MipsISelLowering.cpp revision 1cc6333161be8bbeb516bc7c74d4400dca58b997
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "mips-lower"
16#include "MipsISelLowering.h"
17#include "MipsMachineFunction.h"
18#include "MipsTargetMachine.h"
19#include "MipsTargetObjectFile.h"
20#include "MipsSubtarget.h"
21#include "InstPrinter/MipsInstPrinter.h"
22#include "MCTargetDesc/MipsBaseInfo.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/CallingConv.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SelectionDAGISel.h"
34#include "llvm/CodeGen/ValueTypes.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37using namespace llvm;
38
39// If I is a shifted mask, set the size (Size) and the first bit of the
40// mask (Pos), and return true.
41// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
42static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
43  if (!isShiftedMask_64(I))
44     return false;
45
46  Size = CountPopulation_64(I);
47  Pos = CountTrailingZeros_64(I);
48  return true;
49}
50
51static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) {
52  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
53  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
54}
55
56const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
57  switch (Opcode) {
58  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
59  case MipsISD::Hi:                return "MipsISD::Hi";
60  case MipsISD::Lo:                return "MipsISD::Lo";
61  case MipsISD::GPRel:             return "MipsISD::GPRel";
62  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
63  case MipsISD::Ret:               return "MipsISD::Ret";
64  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
65  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
66  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
67  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
68  case MipsISD::FPRound:           return "MipsISD::FPRound";
69  case MipsISD::MAdd:              return "MipsISD::MAdd";
70  case MipsISD::MAddu:             return "MipsISD::MAddu";
71  case MipsISD::MSub:              return "MipsISD::MSub";
72  case MipsISD::MSubu:             return "MipsISD::MSubu";
73  case MipsISD::DivRem:            return "MipsISD::DivRem";
74  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
75  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
76  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
77  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
78  case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
79  case MipsISD::Sync:              return "MipsISD::Sync";
80  case MipsISD::Ext:               return "MipsISD::Ext";
81  case MipsISD::Ins:               return "MipsISD::Ins";
82  default:                         return NULL;
83  }
84}
85
86MipsTargetLowering::
87MipsTargetLowering(MipsTargetMachine &TM)
88  : TargetLowering(TM, new MipsTargetObjectFile()),
89    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
90    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
91    IsO32(Subtarget->isABI_O32()) {
92
93  // Mips does not have i1 type, so use i32 for
94  // setcc operations results (slt, sgt, ...).
95  setBooleanContents(ZeroOrOneBooleanContent);
96  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
97
98  // Set up the register classes
99  addRegisterClass(MVT::i32, Mips::CPURegsRegisterClass);
100
101  if (HasMips64)
102    addRegisterClass(MVT::i64, Mips::CPU64RegsRegisterClass);
103
104  if (!TM.Options.UseSoftFloat) {
105    addRegisterClass(MVT::f32, Mips::FGR32RegisterClass);
106
107    // When dealing with single precision only, use libcalls
108    if (!Subtarget->isSingleFloat()) {
109      if (HasMips64)
110        addRegisterClass(MVT::f64, Mips::FGR64RegisterClass);
111      else
112        addRegisterClass(MVT::f64, Mips::AFGR64RegisterClass);
113    }
114  }
115
116  // Load extented operations for i1 types must be promoted
117  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
118  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
119  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
120
121  // MIPS doesn't have extending float->double load/store
122  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
123  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
124
125  // Used by legalize types to correctly generate the setcc result.
126  // Without this, every float setcc comes with a AND/OR with the result,
127  // we don't want this, since the fpcmp result goes to a flag register,
128  // which is used implicitly by brcond and select operations.
129  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
130
131  // Mips Custom Operations
132  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
133  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
134  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
135  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
136  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
137  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
138  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
139  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
140  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
141  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
142  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
143  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,   Custom);
144  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
145  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
146  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
147  setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom);
148  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
149
150  if (!TM.Options.NoNaNsFPMath) {
151    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
152    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
153  }
154
155  if (HasMips64) {
156    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
157    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
158    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
159    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
160    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
161    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
162    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,   Custom);
163  }
164
165  setOperationAction(ISD::SDIV, MVT::i32, Expand);
166  setOperationAction(ISD::SREM, MVT::i32, Expand);
167  setOperationAction(ISD::UDIV, MVT::i32, Expand);
168  setOperationAction(ISD::UREM, MVT::i32, Expand);
169  setOperationAction(ISD::SDIV, MVT::i64, Expand);
170  setOperationAction(ISD::SREM, MVT::i64, Expand);
171  setOperationAction(ISD::UDIV, MVT::i64, Expand);
172  setOperationAction(ISD::UREM, MVT::i64, Expand);
173
174  // Operations not directly supported by Mips.
175  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
176  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
177  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
178  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
179  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
180  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
181  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
182  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
183  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
184  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
185  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
186  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
187  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
188  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
189  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
190  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
191  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
192  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
193
194  if (!Subtarget->hasMips32r2())
195    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
196
197  if (!Subtarget->hasMips64r2())
198    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
199
200  setOperationAction(ISD::SHL_PARTS,         MVT::i32,   Expand);
201  setOperationAction(ISD::SRA_PARTS,         MVT::i32,   Expand);
202  setOperationAction(ISD::SRL_PARTS,         MVT::i32,   Expand);
203  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
204  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
205  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
206  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
207  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
208  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
209  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
210  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
211  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
212  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
213  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
214  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
215  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
216  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
217  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
218
219  if (!TM.Options.NoNaNsFPMath) {
220    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
221    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
222  }
223
224  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
225  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
226  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
227  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
228
229  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
230  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
231  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
232
233  // Use the default for now
234  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
235  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
236
237  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
238  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
239  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
240  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
241
242  setInsertFencesForAtomic(true);
243
244  if (Subtarget->isSingleFloat())
245    setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
246
247  if (!Subtarget->hasSEInReg()) {
248    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
249    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
250  }
251
252  if (!Subtarget->hasBitCount()) {
253    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
254    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
255  }
256
257  if (!Subtarget->hasSwap()) {
258    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
259    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
260  }
261
262  setTargetDAGCombine(ISD::ADDE);
263  setTargetDAGCombine(ISD::SUBE);
264  setTargetDAGCombine(ISD::SDIVREM);
265  setTargetDAGCombine(ISD::UDIVREM);
266  setTargetDAGCombine(ISD::SELECT);
267  setTargetDAGCombine(ISD::AND);
268  setTargetDAGCombine(ISD::OR);
269
270  setMinFunctionAlignment(HasMips64 ? 3 : 2);
271
272  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
273  computeRegisterProperties();
274
275  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
276  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
277}
278
279bool MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
280  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
281
282  switch (SVT) {
283  case MVT::i64:
284  case MVT::i32:
285  case MVT::i16:
286    return true;
287  case MVT::f32:
288    return Subtarget->hasMips32r2Or64();
289  default:
290    return false;
291  }
292}
293
294EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
295  return MVT::i32;
296}
297
298// SelectMadd -
299// Transforms a subgraph in CurDAG if the following pattern is found:
300//  (addc multLo, Lo0), (adde multHi, Hi0),
301// where,
302//  multHi/Lo: product of multiplication
303//  Lo0: initial value of Lo register
304//  Hi0: initial value of Hi register
305// Return true if pattern matching was successful.
306static bool SelectMadd(SDNode* ADDENode, SelectionDAG* CurDAG) {
307  // ADDENode's second operand must be a flag output of an ADDC node in order
308  // for the matching to be successful.
309  SDNode* ADDCNode = ADDENode->getOperand(2).getNode();
310
311  if (ADDCNode->getOpcode() != ISD::ADDC)
312    return false;
313
314  SDValue MultHi = ADDENode->getOperand(0);
315  SDValue MultLo = ADDCNode->getOperand(0);
316  SDNode* MultNode = MultHi.getNode();
317  unsigned MultOpc = MultHi.getOpcode();
318
319  // MultHi and MultLo must be generated by the same node,
320  if (MultLo.getNode() != MultNode)
321    return false;
322
323  // and it must be a multiplication.
324  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
325    return false;
326
327  // MultLo amd MultHi must be the first and second output of MultNode
328  // respectively.
329  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
330    return false;
331
332  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
333  // of the values of MultNode, in which case MultNode will be removed in later
334  // phases.
335  // If there exist users other than ADDENode or ADDCNode, this function returns
336  // here, which will result in MultNode being mapped to a single MULT
337  // instruction node rather than a pair of MULT and MADD instructions being
338  // produced.
339  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
340    return false;
341
342  SDValue Chain = CurDAG->getEntryNode();
343  DebugLoc dl = ADDENode->getDebugLoc();
344
345  // create MipsMAdd(u) node
346  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
347
348  SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue,
349                                 MultNode->getOperand(0),// Factor 0
350                                 MultNode->getOperand(1),// Factor 1
351                                 ADDCNode->getOperand(1),// Lo0
352                                 ADDENode->getOperand(1));// Hi0
353
354  // create CopyFromReg nodes
355  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
356                                              MAdd);
357  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
358                                              Mips::HI, MVT::i32,
359                                              CopyFromLo.getValue(2));
360
361  // replace uses of adde and addc here
362  if (!SDValue(ADDCNode, 0).use_empty())
363    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
364
365  if (!SDValue(ADDENode, 0).use_empty())
366    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
367
368  return true;
369}
370
371// SelectMsub -
372// Transforms a subgraph in CurDAG if the following pattern is found:
373//  (addc Lo0, multLo), (sube Hi0, multHi),
374// where,
375//  multHi/Lo: product of multiplication
376//  Lo0: initial value of Lo register
377//  Hi0: initial value of Hi register
378// Return true if pattern matching was successful.
379static bool SelectMsub(SDNode* SUBENode, SelectionDAG* CurDAG) {
380  // SUBENode's second operand must be a flag output of an SUBC node in order
381  // for the matching to be successful.
382  SDNode* SUBCNode = SUBENode->getOperand(2).getNode();
383
384  if (SUBCNode->getOpcode() != ISD::SUBC)
385    return false;
386
387  SDValue MultHi = SUBENode->getOperand(1);
388  SDValue MultLo = SUBCNode->getOperand(1);
389  SDNode* MultNode = MultHi.getNode();
390  unsigned MultOpc = MultHi.getOpcode();
391
392  // MultHi and MultLo must be generated by the same node,
393  if (MultLo.getNode() != MultNode)
394    return false;
395
396  // and it must be a multiplication.
397  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
398    return false;
399
400  // MultLo amd MultHi must be the first and second output of MultNode
401  // respectively.
402  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
403    return false;
404
405  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
406  // of the values of MultNode, in which case MultNode will be removed in later
407  // phases.
408  // If there exist users other than SUBENode or SUBCNode, this function returns
409  // here, which will result in MultNode being mapped to a single MULT
410  // instruction node rather than a pair of MULT and MSUB instructions being
411  // produced.
412  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
413    return false;
414
415  SDValue Chain = CurDAG->getEntryNode();
416  DebugLoc dl = SUBENode->getDebugLoc();
417
418  // create MipsSub(u) node
419  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
420
421  SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue,
422                                 MultNode->getOperand(0),// Factor 0
423                                 MultNode->getOperand(1),// Factor 1
424                                 SUBCNode->getOperand(0),// Lo0
425                                 SUBENode->getOperand(0));// Hi0
426
427  // create CopyFromReg nodes
428  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
429                                              MSub);
430  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
431                                              Mips::HI, MVT::i32,
432                                              CopyFromLo.getValue(2));
433
434  // replace uses of sube and subc here
435  if (!SDValue(SUBCNode, 0).use_empty())
436    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
437
438  if (!SDValue(SUBENode, 0).use_empty())
439    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
440
441  return true;
442}
443
444static SDValue PerformADDECombine(SDNode *N, SelectionDAG& DAG,
445                                  TargetLowering::DAGCombinerInfo &DCI,
446                                  const MipsSubtarget* Subtarget) {
447  if (DCI.isBeforeLegalize())
448    return SDValue();
449
450  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
451      SelectMadd(N, &DAG))
452    return SDValue(N, 0);
453
454  return SDValue();
455}
456
457static SDValue PerformSUBECombine(SDNode *N, SelectionDAG& DAG,
458                                  TargetLowering::DAGCombinerInfo &DCI,
459                                  const MipsSubtarget* Subtarget) {
460  if (DCI.isBeforeLegalize())
461    return SDValue();
462
463  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
464      SelectMsub(N, &DAG))
465    return SDValue(N, 0);
466
467  return SDValue();
468}
469
470static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG& DAG,
471                                    TargetLowering::DAGCombinerInfo &DCI,
472                                    const MipsSubtarget* Subtarget) {
473  if (DCI.isBeforeLegalizeOps())
474    return SDValue();
475
476  EVT Ty = N->getValueType(0);
477  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
478  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
479  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
480                                                  MipsISD::DivRemU;
481  DebugLoc dl = N->getDebugLoc();
482
483  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
484                               N->getOperand(0), N->getOperand(1));
485  SDValue InChain = DAG.getEntryNode();
486  SDValue InGlue = DivRem;
487
488  // insert MFLO
489  if (N->hasAnyUseOfValue(0)) {
490    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
491                                            InGlue);
492    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
493    InChain = CopyFromLo.getValue(1);
494    InGlue = CopyFromLo.getValue(2);
495  }
496
497  // insert MFHI
498  if (N->hasAnyUseOfValue(1)) {
499    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
500                                            HI, Ty, InGlue);
501    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
502  }
503
504  return SDValue();
505}
506
507static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
508  switch (CC) {
509  default: llvm_unreachable("Unknown fp condition code!");
510  case ISD::SETEQ:
511  case ISD::SETOEQ: return Mips::FCOND_OEQ;
512  case ISD::SETUNE: return Mips::FCOND_UNE;
513  case ISD::SETLT:
514  case ISD::SETOLT: return Mips::FCOND_OLT;
515  case ISD::SETGT:
516  case ISD::SETOGT: return Mips::FCOND_OGT;
517  case ISD::SETLE:
518  case ISD::SETOLE: return Mips::FCOND_OLE;
519  case ISD::SETGE:
520  case ISD::SETOGE: return Mips::FCOND_OGE;
521  case ISD::SETULT: return Mips::FCOND_ULT;
522  case ISD::SETULE: return Mips::FCOND_ULE;
523  case ISD::SETUGT: return Mips::FCOND_UGT;
524  case ISD::SETUGE: return Mips::FCOND_UGE;
525  case ISD::SETUO:  return Mips::FCOND_UN;
526  case ISD::SETO:   return Mips::FCOND_OR;
527  case ISD::SETNE:
528  case ISD::SETONE: return Mips::FCOND_ONE;
529  case ISD::SETUEQ: return Mips::FCOND_UEQ;
530  }
531}
532
533
534// Returns true if condition code has to be inverted.
535static bool InvertFPCondCode(Mips::CondCode CC) {
536  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
537    return false;
538
539  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
540         "Illegal Condition Code");
541
542  return true;
543}
544
545// Creates and returns an FPCmp node from a setcc node.
546// Returns Op if setcc is not a floating point comparison.
547static SDValue CreateFPCmp(SelectionDAG& DAG, const SDValue& Op) {
548  // must be a SETCC node
549  if (Op.getOpcode() != ISD::SETCC)
550    return Op;
551
552  SDValue LHS = Op.getOperand(0);
553
554  if (!LHS.getValueType().isFloatingPoint())
555    return Op;
556
557  SDValue RHS = Op.getOperand(1);
558  DebugLoc dl = Op.getDebugLoc();
559
560  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
561  // node if necessary.
562  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
563
564  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
565                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
566}
567
568// Creates and returns a CMovFPT/F node.
569static SDValue CreateCMovFP(SelectionDAG& DAG, SDValue Cond, SDValue True,
570                            SDValue False, DebugLoc DL) {
571  bool invert = InvertFPCondCode((Mips::CondCode)
572                                 cast<ConstantSDNode>(Cond.getOperand(2))
573                                 ->getSExtValue());
574
575  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
576                     True.getValueType(), True, False, Cond);
577}
578
579static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG& DAG,
580                                    TargetLowering::DAGCombinerInfo &DCI,
581                                    const MipsSubtarget* Subtarget) {
582  if (DCI.isBeforeLegalizeOps())
583    return SDValue();
584
585  SDValue SetCC = N->getOperand(0);
586
587  if ((SetCC.getOpcode() != ISD::SETCC) ||
588      !SetCC.getOperand(0).getValueType().isInteger())
589    return SDValue();
590
591  SDValue False = N->getOperand(2);
592  EVT FalseTy = False.getValueType();
593
594  if (!FalseTy.isInteger())
595    return SDValue();
596
597  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
598
599  if (!CN || CN->getZExtValue())
600    return SDValue();
601
602  const DebugLoc DL = N->getDebugLoc();
603  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
604  SDValue True = N->getOperand(1);
605
606  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
607                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
608
609  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
610}
611
612static SDValue PerformANDCombine(SDNode *N, SelectionDAG& DAG,
613                                 TargetLowering::DAGCombinerInfo &DCI,
614                                 const MipsSubtarget* Subtarget) {
615  // Pattern match EXT.
616  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
617  //  => ext $dst, $src, size, pos
618  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
619    return SDValue();
620
621  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
622  unsigned ShiftRightOpc = ShiftRight.getOpcode();
623
624  // Op's first operand must be a shift right.
625  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
626    return SDValue();
627
628  // The second operand of the shift must be an immediate.
629  ConstantSDNode *CN;
630  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
631    return SDValue();
632
633  uint64_t Pos = CN->getZExtValue();
634  uint64_t SMPos, SMSize;
635
636  // Op's second operand must be a shifted mask.
637  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
638      !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
639    return SDValue();
640
641  // Return if the shifted mask does not start at bit 0 or the sum of its size
642  // and Pos exceeds the word's size.
643  EVT ValTy = N->getValueType(0);
644  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
645    return SDValue();
646
647  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
648                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
649                     DAG.getConstant(SMSize, MVT::i32));
650}
651
652static SDValue PerformORCombine(SDNode *N, SelectionDAG& DAG,
653                                TargetLowering::DAGCombinerInfo &DCI,
654                                const MipsSubtarget* Subtarget) {
655  // Pattern match INS.
656  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
657  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
658  //  => ins $dst, $src, size, pos, $src1
659  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
660    return SDValue();
661
662  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
663  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
664  ConstantSDNode *CN;
665
666  // See if Op's first operand matches (and $src1 , mask0).
667  if (And0.getOpcode() != ISD::AND)
668    return SDValue();
669
670  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
671      !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
672    return SDValue();
673
674  // See if Op's second operand matches (and (shl $src, pos), mask1).
675  if (And1.getOpcode() != ISD::AND)
676    return SDValue();
677
678  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
679      !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
680    return SDValue();
681
682  // The shift masks must have the same position and size.
683  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
684    return SDValue();
685
686  SDValue Shl = And1.getOperand(0);
687  if (Shl.getOpcode() != ISD::SHL)
688    return SDValue();
689
690  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
691    return SDValue();
692
693  unsigned Shamt = CN->getZExtValue();
694
695  // Return if the shift amount and the first bit position of mask are not the
696  // same.
697  EVT ValTy = N->getValueType(0);
698  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
699    return SDValue();
700
701  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
702                     DAG.getConstant(SMPos0, MVT::i32),
703                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
704}
705
706SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
707  const {
708  SelectionDAG &DAG = DCI.DAG;
709  unsigned opc = N->getOpcode();
710
711  switch (opc) {
712  default: break;
713  case ISD::ADDE:
714    return PerformADDECombine(N, DAG, DCI, Subtarget);
715  case ISD::SUBE:
716    return PerformSUBECombine(N, DAG, DCI, Subtarget);
717  case ISD::SDIVREM:
718  case ISD::UDIVREM:
719    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
720  case ISD::SELECT:
721    return PerformSELECTCombine(N, DAG, DCI, Subtarget);
722  case ISD::AND:
723    return PerformANDCombine(N, DAG, DCI, Subtarget);
724  case ISD::OR:
725    return PerformORCombine(N, DAG, DCI, Subtarget);
726  }
727
728  return SDValue();
729}
730
731SDValue MipsTargetLowering::
732LowerOperation(SDValue Op, SelectionDAG &DAG) const
733{
734  switch (Op.getOpcode())
735  {
736    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
737    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
738    case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
739    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
740    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
741    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
742    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
743    case ISD::SELECT:             return LowerSELECT(Op, DAG);
744    case ISD::SETCC:              return LowerSETCC(Op, DAG);
745    case ISD::VASTART:            return LowerVASTART(Op, DAG);
746    case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
747    case ISD::FABS:               return LowerFABS(Op, DAG);
748    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
749    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
750    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
751  }
752  return SDValue();
753}
754
755//===----------------------------------------------------------------------===//
756//  Lower helper functions
757//===----------------------------------------------------------------------===//
758
759// AddLiveIn - This helper function adds the specified physical register to the
760// MachineFunction as a live in value.  It also creates a corresponding
761// virtual register for it.
762static unsigned
763AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
764{
765  assert(RC->contains(PReg) && "Not the correct regclass!");
766  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
767  MF.getRegInfo().addLiveIn(PReg, VReg);
768  return VReg;
769}
770
771// Get fp branch code (not opcode) from condition code.
772static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
773  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
774    return Mips::BRANCH_T;
775
776  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
777         "Invalid CondCode.");
778
779  return Mips::BRANCH_F;
780}
781
782/*
783static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
784                                        DebugLoc dl,
785                                        const MipsSubtarget* Subtarget,
786                                        const TargetInstrInfo *TII,
787                                        bool isFPCmp, unsigned Opc) {
788  // There is no need to expand CMov instructions if target has
789  // conditional moves.
790  if (Subtarget->hasCondMov())
791    return BB;
792
793  // To "insert" a SELECT_CC instruction, we actually have to insert the
794  // diamond control-flow pattern.  The incoming instruction knows the
795  // destination vreg to set, the condition code register to branch on, the
796  // true/false values to select between, and a branch opcode to use.
797  const BasicBlock *LLVM_BB = BB->getBasicBlock();
798  MachineFunction::iterator It = BB;
799  ++It;
800
801  //  thisMBB:
802  //  ...
803  //   TrueVal = ...
804  //   setcc r1, r2, r3
805  //   bNE   r1, r0, copy1MBB
806  //   fallthrough --> copy0MBB
807  MachineBasicBlock *thisMBB  = BB;
808  MachineFunction *F = BB->getParent();
809  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
810  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
811  F->insert(It, copy0MBB);
812  F->insert(It, sinkMBB);
813
814  // Transfer the remainder of BB and its successor edges to sinkMBB.
815  sinkMBB->splice(sinkMBB->begin(), BB,
816                  llvm::next(MachineBasicBlock::iterator(MI)),
817                  BB->end());
818  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
819
820  // Next, add the true and fallthrough blocks as its successors.
821  BB->addSuccessor(copy0MBB);
822  BB->addSuccessor(sinkMBB);
823
824  // Emit the right instruction according to the type of the operands compared
825  if (isFPCmp)
826    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
827  else
828    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
829      .addReg(Mips::ZERO).addMBB(sinkMBB);
830
831  //  copy0MBB:
832  //   %FalseValue = ...
833  //   # fallthrough to sinkMBB
834  BB = copy0MBB;
835
836  // Update machine-CFG edges
837  BB->addSuccessor(sinkMBB);
838
839  //  sinkMBB:
840  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
841  //  ...
842  BB = sinkMBB;
843
844  if (isFPCmp)
845    BuildMI(*BB, BB->begin(), dl,
846            TII->get(Mips::PHI), MI->getOperand(0).getReg())
847      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
848      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
849  else
850    BuildMI(*BB, BB->begin(), dl,
851            TII->get(Mips::PHI), MI->getOperand(0).getReg())
852      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
853      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
854
855  MI->eraseFromParent();   // The pseudo instruction is gone now.
856  return BB;
857}
858*/
859MachineBasicBlock *
860MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
861                                                MachineBasicBlock *BB) const {
862  switch (MI->getOpcode()) {
863  default: llvm_unreachable("Unexpected instr type to insert");
864  case Mips::ATOMIC_LOAD_ADD_I8:
865  case Mips::ATOMIC_LOAD_ADD_I8_P8:
866    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
867  case Mips::ATOMIC_LOAD_ADD_I16:
868  case Mips::ATOMIC_LOAD_ADD_I16_P8:
869    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
870  case Mips::ATOMIC_LOAD_ADD_I32:
871  case Mips::ATOMIC_LOAD_ADD_I32_P8:
872    return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
873  case Mips::ATOMIC_LOAD_ADD_I64:
874  case Mips::ATOMIC_LOAD_ADD_I64_P8:
875    return EmitAtomicBinary(MI, BB, 8, Mips::DADDu);
876
877  case Mips::ATOMIC_LOAD_AND_I8:
878  case Mips::ATOMIC_LOAD_AND_I8_P8:
879    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
880  case Mips::ATOMIC_LOAD_AND_I16:
881  case Mips::ATOMIC_LOAD_AND_I16_P8:
882    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
883  case Mips::ATOMIC_LOAD_AND_I32:
884  case Mips::ATOMIC_LOAD_AND_I32_P8:
885    return EmitAtomicBinary(MI, BB, 4, Mips::AND);
886  case Mips::ATOMIC_LOAD_AND_I64:
887  case Mips::ATOMIC_LOAD_AND_I64_P8:
888    return EmitAtomicBinary(MI, BB, 8, Mips::AND64);
889
890  case Mips::ATOMIC_LOAD_OR_I8:
891  case Mips::ATOMIC_LOAD_OR_I8_P8:
892    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
893  case Mips::ATOMIC_LOAD_OR_I16:
894  case Mips::ATOMIC_LOAD_OR_I16_P8:
895    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
896  case Mips::ATOMIC_LOAD_OR_I32:
897  case Mips::ATOMIC_LOAD_OR_I32_P8:
898    return EmitAtomicBinary(MI, BB, 4, Mips::OR);
899  case Mips::ATOMIC_LOAD_OR_I64:
900  case Mips::ATOMIC_LOAD_OR_I64_P8:
901    return EmitAtomicBinary(MI, BB, 8, Mips::OR64);
902
903  case Mips::ATOMIC_LOAD_XOR_I8:
904  case Mips::ATOMIC_LOAD_XOR_I8_P8:
905    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
906  case Mips::ATOMIC_LOAD_XOR_I16:
907  case Mips::ATOMIC_LOAD_XOR_I16_P8:
908    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
909  case Mips::ATOMIC_LOAD_XOR_I32:
910  case Mips::ATOMIC_LOAD_XOR_I32_P8:
911    return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
912  case Mips::ATOMIC_LOAD_XOR_I64:
913  case Mips::ATOMIC_LOAD_XOR_I64_P8:
914    return EmitAtomicBinary(MI, BB, 8, Mips::XOR64);
915
916  case Mips::ATOMIC_LOAD_NAND_I8:
917  case Mips::ATOMIC_LOAD_NAND_I8_P8:
918    return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
919  case Mips::ATOMIC_LOAD_NAND_I16:
920  case Mips::ATOMIC_LOAD_NAND_I16_P8:
921    return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
922  case Mips::ATOMIC_LOAD_NAND_I32:
923  case Mips::ATOMIC_LOAD_NAND_I32_P8:
924    return EmitAtomicBinary(MI, BB, 4, 0, true);
925  case Mips::ATOMIC_LOAD_NAND_I64:
926  case Mips::ATOMIC_LOAD_NAND_I64_P8:
927    return EmitAtomicBinary(MI, BB, 8, 0, true);
928
929  case Mips::ATOMIC_LOAD_SUB_I8:
930  case Mips::ATOMIC_LOAD_SUB_I8_P8:
931    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
932  case Mips::ATOMIC_LOAD_SUB_I16:
933  case Mips::ATOMIC_LOAD_SUB_I16_P8:
934    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
935  case Mips::ATOMIC_LOAD_SUB_I32:
936  case Mips::ATOMIC_LOAD_SUB_I32_P8:
937    return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
938  case Mips::ATOMIC_LOAD_SUB_I64:
939  case Mips::ATOMIC_LOAD_SUB_I64_P8:
940    return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu);
941
942  case Mips::ATOMIC_SWAP_I8:
943  case Mips::ATOMIC_SWAP_I8_P8:
944    return EmitAtomicBinaryPartword(MI, BB, 1, 0);
945  case Mips::ATOMIC_SWAP_I16:
946  case Mips::ATOMIC_SWAP_I16_P8:
947    return EmitAtomicBinaryPartword(MI, BB, 2, 0);
948  case Mips::ATOMIC_SWAP_I32:
949  case Mips::ATOMIC_SWAP_I32_P8:
950    return EmitAtomicBinary(MI, BB, 4, 0);
951  case Mips::ATOMIC_SWAP_I64:
952  case Mips::ATOMIC_SWAP_I64_P8:
953    return EmitAtomicBinary(MI, BB, 8, 0);
954
955  case Mips::ATOMIC_CMP_SWAP_I8:
956  case Mips::ATOMIC_CMP_SWAP_I8_P8:
957    return EmitAtomicCmpSwapPartword(MI, BB, 1);
958  case Mips::ATOMIC_CMP_SWAP_I16:
959  case Mips::ATOMIC_CMP_SWAP_I16_P8:
960    return EmitAtomicCmpSwapPartword(MI, BB, 2);
961  case Mips::ATOMIC_CMP_SWAP_I32:
962  case Mips::ATOMIC_CMP_SWAP_I32_P8:
963    return EmitAtomicCmpSwap(MI, BB, 4);
964  case Mips::ATOMIC_CMP_SWAP_I64:
965  case Mips::ATOMIC_CMP_SWAP_I64_P8:
966    return EmitAtomicCmpSwap(MI, BB, 8);
967  }
968}
969
970// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
971// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
972MachineBasicBlock *
973MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
974                                     unsigned Size, unsigned BinOpcode,
975                                     bool Nand) const {
976  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
977
978  MachineFunction *MF = BB->getParent();
979  MachineRegisterInfo &RegInfo = MF->getRegInfo();
980  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
981  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
982  DebugLoc dl = MI->getDebugLoc();
983  unsigned LL, SC, AND, NOR, ZERO, BEQ;
984
985  if (Size == 4) {
986    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
987    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
988    AND = Mips::AND;
989    NOR = Mips::NOR;
990    ZERO = Mips::ZERO;
991    BEQ = Mips::BEQ;
992  }
993  else {
994    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
995    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
996    AND = Mips::AND64;
997    NOR = Mips::NOR64;
998    ZERO = Mips::ZERO_64;
999    BEQ = Mips::BEQ64;
1000  }
1001
1002  unsigned OldVal = MI->getOperand(0).getReg();
1003  unsigned Ptr = MI->getOperand(1).getReg();
1004  unsigned Incr = MI->getOperand(2).getReg();
1005
1006  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1007  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1008  unsigned Success = RegInfo.createVirtualRegister(RC);
1009
1010  // insert new blocks after the current block
1011  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1012  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1013  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1014  MachineFunction::iterator It = BB;
1015  ++It;
1016  MF->insert(It, loopMBB);
1017  MF->insert(It, exitMBB);
1018
1019  // Transfer the remainder of BB and its successor edges to exitMBB.
1020  exitMBB->splice(exitMBB->begin(), BB,
1021                  llvm::next(MachineBasicBlock::iterator(MI)),
1022                  BB->end());
1023  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1024
1025  //  thisMBB:
1026  //    ...
1027  //    fallthrough --> loopMBB
1028  BB->addSuccessor(loopMBB);
1029  loopMBB->addSuccessor(loopMBB);
1030  loopMBB->addSuccessor(exitMBB);
1031
1032  //  loopMBB:
1033  //    ll oldval, 0(ptr)
1034  //    <binop> storeval, oldval, incr
1035  //    sc success, storeval, 0(ptr)
1036  //    beq success, $0, loopMBB
1037  BB = loopMBB;
1038  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1039  if (Nand) {
1040    //  and andres, oldval, incr
1041    //  nor storeval, $0, andres
1042    BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1043    BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1044  } else if (BinOpcode) {
1045    //  <binop> storeval, oldval, incr
1046    BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1047  } else {
1048    StoreVal = Incr;
1049  }
1050  BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1051  BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1052
1053  MI->eraseFromParent();   // The instruction is gone now.
1054
1055  return exitMBB;
1056}
1057
1058MachineBasicBlock *
1059MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
1060                                             MachineBasicBlock *BB,
1061                                             unsigned Size, unsigned BinOpcode,
1062                                             bool Nand) const {
1063  assert((Size == 1 || Size == 2) &&
1064      "Unsupported size for EmitAtomicBinaryPartial.");
1065
1066  MachineFunction *MF = BB->getParent();
1067  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1068  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1069  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1070  DebugLoc dl = MI->getDebugLoc();
1071  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1072  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1073
1074  unsigned Dest = MI->getOperand(0).getReg();
1075  unsigned Ptr = MI->getOperand(1).getReg();
1076  unsigned Incr = MI->getOperand(2).getReg();
1077
1078  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1079  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1080  unsigned Mask = RegInfo.createVirtualRegister(RC);
1081  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1082  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1083  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1084  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1085  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1086  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1087  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1088  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1089  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1090  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1091  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1092  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1093  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1094  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1095  unsigned Success = RegInfo.createVirtualRegister(RC);
1096
1097  // insert new blocks after the current block
1098  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1099  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1100  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1101  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1102  MachineFunction::iterator It = BB;
1103  ++It;
1104  MF->insert(It, loopMBB);
1105  MF->insert(It, sinkMBB);
1106  MF->insert(It, exitMBB);
1107
1108  // Transfer the remainder of BB and its successor edges to exitMBB.
1109  exitMBB->splice(exitMBB->begin(), BB,
1110                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1111  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1112
1113  BB->addSuccessor(loopMBB);
1114  loopMBB->addSuccessor(loopMBB);
1115  loopMBB->addSuccessor(sinkMBB);
1116  sinkMBB->addSuccessor(exitMBB);
1117
1118  //  thisMBB:
1119  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1120  //    and     alignedaddr,ptr,masklsb2
1121  //    andi    ptrlsb2,ptr,3
1122  //    sll     shiftamt,ptrlsb2,3
1123  //    ori     maskupper,$0,255               # 0xff
1124  //    sll     mask,maskupper,shiftamt
1125  //    nor     mask2,$0,mask
1126  //    sll     incr2,incr,shiftamt
1127
1128  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1129  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1130    .addReg(Mips::ZERO).addImm(-4);
1131  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1132    .addReg(Ptr).addReg(MaskLSB2);
1133  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1134  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1135  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1136    .addReg(Mips::ZERO).addImm(MaskImm);
1137  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1138    .addReg(ShiftAmt).addReg(MaskUpper);
1139  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1140  BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1141
1142  // atomic.load.binop
1143  // loopMBB:
1144  //   ll      oldval,0(alignedaddr)
1145  //   binop   binopres,oldval,incr2
1146  //   and     newval,binopres,mask
1147  //   and     maskedoldval0,oldval,mask2
1148  //   or      storeval,maskedoldval0,newval
1149  //   sc      success,storeval,0(alignedaddr)
1150  //   beq     success,$0,loopMBB
1151
1152  // atomic.swap
1153  // loopMBB:
1154  //   ll      oldval,0(alignedaddr)
1155  //   and     newval,incr2,mask
1156  //   and     maskedoldval0,oldval,mask2
1157  //   or      storeval,maskedoldval0,newval
1158  //   sc      success,storeval,0(alignedaddr)
1159  //   beq     success,$0,loopMBB
1160
1161  BB = loopMBB;
1162  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1163  if (Nand) {
1164    //  and andres, oldval, incr2
1165    //  nor binopres, $0, andres
1166    //  and newval, binopres, mask
1167    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1168    BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
1169      .addReg(Mips::ZERO).addReg(AndRes);
1170    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1171  } else if (BinOpcode) {
1172    //  <binop> binopres, oldval, incr2
1173    //  and newval, binopres, mask
1174    BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1175    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1176  } else {// atomic.swap
1177    //  and newval, incr2, mask
1178    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1179  }
1180
1181  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1182    .addReg(OldVal).addReg(Mask2);
1183  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1184    .addReg(MaskedOldVal0).addReg(NewVal);
1185  BuildMI(BB, dl, TII->get(SC), Success)
1186    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1187  BuildMI(BB, dl, TII->get(Mips::BEQ))
1188    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1189
1190  //  sinkMBB:
1191  //    and     maskedoldval1,oldval,mask
1192  //    srl     srlres,maskedoldval1,shiftamt
1193  //    sll     sllres,srlres,24
1194  //    sra     dest,sllres,24
1195  BB = sinkMBB;
1196  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1197
1198  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1199    .addReg(OldVal).addReg(Mask);
1200  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1201      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1202  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1203      .addReg(SrlRes).addImm(ShiftImm);
1204  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1205      .addReg(SllRes).addImm(ShiftImm);
1206
1207  MI->eraseFromParent();   // The instruction is gone now.
1208
1209  return exitMBB;
1210}
1211
1212MachineBasicBlock *
1213MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
1214                                      MachineBasicBlock *BB,
1215                                      unsigned Size) const {
1216  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1217
1218  MachineFunction *MF = BB->getParent();
1219  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1220  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1221  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1222  DebugLoc dl = MI->getDebugLoc();
1223  unsigned LL, SC, ZERO, BNE, BEQ;
1224
1225  if (Size == 4) {
1226    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1227    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1228    ZERO = Mips::ZERO;
1229    BNE = Mips::BNE;
1230    BEQ = Mips::BEQ;
1231  }
1232  else {
1233    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1234    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1235    ZERO = Mips::ZERO_64;
1236    BNE = Mips::BNE64;
1237    BEQ = Mips::BEQ64;
1238  }
1239
1240  unsigned Dest    = MI->getOperand(0).getReg();
1241  unsigned Ptr     = MI->getOperand(1).getReg();
1242  unsigned OldVal  = MI->getOperand(2).getReg();
1243  unsigned NewVal  = MI->getOperand(3).getReg();
1244
1245  unsigned Success = RegInfo.createVirtualRegister(RC);
1246
1247  // insert new blocks after the current block
1248  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1249  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1250  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1251  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1252  MachineFunction::iterator It = BB;
1253  ++It;
1254  MF->insert(It, loop1MBB);
1255  MF->insert(It, loop2MBB);
1256  MF->insert(It, exitMBB);
1257
1258  // Transfer the remainder of BB and its successor edges to exitMBB.
1259  exitMBB->splice(exitMBB->begin(), BB,
1260                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1261  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1262
1263  //  thisMBB:
1264  //    ...
1265  //    fallthrough --> loop1MBB
1266  BB->addSuccessor(loop1MBB);
1267  loop1MBB->addSuccessor(exitMBB);
1268  loop1MBB->addSuccessor(loop2MBB);
1269  loop2MBB->addSuccessor(loop1MBB);
1270  loop2MBB->addSuccessor(exitMBB);
1271
1272  // loop1MBB:
1273  //   ll dest, 0(ptr)
1274  //   bne dest, oldval, exitMBB
1275  BB = loop1MBB;
1276  BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1277  BuildMI(BB, dl, TII->get(BNE))
1278    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1279
1280  // loop2MBB:
1281  //   sc success, newval, 0(ptr)
1282  //   beq success, $0, loop1MBB
1283  BB = loop2MBB;
1284  BuildMI(BB, dl, TII->get(SC), Success)
1285    .addReg(NewVal).addReg(Ptr).addImm(0);
1286  BuildMI(BB, dl, TII->get(BEQ))
1287    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1288
1289  MI->eraseFromParent();   // The instruction is gone now.
1290
1291  return exitMBB;
1292}
1293
1294MachineBasicBlock *
1295MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
1296                                              MachineBasicBlock *BB,
1297                                              unsigned Size) const {
1298  assert((Size == 1 || Size == 2) &&
1299      "Unsupported size for EmitAtomicCmpSwapPartial.");
1300
1301  MachineFunction *MF = BB->getParent();
1302  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1303  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1304  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1305  DebugLoc dl = MI->getDebugLoc();
1306  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1307  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1308
1309  unsigned Dest    = MI->getOperand(0).getReg();
1310  unsigned Ptr     = MI->getOperand(1).getReg();
1311  unsigned CmpVal  = MI->getOperand(2).getReg();
1312  unsigned NewVal  = MI->getOperand(3).getReg();
1313
1314  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1315  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1316  unsigned Mask = RegInfo.createVirtualRegister(RC);
1317  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1318  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1319  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1320  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1321  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1322  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1323  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1324  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1325  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1326  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1327  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1328  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1329  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1330  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1331  unsigned Success = RegInfo.createVirtualRegister(RC);
1332
1333  // insert new blocks after the current block
1334  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1335  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1336  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1337  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1338  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1339  MachineFunction::iterator It = BB;
1340  ++It;
1341  MF->insert(It, loop1MBB);
1342  MF->insert(It, loop2MBB);
1343  MF->insert(It, sinkMBB);
1344  MF->insert(It, exitMBB);
1345
1346  // Transfer the remainder of BB and its successor edges to exitMBB.
1347  exitMBB->splice(exitMBB->begin(), BB,
1348                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1349  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1350
1351  BB->addSuccessor(loop1MBB);
1352  loop1MBB->addSuccessor(sinkMBB);
1353  loop1MBB->addSuccessor(loop2MBB);
1354  loop2MBB->addSuccessor(loop1MBB);
1355  loop2MBB->addSuccessor(sinkMBB);
1356  sinkMBB->addSuccessor(exitMBB);
1357
1358  // FIXME: computation of newval2 can be moved to loop2MBB.
1359  //  thisMBB:
1360  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1361  //    and     alignedaddr,ptr,masklsb2
1362  //    andi    ptrlsb2,ptr,3
1363  //    sll     shiftamt,ptrlsb2,3
1364  //    ori     maskupper,$0,255               # 0xff
1365  //    sll     mask,maskupper,shiftamt
1366  //    nor     mask2,$0,mask
1367  //    andi    maskedcmpval,cmpval,255
1368  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1369  //    andi    maskednewval,newval,255
1370  //    sll     shiftednewval,maskednewval,shiftamt
1371  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1372  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1373    .addReg(Mips::ZERO).addImm(-4);
1374  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1375    .addReg(Ptr).addReg(MaskLSB2);
1376  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1377  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1378  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1379    .addReg(Mips::ZERO).addImm(MaskImm);
1380  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1381    .addReg(ShiftAmt).addReg(MaskUpper);
1382  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1383  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
1384    .addReg(CmpVal).addImm(MaskImm);
1385  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
1386    .addReg(ShiftAmt).addReg(MaskedCmpVal);
1387  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
1388    .addReg(NewVal).addImm(MaskImm);
1389  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
1390    .addReg(ShiftAmt).addReg(MaskedNewVal);
1391
1392  //  loop1MBB:
1393  //    ll      oldval,0(alginedaddr)
1394  //    and     maskedoldval0,oldval,mask
1395  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1396  BB = loop1MBB;
1397  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1398  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1399    .addReg(OldVal).addReg(Mask);
1400  BuildMI(BB, dl, TII->get(Mips::BNE))
1401    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1402
1403  //  loop2MBB:
1404  //    and     maskedoldval1,oldval,mask2
1405  //    or      storeval,maskedoldval1,shiftednewval
1406  //    sc      success,storeval,0(alignedaddr)
1407  //    beq     success,$0,loop1MBB
1408  BB = loop2MBB;
1409  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1410    .addReg(OldVal).addReg(Mask2);
1411  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1412    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1413  BuildMI(BB, dl, TII->get(SC), Success)
1414      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1415  BuildMI(BB, dl, TII->get(Mips::BEQ))
1416      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1417
1418  //  sinkMBB:
1419  //    srl     srlres,maskedoldval0,shiftamt
1420  //    sll     sllres,srlres,24
1421  //    sra     dest,sllres,24
1422  BB = sinkMBB;
1423  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1424
1425  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1426      .addReg(ShiftAmt).addReg(MaskedOldVal0);
1427  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1428      .addReg(SrlRes).addImm(ShiftImm);
1429  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1430      .addReg(SllRes).addImm(ShiftImm);
1431
1432  MI->eraseFromParent();   // The instruction is gone now.
1433
1434  return exitMBB;
1435}
1436
1437//===----------------------------------------------------------------------===//
1438//  Misc Lower Operation implementation
1439//===----------------------------------------------------------------------===//
1440SDValue MipsTargetLowering::
1441LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
1442{
1443  MachineFunction &MF = DAG.getMachineFunction();
1444  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1445  unsigned SP = IsN64 ? Mips::SP_64 : Mips::SP;
1446
1447  assert(getTargetMachine().getFrameLowering()->getStackAlignment() >=
1448         cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue() &&
1449         "Cannot lower if the alignment of the allocated space is larger than \
1450          that of the stack.");
1451
1452  SDValue Chain = Op.getOperand(0);
1453  SDValue Size = Op.getOperand(1);
1454  DebugLoc dl = Op.getDebugLoc();
1455
1456  // Get a reference from Mips stack pointer
1457  SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, SP, getPointerTy());
1458
1459  // Subtract the dynamic size from the actual stack size to
1460  // obtain the new stack size.
1461  SDValue Sub = DAG.getNode(ISD::SUB, dl, getPointerTy(), StackPointer, Size);
1462
1463  // The Sub result contains the new stack start address, so it
1464  // must be placed in the stack pointer register.
1465  Chain = DAG.getCopyToReg(StackPointer.getValue(1), dl, SP, Sub, SDValue());
1466
1467  // This node always has two return values: a new stack pointer
1468  // value and a chain
1469  SDVTList VTLs = DAG.getVTList(getPointerTy(), MVT::Other);
1470  SDValue Ptr = DAG.getFrameIndex(MipsFI->getDynAllocFI(), getPointerTy());
1471  SDValue Ops[] = { Chain, Ptr, Chain.getValue(1) };
1472
1473  return DAG.getNode(MipsISD::DynAlloc, dl, VTLs, Ops, 3);
1474}
1475
1476SDValue MipsTargetLowering::
1477LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1478{
1479  // The first operand is the chain, the second is the condition, the third is
1480  // the block to branch to if the condition is true.
1481  SDValue Chain = Op.getOperand(0);
1482  SDValue Dest = Op.getOperand(2);
1483  DebugLoc dl = Op.getDebugLoc();
1484
1485  SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
1486
1487  // Return if flag is not set by a floating point comparison.
1488  if (CondRes.getOpcode() != MipsISD::FPCmp)
1489    return Op;
1490
1491  SDValue CCNode  = CondRes.getOperand(2);
1492  Mips::CondCode CC =
1493    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1494  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
1495
1496  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
1497                     Dest, CondRes);
1498}
1499
1500SDValue MipsTargetLowering::
1501LowerSELECT(SDValue Op, SelectionDAG &DAG) const
1502{
1503  SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
1504
1505  // Return if flag is not set by a floating point comparison.
1506  if (Cond.getOpcode() != MipsISD::FPCmp)
1507    return Op;
1508
1509  return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1510                      Op.getDebugLoc());
1511}
1512
1513SDValue MipsTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1514  SDValue Cond = CreateFPCmp(DAG, Op);
1515
1516  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1517         "Floating point operand expected.");
1518
1519  SDValue True  = DAG.getConstant(1, MVT::i32);
1520  SDValue False = DAG.getConstant(0, MVT::i32);
1521
1522  return CreateCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
1523}
1524
1525SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
1526                                               SelectionDAG &DAG) const {
1527  // FIXME there isn't actually debug info here
1528  DebugLoc dl = Op.getDebugLoc();
1529  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1530
1531  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1532    SDVTList VTs = DAG.getVTList(MVT::i32);
1533
1534    MipsTargetObjectFile &TLOF = (MipsTargetObjectFile&)getObjFileLowering();
1535
1536    // %gp_rel relocation
1537    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1538      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1539                                              MipsII::MO_GPREL);
1540      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1);
1541      SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1542      return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode);
1543    }
1544    // %hi/%lo relocation
1545    SDValue GAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1546                                              MipsII::MO_ABS_HI);
1547    SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1548                                              MipsII::MO_ABS_LO);
1549    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GAHi, 1);
1550    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
1551    return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1552  }
1553
1554  EVT ValTy = Op.getValueType();
1555  bool HasGotOfst = (GV->hasInternalLinkage() ||
1556                     (GV->hasLocalLinkage() && !isa<Function>(GV)));
1557  unsigned GotFlag = HasMips64 ?
1558                     (HasGotOfst ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT_DISP) :
1559                     (HasGotOfst ? MipsII::MO_GOT : MipsII::MO_GOT16);
1560  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0, GotFlag);
1561  GA = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), GA);
1562  SDValue ResNode = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), GA,
1563                                MachinePointerInfo(), false, false, false, 0);
1564  // On functions and global targets not internal linked only
1565  // a load from got/GP is necessary for PIC to work.
1566  if (!HasGotOfst)
1567    return ResNode;
1568  SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0,
1569                                            HasMips64 ? MipsII::MO_GOT_OFST :
1570                                                        MipsII::MO_ABS_LO);
1571  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, GALo);
1572  return DAG.getNode(ISD::ADD, dl, ValTy, ResNode, Lo);
1573}
1574
1575SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
1576                                              SelectionDAG &DAG) const {
1577  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1578  // FIXME there isn't actually debug info here
1579  DebugLoc dl = Op.getDebugLoc();
1580
1581  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1582    // %hi/%lo relocation
1583    SDValue BAHi = DAG.getBlockAddress(BA, MVT::i32, true, MipsII::MO_ABS_HI);
1584    SDValue BALo = DAG.getBlockAddress(BA, MVT::i32, true, MipsII::MO_ABS_LO);
1585    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, MVT::i32, BAHi);
1586    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALo);
1587    return DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo);
1588  }
1589
1590  EVT ValTy = Op.getValueType();
1591  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1592  unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1593  SDValue BAGOTOffset = DAG.getBlockAddress(BA, ValTy, true, GOTFlag);
1594  BAGOTOffset = DAG.getNode(MipsISD::Wrapper, dl, ValTy,
1595                            GetGlobalReg(DAG, ValTy), BAGOTOffset);
1596  SDValue BALOOffset = DAG.getBlockAddress(BA, ValTy, true, OFSTFlag);
1597  SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), BAGOTOffset,
1598                             MachinePointerInfo(), false, false, false, 0);
1599  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, BALOOffset);
1600  return DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1601}
1602
1603SDValue MipsTargetLowering::
1604LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1605{
1606  // If the relocation model is PIC, use the General Dynamic TLS Model or
1607  // Local Dynamic TLS model, otherwise use the Initial Exec or
1608  // Local Exec TLS Model.
1609
1610  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1611  DebugLoc dl = GA->getDebugLoc();
1612  const GlobalValue *GV = GA->getGlobal();
1613  EVT PtrVT = getPointerTy();
1614
1615  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1616    // General Dynamic TLS Model
1617    bool LocalDynamic = GV->hasInternalLinkage();
1618    unsigned Flag = LocalDynamic ? MipsII::MO_TLSLDM :MipsII::MO_TLSGD;
1619    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag);
1620    SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT,
1621                                   GetGlobalReg(DAG, PtrVT), TGA);
1622    unsigned PtrSize = PtrVT.getSizeInBits();
1623    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1624
1625    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1626
1627    ArgListTy Args;
1628    ArgListEntry Entry;
1629    Entry.Node = Argument;
1630    Entry.Ty = PtrTy;
1631    Args.push_back(Entry);
1632
1633    std::pair<SDValue, SDValue> CallResult =
1634      LowerCallTo(DAG.getEntryNode(), PtrTy,
1635                  false, false, false, false, 0, CallingConv::C,
1636                  /*isTailCall=*/false, /*doesNotRet=*/false,
1637                  /*isReturnValueUsed=*/true,
1638                  TlsGetAddr, Args, DAG, dl);
1639
1640    SDValue Ret = CallResult.first;
1641
1642    if (!LocalDynamic)
1643      return Ret;
1644
1645    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1646                                               MipsII::MO_DTPREL_HI);
1647    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1648    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1649                                               MipsII::MO_DTPREL_LO);
1650    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1651    SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret);
1652    return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo);
1653  }
1654
1655  SDValue Offset;
1656  if (GV->isDeclaration()) {
1657    // Initial Exec TLS Model
1658    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1659                                             MipsII::MO_GOTTPREL);
1660    TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1661                      TGA);
1662    Offset = DAG.getLoad(PtrVT, dl,
1663                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1664                         false, false, false, 0);
1665  } else {
1666    // Local Exec TLS Model
1667    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1668                                               MipsII::MO_TPREL_HI);
1669    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1670                                               MipsII::MO_TPREL_LO);
1671    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1672    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1673    Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1674  }
1675
1676  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
1677  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1678}
1679
1680SDValue MipsTargetLowering::
1681LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1682{
1683  SDValue HiPart, JTI, JTILo;
1684  // FIXME there isn't actually debug info here
1685  DebugLoc dl = Op.getDebugLoc();
1686  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
1687  EVT PtrVT = Op.getValueType();
1688  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1689
1690  if (!IsPIC && !IsN64) {
1691    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_HI);
1692    HiPart = DAG.getNode(MipsISD::Hi, dl, PtrVT, JTI);
1693    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_LO);
1694  } else {// Emit Load from Global Pointer
1695    unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1696    unsigned OfstFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1697    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, GOTFlag);
1698    JTI = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1699                      JTI);
1700    HiPart = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), JTI,
1701                         MachinePointerInfo(), false, false, false, 0);
1702    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OfstFlag);
1703  }
1704
1705  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, JTILo);
1706  return DAG.getNode(ISD::ADD, dl, PtrVT, HiPart, Lo);
1707}
1708
1709SDValue MipsTargetLowering::
1710LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1711{
1712  SDValue ResNode;
1713  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1714  const Constant *C = N->getConstVal();
1715  // FIXME there isn't actually debug info here
1716  DebugLoc dl = Op.getDebugLoc();
1717
1718  // gp_rel relocation
1719  // FIXME: we should reference the constant pool using small data sections,
1720  // but the asm printer currently doesn't support this feature without
1721  // hacking it. This feature should come soon so we can uncomment the
1722  // stuff below.
1723  //if (IsInSmallSection(C->getType())) {
1724  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1725  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1726  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1727
1728  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1729    SDValue CPHi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1730                                             N->getOffset(), MipsII::MO_ABS_HI);
1731    SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1732                                             N->getOffset(), MipsII::MO_ABS_LO);
1733    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CPHi);
1734    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
1735    ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1736  } else {
1737    EVT ValTy = Op.getValueType();
1738    unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1739    unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1740    SDValue CP = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1741                                           N->getOffset(), GOTFlag);
1742    CP = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), CP);
1743    SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), CP,
1744                               MachinePointerInfo::getConstantPool(), false,
1745                               false, false, 0);
1746    SDValue CPLo = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1747                                             N->getOffset(), OFSTFlag);
1748    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, CPLo);
1749    ResNode = DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1750  }
1751
1752  return ResNode;
1753}
1754
1755SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1756  MachineFunction &MF = DAG.getMachineFunction();
1757  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1758
1759  DebugLoc dl = Op.getDebugLoc();
1760  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1761                                 getPointerTy());
1762
1763  // vastart just stores the address of the VarArgsFrameIndex slot into the
1764  // memory location argument.
1765  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1766  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
1767                      MachinePointerInfo(SV), false, false, 0);
1768}
1769
1770static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1771  EVT TyX = Op.getOperand(0).getValueType();
1772  EVT TyY = Op.getOperand(1).getValueType();
1773  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1774  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1775  DebugLoc DL = Op.getDebugLoc();
1776  SDValue Res;
1777
1778  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1779  // to i32.
1780  SDValue X = (TyX == MVT::f32) ?
1781    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1782    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1783                Const1);
1784  SDValue Y = (TyY == MVT::f32) ?
1785    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1786    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1787                Const1);
1788
1789  if (HasR2) {
1790    // ext  E, Y, 31, 1  ; extract bit31 of Y
1791    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1792    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1793    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1794  } else {
1795    // sll SllX, X, 1
1796    // srl SrlX, SllX, 1
1797    // srl SrlY, Y, 31
1798    // sll SllY, SrlX, 31
1799    // or  Or, SrlX, SllY
1800    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1801    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1802    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1803    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1804    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1805  }
1806
1807  if (TyX == MVT::f32)
1808    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1809
1810  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1811                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1812  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1813}
1814
1815static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1816  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1817  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1818  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1819  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1820  DebugLoc DL = Op.getDebugLoc();
1821
1822  // Bitcast to integer nodes.
1823  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1824  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1825
1826  if (HasR2) {
1827    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1828    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1829    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1830                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1831
1832    if (WidthX > WidthY)
1833      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1834    else if (WidthY > WidthX)
1835      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1836
1837    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1838                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1839    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1840  }
1841
1842  // (d)sll SllX, X, 1
1843  // (d)srl SrlX, SllX, 1
1844  // (d)srl SrlY, Y, width(Y)-1
1845  // (d)sll SllY, SrlX, width(Y)-1
1846  // or     Or, SrlX, SllY
1847  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1848  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1849  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1850                             DAG.getConstant(WidthY - 1, MVT::i32));
1851
1852  if (WidthX > WidthY)
1853    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1854  else if (WidthY > WidthX)
1855    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1856
1857  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1858                             DAG.getConstant(WidthX - 1, MVT::i32));
1859  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1860  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1861}
1862
1863SDValue
1864MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1865  if (Subtarget->hasMips64())
1866    return LowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1867
1868  return LowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1869}
1870
1871static SDValue LowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1872  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1873  DebugLoc DL = Op.getDebugLoc();
1874
1875  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1876  // to i32.
1877  SDValue X = (Op.getValueType() == MVT::f32) ?
1878    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1879    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1880                Const1);
1881
1882  // Clear MSB.
1883  if (HasR2)
1884    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1885                      DAG.getRegister(Mips::ZERO, MVT::i32),
1886                      DAG.getConstant(31, MVT::i32), Const1, X);
1887  else {
1888    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1889    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1890  }
1891
1892  if (Op.getValueType() == MVT::f32)
1893    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1894
1895  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1896                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1897  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1898}
1899
1900static SDValue LowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1901  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1902  DebugLoc DL = Op.getDebugLoc();
1903
1904  // Bitcast to integer node.
1905  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1906
1907  // Clear MSB.
1908  if (HasR2)
1909    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1910                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1911                      DAG.getConstant(63, MVT::i32), Const1, X);
1912  else {
1913    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1914    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1915  }
1916
1917  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1918}
1919
1920SDValue
1921MipsTargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
1922  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1923    return LowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1924
1925  return LowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1926}
1927
1928SDValue MipsTargetLowering::
1929LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1930  // check the depth
1931  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1932         "Frame address can only be determined for current frame.");
1933
1934  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1935  MFI->setFrameAddressIsTaken(true);
1936  EVT VT = Op.getValueType();
1937  DebugLoc dl = Op.getDebugLoc();
1938  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1939                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1940  return FrameAddr;
1941}
1942
1943// TODO: set SType according to the desired memory barrier behavior.
1944SDValue
1945MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG& DAG) const {
1946  unsigned SType = 0;
1947  DebugLoc dl = Op.getDebugLoc();
1948  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
1949                     DAG.getConstant(SType, MVT::i32));
1950}
1951
1952SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
1953                                              SelectionDAG& DAG) const {
1954  // FIXME: Need pseudo-fence for 'singlethread' fences
1955  // FIXME: Set SType for weaker fences where supported/appropriate.
1956  unsigned SType = 0;
1957  DebugLoc dl = Op.getDebugLoc();
1958  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
1959                     DAG.getConstant(SType, MVT::i32));
1960}
1961
1962//===----------------------------------------------------------------------===//
1963//                      Calling Convention Implementation
1964//===----------------------------------------------------------------------===//
1965
1966//===----------------------------------------------------------------------===//
1967// TODO: Implement a generic logic using tblgen that can support this.
1968// Mips O32 ABI rules:
1969// ---
1970// i32 - Passed in A0, A1, A2, A3 and stack
1971// f32 - Only passed in f32 registers if no int reg has been used yet to hold
1972//       an argument. Otherwise, passed in A1, A2, A3 and stack.
1973// f64 - Only passed in two aliased f32 registers if no int reg has been used
1974//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
1975//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
1976//       go to stack.
1977//
1978//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
1979//===----------------------------------------------------------------------===//
1980
1981static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
1982                       MVT LocVT, CCValAssign::LocInfo LocInfo,
1983                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
1984
1985  static const unsigned IntRegsSize=4, FloatRegsSize=2;
1986
1987  static const uint16_t IntRegs[] = {
1988      Mips::A0, Mips::A1, Mips::A2, Mips::A3
1989  };
1990  static const uint16_t F32Regs[] = {
1991      Mips::F12, Mips::F14
1992  };
1993  static const uint16_t F64Regs[] = {
1994      Mips::D6, Mips::D7
1995  };
1996
1997  // ByVal Args
1998  if (ArgFlags.isByVal()) {
1999    State.HandleByVal(ValNo, ValVT, LocVT, LocInfo,
2000                      1 /*MinSize*/, 4 /*MinAlign*/, ArgFlags);
2001    unsigned NextReg = (State.getNextStackOffset() + 3) / 4;
2002    for (unsigned r = State.getFirstUnallocated(IntRegs, IntRegsSize);
2003         r < std::min(IntRegsSize, NextReg); ++r)
2004      State.AllocateReg(IntRegs[r]);
2005    return false;
2006  }
2007
2008  // Promote i8 and i16
2009  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2010    LocVT = MVT::i32;
2011    if (ArgFlags.isSExt())
2012      LocInfo = CCValAssign::SExt;
2013    else if (ArgFlags.isZExt())
2014      LocInfo = CCValAssign::ZExt;
2015    else
2016      LocInfo = CCValAssign::AExt;
2017  }
2018
2019  unsigned Reg;
2020
2021  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2022  // is true: function is vararg, argument is 3rd or higher, there is previous
2023  // argument which is not f32 or f64.
2024  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2025      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2026  unsigned OrigAlign = ArgFlags.getOrigAlign();
2027  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2028
2029  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2030    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2031    // If this is the first part of an i64 arg,
2032    // the allocated register must be either A0 or A2.
2033    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2034      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2035    LocVT = MVT::i32;
2036  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2037    // Allocate int register and shadow next int register. If first
2038    // available register is Mips::A1 or Mips::A3, shadow it too.
2039    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2040    if (Reg == Mips::A1 || Reg == Mips::A3)
2041      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2042    State.AllocateReg(IntRegs, IntRegsSize);
2043    LocVT = MVT::i32;
2044  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2045    // we are guaranteed to find an available float register
2046    if (ValVT == MVT::f32) {
2047      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2048      // Shadow int register
2049      State.AllocateReg(IntRegs, IntRegsSize);
2050    } else {
2051      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2052      // Shadow int registers
2053      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2054      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2055        State.AllocateReg(IntRegs, IntRegsSize);
2056      State.AllocateReg(IntRegs, IntRegsSize);
2057    }
2058  } else
2059    llvm_unreachable("Cannot handle this ValVT.");
2060
2061  unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
2062  unsigned Offset = State.AllocateStack(SizeInBytes, OrigAlign);
2063
2064  if (!Reg)
2065    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2066  else
2067    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2068
2069  return false; // CC must always match
2070}
2071
2072static const uint16_t Mips64IntRegs[8] =
2073  {Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
2074   Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64};
2075static const uint16_t Mips64DPRegs[8] =
2076  {Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
2077   Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64};
2078
2079static bool CC_Mips64Byval(unsigned ValNo, MVT ValVT, MVT LocVT,
2080                           CCValAssign::LocInfo LocInfo,
2081                           ISD::ArgFlagsTy ArgFlags, CCState &State) {
2082  unsigned Align = std::max(ArgFlags.getByValAlign(), (unsigned)8);
2083  unsigned Size  = (ArgFlags.getByValSize() + 7) / 8 * 8;
2084  unsigned FirstIdx = State.getFirstUnallocated(Mips64IntRegs, 8);
2085
2086  assert(Align <= 16 && "Cannot handle alignments larger than 16.");
2087
2088  // If byval is 16-byte aligned, the first arg register must be even.
2089  if ((Align == 16) && (FirstIdx % 2)) {
2090    State.AllocateReg(Mips64IntRegs[FirstIdx], Mips64DPRegs[FirstIdx]);
2091    ++FirstIdx;
2092  }
2093
2094  // Mark the registers allocated.
2095  for (unsigned I = FirstIdx; Size && (I < 8); Size -= 8, ++I)
2096    State.AllocateReg(Mips64IntRegs[I], Mips64DPRegs[I]);
2097
2098  // Allocate space on caller's stack.
2099  unsigned Offset = State.AllocateStack(Size, Align);
2100
2101  if (FirstIdx < 8)
2102    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Mips64IntRegs[FirstIdx],
2103                                     LocVT, LocInfo));
2104  else
2105    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2106
2107  return true;
2108}
2109
2110#include "MipsGenCallingConv.inc"
2111
2112static void
2113AnalyzeMips64CallOperands(CCState &CCInfo,
2114                          const SmallVectorImpl<ISD::OutputArg> &Outs) {
2115  unsigned NumOps = Outs.size();
2116  for (unsigned i = 0; i != NumOps; ++i) {
2117    MVT ArgVT = Outs[i].VT;
2118    ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2119    bool R;
2120
2121    if (Outs[i].IsFixed)
2122      R = CC_MipsN(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2123    else
2124      R = CC_MipsN_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2125
2126    if (R) {
2127#ifndef NDEBUG
2128      dbgs() << "Call operand #" << i << " has unhandled type "
2129             << EVT(ArgVT).getEVTString();
2130#endif
2131      llvm_unreachable(0);
2132    }
2133  }
2134}
2135
2136//===----------------------------------------------------------------------===//
2137//                  Call Calling Convention Implementation
2138//===----------------------------------------------------------------------===//
2139
2140static const unsigned O32IntRegsSize = 4;
2141
2142static const uint16_t O32IntRegs[] = {
2143  Mips::A0, Mips::A1, Mips::A2, Mips::A3
2144};
2145
2146// Return next O32 integer argument register.
2147static unsigned getNextIntArgReg(unsigned Reg) {
2148  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2149  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2150}
2151
2152// Write ByVal Arg to arg registers and stack.
2153static void
2154WriteByValArg(SDValue& ByValChain, SDValue Chain, DebugLoc dl,
2155              SmallVector<std::pair<unsigned, SDValue>, 16>& RegsToPass,
2156              SmallVector<SDValue, 8>& MemOpChains, int& LastFI,
2157              MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2158              const CCValAssign &VA, const ISD::ArgFlagsTy& Flags,
2159              MVT PtrType, bool isLittle) {
2160  unsigned LocMemOffset = VA.getLocMemOffset();
2161  unsigned Offset = 0;
2162  uint32_t RemainingSize = Flags.getByValSize();
2163  unsigned ByValAlign = Flags.getByValAlign();
2164
2165  // Copy the first 4 words of byval arg to registers A0 - A3.
2166  // FIXME: Use a stricter alignment if it enables better optimization in passes
2167  //        run later.
2168  for (; RemainingSize >= 4 && LocMemOffset < 4 * 4;
2169       Offset += 4, RemainingSize -= 4, LocMemOffset += 4) {
2170    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2171                                  DAG.getConstant(Offset, MVT::i32));
2172    SDValue LoadVal = DAG.getLoad(MVT::i32, dl, Chain, LoadPtr,
2173                                  MachinePointerInfo(), false, false, false,
2174                                  std::min(ByValAlign, (unsigned )4));
2175    MemOpChains.push_back(LoadVal.getValue(1));
2176    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2177    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2178  }
2179
2180  if (RemainingSize == 0)
2181    return;
2182
2183  // If there still is a register available for argument passing, write the
2184  // remaining part of the structure to it using subword loads and shifts.
2185  if (LocMemOffset < 4 * 4) {
2186    assert(RemainingSize <= 3 && RemainingSize >= 1 &&
2187           "There must be one to three bytes remaining.");
2188    unsigned LoadSize = (RemainingSize == 3 ? 2 : RemainingSize);
2189    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2190                                  DAG.getConstant(Offset, MVT::i32));
2191    unsigned Alignment = std::min(ByValAlign, (unsigned )4);
2192    SDValue LoadVal = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2193                                     LoadPtr, MachinePointerInfo(),
2194                                     MVT::getIntegerVT(LoadSize * 8), false,
2195                                     false, Alignment);
2196    MemOpChains.push_back(LoadVal.getValue(1));
2197
2198    // If target is big endian, shift it to the most significant half-word or
2199    // byte.
2200    if (!isLittle)
2201      LoadVal = DAG.getNode(ISD::SHL, dl, MVT::i32, LoadVal,
2202                            DAG.getConstant(32 - LoadSize * 8, MVT::i32));
2203
2204    Offset += LoadSize;
2205    RemainingSize -= LoadSize;
2206
2207    // Read second subword if necessary.
2208    if (RemainingSize != 0)  {
2209      assert(RemainingSize == 1 && "There must be one byte remaining.");
2210      LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2211                            DAG.getConstant(Offset, MVT::i32));
2212      unsigned Alignment = std::min(ByValAlign, (unsigned )2);
2213      SDValue Subword = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2214                                       LoadPtr, MachinePointerInfo(),
2215                                       MVT::i8, false, false, Alignment);
2216      MemOpChains.push_back(Subword.getValue(1));
2217      // Insert the loaded byte to LoadVal.
2218      // FIXME: Use INS if supported by target.
2219      unsigned ShiftAmt = isLittle ? 16 : 8;
2220      SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i32, Subword,
2221                                  DAG.getConstant(ShiftAmt, MVT::i32));
2222      LoadVal = DAG.getNode(ISD::OR, dl, MVT::i32, LoadVal, Shift);
2223    }
2224
2225    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2226    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2227    return;
2228  }
2229
2230  // Create a fixed object on stack at offset LocMemOffset and copy
2231  // remaining part of byval arg to it using memcpy.
2232  SDValue Src = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2233                            DAG.getConstant(Offset, MVT::i32));
2234  LastFI = MFI->CreateFixedObject(RemainingSize, LocMemOffset, true);
2235  SDValue Dst = DAG.getFrameIndex(LastFI, PtrType);
2236  ByValChain = DAG.getMemcpy(ByValChain, dl, Dst, Src,
2237                             DAG.getConstant(RemainingSize, MVT::i32),
2238                             std::min(ByValAlign, (unsigned)4),
2239                             /*isVolatile=*/false, /*AlwaysInline=*/false,
2240                             MachinePointerInfo(0), MachinePointerInfo(0));
2241}
2242
2243// Copy Mips64 byVal arg to registers and stack.
2244void static
2245PassByValArg64(SDValue& ByValChain, SDValue Chain, DebugLoc dl,
2246               SmallVector<std::pair<unsigned, SDValue>, 16>& RegsToPass,
2247               SmallVector<SDValue, 8>& MemOpChains, int& LastFI,
2248               MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2249               const CCValAssign &VA, const ISD::ArgFlagsTy& Flags,
2250               EVT PtrTy, bool isLittle) {
2251  unsigned ByValSize = Flags.getByValSize();
2252  unsigned Alignment = std::min(Flags.getByValAlign(), (unsigned)8);
2253  bool IsRegLoc = VA.isRegLoc();
2254  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
2255  unsigned LocMemOffset = 0;
2256  unsigned MemCpySize = ByValSize;
2257
2258  if (!IsRegLoc)
2259    LocMemOffset = VA.getLocMemOffset();
2260  else {
2261    const uint16_t *Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8,
2262                                    VA.getLocReg());
2263    const uint16_t *RegEnd = Mips64IntRegs + 8;
2264
2265    // Copy double words to registers.
2266    for (; (Reg != RegEnd) && (ByValSize >= Offset + 8); ++Reg, Offset += 8) {
2267      SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2268                                    DAG.getConstant(Offset, PtrTy));
2269      SDValue LoadVal = DAG.getLoad(MVT::i64, dl, Chain, LoadPtr,
2270                                    MachinePointerInfo(), false, false, false,
2271                                    Alignment);
2272      MemOpChains.push_back(LoadVal.getValue(1));
2273      RegsToPass.push_back(std::make_pair(*Reg, LoadVal));
2274    }
2275
2276    // Return if the struct has been fully copied.
2277    if (!(MemCpySize = ByValSize - Offset))
2278      return;
2279
2280    // If there is an argument register available, copy the remainder of the
2281    // byval argument with sub-doubleword loads and shifts.
2282    if (Reg != RegEnd) {
2283      assert((ByValSize < Offset + 8) &&
2284             "Size of the remainder should be smaller than 8-byte.");
2285      SDValue Val;
2286      for (unsigned LoadSize = 4; Offset < ByValSize; LoadSize /= 2) {
2287        unsigned RemSize = ByValSize - Offset;
2288
2289        if (RemSize < LoadSize)
2290          continue;
2291
2292        SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2293                                      DAG.getConstant(Offset, PtrTy));
2294        SDValue LoadVal =
2295          DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i64, Chain, LoadPtr,
2296                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
2297                         false, false, Alignment);
2298        MemOpChains.push_back(LoadVal.getValue(1));
2299
2300        // Offset in number of bits from double word boundary.
2301        unsigned OffsetDW = (Offset % 8) * 8;
2302        unsigned Shamt = isLittle ? OffsetDW : 64 - (OffsetDW + LoadSize * 8);
2303        SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i64, LoadVal,
2304                                    DAG.getConstant(Shamt, MVT::i32));
2305
2306        Val = Val.getNode() ? DAG.getNode(ISD::OR, dl, MVT::i64, Val, Shift) :
2307                              Shift;
2308        Offset += LoadSize;
2309        Alignment = std::min(Alignment, LoadSize);
2310      }
2311
2312      RegsToPass.push_back(std::make_pair(*Reg, Val));
2313      return;
2314    }
2315  }
2316
2317  assert(MemCpySize && "MemCpySize must not be zero.");
2318
2319  // Create a fixed object on stack at offset LocMemOffset and copy
2320  // remainder of byval arg to it with memcpy.
2321  SDValue Src = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2322                            DAG.getConstant(Offset, PtrTy));
2323  LastFI = MFI->CreateFixedObject(MemCpySize, LocMemOffset, true);
2324  SDValue Dst = DAG.getFrameIndex(LastFI, PtrTy);
2325  ByValChain = DAG.getMemcpy(ByValChain, dl, Dst, Src,
2326                             DAG.getConstant(MemCpySize, PtrTy), Alignment,
2327                             /*isVolatile=*/false, /*AlwaysInline=*/false,
2328                             MachinePointerInfo(0), MachinePointerInfo(0));
2329}
2330
2331/// LowerCall - functions arguments are copied from virtual regs to
2332/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2333/// TODO: isTailCall.
2334SDValue
2335MipsTargetLowering::LowerCall(SDValue InChain, SDValue Callee,
2336                              CallingConv::ID CallConv, bool isVarArg,
2337                              bool doesNotRet, bool &isTailCall,
2338                              const SmallVectorImpl<ISD::OutputArg> &Outs,
2339                              const SmallVectorImpl<SDValue> &OutVals,
2340                              const SmallVectorImpl<ISD::InputArg> &Ins,
2341                              DebugLoc dl, SelectionDAG &DAG,
2342                              SmallVectorImpl<SDValue> &InVals) const {
2343  // MIPs target does not yet support tail call optimization.
2344  isTailCall = false;
2345
2346  MachineFunction &MF = DAG.getMachineFunction();
2347  MachineFrameInfo *MFI = MF.getFrameInfo();
2348  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2349  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2350  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2351
2352  // Analyze operands of the call, assigning locations to each operand.
2353  SmallVector<CCValAssign, 16> ArgLocs;
2354  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2355                 getTargetMachine(), ArgLocs, *DAG.getContext());
2356
2357  if (IsO32)
2358    CCInfo.AnalyzeCallOperands(Outs, CC_MipsO32);
2359  else if (HasMips64)
2360    AnalyzeMips64CallOperands(CCInfo, Outs);
2361  else
2362    CCInfo.AnalyzeCallOperands(Outs, CC_Mips);
2363
2364  // Get a count of how many bytes are to be pushed on the stack.
2365  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2366
2367  // Chain is the output chain of the last Load/Store or CopyToReg node.
2368  // ByValChain is the output chain of the last Memcpy node created for copying
2369  // byval arguments to the stack.
2370  SDValue Chain, CallSeqStart, ByValChain;
2371  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2372  Chain = CallSeqStart = DAG.getCALLSEQ_START(InChain, NextStackOffsetVal);
2373  ByValChain = InChain;
2374
2375  // If this is the first call, create a stack frame object that points to
2376  // a location to which .cprestore saves $gp.
2377  if (IsO32 && IsPIC && MipsFI->globalBaseRegFixed() && !MipsFI->getGPFI())
2378    MipsFI->setGPFI(MFI->CreateFixedObject(4, 0, true));
2379
2380  // Get the frame index of the stack frame object that points to the location
2381  // of dynamically allocated area on the stack.
2382  int DynAllocFI = MipsFI->getDynAllocFI();
2383
2384  // Update size of the maximum argument space.
2385  // For O32, a minimum of four words (16 bytes) of argument space is
2386  // allocated.
2387  if (IsO32)
2388    NextStackOffset = std::max(NextStackOffset, (unsigned)16);
2389
2390  unsigned MaxCallFrameSize = MipsFI->getMaxCallFrameSize();
2391
2392  if (MaxCallFrameSize < NextStackOffset) {
2393    MipsFI->setMaxCallFrameSize(NextStackOffset);
2394
2395    // Set the offsets relative to $sp of the $gp restore slot and dynamically
2396    // allocated stack space. These offsets must be aligned to a boundary
2397    // determined by the stack alignment of the ABI.
2398    unsigned StackAlignment = TFL->getStackAlignment();
2399    NextStackOffset = (NextStackOffset + StackAlignment - 1) /
2400                      StackAlignment * StackAlignment;
2401
2402    if (MipsFI->needGPSaveRestore())
2403      MFI->setObjectOffset(MipsFI->getGPFI(), NextStackOffset);
2404
2405    MFI->setObjectOffset(DynAllocFI, NextStackOffset);
2406  }
2407
2408  // With EABI is it possible to have 16 args on registers.
2409  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
2410  SmallVector<SDValue, 8> MemOpChains;
2411
2412  int FirstFI = -MFI->getNumFixedObjects() - 1, LastFI = 0;
2413
2414  // Walk the register/memloc assignments, inserting copies/loads.
2415  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2416    SDValue Arg = OutVals[i];
2417    CCValAssign &VA = ArgLocs[i];
2418    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2419    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2420
2421    // ByVal Arg.
2422    if (Flags.isByVal()) {
2423      assert(Flags.getByValSize() &&
2424             "ByVal args of size 0 should have been ignored by front-end.");
2425      if (IsO32)
2426        WriteByValArg(ByValChain, Chain, dl, RegsToPass, MemOpChains, LastFI,
2427                      MFI, DAG, Arg, VA, Flags, getPointerTy(),
2428                      Subtarget->isLittle());
2429      else
2430        PassByValArg64(ByValChain, Chain, dl, RegsToPass, MemOpChains, LastFI,
2431                       MFI, DAG, Arg, VA, Flags, getPointerTy(),
2432                       Subtarget->isLittle());
2433      continue;
2434    }
2435
2436    // Promote the value if needed.
2437    switch (VA.getLocInfo()) {
2438    default: llvm_unreachable("Unknown loc info!");
2439    case CCValAssign::Full:
2440      if (VA.isRegLoc()) {
2441        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2442            (ValVT == MVT::f64 && LocVT == MVT::i64))
2443          Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
2444        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2445          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2446                                   Arg, DAG.getConstant(0, MVT::i32));
2447          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2448                                   Arg, DAG.getConstant(1, MVT::i32));
2449          if (!Subtarget->isLittle())
2450            std::swap(Lo, Hi);
2451          unsigned LocRegLo = VA.getLocReg();
2452          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2453          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2454          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2455          continue;
2456        }
2457      }
2458      break;
2459    case CCValAssign::SExt:
2460      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
2461      break;
2462    case CCValAssign::ZExt:
2463      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
2464      break;
2465    case CCValAssign::AExt:
2466      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
2467      break;
2468    }
2469
2470    // Arguments that can be passed on register must be kept at
2471    // RegsToPass vector
2472    if (VA.isRegLoc()) {
2473      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2474      continue;
2475    }
2476
2477    // Register can't get to this point...
2478    assert(VA.isMemLoc());
2479
2480    // Create the frame index object for this incoming parameter
2481    LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2482                                    VA.getLocMemOffset(), true);
2483    SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
2484
2485    // emit ISD::STORE whichs stores the
2486    // parameter value to a stack Location
2487    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2488                                       MachinePointerInfo(), false, false, 0));
2489  }
2490
2491  // Extend range of indices of frame objects for outgoing arguments that were
2492  // created during this function call. Skip this step if no such objects were
2493  // created.
2494  if (LastFI)
2495    MipsFI->extendOutArgFIRange(FirstFI, LastFI);
2496
2497  // If a memcpy has been created to copy a byval arg to a stack, replace the
2498  // chain input of CallSeqStart with ByValChain.
2499  if (InChain != ByValChain)
2500    DAG.UpdateNodeOperands(CallSeqStart.getNode(), ByValChain,
2501                           NextStackOffsetVal);
2502
2503  // Transform all store nodes into one single node because all store
2504  // nodes are independent of each other.
2505  if (!MemOpChains.empty())
2506    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2507                        &MemOpChains[0], MemOpChains.size());
2508
2509  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2510  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2511  // node so that legalize doesn't hack it.
2512  unsigned char OpFlag;
2513  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2514  bool GlobalOrExternal = false;
2515  SDValue CalleeLo;
2516
2517  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2518    if (IsPICCall && G->getGlobal()->hasInternalLinkage()) {
2519      OpFlag = IsO32 ? MipsII::MO_GOT : MipsII::MO_GOT_PAGE;
2520      unsigned char LoFlag = IsO32 ? MipsII::MO_ABS_LO : MipsII::MO_GOT_OFST;
2521      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
2522                                          OpFlag);
2523      CalleeLo = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(),
2524                                            0, LoFlag);
2525    } else {
2526      OpFlag = IsPICCall ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG;
2527      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2528                                          getPointerTy(), 0, OpFlag);
2529    }
2530
2531    GlobalOrExternal = true;
2532  }
2533  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2534    if (IsN64 || (!IsO32 && IsPIC))
2535      OpFlag = MipsII::MO_GOT_DISP;
2536    else if (!IsPIC) // !N64 && static
2537      OpFlag = MipsII::MO_NO_FLAG;
2538    else // O32 & PIC
2539      OpFlag = MipsII::MO_GOT_CALL;
2540    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2541                                         OpFlag);
2542    GlobalOrExternal = true;
2543  }
2544
2545  SDValue InFlag;
2546
2547  // Create nodes that load address of callee and copy it to T9
2548  if (IsPICCall) {
2549    if (GlobalOrExternal) {
2550      // Load callee address
2551      Callee = DAG.getNode(MipsISD::Wrapper, dl, getPointerTy(),
2552                           GetGlobalReg(DAG, getPointerTy()), Callee);
2553      SDValue LoadValue = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
2554                                      Callee, MachinePointerInfo::getGOT(),
2555                                      false, false, false, 0);
2556
2557      // Use GOT+LO if callee has internal linkage.
2558      if (CalleeLo.getNode()) {
2559        SDValue Lo = DAG.getNode(MipsISD::Lo, dl, getPointerTy(), CalleeLo);
2560        Callee = DAG.getNode(ISD::ADD, dl, getPointerTy(), LoadValue, Lo);
2561      } else
2562        Callee = LoadValue;
2563    }
2564  }
2565
2566  // T9 should contain the address of the callee function if
2567  // -reloction-model=pic or it is an indirect call.
2568  if (IsPICCall || !GlobalOrExternal) {
2569    // copy to T9
2570    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
2571    Chain = DAG.getCopyToReg(Chain, dl, T9Reg, Callee, SDValue(0, 0));
2572    InFlag = Chain.getValue(1);
2573    Callee = DAG.getRegister(T9Reg, getPointerTy());
2574  }
2575
2576  // Build a sequence of copy-to-reg nodes chained together with token
2577  // chain and flag operands which copy the outgoing args into registers.
2578  // The InFlag in necessary since all emitted instructions must be
2579  // stuck together.
2580  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2581    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2582                             RegsToPass[i].second, InFlag);
2583    InFlag = Chain.getValue(1);
2584  }
2585
2586  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
2587  //             = Chain, Callee, Reg#1, Reg#2, ...
2588  //
2589  // Returns a chain & a flag for retval copy to use.
2590  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2591  SmallVector<SDValue, 8> Ops;
2592  Ops.push_back(Chain);
2593  Ops.push_back(Callee);
2594
2595  // Add argument registers to the end of the list so that they are
2596  // known live into the call.
2597  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2598    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2599                                  RegsToPass[i].second.getValueType()));
2600
2601  // Add a register mask operand representing the call-preserved registers.
2602  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2603  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2604  assert(Mask && "Missing call preserved mask for calling convention");
2605  Ops.push_back(DAG.getRegisterMask(Mask));
2606
2607  if (InFlag.getNode())
2608    Ops.push_back(InFlag);
2609
2610  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
2611  InFlag = Chain.getValue(1);
2612
2613  // Create the CALLSEQ_END node.
2614  Chain = DAG.getCALLSEQ_END(Chain,
2615                             DAG.getIntPtrConstant(NextStackOffset, true),
2616                             DAG.getIntPtrConstant(0, true), InFlag);
2617  InFlag = Chain.getValue(1);
2618
2619  // Handle result values, copying them out of physregs into vregs that we
2620  // return.
2621  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2622                         Ins, dl, DAG, InVals);
2623}
2624
2625/// LowerCallResult - Lower the result values of a call into the
2626/// appropriate copies out of appropriate physical registers.
2627SDValue
2628MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2629                                    CallingConv::ID CallConv, bool isVarArg,
2630                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2631                                    DebugLoc dl, SelectionDAG &DAG,
2632                                    SmallVectorImpl<SDValue> &InVals) const {
2633  // Assign locations to each value returned by this call.
2634  SmallVector<CCValAssign, 16> RVLocs;
2635  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2636		 getTargetMachine(), RVLocs, *DAG.getContext());
2637
2638  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
2639
2640  // Copy all of the result registers out of their specified physreg.
2641  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2642    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
2643                               RVLocs[i].getValVT(), InFlag).getValue(1);
2644    InFlag = Chain.getValue(2);
2645    InVals.push_back(Chain.getValue(0));
2646  }
2647
2648  return Chain;
2649}
2650
2651//===----------------------------------------------------------------------===//
2652//             Formal Arguments Calling Convention Implementation
2653//===----------------------------------------------------------------------===//
2654static void ReadByValArg(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2655                         std::vector<SDValue>& OutChains,
2656                         SelectionDAG &DAG, unsigned NumWords, SDValue FIN,
2657                         const CCValAssign &VA, const ISD::ArgFlagsTy& Flags,
2658                         const Argument *FuncArg) {
2659  unsigned LocMem = VA.getLocMemOffset();
2660  unsigned FirstWord = LocMem / 4;
2661
2662  // copy register A0 - A3 to frame object
2663  for (unsigned i = 0; i < NumWords; ++i) {
2664    unsigned CurWord = FirstWord + i;
2665    if (CurWord >= O32IntRegsSize)
2666      break;
2667
2668    unsigned SrcReg = O32IntRegs[CurWord];
2669    unsigned Reg = AddLiveIn(MF, SrcReg, Mips::CPURegsRegisterClass);
2670    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIN,
2671                                   DAG.getConstant(i * 4, MVT::i32));
2672    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(Reg, MVT::i32),
2673                                 StorePtr, MachinePointerInfo(FuncArg, i * 4),
2674                                 false, false, 0);
2675    OutChains.push_back(Store);
2676  }
2677}
2678
2679// Create frame object on stack and copy registers used for byval passing to it.
2680static unsigned
2681CopyMips64ByValRegs(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2682                    std::vector<SDValue>& OutChains, SelectionDAG &DAG,
2683                    const CCValAssign &VA, const ISD::ArgFlagsTy& Flags,
2684                    MachineFrameInfo *MFI, bool IsRegLoc,
2685                    SmallVectorImpl<SDValue> &InVals, MipsFunctionInfo *MipsFI,
2686                    EVT PtrTy, const Argument *FuncArg) {
2687  const uint16_t *Reg = Mips64IntRegs + 8;
2688  int FOOffset; // Frame object offset from virtual frame pointer.
2689
2690  if (IsRegLoc) {
2691    Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8, VA.getLocReg());
2692    FOOffset = (Reg - Mips64IntRegs) * 8 - 8 * 8;
2693  }
2694  else
2695    FOOffset = VA.getLocMemOffset();
2696
2697  // Create frame object.
2698  unsigned NumRegs = (Flags.getByValSize() + 7) / 8;
2699  unsigned LastFI = MFI->CreateFixedObject(NumRegs * 8, FOOffset, true);
2700  SDValue FIN = DAG.getFrameIndex(LastFI, PtrTy);
2701  InVals.push_back(FIN);
2702
2703  // Copy arg registers.
2704  for (unsigned I = 0; (Reg != Mips64IntRegs + 8) && (I < NumRegs);
2705       ++Reg, ++I) {
2706    unsigned VReg = AddLiveIn(MF, *Reg, Mips::CPU64RegsRegisterClass);
2707    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, PtrTy, FIN,
2708                                   DAG.getConstant(I * 8, PtrTy));
2709    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(VReg, MVT::i64),
2710                                 StorePtr, MachinePointerInfo(FuncArg, I * 8),
2711                                 false, false, 0);
2712    OutChains.push_back(Store);
2713  }
2714
2715  return LastFI;
2716}
2717
2718/// LowerFormalArguments - transform physical registers into virtual registers
2719/// and generate load operations for arguments places on the stack.
2720SDValue
2721MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2722                                         CallingConv::ID CallConv,
2723                                         bool isVarArg,
2724                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2725                                         DebugLoc dl, SelectionDAG &DAG,
2726                                         SmallVectorImpl<SDValue> &InVals)
2727                                          const {
2728  MachineFunction &MF = DAG.getMachineFunction();
2729  MachineFrameInfo *MFI = MF.getFrameInfo();
2730  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2731
2732  MipsFI->setVarArgsFrameIndex(0);
2733
2734  // Used with vargs to acumulate store chains.
2735  std::vector<SDValue> OutChains;
2736
2737  // Assign locations to all of the incoming arguments.
2738  SmallVector<CCValAssign, 16> ArgLocs;
2739  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2740                 getTargetMachine(), ArgLocs, *DAG.getContext());
2741
2742  if (IsO32)
2743    CCInfo.AnalyzeFormalArguments(Ins, CC_MipsO32);
2744  else
2745    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips);
2746
2747  Function::const_arg_iterator FuncArg =
2748    DAG.getMachineFunction().getFunction()->arg_begin();
2749  int LastFI = 0;// MipsFI->LastInArgFI is 0 at the entry of this function.
2750
2751  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++FuncArg) {
2752    CCValAssign &VA = ArgLocs[i];
2753    EVT ValVT = VA.getValVT();
2754    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2755    bool IsRegLoc = VA.isRegLoc();
2756
2757    if (Flags.isByVal()) {
2758      assert(Flags.getByValSize() &&
2759             "ByVal args of size 0 should have been ignored by front-end.");
2760      if (IsO32) {
2761        unsigned NumWords = (Flags.getByValSize() + 3) / 4;
2762        LastFI = MFI->CreateFixedObject(NumWords * 4, VA.getLocMemOffset(),
2763                                        true);
2764        SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
2765        InVals.push_back(FIN);
2766        ReadByValArg(MF, Chain, dl, OutChains, DAG, NumWords, FIN, VA, Flags,
2767                     &*FuncArg);
2768      } else // N32/64
2769        LastFI = CopyMips64ByValRegs(MF, Chain, dl, OutChains, DAG, VA, Flags,
2770                                     MFI, IsRegLoc, InVals, MipsFI,
2771                                     getPointerTy(), &*FuncArg);
2772      continue;
2773    }
2774
2775    // Arguments stored on registers
2776    if (IsRegLoc) {
2777      EVT RegVT = VA.getLocVT();
2778      unsigned ArgReg = VA.getLocReg();
2779      const TargetRegisterClass *RC;
2780
2781      if (RegVT == MVT::i32)
2782        RC = Mips::CPURegsRegisterClass;
2783      else if (RegVT == MVT::i64)
2784        RC = Mips::CPU64RegsRegisterClass;
2785      else if (RegVT == MVT::f32)
2786        RC = Mips::FGR32RegisterClass;
2787      else if (RegVT == MVT::f64)
2788        RC = HasMips64 ? Mips::FGR64RegisterClass : Mips::AFGR64RegisterClass;
2789      else
2790        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
2791
2792      // Transform the arguments stored on
2793      // physical registers into virtual ones
2794      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2795      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2796
2797      // If this is an 8 or 16-bit value, it has been passed promoted
2798      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2799      // truncate to the right size.
2800      if (VA.getLocInfo() != CCValAssign::Full) {
2801        unsigned Opcode = 0;
2802        if (VA.getLocInfo() == CCValAssign::SExt)
2803          Opcode = ISD::AssertSext;
2804        else if (VA.getLocInfo() == CCValAssign::ZExt)
2805          Opcode = ISD::AssertZext;
2806        if (Opcode)
2807          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
2808                                 DAG.getValueType(ValVT));
2809        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
2810      }
2811
2812      // Handle floating point arguments passed in integer registers.
2813      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2814          (RegVT == MVT::i64 && ValVT == MVT::f64))
2815        ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
2816      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2817        unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
2818                                  getNextIntArgReg(ArgReg), RC);
2819        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
2820        if (!Subtarget->isLittle())
2821          std::swap(ArgValue, ArgValue2);
2822        ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
2823                               ArgValue, ArgValue2);
2824      }
2825
2826      InVals.push_back(ArgValue);
2827    } else { // VA.isRegLoc()
2828
2829      // sanity check
2830      assert(VA.isMemLoc());
2831
2832      // The stack pointer offset is relative to the caller stack frame.
2833      LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2834                                      VA.getLocMemOffset(), true);
2835
2836      // Create load nodes to retrieve arguments from the stack
2837      SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
2838      InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
2839                                   MachinePointerInfo::getFixedStack(LastFI),
2840                                   false, false, false, 0));
2841    }
2842  }
2843
2844  // The mips ABIs for returning structs by value requires that we copy
2845  // the sret argument into $v0 for the return. Save the argument into
2846  // a virtual register so that we can access it from the return points.
2847  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2848    unsigned Reg = MipsFI->getSRetReturnReg();
2849    if (!Reg) {
2850      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
2851      MipsFI->setSRetReturnReg(Reg);
2852    }
2853    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
2854    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2855  }
2856
2857  if (isVarArg) {
2858    unsigned NumOfRegs = IsO32 ? 4 : 8;
2859    const uint16_t *ArgRegs = IsO32 ? O32IntRegs : Mips64IntRegs;
2860    unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumOfRegs);
2861    int FirstRegSlotOffset = IsO32 ? 0 : -64 ; // offset of $a0's slot.
2862    const TargetRegisterClass *RC
2863      = IsO32 ? Mips::CPURegsRegisterClass : Mips::CPU64RegsRegisterClass;
2864    unsigned RegSize = RC->getSize();
2865    int RegSlotOffset = FirstRegSlotOffset + Idx * RegSize;
2866
2867    // Offset of the first variable argument from stack pointer.
2868    int FirstVaArgOffset;
2869
2870    if (IsO32 || (Idx == NumOfRegs)) {
2871      FirstVaArgOffset =
2872        (CCInfo.getNextStackOffset() + RegSize - 1) / RegSize * RegSize;
2873    } else
2874      FirstVaArgOffset = RegSlotOffset;
2875
2876    // Record the frame index of the first variable argument
2877    // which is a value necessary to VASTART.
2878    LastFI = MFI->CreateFixedObject(RegSize, FirstVaArgOffset, true);
2879    MipsFI->setVarArgsFrameIndex(LastFI);
2880
2881    // Copy the integer registers that have not been used for argument passing
2882    // to the argument register save area. For O32, the save area is allocated
2883    // in the caller's stack frame, while for N32/64, it is allocated in the
2884    // callee's stack frame.
2885    for (int StackOffset = RegSlotOffset;
2886         Idx < NumOfRegs; ++Idx, StackOffset += RegSize) {
2887      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgRegs[Idx], RC);
2888      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
2889                                            MVT::getIntegerVT(RegSize * 8));
2890      LastFI = MFI->CreateFixedObject(RegSize, StackOffset, true);
2891      SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
2892      OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
2893                                       MachinePointerInfo(), false, false, 0));
2894    }
2895  }
2896
2897  MipsFI->setLastInArgFI(LastFI);
2898
2899  // All stores are grouped in one node to allow the matching between
2900  // the size of Ins and InVals. This only happens when on varg functions
2901  if (!OutChains.empty()) {
2902    OutChains.push_back(Chain);
2903    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2904                        &OutChains[0], OutChains.size());
2905  }
2906
2907  return Chain;
2908}
2909
2910//===----------------------------------------------------------------------===//
2911//               Return Value Calling Convention Implementation
2912//===----------------------------------------------------------------------===//
2913
2914SDValue
2915MipsTargetLowering::LowerReturn(SDValue Chain,
2916                                CallingConv::ID CallConv, bool isVarArg,
2917                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2918                                const SmallVectorImpl<SDValue> &OutVals,
2919                                DebugLoc dl, SelectionDAG &DAG) const {
2920
2921  // CCValAssign - represent the assignment of
2922  // the return value to a location
2923  SmallVector<CCValAssign, 16> RVLocs;
2924
2925  // CCState - Info about the registers and stack slot.
2926  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2927		 getTargetMachine(), RVLocs, *DAG.getContext());
2928
2929  // Analize return values.
2930  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
2931
2932  // If this is the first return lowered for this function, add
2933  // the regs to the liveout set for the function.
2934  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2935    for (unsigned i = 0; i != RVLocs.size(); ++i)
2936      if (RVLocs[i].isRegLoc())
2937        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2938  }
2939
2940  SDValue Flag;
2941
2942  // Copy the result values into the output registers.
2943  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2944    CCValAssign &VA = RVLocs[i];
2945    assert(VA.isRegLoc() && "Can only return in registers!");
2946
2947    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
2948
2949    // guarantee that all emitted copies are
2950    // stuck together, avoiding something bad
2951    Flag = Chain.getValue(1);
2952  }
2953
2954  // The mips ABIs for returning structs by value requires that we copy
2955  // the sret argument into $v0 for the return. We saved the argument into
2956  // a virtual register in the entry block, so now we copy the value out
2957  // and into $v0.
2958  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2959    MachineFunction &MF      = DAG.getMachineFunction();
2960    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2961    unsigned Reg = MipsFI->getSRetReturnReg();
2962
2963    if (!Reg)
2964      llvm_unreachable("sret virtual register not created in the entry block");
2965    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
2966
2967    Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
2968    Flag = Chain.getValue(1);
2969  }
2970
2971  // Return on Mips is always a "jr $ra"
2972  if (Flag.getNode())
2973    return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
2974                       Chain, DAG.getRegister(Mips::RA, MVT::i32), Flag);
2975  else // Return Void
2976    return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
2977                       Chain, DAG.getRegister(Mips::RA, MVT::i32));
2978}
2979
2980//===----------------------------------------------------------------------===//
2981//                           Mips Inline Assembly Support
2982//===----------------------------------------------------------------------===//
2983
2984/// getConstraintType - Given a constraint letter, return the type of
2985/// constraint it is for this target.
2986MipsTargetLowering::ConstraintType MipsTargetLowering::
2987getConstraintType(const std::string &Constraint) const
2988{
2989  // Mips specific constrainy
2990  // GCC config/mips/constraints.md
2991  //
2992  // 'd' : An address register. Equivalent to r
2993  //       unless generating MIPS16 code.
2994  // 'y' : Equivalent to r; retained for
2995  //       backwards compatibility.
2996  // 'f' : Floating Point registers.
2997  if (Constraint.size() == 1) {
2998    switch (Constraint[0]) {
2999      default : break;
3000      case 'd':
3001      case 'y':
3002      case 'f':
3003        return C_RegisterClass;
3004    }
3005  }
3006  return TargetLowering::getConstraintType(Constraint);
3007}
3008
3009/// Examine constraint type and operand type and determine a weight value.
3010/// This object must already have been set up with the operand type
3011/// and the current alternative constraint selected.
3012TargetLowering::ConstraintWeight
3013MipsTargetLowering::getSingleConstraintMatchWeight(
3014    AsmOperandInfo &info, const char *constraint) const {
3015  ConstraintWeight weight = CW_Invalid;
3016  Value *CallOperandVal = info.CallOperandVal;
3017    // If we don't have a value, we can't do a match,
3018    // but allow it at the lowest weight.
3019  if (CallOperandVal == NULL)
3020    return CW_Default;
3021  Type *type = CallOperandVal->getType();
3022  // Look at the constraint type.
3023  switch (*constraint) {
3024  default:
3025    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3026    break;
3027  case 'd':
3028  case 'y':
3029    if (type->isIntegerTy())
3030      weight = CW_Register;
3031    break;
3032  case 'f':
3033    if (type->isFloatTy())
3034      weight = CW_Register;
3035    break;
3036  }
3037  return weight;
3038}
3039
3040/// Given a register class constraint, like 'r', if this corresponds directly
3041/// to an LLVM register class, return a register of 0 and the register class
3042/// pointer.
3043std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
3044getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
3045{
3046  if (Constraint.size() == 1) {
3047    switch (Constraint[0]) {
3048    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3049    case 'y': // Same as 'r'. Exists for compatibility.
3050    case 'r':
3051      if (VT == MVT::i32)
3052        return std::make_pair(0U, Mips::CPURegsRegisterClass);
3053      assert(VT == MVT::i64 && "Unexpected type.");
3054      return std::make_pair(0U, Mips::CPU64RegsRegisterClass);
3055    case 'f':
3056      if (VT == MVT::f32)
3057        return std::make_pair(0U, Mips::FGR32RegisterClass);
3058      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
3059        if (Subtarget->isFP64bit())
3060          return std::make_pair(0U, Mips::FGR64RegisterClass);
3061        else
3062          return std::make_pair(0U, Mips::AFGR64RegisterClass);
3063      }
3064    }
3065  }
3066  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3067}
3068
3069bool
3070MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3071  // The Mips target isn't yet aware of offsets.
3072  return false;
3073}
3074
3075bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3076  if (VT != MVT::f32 && VT != MVT::f64)
3077    return false;
3078  if (Imm.isNegZero())
3079    return false;
3080  return Imm.isZero();
3081}
3082
3083unsigned MipsTargetLowering::getJumpTableEncoding() const {
3084  if (IsN64)
3085    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3086
3087  return TargetLowering::getJumpTableEncoding();
3088}
3089