    }
2231
2232    case Intrinsic::arm_neon_vld2: {
2233      unsigned DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
2234                              ARM::VLD2d32, ARM::VLD1q64 };
2235      unsigned QOpcodes[] = { ARM::VLD2q8, ARM::VLD2q16, ARM::VLD2q32 };
2236      return SelectVLD(N, 2, DOpcodes, QOpcodes, 0);
2237    }
2238
2239    case Intrinsic::arm_neon_vld3: {
2240      unsigned DOpcodes[] = { ARM::VLD3d8, ARM::VLD3d16,
2241                              ARM::VLD3d32, ARM::VLD1d64T };
2242      unsigned QOpcodes0[] = { ARM::VLD3q8_UPD,
2243                               ARM::VLD3q16_UPD,
2244                               ARM::VLD3q32_UPD };
2245      unsigned QOpcodes1[] = { ARM::VLD3q8odd_UPD,
2246                               ARM::VLD3q16odd_UPD,
2247                               ARM::VLD3q32odd_UPD };
2248      return SelectVLD(N, 3, DOpcodes, QOpcodes0, QOpcodes1);
2249    }
2250
2251    case Intrinsic::arm_neon_vld4: {
2252      unsigned DOpcodes[] = { ARM::VLD4d8, ARM::VLD4d16,
2253                              ARM::VLD4d32, ARM::VLD1d64Q };
2254      unsigned QOpcodes0[] = { ARM::VLD4q8_UPD,
2255                               ARM::VLD4q16_UPD,
2256                               ARM::VLD4q32_UPD };
2257      unsigned QOpcodes1[] = { ARM::VLD4q8odd_UPD,
2258                               ARM::VLD4q16odd_UPD,
2259                               ARM::VLD4q32odd_UPD };
2260      return SelectVLD(N, 4, DOpcodes, QOpcodes0, QOpcodes1);
2261    }
2262
2263    case Intrinsic::arm_neon_vld2lane: {
2264      unsigned DOpcodes[] = { ARM::VLD2LNd8, ARM::VLD2LNd16, ARM::VLD2LNd32 };
2265      unsigned QOpcodes0[] = { ARM::VLD2LNq16, ARM::VLD2LNq32 };
2266      unsigned QOpcodes1[] = { ARM::VLD2LNq16odd, ARM::VLD2LNq32odd };
2267      return SelectVLDSTLane(N, true, 2, DOpcodes, QOpcodes0, QOpcodes1);
2268    }
2269
2270    case Intrinsic::arm_neon_vld3lane: {
2271      unsigned DOpcodes[] = { ARM::VLD3LNd8, ARM::VLD3LNd16, ARM::VLD3LNd32 };
2272      unsigned QOpcodes0[] = { ARM::VLD3LNq16, ARM::VLD3LNq32 };
2273      unsigned QOpcodes1[] = { ARM::VLD3LNq16odd, ARM::VLD3LNq32odd };
2274      return SelectVLDSTLane(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
2275    }
2276
2277    case Intrinsic::arm_neon_vld4lane: {
2278      unsigned DOpcodes[] = { ARM::VLD4LNd8, ARM::VLD4LNd16, ARM::VLD4LNd32 };
2279      unsigned QOpcodes0[] = { ARM::VLD4LNq16, ARM::VLD4LNq32 };
2280      unsigned QOpcodes1[] = { ARM::VLD4LNq16odd, ARM::VLD4LNq32odd };
2281      return SelectVLDSTLane(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
2282    }
2283
2284    case Intrinsic::arm_neon_vst1: {
2285      unsigned DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
2286                              ARM::VST1d32, ARM::VST1d64 };
2287      unsigned QOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
2288                              ARM::VST1q32, ARM::VST1q64 };
2289      return SelectVST(N, 1, DOpcodes, QOpcodes, 0);
2290    }
2291
2292    case Intrinsic::arm_neon_vst2: {
2293      unsigned DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
2294                              ARM::VST2d32, ARM::VST1q64 };
2295      unsigned QOpcodes[] = { ARM::VST2q8, ARM::VST2q16, ARM::VST2q32 };
2296      return SelectVST(N, 2, DOpcodes, QOpcodes, 0);
2297    }
2298
2299    case Intrinsic::arm_neon_vst3: {
2300      unsigned DOpcodes[] = { ARM::VST3d8, ARM::VST3d16,
2301                              ARM::VST3d32, ARM::VST1d64T };
2302      unsigned QOpcodes0[] = { ARM::VST3q8_UPD,
2303                               ARM::VST3q16_UPD,
2304                               ARM::VST3q32_UPD };
2305      unsigned QOpcodes1[] = { ARM::VST3q8odd_UPD,
2306                               ARM::VST3q16odd_UPD,
2307                               ARM::VST3q32odd_UPD };
2308      return SelectVST(N, 3, DOpcodes, QOpcodes0, QOpcodes1);
2309    }
2310
2311    case Intrinsic::arm_neon_vst4: {
2312      unsigned DOpcodes[] = { ARM::VST4d8, ARM::VST4d16,
2313                              ARM::VST4d32, ARM::VST1d64Q };
2314      unsigned QOpcodes0[] = { ARM::VST4q8_UPD,
2315                               ARM::VST4q16_UPD,
2316                               ARM::VST4q32_UPD };
2317      unsigned QOpcodes1[] = { ARM::VST4q8odd_UPD,
2318                               ARM::VST4q16odd_UPD,
2319                               ARM::VST4q32odd_UPD };
2320      return SelectVST(N, 4, DOpcodes, QOpcodes0, QOpcodes1);
2321    }
2322
2323    case Intrinsic::arm_neon_vst2lane: {
2324      unsigned DOpcodes[] = { ARM::VST2LNd8, ARM::VST2LNd16, ARM::VST2LNd32 };
2325      unsigned QOpcodes0[] = { ARM::VST2LNq16, ARM::VST2LNq32 };
2326      unsigned QOpcodes1[] = { ARM::VST2LNq16odd, ARM::VST2LNq32odd };
2327      return SelectVLDSTLane(N, false, 2, DOpcodes, QOpcodes0, QOpcodes1);
2328    }
2329
2330    case Intrinsic::arm_neon_vst3lane: {
2331      unsigned DOpcodes[] = { ARM::VST3LNd8, ARM::VST3LNd16, ARM::VST3LNd32 };
2332      unsigned QOpcodes0[] = { ARM::VST3LNq16, ARM::VST3LNq32 };
2333      unsigned QOpcodes1[] = { ARM::VST3LNq16odd, ARM::VST3LNq32odd };
2334      return SelectVLDSTLane(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
2335    }
2336
2337    case Intrinsic::arm_neon_vst4lane: {
2338      unsigned DOpcodes[] = { ARM::VST4LNd8, ARM::VST4LNd16, ARM::VST4LNd32 };
2339      unsigned QOpcodes0[] = { ARM::VST4LNq16, ARM::VST4LNq32 };
2340      unsigned QOpcodes1[] = { ARM::VST4LNq16odd, ARM::VST4LNq32odd };
2341      return SelectVLDSTLane(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
2342    }
2343    }
2344    break;
2345  }
2346
2347  case ISD::CONCAT_VECTORS:
2348    return SelectConcatVector(N);
2349  }
2350
2351  return SelectCode(N);
2352}
2353
2354bool ARMDAGToDAGISel::
2355SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2356                             std::vector<SDValue> &OutOps) {
2357  assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
2358  // Require the address to be in a register.  That is safe for all ARM
2359  // variants and it is hard to do anything much smarter without knowing
2360  // how the operand is used.
2361  OutOps.push_back(Op);
2362  return false;
2363}
2364
2365/// createARMISelDag - This pass converts a legalized DAG into a
2366/// ARM-specific DAG, ready for instruction scheduling.
2367///
2368FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
2369                                     CodeGenOpt::Level OptLevel) {
2370  return new ARMDAGToDAGISel(TM, OptLevel);
2371}
2372
2373/// ModelWithRegSequence - Return true if isel should use REG_SEQUENCE to model
2374/// operations involving sub-registers.
2375bool llvm::ModelWithRegSequence() {
2376  return UseRegSeq;
2377}
2378