ARMISelDAGToDAG.cpp revision fb77752253717bc9c26cd2f6915925dc19edb8a3
1//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an instruction selector for the ARM target.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "arm-isel"
15#include "ARM.h"
16#include "ARMBaseInstrInfo.h"
17#include "ARMTargetMachine.h"
18#include "MCTargetDesc/ARMAddressingModes.h"
19#include "llvm/CallingConv.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/LLVMContext.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/SelectionDAG.h"
29#include "llvm/CodeGen/SelectionDAGISel.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetOptions.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Compiler.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37
38using namespace llvm;
39
40static cl::opt<bool>
41DisableShifterOp("disable-shifter-op", cl::Hidden,
42  cl::desc("Disable isel of shifter-op"),
43  cl::init(false));
44
45static cl::opt<bool>
46CheckVMLxHazard("check-vmlx-hazard", cl::Hidden,
47  cl::desc("Check fp vmla / vmls hazard at isel time"),
48  cl::init(true));
49
50//===--------------------------------------------------------------------===//
51/// ARMDAGToDAGISel - ARM specific code to select ARM machine
52/// instructions for SelectionDAG operations.
53///
54namespace {
55
56enum AddrMode2Type {
57  AM2_BASE, // Simple AM2 (+-imm12)
58  AM2_SHOP  // Shifter-op AM2
59};
60
61class ARMDAGToDAGISel : public SelectionDAGISel {
62  ARMBaseTargetMachine &TM;
63  const ARMBaseInstrInfo *TII;
64
65  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
66  /// make the right decision when generating code for different targets.
67  const ARMSubtarget *Subtarget;
68
69public:
70  explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm,
71                           CodeGenOpt::Level OptLevel)
72    : SelectionDAGISel(tm, OptLevel), TM(tm),
73      TII(static_cast<const ARMBaseInstrInfo*>(TM.getInstrInfo())),
74      Subtarget(&TM.getSubtarget<ARMSubtarget>()) {
75  }
76
77  virtual const char *getPassName() const {
78    return "ARM Instruction Selection";
79  }
80
81  /// getI32Imm - Return a target constant of type i32 with the specified
82  /// value.
83  inline SDValue getI32Imm(unsigned Imm) {
84    return CurDAG->getTargetConstant(Imm, MVT::i32);
85  }
86
87  SDNode *Select(SDNode *N);
88
89
90  bool hasNoVMLxHazardUse(SDNode *N) const;
91  bool isShifterOpProfitable(const SDValue &Shift,
92                             ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt);
93  bool SelectRegShifterOperand(SDValue N, SDValue &A,
94                               SDValue &B, SDValue &C,
95                               bool CheckProfitability = true);
96  bool SelectImmShifterOperand(SDValue N, SDValue &A,
97                               SDValue &B, bool CheckProfitability = true);
98  bool SelectShiftRegShifterOperand(SDValue N, SDValue &A,
99                                    SDValue &B, SDValue &C) {
100    // Don't apply the profitability check
101    return SelectRegShifterOperand(N, A, B, C, false);
102  }
103  bool SelectShiftImmShifterOperand(SDValue N, SDValue &A,
104                                    SDValue &B) {
105    // Don't apply the profitability check
106    return SelectImmShifterOperand(N, A, B, false);
107  }
108
109  bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
110  bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc);
111
112  AddrMode2Type SelectAddrMode2Worker(SDValue N, SDValue &Base,
113                                      SDValue &Offset, SDValue &Opc);
114  bool SelectAddrMode2Base(SDValue N, SDValue &Base, SDValue &Offset,
115                           SDValue &Opc) {
116    return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_BASE;
117  }
118
119  bool SelectAddrMode2ShOp(SDValue N, SDValue &Base, SDValue &Offset,
120                           SDValue &Opc) {
121    return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_SHOP;
122  }
123
124  bool SelectAddrMode2(SDValue N, SDValue &Base, SDValue &Offset,
125                       SDValue &Opc) {
126    SelectAddrMode2Worker(N, Base, Offset, Opc);
127//    return SelectAddrMode2ShOp(N, Base, Offset, Opc);
128    // This always matches one way or another.
129    return true;
130  }
131
132  bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
133                             SDValue &Offset, SDValue &Opc);
134  bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
135                             SDValue &Offset, SDValue &Opc);
136  bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
137                             SDValue &Offset, SDValue &Opc);
138  bool SelectAddrOffsetNone(SDValue N, SDValue &Base);
139  bool SelectAddrMode3(SDValue N, SDValue &Base,
140                       SDValue &Offset, SDValue &Opc);
141  bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
142                             SDValue &Offset, SDValue &Opc);
143  bool SelectAddrMode5(SDValue N, SDValue &Base,
144                       SDValue &Offset);
145  bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align);
146  bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset);
147
148  bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label);
149
150  // Thumb Addressing Modes:
151  bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset);
152  bool SelectThumbAddrModeRI(SDValue N, SDValue &Base, SDValue &Offset,
153                             unsigned Scale);
154  bool SelectThumbAddrModeRI5S1(SDValue N, SDValue &Base, SDValue &Offset);
155  bool SelectThumbAddrModeRI5S2(SDValue N, SDValue &Base, SDValue &Offset);
156  bool SelectThumbAddrModeRI5S4(SDValue N, SDValue &Base, SDValue &Offset);
157  bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base,
158                                SDValue &OffImm);
159  bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
160                                 SDValue &OffImm);
161  bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
162                                 SDValue &OffImm);
163  bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
164                                 SDValue &OffImm);
165  bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm);
166
167  // Thumb 2 Addressing Modes:
168  bool SelectT2ShifterOperandReg(SDValue N,
169                                 SDValue &BaseReg, SDValue &Opc);
170  bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
171  bool SelectT2AddrModeImm8(SDValue N, SDValue &Base,
172                            SDValue &OffImm);
173  bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
174                                 SDValue &OffImm);
175  bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base,
176                             SDValue &OffReg, SDValue &ShImm);
177
178  inline bool is_so_imm(unsigned Imm) const {
179    return ARM_AM::getSOImmVal(Imm) != -1;
180  }
181
182  inline bool is_so_imm_not(unsigned Imm) const {
183    return ARM_AM::getSOImmVal(~Imm) != -1;
184  }
185
186  inline bool is_t2_so_imm(unsigned Imm) const {
187    return ARM_AM::getT2SOImmVal(Imm) != -1;
188  }
189
190  inline bool is_t2_so_imm_not(unsigned Imm) const {
191    return ARM_AM::getT2SOImmVal(~Imm) != -1;
192  }
193
194  // Include the pieces autogenerated from the target description.
195#include "ARMGenDAGISel.inc"
196
197private:
198  /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for
199  /// ARM.
200  SDNode *SelectARMIndexedLoad(SDNode *N);
201  SDNode *SelectT2IndexedLoad(SDNode *N);
202
203  /// SelectVLD - Select NEON load intrinsics.  NumVecs should be
204  /// 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
205  /// loads of D registers and even subregs and odd subregs of Q registers.
206  /// For NumVecs <= 2, QOpcodes1 is not used.
207  SDNode *SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
208                    unsigned *DOpcodes,
209                    unsigned *QOpcodes0, unsigned *QOpcodes1);
210
211  /// SelectVST - Select NEON store intrinsics.  NumVecs should
212  /// be 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
213  /// stores of D registers and even subregs and odd subregs of Q registers.
214  /// For NumVecs <= 2, QOpcodes1 is not used.
215  SDNode *SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
216                    unsigned *DOpcodes,
217                    unsigned *QOpcodes0, unsigned *QOpcodes1);
218
219  /// SelectVLDSTLane - Select NEON load/store lane intrinsics.  NumVecs should
220  /// be 2, 3 or 4.  The opcode arrays specify the instructions used for
221  /// load/store of D registers and Q registers.
222  SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad,
223                          bool isUpdating, unsigned NumVecs,
224                          unsigned *DOpcodes, unsigned *QOpcodes);
225
226  /// SelectVLDDup - Select NEON load-duplicate intrinsics.  NumVecs
227  /// should be 2, 3 or 4.  The opcode array specifies the instructions used
228  /// for loading D registers.  (Q registers are not supported.)
229  SDNode *SelectVLDDup(SDNode *N, bool isUpdating, unsigned NumVecs,
230                       unsigned *Opcodes);
231
232  /// SelectVTBL - Select NEON VTBL and VTBX intrinsics.  NumVecs should be 2,
233  /// 3 or 4.  These are custom-selected so that a REG_SEQUENCE can be
234  /// generated to force the table registers to be consecutive.
235  SDNode *SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs, unsigned Opc);
236
237  /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
238  SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
239
240  /// SelectCMOVOp - Select CMOV instructions for ARM.
241  SDNode *SelectCMOVOp(SDNode *N);
242  SDNode *SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
243                              ARMCC::CondCodes CCVal, SDValue CCR,
244                              SDValue InFlag);
245  SDNode *SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
246                               ARMCC::CondCodes CCVal, SDValue CCR,
247                               SDValue InFlag);
248  SDNode *SelectT2CMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
249                              ARMCC::CondCodes CCVal, SDValue CCR,
250                              SDValue InFlag);
251  SDNode *SelectARMCMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
252                               ARMCC::CondCodes CCVal, SDValue CCR,
253                               SDValue InFlag);
254
255  SDNode *SelectConcatVector(SDNode *N);
256
257  SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
258
259  /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
260  /// inline asm expressions.
261  virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
262                                            char ConstraintCode,
263                                            std::vector<SDValue> &OutOps);
264
265  // Form pairs of consecutive S, D, or Q registers.
266  SDNode *PairSRegs(EVT VT, SDValue V0, SDValue V1);
267  SDNode *PairDRegs(EVT VT, SDValue V0, SDValue V1);
268  SDNode *PairQRegs(EVT VT, SDValue V0, SDValue V1);
269
270  // Form sequences of 4 consecutive S, D, or Q registers.
271  SDNode *QuadSRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
272  SDNode *QuadDRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
273  SDNode *QuadQRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
274
275  // Get the alignment operand for a NEON VLD or VST instruction.
276  SDValue GetVLDSTAlign(SDValue Align, unsigned NumVecs, bool is64BitVector);
277};
278}
279
280/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
281/// operand. If so Imm will receive the 32-bit value.
282static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
283  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
284    Imm = cast<ConstantSDNode>(N)->getZExtValue();
285    return true;
286  }
287  return false;
288}
289
290// isInt32Immediate - This method tests to see if a constant operand.
291// If so Imm will receive the 32 bit value.
292static bool isInt32Immediate(SDValue N, unsigned &Imm) {
293  return isInt32Immediate(N.getNode(), Imm);
294}
295
296// isOpcWithIntImmediate - This method tests to see if the node is a specific
297// opcode and that it has a immediate integer right operand.
298// If so Imm will receive the 32 bit value.
299static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
300  return N->getOpcode() == Opc &&
301         isInt32Immediate(N->getOperand(1).getNode(), Imm);
302}
303
304/// \brief Check whether a particular node is a constant value representable as
305/// (N * Scale) where (N in [\arg RangeMin, \arg RangeMax).
306///
307/// \param ScaledConstant [out] - On success, the pre-scaled constant value.
308static bool isScaledConstantInRange(SDValue Node, int Scale,
309                                    int RangeMin, int RangeMax,
310                                    int &ScaledConstant) {
311  assert(Scale > 0 && "Invalid scale!");
312
313  // Check that this is a constant.
314  const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node);
315  if (!C)
316    return false;
317
318  ScaledConstant = (int) C->getZExtValue();
319  if ((ScaledConstant % Scale) != 0)
320    return false;
321
322  ScaledConstant /= Scale;
323  return ScaledConstant >= RangeMin && ScaledConstant < RangeMax;
324}
325
326/// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
327/// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
328/// least on current ARM implementations) which should be avoidded.
329bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const {
330  if (OptLevel == CodeGenOpt::None)
331    return true;
332
333  if (!CheckVMLxHazard)
334    return true;
335
336  if (!Subtarget->isCortexA8() && !Subtarget->isCortexA9())
337    return true;
338
339  if (!N->hasOneUse())
340    return false;
341
342  SDNode *Use = *N->use_begin();
343  if (Use->getOpcode() == ISD::CopyToReg)
344    return true;
345  if (Use->isMachineOpcode()) {
346    const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode());
347    if (MCID.mayStore())
348      return true;
349    unsigned Opcode = MCID.getOpcode();
350    if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
351      return true;
352    // vmlx feeding into another vmlx. We actually want to unfold
353    // the use later in the MLxExpansion pass. e.g.
354    // vmla
355    // vmla (stall 8 cycles)
356    //
357    // vmul (5 cycles)
358    // vadd (5 cycles)
359    // vmla
360    // This adds up to about 18 - 19 cycles.
361    //
362    // vmla
363    // vmul (stall 4 cycles)
364    // vadd adds up to about 14 cycles.
365    return TII->isFpMLxInstruction(Opcode);
366  }
367
368  return false;
369}
370
371bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift,
372                                            ARM_AM::ShiftOpc ShOpcVal,
373                                            unsigned ShAmt) {
374  if (!Subtarget->isCortexA9())
375    return true;
376  if (Shift.hasOneUse())
377    return true;
378  // R << 2 is free.
379  return ShOpcVal == ARM_AM::lsl && ShAmt == 2;
380}
381
382bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N,
383                                              SDValue &BaseReg,
384                                              SDValue &Opc,
385                                              bool CheckProfitability) {
386  if (DisableShifterOp)
387    return false;
388
389  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
390
391  // Don't match base register only case. That is matched to a separate
392  // lower complexity pattern with explicit register operand.
393  if (ShOpcVal == ARM_AM::no_shift) return false;
394
395  BaseReg = N.getOperand(0);
396  unsigned ShImmVal = 0;
397  ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
398  if (!RHS) return false;
399  ShImmVal = RHS->getZExtValue() & 31;
400  Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
401                                  MVT::i32);
402  return true;
403}
404
405bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N,
406                                              SDValue &BaseReg,
407                                              SDValue &ShReg,
408                                              SDValue &Opc,
409                                              bool CheckProfitability) {
410  if (DisableShifterOp)
411    return false;
412
413  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
414
415  // Don't match base register only case. That is matched to a separate
416  // lower complexity pattern with explicit register operand.
417  if (ShOpcVal == ARM_AM::no_shift) return false;
418
419  BaseReg = N.getOperand(0);
420  unsigned ShImmVal = 0;
421  ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
422  if (RHS) return false;
423
424  ShReg = N.getOperand(1);
425  if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal))
426    return false;
427  Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
428                                  MVT::i32);
429  return true;
430}
431
432
433bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N,
434                                          SDValue &Base,
435                                          SDValue &OffImm) {
436  // Match simple R + imm12 operands.
437
438  // Base only.
439  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
440      !CurDAG->isBaseWithConstantOffset(N)) {
441    if (N.getOpcode() == ISD::FrameIndex) {
442      // Match frame index.
443      int FI = cast<FrameIndexSDNode>(N)->getIndex();
444      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
445      OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
446      return true;
447    }
448
449    if (N.getOpcode() == ARMISD::Wrapper &&
450        !(Subtarget->useMovt() &&
451                     N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
452      Base = N.getOperand(0);
453    } else
454      Base = N;
455    OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
456    return true;
457  }
458
459  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
460    int RHSC = (int)RHS->getZExtValue();
461    if (N.getOpcode() == ISD::SUB)
462      RHSC = -RHSC;
463
464    if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
465      Base   = N.getOperand(0);
466      if (Base.getOpcode() == ISD::FrameIndex) {
467        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
468        Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
469      }
470      OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
471      return true;
472    }
473  }
474
475  // Base only.
476  Base = N;
477  OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
478  return true;
479}
480
481
482
483bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset,
484                                      SDValue &Opc) {
485  if (N.getOpcode() == ISD::MUL &&
486      (!Subtarget->isCortexA9() || N.hasOneUse())) {
487    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
488      // X * [3,5,9] -> X + X * [2,4,8] etc.
489      int RHSC = (int)RHS->getZExtValue();
490      if (RHSC & 1) {
491        RHSC = RHSC & ~1;
492        ARM_AM::AddrOpc AddSub = ARM_AM::add;
493        if (RHSC < 0) {
494          AddSub = ARM_AM::sub;
495          RHSC = - RHSC;
496        }
497        if (isPowerOf2_32(RHSC)) {
498          unsigned ShAmt = Log2_32(RHSC);
499          Base = Offset = N.getOperand(0);
500          Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
501                                                            ARM_AM::lsl),
502                                          MVT::i32);
503          return true;
504        }
505      }
506    }
507  }
508
509  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
510      // ISD::OR that is equivalent to an ISD::ADD.
511      !CurDAG->isBaseWithConstantOffset(N))
512    return false;
513
514  // Leave simple R +/- imm12 operands for LDRi12
515  if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) {
516    int RHSC;
517    if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
518                                -0x1000+1, 0x1000, RHSC)) // 12 bits.
519      return false;
520  }
521
522  if (Subtarget->isCortexA9() && !N.hasOneUse()) {
523    // Compute R +/- (R << N) and reuse it.
524    return false;
525  }
526
527  // Otherwise this is R +/- [possibly shifted] R.
528  ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add;
529  ARM_AM::ShiftOpc ShOpcVal =
530    ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
531  unsigned ShAmt = 0;
532
533  Base   = N.getOperand(0);
534  Offset = N.getOperand(1);
535
536  if (ShOpcVal != ARM_AM::no_shift) {
537    // Check to see if the RHS of the shift is a constant, if not, we can't fold
538    // it.
539    if (ConstantSDNode *Sh =
540           dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
541      ShAmt = Sh->getZExtValue();
542      if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
543        Offset = N.getOperand(1).getOperand(0);
544      else {
545        ShAmt = 0;
546        ShOpcVal = ARM_AM::no_shift;
547      }
548    } else {
549      ShOpcVal = ARM_AM::no_shift;
550    }
551  }
552
553  // Try matching (R shl C) + (R).
554  if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
555      !(Subtarget->isCortexA9() || N.getOperand(0).hasOneUse())) {
556    ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
557    if (ShOpcVal != ARM_AM::no_shift) {
558      // Check to see if the RHS of the shift is a constant, if not, we can't
559      // fold it.
560      if (ConstantSDNode *Sh =
561          dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
562        ShAmt = Sh->getZExtValue();
563        if (!Subtarget->isCortexA9() ||
564            (N.hasOneUse() &&
565             isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt))) {
566          Offset = N.getOperand(0).getOperand(0);
567          Base = N.getOperand(1);
568        } else {
569          ShAmt = 0;
570          ShOpcVal = ARM_AM::no_shift;
571        }
572      } else {
573        ShOpcVal = ARM_AM::no_shift;
574      }
575    }
576  }
577
578  Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
579                                  MVT::i32);
580  return true;
581}
582
583
584
585
586//-----
587
588AddrMode2Type ARMDAGToDAGISel::SelectAddrMode2Worker(SDValue N,
589                                                     SDValue &Base,
590                                                     SDValue &Offset,
591                                                     SDValue &Opc) {
592  if (N.getOpcode() == ISD::MUL &&
593      (!Subtarget->isCortexA9() || N.hasOneUse())) {
594    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
595      // X * [3,5,9] -> X + X * [2,4,8] etc.
596      int RHSC = (int)RHS->getZExtValue();
597      if (RHSC & 1) {
598        RHSC = RHSC & ~1;
599        ARM_AM::AddrOpc AddSub = ARM_AM::add;
600        if (RHSC < 0) {
601          AddSub = ARM_AM::sub;
602          RHSC = - RHSC;
603        }
604        if (isPowerOf2_32(RHSC)) {
605          unsigned ShAmt = Log2_32(RHSC);
606          Base = Offset = N.getOperand(0);
607          Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
608                                                            ARM_AM::lsl),
609                                          MVT::i32);
610          return AM2_SHOP;
611        }
612      }
613    }
614  }
615
616  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
617      // ISD::OR that is equivalent to an ADD.
618      !CurDAG->isBaseWithConstantOffset(N)) {
619    Base = N;
620    if (N.getOpcode() == ISD::FrameIndex) {
621      int FI = cast<FrameIndexSDNode>(N)->getIndex();
622      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
623    } else if (N.getOpcode() == ARMISD::Wrapper &&
624               !(Subtarget->useMovt() &&
625                 N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
626      Base = N.getOperand(0);
627    }
628    Offset = CurDAG->getRegister(0, MVT::i32);
629    Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
630                                                      ARM_AM::no_shift),
631                                    MVT::i32);
632    return AM2_BASE;
633  }
634
635  // Match simple R +/- imm12 operands.
636  if (N.getOpcode() != ISD::SUB) {
637    int RHSC;
638    if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
639                                -0x1000+1, 0x1000, RHSC)) { // 12 bits.
640      Base = N.getOperand(0);
641      if (Base.getOpcode() == ISD::FrameIndex) {
642        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
643        Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
644      }
645      Offset = CurDAG->getRegister(0, MVT::i32);
646
647      ARM_AM::AddrOpc AddSub = ARM_AM::add;
648      if (RHSC < 0) {
649        AddSub = ARM_AM::sub;
650        RHSC = - RHSC;
651      }
652      Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC,
653                                                        ARM_AM::no_shift),
654                                      MVT::i32);
655      return AM2_BASE;
656    }
657  }
658
659  if (Subtarget->isCortexA9() && !N.hasOneUse()) {
660    // Compute R +/- (R << N) and reuse it.
661    Base = N;
662    Offset = CurDAG->getRegister(0, MVT::i32);
663    Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
664                                                      ARM_AM::no_shift),
665                                    MVT::i32);
666    return AM2_BASE;
667  }
668
669  // Otherwise this is R +/- [possibly shifted] R.
670  ARM_AM::AddrOpc AddSub = N.getOpcode() != ISD::SUB ? ARM_AM::add:ARM_AM::sub;
671  ARM_AM::ShiftOpc ShOpcVal =
672    ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
673  unsigned ShAmt = 0;
674
675  Base   = N.getOperand(0);
676  Offset = N.getOperand(1);
677
678  if (ShOpcVal != ARM_AM::no_shift) {
679    // Check to see if the RHS of the shift is a constant, if not, we can't fold
680    // it.
681    if (ConstantSDNode *Sh =
682           dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
683      ShAmt = Sh->getZExtValue();
684      if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
685        Offset = N.getOperand(1).getOperand(0);
686      else {
687        ShAmt = 0;
688        ShOpcVal = ARM_AM::no_shift;
689      }
690    } else {
691      ShOpcVal = ARM_AM::no_shift;
692    }
693  }
694
695  // Try matching (R shl C) + (R).
696  if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
697      !(Subtarget->isCortexA9() || N.getOperand(0).hasOneUse())) {
698    ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
699    if (ShOpcVal != ARM_AM::no_shift) {
700      // Check to see if the RHS of the shift is a constant, if not, we can't
701      // fold it.
702      if (ConstantSDNode *Sh =
703          dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
704        ShAmt = Sh->getZExtValue();
705        if (!Subtarget->isCortexA9() ||
706            (N.hasOneUse() &&
707             isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt))) {
708          Offset = N.getOperand(0).getOperand(0);
709          Base = N.getOperand(1);
710        } else {
711          ShAmt = 0;
712          ShOpcVal = ARM_AM::no_shift;
713        }
714      } else {
715        ShOpcVal = ARM_AM::no_shift;
716      }
717    }
718  }
719
720  Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
721                                  MVT::i32);
722  return AM2_SHOP;
723}
724
725bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
726                                            SDValue &Offset, SDValue &Opc) {
727  unsigned Opcode = Op->getOpcode();
728  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
729    ? cast<LoadSDNode>(Op)->getAddressingMode()
730    : cast<StoreSDNode>(Op)->getAddressingMode();
731  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
732    ? ARM_AM::add : ARM_AM::sub;
733  int Val;
734  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val))
735    return false;
736
737  Offset = N;
738  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
739  unsigned ShAmt = 0;
740  if (ShOpcVal != ARM_AM::no_shift) {
741    // Check to see if the RHS of the shift is a constant, if not, we can't fold
742    // it.
743    if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
744      ShAmt = Sh->getZExtValue();
745      if (isShifterOpProfitable(N, ShOpcVal, ShAmt))
746        Offset = N.getOperand(0);
747      else {
748        ShAmt = 0;
749        ShOpcVal = ARM_AM::no_shift;
750      }
751    } else {
752      ShOpcVal = ARM_AM::no_shift;
753    }
754  }
755
756  Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
757                                  MVT::i32);
758  return true;
759}
760
761bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
762                                            SDValue &Offset, SDValue &Opc) {
763  unsigned Opcode = Op->getOpcode();
764  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
765    ? cast<LoadSDNode>(Op)->getAddressingMode()
766    : cast<StoreSDNode>(Op)->getAddressingMode();
767  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
768    ? ARM_AM::add : ARM_AM::sub;
769  int Val;
770  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
771    if (AddSub == ARM_AM::sub) Val *= -1;
772    Offset = CurDAG->getRegister(0, MVT::i32);
773    Opc = CurDAG->getTargetConstant(Val, MVT::i32);
774    return true;
775  }
776
777  return false;
778}
779
780
781bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
782                                            SDValue &Offset, SDValue &Opc) {
783  unsigned Opcode = Op->getOpcode();
784  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
785    ? cast<LoadSDNode>(Op)->getAddressingMode()
786    : cast<StoreSDNode>(Op)->getAddressingMode();
787  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
788    ? ARM_AM::add : ARM_AM::sub;
789  int Val;
790  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
791    Offset = CurDAG->getRegister(0, MVT::i32);
792    Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
793                                                      ARM_AM::no_shift),
794                                    MVT::i32);
795    return true;
796  }
797
798  return false;
799}
800
801bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) {
802  Base = N;
803  return true;
804}
805
806bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N,
807                                      SDValue &Base, SDValue &Offset,
808                                      SDValue &Opc) {
809  if (N.getOpcode() == ISD::SUB) {
810    // X - C  is canonicalize to X + -C, no need to handle it here.
811    Base = N.getOperand(0);
812    Offset = N.getOperand(1);
813    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32);
814    return true;
815  }
816
817  if (!CurDAG->isBaseWithConstantOffset(N)) {
818    Base = N;
819    if (N.getOpcode() == ISD::FrameIndex) {
820      int FI = cast<FrameIndexSDNode>(N)->getIndex();
821      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
822    }
823    Offset = CurDAG->getRegister(0, MVT::i32);
824    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32);
825    return true;
826  }
827
828  // If the RHS is +/- imm8, fold into addr mode.
829  int RHSC;
830  if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
831                              -256 + 1, 256, RHSC)) { // 8 bits.
832    Base = N.getOperand(0);
833    if (Base.getOpcode() == ISD::FrameIndex) {
834      int FI = cast<FrameIndexSDNode>(Base)->getIndex();
835      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
836    }
837    Offset = CurDAG->getRegister(0, MVT::i32);
838
839    ARM_AM::AddrOpc AddSub = ARM_AM::add;
840    if (RHSC < 0) {
841      AddSub = ARM_AM::sub;
842      RHSC = -RHSC;
843    }
844    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32);
845    return true;
846  }
847
848  Base = N.getOperand(0);
849  Offset = N.getOperand(1);
850  Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32);
851  return true;
852}
853
854bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
855                                            SDValue &Offset, SDValue &Opc) {
856  unsigned Opcode = Op->getOpcode();
857  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
858    ? cast<LoadSDNode>(Op)->getAddressingMode()
859    : cast<StoreSDNode>(Op)->getAddressingMode();
860  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
861    ? ARM_AM::add : ARM_AM::sub;
862  int Val;
863  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits.
864    Offset = CurDAG->getRegister(0, MVT::i32);
865    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32);
866    return true;
867  }
868
869  Offset = N;
870  Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32);
871  return true;
872}
873
874bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N,
875                                      SDValue &Base, SDValue &Offset) {
876  if (!CurDAG->isBaseWithConstantOffset(N)) {
877    Base = N;
878    if (N.getOpcode() == ISD::FrameIndex) {
879      int FI = cast<FrameIndexSDNode>(N)->getIndex();
880      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
881    } else if (N.getOpcode() == ARMISD::Wrapper &&
882               !(Subtarget->useMovt() &&
883                 N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
884      Base = N.getOperand(0);
885    }
886    Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
887                                       MVT::i32);
888    return true;
889  }
890
891  // If the RHS is +/- imm8, fold into addr mode.
892  int RHSC;
893  if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4,
894                              -256 + 1, 256, RHSC)) {
895    Base = N.getOperand(0);
896    if (Base.getOpcode() == ISD::FrameIndex) {
897      int FI = cast<FrameIndexSDNode>(Base)->getIndex();
898      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
899    }
900
901    ARM_AM::AddrOpc AddSub = ARM_AM::add;
902    if (RHSC < 0) {
903      AddSub = ARM_AM::sub;
904      RHSC = -RHSC;
905    }
906    Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
907                                       MVT::i32);
908    return true;
909  }
910
911  Base = N;
912  Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
913                                     MVT::i32);
914  return true;
915}
916
917bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,
918                                      SDValue &Align) {
919  Addr = N;
920
921  unsigned Alignment = 0;
922  if (LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(Parent)) {
923    // This case occurs only for VLD1-lane/dup and VST1-lane instructions.
924    // The maximum alignment is equal to the memory size being referenced.
925    unsigned LSNAlign = LSN->getAlignment();
926    unsigned MemSize = LSN->getMemoryVT().getSizeInBits() / 8;
927    if (LSNAlign > MemSize && MemSize > 1)
928      Alignment = MemSize;
929  } else {
930    // All other uses of addrmode6 are for intrinsics.  For now just record
931    // the raw alignment value; it will be refined later based on the legal
932    // alignment operands for the intrinsic.
933    Alignment = cast<MemIntrinsicSDNode>(Parent)->getAlignment();
934  }
935
936  Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
937  return true;
938}
939
940bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N,
941                                            SDValue &Offset) {
942  LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op);
943  ISD::MemIndexedMode AM = LdSt->getAddressingMode();
944  if (AM != ISD::POST_INC)
945    return false;
946  Offset = N;
947  if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) {
948    if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits())
949      Offset = CurDAG->getRegister(0, MVT::i32);
950  }
951  return true;
952}
953
954bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N,
955                                       SDValue &Offset, SDValue &Label) {
956  if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
957    Offset = N.getOperand(0);
958    SDValue N1 = N.getOperand(1);
959    Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
960                                      MVT::i32);
961    return true;
962  }
963
964  return false;
965}
966
967
968//===----------------------------------------------------------------------===//
969//                         Thumb Addressing Modes
970//===----------------------------------------------------------------------===//
971
972bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N,
973                                            SDValue &Base, SDValue &Offset){
974  if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) {
975    ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
976    if (!NC || !NC->isNullValue())
977      return false;
978
979    Base = Offset = N;
980    return true;
981  }
982
983  Base = N.getOperand(0);
984  Offset = N.getOperand(1);
985  return true;
986}
987
988bool
989ARMDAGToDAGISel::SelectThumbAddrModeRI(SDValue N, SDValue &Base,
990                                       SDValue &Offset, unsigned Scale) {
991  if (Scale == 4) {
992    SDValue TmpBase, TmpOffImm;
993    if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
994      return false;  // We want to select tLDRspi / tSTRspi instead.
995
996    if (N.getOpcode() == ARMISD::Wrapper &&
997        N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
998      return false;  // We want to select tLDRpci instead.
999  }
1000
1001  if (!CurDAG->isBaseWithConstantOffset(N))
1002    return false;
1003
1004  // Thumb does not have [sp, r] address mode.
1005  RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
1006  RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
1007  if ((LHSR && LHSR->getReg() == ARM::SP) ||
1008      (RHSR && RHSR->getReg() == ARM::SP))
1009    return false;
1010
1011  // FIXME: Why do we explicitly check for a match here and then return false?
1012  // Presumably to allow something else to match, but shouldn't this be
1013  // documented?
1014  int RHSC;
1015  if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC))
1016    return false;
1017
1018  Base = N.getOperand(0);
1019  Offset = N.getOperand(1);
1020  return true;
1021}
1022
1023bool
1024ARMDAGToDAGISel::SelectThumbAddrModeRI5S1(SDValue N,
1025                                          SDValue &Base,
1026                                          SDValue &Offset) {
1027  return SelectThumbAddrModeRI(N, Base, Offset, 1);
1028}
1029
1030bool
1031ARMDAGToDAGISel::SelectThumbAddrModeRI5S2(SDValue N,
1032                                          SDValue &Base,
1033                                          SDValue &Offset) {
1034  return SelectThumbAddrModeRI(N, Base, Offset, 2);
1035}
1036
1037bool
1038ARMDAGToDAGISel::SelectThumbAddrModeRI5S4(SDValue N,
1039                                          SDValue &Base,
1040                                          SDValue &Offset) {
1041  return SelectThumbAddrModeRI(N, Base, Offset, 4);
1042}
1043
1044bool
1045ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale,
1046                                          SDValue &Base, SDValue &OffImm) {
1047  if (Scale == 4) {
1048    SDValue TmpBase, TmpOffImm;
1049    if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
1050      return false;  // We want to select tLDRspi / tSTRspi instead.
1051
1052    if (N.getOpcode() == ARMISD::Wrapper &&
1053        N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
1054      return false;  // We want to select tLDRpci instead.
1055  }
1056
1057  if (!CurDAG->isBaseWithConstantOffset(N)) {
1058    if (N.getOpcode() == ARMISD::Wrapper &&
1059        !(Subtarget->useMovt() &&
1060          N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
1061      Base = N.getOperand(0);
1062    } else {
1063      Base = N;
1064    }
1065
1066    OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1067    return true;
1068  }
1069
1070  RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
1071  RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
1072  if ((LHSR && LHSR->getReg() == ARM::SP) ||
1073      (RHSR && RHSR->getReg() == ARM::SP)) {
1074    ConstantSDNode *LHS = dyn_cast<ConstantSDNode>(N.getOperand(0));
1075    ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
1076    unsigned LHSC = LHS ? LHS->getZExtValue() : 0;
1077    unsigned RHSC = RHS ? RHS->getZExtValue() : 0;
1078
1079    // Thumb does not have [sp, #imm5] address mode for non-zero imm5.
1080    if (LHSC != 0 || RHSC != 0) return false;
1081
1082    Base = N;
1083    OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1084    return true;
1085  }
1086
1087  // If the RHS is + imm5 * scale, fold into addr mode.
1088  int RHSC;
1089  if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) {
1090    Base = N.getOperand(0);
1091    OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
1092    return true;
1093  }
1094
1095  Base = N.getOperand(0);
1096  OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1097  return true;
1098}
1099
1100bool
1101ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
1102                                           SDValue &OffImm) {
1103  return SelectThumbAddrModeImm5S(N, 4, Base, OffImm);
1104}
1105
1106bool
1107ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
1108                                           SDValue &OffImm) {
1109  return SelectThumbAddrModeImm5S(N, 2, Base, OffImm);
1110}
1111
1112bool
1113ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
1114                                           SDValue &OffImm) {
1115  return SelectThumbAddrModeImm5S(N, 1, Base, OffImm);
1116}
1117
1118bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N,
1119                                            SDValue &Base, SDValue &OffImm) {
1120  if (N.getOpcode() == ISD::FrameIndex) {
1121    int FI = cast<FrameIndexSDNode>(N)->getIndex();
1122    Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1123    OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1124    return true;
1125  }
1126
1127  if (!CurDAG->isBaseWithConstantOffset(N))
1128    return false;
1129
1130  RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
1131  if (N.getOperand(0).getOpcode() == ISD::FrameIndex ||
1132      (LHSR && LHSR->getReg() == ARM::SP)) {
1133    // If the RHS is + imm8 * scale, fold into addr mode.
1134    int RHSC;
1135    if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) {
1136      Base = N.getOperand(0);
1137      if (Base.getOpcode() == ISD::FrameIndex) {
1138        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1139        Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1140      }
1141      OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
1142      return true;
1143    }
1144  }
1145
1146  return false;
1147}
1148
1149
1150//===----------------------------------------------------------------------===//
1151//                        Thumb 2 Addressing Modes
1152//===----------------------------------------------------------------------===//
1153
1154
1155bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDValue N, SDValue &BaseReg,
1156                                                SDValue &Opc) {
1157  if (DisableShifterOp)
1158    return false;
1159
1160  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
1161
1162  // Don't match base register only case. That is matched to a separate
1163  // lower complexity pattern with explicit register operand.
1164  if (ShOpcVal == ARM_AM::no_shift) return false;
1165
1166  BaseReg = N.getOperand(0);
1167  unsigned ShImmVal = 0;
1168  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1169    ShImmVal = RHS->getZExtValue() & 31;
1170    Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal));
1171    return true;
1172  }
1173
1174  return false;
1175}
1176
1177bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N,
1178                                            SDValue &Base, SDValue &OffImm) {
1179  // Match simple R + imm12 operands.
1180
1181  // Base only.
1182  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
1183      !CurDAG->isBaseWithConstantOffset(N)) {
1184    if (N.getOpcode() == ISD::FrameIndex) {
1185      // Match frame index.
1186      int FI = cast<FrameIndexSDNode>(N)->getIndex();
1187      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1188      OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
1189      return true;
1190    }
1191
1192    if (N.getOpcode() == ARMISD::Wrapper &&
1193               !(Subtarget->useMovt() &&
1194                 N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
1195      Base = N.getOperand(0);
1196      if (Base.getOpcode() == ISD::TargetConstantPool)
1197        return false;  // We want to select t2LDRpci instead.
1198    } else
1199      Base = N;
1200    OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
1201    return true;
1202  }
1203
1204  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1205    if (SelectT2AddrModeImm8(N, Base, OffImm))
1206      // Let t2LDRi8 handle (R - imm8).
1207      return false;
1208
1209    int RHSC = (int)RHS->getZExtValue();
1210    if (N.getOpcode() == ISD::SUB)
1211      RHSC = -RHSC;
1212
1213    if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
1214      Base   = N.getOperand(0);
1215      if (Base.getOpcode() == ISD::FrameIndex) {
1216        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1217        Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1218      }
1219      OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
1220      return true;
1221    }
1222  }
1223
1224  // Base only.
1225  Base = N;
1226  OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
1227  return true;
1228}
1229
1230bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N,
1231                                           SDValue &Base, SDValue &OffImm) {
1232  // Match simple R - imm8 operands.
1233  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
1234      !CurDAG->isBaseWithConstantOffset(N))
1235    return false;
1236
1237  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1238    int RHSC = (int)RHS->getSExtValue();
1239    if (N.getOpcode() == ISD::SUB)
1240      RHSC = -RHSC;
1241
1242    if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
1243      Base = N.getOperand(0);
1244      if (Base.getOpcode() == ISD::FrameIndex) {
1245        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1246        Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1247      }
1248      OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
1249      return true;
1250    }
1251  }
1252
1253  return false;
1254}
1255
1256bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
1257                                                 SDValue &OffImm){
1258  unsigned Opcode = Op->getOpcode();
1259  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
1260    ? cast<LoadSDNode>(Op)->getAddressingMode()
1261    : cast<StoreSDNode>(Op)->getAddressingMode();
1262  int RHSC;
1263  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits.
1264    OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
1265      ? CurDAG->getTargetConstant(RHSC, MVT::i32)
1266      : CurDAG->getTargetConstant(-RHSC, MVT::i32);
1267    return true;
1268  }
1269
1270  return false;
1271}
1272
1273bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N,
1274                                            SDValue &Base,
1275                                            SDValue &OffReg, SDValue &ShImm) {
1276  // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
1277  if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N))
1278    return false;
1279
1280  // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
1281  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1282    int RHSC = (int)RHS->getZExtValue();
1283    if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
1284      return false;
1285    else if (RHSC < 0 && RHSC >= -255) // 8 bits
1286      return false;
1287  }
1288
1289  if (Subtarget->isCortexA9() && !N.hasOneUse()) {
1290    // Compute R + (R << [1,2,3]) and reuse it.
1291    return false;
1292  }
1293
1294  // Look for (R + R) or (R + (R << [1,2,3])).
1295  unsigned ShAmt = 0;
1296  Base   = N.getOperand(0);
1297  OffReg = N.getOperand(1);
1298
1299  // Swap if it is ((R << c) + R).
1300  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode());
1301  if (ShOpcVal != ARM_AM::lsl) {
1302    ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode());
1303    if (ShOpcVal == ARM_AM::lsl)
1304      std::swap(Base, OffReg);
1305  }
1306
1307  if (ShOpcVal == ARM_AM::lsl) {
1308    // Check to see if the RHS of the shift is a constant, if not, we can't fold
1309    // it.
1310    if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
1311      ShAmt = Sh->getZExtValue();
1312      if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt))
1313        OffReg = OffReg.getOperand(0);
1314      else {
1315        ShAmt = 0;
1316        ShOpcVal = ARM_AM::no_shift;
1317      }
1318    } else {
1319      ShOpcVal = ARM_AM::no_shift;
1320    }
1321  }
1322
1323  ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32);
1324
1325  return true;
1326}
1327
1328//===--------------------------------------------------------------------===//
1329
1330/// getAL - Returns a ARMCC::AL immediate node.
1331static inline SDValue getAL(SelectionDAG *CurDAG) {
1332  return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32);
1333}
1334
1335SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) {
1336  LoadSDNode *LD = cast<LoadSDNode>(N);
1337  ISD::MemIndexedMode AM = LD->getAddressingMode();
1338  if (AM == ISD::UNINDEXED)
1339    return NULL;
1340
1341  EVT LoadedVT = LD->getMemoryVT();
1342  SDValue Offset, AMOpc;
1343  bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1344  unsigned Opcode = 0;
1345  bool Match = false;
1346  if (LoadedVT == MVT::i32 && isPre &&
1347      SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
1348    Opcode = ARM::LDR_PRE_IMM;
1349    Match = true;
1350  } else if (LoadedVT == MVT::i32 && !isPre &&
1351      SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
1352    Opcode = ARM::LDR_POST_IMM;
1353    Match = true;
1354  } else if (LoadedVT == MVT::i32 &&
1355      SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
1356    Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG;
1357    Match = true;
1358
1359  } else if (LoadedVT == MVT::i16 &&
1360             SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
1361    Match = true;
1362    Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
1363      ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
1364      : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
1365  } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
1366    if (LD->getExtensionType() == ISD::SEXTLOAD) {
1367      if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
1368        Match = true;
1369        Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
1370      }
1371    } else {
1372      if (isPre &&
1373          SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
1374        Match = true;
1375        Opcode = ARM::LDRB_PRE_IMM;
1376      } else if (!isPre &&
1377                  SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
1378        Match = true;
1379        Opcode = ARM::LDRB_POST_IMM;
1380      } else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
1381        Match = true;
1382        Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG;
1383      }
1384    }
1385  }
1386
1387  if (Match) {
1388    if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) {
1389      SDValue Chain = LD->getChain();
1390      SDValue Base = LD->getBasePtr();
1391      SDValue Ops[]= { Base, AMOpc, getAL(CurDAG),
1392                       CurDAG->getRegister(0, MVT::i32), Chain };
1393      return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32,
1394                                    MVT::i32, MVT::Other, Ops, 5);
1395    } else {
1396      SDValue Chain = LD->getChain();
1397      SDValue Base = LD->getBasePtr();
1398      SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG),
1399                       CurDAG->getRegister(0, MVT::i32), Chain };
1400      return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32,
1401                                    MVT::i32, MVT::Other, Ops, 6);
1402    }
1403  }
1404
1405  return NULL;
1406}
1407
1408SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) {
1409  LoadSDNode *LD = cast<LoadSDNode>(N);
1410  ISD::MemIndexedMode AM = LD->getAddressingMode();
1411  if (AM == ISD::UNINDEXED)
1412    return NULL;
1413
1414  EVT LoadedVT = LD->getMemoryVT();
1415  bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
1416  SDValue Offset;
1417  bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1418  unsigned Opcode = 0;
1419  bool Match = false;
1420  if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
1421    switch (LoadedVT.getSimpleVT().SimpleTy) {
1422    case MVT::i32:
1423      Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
1424      break;
1425    case MVT::i16:
1426      if (isSExtLd)
1427        Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
1428      else
1429        Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
1430      break;
1431    case MVT::i8:
1432    case MVT::i1:
1433      if (isSExtLd)
1434        Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
1435      else
1436        Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
1437      break;
1438    default:
1439      return NULL;
1440    }
1441    Match = true;
1442  }
1443
1444  if (Match) {
1445    SDValue Chain = LD->getChain();
1446    SDValue Base = LD->getBasePtr();
1447    SDValue Ops[]= { Base, Offset, getAL(CurDAG),
1448                     CurDAG->getRegister(0, MVT::i32), Chain };
1449    return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32,
1450                                  MVT::Other, Ops, 5);
1451  }
1452
1453  return NULL;
1454}
1455
1456/// PairSRegs - Form a D register from a pair of S registers.
1457///
1458SDNode *ARMDAGToDAGISel::PairSRegs(EVT VT, SDValue V0, SDValue V1) {
1459  DebugLoc dl = V0.getNode()->getDebugLoc();
1460  SDValue RegClass =
1461    CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, MVT::i32);
1462  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
1463  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
1464  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1465  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 5);
1466}
1467
1468/// PairDRegs - Form a quad register from a pair of D registers.
1469///
1470SDNode *ARMDAGToDAGISel::PairDRegs(EVT VT, SDValue V0, SDValue V1) {
1471  DebugLoc dl = V0.getNode()->getDebugLoc();
1472  SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, MVT::i32);
1473  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
1474  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
1475  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1476  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 5);
1477}
1478
1479/// PairQRegs - Form 4 consecutive D registers from a pair of Q registers.
1480///
1481SDNode *ARMDAGToDAGISel::PairQRegs(EVT VT, SDValue V0, SDValue V1) {
1482  DebugLoc dl = V0.getNode()->getDebugLoc();
1483  SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
1484  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
1485  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
1486  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1487  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 5);
1488}
1489
1490/// QuadSRegs - Form 4 consecutive S registers.
1491///
1492SDNode *ARMDAGToDAGISel::QuadSRegs(EVT VT, SDValue V0, SDValue V1,
1493                                   SDValue V2, SDValue V3) {
1494  DebugLoc dl = V0.getNode()->getDebugLoc();
1495  SDValue RegClass =
1496    CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, MVT::i32);
1497  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
1498  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
1499  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, MVT::i32);
1500  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, MVT::i32);
1501  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1502                                    V2, SubReg2, V3, SubReg3 };
1503  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 9);
1504}
1505
1506/// QuadDRegs - Form 4 consecutive D registers.
1507///
1508SDNode *ARMDAGToDAGISel::QuadDRegs(EVT VT, SDValue V0, SDValue V1,
1509                                   SDValue V2, SDValue V3) {
1510  DebugLoc dl = V0.getNode()->getDebugLoc();
1511  SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
1512  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
1513  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
1514  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32);
1515  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32);
1516  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1517                                    V2, SubReg2, V3, SubReg3 };
1518  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 9);
1519}
1520
1521/// QuadQRegs - Form 4 consecutive Q registers.
1522///
1523SDNode *ARMDAGToDAGISel::QuadQRegs(EVT VT, SDValue V0, SDValue V1,
1524                                   SDValue V2, SDValue V3) {
1525  DebugLoc dl = V0.getNode()->getDebugLoc();
1526  SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, MVT::i32);
1527  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
1528  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
1529  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, MVT::i32);
1530  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, MVT::i32);
1531  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1532                                    V2, SubReg2, V3, SubReg3 };
1533  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 9);
1534}
1535
1536/// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
1537/// of a NEON VLD or VST instruction.  The supported values depend on the
1538/// number of registers being loaded.
1539SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, unsigned NumVecs,
1540                                       bool is64BitVector) {
1541  unsigned NumRegs = NumVecs;
1542  if (!is64BitVector && NumVecs < 3)
1543    NumRegs *= 2;
1544
1545  unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
1546  if (Alignment >= 32 && NumRegs == 4)
1547    Alignment = 32;
1548  else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4))
1549    Alignment = 16;
1550  else if (Alignment >= 8)
1551    Alignment = 8;
1552  else
1553    Alignment = 0;
1554
1555  return CurDAG->getTargetConstant(Alignment, MVT::i32);
1556}
1557
1558SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
1559                                   unsigned *DOpcodes, unsigned *QOpcodes0,
1560                                   unsigned *QOpcodes1) {
1561  assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
1562  DebugLoc dl = N->getDebugLoc();
1563
1564  SDValue MemAddr, Align;
1565  unsigned AddrOpIdx = isUpdating ? 1 : 2;
1566  if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
1567    return NULL;
1568
1569  SDValue Chain = N->getOperand(0);
1570  EVT VT = N->getValueType(0);
1571  bool is64BitVector = VT.is64BitVector();
1572  Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
1573
1574  unsigned OpcodeIndex;
1575  switch (VT.getSimpleVT().SimpleTy) {
1576  default: llvm_unreachable("unhandled vld type");
1577    // Double-register operations:
1578  case MVT::v8i8:  OpcodeIndex = 0; break;
1579  case MVT::v4i16: OpcodeIndex = 1; break;
1580  case MVT::v2f32:
1581  case MVT::v2i32: OpcodeIndex = 2; break;
1582  case MVT::v1i64: OpcodeIndex = 3; break;
1583    // Quad-register operations:
1584  case MVT::v16i8: OpcodeIndex = 0; break;
1585  case MVT::v8i16: OpcodeIndex = 1; break;
1586  case MVT::v4f32:
1587  case MVT::v4i32: OpcodeIndex = 2; break;
1588  case MVT::v2i64: OpcodeIndex = 3;
1589    assert(NumVecs == 1 && "v2i64 type only supported for VLD1");
1590    break;
1591  }
1592
1593  EVT ResTy;
1594  if (NumVecs == 1)
1595    ResTy = VT;
1596  else {
1597    unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
1598    if (!is64BitVector)
1599      ResTyElts *= 2;
1600    ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
1601  }
1602  std::vector<EVT> ResTys;
1603  ResTys.push_back(ResTy);
1604  if (isUpdating)
1605    ResTys.push_back(MVT::i32);
1606  ResTys.push_back(MVT::Other);
1607
1608  SDValue Pred = getAL(CurDAG);
1609  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1610  SDNode *VLd;
1611  SmallVector<SDValue, 7> Ops;
1612
1613  // Double registers and VLD1/VLD2 quad registers are directly supported.
1614  if (is64BitVector || NumVecs <= 2) {
1615    unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
1616                    QOpcodes0[OpcodeIndex]);
1617    Ops.push_back(MemAddr);
1618    Ops.push_back(Align);
1619    if (isUpdating) {
1620      SDValue Inc = N->getOperand(AddrOpIdx + 1);
1621      Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
1622    }
1623    Ops.push_back(Pred);
1624    Ops.push_back(Reg0);
1625    Ops.push_back(Chain);
1626    VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), Ops.size());
1627
1628  } else {
1629    // Otherwise, quad registers are loaded with two separate instructions,
1630    // where one loads the even registers and the other loads the odd registers.
1631    EVT AddrTy = MemAddr.getValueType();
1632
1633    // Load the even subregs.  This is always an updating load, so that it
1634    // provides the address to the second load for the odd subregs.
1635    SDValue ImplDef =
1636      SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
1637    const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain };
1638    SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
1639                                          ResTy, AddrTy, MVT::Other, OpsA, 7);
1640    Chain = SDValue(VLdA, 2);
1641
1642    // Load the odd subregs.
1643    Ops.push_back(SDValue(VLdA, 1));
1644    Ops.push_back(Align);
1645    if (isUpdating) {
1646      SDValue Inc = N->getOperand(AddrOpIdx + 1);
1647      assert(isa<ConstantSDNode>(Inc.getNode()) &&
1648             "only constant post-increment update allowed for VLD3/4");
1649      (void)Inc;
1650      Ops.push_back(Reg0);
1651    }
1652    Ops.push_back(SDValue(VLdA, 0));
1653    Ops.push_back(Pred);
1654    Ops.push_back(Reg0);
1655    Ops.push_back(Chain);
1656    VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
1657                                 Ops.data(), Ops.size());
1658  }
1659
1660  // Transfer memoperands.
1661  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1662  MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1663  cast<MachineSDNode>(VLd)->setMemRefs(MemOp, MemOp + 1);
1664
1665  if (NumVecs == 1)
1666    return VLd;
1667
1668  // Extract out the subregisters.
1669  SDValue SuperReg = SDValue(VLd, 0);
1670  assert(ARM::dsub_7 == ARM::dsub_0+7 &&
1671         ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
1672  unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0);
1673  for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1674    ReplaceUses(SDValue(N, Vec),
1675                CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
1676  ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
1677  if (isUpdating)
1678    ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
1679  return NULL;
1680}
1681
1682SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
1683                                   unsigned *DOpcodes, unsigned *QOpcodes0,
1684                                   unsigned *QOpcodes1) {
1685  assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
1686  DebugLoc dl = N->getDebugLoc();
1687
1688  SDValue MemAddr, Align;
1689  unsigned AddrOpIdx = isUpdating ? 1 : 2;
1690  unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
1691  if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
1692    return NULL;
1693
1694  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1695  MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1696
1697  SDValue Chain = N->getOperand(0);
1698  EVT VT = N->getOperand(Vec0Idx).getValueType();
1699  bool is64BitVector = VT.is64BitVector();
1700  Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
1701
1702  unsigned OpcodeIndex;
1703  switch (VT.getSimpleVT().SimpleTy) {
1704  default: llvm_unreachable("unhandled vst type");
1705    // Double-register operations:
1706  case MVT::v8i8:  OpcodeIndex = 0; break;
1707  case MVT::v4i16: OpcodeIndex = 1; break;
1708  case MVT::v2f32:
1709  case MVT::v2i32: OpcodeIndex = 2; break;
1710  case MVT::v1i64: OpcodeIndex = 3; break;
1711    // Quad-register operations:
1712  case MVT::v16i8: OpcodeIndex = 0; break;
1713  case MVT::v8i16: OpcodeIndex = 1; break;
1714  case MVT::v4f32:
1715  case MVT::v4i32: OpcodeIndex = 2; break;
1716  case MVT::v2i64: OpcodeIndex = 3;
1717    assert(NumVecs == 1 && "v2i64 type only supported for VST1");
1718    break;
1719  }
1720
1721  std::vector<EVT> ResTys;
1722  if (isUpdating)
1723    ResTys.push_back(MVT::i32);
1724  ResTys.push_back(MVT::Other);
1725
1726  SDValue Pred = getAL(CurDAG);
1727  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1728  SmallVector<SDValue, 7> Ops;
1729
1730  // Double registers and VST1/VST2 quad registers are directly supported.
1731  if (is64BitVector || NumVecs <= 2) {
1732    SDValue SrcReg;
1733    if (NumVecs == 1) {
1734      SrcReg = N->getOperand(Vec0Idx);
1735    } else if (is64BitVector) {
1736      // Form a REG_SEQUENCE to force register allocation.
1737      SDValue V0 = N->getOperand(Vec0Idx + 0);
1738      SDValue V1 = N->getOperand(Vec0Idx + 1);
1739      if (NumVecs == 2)
1740        SrcReg = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
1741      else {
1742        SDValue V2 = N->getOperand(Vec0Idx + 2);
1743        // If it's a vst3, form a quad D-register and leave the last part as
1744        // an undef.
1745        SDValue V3 = (NumVecs == 3)
1746          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1747          : N->getOperand(Vec0Idx + 3);
1748        SrcReg = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
1749      }
1750    } else {
1751      // Form a QQ register.
1752      SDValue Q0 = N->getOperand(Vec0Idx);
1753      SDValue Q1 = N->getOperand(Vec0Idx + 1);
1754      SrcReg = SDValue(PairQRegs(MVT::v4i64, Q0, Q1), 0);
1755    }
1756
1757    unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
1758                    QOpcodes0[OpcodeIndex]);
1759    Ops.push_back(MemAddr);
1760    Ops.push_back(Align);
1761    if (isUpdating) {
1762      SDValue Inc = N->getOperand(AddrOpIdx + 1);
1763      Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
1764    }
1765    Ops.push_back(SrcReg);
1766    Ops.push_back(Pred);
1767    Ops.push_back(Reg0);
1768    Ops.push_back(Chain);
1769    SDNode *VSt =
1770      CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), Ops.size());
1771
1772    // Transfer memoperands.
1773    cast<MachineSDNode>(VSt)->setMemRefs(MemOp, MemOp + 1);
1774
1775    return VSt;
1776  }
1777
1778  // Otherwise, quad registers are stored with two separate instructions,
1779  // where one stores the even registers and the other stores the odd registers.
1780
1781  // Form the QQQQ REG_SEQUENCE.
1782  SDValue V0 = N->getOperand(Vec0Idx + 0);
1783  SDValue V1 = N->getOperand(Vec0Idx + 1);
1784  SDValue V2 = N->getOperand(Vec0Idx + 2);
1785  SDValue V3 = (NumVecs == 3)
1786    ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
1787    : N->getOperand(Vec0Idx + 3);
1788  SDValue RegSeq = SDValue(QuadQRegs(MVT::v8i64, V0, V1, V2, V3), 0);
1789
1790  // Store the even D registers.  This is always an updating store, so that it
1791  // provides the address to the second store for the odd subregs.
1792  const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain };
1793  SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
1794                                        MemAddr.getValueType(),
1795                                        MVT::Other, OpsA, 7);
1796  cast<MachineSDNode>(VStA)->setMemRefs(MemOp, MemOp + 1);
1797  Chain = SDValue(VStA, 1);
1798
1799  // Store the odd D registers.
1800  Ops.push_back(SDValue(VStA, 0));
1801  Ops.push_back(Align);
1802  if (isUpdating) {
1803    SDValue Inc = N->getOperand(AddrOpIdx + 1);
1804    assert(isa<ConstantSDNode>(Inc.getNode()) &&
1805           "only constant post-increment update allowed for VST3/4");
1806    (void)Inc;
1807    Ops.push_back(Reg0);
1808  }
1809  Ops.push_back(RegSeq);
1810  Ops.push_back(Pred);
1811  Ops.push_back(Reg0);
1812  Ops.push_back(Chain);
1813  SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
1814                                        Ops.data(), Ops.size());
1815  cast<MachineSDNode>(VStB)->setMemRefs(MemOp, MemOp + 1);
1816  return VStB;
1817}
1818
1819SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
1820                                         bool isUpdating, unsigned NumVecs,
1821                                         unsigned *DOpcodes,
1822                                         unsigned *QOpcodes) {
1823  assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
1824  DebugLoc dl = N->getDebugLoc();
1825
1826  SDValue MemAddr, Align;
1827  unsigned AddrOpIdx = isUpdating ? 1 : 2;
1828  unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
1829  if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
1830    return NULL;
1831
1832  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1833  MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1834
1835  SDValue Chain = N->getOperand(0);
1836  unsigned Lane =
1837    cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
1838  EVT VT = N->getOperand(Vec0Idx).getValueType();
1839  bool is64BitVector = VT.is64BitVector();
1840
1841  unsigned Alignment = 0;
1842  if (NumVecs != 3) {
1843    Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
1844    unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
1845    if (Alignment > NumBytes)
1846      Alignment = NumBytes;
1847    if (Alignment < 8 && Alignment < NumBytes)
1848      Alignment = 0;
1849    // Alignment must be a power of two; make sure of that.
1850    Alignment = (Alignment & -Alignment);
1851    if (Alignment == 1)
1852      Alignment = 0;
1853  }
1854  Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
1855
1856  unsigned OpcodeIndex;
1857  switch (VT.getSimpleVT().SimpleTy) {
1858  default: llvm_unreachable("unhandled vld/vst lane type");
1859    // Double-register operations:
1860  case MVT::v8i8:  OpcodeIndex = 0; break;
1861  case MVT::v4i16: OpcodeIndex = 1; break;
1862  case MVT::v2f32:
1863  case MVT::v2i32: OpcodeIndex = 2; break;
1864    // Quad-register operations:
1865  case MVT::v8i16: OpcodeIndex = 0; break;
1866  case MVT::v4f32:
1867  case MVT::v4i32: OpcodeIndex = 1; break;
1868  }
1869
1870  std::vector<EVT> ResTys;
1871  if (IsLoad) {
1872    unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
1873    if (!is64BitVector)
1874      ResTyElts *= 2;
1875    ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(),
1876                                      MVT::i64, ResTyElts));
1877  }
1878  if (isUpdating)
1879    ResTys.push_back(MVT::i32);
1880  ResTys.push_back(MVT::Other);
1881
1882  SDValue Pred = getAL(CurDAG);
1883  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1884
1885  SmallVector<SDValue, 8> Ops;
1886  Ops.push_back(MemAddr);
1887  Ops.push_back(Align);
1888  if (isUpdating) {
1889    SDValue Inc = N->getOperand(AddrOpIdx + 1);
1890    Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
1891  }
1892
1893  SDValue SuperReg;
1894  SDValue V0 = N->getOperand(Vec0Idx + 0);
1895  SDValue V1 = N->getOperand(Vec0Idx + 1);
1896  if (NumVecs == 2) {
1897    if (is64BitVector)
1898      SuperReg = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
1899    else
1900      SuperReg = SDValue(PairQRegs(MVT::v4i64, V0, V1), 0);
1901  } else {
1902    SDValue V2 = N->getOperand(Vec0Idx + 2);
1903    SDValue V3 = (NumVecs == 3)
1904      ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
1905      : N->getOperand(Vec0Idx + 3);
1906    if (is64BitVector)
1907      SuperReg = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
1908    else
1909      SuperReg = SDValue(QuadQRegs(MVT::v8i64, V0, V1, V2, V3), 0);
1910  }
1911  Ops.push_back(SuperReg);
1912  Ops.push_back(getI32Imm(Lane));
1913  Ops.push_back(Pred);
1914  Ops.push_back(Reg0);
1915  Ops.push_back(Chain);
1916
1917  unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
1918                                  QOpcodes[OpcodeIndex]);
1919  SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys,
1920                                         Ops.data(), Ops.size());
1921  cast<MachineSDNode>(VLdLn)->setMemRefs(MemOp, MemOp + 1);
1922  if (!IsLoad)
1923    return VLdLn;
1924
1925  // Extract the subregisters.
1926  SuperReg = SDValue(VLdLn, 0);
1927  assert(ARM::dsub_7 == ARM::dsub_0+7 &&
1928         ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
1929  unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
1930  for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1931    ReplaceUses(SDValue(N, Vec),
1932                CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
1933  ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
1934  if (isUpdating)
1935    ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
1936  return NULL;
1937}
1938
1939SDNode *ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool isUpdating,
1940                                      unsigned NumVecs, unsigned *Opcodes) {
1941  assert(NumVecs >=2 && NumVecs <= 4 && "VLDDup NumVecs out-of-range");
1942  DebugLoc dl = N->getDebugLoc();
1943
1944  SDValue MemAddr, Align;
1945  if (!SelectAddrMode6(N, N->getOperand(1), MemAddr, Align))
1946    return NULL;
1947
1948  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1949  MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1950
1951  SDValue Chain = N->getOperand(0);
1952  EVT VT = N->getValueType(0);
1953
1954  unsigned Alignment = 0;
1955  if (NumVecs != 3) {
1956    Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
1957    unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
1958    if (Alignment > NumBytes)
1959      Alignment = NumBytes;
1960    if (Alignment < 8 && Alignment < NumBytes)
1961      Alignment = 0;
1962    // Alignment must be a power of two; make sure of that.
1963    Alignment = (Alignment & -Alignment);
1964    if (Alignment == 1)
1965      Alignment = 0;
1966  }
1967  Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
1968
1969  unsigned OpcodeIndex;
1970  switch (VT.getSimpleVT().SimpleTy) {
1971  default: llvm_unreachable("unhandled vld-dup type");
1972  case MVT::v8i8:  OpcodeIndex = 0; break;
1973  case MVT::v4i16: OpcodeIndex = 1; break;
1974  case MVT::v2f32:
1975  case MVT::v2i32: OpcodeIndex = 2; break;
1976  }
1977
1978  SDValue Pred = getAL(CurDAG);
1979  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1980  SDValue SuperReg;
1981  unsigned Opc = Opcodes[OpcodeIndex];
1982  SmallVector<SDValue, 6> Ops;
1983  Ops.push_back(MemAddr);
1984  Ops.push_back(Align);
1985  if (isUpdating) {
1986    SDValue Inc = N->getOperand(2);
1987    Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
1988  }
1989  Ops.push_back(Pred);
1990  Ops.push_back(Reg0);
1991  Ops.push_back(Chain);
1992
1993  unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
1994  std::vector<EVT> ResTys;
1995  ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,ResTyElts));
1996  if (isUpdating)
1997    ResTys.push_back(MVT::i32);
1998  ResTys.push_back(MVT::Other);
1999  SDNode *VLdDup =
2000    CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), Ops.size());
2001  cast<MachineSDNode>(VLdDup)->setMemRefs(MemOp, MemOp + 1);
2002  SuperReg = SDValue(VLdDup, 0);
2003
2004  // Extract the subregisters.
2005  assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
2006  unsigned SubIdx = ARM::dsub_0;
2007  for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
2008    ReplaceUses(SDValue(N, Vec),
2009                CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg));
2010  ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
2011  if (isUpdating)
2012    ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
2013  return NULL;
2014}
2015
2016SDNode *ARMDAGToDAGISel::SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs,
2017                                    unsigned Opc) {
2018  assert(NumVecs >= 2 && NumVecs <= 4 && "VTBL NumVecs out-of-range");
2019  DebugLoc dl = N->getDebugLoc();
2020  EVT VT = N->getValueType(0);
2021  unsigned FirstTblReg = IsExt ? 2 : 1;
2022
2023  // Form a REG_SEQUENCE to force register allocation.
2024  SDValue RegSeq;
2025  SDValue V0 = N->getOperand(FirstTblReg + 0);
2026  SDValue V1 = N->getOperand(FirstTblReg + 1);
2027  if (NumVecs == 2)
2028    RegSeq = SDValue(PairDRegs(MVT::v16i8, V0, V1), 0);
2029  else {
2030    SDValue V2 = N->getOperand(FirstTblReg + 2);
2031    // If it's a vtbl3, form a quad D-register and leave the last part as
2032    // an undef.
2033    SDValue V3 = (NumVecs == 3)
2034      ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
2035      : N->getOperand(FirstTblReg + 3);
2036    RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
2037  }
2038
2039  SmallVector<SDValue, 6> Ops;
2040  if (IsExt)
2041    Ops.push_back(N->getOperand(1));
2042  Ops.push_back(RegSeq);
2043  Ops.push_back(N->getOperand(FirstTblReg + NumVecs));
2044  Ops.push_back(getAL(CurDAG)); // predicate
2045  Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // predicate register
2046  return CurDAG->getMachineNode(Opc, dl, VT, Ops.data(), Ops.size());
2047}
2048
2049SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N,
2050                                                     bool isSigned) {
2051  if (!Subtarget->hasV6T2Ops())
2052    return NULL;
2053
2054  unsigned Opc = isSigned ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
2055    : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
2056
2057
2058  // For unsigned extracts, check for a shift right and mask
2059  unsigned And_imm = 0;
2060  if (N->getOpcode() == ISD::AND) {
2061    if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
2062
2063      // The immediate is a mask of the low bits iff imm & (imm+1) == 0
2064      if (And_imm & (And_imm + 1))
2065        return NULL;
2066
2067      unsigned Srl_imm = 0;
2068      if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
2069                                Srl_imm)) {
2070        assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
2071
2072        // Note: The width operand is encoded as width-1.
2073        unsigned Width = CountTrailingOnes_32(And_imm) - 1;
2074        unsigned LSB = Srl_imm;
2075        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2076        SDValue Ops[] = { N->getOperand(0).getOperand(0),
2077                          CurDAG->getTargetConstant(LSB, MVT::i32),
2078                          CurDAG->getTargetConstant(Width, MVT::i32),
2079          getAL(CurDAG), Reg0 };
2080        return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
2081      }
2082    }
2083    return NULL;
2084  }
2085
2086  // Otherwise, we're looking for a shift of a shift
2087  unsigned Shl_imm = 0;
2088  if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
2089    assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
2090    unsigned Srl_imm = 0;
2091    if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
2092      assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
2093      // Note: The width operand is encoded as width-1.
2094      unsigned Width = 32 - Srl_imm - 1;
2095      int LSB = Srl_imm - Shl_imm;
2096      if (LSB < 0)
2097        return NULL;
2098      SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2099      SDValue Ops[] = { N->getOperand(0).getOperand(0),
2100                        CurDAG->getTargetConstant(LSB, MVT::i32),
2101                        CurDAG->getTargetConstant(Width, MVT::i32),
2102                        getAL(CurDAG), Reg0 };
2103      return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
2104    }
2105  }
2106  return NULL;
2107}
2108
2109SDNode *ARMDAGToDAGISel::
2110SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
2111                    ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
2112  SDValue CPTmp0;
2113  SDValue CPTmp1;
2114  if (SelectT2ShifterOperandReg(TrueVal, CPTmp0, CPTmp1)) {
2115    unsigned SOVal = cast<ConstantSDNode>(CPTmp1)->getZExtValue();
2116    unsigned SOShOp = ARM_AM::getSORegShOp(SOVal);
2117    unsigned Opc = 0;
2118    switch (SOShOp) {
2119    case ARM_AM::lsl: Opc = ARM::t2MOVCClsl; break;
2120    case ARM_AM::lsr: Opc = ARM::t2MOVCClsr; break;
2121    case ARM_AM::asr: Opc = ARM::t2MOVCCasr; break;
2122    case ARM_AM::ror: Opc = ARM::t2MOVCCror; break;
2123    default:
2124      llvm_unreachable("Unknown so_reg opcode!");
2125      break;
2126    }
2127    SDValue SOShImm =
2128      CurDAG->getTargetConstant(ARM_AM::getSORegOffset(SOVal), MVT::i32);
2129    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
2130    SDValue Ops[] = { FalseVal, CPTmp0, SOShImm, CC, CCR, InFlag };
2131    return CurDAG->SelectNodeTo(N, Opc, MVT::i32,Ops, 6);
2132  }
2133  return 0;
2134}
2135
2136SDNode *ARMDAGToDAGISel::
2137SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
2138                     ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
2139  SDValue CPTmp0;
2140  SDValue CPTmp1;
2141  SDValue CPTmp2;
2142  if (SelectImmShifterOperand(TrueVal, CPTmp0, CPTmp2)) {
2143    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
2144    SDValue Ops[] = { FalseVal, CPTmp0, CPTmp2, CC, CCR, InFlag };
2145    return CurDAG->SelectNodeTo(N, ARM::MOVCCsi, MVT::i32, Ops, 6);
2146  }
2147
2148  if (SelectRegShifterOperand(TrueVal, CPTmp0, CPTmp1, CPTmp2)) {
2149    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
2150    SDValue Ops[] = { FalseVal, CPTmp0, CPTmp1, CPTmp2, CC, CCR, InFlag };
2151    return CurDAG->SelectNodeTo(N, ARM::MOVCCsr, MVT::i32, Ops, 7);
2152  }
2153  return 0;
2154}
2155
2156SDNode *ARMDAGToDAGISel::
2157SelectT2CMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
2158                  ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
2159  ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
2160  if (!T)
2161    return 0;
2162
2163  unsigned Opc = 0;
2164  unsigned TrueImm = T->getZExtValue();
2165  if (is_t2_so_imm(TrueImm)) {
2166    Opc = ARM::t2MOVCCi;
2167  } else if (TrueImm <= 0xffff) {
2168    Opc = ARM::t2MOVCCi16;
2169  } else if (is_t2_so_imm_not(TrueImm)) {
2170    TrueImm = ~TrueImm;
2171    Opc = ARM::t2MVNCCi;
2172  } else if (TrueVal.getNode()->hasOneUse() && Subtarget->hasV6T2Ops()) {
2173    // Large immediate.
2174    Opc = ARM::t2MOVCCi32imm;
2175  }
2176
2177  if (Opc) {
2178    SDValue True = CurDAG->getTargetConstant(TrueImm, MVT::i32);
2179    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
2180    SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
2181    return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
2182  }
2183
2184  return 0;
2185}
2186
2187SDNode *ARMDAGToDAGISel::
2188SelectARMCMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
2189                   ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
2190  ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
2191  if (!T)
2192    return 0;
2193
2194  unsigned Opc = 0;
2195  unsigned TrueImm = T->getZExtValue();
2196  bool isSoImm = is_so_imm(TrueImm);
2197  if (isSoImm) {
2198    Opc = ARM::MOVCCi;
2199  } else if (Subtarget->hasV6T2Ops() && TrueImm <= 0xffff) {
2200    Opc = ARM::MOVCCi16;
2201  } else if (is_so_imm_not(TrueImm)) {
2202    TrueImm = ~TrueImm;
2203    Opc = ARM::MVNCCi;
2204  } else if (TrueVal.getNode()->hasOneUse() &&
2205             (Subtarget->hasV6T2Ops() || ARM_AM::isSOImmTwoPartVal(TrueImm))) {
2206    // Large immediate.
2207    Opc = ARM::MOVCCi32imm;
2208  }
2209
2210  if (Opc) {
2211    SDValue True = CurDAG->getTargetConstant(TrueImm, MVT::i32);
2212    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
2213    SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
2214    return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
2215  }
2216
2217  return 0;
2218}
2219
2220SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDNode *N) {
2221  EVT VT = N->getValueType(0);
2222  SDValue FalseVal = N->getOperand(0);
2223  SDValue TrueVal  = N->getOperand(1);
2224  SDValue CC = N->getOperand(2);
2225  SDValue CCR = N->getOperand(3);
2226  SDValue InFlag = N->getOperand(4);
2227  assert(CC.getOpcode() == ISD::Constant);
2228  assert(CCR.getOpcode() == ISD::Register);
2229  ARMCC::CondCodes CCVal =
2230    (ARMCC::CondCodes)cast<ConstantSDNode>(CC)->getZExtValue();
2231
2232  if (!Subtarget->isThumb1Only() && VT == MVT::i32) {
2233    // Pattern: (ARMcmov:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
2234    // Emits: (MOVCCs:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
2235    // Pattern complexity = 18  cost = 1  size = 0
2236    SDValue CPTmp0;
2237    SDValue CPTmp1;
2238    SDValue CPTmp2;
2239    if (Subtarget->isThumb()) {
2240      SDNode *Res = SelectT2CMOVShiftOp(N, FalseVal, TrueVal,
2241                                        CCVal, CCR, InFlag);
2242      if (!Res)
2243        Res = SelectT2CMOVShiftOp(N, TrueVal, FalseVal,
2244                               ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
2245      if (Res)
2246        return Res;
2247    } else {
2248      SDNode *Res = SelectARMCMOVShiftOp(N, FalseVal, TrueVal,
2249                                         CCVal, CCR, InFlag);
2250      if (!Res)
2251        Res = SelectARMCMOVShiftOp(N, TrueVal, FalseVal,
2252                               ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
2253      if (Res)
2254        return Res;
2255    }
2256
2257    // Pattern: (ARMcmov:i32 GPR:i32:$false,
2258    //             (imm:i32)<<P:Pred_so_imm>>:$true,
2259    //             (imm:i32):$cc)
2260    // Emits: (MOVCCi:i32 GPR:i32:$false,
2261    //           (so_imm:i32 (imm:i32):$true), (imm:i32):$cc)
2262    // Pattern complexity = 10  cost = 1  size = 0
2263    if (Subtarget->isThumb()) {
2264      SDNode *Res = SelectT2CMOVImmOp(N, FalseVal, TrueVal,
2265                                        CCVal, CCR, InFlag);
2266      if (!Res)
2267        Res = SelectT2CMOVImmOp(N, TrueVal, FalseVal,
2268                               ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
2269      if (Res)
2270        return Res;
2271    } else {
2272      SDNode *Res = SelectARMCMOVImmOp(N, FalseVal, TrueVal,
2273                                         CCVal, CCR, InFlag);
2274      if (!Res)
2275        Res = SelectARMCMOVImmOp(N, TrueVal, FalseVal,
2276                               ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
2277      if (Res)
2278        return Res;
2279    }
2280  }
2281
2282  // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
2283  // Emits: (MOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
2284  // Pattern complexity = 6  cost = 1  size = 0
2285  //
2286  // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
2287  // Emits: (tMOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
2288  // Pattern complexity = 6  cost = 11  size = 0
2289  //
2290  // Also VMOVScc and VMOVDcc.
2291  SDValue Tmp2 = CurDAG->getTargetConstant(CCVal, MVT::i32);
2292  SDValue Ops[] = { FalseVal, TrueVal, Tmp2, CCR, InFlag };
2293  unsigned Opc = 0;
2294  switch (VT.getSimpleVT().SimpleTy) {
2295  default: assert(false && "Illegal conditional move type!");
2296    break;
2297  case MVT::i32:
2298    Opc = Subtarget->isThumb()
2299      ? (Subtarget->hasThumb2() ? ARM::t2MOVCCr : ARM::tMOVCCr_pseudo)
2300      : ARM::MOVCCr;
2301    break;
2302  case MVT::f32:
2303    Opc = ARM::VMOVScc;
2304    break;
2305  case MVT::f64:
2306    Opc = ARM::VMOVDcc;
2307    break;
2308  }
2309  return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5);
2310}
2311
2312SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) {
2313  // The only time a CONCAT_VECTORS operation can have legal types is when
2314  // two 64-bit vectors are concatenated to a 128-bit vector.
2315  EVT VT = N->getValueType(0);
2316  if (!VT.is128BitVector() || N->getNumOperands() != 2)
2317    llvm_unreachable("unexpected CONCAT_VECTORS");
2318  return PairDRegs(VT, N->getOperand(0), N->getOperand(1));
2319}
2320
2321SDNode *ARMDAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
2322  SmallVector<SDValue, 6> Ops;
2323  Ops.push_back(Node->getOperand(1)); // Ptr
2324  Ops.push_back(Node->getOperand(2)); // Low part of Val1
2325  Ops.push_back(Node->getOperand(3)); // High part of Val1
2326  if (Opc == ARM::ATOMCMPXCHG6432) {
2327    Ops.push_back(Node->getOperand(4)); // Low part of Val2
2328    Ops.push_back(Node->getOperand(5)); // High part of Val2
2329  }
2330  Ops.push_back(Node->getOperand(0)); // Chain
2331  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2332  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
2333  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
2334                                           MVT::i32, MVT::i32, MVT::Other,
2335                                           Ops.data() ,Ops.size());
2336  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
2337  return ResNode;
2338}
2339
2340SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
2341  DebugLoc dl = N->getDebugLoc();
2342
2343  if (N->isMachineOpcode())
2344    return NULL;   // Already selected.
2345
2346  switch (N->getOpcode()) {
2347  default: break;
2348  case ISD::Constant: {
2349    unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
2350    bool UseCP = true;
2351    if (Subtarget->hasThumb2())
2352      // Thumb2-aware targets have the MOVT instruction, so all immediates can
2353      // be done with MOV + MOVT, at worst.
2354      UseCP = 0;
2355    else {
2356      if (Subtarget->isThumb()) {
2357        UseCP = (Val > 255 &&                          // MOV
2358                 ~Val > 255 &&                         // MOV + MVN
2359                 !ARM_AM::isThumbImmShiftedVal(Val));  // MOV + LSL
2360      } else
2361        UseCP = (ARM_AM::getSOImmVal(Val) == -1 &&     // MOV
2362                 ARM_AM::getSOImmVal(~Val) == -1 &&    // MVN
2363                 !ARM_AM::isSOImmTwoPartVal(Val));     // two instrs.
2364    }
2365
2366    if (UseCP) {
2367      SDValue CPIdx =
2368        CurDAG->getTargetConstantPool(ConstantInt::get(
2369                                  Type::getInt32Ty(*CurDAG->getContext()), Val),
2370                                      TLI.getPointerTy());
2371
2372      SDNode *ResNode;
2373      if (Subtarget->isThumb1Only()) {
2374        SDValue Pred = getAL(CurDAG);
2375        SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2376        SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() };
2377        ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other,
2378                                         Ops, 4);
2379      } else {
2380        SDValue Ops[] = {
2381          CPIdx,
2382          CurDAG->getTargetConstant(0, MVT::i32),
2383          getAL(CurDAG),
2384          CurDAG->getRegister(0, MVT::i32),
2385          CurDAG->getEntryNode()
2386        };
2387        ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
2388                                       Ops, 5);
2389      }
2390      ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
2391      return NULL;
2392    }
2393
2394    // Other cases are autogenerated.
2395    break;
2396  }
2397  case ISD::FrameIndex: {
2398    // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
2399    int FI = cast<FrameIndexSDNode>(N)->getIndex();
2400    SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
2401    if (Subtarget->isThumb1Only()) {
2402      SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
2403                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
2404      return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, Ops, 4);
2405    } else {
2406      unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
2407                      ARM::t2ADDri : ARM::ADDri);
2408      SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
2409                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2410                        CurDAG->getRegister(0, MVT::i32) };
2411      return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
2412    }
2413  }
2414  case ISD::SRL:
2415    if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
2416      return I;
2417    break;
2418  case ISD::SRA:
2419    if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true))
2420      return I;
2421    break;
2422  case ISD::MUL:
2423    if (Subtarget->isThumb1Only())
2424      break;
2425    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
2426      unsigned RHSV = C->getZExtValue();
2427      if (!RHSV) break;
2428      if (isPowerOf2_32(RHSV-1)) {  // 2^n+1?
2429        unsigned ShImm = Log2_32(RHSV-1);
2430        if (ShImm >= 32)
2431          break;
2432        SDValue V = N->getOperand(0);
2433        ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
2434        SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
2435        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2436        if (Subtarget->isThumb()) {
2437          SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
2438          return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6);
2439        } else {
2440          SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
2441          return CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops, 7);
2442        }
2443      }
2444      if (isPowerOf2_32(RHSV+1)) {  // 2^n-1?
2445        unsigned ShImm = Log2_32(RHSV+1);
2446        if (ShImm >= 32)
2447          break;
2448        SDValue V = N->getOperand(0);
2449        ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
2450        SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
2451        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2452        if (Subtarget->isThumb()) {
2453          SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
2454          return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 6);
2455        } else {
2456          SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
2457          return CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops, 7);
2458        }
2459      }
2460    }
2461    break;
2462  case ISD::AND: {
2463    // Check for unsigned bitfield extract
2464    if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
2465      return I;
2466
2467    // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
2468    // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
2469    // are entirely contributed by c2 and lower 16-bits are entirely contributed
2470    // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
2471    // Select it to: "movt x, ((c1 & 0xffff) >> 16)
2472    EVT VT = N->getValueType(0);
2473    if (VT != MVT::i32)
2474      break;
2475    unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
2476      ? ARM::t2MOVTi16
2477      : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
2478    if (!Opc)
2479      break;
2480    SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2481    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2482    if (!N1C)
2483      break;
2484    if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
2485      SDValue N2 = N0.getOperand(1);
2486      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2487      if (!N2C)
2488        break;
2489      unsigned N1CVal = N1C->getZExtValue();
2490      unsigned N2CVal = N2C->getZExtValue();
2491      if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
2492          (N1CVal & 0xffffU) == 0xffffU &&
2493          (N2CVal & 0xffffU) == 0x0U) {
2494        SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
2495                                                  MVT::i32);
2496        SDValue Ops[] = { N0.getOperand(0), Imm16,
2497                          getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
2498        return CurDAG->getMachineNode(Opc, dl, VT, Ops, 4);
2499      }
2500    }
2501    break;
2502  }
2503  case ARMISD::VMOVRRD:
2504    return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32,
2505                                  N->getOperand(0), getAL(CurDAG),
2506                                  CurDAG->getRegister(0, MVT::i32));
2507  case ISD::UMUL_LOHI: {
2508    if (Subtarget->isThumb1Only())
2509      break;
2510    if (Subtarget->isThumb()) {
2511      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2512                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2513                        CurDAG->getRegister(0, MVT::i32) };
2514      return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32,Ops,4);
2515    } else {
2516      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2517                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2518                        CurDAG->getRegister(0, MVT::i32) };
2519      return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
2520                                    ARM::UMULL : ARM::UMULLv5,
2521                                    dl, MVT::i32, MVT::i32, Ops, 5);
2522    }
2523  }
2524  case ISD::SMUL_LOHI: {
2525    if (Subtarget->isThumb1Only())
2526      break;
2527    if (Subtarget->isThumb()) {
2528      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2529                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
2530      return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32,Ops,4);
2531    } else {
2532      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2533                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2534                        CurDAG->getRegister(0, MVT::i32) };
2535      return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
2536                                    ARM::SMULL : ARM::SMULLv5,
2537                                    dl, MVT::i32, MVT::i32, Ops, 5);
2538    }
2539  }
2540  case ISD::LOAD: {
2541    SDNode *ResNode = 0;
2542    if (Subtarget->isThumb() && Subtarget->hasThumb2())
2543      ResNode = SelectT2IndexedLoad(N);
2544    else
2545      ResNode = SelectARMIndexedLoad(N);
2546    if (ResNode)
2547      return ResNode;
2548    // Other cases are autogenerated.
2549    break;
2550  }
2551  case ARMISD::BRCOND: {
2552    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2553    // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
2554    // Pattern complexity = 6  cost = 1  size = 0
2555
2556    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2557    // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
2558    // Pattern complexity = 6  cost = 1  size = 0
2559
2560    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2561    // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
2562    // Pattern complexity = 6  cost = 1  size = 0
2563
2564    unsigned Opc = Subtarget->isThumb() ?
2565      ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
2566    SDValue Chain = N->getOperand(0);
2567    SDValue N1 = N->getOperand(1);
2568    SDValue N2 = N->getOperand(2);
2569    SDValue N3 = N->getOperand(3);
2570    SDValue InFlag = N->getOperand(4);
2571    assert(N1.getOpcode() == ISD::BasicBlock);
2572    assert(N2.getOpcode() == ISD::Constant);
2573    assert(N3.getOpcode() == ISD::Register);
2574
2575    SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
2576                               cast<ConstantSDNode>(N2)->getZExtValue()),
2577                               MVT::i32);
2578    SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
2579    SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
2580                                             MVT::Glue, Ops, 5);
2581    Chain = SDValue(ResNode, 0);
2582    if (N->getNumValues() == 2) {
2583      InFlag = SDValue(ResNode, 1);
2584      ReplaceUses(SDValue(N, 1), InFlag);
2585    }
2586    ReplaceUses(SDValue(N, 0),
2587                SDValue(Chain.getNode(), Chain.getResNo()));
2588    return NULL;
2589  }
2590  case ARMISD::CMOV:
2591    return SelectCMOVOp(N);
2592  case ARMISD::VZIP: {
2593    unsigned Opc = 0;
2594    EVT VT = N->getValueType(0);
2595    switch (VT.getSimpleVT().SimpleTy) {
2596    default: return NULL;
2597    case MVT::v8i8:  Opc = ARM::VZIPd8; break;
2598    case MVT::v4i16: Opc = ARM::VZIPd16; break;
2599    case MVT::v2f32:
2600    case MVT::v2i32: Opc = ARM::VZIPd32; break;
2601    case MVT::v16i8: Opc = ARM::VZIPq8; break;
2602    case MVT::v8i16: Opc = ARM::VZIPq16; break;
2603    case MVT::v4f32:
2604    case MVT::v4i32: Opc = ARM::VZIPq32; break;
2605    }
2606    SDValue Pred = getAL(CurDAG);
2607    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2608    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2609    return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
2610  }
2611  case ARMISD::VUZP: {
2612    unsigned Opc = 0;
2613    EVT VT = N->getValueType(0);
2614    switch (VT.getSimpleVT().SimpleTy) {
2615    default: return NULL;
2616    case MVT::v8i8:  Opc = ARM::VUZPd8; break;
2617    case MVT::v4i16: Opc = ARM::VUZPd16; break;
2618    case MVT::v2f32:
2619    case MVT::v2i32: Opc = ARM::VUZPd32; break;
2620    case MVT::v16i8: Opc = ARM::VUZPq8; break;
2621    case MVT::v8i16: Opc = ARM::VUZPq16; break;
2622    case MVT::v4f32:
2623    case MVT::v4i32: Opc = ARM::VUZPq32; break;
2624    }
2625    SDValue Pred = getAL(CurDAG);
2626    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2627    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2628    return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
2629  }
2630  case ARMISD::VTRN: {
2631    unsigned Opc = 0;
2632    EVT VT = N->getValueType(0);
2633    switch (VT.getSimpleVT().SimpleTy) {
2634    default: return NULL;
2635    case MVT::v8i8:  Opc = ARM::VTRNd8; break;
2636    case MVT::v4i16: Opc = ARM::VTRNd16; break;
2637    case MVT::v2f32:
2638    case MVT::v2i32: Opc = ARM::VTRNd32; break;
2639    case MVT::v16i8: Opc = ARM::VTRNq8; break;
2640    case MVT::v8i16: Opc = ARM::VTRNq16; break;
2641    case MVT::v4f32:
2642    case MVT::v4i32: Opc = ARM::VTRNq32; break;
2643    }
2644    SDValue Pred = getAL(CurDAG);
2645    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2646    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2647    return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
2648  }
2649  case ARMISD::BUILD_VECTOR: {
2650    EVT VecVT = N->getValueType(0);
2651    EVT EltVT = VecVT.getVectorElementType();
2652    unsigned NumElts = VecVT.getVectorNumElements();
2653    if (EltVT == MVT::f64) {
2654      assert(NumElts == 2 && "unexpected type for BUILD_VECTOR");
2655      return PairDRegs(VecVT, N->getOperand(0), N->getOperand(1));
2656    }
2657    assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR");
2658    if (NumElts == 2)
2659      return PairSRegs(VecVT, N->getOperand(0), N->getOperand(1));
2660    assert(NumElts == 4 && "unexpected type for BUILD_VECTOR");
2661    return QuadSRegs(VecVT, N->getOperand(0), N->getOperand(1),
2662                     N->getOperand(2), N->getOperand(3));
2663  }
2664
2665  case ARMISD::VLD2DUP: {
2666    unsigned Opcodes[] = { ARM::VLD2DUPd8Pseudo, ARM::VLD2DUPd16Pseudo,
2667                           ARM::VLD2DUPd32Pseudo };
2668    return SelectVLDDup(N, false, 2, Opcodes);
2669  }
2670
2671  case ARMISD::VLD3DUP: {
2672    unsigned Opcodes[] = { ARM::VLD3DUPd8Pseudo, ARM::VLD3DUPd16Pseudo,
2673                           ARM::VLD3DUPd32Pseudo };
2674    return SelectVLDDup(N, false, 3, Opcodes);
2675  }
2676
2677  case ARMISD::VLD4DUP: {
2678    unsigned Opcodes[] = { ARM::VLD4DUPd8Pseudo, ARM::VLD4DUPd16Pseudo,
2679                           ARM::VLD4DUPd32Pseudo };
2680    return SelectVLDDup(N, false, 4, Opcodes);
2681  }
2682
2683  case ARMISD::VLD2DUP_UPD: {
2684    unsigned Opcodes[] = { ARM::VLD2DUPd8Pseudo_UPD, ARM::VLD2DUPd16Pseudo_UPD,
2685                           ARM::VLD2DUPd32Pseudo_UPD };
2686    return SelectVLDDup(N, true, 2, Opcodes);
2687  }
2688
2689  case ARMISD::VLD3DUP_UPD: {
2690    unsigned Opcodes[] = { ARM::VLD3DUPd8Pseudo_UPD, ARM::VLD3DUPd16Pseudo_UPD,
2691                           ARM::VLD3DUPd32Pseudo_UPD };
2692    return SelectVLDDup(N, true, 3, Opcodes);
2693  }
2694
2695  case ARMISD::VLD4DUP_UPD: {
2696    unsigned Opcodes[] = { ARM::VLD4DUPd8Pseudo_UPD, ARM::VLD4DUPd16Pseudo_UPD,
2697                           ARM::VLD4DUPd32Pseudo_UPD };
2698    return SelectVLDDup(N, true, 4, Opcodes);
2699  }
2700
2701  case ARMISD::VLD1_UPD: {
2702    unsigned DOpcodes[] = { ARM::VLD1d8_UPD, ARM::VLD1d16_UPD,
2703                            ARM::VLD1d32_UPD, ARM::VLD1d64_UPD };
2704    unsigned QOpcodes[] = { ARM::VLD1q8Pseudo_UPD, ARM::VLD1q16Pseudo_UPD,
2705                            ARM::VLD1q32Pseudo_UPD, ARM::VLD1q64Pseudo_UPD };
2706    return SelectVLD(N, true, 1, DOpcodes, QOpcodes, 0);
2707  }
2708
2709  case ARMISD::VLD2_UPD: {
2710    unsigned DOpcodes[] = { ARM::VLD2d8Pseudo_UPD, ARM::VLD2d16Pseudo_UPD,
2711                            ARM::VLD2d32Pseudo_UPD, ARM::VLD1q64Pseudo_UPD };
2712    unsigned QOpcodes[] = { ARM::VLD2q8Pseudo_UPD, ARM::VLD2q16Pseudo_UPD,
2713                            ARM::VLD2q32Pseudo_UPD };
2714    return SelectVLD(N, true, 2, DOpcodes, QOpcodes, 0);
2715  }
2716
2717  case ARMISD::VLD3_UPD: {
2718    unsigned DOpcodes[] = { ARM::VLD3d8Pseudo_UPD, ARM::VLD3d16Pseudo_UPD,
2719                            ARM::VLD3d32Pseudo_UPD, ARM::VLD1d64TPseudo_UPD };
2720    unsigned QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
2721                             ARM::VLD3q16Pseudo_UPD,
2722                             ARM::VLD3q32Pseudo_UPD };
2723    unsigned QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD,
2724                             ARM::VLD3q16oddPseudo_UPD,
2725                             ARM::VLD3q32oddPseudo_UPD };
2726    return SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
2727  }
2728
2729  case ARMISD::VLD4_UPD: {
2730    unsigned DOpcodes[] = { ARM::VLD4d8Pseudo_UPD, ARM::VLD4d16Pseudo_UPD,
2731                            ARM::VLD4d32Pseudo_UPD, ARM::VLD1d64QPseudo_UPD };
2732    unsigned QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
2733                             ARM::VLD4q16Pseudo_UPD,
2734                             ARM::VLD4q32Pseudo_UPD };
2735    unsigned QOpcodes1[] = { ARM::VLD4q8oddPseudo_UPD,
2736                             ARM::VLD4q16oddPseudo_UPD,
2737                             ARM::VLD4q32oddPseudo_UPD };
2738    return SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
2739  }
2740
2741  case ARMISD::VLD2LN_UPD: {
2742    unsigned DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD, ARM::VLD2LNd16Pseudo_UPD,
2743                            ARM::VLD2LNd32Pseudo_UPD };
2744    unsigned QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD,
2745                            ARM::VLD2LNq32Pseudo_UPD };
2746    return SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes);
2747  }
2748
2749  case ARMISD::VLD3LN_UPD: {
2750    unsigned DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD, ARM::VLD3LNd16Pseudo_UPD,
2751                            ARM::VLD3LNd32Pseudo_UPD };
2752    unsigned QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD,
2753                            ARM::VLD3LNq32Pseudo_UPD };
2754    return SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes);
2755  }
2756
2757  case ARMISD::VLD4LN_UPD: {
2758    unsigned DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD, ARM::VLD4LNd16Pseudo_UPD,
2759                            ARM::VLD4LNd32Pseudo_UPD };
2760    unsigned QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD,
2761                            ARM::VLD4LNq32Pseudo_UPD };
2762    return SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes);
2763  }
2764
2765  case ARMISD::VST1_UPD: {
2766    unsigned DOpcodes[] = { ARM::VST1d8_UPD, ARM::VST1d16_UPD,
2767                            ARM::VST1d32_UPD, ARM::VST1d64_UPD };
2768    unsigned QOpcodes[] = { ARM::VST1q8Pseudo_UPD, ARM::VST1q16Pseudo_UPD,
2769                            ARM::VST1q32Pseudo_UPD, ARM::VST1q64Pseudo_UPD };
2770    return SelectVST(N, true, 1, DOpcodes, QOpcodes, 0);
2771  }
2772
2773  case ARMISD::VST2_UPD: {
2774    unsigned DOpcodes[] = { ARM::VST2d8Pseudo_UPD, ARM::VST2d16Pseudo_UPD,
2775                            ARM::VST2d32Pseudo_UPD, ARM::VST1q64Pseudo_UPD };
2776    unsigned QOpcodes[] = { ARM::VST2q8Pseudo_UPD, ARM::VST2q16Pseudo_UPD,
2777                            ARM::VST2q32Pseudo_UPD };
2778    return SelectVST(N, true, 2, DOpcodes, QOpcodes, 0);
2779  }
2780
2781  case ARMISD::VST3_UPD: {
2782    unsigned DOpcodes[] = { ARM::VST3d8Pseudo_UPD, ARM::VST3d16Pseudo_UPD,
2783                            ARM::VST3d32Pseudo_UPD, ARM::VST1d64TPseudo_UPD };
2784    unsigned QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
2785                             ARM::VST3q16Pseudo_UPD,
2786                             ARM::VST3q32Pseudo_UPD };
2787    unsigned QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD,
2788                             ARM::VST3q16oddPseudo_UPD,
2789                             ARM::VST3q32oddPseudo_UPD };
2790    return SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
2791  }
2792
2793  case ARMISD::VST4_UPD: {
2794    unsigned DOpcodes[] = { ARM::VST4d8Pseudo_UPD, ARM::VST4d16Pseudo_UPD,
2795                            ARM::VST4d32Pseudo_UPD, ARM::VST1d64QPseudo_UPD };
2796    unsigned QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
2797                             ARM::VST4q16Pseudo_UPD,
2798                             ARM::VST4q32Pseudo_UPD };
2799    unsigned QOpcodes1[] = { ARM::VST4q8oddPseudo_UPD,
2800                             ARM::VST4q16oddPseudo_UPD,
2801                             ARM::VST4q32oddPseudo_UPD };
2802    return SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
2803  }
2804
2805  case ARMISD::VST2LN_UPD: {
2806    unsigned DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD, ARM::VST2LNd16Pseudo_UPD,
2807                            ARM::VST2LNd32Pseudo_UPD };
2808    unsigned QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD,
2809                            ARM::VST2LNq32Pseudo_UPD };
2810    return SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes);
2811  }
2812
2813  case ARMISD::VST3LN_UPD: {
2814    unsigned DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD, ARM::VST3LNd16Pseudo_UPD,
2815                            ARM::VST3LNd32Pseudo_UPD };
2816    unsigned QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD,
2817                            ARM::VST3LNq32Pseudo_UPD };
2818    return SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes);
2819  }
2820
2821  case ARMISD::VST4LN_UPD: {
2822    unsigned DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD, ARM::VST4LNd16Pseudo_UPD,
2823                            ARM::VST4LNd32Pseudo_UPD };
2824    unsigned QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD,
2825                            ARM::VST4LNq32Pseudo_UPD };
2826    return SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes);
2827  }
2828
2829  case ISD::INTRINSIC_VOID:
2830  case ISD::INTRINSIC_W_CHAIN: {
2831    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2832    switch (IntNo) {
2833    default:
2834      break;
2835
2836    case Intrinsic::arm_ldrexd: {
2837      SDValue MemAddr = N->getOperand(2);
2838      DebugLoc dl = N->getDebugLoc();
2839      SDValue Chain = N->getOperand(0);
2840
2841      unsigned NewOpc = ARM::LDREXD;
2842      if (Subtarget->isThumb() && Subtarget->hasThumb2())
2843        NewOpc = ARM::t2LDREXD;
2844
2845      // arm_ldrexd returns a i64 value in {i32, i32}
2846      std::vector<EVT> ResTys;
2847      ResTys.push_back(MVT::i32);
2848      ResTys.push_back(MVT::i32);
2849      ResTys.push_back(MVT::Other);
2850
2851      // place arguments in the right order
2852      SmallVector<SDValue, 7> Ops;
2853      Ops.push_back(MemAddr);
2854      Ops.push_back(getAL(CurDAG));
2855      Ops.push_back(CurDAG->getRegister(0, MVT::i32));
2856      Ops.push_back(Chain);
2857      SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops.data(),
2858                                          Ops.size());
2859      // Transfer memoperands.
2860      MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2861      MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2862      cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
2863
2864      // Until there's support for specifing explicit register constraints
2865      // like the use of even/odd register pair, hardcode ldrexd to always
2866      // use the pair [R0, R1] to hold the load result.
2867      Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ARM::R0,
2868                                   SDValue(Ld, 0), SDValue(0,0));
2869      Chain = CurDAG->getCopyToReg(Chain, dl, ARM::R1,
2870                                   SDValue(Ld, 1), Chain.getValue(1));
2871
2872      // Remap uses.
2873      SDValue Glue = Chain.getValue(1);
2874      if (!SDValue(N, 0).use_empty()) {
2875        SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2876                                                ARM::R0, MVT::i32, Glue);
2877        Glue = Result.getValue(2);
2878        ReplaceUses(SDValue(N, 0), Result);
2879      }
2880      if (!SDValue(N, 1).use_empty()) {
2881        SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2882                                                ARM::R1, MVT::i32, Glue);
2883        Glue = Result.getValue(2);
2884        ReplaceUses(SDValue(N, 1), Result);
2885      }
2886
2887      ReplaceUses(SDValue(N, 2), SDValue(Ld, 2));
2888      return NULL;
2889    }
2890
2891    case Intrinsic::arm_strexd: {
2892      DebugLoc dl = N->getDebugLoc();
2893      SDValue Chain = N->getOperand(0);
2894      SDValue Val0 = N->getOperand(2);
2895      SDValue Val1 = N->getOperand(3);
2896      SDValue MemAddr = N->getOperand(4);
2897
2898      // Until there's support for specifing explicit register constraints
2899      // like the use of even/odd register pair, hardcode strexd to always
2900      // use the pair [R2, R3] to hold the i64 (i32, i32) value to be stored.
2901      Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ARM::R2, Val0,
2902                                   SDValue(0, 0));
2903      Chain = CurDAG->getCopyToReg(Chain, dl, ARM::R3, Val1, Chain.getValue(1));
2904
2905      SDValue Glue = Chain.getValue(1);
2906      Val0 = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2907                                    ARM::R2, MVT::i32, Glue);
2908      Glue = Val0.getValue(1);
2909      Val1 = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2910                                    ARM::R3, MVT::i32, Glue);
2911
2912      // Store exclusive double return a i32 value which is the return status
2913      // of the issued store.
2914      std::vector<EVT> ResTys;
2915      ResTys.push_back(MVT::i32);
2916      ResTys.push_back(MVT::Other);
2917
2918      // place arguments in the right order
2919      SmallVector<SDValue, 7> Ops;
2920      Ops.push_back(Val0);
2921      Ops.push_back(Val1);
2922      Ops.push_back(MemAddr);
2923      Ops.push_back(getAL(CurDAG));
2924      Ops.push_back(CurDAG->getRegister(0, MVT::i32));
2925      Ops.push_back(Chain);
2926
2927      unsigned NewOpc = ARM::STREXD;
2928      if (Subtarget->isThumb() && Subtarget->hasThumb2())
2929        NewOpc = ARM::t2STREXD;
2930
2931      SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops.data(),
2932                                          Ops.size());
2933      // Transfer memoperands.
2934      MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2935      MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2936      cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
2937
2938      return St;
2939    }
2940
2941    case Intrinsic::arm_neon_vld1: {
2942      unsigned DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
2943                              ARM::VLD1d32, ARM::VLD1d64 };
2944      unsigned QOpcodes[] = { ARM::VLD1q8Pseudo, ARM::VLD1q16Pseudo,
2945                              ARM::VLD1q32Pseudo, ARM::VLD1q64Pseudo };
2946      return SelectVLD(N, false, 1, DOpcodes, QOpcodes, 0);
2947    }
2948
2949    case Intrinsic::arm_neon_vld2: {
2950      unsigned DOpcodes[] = { ARM::VLD2d8Pseudo, ARM::VLD2d16Pseudo,
2951                              ARM::VLD2d32Pseudo, ARM::VLD1q64Pseudo };
2952      unsigned QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo,
2953                              ARM::VLD2q32Pseudo };
2954      return SelectVLD(N, false, 2, DOpcodes, QOpcodes, 0);
2955    }
2956
2957    case Intrinsic::arm_neon_vld3: {
2958      unsigned DOpcodes[] = { ARM::VLD3d8Pseudo, ARM::VLD3d16Pseudo,
2959                              ARM::VLD3d32Pseudo, ARM::VLD1d64TPseudo };
2960      unsigned QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
2961                               ARM::VLD3q16Pseudo_UPD,
2962                               ARM::VLD3q32Pseudo_UPD };
2963      unsigned QOpcodes1[] = { ARM::VLD3q8oddPseudo,
2964                               ARM::VLD3q16oddPseudo,
2965                               ARM::VLD3q32oddPseudo };
2966      return SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
2967    }
2968
2969    case Intrinsic::arm_neon_vld4: {
2970      unsigned DOpcodes[] = { ARM::VLD4d8Pseudo, ARM::VLD4d16Pseudo,
2971                              ARM::VLD4d32Pseudo, ARM::VLD1d64QPseudo };
2972      unsigned QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
2973                               ARM::VLD4q16Pseudo_UPD,
2974                               ARM::VLD4q32Pseudo_UPD };
2975      unsigned QOpcodes1[] = { ARM::VLD4q8oddPseudo,
2976                               ARM::VLD4q16oddPseudo,
2977                               ARM::VLD4q32oddPseudo };
2978      return SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
2979    }
2980
2981    case Intrinsic::arm_neon_vld2lane: {
2982      unsigned DOpcodes[] = { ARM::VLD2LNd8Pseudo, ARM::VLD2LNd16Pseudo,
2983                              ARM::VLD2LNd32Pseudo };
2984      unsigned QOpcodes[] = { ARM::VLD2LNq16Pseudo, ARM::VLD2LNq32Pseudo };
2985      return SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes);
2986    }
2987
2988    case Intrinsic::arm_neon_vld3lane: {
2989      unsigned DOpcodes[] = { ARM::VLD3LNd8Pseudo, ARM::VLD3LNd16Pseudo,
2990                              ARM::VLD3LNd32Pseudo };
2991      unsigned QOpcodes[] = { ARM::VLD3LNq16Pseudo, ARM::VLD3LNq32Pseudo };
2992      return SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes);
2993    }
2994
2995    case Intrinsic::arm_neon_vld4lane: {
2996      unsigned DOpcodes[] = { ARM::VLD4LNd8Pseudo, ARM::VLD4LNd16Pseudo,
2997                              ARM::VLD4LNd32Pseudo };
2998      unsigned QOpcodes[] = { ARM::VLD4LNq16Pseudo, ARM::VLD4LNq32Pseudo };
2999      return SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes);
3000    }
3001
3002    case Intrinsic::arm_neon_vst1: {
3003      unsigned DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
3004                              ARM::VST1d32, ARM::VST1d64 };
3005      unsigned QOpcodes[] = { ARM::VST1q8Pseudo, ARM::VST1q16Pseudo,
3006                              ARM::VST1q32Pseudo, ARM::VST1q64Pseudo };
3007      return SelectVST(N, false, 1, DOpcodes, QOpcodes, 0);
3008    }
3009
3010    case Intrinsic::arm_neon_vst2: {
3011      unsigned DOpcodes[] = { ARM::VST2d8Pseudo, ARM::VST2d16Pseudo,
3012                              ARM::VST2d32Pseudo, ARM::VST1q64Pseudo };
3013      unsigned QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo,
3014                              ARM::VST2q32Pseudo };
3015      return SelectVST(N, false, 2, DOpcodes, QOpcodes, 0);
3016    }
3017
3018    case Intrinsic::arm_neon_vst3: {
3019      unsigned DOpcodes[] = { ARM::VST3d8Pseudo, ARM::VST3d16Pseudo,
3020                              ARM::VST3d32Pseudo, ARM::VST1d64TPseudo };
3021      unsigned QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
3022                               ARM::VST3q16Pseudo_UPD,
3023                               ARM::VST3q32Pseudo_UPD };
3024      unsigned QOpcodes1[] = { ARM::VST3q8oddPseudo,
3025                               ARM::VST3q16oddPseudo,
3026                               ARM::VST3q32oddPseudo };
3027      return SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
3028    }
3029
3030    case Intrinsic::arm_neon_vst4: {
3031      unsigned DOpcodes[] = { ARM::VST4d8Pseudo, ARM::VST4d16Pseudo,
3032                              ARM::VST4d32Pseudo, ARM::VST1d64QPseudo };
3033      unsigned QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
3034                               ARM::VST4q16Pseudo_UPD,
3035                               ARM::VST4q32Pseudo_UPD };
3036      unsigned QOpcodes1[] = { ARM::VST4q8oddPseudo,
3037                               ARM::VST4q16oddPseudo,
3038                               ARM::VST4q32oddPseudo };
3039      return SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
3040    }
3041
3042    case Intrinsic::arm_neon_vst2lane: {
3043      unsigned DOpcodes[] = { ARM::VST2LNd8Pseudo, ARM::VST2LNd16Pseudo,
3044                              ARM::VST2LNd32Pseudo };
3045      unsigned QOpcodes[] = { ARM::VST2LNq16Pseudo, ARM::VST2LNq32Pseudo };
3046      return SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes);
3047    }
3048
3049    case Intrinsic::arm_neon_vst3lane: {
3050      unsigned DOpcodes[] = { ARM::VST3LNd8Pseudo, ARM::VST3LNd16Pseudo,
3051                              ARM::VST3LNd32Pseudo };
3052      unsigned QOpcodes[] = { ARM::VST3LNq16Pseudo, ARM::VST3LNq32Pseudo };
3053      return SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes);
3054    }
3055
3056    case Intrinsic::arm_neon_vst4lane: {
3057      unsigned DOpcodes[] = { ARM::VST4LNd8Pseudo, ARM::VST4LNd16Pseudo,
3058                              ARM::VST4LNd32Pseudo };
3059      unsigned QOpcodes[] = { ARM::VST4LNq16Pseudo, ARM::VST4LNq32Pseudo };
3060      return SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes);
3061    }
3062    }
3063    break;
3064  }
3065
3066  case ISD::INTRINSIC_WO_CHAIN: {
3067    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3068    switch (IntNo) {
3069    default:
3070      break;
3071
3072    case Intrinsic::arm_neon_vtbl2:
3073      return SelectVTBL(N, false, 2, ARM::VTBL2Pseudo);
3074    case Intrinsic::arm_neon_vtbl3:
3075      return SelectVTBL(N, false, 3, ARM::VTBL3Pseudo);
3076    case Intrinsic::arm_neon_vtbl4:
3077      return SelectVTBL(N, false, 4, ARM::VTBL4Pseudo);
3078
3079    case Intrinsic::arm_neon_vtbx2:
3080      return SelectVTBL(N, true, 2, ARM::VTBX2Pseudo);
3081    case Intrinsic::arm_neon_vtbx3:
3082      return SelectVTBL(N, true, 3, ARM::VTBX3Pseudo);
3083    case Intrinsic::arm_neon_vtbx4:
3084      return SelectVTBL(N, true, 4, ARM::VTBX4Pseudo);
3085    }
3086    break;
3087  }
3088
3089  case ARMISD::VTBL1: {
3090    DebugLoc dl = N->getDebugLoc();
3091    EVT VT = N->getValueType(0);
3092    SmallVector<SDValue, 6> Ops;
3093
3094    Ops.push_back(N->getOperand(0));
3095    Ops.push_back(N->getOperand(1));
3096    Ops.push_back(getAL(CurDAG));                    // Predicate
3097    Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
3098    return CurDAG->getMachineNode(ARM::VTBL1, dl, VT, Ops.data(), Ops.size());
3099  }
3100  case ARMISD::VTBL2: {
3101    DebugLoc dl = N->getDebugLoc();
3102    EVT VT = N->getValueType(0);
3103
3104    // Form a REG_SEQUENCE to force register allocation.
3105    SDValue V0 = N->getOperand(0);
3106    SDValue V1 = N->getOperand(1);
3107    SDValue RegSeq = SDValue(PairDRegs(MVT::v16i8, V0, V1), 0);
3108
3109    SmallVector<SDValue, 6> Ops;
3110    Ops.push_back(RegSeq);
3111    Ops.push_back(N->getOperand(2));
3112    Ops.push_back(getAL(CurDAG));                    // Predicate
3113    Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
3114    return CurDAG->getMachineNode(ARM::VTBL2Pseudo, dl, VT,
3115                                  Ops.data(), Ops.size());
3116  }
3117
3118  case ISD::CONCAT_VECTORS:
3119    return SelectConcatVector(N);
3120
3121  case ARMISD::ATOMOR64_DAG:
3122    return SelectAtomic64(N, ARM::ATOMOR6432);
3123  case ARMISD::ATOMXOR64_DAG:
3124    return SelectAtomic64(N, ARM::ATOMXOR6432);
3125  case ARMISD::ATOMADD64_DAG:
3126    return SelectAtomic64(N, ARM::ATOMADD6432);
3127  case ARMISD::ATOMSUB64_DAG:
3128    return SelectAtomic64(N, ARM::ATOMSUB6432);
3129  case ARMISD::ATOMNAND64_DAG:
3130    return SelectAtomic64(N, ARM::ATOMNAND6432);
3131  case ARMISD::ATOMAND64_DAG:
3132    return SelectAtomic64(N, ARM::ATOMAND6432);
3133  case ARMISD::ATOMSWAP64_DAG:
3134    return SelectAtomic64(N, ARM::ATOMSWAP6432);
3135  case ARMISD::ATOMCMPXCHG64_DAG:
3136    return SelectAtomic64(N, ARM::ATOMCMPXCHG6432);
3137  }
3138
3139  return SelectCode(N);
3140}
3141
3142bool ARMDAGToDAGISel::
3143SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
3144                             std::vector<SDValue> &OutOps) {
3145  assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
3146  // Require the address to be in a register.  That is safe for all ARM
3147  // variants and it is hard to do anything much smarter without knowing
3148  // how the operand is used.
3149  OutOps.push_back(Op);
3150  return false;
3151}
3152
3153/// createARMISelDag - This pass converts a legalized DAG into a
3154/// ARM-specific DAG, ready for instruction scheduling.
3155///
3156FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
3157                                     CodeGenOpt::Level OptLevel) {
3158  return new ARMDAGToDAGISel(TM, OptLevel);
3159}
3160