MipsISelLowering.cpp revision 46ac4399b13d46baa9e6280d540c468d8feba8ad
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "mips-lower"
16#include "MipsISelLowering.h"
17#include "MipsMachineFunction.h"
18#include "MipsTargetMachine.h"
19#include "MipsTargetObjectFile.h"
20#include "MipsSubtarget.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/CallingConv.h"
26#include "InstPrinter/MipsInstPrinter.h"
27#include "llvm/CodeGen/CallingConvLower.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/SelectionDAGISel.h"
33#include "llvm/CodeGen/ValueTypes.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36using namespace llvm;
37
38// If I is a shifted mask, set the size (Size) and the first bit of the
39// mask (Pos), and return true.
40// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
41static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
42  if (!isUInt<32>(I) || !isShiftedMask_32(I))
43     return false;
44
45  Size = CountPopulation_32(I);
46  Pos = CountTrailingZeros_32(I);
47  return true;
48}
49
50const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
51  switch (Opcode) {
52  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
53  case MipsISD::Hi:                return "MipsISD::Hi";
54  case MipsISD::Lo:                return "MipsISD::Lo";
55  case MipsISD::GPRel:             return "MipsISD::GPRel";
56  case MipsISD::TlsGd:             return "MipsISD::TlsGd";
57  case MipsISD::TprelHi:           return "MipsISD::TprelHi";
58  case MipsISD::TprelLo:           return "MipsISD::TprelLo";
59  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
60  case MipsISD::Ret:               return "MipsISD::Ret";
61  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
62  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
63  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
64  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
65  case MipsISD::FPRound:           return "MipsISD::FPRound";
66  case MipsISD::MAdd:              return "MipsISD::MAdd";
67  case MipsISD::MAddu:             return "MipsISD::MAddu";
68  case MipsISD::MSub:              return "MipsISD::MSub";
69  case MipsISD::MSubu:             return "MipsISD::MSubu";
70  case MipsISD::DivRem:            return "MipsISD::DivRem";
71  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
72  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
73  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
74  case MipsISD::WrapperPIC:        return "MipsISD::WrapperPIC";
75  case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
76  case MipsISD::Sync:              return "MipsISD::Sync";
77  case MipsISD::Ext:               return "MipsISD::Ext";
78  case MipsISD::Ins:               return "MipsISD::Ins";
79  default:                         return NULL;
80  }
81}
82
83MipsTargetLowering::
84MipsTargetLowering(MipsTargetMachine &TM)
85  : TargetLowering(TM, new MipsTargetObjectFile()),
86    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
87    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
88    IsO32(Subtarget->isABI_O32()) {
89
90  // Mips does not have i1 type, so use i32 for
91  // setcc operations results (slt, sgt, ...).
92  setBooleanContents(ZeroOrOneBooleanContent);
93  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
94
95  // Set up the register classes
96  addRegisterClass(MVT::i32, Mips::CPURegsRegisterClass);
97  addRegisterClass(MVT::f32, Mips::FGR32RegisterClass);
98
99  if (HasMips64)
100    addRegisterClass(MVT::i64, Mips::CPU64RegsRegisterClass);
101
102  // When dealing with single precision only, use libcalls
103  if (!Subtarget->isSingleFloat()) {
104    if (HasMips64)
105      addRegisterClass(MVT::f64, Mips::FGR64RegisterClass);
106    else
107      addRegisterClass(MVT::f64, Mips::AFGR64RegisterClass);
108  }
109
110  // Load extented operations for i1 types must be promoted
111  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
112  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
113  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
114
115  // MIPS doesn't have extending float->double load/store
116  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
117  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
118
119  // Used by legalize types to correctly generate the setcc result.
120  // Without this, every float setcc comes with a AND/OR with the result,
121  // we don't want this, since the fpcmp result goes to a flag register,
122  // which is used implicitly by brcond and select operations.
123  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
124
125  // Mips Custom Operations
126  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
127  setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
128  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
129  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
130  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
131  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
132  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
133  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
134  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
135  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
136  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,   Custom);
137  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
138
139  setOperationAction(ISD::SDIV, MVT::i32, Expand);
140  setOperationAction(ISD::SREM, MVT::i32, Expand);
141  setOperationAction(ISD::UDIV, MVT::i32, Expand);
142  setOperationAction(ISD::UREM, MVT::i32, Expand);
143  setOperationAction(ISD::SDIV, MVT::i64, Expand);
144  setOperationAction(ISD::SREM, MVT::i64, Expand);
145  setOperationAction(ISD::UDIV, MVT::i64, Expand);
146  setOperationAction(ISD::UREM, MVT::i64, Expand);
147
148  // Operations not directly supported by Mips.
149  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
150  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
151  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
152  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
153  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
154  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
155  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
156  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
157  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
158  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
159
160  if (!Subtarget->hasMips32r2())
161    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
162
163  if (!Subtarget->hasMips64r2())
164    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
165
166  setOperationAction(ISD::SHL_PARTS,         MVT::i32,   Expand);
167  setOperationAction(ISD::SRA_PARTS,         MVT::i32,   Expand);
168  setOperationAction(ISD::SRL_PARTS,         MVT::i32,   Expand);
169  setOperationAction(ISD::FCOPYSIGN,         MVT::f32,   Custom);
170  setOperationAction(ISD::FCOPYSIGN,         MVT::f64,   Custom);
171  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
172  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
173  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
174  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
175  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
176  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
177  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
178  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
179  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
180  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
181  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
182  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
183  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
184
185  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
186  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
187
188  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
189  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
190  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
191
192  // Use the default for now
193  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
194  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
195
196  setOperationAction(ISD::MEMBARRIER,        MVT::Other, Custom);
197  setOperationAction(ISD::ATOMIC_FENCE,      MVT::Other, Custom);
198
199  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
200  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
201
202  setInsertFencesForAtomic(true);
203
204  if (Subtarget->isSingleFloat())
205    setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
206
207  if (!Subtarget->hasSEInReg()) {
208    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
209    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
210  }
211
212  if (!Subtarget->hasBitCount())
213    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
214
215  if (!Subtarget->hasSwap())
216    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
217
218  setTargetDAGCombine(ISD::ADDE);
219  setTargetDAGCombine(ISD::SUBE);
220  setTargetDAGCombine(ISD::SDIVREM);
221  setTargetDAGCombine(ISD::UDIVREM);
222  setTargetDAGCombine(ISD::SETCC);
223  setTargetDAGCombine(ISD::AND);
224  setTargetDAGCombine(ISD::OR);
225
226  setMinFunctionAlignment(2);
227
228  setStackPointerRegisterToSaveRestore(Mips::SP);
229  computeRegisterProperties();
230
231  setExceptionPointerRegister(Mips::A0);
232  setExceptionSelectorRegister(Mips::A1);
233}
234
235bool MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
236  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
237  return SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16;
238}
239
240EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
241  return MVT::i32;
242}
243
244// SelectMadd -
245// Transforms a subgraph in CurDAG if the following pattern is found:
246//  (addc multLo, Lo0), (adde multHi, Hi0),
247// where,
248//  multHi/Lo: product of multiplication
249//  Lo0: initial value of Lo register
250//  Hi0: initial value of Hi register
251// Return true if pattern matching was successful.
252static bool SelectMadd(SDNode* ADDENode, SelectionDAG* CurDAG) {
253  // ADDENode's second operand must be a flag output of an ADDC node in order
254  // for the matching to be successful.
255  SDNode* ADDCNode = ADDENode->getOperand(2).getNode();
256
257  if (ADDCNode->getOpcode() != ISD::ADDC)
258    return false;
259
260  SDValue MultHi = ADDENode->getOperand(0);
261  SDValue MultLo = ADDCNode->getOperand(0);
262  SDNode* MultNode = MultHi.getNode();
263  unsigned MultOpc = MultHi.getOpcode();
264
265  // MultHi and MultLo must be generated by the same node,
266  if (MultLo.getNode() != MultNode)
267    return false;
268
269  // and it must be a multiplication.
270  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
271    return false;
272
273  // MultLo amd MultHi must be the first and second output of MultNode
274  // respectively.
275  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
276    return false;
277
278  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
279  // of the values of MultNode, in which case MultNode will be removed in later
280  // phases.
281  // If there exist users other than ADDENode or ADDCNode, this function returns
282  // here, which will result in MultNode being mapped to a single MULT
283  // instruction node rather than a pair of MULT and MADD instructions being
284  // produced.
285  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
286    return false;
287
288  SDValue Chain = CurDAG->getEntryNode();
289  DebugLoc dl = ADDENode->getDebugLoc();
290
291  // create MipsMAdd(u) node
292  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
293
294  SDValue MAdd = CurDAG->getNode(MultOpc, dl,
295                                 MVT::Glue,
296                                 MultNode->getOperand(0),// Factor 0
297                                 MultNode->getOperand(1),// Factor 1
298                                 ADDCNode->getOperand(1),// Lo0
299                                 ADDENode->getOperand(1));// Hi0
300
301  // create CopyFromReg nodes
302  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
303                                              MAdd);
304  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
305                                              Mips::HI, MVT::i32,
306                                              CopyFromLo.getValue(2));
307
308  // replace uses of adde and addc here
309  if (!SDValue(ADDCNode, 0).use_empty())
310    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
311
312  if (!SDValue(ADDENode, 0).use_empty())
313    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
314
315  return true;
316}
317
318// SelectMsub -
319// Transforms a subgraph in CurDAG if the following pattern is found:
320//  (addc Lo0, multLo), (sube Hi0, multHi),
321// where,
322//  multHi/Lo: product of multiplication
323//  Lo0: initial value of Lo register
324//  Hi0: initial value of Hi register
325// Return true if pattern matching was successful.
326static bool SelectMsub(SDNode* SUBENode, SelectionDAG* CurDAG) {
327  // SUBENode's second operand must be a flag output of an SUBC node in order
328  // for the matching to be successful.
329  SDNode* SUBCNode = SUBENode->getOperand(2).getNode();
330
331  if (SUBCNode->getOpcode() != ISD::SUBC)
332    return false;
333
334  SDValue MultHi = SUBENode->getOperand(1);
335  SDValue MultLo = SUBCNode->getOperand(1);
336  SDNode* MultNode = MultHi.getNode();
337  unsigned MultOpc = MultHi.getOpcode();
338
339  // MultHi and MultLo must be generated by the same node,
340  if (MultLo.getNode() != MultNode)
341    return false;
342
343  // and it must be a multiplication.
344  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
345    return false;
346
347  // MultLo amd MultHi must be the first and second output of MultNode
348  // respectively.
349  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
350    return false;
351
352  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
353  // of the values of MultNode, in which case MultNode will be removed in later
354  // phases.
355  // If there exist users other than SUBENode or SUBCNode, this function returns
356  // here, which will result in MultNode being mapped to a single MULT
357  // instruction node rather than a pair of MULT and MSUB instructions being
358  // produced.
359  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
360    return false;
361
362  SDValue Chain = CurDAG->getEntryNode();
363  DebugLoc dl = SUBENode->getDebugLoc();
364
365  // create MipsSub(u) node
366  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
367
368  SDValue MSub = CurDAG->getNode(MultOpc, dl,
369                                 MVT::Glue,
370                                 MultNode->getOperand(0),// Factor 0
371                                 MultNode->getOperand(1),// Factor 1
372                                 SUBCNode->getOperand(0),// Lo0
373                                 SUBENode->getOperand(0));// Hi0
374
375  // create CopyFromReg nodes
376  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
377                                              MSub);
378  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
379                                              Mips::HI, MVT::i32,
380                                              CopyFromLo.getValue(2));
381
382  // replace uses of sube and subc here
383  if (!SDValue(SUBCNode, 0).use_empty())
384    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
385
386  if (!SDValue(SUBENode, 0).use_empty())
387    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
388
389  return true;
390}
391
392static SDValue PerformADDECombine(SDNode *N, SelectionDAG& DAG,
393                                  TargetLowering::DAGCombinerInfo &DCI,
394                                  const MipsSubtarget* Subtarget) {
395  if (DCI.isBeforeLegalize())
396    return SDValue();
397
398  if (Subtarget->hasMips32() && SelectMadd(N, &DAG))
399    return SDValue(N, 0);
400
401  return SDValue();
402}
403
404static SDValue PerformSUBECombine(SDNode *N, SelectionDAG& DAG,
405                                  TargetLowering::DAGCombinerInfo &DCI,
406                                  const MipsSubtarget* Subtarget) {
407  if (DCI.isBeforeLegalize())
408    return SDValue();
409
410  if (Subtarget->hasMips32() && SelectMsub(N, &DAG))
411    return SDValue(N, 0);
412
413  return SDValue();
414}
415
416static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG& DAG,
417                                    TargetLowering::DAGCombinerInfo &DCI,
418                                    const MipsSubtarget* Subtarget) {
419  if (DCI.isBeforeLegalizeOps())
420    return SDValue();
421
422  EVT Ty = N->getValueType(0);
423  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
424  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
425  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
426                                                  MipsISD::DivRemU;
427  DebugLoc dl = N->getDebugLoc();
428
429  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
430                               N->getOperand(0), N->getOperand(1));
431  SDValue InChain = DAG.getEntryNode();
432  SDValue InGlue = DivRem;
433
434  // insert MFLO
435  if (N->hasAnyUseOfValue(0)) {
436    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
437                                            InGlue);
438    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
439    InChain = CopyFromLo.getValue(1);
440    InGlue = CopyFromLo.getValue(2);
441  }
442
443  // insert MFHI
444  if (N->hasAnyUseOfValue(1)) {
445    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
446                                            HI, Ty, InGlue);
447    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
448  }
449
450  return SDValue();
451}
452
453static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
454  switch (CC) {
455  default: llvm_unreachable("Unknown fp condition code!");
456  case ISD::SETEQ:
457  case ISD::SETOEQ: return Mips::FCOND_OEQ;
458  case ISD::SETUNE: return Mips::FCOND_UNE;
459  case ISD::SETLT:
460  case ISD::SETOLT: return Mips::FCOND_OLT;
461  case ISD::SETGT:
462  case ISD::SETOGT: return Mips::FCOND_OGT;
463  case ISD::SETLE:
464  case ISD::SETOLE: return Mips::FCOND_OLE;
465  case ISD::SETGE:
466  case ISD::SETOGE: return Mips::FCOND_OGE;
467  case ISD::SETULT: return Mips::FCOND_ULT;
468  case ISD::SETULE: return Mips::FCOND_ULE;
469  case ISD::SETUGT: return Mips::FCOND_UGT;
470  case ISD::SETUGE: return Mips::FCOND_UGE;
471  case ISD::SETUO:  return Mips::FCOND_UN;
472  case ISD::SETO:   return Mips::FCOND_OR;
473  case ISD::SETNE:
474  case ISD::SETONE: return Mips::FCOND_ONE;
475  case ISD::SETUEQ: return Mips::FCOND_UEQ;
476  }
477}
478
479
480// Returns true if condition code has to be inverted.
481static bool InvertFPCondCode(Mips::CondCode CC) {
482  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
483    return false;
484
485  if (CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT)
486    return true;
487
488  assert(false && "Illegal Condition Code");
489  return false;
490}
491
492// Creates and returns an FPCmp node from a setcc node.
493// Returns Op if setcc is not a floating point comparison.
494static SDValue CreateFPCmp(SelectionDAG& DAG, const SDValue& Op) {
495  // must be a SETCC node
496  if (Op.getOpcode() != ISD::SETCC)
497    return Op;
498
499  SDValue LHS = Op.getOperand(0);
500
501  if (!LHS.getValueType().isFloatingPoint())
502    return Op;
503
504  SDValue RHS = Op.getOperand(1);
505  DebugLoc dl = Op.getDebugLoc();
506
507  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
508  // node if necessary.
509  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
510
511  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
512                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
513}
514
515// Creates and returns a CMovFPT/F node.
516static SDValue CreateCMovFP(SelectionDAG& DAG, SDValue Cond, SDValue True,
517                            SDValue False, DebugLoc DL) {
518  bool invert = InvertFPCondCode((Mips::CondCode)
519                                 cast<ConstantSDNode>(Cond.getOperand(2))
520                                 ->getSExtValue());
521
522  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
523                     True.getValueType(), True, False, Cond);
524}
525
526static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG& DAG,
527                                   TargetLowering::DAGCombinerInfo &DCI,
528                                   const MipsSubtarget* Subtarget) {
529  if (DCI.isBeforeLegalizeOps())
530    return SDValue();
531
532  SDValue Cond = CreateFPCmp(DAG, SDValue(N, 0));
533
534  if (Cond.getOpcode() != MipsISD::FPCmp)
535    return SDValue();
536
537  SDValue True  = DAG.getConstant(1, MVT::i32);
538  SDValue False = DAG.getConstant(0, MVT::i32);
539
540  return CreateCMovFP(DAG, Cond, True, False, N->getDebugLoc());
541}
542
543static SDValue PerformANDCombine(SDNode *N, SelectionDAG& DAG,
544                                 TargetLowering::DAGCombinerInfo &DCI,
545                                 const MipsSubtarget* Subtarget) {
546  // Pattern match EXT.
547  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
548  //  => ext $dst, $src, size, pos
549  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
550    return SDValue();
551
552  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
553
554  // Op's first operand must be a shift right.
555  if (ShiftRight.getOpcode() != ISD::SRA && ShiftRight.getOpcode() != ISD::SRL)
556    return SDValue();
557
558  // The second operand of the shift must be an immediate.
559  uint64_t Pos;
560  ConstantSDNode *CN;
561  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
562    return SDValue();
563
564  Pos = CN->getZExtValue();
565
566  uint64_t SMPos, SMSize;
567  // Op's second operand must be a shifted mask.
568  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
569      !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
570    return SDValue();
571
572  // Return if the shifted mask does not start at bit 0 or the sum of its size
573  // and Pos exceeds the word's size.
574  if (SMPos != 0 || Pos + SMSize > 32)
575    return SDValue();
576
577  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), MVT::i32,
578                     ShiftRight.getOperand(0),
579                     DAG.getConstant(Pos, MVT::i32),
580                     DAG.getConstant(SMSize, MVT::i32));
581}
582
583static SDValue PerformORCombine(SDNode *N, SelectionDAG& DAG,
584                                TargetLowering::DAGCombinerInfo &DCI,
585                                const MipsSubtarget* Subtarget) {
586  // Pattern match INS.
587  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
588  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
589  //  => ins $dst, $src, size, pos, $src1
590  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
591    return SDValue();
592
593  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
594  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
595  ConstantSDNode *CN;
596
597  // See if Op's first operand matches (and $src1 , mask0).
598  if (And0.getOpcode() != ISD::AND)
599    return SDValue();
600
601  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
602      !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
603    return SDValue();
604
605  // See if Op's second operand matches (and (shl $src, pos), mask1).
606  if (And1.getOpcode() != ISD::AND)
607    return SDValue();
608
609  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
610      !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
611    return SDValue();
612
613  // The shift masks must have the same position and size.
614  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
615    return SDValue();
616
617  SDValue Shl = And1.getOperand(0);
618  if (Shl.getOpcode() != ISD::SHL)
619    return SDValue();
620
621  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
622    return SDValue();
623
624  unsigned Shamt = CN->getZExtValue();
625
626  // Return if the shift amount and the first bit position of mask are not the
627  // same.
628  if (Shamt != SMPos0)
629    return SDValue();
630
631  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), MVT::i32,
632                     Shl.getOperand(0),
633                     DAG.getConstant(SMPos0, MVT::i32),
634                     DAG.getConstant(SMSize0, MVT::i32),
635                     And0.getOperand(0));
636}
637
638SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
639  const {
640  SelectionDAG &DAG = DCI.DAG;
641  unsigned opc = N->getOpcode();
642
643  switch (opc) {
644  default: break;
645  case ISD::ADDE:
646    return PerformADDECombine(N, DAG, DCI, Subtarget);
647  case ISD::SUBE:
648    return PerformSUBECombine(N, DAG, DCI, Subtarget);
649  case ISD::SDIVREM:
650  case ISD::UDIVREM:
651    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
652  case ISD::SETCC:
653    return PerformSETCCCombine(N, DAG, DCI, Subtarget);
654  case ISD::AND:
655    return PerformANDCombine(N, DAG, DCI, Subtarget);
656  case ISD::OR:
657    return PerformORCombine(N, DAG, DCI, Subtarget);
658  }
659
660  return SDValue();
661}
662
663SDValue MipsTargetLowering::
664LowerOperation(SDValue Op, SelectionDAG &DAG) const
665{
666  switch (Op.getOpcode())
667  {
668    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
669    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
670    case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
671    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
672    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
673    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
674    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
675    case ISD::SELECT:             return LowerSELECT(Op, DAG);
676    case ISD::VASTART:            return LowerVASTART(Op, DAG);
677    case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
678    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
679    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
680    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
681  }
682  return SDValue();
683}
684
685//===----------------------------------------------------------------------===//
686//  Lower helper functions
687//===----------------------------------------------------------------------===//
688
689// AddLiveIn - This helper function adds the specified physical register to the
690// MachineFunction as a live in value.  It also creates a corresponding
691// virtual register for it.
692static unsigned
693AddLiveIn(MachineFunction &MF, unsigned PReg, TargetRegisterClass *RC)
694{
695  assert(RC->contains(PReg) && "Not the correct regclass!");
696  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
697  MF.getRegInfo().addLiveIn(PReg, VReg);
698  return VReg;
699}
700
701// Get fp branch code (not opcode) from condition code.
702static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
703  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
704    return Mips::BRANCH_T;
705
706  if (CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT)
707    return Mips::BRANCH_F;
708
709  return Mips::BRANCH_INVALID;
710}
711
712/*
713static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
714                                        DebugLoc dl,
715                                        const MipsSubtarget* Subtarget,
716                                        const TargetInstrInfo *TII,
717                                        bool isFPCmp, unsigned Opc) {
718  // There is no need to expand CMov instructions if target has
719  // conditional moves.
720  if (Subtarget->hasCondMov())
721    return BB;
722
723  // To "insert" a SELECT_CC instruction, we actually have to insert the
724  // diamond control-flow pattern.  The incoming instruction knows the
725  // destination vreg to set, the condition code register to branch on, the
726  // true/false values to select between, and a branch opcode to use.
727  const BasicBlock *LLVM_BB = BB->getBasicBlock();
728  MachineFunction::iterator It = BB;
729  ++It;
730
731  //  thisMBB:
732  //  ...
733  //   TrueVal = ...
734  //   setcc r1, r2, r3
735  //   bNE   r1, r0, copy1MBB
736  //   fallthrough --> copy0MBB
737  MachineBasicBlock *thisMBB  = BB;
738  MachineFunction *F = BB->getParent();
739  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
740  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
741  F->insert(It, copy0MBB);
742  F->insert(It, sinkMBB);
743
744  // Transfer the remainder of BB and its successor edges to sinkMBB.
745  sinkMBB->splice(sinkMBB->begin(), BB,
746                  llvm::next(MachineBasicBlock::iterator(MI)),
747                  BB->end());
748  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
749
750  // Next, add the true and fallthrough blocks as its successors.
751  BB->addSuccessor(copy0MBB);
752  BB->addSuccessor(sinkMBB);
753
754  // Emit the right instruction according to the type of the operands compared
755  if (isFPCmp)
756    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
757  else
758    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
759      .addReg(Mips::ZERO).addMBB(sinkMBB);
760
761  //  copy0MBB:
762  //   %FalseValue = ...
763  //   # fallthrough to sinkMBB
764  BB = copy0MBB;
765
766  // Update machine-CFG edges
767  BB->addSuccessor(sinkMBB);
768
769  //  sinkMBB:
770  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
771  //  ...
772  BB = sinkMBB;
773
774  if (isFPCmp)
775    BuildMI(*BB, BB->begin(), dl,
776            TII->get(Mips::PHI), MI->getOperand(0).getReg())
777      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
778      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
779  else
780    BuildMI(*BB, BB->begin(), dl,
781            TII->get(Mips::PHI), MI->getOperand(0).getReg())
782      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
783      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
784
785  MI->eraseFromParent();   // The pseudo instruction is gone now.
786  return BB;
787}
788*/
789MachineBasicBlock *
790MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
791                                                MachineBasicBlock *BB) const {
792  switch (MI->getOpcode()) {
793  default:
794    assert(false && "Unexpected instr type to insert");
795    return NULL;
796  case Mips::ATOMIC_LOAD_ADD_I8:
797    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
798  case Mips::ATOMIC_LOAD_ADD_I16:
799    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
800  case Mips::ATOMIC_LOAD_ADD_I32:
801    return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
802
803  case Mips::ATOMIC_LOAD_AND_I8:
804    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
805  case Mips::ATOMIC_LOAD_AND_I16:
806    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
807  case Mips::ATOMIC_LOAD_AND_I32:
808    return EmitAtomicBinary(MI, BB, 4, Mips::AND);
809
810  case Mips::ATOMIC_LOAD_OR_I8:
811    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
812  case Mips::ATOMIC_LOAD_OR_I16:
813    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
814  case Mips::ATOMIC_LOAD_OR_I32:
815    return EmitAtomicBinary(MI, BB, 4, Mips::OR);
816
817  case Mips::ATOMIC_LOAD_XOR_I8:
818    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
819  case Mips::ATOMIC_LOAD_XOR_I16:
820    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
821  case Mips::ATOMIC_LOAD_XOR_I32:
822    return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
823
824  case Mips::ATOMIC_LOAD_NAND_I8:
825    return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
826  case Mips::ATOMIC_LOAD_NAND_I16:
827    return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
828  case Mips::ATOMIC_LOAD_NAND_I32:
829    return EmitAtomicBinary(MI, BB, 4, 0, true);
830
831  case Mips::ATOMIC_LOAD_SUB_I8:
832    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
833  case Mips::ATOMIC_LOAD_SUB_I16:
834    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
835  case Mips::ATOMIC_LOAD_SUB_I32:
836    return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
837
838  case Mips::ATOMIC_SWAP_I8:
839    return EmitAtomicBinaryPartword(MI, BB, 1, 0);
840  case Mips::ATOMIC_SWAP_I16:
841    return EmitAtomicBinaryPartword(MI, BB, 2, 0);
842  case Mips::ATOMIC_SWAP_I32:
843    return EmitAtomicBinary(MI, BB, 4, 0);
844
845  case Mips::ATOMIC_CMP_SWAP_I8:
846    return EmitAtomicCmpSwapPartword(MI, BB, 1);
847  case Mips::ATOMIC_CMP_SWAP_I16:
848    return EmitAtomicCmpSwapPartword(MI, BB, 2);
849  case Mips::ATOMIC_CMP_SWAP_I32:
850    return EmitAtomicCmpSwap(MI, BB, 4);
851  }
852}
853
854// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
855// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
856MachineBasicBlock *
857MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
858                                     unsigned Size, unsigned BinOpcode,
859                                     bool Nand) const {
860  assert(Size == 4 && "Unsupported size for EmitAtomicBinary.");
861
862  MachineFunction *MF = BB->getParent();
863  MachineRegisterInfo &RegInfo = MF->getRegInfo();
864  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
865  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
866  DebugLoc dl = MI->getDebugLoc();
867
868  unsigned OldVal = MI->getOperand(0).getReg();
869  unsigned Ptr = MI->getOperand(1).getReg();
870  unsigned Incr = MI->getOperand(2).getReg();
871
872  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
873  unsigned AndRes = RegInfo.createVirtualRegister(RC);
874  unsigned Success = RegInfo.createVirtualRegister(RC);
875
876  // insert new blocks after the current block
877  const BasicBlock *LLVM_BB = BB->getBasicBlock();
878  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
879  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
880  MachineFunction::iterator It = BB;
881  ++It;
882  MF->insert(It, loopMBB);
883  MF->insert(It, exitMBB);
884
885  // Transfer the remainder of BB and its successor edges to exitMBB.
886  exitMBB->splice(exitMBB->begin(), BB,
887                  llvm::next(MachineBasicBlock::iterator(MI)),
888                  BB->end());
889  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
890
891  //  thisMBB:
892  //    ...
893  //    fallthrough --> loopMBB
894  BB->addSuccessor(loopMBB);
895  loopMBB->addSuccessor(loopMBB);
896  loopMBB->addSuccessor(exitMBB);
897
898  //  loopMBB:
899  //    ll oldval, 0(ptr)
900  //    <binop> storeval, oldval, incr
901  //    sc success, storeval, 0(ptr)
902  //    beq success, $0, loopMBB
903  BB = loopMBB;
904  BuildMI(BB, dl, TII->get(Mips::LL), OldVal).addReg(Ptr).addImm(0);
905  if (Nand) {
906    //  and andres, oldval, incr
907    //  nor storeval, $0, andres
908    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr);
909    BuildMI(BB, dl, TII->get(Mips::NOR), StoreVal)
910      .addReg(Mips::ZERO).addReg(AndRes);
911  } else if (BinOpcode) {
912    //  <binop> storeval, oldval, incr
913    BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
914  } else {
915    StoreVal = Incr;
916  }
917  BuildMI(BB, dl, TII->get(Mips::SC), Success)
918    .addReg(StoreVal).addReg(Ptr).addImm(0);
919  BuildMI(BB, dl, TII->get(Mips::BEQ))
920    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
921
922  MI->eraseFromParent();   // The instruction is gone now.
923
924  return exitMBB;
925}
926
927MachineBasicBlock *
928MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
929                                             MachineBasicBlock *BB,
930                                             unsigned Size, unsigned BinOpcode,
931                                             bool Nand) const {
932  assert((Size == 1 || Size == 2) &&
933      "Unsupported size for EmitAtomicBinaryPartial.");
934
935  MachineFunction *MF = BB->getParent();
936  MachineRegisterInfo &RegInfo = MF->getRegInfo();
937  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
938  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
939  DebugLoc dl = MI->getDebugLoc();
940
941  unsigned Dest = MI->getOperand(0).getReg();
942  unsigned Ptr = MI->getOperand(1).getReg();
943  unsigned Incr = MI->getOperand(2).getReg();
944
945  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
946  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
947  unsigned Mask = RegInfo.createVirtualRegister(RC);
948  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
949  unsigned NewVal = RegInfo.createVirtualRegister(RC);
950  unsigned OldVal = RegInfo.createVirtualRegister(RC);
951  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
952  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
953  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
954  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
955  unsigned AndRes = RegInfo.createVirtualRegister(RC);
956  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
957  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
958  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
959  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
960  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
961  unsigned SllRes = RegInfo.createVirtualRegister(RC);
962  unsigned Success = RegInfo.createVirtualRegister(RC);
963
964  // insert new blocks after the current block
965  const BasicBlock *LLVM_BB = BB->getBasicBlock();
966  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
967  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
968  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
969  MachineFunction::iterator It = BB;
970  ++It;
971  MF->insert(It, loopMBB);
972  MF->insert(It, sinkMBB);
973  MF->insert(It, exitMBB);
974
975  // Transfer the remainder of BB and its successor edges to exitMBB.
976  exitMBB->splice(exitMBB->begin(), BB,
977                  llvm::next(MachineBasicBlock::iterator(MI)),
978                  BB->end());
979  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
980
981  BB->addSuccessor(loopMBB);
982  loopMBB->addSuccessor(loopMBB);
983  loopMBB->addSuccessor(sinkMBB);
984  sinkMBB->addSuccessor(exitMBB);
985
986  //  thisMBB:
987  //    addiu   masklsb2,$0,-4                # 0xfffffffc
988  //    and     alignedaddr,ptr,masklsb2
989  //    andi    ptrlsb2,ptr,3
990  //    sll     shiftamt,ptrlsb2,3
991  //    ori     maskupper,$0,255               # 0xff
992  //    sll     mask,maskupper,shiftamt
993  //    nor     mask2,$0,mask
994  //    sll     incr2,incr,shiftamt
995
996  int64_t MaskImm = (Size == 1) ? 255 : 65535;
997  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
998    .addReg(Mips::ZERO).addImm(-4);
999  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1000    .addReg(Ptr).addReg(MaskLSB2);
1001  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1002  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1003  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1004    .addReg(Mips::ZERO).addImm(MaskImm);
1005  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1006    .addReg(ShiftAmt).addReg(MaskUpper);
1007  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1008  BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1009
1010
1011  // atomic.load.binop
1012  // loopMBB:
1013  //   ll      oldval,0(alignedaddr)
1014  //   binop   binopres,oldval,incr2
1015  //   and     newval,binopres,mask
1016  //   and     maskedoldval0,oldval,mask2
1017  //   or      storeval,maskedoldval0,newval
1018  //   sc      success,storeval,0(alignedaddr)
1019  //   beq     success,$0,loopMBB
1020
1021  // atomic.swap
1022  // loopMBB:
1023  //   ll      oldval,0(alignedaddr)
1024  //   and     newval,incr2,mask
1025  //   and     maskedoldval0,oldval,mask2
1026  //   or      storeval,maskedoldval0,newval
1027  //   sc      success,storeval,0(alignedaddr)
1028  //   beq     success,$0,loopMBB
1029
1030  BB = loopMBB;
1031  BuildMI(BB, dl, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1032  if (Nand) {
1033    //  and andres, oldval, incr2
1034    //  nor binopres, $0, andres
1035    //  and newval, binopres, mask
1036    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1037    BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
1038      .addReg(Mips::ZERO).addReg(AndRes);
1039    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1040  } else if (BinOpcode) {
1041    //  <binop> binopres, oldval, incr2
1042    //  and newval, binopres, mask
1043    BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1044    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1045  } else {// atomic.swap
1046    //  and newval, incr2, mask
1047    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1048  }
1049
1050  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1051    .addReg(OldVal).addReg(Mask2);
1052  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1053    .addReg(MaskedOldVal0).addReg(NewVal);
1054  BuildMI(BB, dl, TII->get(Mips::SC), Success)
1055    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1056  BuildMI(BB, dl, TII->get(Mips::BEQ))
1057    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1058
1059  //  sinkMBB:
1060  //    and     maskedoldval1,oldval,mask
1061  //    srl     srlres,maskedoldval1,shiftamt
1062  //    sll     sllres,srlres,24
1063  //    sra     dest,sllres,24
1064  BB = sinkMBB;
1065  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1066
1067  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1068    .addReg(OldVal).addReg(Mask);
1069  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1070      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1071  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1072      .addReg(SrlRes).addImm(ShiftImm);
1073  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1074      .addReg(SllRes).addImm(ShiftImm);
1075
1076  MI->eraseFromParent();   // The instruction is gone now.
1077
1078  return exitMBB;
1079}
1080
1081MachineBasicBlock *
1082MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
1083                                      MachineBasicBlock *BB,
1084                                      unsigned Size) const {
1085  assert(Size == 4 && "Unsupported size for EmitAtomicCmpSwap.");
1086
1087  MachineFunction *MF = BB->getParent();
1088  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1089  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1090  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1091  DebugLoc dl = MI->getDebugLoc();
1092
1093  unsigned Dest    = MI->getOperand(0).getReg();
1094  unsigned Ptr     = MI->getOperand(1).getReg();
1095  unsigned OldVal  = MI->getOperand(2).getReg();
1096  unsigned NewVal  = MI->getOperand(3).getReg();
1097
1098  unsigned Success = RegInfo.createVirtualRegister(RC);
1099
1100  // insert new blocks after the current block
1101  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1102  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1103  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1104  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1105  MachineFunction::iterator It = BB;
1106  ++It;
1107  MF->insert(It, loop1MBB);
1108  MF->insert(It, loop2MBB);
1109  MF->insert(It, exitMBB);
1110
1111  // Transfer the remainder of BB and its successor edges to exitMBB.
1112  exitMBB->splice(exitMBB->begin(), BB,
1113                  llvm::next(MachineBasicBlock::iterator(MI)),
1114                  BB->end());
1115  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1116
1117  //  thisMBB:
1118  //    ...
1119  //    fallthrough --> loop1MBB
1120  BB->addSuccessor(loop1MBB);
1121  loop1MBB->addSuccessor(exitMBB);
1122  loop1MBB->addSuccessor(loop2MBB);
1123  loop2MBB->addSuccessor(loop1MBB);
1124  loop2MBB->addSuccessor(exitMBB);
1125
1126  // loop1MBB:
1127  //   ll dest, 0(ptr)
1128  //   bne dest, oldval, exitMBB
1129  BB = loop1MBB;
1130  BuildMI(BB, dl, TII->get(Mips::LL), Dest).addReg(Ptr).addImm(0);
1131  BuildMI(BB, dl, TII->get(Mips::BNE))
1132    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1133
1134  // loop2MBB:
1135  //   sc success, newval, 0(ptr)
1136  //   beq success, $0, loop1MBB
1137  BB = loop2MBB;
1138  BuildMI(BB, dl, TII->get(Mips::SC), Success)
1139    .addReg(NewVal).addReg(Ptr).addImm(0);
1140  BuildMI(BB, dl, TII->get(Mips::BEQ))
1141    .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1142
1143  MI->eraseFromParent();   // The instruction is gone now.
1144
1145  return exitMBB;
1146}
1147
1148MachineBasicBlock *
1149MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
1150                                              MachineBasicBlock *BB,
1151                                              unsigned Size) const {
1152  assert((Size == 1 || Size == 2) &&
1153      "Unsupported size for EmitAtomicCmpSwapPartial.");
1154
1155  MachineFunction *MF = BB->getParent();
1156  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1157  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1158  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1159  DebugLoc dl = MI->getDebugLoc();
1160
1161  unsigned Dest    = MI->getOperand(0).getReg();
1162  unsigned Ptr     = MI->getOperand(1).getReg();
1163  unsigned CmpVal  = MI->getOperand(2).getReg();
1164  unsigned NewVal  = MI->getOperand(3).getReg();
1165
1166  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1167  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1168  unsigned Mask = RegInfo.createVirtualRegister(RC);
1169  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1170  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1171  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1172  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1173  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1174  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1175  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1176  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1177  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1178  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1179  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1180  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1181  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1182  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1183  unsigned Success = RegInfo.createVirtualRegister(RC);
1184
1185  // insert new blocks after the current block
1186  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1187  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1188  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1189  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1190  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1191  MachineFunction::iterator It = BB;
1192  ++It;
1193  MF->insert(It, loop1MBB);
1194  MF->insert(It, loop2MBB);
1195  MF->insert(It, sinkMBB);
1196  MF->insert(It, exitMBB);
1197
1198  // Transfer the remainder of BB and its successor edges to exitMBB.
1199  exitMBB->splice(exitMBB->begin(), BB,
1200                  llvm::next(MachineBasicBlock::iterator(MI)),
1201                  BB->end());
1202  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1203
1204  BB->addSuccessor(loop1MBB);
1205  loop1MBB->addSuccessor(sinkMBB);
1206  loop1MBB->addSuccessor(loop2MBB);
1207  loop2MBB->addSuccessor(loop1MBB);
1208  loop2MBB->addSuccessor(sinkMBB);
1209  sinkMBB->addSuccessor(exitMBB);
1210
1211  // FIXME: computation of newval2 can be moved to loop2MBB.
1212  //  thisMBB:
1213  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1214  //    and     alignedaddr,ptr,masklsb2
1215  //    andi    ptrlsb2,ptr,3
1216  //    sll     shiftamt,ptrlsb2,3
1217  //    ori     maskupper,$0,255               # 0xff
1218  //    sll     mask,maskupper,shiftamt
1219  //    nor     mask2,$0,mask
1220  //    andi    maskedcmpval,cmpval,255
1221  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1222  //    andi    maskednewval,newval,255
1223  //    sll     shiftednewval,maskednewval,shiftamt
1224  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1225  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1226    .addReg(Mips::ZERO).addImm(-4);
1227  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1228    .addReg(Ptr).addReg(MaskLSB2);
1229  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1230  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1231  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1232    .addReg(Mips::ZERO).addImm(MaskImm);
1233  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1234    .addReg(ShiftAmt).addReg(MaskUpper);
1235  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1236  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
1237    .addReg(CmpVal).addImm(MaskImm);
1238  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
1239    .addReg(ShiftAmt).addReg(MaskedCmpVal);
1240  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
1241    .addReg(NewVal).addImm(MaskImm);
1242  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
1243    .addReg(ShiftAmt).addReg(MaskedNewVal);
1244
1245  //  loop1MBB:
1246  //    ll      oldval,0(alginedaddr)
1247  //    and     maskedoldval0,oldval,mask
1248  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1249  BB = loop1MBB;
1250  BuildMI(BB, dl, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1251  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1252    .addReg(OldVal).addReg(Mask);
1253  BuildMI(BB, dl, TII->get(Mips::BNE))
1254    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1255
1256  //  loop2MBB:
1257  //    and     maskedoldval1,oldval,mask2
1258  //    or      storeval,maskedoldval1,shiftednewval
1259  //    sc      success,storeval,0(alignedaddr)
1260  //    beq     success,$0,loop1MBB
1261  BB = loop2MBB;
1262  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1263    .addReg(OldVal).addReg(Mask2);
1264  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1265    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1266  BuildMI(BB, dl, TII->get(Mips::SC), Success)
1267      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1268  BuildMI(BB, dl, TII->get(Mips::BEQ))
1269      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1270
1271  //  sinkMBB:
1272  //    srl     srlres,maskedoldval0,shiftamt
1273  //    sll     sllres,srlres,24
1274  //    sra     dest,sllres,24
1275  BB = sinkMBB;
1276  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1277
1278  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1279      .addReg(ShiftAmt).addReg(MaskedOldVal0);
1280  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1281      .addReg(SrlRes).addImm(ShiftImm);
1282  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1283      .addReg(SllRes).addImm(ShiftImm);
1284
1285  MI->eraseFromParent();   // The instruction is gone now.
1286
1287  return exitMBB;
1288}
1289
1290//===----------------------------------------------------------------------===//
1291//  Misc Lower Operation implementation
1292//===----------------------------------------------------------------------===//
1293SDValue MipsTargetLowering::
1294LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
1295{
1296  MachineFunction &MF = DAG.getMachineFunction();
1297  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1298  unsigned SP = IsN64 ? Mips::SP_64 : Mips::SP;
1299
1300  assert(getTargetMachine().getFrameLowering()->getStackAlignment() >=
1301         cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue() &&
1302         "Cannot lower if the alignment of the allocated space is larger than \
1303          that of the stack.");
1304
1305  SDValue Chain = Op.getOperand(0);
1306  SDValue Size = Op.getOperand(1);
1307  DebugLoc dl = Op.getDebugLoc();
1308
1309  // Get a reference from Mips stack pointer
1310  SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, SP, getPointerTy());
1311
1312  // Subtract the dynamic size from the actual stack size to
1313  // obtain the new stack size.
1314  SDValue Sub = DAG.getNode(ISD::SUB, dl, getPointerTy(), StackPointer, Size);
1315
1316  // The Sub result contains the new stack start address, so it
1317  // must be placed in the stack pointer register.
1318  Chain = DAG.getCopyToReg(StackPointer.getValue(1), dl, SP, Sub, SDValue());
1319
1320  // This node always has two return values: a new stack pointer
1321  // value and a chain
1322  SDVTList VTLs = DAG.getVTList(getPointerTy(), MVT::Other);
1323  SDValue Ptr = DAG.getFrameIndex(MipsFI->getDynAllocFI(), getPointerTy());
1324  SDValue Ops[] = { Chain, Ptr, Chain.getValue(1) };
1325
1326  return DAG.getNode(MipsISD::DynAlloc, dl, VTLs, Ops, 3);
1327}
1328
1329SDValue MipsTargetLowering::
1330LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1331{
1332  // The first operand is the chain, the second is the condition, the third is
1333  // the block to branch to if the condition is true.
1334  SDValue Chain = Op.getOperand(0);
1335  SDValue Dest = Op.getOperand(2);
1336  DebugLoc dl = Op.getDebugLoc();
1337
1338  SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
1339
1340  // Return if flag is not set by a floating point comparison.
1341  if (CondRes.getOpcode() != MipsISD::FPCmp)
1342    return Op;
1343
1344  SDValue CCNode  = CondRes.getOperand(2);
1345  Mips::CondCode CC =
1346    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1347  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
1348
1349  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
1350                     Dest, CondRes);
1351}
1352
1353SDValue MipsTargetLowering::
1354LowerSELECT(SDValue Op, SelectionDAG &DAG) const
1355{
1356  SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
1357
1358  // Return if flag is not set by a floating point comparison.
1359  if (Cond.getOpcode() != MipsISD::FPCmp)
1360    return Op;
1361
1362  return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1363                      Op.getDebugLoc());
1364}
1365
1366SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
1367                                               SelectionDAG &DAG) const {
1368  // FIXME there isn't actually debug info here
1369  DebugLoc dl = Op.getDebugLoc();
1370  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1371
1372  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1373    SDVTList VTs = DAG.getVTList(MVT::i32);
1374
1375    MipsTargetObjectFile &TLOF = (MipsTargetObjectFile&)getObjFileLowering();
1376
1377    // %gp_rel relocation
1378    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1379      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1380                                              MipsII::MO_GPREL);
1381      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1);
1382      SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1383      return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode);
1384    }
1385    // %hi/%lo relocation
1386    SDValue GAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1387                                              MipsII::MO_ABS_HI);
1388    SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1389                                              MipsII::MO_ABS_LO);
1390    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GAHi, 1);
1391    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
1392    return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1393  }
1394
1395  EVT ValTy = Op.getValueType();
1396  bool HasGotOfst = (GV->hasInternalLinkage() ||
1397                     (GV->hasLocalLinkage() && !isa<Function>(GV)));
1398  unsigned GotFlag = IsN64 ?
1399                     (HasGotOfst ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT_DISP) :
1400                     MipsII::MO_GOT;
1401  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0, GotFlag);
1402  GA = DAG.getNode(MipsISD::WrapperPIC, dl, ValTy, GA);
1403  SDValue ResNode = DAG.getLoad(ValTy, dl,
1404                                DAG.getEntryNode(), GA, MachinePointerInfo(),
1405                                false, false, false, 0);
1406  // On functions and global targets not internal linked only
1407  // a load from got/GP is necessary for PIC to work.
1408  if (!HasGotOfst)
1409    return ResNode;
1410  SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0,
1411                                            IsN64 ? MipsII::MO_GOT_OFST :
1412                                                    MipsII::MO_ABS_LO);
1413  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, GALo);
1414  return DAG.getNode(ISD::ADD, dl, ValTy, ResNode, Lo);
1415}
1416
1417SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
1418                                              SelectionDAG &DAG) const {
1419  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1420  // FIXME there isn't actually debug info here
1421  DebugLoc dl = Op.getDebugLoc();
1422
1423  if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
1424    // %hi/%lo relocation
1425    SDValue BAHi = DAG.getBlockAddress(BA, MVT::i32, true,
1426                                       MipsII::MO_ABS_HI);
1427    SDValue BALo = DAG.getBlockAddress(BA, MVT::i32, true,
1428                                       MipsII::MO_ABS_LO);
1429    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, MVT::i32, BAHi);
1430    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALo);
1431    return DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo);
1432  }
1433
1434  SDValue BAGOTOffset = DAG.getBlockAddress(BA, MVT::i32, true,
1435                                            MipsII::MO_GOT);
1436  BAGOTOffset = DAG.getNode(MipsISD::WrapperPIC, dl, MVT::i32, BAGOTOffset);
1437  SDValue BALOOffset = DAG.getBlockAddress(BA, MVT::i32, true,
1438                                           MipsII::MO_ABS_LO);
1439  SDValue Load = DAG.getLoad(MVT::i32, dl,
1440                             DAG.getEntryNode(), BAGOTOffset,
1441                             MachinePointerInfo(), false, false, false, 0);
1442  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALOOffset);
1443  return DAG.getNode(ISD::ADD, dl, MVT::i32, Load, Lo);
1444}
1445
1446SDValue MipsTargetLowering::
1447LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1448{
1449  // If the relocation model is PIC, use the General Dynamic TLS Model,
1450  // otherwise use the Initial Exec or Local Exec TLS Model.
1451  // TODO: implement Local Dynamic TLS model
1452
1453  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1454  DebugLoc dl = GA->getDebugLoc();
1455  const GlobalValue *GV = GA->getGlobal();
1456  EVT PtrVT = getPointerTy();
1457
1458  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1459    // General Dynamic TLS Model
1460    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32,
1461                                             0, MipsII::MO_TLSGD);
1462    SDValue Tlsgd = DAG.getNode(MipsISD::TlsGd, dl, MVT::i32, TGA);
1463    SDValue GP = DAG.getRegister(Mips::GP, MVT::i32);
1464    SDValue Argument = DAG.getNode(ISD::ADD, dl, MVT::i32, GP, Tlsgd);
1465
1466    ArgListTy Args;
1467    ArgListEntry Entry;
1468    Entry.Node = Argument;
1469    Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
1470    Args.push_back(Entry);
1471    std::pair<SDValue, SDValue> CallResult =
1472        LowerCallTo(DAG.getEntryNode(),
1473                    (Type *) Type::getInt32Ty(*DAG.getContext()),
1474                    false, false, false, false, 0, CallingConv::C, false, true,
1475                    DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG,
1476                    dl);
1477
1478    return CallResult.first;
1479  }
1480
1481  SDValue Offset;
1482  if (GV->isDeclaration()) {
1483    // Initial Exec TLS Model
1484    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1485                                             MipsII::MO_GOTTPREL);
1486    Offset = DAG.getLoad(MVT::i32, dl,
1487                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1488                         false, false, false, 0);
1489  } else {
1490    // Local Exec TLS Model
1491    SDVTList VTs = DAG.getVTList(MVT::i32);
1492    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1493                                               MipsII::MO_TPREL_HI);
1494    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1495                                               MipsII::MO_TPREL_LO);
1496    SDValue Hi = DAG.getNode(MipsISD::TprelHi, dl, VTs, &TGAHi, 1);
1497    SDValue Lo = DAG.getNode(MipsISD::TprelLo, dl, MVT::i32, TGALo);
1498    Offset = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo);
1499  }
1500
1501  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
1502  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1503}
1504
1505SDValue MipsTargetLowering::
1506LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1507{
1508  SDValue ResNode;
1509  SDValue HiPart;
1510  // FIXME there isn't actually debug info here
1511  DebugLoc dl = Op.getDebugLoc();
1512  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
1513  unsigned char OpFlag = IsPIC ? MipsII::MO_GOT : MipsII::MO_ABS_HI;
1514
1515  EVT PtrVT = Op.getValueType();
1516  JumpTableSDNode *JT  = cast<JumpTableSDNode>(Op);
1517
1518  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag);
1519
1520  if (!IsPIC) {
1521    SDValue Ops[] = { JTI };
1522    HiPart = DAG.getNode(MipsISD::Hi, dl, DAG.getVTList(MVT::i32), Ops, 1);
1523  } else {// Emit Load from Global Pointer
1524    JTI = DAG.getNode(MipsISD::WrapperPIC, dl, MVT::i32, JTI);
1525    HiPart = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(), JTI,
1526                         MachinePointerInfo(),
1527                         false, false, false, 0);
1528  }
1529
1530  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
1531                                         MipsII::MO_ABS_LO);
1532  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, JTILo);
1533  ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1534
1535  return ResNode;
1536}
1537
1538SDValue MipsTargetLowering::
1539LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1540{
1541  SDValue ResNode;
1542  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1543  const Constant *C = N->getConstVal();
1544  // FIXME there isn't actually debug info here
1545  DebugLoc dl = Op.getDebugLoc();
1546
1547  // gp_rel relocation
1548  // FIXME: we should reference the constant pool using small data sections,
1549  // but the asm printer currently doesn't support this feature without
1550  // hacking it. This feature should come soon so we can uncomment the
1551  // stuff below.
1552  //if (IsInSmallSection(C->getType())) {
1553  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1554  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1555  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1556
1557  if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
1558    SDValue CPHi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1559                                             N->getOffset(), MipsII::MO_ABS_HI);
1560    SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1561                                             N->getOffset(), MipsII::MO_ABS_LO);
1562    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CPHi);
1563    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
1564    ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1565  } else {
1566    SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1567                                           N->getOffset(), MipsII::MO_GOT);
1568    CP = DAG.getNode(MipsISD::WrapperPIC, dl, MVT::i32, CP);
1569    SDValue Load = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(),
1570                               CP, MachinePointerInfo::getConstantPool(),
1571                               false, false, false, 0);
1572    SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1573                                             N->getOffset(), MipsII::MO_ABS_LO);
1574    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
1575    ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, Load, Lo);
1576  }
1577
1578  return ResNode;
1579}
1580
1581SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1582  MachineFunction &MF = DAG.getMachineFunction();
1583  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1584
1585  DebugLoc dl = Op.getDebugLoc();
1586  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1587                                 getPointerTy());
1588
1589  // vastart just stores the address of the VarArgsFrameIndex slot into the
1590  // memory location argument.
1591  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1592  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
1593                      MachinePointerInfo(SV),
1594                      false, false, 0);
1595}
1596
1597static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG) {
1598  // FIXME: Use ext/ins instructions if target architecture is Mips32r2.
1599  DebugLoc dl = Op.getDebugLoc();
1600  SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op.getOperand(0));
1601  SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op.getOperand(1));
1602  SDValue And0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op0,
1603                             DAG.getConstant(0x7fffffff, MVT::i32));
1604  SDValue And1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op1,
1605                             DAG.getConstant(0x80000000, MVT::i32));
1606  SDValue Result = DAG.getNode(ISD::OR, dl, MVT::i32, And0, And1);
1607  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Result);
1608}
1609
1610static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool isLittle) {
1611  // FIXME:
1612  //  Use ext/ins instructions if target architecture is Mips32r2.
1613  //  Eliminate redundant mfc1 and mtc1 instructions.
1614  unsigned LoIdx = 0, HiIdx = 1;
1615
1616  if (!isLittle)
1617    std::swap(LoIdx, HiIdx);
1618
1619  DebugLoc dl = Op.getDebugLoc();
1620  SDValue Word0 = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
1621                              Op.getOperand(0),
1622                              DAG.getConstant(LoIdx, MVT::i32));
1623  SDValue Hi0 = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
1624                            Op.getOperand(0), DAG.getConstant(HiIdx, MVT::i32));
1625  SDValue Hi1 = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
1626                            Op.getOperand(1), DAG.getConstant(HiIdx, MVT::i32));
1627  SDValue And0 = DAG.getNode(ISD::AND, dl, MVT::i32, Hi0,
1628                             DAG.getConstant(0x7fffffff, MVT::i32));
1629  SDValue And1 = DAG.getNode(ISD::AND, dl, MVT::i32, Hi1,
1630                             DAG.getConstant(0x80000000, MVT::i32));
1631  SDValue Word1 = DAG.getNode(ISD::OR, dl, MVT::i32, And0, And1);
1632
1633  if (!isLittle)
1634    std::swap(Word0, Word1);
1635
1636  return DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64, Word0, Word1);
1637}
1638
1639SDValue MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG)
1640  const {
1641  EVT Ty = Op.getValueType();
1642
1643  assert(Ty == MVT::f32 || Ty == MVT::f64);
1644
1645  if (Ty == MVT::f32)
1646    return LowerFCOPYSIGN32(Op, DAG);
1647  else
1648    return LowerFCOPYSIGN64(Op, DAG, Subtarget->isLittle());
1649}
1650
1651SDValue MipsTargetLowering::
1652LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1653  // check the depth
1654  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1655         "Frame address can only be determined for current frame.");
1656
1657  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1658  MFI->setFrameAddressIsTaken(true);
1659  EVT VT = Op.getValueType();
1660  DebugLoc dl = Op.getDebugLoc();
1661  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1662                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1663  return FrameAddr;
1664}
1665
1666// TODO: set SType according to the desired memory barrier behavior.
1667SDValue MipsTargetLowering::LowerMEMBARRIER(SDValue Op,
1668                                            SelectionDAG& DAG) const {
1669  unsigned SType = 0;
1670  DebugLoc dl = Op.getDebugLoc();
1671  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
1672                     DAG.getConstant(SType, MVT::i32));
1673}
1674
1675SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
1676                                              SelectionDAG& DAG) const {
1677  // FIXME: Need pseudo-fence for 'singlethread' fences
1678  // FIXME: Set SType for weaker fences where supported/appropriate.
1679  unsigned SType = 0;
1680  DebugLoc dl = Op.getDebugLoc();
1681  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
1682                     DAG.getConstant(SType, MVT::i32));
1683}
1684
1685//===----------------------------------------------------------------------===//
1686//                      Calling Convention Implementation
1687//===----------------------------------------------------------------------===//
1688
1689#include "MipsGenCallingConv.inc"
1690
1691//===----------------------------------------------------------------------===//
1692// TODO: Implement a generic logic using tblgen that can support this.
1693// Mips O32 ABI rules:
1694// ---
1695// i32 - Passed in A0, A1, A2, A3 and stack
1696// f32 - Only passed in f32 registers if no int reg has been used yet to hold
1697//       an argument. Otherwise, passed in A1, A2, A3 and stack.
1698// f64 - Only passed in two aliased f32 registers if no int reg has been used
1699//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
1700//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
1701//       go to stack.
1702//
1703//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
1704//===----------------------------------------------------------------------===//
1705
1706static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
1707                       MVT LocVT, CCValAssign::LocInfo LocInfo,
1708                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
1709
1710  static const unsigned IntRegsSize=4, FloatRegsSize=2;
1711
1712  static const unsigned IntRegs[] = {
1713      Mips::A0, Mips::A1, Mips::A2, Mips::A3
1714  };
1715  static const unsigned F32Regs[] = {
1716      Mips::F12, Mips::F14
1717  };
1718  static const unsigned F64Regs[] = {
1719      Mips::D6, Mips::D7
1720  };
1721
1722  // ByVal Args
1723  if (ArgFlags.isByVal()) {
1724    State.HandleByVal(ValNo, ValVT, LocVT, LocInfo,
1725                      1 /*MinSize*/, 4 /*MinAlign*/, ArgFlags);
1726    unsigned NextReg = (State.getNextStackOffset() + 3) / 4;
1727    for (unsigned r = State.getFirstUnallocated(IntRegs, IntRegsSize);
1728         r < std::min(IntRegsSize, NextReg); ++r)
1729      State.AllocateReg(IntRegs[r]);
1730    return false;
1731  }
1732
1733  // Promote i8 and i16
1734  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
1735    LocVT = MVT::i32;
1736    if (ArgFlags.isSExt())
1737      LocInfo = CCValAssign::SExt;
1738    else if (ArgFlags.isZExt())
1739      LocInfo = CCValAssign::ZExt;
1740    else
1741      LocInfo = CCValAssign::AExt;
1742  }
1743
1744  unsigned Reg;
1745
1746  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
1747  // is true: function is vararg, argument is 3rd or higher, there is previous
1748  // argument which is not f32 or f64.
1749  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
1750      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
1751  unsigned OrigAlign = ArgFlags.getOrigAlign();
1752  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
1753
1754  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
1755    Reg = State.AllocateReg(IntRegs, IntRegsSize);
1756    // If this is the first part of an i64 arg,
1757    // the allocated register must be either A0 or A2.
1758    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
1759      Reg = State.AllocateReg(IntRegs, IntRegsSize);
1760    LocVT = MVT::i32;
1761  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
1762    // Allocate int register and shadow next int register. If first
1763    // available register is Mips::A1 or Mips::A3, shadow it too.
1764    Reg = State.AllocateReg(IntRegs, IntRegsSize);
1765    if (Reg == Mips::A1 || Reg == Mips::A3)
1766      Reg = State.AllocateReg(IntRegs, IntRegsSize);
1767    State.AllocateReg(IntRegs, IntRegsSize);
1768    LocVT = MVT::i32;
1769  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
1770    // we are guaranteed to find an available float register
1771    if (ValVT == MVT::f32) {
1772      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
1773      // Shadow int register
1774      State.AllocateReg(IntRegs, IntRegsSize);
1775    } else {
1776      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
1777      // Shadow int registers
1778      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
1779      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
1780        State.AllocateReg(IntRegs, IntRegsSize);
1781      State.AllocateReg(IntRegs, IntRegsSize);
1782    }
1783  } else
1784    llvm_unreachable("Cannot handle this ValVT.");
1785
1786  unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
1787  unsigned Offset = State.AllocateStack(SizeInBytes, OrigAlign);
1788
1789  if (!Reg)
1790    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
1791  else
1792    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1793
1794  return false; // CC must always match
1795}
1796
1797//===----------------------------------------------------------------------===//
1798//                  Call Calling Convention Implementation
1799//===----------------------------------------------------------------------===//
1800
1801static const unsigned O32IntRegsSize = 4;
1802
1803static const unsigned O32IntRegs[] = {
1804  Mips::A0, Mips::A1, Mips::A2, Mips::A3
1805};
1806
1807// Return next O32 integer argument register.
1808static unsigned getNextIntArgReg(unsigned Reg) {
1809  assert((Reg == Mips::A0) || (Reg == Mips::A2));
1810  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
1811}
1812
1813// Write ByVal Arg to arg registers and stack.
1814static void
1815WriteByValArg(SDValue& ByValChain, SDValue Chain, DebugLoc dl,
1816              SmallVector<std::pair<unsigned, SDValue>, 16>& RegsToPass,
1817              SmallVector<SDValue, 8>& MemOpChains, int& LastFI,
1818              MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
1819              const CCValAssign &VA, const ISD::ArgFlagsTy& Flags,
1820              MVT PtrType, bool isLittle) {
1821  unsigned LocMemOffset = VA.getLocMemOffset();
1822  unsigned Offset = 0;
1823  uint32_t RemainingSize = Flags.getByValSize();
1824  unsigned ByValAlign = Flags.getByValAlign();
1825
1826  // Copy the first 4 words of byval arg to registers A0 - A3.
1827  // FIXME: Use a stricter alignment if it enables better optimization in passes
1828  //        run later.
1829  for (; RemainingSize >= 4 && LocMemOffset < 4 * 4;
1830       Offset += 4, RemainingSize -= 4, LocMemOffset += 4) {
1831    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
1832                                  DAG.getConstant(Offset, MVT::i32));
1833    SDValue LoadVal = DAG.getLoad(MVT::i32, dl, Chain, LoadPtr,
1834                                  MachinePointerInfo(),
1835                                  false, false, false, std::min(ByValAlign,
1836                                                                (unsigned )4));
1837    MemOpChains.push_back(LoadVal.getValue(1));
1838    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
1839    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
1840  }
1841
1842  if (RemainingSize == 0)
1843    return;
1844
1845  // If there still is a register available for argument passing, write the
1846  // remaining part of the structure to it using subword loads and shifts.
1847  if (LocMemOffset < 4 * 4) {
1848    assert(RemainingSize <= 3 && RemainingSize >= 1 &&
1849           "There must be one to three bytes remaining.");
1850    unsigned LoadSize = (RemainingSize == 3 ? 2 : RemainingSize);
1851    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
1852                                  DAG.getConstant(Offset, MVT::i32));
1853    unsigned Alignment = std::min(ByValAlign, (unsigned )4);
1854    SDValue LoadVal = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
1855                                     LoadPtr, MachinePointerInfo(),
1856                                     MVT::getIntegerVT(LoadSize * 8), false,
1857                                     false, Alignment);
1858    MemOpChains.push_back(LoadVal.getValue(1));
1859
1860    // If target is big endian, shift it to the most significant half-word or
1861    // byte.
1862    if (!isLittle)
1863      LoadVal = DAG.getNode(ISD::SHL, dl, MVT::i32, LoadVal,
1864                            DAG.getConstant(32 - LoadSize * 8, MVT::i32));
1865
1866    Offset += LoadSize;
1867    RemainingSize -= LoadSize;
1868
1869    // Read second subword if necessary.
1870    if (RemainingSize != 0)  {
1871      assert(RemainingSize == 1 && "There must be one byte remaining.");
1872      LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
1873                            DAG.getConstant(Offset, MVT::i32));
1874      unsigned Alignment = std::min(ByValAlign, (unsigned )2);
1875      SDValue Subword = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
1876                                       LoadPtr, MachinePointerInfo(),
1877                                       MVT::i8, false, false, Alignment);
1878      MemOpChains.push_back(Subword.getValue(1));
1879      // Insert the loaded byte to LoadVal.
1880      // FIXME: Use INS if supported by target.
1881      unsigned ShiftAmt = isLittle ? 16 : 8;
1882      SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i32, Subword,
1883                                  DAG.getConstant(ShiftAmt, MVT::i32));
1884      LoadVal = DAG.getNode(ISD::OR, dl, MVT::i32, LoadVal, Shift);
1885    }
1886
1887    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
1888    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
1889    return;
1890  }
1891
1892  // Create a fixed object on stack at offset LocMemOffset and copy
1893  // remaining part of byval arg to it using memcpy.
1894  SDValue Src = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
1895                            DAG.getConstant(Offset, MVT::i32));
1896  LastFI = MFI->CreateFixedObject(RemainingSize, LocMemOffset, true);
1897  SDValue Dst = DAG.getFrameIndex(LastFI, PtrType);
1898  ByValChain = DAG.getMemcpy(ByValChain, dl, Dst, Src,
1899                             DAG.getConstant(RemainingSize, MVT::i32),
1900                             std::min(ByValAlign, (unsigned)4),
1901                             /*isVolatile=*/false, /*AlwaysInline=*/false,
1902                             MachinePointerInfo(0), MachinePointerInfo(0));
1903}
1904
1905/// LowerCall - functions arguments are copied from virtual regs to
1906/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
1907/// TODO: isTailCall.
1908SDValue
1909MipsTargetLowering::LowerCall(SDValue InChain, SDValue Callee,
1910                              CallingConv::ID CallConv, bool isVarArg,
1911                              bool &isTailCall,
1912                              const SmallVectorImpl<ISD::OutputArg> &Outs,
1913                              const SmallVectorImpl<SDValue> &OutVals,
1914                              const SmallVectorImpl<ISD::InputArg> &Ins,
1915                              DebugLoc dl, SelectionDAG &DAG,
1916                              SmallVectorImpl<SDValue> &InVals) const {
1917  // MIPs target does not yet support tail call optimization.
1918  isTailCall = false;
1919
1920  MachineFunction &MF = DAG.getMachineFunction();
1921  MachineFrameInfo *MFI = MF.getFrameInfo();
1922  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
1923  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
1924  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1925
1926  // Analyze operands of the call, assigning locations to each operand.
1927  SmallVector<CCValAssign, 16> ArgLocs;
1928  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1929		 getTargetMachine(), ArgLocs, *DAG.getContext());
1930
1931  if (IsO32)
1932    CCInfo.AnalyzeCallOperands(Outs, CC_MipsO32);
1933  else
1934    CCInfo.AnalyzeCallOperands(Outs, CC_Mips);
1935
1936  // Get a count of how many bytes are to be pushed on the stack.
1937  unsigned NextStackOffset = CCInfo.getNextStackOffset();
1938
1939  // Chain is the output chain of the last Load/Store or CopyToReg node.
1940  // ByValChain is the output chain of the last Memcpy node created for copying
1941  // byval arguments to the stack.
1942  SDValue Chain, CallSeqStart, ByValChain;
1943  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
1944  Chain = CallSeqStart = DAG.getCALLSEQ_START(InChain, NextStackOffsetVal);
1945  ByValChain = InChain;
1946
1947  // If this is the first call, create a stack frame object that points to
1948  // a location to which .cprestore saves $gp.
1949  if (IsO32 && IsPIC && !MipsFI->getGPFI())
1950    MipsFI->setGPFI(MFI->CreateFixedObject(4, 0, true));
1951
1952  // Get the frame index of the stack frame object that points to the location
1953  // of dynamically allocated area on the stack.
1954  int DynAllocFI = MipsFI->getDynAllocFI();
1955
1956  // Update size of the maximum argument space.
1957  // For O32, a minimum of four words (16 bytes) of argument space is
1958  // allocated.
1959  if (IsO32)
1960    NextStackOffset = std::max(NextStackOffset, (unsigned)16);
1961
1962  unsigned MaxCallFrameSize = MipsFI->getMaxCallFrameSize();
1963
1964  if (MaxCallFrameSize < NextStackOffset) {
1965    MipsFI->setMaxCallFrameSize(NextStackOffset);
1966
1967    // Set the offsets relative to $sp of the $gp restore slot and dynamically
1968    // allocated stack space. These offsets must be aligned to a boundary
1969    // determined by the stack alignment of the ABI.
1970    unsigned StackAlignment = TFL->getStackAlignment();
1971    NextStackOffset = (NextStackOffset + StackAlignment - 1) /
1972                      StackAlignment * StackAlignment;
1973
1974    if (MipsFI->needGPSaveRestore())
1975      MFI->setObjectOffset(MipsFI->getGPFI(), NextStackOffset);
1976
1977    MFI->setObjectOffset(DynAllocFI, NextStackOffset);
1978  }
1979
1980  // With EABI is it possible to have 16 args on registers.
1981  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
1982  SmallVector<SDValue, 8> MemOpChains;
1983
1984  int FirstFI = -MFI->getNumFixedObjects() - 1, LastFI = 0;
1985
1986  // Walk the register/memloc assignments, inserting copies/loads.
1987  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1988    SDValue Arg = OutVals[i];
1989    CCValAssign &VA = ArgLocs[i];
1990    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
1991
1992    // Promote the value if needed.
1993    switch (VA.getLocInfo()) {
1994    default: llvm_unreachable("Unknown loc info!");
1995    case CCValAssign::Full:
1996      if (VA.isRegLoc()) {
1997        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
1998            (ValVT == MVT::f64 && LocVT == MVT::i64))
1999          Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
2000        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2001          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2002                                   Arg, DAG.getConstant(0, MVT::i32));
2003          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2004                                   Arg, DAG.getConstant(1, MVT::i32));
2005          if (!Subtarget->isLittle())
2006            std::swap(Lo, Hi);
2007          unsigned LocRegLo = VA.getLocReg();
2008          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2009          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2010          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2011          continue;
2012        }
2013      }
2014      break;
2015    case CCValAssign::SExt:
2016      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
2017      break;
2018    case CCValAssign::ZExt:
2019      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
2020      break;
2021    case CCValAssign::AExt:
2022      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
2023      break;
2024    }
2025
2026    // Arguments that can be passed on register must be kept at
2027    // RegsToPass vector
2028    if (VA.isRegLoc()) {
2029      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2030      continue;
2031    }
2032
2033    // Register can't get to this point...
2034    assert(VA.isMemLoc());
2035
2036    // ByVal Arg.
2037    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2038    if (Flags.isByVal()) {
2039      assert(IsO32 &&
2040             "No support for ByVal args by ABIs other than O32 yet.");
2041      assert(Flags.getByValSize() &&
2042             "ByVal args of size 0 should have been ignored by front-end.");
2043      WriteByValArg(ByValChain, Chain, dl, RegsToPass, MemOpChains, LastFI, MFI,
2044                    DAG, Arg, VA, Flags, getPointerTy(), Subtarget->isLittle());
2045      continue;
2046    }
2047
2048    // Create the frame index object for this incoming parameter
2049    LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2050                                    VA.getLocMemOffset(), true);
2051    SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
2052
2053    // emit ISD::STORE whichs stores the
2054    // parameter value to a stack Location
2055    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2056                                       MachinePointerInfo(),
2057                                       false, false, 0));
2058  }
2059
2060  // Extend range of indices of frame objects for outgoing arguments that were
2061  // created during this function call. Skip this step if no such objects were
2062  // created.
2063  if (LastFI)
2064    MipsFI->extendOutArgFIRange(FirstFI, LastFI);
2065
2066  // If a memcpy has been created to copy a byval arg to a stack, replace the
2067  // chain input of CallSeqStart with ByValChain.
2068  if (InChain != ByValChain)
2069    DAG.UpdateNodeOperands(CallSeqStart.getNode(), ByValChain,
2070                           NextStackOffsetVal);
2071
2072  // Transform all store nodes into one single node because all store
2073  // nodes are independent of each other.
2074  if (!MemOpChains.empty())
2075    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2076                        &MemOpChains[0], MemOpChains.size());
2077
2078  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2079  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2080  // node so that legalize doesn't hack it.
2081  unsigned char OpFlag;
2082  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2083  bool LoadSymAddr = false;
2084  SDValue CalleeLo;
2085
2086  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2087    if (IsPICCall && G->getGlobal()->hasInternalLinkage()) {
2088      OpFlag = IsO32 ? MipsII::MO_GOT : MipsII::MO_GOT_PAGE;
2089      unsigned char LoFlag = IsO32 ? MipsII::MO_ABS_LO : MipsII::MO_GOT_OFST;
2090      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
2091                                          OpFlag);
2092      CalleeLo = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(),
2093                                            0, LoFlag);
2094    } else {
2095      OpFlag = IsPICCall ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG;
2096      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2097                                          getPointerTy(), 0, OpFlag);
2098    }
2099
2100    LoadSymAddr = true;
2101  }
2102  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2103    if (IsN64 || (!IsO32 && IsPIC))
2104      OpFlag = MipsII::MO_GOT_DISP;
2105    else if (!IsPIC) // !N64 && static
2106      OpFlag = MipsII::MO_NO_FLAG;
2107    else // O32 & PIC
2108      OpFlag = MipsII::MO_GOT_CALL;
2109    Callee = DAG.getTargetExternalSymbol(S->getSymbol(),
2110                                         getPointerTy(), OpFlag);
2111    LoadSymAddr = true;
2112  }
2113
2114  SDValue InFlag;
2115
2116  // Create nodes that load address of callee and copy it to T9
2117  if (IsPICCall) {
2118    if (LoadSymAddr) {
2119      // Load callee address
2120      Callee = DAG.getNode(MipsISD::WrapperPIC, dl, getPointerTy(), Callee);
2121      SDValue LoadValue = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
2122                                      Callee, MachinePointerInfo::getGOT(),
2123                                      false, false, false, 0);
2124
2125      // Use GOT+LO if callee has internal linkage.
2126      if (CalleeLo.getNode()) {
2127        SDValue Lo = DAG.getNode(MipsISD::Lo, dl, getPointerTy(), CalleeLo);
2128        Callee = DAG.getNode(ISD::ADD, dl, getPointerTy(), LoadValue, Lo);
2129      } else
2130        Callee = LoadValue;
2131    }
2132
2133    // copy to T9
2134    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
2135    Chain = DAG.getCopyToReg(Chain, dl, T9Reg, Callee, SDValue(0, 0));
2136    InFlag = Chain.getValue(1);
2137    Callee = DAG.getRegister(T9Reg, getPointerTy());
2138  }
2139
2140  // Build a sequence of copy-to-reg nodes chained together with token
2141  // chain and flag operands which copy the outgoing args into registers.
2142  // The InFlag in necessary since all emitted instructions must be
2143  // stuck together.
2144  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2145    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2146                             RegsToPass[i].second, InFlag);
2147    InFlag = Chain.getValue(1);
2148  }
2149
2150  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
2151  //             = Chain, Callee, Reg#1, Reg#2, ...
2152  //
2153  // Returns a chain & a flag for retval copy to use.
2154  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2155  SmallVector<SDValue, 8> Ops;
2156  Ops.push_back(Chain);
2157  Ops.push_back(Callee);
2158
2159  // Add argument registers to the end of the list so that they are
2160  // known live into the call.
2161  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2162    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2163                                  RegsToPass[i].second.getValueType()));
2164
2165  if (InFlag.getNode())
2166    Ops.push_back(InFlag);
2167
2168  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
2169  InFlag = Chain.getValue(1);
2170
2171  // Create the CALLSEQ_END node.
2172  Chain = DAG.getCALLSEQ_END(Chain,
2173                             DAG.getIntPtrConstant(NextStackOffset, true),
2174                             DAG.getIntPtrConstant(0, true), InFlag);
2175  InFlag = Chain.getValue(1);
2176
2177  // Handle result values, copying them out of physregs into vregs that we
2178  // return.
2179  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2180                         Ins, dl, DAG, InVals);
2181}
2182
2183/// LowerCallResult - Lower the result values of a call into the
2184/// appropriate copies out of appropriate physical registers.
2185SDValue
2186MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2187                                    CallingConv::ID CallConv, bool isVarArg,
2188                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2189                                    DebugLoc dl, SelectionDAG &DAG,
2190                                    SmallVectorImpl<SDValue> &InVals) const {
2191  // Assign locations to each value returned by this call.
2192  SmallVector<CCValAssign, 16> RVLocs;
2193  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2194		 getTargetMachine(), RVLocs, *DAG.getContext());
2195
2196  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
2197
2198  // Copy all of the result registers out of their specified physreg.
2199  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2200    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
2201                               RVLocs[i].getValVT(), InFlag).getValue(1);
2202    InFlag = Chain.getValue(2);
2203    InVals.push_back(Chain.getValue(0));
2204  }
2205
2206  return Chain;
2207}
2208
2209//===----------------------------------------------------------------------===//
2210//             Formal Arguments Calling Convention Implementation
2211//===----------------------------------------------------------------------===//
2212static void ReadByValArg(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2213                         std::vector<SDValue>& OutChains,
2214                         SelectionDAG &DAG, unsigned NumWords, SDValue FIN,
2215                         const CCValAssign &VA, const ISD::ArgFlagsTy& Flags) {
2216  unsigned LocMem = VA.getLocMemOffset();
2217  unsigned FirstWord = LocMem / 4;
2218
2219  // copy register A0 - A3 to frame object
2220  for (unsigned i = 0; i < NumWords; ++i) {
2221    unsigned CurWord = FirstWord + i;
2222    if (CurWord >= O32IntRegsSize)
2223      break;
2224
2225    unsigned SrcReg = O32IntRegs[CurWord];
2226    unsigned Reg = AddLiveIn(MF, SrcReg, Mips::CPURegsRegisterClass);
2227    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIN,
2228                                   DAG.getConstant(i * 4, MVT::i32));
2229    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(Reg, MVT::i32),
2230                                 StorePtr, MachinePointerInfo(), false,
2231                                 false, 0);
2232    OutChains.push_back(Store);
2233  }
2234}
2235
2236/// LowerFormalArguments - transform physical registers into virtual registers
2237/// and generate load operations for arguments places on the stack.
2238SDValue
2239MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2240                                         CallingConv::ID CallConv,
2241                                         bool isVarArg,
2242                                         const SmallVectorImpl<ISD::InputArg>
2243                                         &Ins,
2244                                         DebugLoc dl, SelectionDAG &DAG,
2245                                         SmallVectorImpl<SDValue> &InVals)
2246                                          const {
2247  MachineFunction &MF = DAG.getMachineFunction();
2248  MachineFrameInfo *MFI = MF.getFrameInfo();
2249  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2250
2251  MipsFI->setVarArgsFrameIndex(0);
2252
2253  // Used with vargs to acumulate store chains.
2254  std::vector<SDValue> OutChains;
2255
2256  // Assign locations to all of the incoming arguments.
2257  SmallVector<CCValAssign, 16> ArgLocs;
2258  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2259		 getTargetMachine(), ArgLocs, *DAG.getContext());
2260
2261  if (IsO32)
2262    CCInfo.AnalyzeFormalArguments(Ins, CC_MipsO32);
2263  else
2264    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips);
2265
2266  int LastFI = 0;// MipsFI->LastInArgFI is 0 at the entry of this function.
2267
2268  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2269    CCValAssign &VA = ArgLocs[i];
2270    EVT ValVT = VA.getValVT();
2271
2272    // Arguments stored on registers
2273    if (VA.isRegLoc()) {
2274      EVT RegVT = VA.getLocVT();
2275      unsigned ArgReg = VA.getLocReg();
2276      TargetRegisterClass *RC = 0;
2277
2278      if (RegVT == MVT::i32)
2279        RC = Mips::CPURegsRegisterClass;
2280      else if (RegVT == MVT::i64)
2281        RC = Mips::CPU64RegsRegisterClass;
2282      else if (RegVT == MVT::f32)
2283        RC = Mips::FGR32RegisterClass;
2284      else if (RegVT == MVT::f64)
2285        RC = HasMips64 ? Mips::FGR64RegisterClass : Mips::AFGR64RegisterClass;
2286      else
2287        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
2288
2289      // Transform the arguments stored on
2290      // physical registers into virtual ones
2291      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2292      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2293
2294      // If this is an 8 or 16-bit value, it has been passed promoted
2295      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2296      // truncate to the right size.
2297      if (VA.getLocInfo() != CCValAssign::Full) {
2298        unsigned Opcode = 0;
2299        if (VA.getLocInfo() == CCValAssign::SExt)
2300          Opcode = ISD::AssertSext;
2301        else if (VA.getLocInfo() == CCValAssign::ZExt)
2302          Opcode = ISD::AssertZext;
2303        if (Opcode)
2304          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
2305                                 DAG.getValueType(ValVT));
2306        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
2307      }
2308
2309      // Handle floating point arguments passed in integer registers.
2310      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2311          (RegVT == MVT::i64 && ValVT == MVT::f64))
2312        ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
2313      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2314        unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
2315                                  getNextIntArgReg(ArgReg), RC);
2316        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
2317        if (!Subtarget->isLittle())
2318          std::swap(ArgValue, ArgValue2);
2319        ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
2320                               ArgValue, ArgValue2);
2321      }
2322
2323      InVals.push_back(ArgValue);
2324    } else { // VA.isRegLoc()
2325
2326      // sanity check
2327      assert(VA.isMemLoc());
2328
2329      ISD::ArgFlagsTy Flags = Ins[i].Flags;
2330
2331      if (Flags.isByVal()) {
2332        assert(IsO32 &&
2333               "No support for ByVal args by ABIs other than O32 yet.");
2334        assert(Flags.getByValSize() &&
2335               "ByVal args of size 0 should have been ignored by front-end.");
2336        unsigned NumWords = (Flags.getByValSize() + 3) / 4;
2337        LastFI = MFI->CreateFixedObject(NumWords * 4, VA.getLocMemOffset(),
2338                                        true);
2339        SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
2340        InVals.push_back(FIN);
2341        ReadByValArg(MF, Chain, dl, OutChains, DAG, NumWords, FIN, VA, Flags);
2342
2343        continue;
2344      }
2345
2346      // The stack pointer offset is relative to the caller stack frame.
2347      LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2348                                      VA.getLocMemOffset(), true);
2349
2350      // Create load nodes to retrieve arguments from the stack
2351      SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
2352      InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
2353                                   MachinePointerInfo::getFixedStack(LastFI),
2354                                   false, false, false, 0));
2355    }
2356  }
2357
2358  // The mips ABIs for returning structs by value requires that we copy
2359  // the sret argument into $v0 for the return. Save the argument into
2360  // a virtual register so that we can access it from the return points.
2361  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2362    unsigned Reg = MipsFI->getSRetReturnReg();
2363    if (!Reg) {
2364      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
2365      MipsFI->setSRetReturnReg(Reg);
2366    }
2367    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
2368    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2369  }
2370
2371  if (isVarArg && IsO32) {
2372    // Record the frame index of the first variable argument
2373    // which is a value necessary to VASTART.
2374    unsigned NextStackOffset = CCInfo.getNextStackOffset();
2375    assert(NextStackOffset % 4 == 0 &&
2376           "NextStackOffset must be aligned to 4-byte boundaries.");
2377    LastFI = MFI->CreateFixedObject(4, NextStackOffset, true);
2378    MipsFI->setVarArgsFrameIndex(LastFI);
2379
2380    // If NextStackOffset is smaller than o32's 16-byte reserved argument area,
2381    // copy the integer registers that have not been used for argument passing
2382    // to the caller's stack frame.
2383    for (; NextStackOffset < 16; NextStackOffset += 4) {
2384      TargetRegisterClass *RC = Mips::CPURegsRegisterClass;
2385      unsigned Idx = NextStackOffset / 4;
2386      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), O32IntRegs[Idx], RC);
2387      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, MVT::i32);
2388      LastFI = MFI->CreateFixedObject(4, NextStackOffset, true);
2389      SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
2390      OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
2391                                       MachinePointerInfo(),
2392                                       false, false, 0));
2393    }
2394  }
2395
2396  MipsFI->setLastInArgFI(LastFI);
2397
2398  // All stores are grouped in one node to allow the matching between
2399  // the size of Ins and InVals. This only happens when on varg functions
2400  if (!OutChains.empty()) {
2401    OutChains.push_back(Chain);
2402    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2403                        &OutChains[0], OutChains.size());
2404  }
2405
2406  return Chain;
2407}
2408
2409//===----------------------------------------------------------------------===//
2410//               Return Value Calling Convention Implementation
2411//===----------------------------------------------------------------------===//
2412
2413SDValue
2414MipsTargetLowering::LowerReturn(SDValue Chain,
2415                                CallingConv::ID CallConv, bool isVarArg,
2416                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2417                                const SmallVectorImpl<SDValue> &OutVals,
2418                                DebugLoc dl, SelectionDAG &DAG) const {
2419
2420  // CCValAssign - represent the assignment of
2421  // the return value to a location
2422  SmallVector<CCValAssign, 16> RVLocs;
2423
2424  // CCState - Info about the registers and stack slot.
2425  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2426		 getTargetMachine(), RVLocs, *DAG.getContext());
2427
2428  // Analize return values.
2429  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
2430
2431  // If this is the first return lowered for this function, add
2432  // the regs to the liveout set for the function.
2433  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2434    for (unsigned i = 0; i != RVLocs.size(); ++i)
2435      if (RVLocs[i].isRegLoc())
2436        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2437  }
2438
2439  SDValue Flag;
2440
2441  // Copy the result values into the output registers.
2442  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2443    CCValAssign &VA = RVLocs[i];
2444    assert(VA.isRegLoc() && "Can only return in registers!");
2445
2446    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2447                             OutVals[i], Flag);
2448
2449    // guarantee that all emitted copies are
2450    // stuck together, avoiding something bad
2451    Flag = Chain.getValue(1);
2452  }
2453
2454  // The mips ABIs for returning structs by value requires that we copy
2455  // the sret argument into $v0 for the return. We saved the argument into
2456  // a virtual register in the entry block, so now we copy the value out
2457  // and into $v0.
2458  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2459    MachineFunction &MF      = DAG.getMachineFunction();
2460    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2461    unsigned Reg = MipsFI->getSRetReturnReg();
2462
2463    if (!Reg)
2464      llvm_unreachable("sret virtual register not created in the entry block");
2465    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
2466
2467    Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
2468    Flag = Chain.getValue(1);
2469  }
2470
2471  // Return on Mips is always a "jr $ra"
2472  if (Flag.getNode())
2473    return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
2474                       Chain, DAG.getRegister(Mips::RA, MVT::i32), Flag);
2475  else // Return Void
2476    return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
2477                       Chain, DAG.getRegister(Mips::RA, MVT::i32));
2478}
2479
2480//===----------------------------------------------------------------------===//
2481//                           Mips Inline Assembly Support
2482//===----------------------------------------------------------------------===//
2483
2484/// getConstraintType - Given a constraint letter, return the type of
2485/// constraint it is for this target.
2486MipsTargetLowering::ConstraintType MipsTargetLowering::
2487getConstraintType(const std::string &Constraint) const
2488{
2489  // Mips specific constrainy
2490  // GCC config/mips/constraints.md
2491  //
2492  // 'd' : An address register. Equivalent to r
2493  //       unless generating MIPS16 code.
2494  // 'y' : Equivalent to r; retained for
2495  //       backwards compatibility.
2496  // 'f' : Floating Point registers.
2497  if (Constraint.size() == 1) {
2498    switch (Constraint[0]) {
2499      default : break;
2500      case 'd':
2501      case 'y':
2502      case 'f':
2503        return C_RegisterClass;
2504        break;
2505    }
2506  }
2507  return TargetLowering::getConstraintType(Constraint);
2508}
2509
2510/// Examine constraint type and operand type and determine a weight value.
2511/// This object must already have been set up with the operand type
2512/// and the current alternative constraint selected.
2513TargetLowering::ConstraintWeight
2514MipsTargetLowering::getSingleConstraintMatchWeight(
2515    AsmOperandInfo &info, const char *constraint) const {
2516  ConstraintWeight weight = CW_Invalid;
2517  Value *CallOperandVal = info.CallOperandVal;
2518    // If we don't have a value, we can't do a match,
2519    // but allow it at the lowest weight.
2520  if (CallOperandVal == NULL)
2521    return CW_Default;
2522  Type *type = CallOperandVal->getType();
2523  // Look at the constraint type.
2524  switch (*constraint) {
2525  default:
2526    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2527    break;
2528  case 'd':
2529  case 'y':
2530    if (type->isIntegerTy())
2531      weight = CW_Register;
2532    break;
2533  case 'f':
2534    if (type->isFloatTy())
2535      weight = CW_Register;
2536    break;
2537  }
2538  return weight;
2539}
2540
2541/// Given a register class constraint, like 'r', if this corresponds directly
2542/// to an LLVM register class, return a register of 0 and the register class
2543/// pointer.
2544std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
2545getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
2546{
2547  if (Constraint.size() == 1) {
2548    switch (Constraint[0]) {
2549    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
2550    case 'y': // Same as 'r'. Exists for compatibility.
2551    case 'r':
2552      return std::make_pair(0U, Mips::CPURegsRegisterClass);
2553    case 'f':
2554      if (VT == MVT::f32)
2555        return std::make_pair(0U, Mips::FGR32RegisterClass);
2556      if (VT == MVT::f64)
2557        if ((!Subtarget->isSingleFloat()) && (!Subtarget->isFP64bit()))
2558          return std::make_pair(0U, Mips::AFGR64RegisterClass);
2559      break;
2560    }
2561  }
2562  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2563}
2564
2565bool
2566MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
2567  // The Mips target isn't yet aware of offsets.
2568  return false;
2569}
2570
2571bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2572  if (VT != MVT::f32 && VT != MVT::f64)
2573    return false;
2574  if (Imm.isNegZero())
2575    return false;
2576  return Imm.isZero();
2577}
2578