MipsISelLowering.cpp revision 4bfcd4acbc7d12aa55f8de9af84a38422f0f6d83
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "mips-lower"
16#include "MipsISelLowering.h"
17#include "MipsMachineFunction.h"
18#include "MipsTargetMachine.h"
19#include "MipsTargetObjectFile.h"
20#include "MipsSubtarget.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/CallingConv.h"
26#include "InstPrinter/MipsInstPrinter.h"
27#include "MCTargetDesc/MipsBaseInfo.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SelectionDAGISel.h"
34#include "llvm/CodeGen/ValueTypes.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37using namespace llvm;
38
39// If I is a shifted mask, set the size (Size) and the first bit of the
40// mask (Pos), and return true.
41// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
42static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
43  if (!isShiftedMask_64(I))
44     return false;
45
46  Size = CountPopulation_64(I);
47  Pos = CountTrailingZeros_64(I);
48  return true;
49}
50
51static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) {
52  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
53  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
54}
55
56const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
57  switch (Opcode) {
58  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
59  case MipsISD::Hi:                return "MipsISD::Hi";
60  case MipsISD::Lo:                return "MipsISD::Lo";
61  case MipsISD::GPRel:             return "MipsISD::GPRel";
62  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
63  case MipsISD::Ret:               return "MipsISD::Ret";
64  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
65  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
66  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
67  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
68  case MipsISD::FPRound:           return "MipsISD::FPRound";
69  case MipsISD::MAdd:              return "MipsISD::MAdd";
70  case MipsISD::MAddu:             return "MipsISD::MAddu";
71  case MipsISD::MSub:              return "MipsISD::MSub";
72  case MipsISD::MSubu:             return "MipsISD::MSubu";
73  case MipsISD::DivRem:            return "MipsISD::DivRem";
74  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
75  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
76  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
77  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
78  case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
79  case MipsISD::Sync:              return "MipsISD::Sync";
80  case MipsISD::Ext:               return "MipsISD::Ext";
81  case MipsISD::Ins:               return "MipsISD::Ins";
82  default:                         return NULL;
83  }
84}
85
86MipsTargetLowering::
87MipsTargetLowering(MipsTargetMachine &TM)
88  : TargetLowering(TM, new MipsTargetObjectFile()),
89    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
90    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
91    IsO32(Subtarget->isABI_O32()) {
92
93  // Mips does not have i1 type, so use i32 for
94  // setcc operations results (slt, sgt, ...).
95  setBooleanContents(ZeroOrOneBooleanContent);
96  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
97
98  // Set up the register classes
99  addRegisterClass(MVT::i32, Mips::CPURegsRegisterClass);
100
101  if (HasMips64)
102    addRegisterClass(MVT::i64, Mips::CPU64RegsRegisterClass);
103
104  if (!TM.Options.UseSoftFloat) {
105    addRegisterClass(MVT::f32, Mips::FGR32RegisterClass);
106
107    // When dealing with single precision only, use libcalls
108    if (!Subtarget->isSingleFloat()) {
109      if (HasMips64)
110        addRegisterClass(MVT::f64, Mips::FGR64RegisterClass);
111      else
112        addRegisterClass(MVT::f64, Mips::AFGR64RegisterClass);
113    }
114  }
115
116  // Load extented operations for i1 types must be promoted
117  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
118  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
119  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
120
121  // MIPS doesn't have extending float->double load/store
122  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
123  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
124
125  // Used by legalize types to correctly generate the setcc result.
126  // Without this, every float setcc comes with a AND/OR with the result,
127  // we don't want this, since the fpcmp result goes to a flag register,
128  // which is used implicitly by brcond and select operations.
129  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
130
131  // Mips Custom Operations
132  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
133  setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
134  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
135  setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
136  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
137  setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
138  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
139  setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
140  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
141  setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
142  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
143  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
144  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
145  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
146  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,   Custom);
147  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,   Custom);
148  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
149
150  setOperationAction(ISD::SDIV, MVT::i32, Expand);
151  setOperationAction(ISD::SREM, MVT::i32, Expand);
152  setOperationAction(ISD::UDIV, MVT::i32, Expand);
153  setOperationAction(ISD::UREM, MVT::i32, Expand);
154  setOperationAction(ISD::SDIV, MVT::i64, Expand);
155  setOperationAction(ISD::SREM, MVT::i64, Expand);
156  setOperationAction(ISD::UDIV, MVT::i64, Expand);
157  setOperationAction(ISD::UREM, MVT::i64, Expand);
158
159  // Operations not directly supported by Mips.
160  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
161  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
162  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
163  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
164  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
165  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
166  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
167  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
168  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
169  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
170  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
171  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
172  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
173  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
174  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
175  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
176  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
177  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
178
179  if (!Subtarget->hasMips32r2())
180    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
181
182  if (!Subtarget->hasMips64r2())
183    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
184
185  setOperationAction(ISD::SHL_PARTS,         MVT::i32,   Expand);
186  setOperationAction(ISD::SRA_PARTS,         MVT::i32,   Expand);
187  setOperationAction(ISD::SRL_PARTS,         MVT::i32,   Expand);
188  setOperationAction(ISD::FCOPYSIGN,         MVT::f32,   Custom);
189  setOperationAction(ISD::FCOPYSIGN,         MVT::f64,   Custom);
190  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
191  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
192  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
193  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
194  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
195  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
196  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
197  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
198  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
199  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
200  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
201  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
202  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
203
204  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
205  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
206  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
207  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
208
209  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
210  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
211  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
212
213  // Use the default for now
214  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
215  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
216
217  setOperationAction(ISD::MEMBARRIER,        MVT::Other, Custom);
218  setOperationAction(ISD::ATOMIC_FENCE,      MVT::Other, Custom);
219
220  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
221  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
222  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
223  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
224
225  setInsertFencesForAtomic(true);
226
227  if (Subtarget->isSingleFloat())
228    setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
229
230  if (!Subtarget->hasSEInReg()) {
231    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
232    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
233  }
234
235  if (!Subtarget->hasBitCount()) {
236    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
237    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
238  }
239
240  if (!Subtarget->hasSwap()) {
241    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
242    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
243  }
244
245  setTargetDAGCombine(ISD::ADDE);
246  setTargetDAGCombine(ISD::SUBE);
247  setTargetDAGCombine(ISD::SDIVREM);
248  setTargetDAGCombine(ISD::UDIVREM);
249  setTargetDAGCombine(ISD::SETCC);
250  setTargetDAGCombine(ISD::AND);
251  setTargetDAGCombine(ISD::OR);
252
253  setMinFunctionAlignment(2);
254
255  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
256  computeRegisterProperties();
257
258  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
259  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
260}
261
262bool MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
263  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
264
265  switch (SVT) {
266  case MVT::i64:
267  case MVT::i32:
268  case MVT::i16:
269    return true;
270  case MVT::f32:
271  case MVT::f64:
272    return Subtarget->hasMips32r2Or64();
273  default:
274    return false;
275  }
276}
277
278EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
279  return MVT::i32;
280}
281
282// SelectMadd -
283// Transforms a subgraph in CurDAG if the following pattern is found:
284//  (addc multLo, Lo0), (adde multHi, Hi0),
285// where,
286//  multHi/Lo: product of multiplication
287//  Lo0: initial value of Lo register
288//  Hi0: initial value of Hi register
289// Return true if pattern matching was successful.
290static bool SelectMadd(SDNode* ADDENode, SelectionDAG* CurDAG) {
291  // ADDENode's second operand must be a flag output of an ADDC node in order
292  // for the matching to be successful.
293  SDNode* ADDCNode = ADDENode->getOperand(2).getNode();
294
295  if (ADDCNode->getOpcode() != ISD::ADDC)
296    return false;
297
298  SDValue MultHi = ADDENode->getOperand(0);
299  SDValue MultLo = ADDCNode->getOperand(0);
300  SDNode* MultNode = MultHi.getNode();
301  unsigned MultOpc = MultHi.getOpcode();
302
303  // MultHi and MultLo must be generated by the same node,
304  if (MultLo.getNode() != MultNode)
305    return false;
306
307  // and it must be a multiplication.
308  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
309    return false;
310
311  // MultLo amd MultHi must be the first and second output of MultNode
312  // respectively.
313  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
314    return false;
315
316  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
317  // of the values of MultNode, in which case MultNode will be removed in later
318  // phases.
319  // If there exist users other than ADDENode or ADDCNode, this function returns
320  // here, which will result in MultNode being mapped to a single MULT
321  // instruction node rather than a pair of MULT and MADD instructions being
322  // produced.
323  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
324    return false;
325
326  SDValue Chain = CurDAG->getEntryNode();
327  DebugLoc dl = ADDENode->getDebugLoc();
328
329  // create MipsMAdd(u) node
330  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
331
332  SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue,
333                                 MultNode->getOperand(0),// Factor 0
334                                 MultNode->getOperand(1),// Factor 1
335                                 ADDCNode->getOperand(1),// Lo0
336                                 ADDENode->getOperand(1));// Hi0
337
338  // create CopyFromReg nodes
339  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
340                                              MAdd);
341  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
342                                              Mips::HI, MVT::i32,
343                                              CopyFromLo.getValue(2));
344
345  // replace uses of adde and addc here
346  if (!SDValue(ADDCNode, 0).use_empty())
347    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
348
349  if (!SDValue(ADDENode, 0).use_empty())
350    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
351
352  return true;
353}
354
355// SelectMsub -
356// Transforms a subgraph in CurDAG if the following pattern is found:
357//  (addc Lo0, multLo), (sube Hi0, multHi),
358// where,
359//  multHi/Lo: product of multiplication
360//  Lo0: initial value of Lo register
361//  Hi0: initial value of Hi register
362// Return true if pattern matching was successful.
363static bool SelectMsub(SDNode* SUBENode, SelectionDAG* CurDAG) {
364  // SUBENode's second operand must be a flag output of an SUBC node in order
365  // for the matching to be successful.
366  SDNode* SUBCNode = SUBENode->getOperand(2).getNode();
367
368  if (SUBCNode->getOpcode() != ISD::SUBC)
369    return false;
370
371  SDValue MultHi = SUBENode->getOperand(1);
372  SDValue MultLo = SUBCNode->getOperand(1);
373  SDNode* MultNode = MultHi.getNode();
374  unsigned MultOpc = MultHi.getOpcode();
375
376  // MultHi and MultLo must be generated by the same node,
377  if (MultLo.getNode() != MultNode)
378    return false;
379
380  // and it must be a multiplication.
381  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
382    return false;
383
384  // MultLo amd MultHi must be the first and second output of MultNode
385  // respectively.
386  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
387    return false;
388
389  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
390  // of the values of MultNode, in which case MultNode will be removed in later
391  // phases.
392  // If there exist users other than SUBENode or SUBCNode, this function returns
393  // here, which will result in MultNode being mapped to a single MULT
394  // instruction node rather than a pair of MULT and MSUB instructions being
395  // produced.
396  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
397    return false;
398
399  SDValue Chain = CurDAG->getEntryNode();
400  DebugLoc dl = SUBENode->getDebugLoc();
401
402  // create MipsSub(u) node
403  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
404
405  SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue,
406                                 MultNode->getOperand(0),// Factor 0
407                                 MultNode->getOperand(1),// Factor 1
408                                 SUBCNode->getOperand(0),// Lo0
409                                 SUBENode->getOperand(0));// Hi0
410
411  // create CopyFromReg nodes
412  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
413                                              MSub);
414  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
415                                              Mips::HI, MVT::i32,
416                                              CopyFromLo.getValue(2));
417
418  // replace uses of sube and subc here
419  if (!SDValue(SUBCNode, 0).use_empty())
420    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
421
422  if (!SDValue(SUBENode, 0).use_empty())
423    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
424
425  return true;
426}
427
428static SDValue PerformADDECombine(SDNode *N, SelectionDAG& DAG,
429                                  TargetLowering::DAGCombinerInfo &DCI,
430                                  const MipsSubtarget* Subtarget) {
431  if (DCI.isBeforeLegalize())
432    return SDValue();
433
434  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
435      SelectMadd(N, &DAG))
436    return SDValue(N, 0);
437
438  return SDValue();
439}
440
441static SDValue PerformSUBECombine(SDNode *N, SelectionDAG& DAG,
442                                  TargetLowering::DAGCombinerInfo &DCI,
443                                  const MipsSubtarget* Subtarget) {
444  if (DCI.isBeforeLegalize())
445    return SDValue();
446
447  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
448      SelectMsub(N, &DAG))
449    return SDValue(N, 0);
450
451  return SDValue();
452}
453
454static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG& DAG,
455                                    TargetLowering::DAGCombinerInfo &DCI,
456                                    const MipsSubtarget* Subtarget) {
457  if (DCI.isBeforeLegalizeOps())
458    return SDValue();
459
460  EVT Ty = N->getValueType(0);
461  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
462  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
463  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
464                                                  MipsISD::DivRemU;
465  DebugLoc dl = N->getDebugLoc();
466
467  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
468                               N->getOperand(0), N->getOperand(1));
469  SDValue InChain = DAG.getEntryNode();
470  SDValue InGlue = DivRem;
471
472  // insert MFLO
473  if (N->hasAnyUseOfValue(0)) {
474    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
475                                            InGlue);
476    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
477    InChain = CopyFromLo.getValue(1);
478    InGlue = CopyFromLo.getValue(2);
479  }
480
481  // insert MFHI
482  if (N->hasAnyUseOfValue(1)) {
483    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
484                                            HI, Ty, InGlue);
485    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
486  }
487
488  return SDValue();
489}
490
491static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
492  switch (CC) {
493  default: llvm_unreachable("Unknown fp condition code!");
494  case ISD::SETEQ:
495  case ISD::SETOEQ: return Mips::FCOND_OEQ;
496  case ISD::SETUNE: return Mips::FCOND_UNE;
497  case ISD::SETLT:
498  case ISD::SETOLT: return Mips::FCOND_OLT;
499  case ISD::SETGT:
500  case ISD::SETOGT: return Mips::FCOND_OGT;
501  case ISD::SETLE:
502  case ISD::SETOLE: return Mips::FCOND_OLE;
503  case ISD::SETGE:
504  case ISD::SETOGE: return Mips::FCOND_OGE;
505  case ISD::SETULT: return Mips::FCOND_ULT;
506  case ISD::SETULE: return Mips::FCOND_ULE;
507  case ISD::SETUGT: return Mips::FCOND_UGT;
508  case ISD::SETUGE: return Mips::FCOND_UGE;
509  case ISD::SETUO:  return Mips::FCOND_UN;
510  case ISD::SETO:   return Mips::FCOND_OR;
511  case ISD::SETNE:
512  case ISD::SETONE: return Mips::FCOND_ONE;
513  case ISD::SETUEQ: return Mips::FCOND_UEQ;
514  }
515}
516
517
518// Returns true if condition code has to be inverted.
519static bool InvertFPCondCode(Mips::CondCode CC) {
520  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
521    return false;
522
523  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
524         "Illegal Condition Code");
525
526  return true;
527}
528
529// Creates and returns an FPCmp node from a setcc node.
530// Returns Op if setcc is not a floating point comparison.
531static SDValue CreateFPCmp(SelectionDAG& DAG, const SDValue& Op) {
532  // must be a SETCC node
533  if (Op.getOpcode() != ISD::SETCC)
534    return Op;
535
536  SDValue LHS = Op.getOperand(0);
537
538  if (!LHS.getValueType().isFloatingPoint())
539    return Op;
540
541  SDValue RHS = Op.getOperand(1);
542  DebugLoc dl = Op.getDebugLoc();
543
544  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
545  // node if necessary.
546  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
547
548  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
549                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
550}
551
552// Creates and returns a CMovFPT/F node.
553static SDValue CreateCMovFP(SelectionDAG& DAG, SDValue Cond, SDValue True,
554                            SDValue False, DebugLoc DL) {
555  bool invert = InvertFPCondCode((Mips::CondCode)
556                                 cast<ConstantSDNode>(Cond.getOperand(2))
557                                 ->getSExtValue());
558
559  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
560                     True.getValueType(), True, False, Cond);
561}
562
563static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG& DAG,
564                                   TargetLowering::DAGCombinerInfo &DCI,
565                                   const MipsSubtarget* Subtarget) {
566  if (DCI.isBeforeLegalizeOps())
567    return SDValue();
568
569  SDValue Cond = CreateFPCmp(DAG, SDValue(N, 0));
570
571  if (Cond.getOpcode() != MipsISD::FPCmp)
572    return SDValue();
573
574  SDValue True  = DAG.getConstant(1, MVT::i32);
575  SDValue False = DAG.getConstant(0, MVT::i32);
576
577  return CreateCMovFP(DAG, Cond, True, False, N->getDebugLoc());
578}
579
580static SDValue PerformANDCombine(SDNode *N, SelectionDAG& DAG,
581                                 TargetLowering::DAGCombinerInfo &DCI,
582                                 const MipsSubtarget* Subtarget) {
583  // Pattern match EXT.
584  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
585  //  => ext $dst, $src, size, pos
586  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
587    return SDValue();
588
589  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
590  unsigned ShiftRightOpc = ShiftRight.getOpcode();
591
592  // Op's first operand must be a shift right.
593  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
594    return SDValue();
595
596  // The second operand of the shift must be an immediate.
597  ConstantSDNode *CN;
598  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
599    return SDValue();
600
601  uint64_t Pos = CN->getZExtValue();
602  uint64_t SMPos, SMSize;
603
604  // Op's second operand must be a shifted mask.
605  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
606      !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
607    return SDValue();
608
609  // Return if the shifted mask does not start at bit 0 or the sum of its size
610  // and Pos exceeds the word's size.
611  EVT ValTy = N->getValueType(0);
612  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
613    return SDValue();
614
615  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
616                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
617                     DAG.getConstant(SMSize, MVT::i32));
618}
619
620static SDValue PerformORCombine(SDNode *N, SelectionDAG& DAG,
621                                TargetLowering::DAGCombinerInfo &DCI,
622                                const MipsSubtarget* Subtarget) {
623  // Pattern match INS.
624  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
625  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
626  //  => ins $dst, $src, size, pos, $src1
627  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
628    return SDValue();
629
630  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
631  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
632  ConstantSDNode *CN;
633
634  // See if Op's first operand matches (and $src1 , mask0).
635  if (And0.getOpcode() != ISD::AND)
636    return SDValue();
637
638  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
639      !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
640    return SDValue();
641
642  // See if Op's second operand matches (and (shl $src, pos), mask1).
643  if (And1.getOpcode() != ISD::AND)
644    return SDValue();
645
646  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
647      !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
648    return SDValue();
649
650  // The shift masks must have the same position and size.
651  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
652    return SDValue();
653
654  SDValue Shl = And1.getOperand(0);
655  if (Shl.getOpcode() != ISD::SHL)
656    return SDValue();
657
658  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
659    return SDValue();
660
661  unsigned Shamt = CN->getZExtValue();
662
663  // Return if the shift amount and the first bit position of mask are not the
664  // same.
665  EVT ValTy = N->getValueType(0);
666  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
667    return SDValue();
668
669  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
670                     DAG.getConstant(SMPos0, MVT::i32),
671                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
672}
673
674SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
675  const {
676  SelectionDAG &DAG = DCI.DAG;
677  unsigned opc = N->getOpcode();
678
679  switch (opc) {
680  default: break;
681  case ISD::ADDE:
682    return PerformADDECombine(N, DAG, DCI, Subtarget);
683  case ISD::SUBE:
684    return PerformSUBECombine(N, DAG, DCI, Subtarget);
685  case ISD::SDIVREM:
686  case ISD::UDIVREM:
687    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
688  case ISD::SETCC:
689    return PerformSETCCCombine(N, DAG, DCI, Subtarget);
690  case ISD::AND:
691    return PerformANDCombine(N, DAG, DCI, Subtarget);
692  case ISD::OR:
693    return PerformORCombine(N, DAG, DCI, Subtarget);
694  }
695
696  return SDValue();
697}
698
699SDValue MipsTargetLowering::
700LowerOperation(SDValue Op, SelectionDAG &DAG) const
701{
702  switch (Op.getOpcode())
703  {
704    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
705    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
706    case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
707    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
708    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
709    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
710    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
711    case ISD::SELECT:             return LowerSELECT(Op, DAG);
712    case ISD::VASTART:            return LowerVASTART(Op, DAG);
713    case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
714    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
715    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
716    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
717  }
718  return SDValue();
719}
720
721//===----------------------------------------------------------------------===//
722//  Lower helper functions
723//===----------------------------------------------------------------------===//
724
725// AddLiveIn - This helper function adds the specified physical register to the
726// MachineFunction as a live in value.  It also creates a corresponding
727// virtual register for it.
728static unsigned
729AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
730{
731  assert(RC->contains(PReg) && "Not the correct regclass!");
732  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
733  MF.getRegInfo().addLiveIn(PReg, VReg);
734  return VReg;
735}
736
737// Get fp branch code (not opcode) from condition code.
738static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
739  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
740    return Mips::BRANCH_T;
741
742  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
743         "Invalid CondCode.");
744
745  return Mips::BRANCH_F;
746}
747
748/*
749static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
750                                        DebugLoc dl,
751                                        const MipsSubtarget* Subtarget,
752                                        const TargetInstrInfo *TII,
753                                        bool isFPCmp, unsigned Opc) {
754  // There is no need to expand CMov instructions if target has
755  // conditional moves.
756  if (Subtarget->hasCondMov())
757    return BB;
758
759  // To "insert" a SELECT_CC instruction, we actually have to insert the
760  // diamond control-flow pattern.  The incoming instruction knows the
761  // destination vreg to set, the condition code register to branch on, the
762  // true/false values to select between, and a branch opcode to use.
763  const BasicBlock *LLVM_BB = BB->getBasicBlock();
764  MachineFunction::iterator It = BB;
765  ++It;
766
767  //  thisMBB:
768  //  ...
769  //   TrueVal = ...
770  //   setcc r1, r2, r3
771  //   bNE   r1, r0, copy1MBB
772  //   fallthrough --> copy0MBB
773  MachineBasicBlock *thisMBB  = BB;
774  MachineFunction *F = BB->getParent();
775  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
776  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
777  F->insert(It, copy0MBB);
778  F->insert(It, sinkMBB);
779
780  // Transfer the remainder of BB and its successor edges to sinkMBB.
781  sinkMBB->splice(sinkMBB->begin(), BB,
782                  llvm::next(MachineBasicBlock::iterator(MI)),
783                  BB->end());
784  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
785
786  // Next, add the true and fallthrough blocks as its successors.
787  BB->addSuccessor(copy0MBB);
788  BB->addSuccessor(sinkMBB);
789
790  // Emit the right instruction according to the type of the operands compared
791  if (isFPCmp)
792    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
793  else
794    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
795      .addReg(Mips::ZERO).addMBB(sinkMBB);
796
797  //  copy0MBB:
798  //   %FalseValue = ...
799  //   # fallthrough to sinkMBB
800  BB = copy0MBB;
801
802  // Update machine-CFG edges
803  BB->addSuccessor(sinkMBB);
804
805  //  sinkMBB:
806  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
807  //  ...
808  BB = sinkMBB;
809
810  if (isFPCmp)
811    BuildMI(*BB, BB->begin(), dl,
812            TII->get(Mips::PHI), MI->getOperand(0).getReg())
813      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
814      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
815  else
816    BuildMI(*BB, BB->begin(), dl,
817            TII->get(Mips::PHI), MI->getOperand(0).getReg())
818      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
819      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
820
821  MI->eraseFromParent();   // The pseudo instruction is gone now.
822  return BB;
823}
824*/
825MachineBasicBlock *
826MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
827                                                MachineBasicBlock *BB) const {
828  switch (MI->getOpcode()) {
829  default: llvm_unreachable("Unexpected instr type to insert");
830  case Mips::ATOMIC_LOAD_ADD_I8:
831  case Mips::ATOMIC_LOAD_ADD_I8_P8:
832    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
833  case Mips::ATOMIC_LOAD_ADD_I16:
834  case Mips::ATOMIC_LOAD_ADD_I16_P8:
835    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
836  case Mips::ATOMIC_LOAD_ADD_I32:
837  case Mips::ATOMIC_LOAD_ADD_I32_P8:
838    return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
839  case Mips::ATOMIC_LOAD_ADD_I64:
840  case Mips::ATOMIC_LOAD_ADD_I64_P8:
841    return EmitAtomicBinary(MI, BB, 8, Mips::DADDu);
842
843  case Mips::ATOMIC_LOAD_AND_I8:
844  case Mips::ATOMIC_LOAD_AND_I8_P8:
845    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
846  case Mips::ATOMIC_LOAD_AND_I16:
847  case Mips::ATOMIC_LOAD_AND_I16_P8:
848    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
849  case Mips::ATOMIC_LOAD_AND_I32:
850  case Mips::ATOMIC_LOAD_AND_I32_P8:
851    return EmitAtomicBinary(MI, BB, 4, Mips::AND);
852  case Mips::ATOMIC_LOAD_AND_I64:
853  case Mips::ATOMIC_LOAD_AND_I64_P8:
854    return EmitAtomicBinary(MI, BB, 8, Mips::AND64);
855
856  case Mips::ATOMIC_LOAD_OR_I8:
857  case Mips::ATOMIC_LOAD_OR_I8_P8:
858    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
859  case Mips::ATOMIC_LOAD_OR_I16:
860  case Mips::ATOMIC_LOAD_OR_I16_P8:
861    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
862  case Mips::ATOMIC_LOAD_OR_I32:
863  case Mips::ATOMIC_LOAD_OR_I32_P8:
864    return EmitAtomicBinary(MI, BB, 4, Mips::OR);
865  case Mips::ATOMIC_LOAD_OR_I64:
866  case Mips::ATOMIC_LOAD_OR_I64_P8:
867    return EmitAtomicBinary(MI, BB, 8, Mips::OR64);
868
869  case Mips::ATOMIC_LOAD_XOR_I8:
870  case Mips::ATOMIC_LOAD_XOR_I8_P8:
871    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
872  case Mips::ATOMIC_LOAD_XOR_I16:
873  case Mips::ATOMIC_LOAD_XOR_I16_P8:
874    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
875  case Mips::ATOMIC_LOAD_XOR_I32:
876  case Mips::ATOMIC_LOAD_XOR_I32_P8:
877    return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
878  case Mips::ATOMIC_LOAD_XOR_I64:
879  case Mips::ATOMIC_LOAD_XOR_I64_P8:
880    return EmitAtomicBinary(MI, BB, 8, Mips::XOR64);
881
882  case Mips::ATOMIC_LOAD_NAND_I8:
883  case Mips::ATOMIC_LOAD_NAND_I8_P8:
884    return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
885  case Mips::ATOMIC_LOAD_NAND_I16:
886  case Mips::ATOMIC_LOAD_NAND_I16_P8:
887    return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
888  case Mips::ATOMIC_LOAD_NAND_I32:
889  case Mips::ATOMIC_LOAD_NAND_I32_P8:
890    return EmitAtomicBinary(MI, BB, 4, 0, true);
891  case Mips::ATOMIC_LOAD_NAND_I64:
892  case Mips::ATOMIC_LOAD_NAND_I64_P8:
893    return EmitAtomicBinary(MI, BB, 8, 0, true);
894
895  case Mips::ATOMIC_LOAD_SUB_I8:
896  case Mips::ATOMIC_LOAD_SUB_I8_P8:
897    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
898  case Mips::ATOMIC_LOAD_SUB_I16:
899  case Mips::ATOMIC_LOAD_SUB_I16_P8:
900    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
901  case Mips::ATOMIC_LOAD_SUB_I32:
902  case Mips::ATOMIC_LOAD_SUB_I32_P8:
903    return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
904  case Mips::ATOMIC_LOAD_SUB_I64:
905  case Mips::ATOMIC_LOAD_SUB_I64_P8:
906    return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu);
907
908  case Mips::ATOMIC_SWAP_I8:
909  case Mips::ATOMIC_SWAP_I8_P8:
910    return EmitAtomicBinaryPartword(MI, BB, 1, 0);
911  case Mips::ATOMIC_SWAP_I16:
912  case Mips::ATOMIC_SWAP_I16_P8:
913    return EmitAtomicBinaryPartword(MI, BB, 2, 0);
914  case Mips::ATOMIC_SWAP_I32:
915  case Mips::ATOMIC_SWAP_I32_P8:
916    return EmitAtomicBinary(MI, BB, 4, 0);
917  case Mips::ATOMIC_SWAP_I64:
918  case Mips::ATOMIC_SWAP_I64_P8:
919    return EmitAtomicBinary(MI, BB, 8, 0);
920
921  case Mips::ATOMIC_CMP_SWAP_I8:
922  case Mips::ATOMIC_CMP_SWAP_I8_P8:
923    return EmitAtomicCmpSwapPartword(MI, BB, 1);
924  case Mips::ATOMIC_CMP_SWAP_I16:
925  case Mips::ATOMIC_CMP_SWAP_I16_P8:
926    return EmitAtomicCmpSwapPartword(MI, BB, 2);
927  case Mips::ATOMIC_CMP_SWAP_I32:
928  case Mips::ATOMIC_CMP_SWAP_I32_P8:
929    return EmitAtomicCmpSwap(MI, BB, 4);
930  case Mips::ATOMIC_CMP_SWAP_I64:
931  case Mips::ATOMIC_CMP_SWAP_I64_P8:
932    return EmitAtomicCmpSwap(MI, BB, 8);
933  }
934}
935
936// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
937// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
938MachineBasicBlock *
939MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
940                                     unsigned Size, unsigned BinOpcode,
941                                     bool Nand) const {
942  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
943
944  MachineFunction *MF = BB->getParent();
945  MachineRegisterInfo &RegInfo = MF->getRegInfo();
946  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
947  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
948  DebugLoc dl = MI->getDebugLoc();
949  unsigned LL, SC, AND, NOR, ZERO, BEQ;
950
951  if (Size == 4) {
952    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
953    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
954    AND = Mips::AND;
955    NOR = Mips::NOR;
956    ZERO = Mips::ZERO;
957    BEQ = Mips::BEQ;
958  }
959  else {
960    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
961    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
962    AND = Mips::AND64;
963    NOR = Mips::NOR64;
964    ZERO = Mips::ZERO_64;
965    BEQ = Mips::BEQ64;
966  }
967
968  unsigned OldVal = MI->getOperand(0).getReg();
969  unsigned Ptr = MI->getOperand(1).getReg();
970  unsigned Incr = MI->getOperand(2).getReg();
971
972  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
973  unsigned AndRes = RegInfo.createVirtualRegister(RC);
974  unsigned Success = RegInfo.createVirtualRegister(RC);
975
976  // insert new blocks after the current block
977  const BasicBlock *LLVM_BB = BB->getBasicBlock();
978  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
979  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
980  MachineFunction::iterator It = BB;
981  ++It;
982  MF->insert(It, loopMBB);
983  MF->insert(It, exitMBB);
984
985  // Transfer the remainder of BB and its successor edges to exitMBB.
986  exitMBB->splice(exitMBB->begin(), BB,
987                  llvm::next(MachineBasicBlock::iterator(MI)),
988                  BB->end());
989  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
990
991  //  thisMBB:
992  //    ...
993  //    fallthrough --> loopMBB
994  BB->addSuccessor(loopMBB);
995  loopMBB->addSuccessor(loopMBB);
996  loopMBB->addSuccessor(exitMBB);
997
998  //  loopMBB:
999  //    ll oldval, 0(ptr)
1000  //    <binop> storeval, oldval, incr
1001  //    sc success, storeval, 0(ptr)
1002  //    beq success, $0, loopMBB
1003  BB = loopMBB;
1004  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1005  if (Nand) {
1006    //  and andres, oldval, incr
1007    //  nor storeval, $0, andres
1008    BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1009    BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1010  } else if (BinOpcode) {
1011    //  <binop> storeval, oldval, incr
1012    BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1013  } else {
1014    StoreVal = Incr;
1015  }
1016  BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1017  BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1018
1019  MI->eraseFromParent();   // The instruction is gone now.
1020
1021  return exitMBB;
1022}
1023
1024MachineBasicBlock *
1025MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
1026                                             MachineBasicBlock *BB,
1027                                             unsigned Size, unsigned BinOpcode,
1028                                             bool Nand) const {
1029  assert((Size == 1 || Size == 2) &&
1030      "Unsupported size for EmitAtomicBinaryPartial.");
1031
1032  MachineFunction *MF = BB->getParent();
1033  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1034  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1035  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1036  DebugLoc dl = MI->getDebugLoc();
1037  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1038  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1039
1040  unsigned Dest = MI->getOperand(0).getReg();
1041  unsigned Ptr = MI->getOperand(1).getReg();
1042  unsigned Incr = MI->getOperand(2).getReg();
1043
1044  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1045  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1046  unsigned Mask = RegInfo.createVirtualRegister(RC);
1047  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1048  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1049  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1050  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1051  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1052  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1053  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1054  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1055  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1056  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1057  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1058  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1059  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1060  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1061  unsigned Success = RegInfo.createVirtualRegister(RC);
1062
1063  // insert new blocks after the current block
1064  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1065  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1066  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1067  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1068  MachineFunction::iterator It = BB;
1069  ++It;
1070  MF->insert(It, loopMBB);
1071  MF->insert(It, sinkMBB);
1072  MF->insert(It, exitMBB);
1073
1074  // Transfer the remainder of BB and its successor edges to exitMBB.
1075  exitMBB->splice(exitMBB->begin(), BB,
1076                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1077  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1078
1079  BB->addSuccessor(loopMBB);
1080  loopMBB->addSuccessor(loopMBB);
1081  loopMBB->addSuccessor(sinkMBB);
1082  sinkMBB->addSuccessor(exitMBB);
1083
1084  //  thisMBB:
1085  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1086  //    and     alignedaddr,ptr,masklsb2
1087  //    andi    ptrlsb2,ptr,3
1088  //    sll     shiftamt,ptrlsb2,3
1089  //    ori     maskupper,$0,255               # 0xff
1090  //    sll     mask,maskupper,shiftamt
1091  //    nor     mask2,$0,mask
1092  //    sll     incr2,incr,shiftamt
1093
1094  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1095  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1096    .addReg(Mips::ZERO).addImm(-4);
1097  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1098    .addReg(Ptr).addReg(MaskLSB2);
1099  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1100  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1101  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1102    .addReg(Mips::ZERO).addImm(MaskImm);
1103  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1104    .addReg(ShiftAmt).addReg(MaskUpper);
1105  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1106  BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1107
1108  // atomic.load.binop
1109  // loopMBB:
1110  //   ll      oldval,0(alignedaddr)
1111  //   binop   binopres,oldval,incr2
1112  //   and     newval,binopres,mask
1113  //   and     maskedoldval0,oldval,mask2
1114  //   or      storeval,maskedoldval0,newval
1115  //   sc      success,storeval,0(alignedaddr)
1116  //   beq     success,$0,loopMBB
1117
1118  // atomic.swap
1119  // loopMBB:
1120  //   ll      oldval,0(alignedaddr)
1121  //   and     newval,incr2,mask
1122  //   and     maskedoldval0,oldval,mask2
1123  //   or      storeval,maskedoldval0,newval
1124  //   sc      success,storeval,0(alignedaddr)
1125  //   beq     success,$0,loopMBB
1126
1127  BB = loopMBB;
1128  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1129  if (Nand) {
1130    //  and andres, oldval, incr2
1131    //  nor binopres, $0, andres
1132    //  and newval, binopres, mask
1133    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1134    BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
1135      .addReg(Mips::ZERO).addReg(AndRes);
1136    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1137  } else if (BinOpcode) {
1138    //  <binop> binopres, oldval, incr2
1139    //  and newval, binopres, mask
1140    BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1141    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1142  } else {// atomic.swap
1143    //  and newval, incr2, mask
1144    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1145  }
1146
1147  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1148    .addReg(OldVal).addReg(Mask2);
1149  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1150    .addReg(MaskedOldVal0).addReg(NewVal);
1151  BuildMI(BB, dl, TII->get(SC), Success)
1152    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1153  BuildMI(BB, dl, TII->get(Mips::BEQ))
1154    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1155
1156  //  sinkMBB:
1157  //    and     maskedoldval1,oldval,mask
1158  //    srl     srlres,maskedoldval1,shiftamt
1159  //    sll     sllres,srlres,24
1160  //    sra     dest,sllres,24
1161  BB = sinkMBB;
1162  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1163
1164  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1165    .addReg(OldVal).addReg(Mask);
1166  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1167      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1168  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1169      .addReg(SrlRes).addImm(ShiftImm);
1170  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1171      .addReg(SllRes).addImm(ShiftImm);
1172
1173  MI->eraseFromParent();   // The instruction is gone now.
1174
1175  return exitMBB;
1176}
1177
1178MachineBasicBlock *
1179MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
1180                                      MachineBasicBlock *BB,
1181                                      unsigned Size) const {
1182  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1183
1184  MachineFunction *MF = BB->getParent();
1185  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1186  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1187  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1188  DebugLoc dl = MI->getDebugLoc();
1189  unsigned LL, SC, ZERO, BNE, BEQ;
1190
1191  if (Size == 4) {
1192    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1193    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1194    ZERO = Mips::ZERO;
1195    BNE = Mips::BNE;
1196    BEQ = Mips::BEQ;
1197  }
1198  else {
1199    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1200    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1201    ZERO = Mips::ZERO_64;
1202    BNE = Mips::BNE64;
1203    BEQ = Mips::BEQ64;
1204  }
1205
1206  unsigned Dest    = MI->getOperand(0).getReg();
1207  unsigned Ptr     = MI->getOperand(1).getReg();
1208  unsigned OldVal  = MI->getOperand(2).getReg();
1209  unsigned NewVal  = MI->getOperand(3).getReg();
1210
1211  unsigned Success = RegInfo.createVirtualRegister(RC);
1212
1213  // insert new blocks after the current block
1214  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1215  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1216  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1217  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1218  MachineFunction::iterator It = BB;
1219  ++It;
1220  MF->insert(It, loop1MBB);
1221  MF->insert(It, loop2MBB);
1222  MF->insert(It, exitMBB);
1223
1224  // Transfer the remainder of BB and its successor edges to exitMBB.
1225  exitMBB->splice(exitMBB->begin(), BB,
1226                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1227  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1228
1229  //  thisMBB:
1230  //    ...
1231  //    fallthrough --> loop1MBB
1232  BB->addSuccessor(loop1MBB);
1233  loop1MBB->addSuccessor(exitMBB);
1234  loop1MBB->addSuccessor(loop2MBB);
1235  loop2MBB->addSuccessor(loop1MBB);
1236  loop2MBB->addSuccessor(exitMBB);
1237
1238  // loop1MBB:
1239  //   ll dest, 0(ptr)
1240  //   bne dest, oldval, exitMBB
1241  BB = loop1MBB;
1242  BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1243  BuildMI(BB, dl, TII->get(BNE))
1244    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1245
1246  // loop2MBB:
1247  //   sc success, newval, 0(ptr)
1248  //   beq success, $0, loop1MBB
1249  BB = loop2MBB;
1250  BuildMI(BB, dl, TII->get(SC), Success)
1251    .addReg(NewVal).addReg(Ptr).addImm(0);
1252  BuildMI(BB, dl, TII->get(BEQ))
1253    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1254
1255  MI->eraseFromParent();   // The instruction is gone now.
1256
1257  return exitMBB;
1258}
1259
1260MachineBasicBlock *
1261MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
1262                                              MachineBasicBlock *BB,
1263                                              unsigned Size) const {
1264  assert((Size == 1 || Size == 2) &&
1265      "Unsupported size for EmitAtomicCmpSwapPartial.");
1266
1267  MachineFunction *MF = BB->getParent();
1268  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1269  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1270  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1271  DebugLoc dl = MI->getDebugLoc();
1272  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1273  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1274
1275  unsigned Dest    = MI->getOperand(0).getReg();
1276  unsigned Ptr     = MI->getOperand(1).getReg();
1277  unsigned CmpVal  = MI->getOperand(2).getReg();
1278  unsigned NewVal  = MI->getOperand(3).getReg();
1279
1280  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1281  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1282  unsigned Mask = RegInfo.createVirtualRegister(RC);
1283  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1284  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1285  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1286  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1287  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1288  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1289  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1290  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1291  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1292  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1293  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1294  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1295  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1296  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1297  unsigned Success = RegInfo.createVirtualRegister(RC);
1298
1299  // insert new blocks after the current block
1300  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1301  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1302  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1303  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1304  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1305  MachineFunction::iterator It = BB;
1306  ++It;
1307  MF->insert(It, loop1MBB);
1308  MF->insert(It, loop2MBB);
1309  MF->insert(It, sinkMBB);
1310  MF->insert(It, exitMBB);
1311
1312  // Transfer the remainder of BB and its successor edges to exitMBB.
1313  exitMBB->splice(exitMBB->begin(), BB,
1314                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1315  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1316
1317  BB->addSuccessor(loop1MBB);
1318  loop1MBB->addSuccessor(sinkMBB);
1319  loop1MBB->addSuccessor(loop2MBB);
1320  loop2MBB->addSuccessor(loop1MBB);
1321  loop2MBB->addSuccessor(sinkMBB);
1322  sinkMBB->addSuccessor(exitMBB);
1323
1324  // FIXME: computation of newval2 can be moved to loop2MBB.
1325  //  thisMBB:
1326  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1327  //    and     alignedaddr,ptr,masklsb2
1328  //    andi    ptrlsb2,ptr,3
1329  //    sll     shiftamt,ptrlsb2,3
1330  //    ori     maskupper,$0,255               # 0xff
1331  //    sll     mask,maskupper,shiftamt
1332  //    nor     mask2,$0,mask
1333  //    andi    maskedcmpval,cmpval,255
1334  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1335  //    andi    maskednewval,newval,255
1336  //    sll     shiftednewval,maskednewval,shiftamt
1337  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1338  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1339    .addReg(Mips::ZERO).addImm(-4);
1340  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1341    .addReg(Ptr).addReg(MaskLSB2);
1342  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1343  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1344  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1345    .addReg(Mips::ZERO).addImm(MaskImm);
1346  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1347    .addReg(ShiftAmt).addReg(MaskUpper);
1348  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1349  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
1350    .addReg(CmpVal).addImm(MaskImm);
1351  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
1352    .addReg(ShiftAmt).addReg(MaskedCmpVal);
1353  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
1354    .addReg(NewVal).addImm(MaskImm);
1355  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
1356    .addReg(ShiftAmt).addReg(MaskedNewVal);
1357
1358  //  loop1MBB:
1359  //    ll      oldval,0(alginedaddr)
1360  //    and     maskedoldval0,oldval,mask
1361  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1362  BB = loop1MBB;
1363  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1364  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1365    .addReg(OldVal).addReg(Mask);
1366  BuildMI(BB, dl, TII->get(Mips::BNE))
1367    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1368
1369  //  loop2MBB:
1370  //    and     maskedoldval1,oldval,mask2
1371  //    or      storeval,maskedoldval1,shiftednewval
1372  //    sc      success,storeval,0(alignedaddr)
1373  //    beq     success,$0,loop1MBB
1374  BB = loop2MBB;
1375  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1376    .addReg(OldVal).addReg(Mask2);
1377  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1378    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1379  BuildMI(BB, dl, TII->get(SC), Success)
1380      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1381  BuildMI(BB, dl, TII->get(Mips::BEQ))
1382      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1383
1384  //  sinkMBB:
1385  //    srl     srlres,maskedoldval0,shiftamt
1386  //    sll     sllres,srlres,24
1387  //    sra     dest,sllres,24
1388  BB = sinkMBB;
1389  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1390
1391  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1392      .addReg(ShiftAmt).addReg(MaskedOldVal0);
1393  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1394      .addReg(SrlRes).addImm(ShiftImm);
1395  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1396      .addReg(SllRes).addImm(ShiftImm);
1397
1398  MI->eraseFromParent();   // The instruction is gone now.
1399
1400  return exitMBB;
1401}
1402
1403//===----------------------------------------------------------------------===//
1404//  Misc Lower Operation implementation
1405//===----------------------------------------------------------------------===//
1406SDValue MipsTargetLowering::
1407LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
1408{
1409  MachineFunction &MF = DAG.getMachineFunction();
1410  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1411  unsigned SP = IsN64 ? Mips::SP_64 : Mips::SP;
1412
1413  assert(getTargetMachine().getFrameLowering()->getStackAlignment() >=
1414         cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue() &&
1415         "Cannot lower if the alignment of the allocated space is larger than \
1416          that of the stack.");
1417
1418  SDValue Chain = Op.getOperand(0);
1419  SDValue Size = Op.getOperand(1);
1420  DebugLoc dl = Op.getDebugLoc();
1421
1422  // Get a reference from Mips stack pointer
1423  SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, SP, getPointerTy());
1424
1425  // Subtract the dynamic size from the actual stack size to
1426  // obtain the new stack size.
1427  SDValue Sub = DAG.getNode(ISD::SUB, dl, getPointerTy(), StackPointer, Size);
1428
1429  // The Sub result contains the new stack start address, so it
1430  // must be placed in the stack pointer register.
1431  Chain = DAG.getCopyToReg(StackPointer.getValue(1), dl, SP, Sub, SDValue());
1432
1433  // This node always has two return values: a new stack pointer
1434  // value and a chain
1435  SDVTList VTLs = DAG.getVTList(getPointerTy(), MVT::Other);
1436  SDValue Ptr = DAG.getFrameIndex(MipsFI->getDynAllocFI(), getPointerTy());
1437  SDValue Ops[] = { Chain, Ptr, Chain.getValue(1) };
1438
1439  return DAG.getNode(MipsISD::DynAlloc, dl, VTLs, Ops, 3);
1440}
1441
1442SDValue MipsTargetLowering::
1443LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1444{
1445  // The first operand is the chain, the second is the condition, the third is
1446  // the block to branch to if the condition is true.
1447  SDValue Chain = Op.getOperand(0);
1448  SDValue Dest = Op.getOperand(2);
1449  DebugLoc dl = Op.getDebugLoc();
1450
1451  SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
1452
1453  // Return if flag is not set by a floating point comparison.
1454  if (CondRes.getOpcode() != MipsISD::FPCmp)
1455    return Op;
1456
1457  SDValue CCNode  = CondRes.getOperand(2);
1458  Mips::CondCode CC =
1459    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1460  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
1461
1462  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
1463                     Dest, CondRes);
1464}
1465
1466SDValue MipsTargetLowering::
1467LowerSELECT(SDValue Op, SelectionDAG &DAG) const
1468{
1469  SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
1470
1471  // Return if flag is not set by a floating point comparison.
1472  if (Cond.getOpcode() != MipsISD::FPCmp)
1473    return Op;
1474
1475  return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1476                      Op.getDebugLoc());
1477}
1478
1479SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
1480                                               SelectionDAG &DAG) const {
1481  // FIXME there isn't actually debug info here
1482  DebugLoc dl = Op.getDebugLoc();
1483  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1484
1485  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1486    SDVTList VTs = DAG.getVTList(MVT::i32);
1487
1488    MipsTargetObjectFile &TLOF = (MipsTargetObjectFile&)getObjFileLowering();
1489
1490    // %gp_rel relocation
1491    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1492      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1493                                              MipsII::MO_GPREL);
1494      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1);
1495      SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1496      return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode);
1497    }
1498    // %hi/%lo relocation
1499    SDValue GAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1500                                              MipsII::MO_ABS_HI);
1501    SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1502                                              MipsII::MO_ABS_LO);
1503    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GAHi, 1);
1504    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
1505    return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1506  }
1507
1508  EVT ValTy = Op.getValueType();
1509  bool HasGotOfst = (GV->hasInternalLinkage() ||
1510                     (GV->hasLocalLinkage() && !isa<Function>(GV)));
1511  unsigned GotFlag = IsN64 ?
1512                     (HasGotOfst ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT_DISP) :
1513                     (HasGotOfst ? MipsII::MO_GOT : MipsII::MO_GOT16);
1514  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0, GotFlag);
1515  GA = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), GA);
1516  SDValue ResNode = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), GA,
1517                                MachinePointerInfo(), false, false, false, 0);
1518  // On functions and global targets not internal linked only
1519  // a load from got/GP is necessary for PIC to work.
1520  if (!HasGotOfst)
1521    return ResNode;
1522  SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0,
1523                                            IsN64 ? MipsII::MO_GOT_OFST :
1524                                                    MipsII::MO_ABS_LO);
1525  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, GALo);
1526  return DAG.getNode(ISD::ADD, dl, ValTy, ResNode, Lo);
1527}
1528
1529SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
1530                                              SelectionDAG &DAG) const {
1531  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1532  // FIXME there isn't actually debug info here
1533  DebugLoc dl = Op.getDebugLoc();
1534
1535  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1536    // %hi/%lo relocation
1537    SDValue BAHi = DAG.getBlockAddress(BA, MVT::i32, true, MipsII::MO_ABS_HI);
1538    SDValue BALo = DAG.getBlockAddress(BA, MVT::i32, true, MipsII::MO_ABS_LO);
1539    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, MVT::i32, BAHi);
1540    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALo);
1541    return DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo);
1542  }
1543
1544  EVT ValTy = Op.getValueType();
1545  unsigned GOTFlag = IsN64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1546  unsigned OFSTFlag = IsN64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1547  SDValue BAGOTOffset = DAG.getBlockAddress(BA, ValTy, true, GOTFlag);
1548  BAGOTOffset = DAG.getNode(MipsISD::Wrapper, dl, ValTy,
1549                            GetGlobalReg(DAG, ValTy), BAGOTOffset);
1550  SDValue BALOOffset = DAG.getBlockAddress(BA, ValTy, true, OFSTFlag);
1551  SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), BAGOTOffset,
1552                             MachinePointerInfo(), false, false, false, 0);
1553  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, BALOOffset);
1554  return DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1555}
1556
1557SDValue MipsTargetLowering::
1558LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1559{
1560  // If the relocation model is PIC, use the General Dynamic TLS Model or
1561  // Local Dynamic TLS model, otherwise use the Initial Exec or
1562  // Local Exec TLS Model.
1563
1564  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1565  DebugLoc dl = GA->getDebugLoc();
1566  const GlobalValue *GV = GA->getGlobal();
1567  EVT PtrVT = getPointerTy();
1568
1569  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1570    // General Dynamic TLS Model
1571    bool LocalDynamic = GV->hasInternalLinkage();
1572    unsigned Flag = LocalDynamic ? MipsII::MO_TLSLDM :MipsII::MO_TLSGD;
1573    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag);
1574    SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT,
1575                                   GetGlobalReg(DAG, PtrVT), TGA);
1576    unsigned PtrSize = PtrVT.getSizeInBits();
1577    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1578
1579    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1580
1581    ArgListTy Args;
1582    ArgListEntry Entry;
1583    Entry.Node = Argument;
1584    Entry.Ty = PtrTy;
1585    Args.push_back(Entry);
1586
1587    std::pair<SDValue, SDValue> CallResult =
1588      LowerCallTo(DAG.getEntryNode(), PtrTy,
1589                  false, false, false, false, 0, CallingConv::C,
1590                  /*isTailCall=*/false, /*doesNotRet=*/false,
1591                  /*isReturnValueUsed=*/true,
1592                  TlsGetAddr, Args, DAG, dl);
1593
1594    SDValue Ret = CallResult.first;
1595
1596    if (!LocalDynamic)
1597      return Ret;
1598
1599    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1600                                               MipsII::MO_DTPREL_HI);
1601    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1602    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1603                                               MipsII::MO_DTPREL_LO);
1604    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1605    SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret);
1606    return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo);
1607  }
1608
1609  SDValue Offset;
1610  if (GV->isDeclaration()) {
1611    // Initial Exec TLS Model
1612    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1613                                             MipsII::MO_GOTTPREL);
1614    TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1615                      TGA);
1616    Offset = DAG.getLoad(PtrVT, dl,
1617                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1618                         false, false, false, 0);
1619  } else {
1620    // Local Exec TLS Model
1621    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1622                                               MipsII::MO_TPREL_HI);
1623    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1624                                               MipsII::MO_TPREL_LO);
1625    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1626    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1627    Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1628  }
1629
1630  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
1631  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1632}
1633
1634SDValue MipsTargetLowering::
1635LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1636{
1637  SDValue HiPart, JTI, JTILo;
1638  // FIXME there isn't actually debug info here
1639  DebugLoc dl = Op.getDebugLoc();
1640  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
1641  EVT PtrVT = Op.getValueType();
1642  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1643
1644  if (!IsPIC && !IsN64) {
1645    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_HI);
1646    HiPart = DAG.getNode(MipsISD::Hi, dl, PtrVT, JTI);
1647    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_LO);
1648  } else {// Emit Load from Global Pointer
1649    unsigned GOTFlag = IsN64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1650    unsigned OfstFlag = IsN64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1651    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, GOTFlag);
1652    JTI = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1653                      JTI);
1654    HiPart = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), JTI,
1655                         MachinePointerInfo(), false, false, false, 0);
1656    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OfstFlag);
1657  }
1658
1659  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, JTILo);
1660  return DAG.getNode(ISD::ADD, dl, PtrVT, HiPart, Lo);
1661}
1662
1663SDValue MipsTargetLowering::
1664LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1665{
1666  SDValue ResNode;
1667  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1668  const Constant *C = N->getConstVal();
1669  // FIXME there isn't actually debug info here
1670  DebugLoc dl = Op.getDebugLoc();
1671
1672  // gp_rel relocation
1673  // FIXME: we should reference the constant pool using small data sections,
1674  // but the asm printer currently doesn't support this feature without
1675  // hacking it. This feature should come soon so we can uncomment the
1676  // stuff below.
1677  //if (IsInSmallSection(C->getType())) {
1678  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1679  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1680  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1681
1682  if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
1683    SDValue CPHi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1684                                             N->getOffset(), MipsII::MO_ABS_HI);
1685    SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1686                                             N->getOffset(), MipsII::MO_ABS_LO);
1687    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CPHi);
1688    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
1689    ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1690  } else {
1691    EVT ValTy = Op.getValueType();
1692    unsigned GOTFlag = IsN64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1693    unsigned OFSTFlag = IsN64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1694    SDValue CP = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1695                                           N->getOffset(), GOTFlag);
1696    CP = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), CP);
1697    SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), CP,
1698                               MachinePointerInfo::getConstantPool(), false,
1699                               false, false, 0);
1700    SDValue CPLo = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1701                                             N->getOffset(), OFSTFlag);
1702    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, CPLo);
1703    ResNode = DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1704  }
1705
1706  return ResNode;
1707}
1708
1709SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1710  MachineFunction &MF = DAG.getMachineFunction();
1711  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1712
1713  DebugLoc dl = Op.getDebugLoc();
1714  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1715                                 getPointerTy());
1716
1717  // vastart just stores the address of the VarArgsFrameIndex slot into the
1718  // memory location argument.
1719  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1720  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
1721                      MachinePointerInfo(SV), false, false, 0);
1722}
1723
1724// Called if the size of integer registers is large enough to hold the whole
1725// floating point number.
1726static SDValue LowerFCOPYSIGNLargeIntReg(SDValue Op, SelectionDAG &DAG) {
1727  // FIXME: Use ext/ins instructions if target architecture is Mips32r2.
1728  EVT ValTy = Op.getValueType();
1729  EVT IntValTy = MVT::getIntegerVT(ValTy.getSizeInBits());
1730  uint64_t Mask = (uint64_t)1 << (ValTy.getSizeInBits() - 1);
1731  DebugLoc dl = Op.getDebugLoc();
1732  SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, IntValTy, Op.getOperand(0));
1733  SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, IntValTy, Op.getOperand(1));
1734  SDValue And0 = DAG.getNode(ISD::AND, dl, IntValTy, Op0,
1735                             DAG.getConstant(Mask - 1, IntValTy));
1736  SDValue And1 = DAG.getNode(ISD::AND, dl, IntValTy, Op1,
1737                             DAG.getConstant(Mask, IntValTy));
1738  SDValue Result = DAG.getNode(ISD::OR, dl, IntValTy, And0, And1);
1739  return DAG.getNode(ISD::BITCAST, dl, ValTy, Result);
1740}
1741
1742// Called if the size of integer registers is not large enough to hold the whole
1743// floating point number (e.g. f64 & 32-bit integer register).
1744static SDValue
1745LowerFCOPYSIGNSmallIntReg(SDValue Op, SelectionDAG &DAG, bool isLittle) {
1746  // FIXME:
1747  //  Use ext/ins instructions if target architecture is Mips32r2.
1748  //  Eliminate redundant mfc1 and mtc1 instructions.
1749  unsigned LoIdx = 0, HiIdx = 1;
1750
1751  if (!isLittle)
1752    std::swap(LoIdx, HiIdx);
1753
1754  DebugLoc dl = Op.getDebugLoc();
1755  SDValue Word0 = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
1756                              Op.getOperand(0),
1757                              DAG.getConstant(LoIdx, MVT::i32));
1758  SDValue Hi0 = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
1759                            Op.getOperand(0), DAG.getConstant(HiIdx, MVT::i32));
1760  SDValue Hi1 = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
1761                            Op.getOperand(1), DAG.getConstant(HiIdx, MVT::i32));
1762  SDValue And0 = DAG.getNode(ISD::AND, dl, MVT::i32, Hi0,
1763                             DAG.getConstant(0x7fffffff, MVT::i32));
1764  SDValue And1 = DAG.getNode(ISD::AND, dl, MVT::i32, Hi1,
1765                             DAG.getConstant(0x80000000, MVT::i32));
1766  SDValue Word1 = DAG.getNode(ISD::OR, dl, MVT::i32, And0, And1);
1767
1768  if (!isLittle)
1769    std::swap(Word0, Word1);
1770
1771  return DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64, Word0, Word1);
1772}
1773
1774SDValue
1775MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1776  EVT Ty = Op.getValueType();
1777
1778  assert(Ty == MVT::f32 || Ty == MVT::f64);
1779
1780  if (Ty == MVT::f32 || HasMips64)
1781    return LowerFCOPYSIGNLargeIntReg(Op, DAG);
1782
1783  return LowerFCOPYSIGNSmallIntReg(Op, DAG, Subtarget->isLittle());
1784}
1785
1786SDValue MipsTargetLowering::
1787LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1788  // check the depth
1789  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1790         "Frame address can only be determined for current frame.");
1791
1792  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1793  MFI->setFrameAddressIsTaken(true);
1794  EVT VT = Op.getValueType();
1795  DebugLoc dl = Op.getDebugLoc();
1796  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1797                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1798  return FrameAddr;
1799}
1800
1801// TODO: set SType according to the desired memory barrier behavior.
1802SDValue
1803MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG& DAG) const {
1804  unsigned SType = 0;
1805  DebugLoc dl = Op.getDebugLoc();
1806  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
1807                     DAG.getConstant(SType, MVT::i32));
1808}
1809
1810SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
1811                                              SelectionDAG& DAG) const {
1812  // FIXME: Need pseudo-fence for 'singlethread' fences
1813  // FIXME: Set SType for weaker fences where supported/appropriate.
1814  unsigned SType = 0;
1815  DebugLoc dl = Op.getDebugLoc();
1816  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
1817                     DAG.getConstant(SType, MVT::i32));
1818}
1819
1820//===----------------------------------------------------------------------===//
1821//                      Calling Convention Implementation
1822//===----------------------------------------------------------------------===//
1823
1824//===----------------------------------------------------------------------===//
1825// TODO: Implement a generic logic using tblgen that can support this.
1826// Mips O32 ABI rules:
1827// ---
1828// i32 - Passed in A0, A1, A2, A3 and stack
1829// f32 - Only passed in f32 registers if no int reg has been used yet to hold
1830//       an argument. Otherwise, passed in A1, A2, A3 and stack.
1831// f64 - Only passed in two aliased f32 registers if no int reg has been used
1832//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
1833//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
1834//       go to stack.
1835//
1836//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
1837//===----------------------------------------------------------------------===//
1838
1839static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
1840                       MVT LocVT, CCValAssign::LocInfo LocInfo,
1841                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
1842
1843  static const unsigned IntRegsSize=4, FloatRegsSize=2;
1844
1845  static const unsigned IntRegs[] = {
1846      Mips::A0, Mips::A1, Mips::A2, Mips::A3
1847  };
1848  static const unsigned F32Regs[] = {
1849      Mips::F12, Mips::F14
1850  };
1851  static const unsigned F64Regs[] = {
1852      Mips::D6, Mips::D7
1853  };
1854
1855  // ByVal Args
1856  if (ArgFlags.isByVal()) {
1857    State.HandleByVal(ValNo, ValVT, LocVT, LocInfo,
1858                      1 /*MinSize*/, 4 /*MinAlign*/, ArgFlags);
1859    unsigned NextReg = (State.getNextStackOffset() + 3) / 4;
1860    for (unsigned r = State.getFirstUnallocated(IntRegs, IntRegsSize);
1861         r < std::min(IntRegsSize, NextReg); ++r)
1862      State.AllocateReg(IntRegs[r]);
1863    return false;
1864  }
1865
1866  // Promote i8 and i16
1867  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
1868    LocVT = MVT::i32;
1869    if (ArgFlags.isSExt())
1870      LocInfo = CCValAssign::SExt;
1871    else if (ArgFlags.isZExt())
1872      LocInfo = CCValAssign::ZExt;
1873    else
1874      LocInfo = CCValAssign::AExt;
1875  }
1876
1877  unsigned Reg;
1878
1879  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
1880  // is true: function is vararg, argument is 3rd or higher, there is previous
1881  // argument which is not f32 or f64.
1882  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
1883      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
1884  unsigned OrigAlign = ArgFlags.getOrigAlign();
1885  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
1886
1887  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
1888    Reg = State.AllocateReg(IntRegs, IntRegsSize);
1889    // If this is the first part of an i64 arg,
1890    // the allocated register must be either A0 or A2.
1891    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
1892      Reg = State.AllocateReg(IntRegs, IntRegsSize);
1893    LocVT = MVT::i32;
1894  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
1895    // Allocate int register and shadow next int register. If first
1896    // available register is Mips::A1 or Mips::A3, shadow it too.
1897    Reg = State.AllocateReg(IntRegs, IntRegsSize);
1898    if (Reg == Mips::A1 || Reg == Mips::A3)
1899      Reg = State.AllocateReg(IntRegs, IntRegsSize);
1900    State.AllocateReg(IntRegs, IntRegsSize);
1901    LocVT = MVT::i32;
1902  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
1903    // we are guaranteed to find an available float register
1904    if (ValVT == MVT::f32) {
1905      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
1906      // Shadow int register
1907      State.AllocateReg(IntRegs, IntRegsSize);
1908    } else {
1909      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
1910      // Shadow int registers
1911      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
1912      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
1913        State.AllocateReg(IntRegs, IntRegsSize);
1914      State.AllocateReg(IntRegs, IntRegsSize);
1915    }
1916  } else
1917    llvm_unreachable("Cannot handle this ValVT.");
1918
1919  unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
1920  unsigned Offset = State.AllocateStack(SizeInBytes, OrigAlign);
1921
1922  if (!Reg)
1923    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
1924  else
1925    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1926
1927  return false; // CC must always match
1928}
1929
1930static const unsigned Mips64IntRegs[8] =
1931  {Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
1932   Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64};
1933static const unsigned Mips64DPRegs[8] =
1934  {Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
1935   Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64};
1936
1937static bool CC_Mips64Byval(unsigned ValNo, MVT ValVT, MVT LocVT,
1938                           CCValAssign::LocInfo LocInfo,
1939                           ISD::ArgFlagsTy ArgFlags, CCState &State) {
1940  unsigned Align = std::max(ArgFlags.getByValAlign(), (unsigned)8);
1941  unsigned Size  = (ArgFlags.getByValSize() + 7) / 8 * 8;
1942  unsigned FirstIdx = State.getFirstUnallocated(Mips64IntRegs, 8);
1943
1944  assert(Align <= 16 && "Cannot handle alignments larger than 16.");
1945
1946  // If byval is 16-byte aligned, the first arg register must be even.
1947  if ((Align == 16) && (FirstIdx % 2)) {
1948    State.AllocateReg(Mips64IntRegs[FirstIdx], Mips64DPRegs[FirstIdx]);
1949    ++FirstIdx;
1950  }
1951
1952  // Mark the registers allocated.
1953  for (unsigned I = FirstIdx; Size && (I < 8); Size -= 8, ++I)
1954    State.AllocateReg(Mips64IntRegs[I], Mips64DPRegs[I]);
1955
1956  // Allocate space on caller's stack.
1957  unsigned Offset = State.AllocateStack(Size, Align);
1958
1959  if (FirstIdx < 8)
1960    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Mips64IntRegs[FirstIdx],
1961                                     LocVT, LocInfo));
1962  else
1963    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
1964
1965  return true;
1966}
1967
1968#include "MipsGenCallingConv.inc"
1969
1970static void
1971AnalyzeMips64CallOperands(CCState &CCInfo,
1972                          const SmallVectorImpl<ISD::OutputArg> &Outs) {
1973  unsigned NumOps = Outs.size();
1974  for (unsigned i = 0; i != NumOps; ++i) {
1975    MVT ArgVT = Outs[i].VT;
1976    ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
1977    bool R;
1978
1979    if (Outs[i].IsFixed)
1980      R = CC_MipsN(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
1981    else
1982      R = CC_MipsN_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
1983
1984    if (R) {
1985#ifndef NDEBUG
1986      dbgs() << "Call operand #" << i << " has unhandled type "
1987             << EVT(ArgVT).getEVTString();
1988#endif
1989      llvm_unreachable(0);
1990    }
1991  }
1992}
1993
1994//===----------------------------------------------------------------------===//
1995//                  Call Calling Convention Implementation
1996//===----------------------------------------------------------------------===//
1997
1998static const unsigned O32IntRegsSize = 4;
1999
2000static const unsigned O32IntRegs[] = {
2001  Mips::A0, Mips::A1, Mips::A2, Mips::A3
2002};
2003
2004// Return next O32 integer argument register.
2005static unsigned getNextIntArgReg(unsigned Reg) {
2006  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2007  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2008}
2009
2010// Write ByVal Arg to arg registers and stack.
2011static void
2012WriteByValArg(SDValue& ByValChain, SDValue Chain, DebugLoc dl,
2013              SmallVector<std::pair<unsigned, SDValue>, 16>& RegsToPass,
2014              SmallVector<SDValue, 8>& MemOpChains, int& LastFI,
2015              MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2016              const CCValAssign &VA, const ISD::ArgFlagsTy& Flags,
2017              MVT PtrType, bool isLittle) {
2018  unsigned LocMemOffset = VA.getLocMemOffset();
2019  unsigned Offset = 0;
2020  uint32_t RemainingSize = Flags.getByValSize();
2021  unsigned ByValAlign = Flags.getByValAlign();
2022
2023  // Copy the first 4 words of byval arg to registers A0 - A3.
2024  // FIXME: Use a stricter alignment if it enables better optimization in passes
2025  //        run later.
2026  for (; RemainingSize >= 4 && LocMemOffset < 4 * 4;
2027       Offset += 4, RemainingSize -= 4, LocMemOffset += 4) {
2028    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2029                                  DAG.getConstant(Offset, MVT::i32));
2030    SDValue LoadVal = DAG.getLoad(MVT::i32, dl, Chain, LoadPtr,
2031                                  MachinePointerInfo(), false, false, false,
2032                                  std::min(ByValAlign, (unsigned )4));
2033    MemOpChains.push_back(LoadVal.getValue(1));
2034    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2035    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2036  }
2037
2038  if (RemainingSize == 0)
2039    return;
2040
2041  // If there still is a register available for argument passing, write the
2042  // remaining part of the structure to it using subword loads and shifts.
2043  if (LocMemOffset < 4 * 4) {
2044    assert(RemainingSize <= 3 && RemainingSize >= 1 &&
2045           "There must be one to three bytes remaining.");
2046    unsigned LoadSize = (RemainingSize == 3 ? 2 : RemainingSize);
2047    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2048                                  DAG.getConstant(Offset, MVT::i32));
2049    unsigned Alignment = std::min(ByValAlign, (unsigned )4);
2050    SDValue LoadVal = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2051                                     LoadPtr, MachinePointerInfo(),
2052                                     MVT::getIntegerVT(LoadSize * 8), false,
2053                                     false, Alignment);
2054    MemOpChains.push_back(LoadVal.getValue(1));
2055
2056    // If target is big endian, shift it to the most significant half-word or
2057    // byte.
2058    if (!isLittle)
2059      LoadVal = DAG.getNode(ISD::SHL, dl, MVT::i32, LoadVal,
2060                            DAG.getConstant(32 - LoadSize * 8, MVT::i32));
2061
2062    Offset += LoadSize;
2063    RemainingSize -= LoadSize;
2064
2065    // Read second subword if necessary.
2066    if (RemainingSize != 0)  {
2067      assert(RemainingSize == 1 && "There must be one byte remaining.");
2068      LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2069                            DAG.getConstant(Offset, MVT::i32));
2070      unsigned Alignment = std::min(ByValAlign, (unsigned )2);
2071      SDValue Subword = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2072                                       LoadPtr, MachinePointerInfo(),
2073                                       MVT::i8, false, false, Alignment);
2074      MemOpChains.push_back(Subword.getValue(1));
2075      // Insert the loaded byte to LoadVal.
2076      // FIXME: Use INS if supported by target.
2077      unsigned ShiftAmt = isLittle ? 16 : 8;
2078      SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i32, Subword,
2079                                  DAG.getConstant(ShiftAmt, MVT::i32));
2080      LoadVal = DAG.getNode(ISD::OR, dl, MVT::i32, LoadVal, Shift);
2081    }
2082
2083    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2084    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2085    return;
2086  }
2087
2088  // Create a fixed object on stack at offset LocMemOffset and copy
2089  // remaining part of byval arg to it using memcpy.
2090  SDValue Src = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2091                            DAG.getConstant(Offset, MVT::i32));
2092  LastFI = MFI->CreateFixedObject(RemainingSize, LocMemOffset, true);
2093  SDValue Dst = DAG.getFrameIndex(LastFI, PtrType);
2094  ByValChain = DAG.getMemcpy(ByValChain, dl, Dst, Src,
2095                             DAG.getConstant(RemainingSize, MVT::i32),
2096                             std::min(ByValAlign, (unsigned)4),
2097                             /*isVolatile=*/false, /*AlwaysInline=*/false,
2098                             MachinePointerInfo(0), MachinePointerInfo(0));
2099}
2100
2101// Copy Mips64 byVal arg to registers and stack.
2102void static
2103PassByValArg64(SDValue& ByValChain, SDValue Chain, DebugLoc dl,
2104               SmallVector<std::pair<unsigned, SDValue>, 16>& RegsToPass,
2105               SmallVector<SDValue, 8>& MemOpChains, int& LastFI,
2106               MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2107               const CCValAssign &VA, const ISD::ArgFlagsTy& Flags,
2108               EVT PtrTy, bool isLittle) {
2109  unsigned ByValSize = Flags.getByValSize();
2110  unsigned Alignment = std::min(Flags.getByValAlign(), (unsigned)8);
2111  bool IsRegLoc = VA.isRegLoc();
2112  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
2113  unsigned LocMemOffset = 0;
2114  unsigned MemCpySize = ByValSize;
2115
2116  if (!IsRegLoc)
2117    LocMemOffset = VA.getLocMemOffset();
2118  else {
2119    const unsigned *Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8,
2120                                    VA.getLocReg());
2121    const unsigned *RegEnd = Mips64IntRegs + 8;
2122
2123    // Copy double words to registers.
2124    for (; (Reg != RegEnd) && (ByValSize >= Offset + 8); ++Reg, Offset += 8) {
2125      SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2126                                    DAG.getConstant(Offset, PtrTy));
2127      SDValue LoadVal = DAG.getLoad(MVT::i64, dl, Chain, LoadPtr,
2128                                    MachinePointerInfo(), false, false, false,
2129                                    Alignment);
2130      MemOpChains.push_back(LoadVal.getValue(1));
2131      RegsToPass.push_back(std::make_pair(*Reg, LoadVal));
2132    }
2133
2134    // Return if the struct has been fully copied.
2135    if (!(MemCpySize = ByValSize - Offset))
2136      return;
2137
2138    // If there is an argument register available, copy the remainder of the
2139    // byval argument with sub-doubleword loads and shifts.
2140    if (Reg != RegEnd) {
2141      assert((ByValSize < Offset + 8) &&
2142             "Size of the remainder should be smaller than 8-byte.");
2143      SDValue Val;
2144      for (unsigned LoadSize = 4; Offset < ByValSize; LoadSize /= 2) {
2145        unsigned RemSize = ByValSize - Offset;
2146
2147        if (RemSize < LoadSize)
2148          continue;
2149
2150        SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2151                                      DAG.getConstant(Offset, PtrTy));
2152        SDValue LoadVal =
2153          DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i64, Chain, LoadPtr,
2154                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
2155                         false, false, Alignment);
2156        MemOpChains.push_back(LoadVal.getValue(1));
2157
2158        // Offset in number of bits from double word boundary.
2159        unsigned OffsetDW = (Offset % 8) * 8;
2160        unsigned Shamt = isLittle ? OffsetDW : 64 - (OffsetDW + LoadSize * 8);
2161        SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i64, LoadVal,
2162                                    DAG.getConstant(Shamt, MVT::i32));
2163
2164        Val = Val.getNode() ? DAG.getNode(ISD::OR, dl, MVT::i64, Val, Shift) :
2165                              Shift;
2166        Offset += LoadSize;
2167        Alignment = std::min(Alignment, LoadSize);
2168      }
2169
2170      RegsToPass.push_back(std::make_pair(*Reg, Val));
2171      return;
2172    }
2173  }
2174
2175  assert(MemCpySize && "MemCpySize must not be zero.");
2176
2177  // Create a fixed object on stack at offset LocMemOffset and copy
2178  // remainder of byval arg to it with memcpy.
2179  SDValue Src = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2180                            DAG.getConstant(Offset, PtrTy));
2181  LastFI = MFI->CreateFixedObject(MemCpySize, LocMemOffset, true);
2182  SDValue Dst = DAG.getFrameIndex(LastFI, PtrTy);
2183  ByValChain = DAG.getMemcpy(ByValChain, dl, Dst, Src,
2184                             DAG.getConstant(MemCpySize, PtrTy), Alignment,
2185                             /*isVolatile=*/false, /*AlwaysInline=*/false,
2186                             MachinePointerInfo(0), MachinePointerInfo(0));
2187}
2188
2189/// LowerCall - functions arguments are copied from virtual regs to
2190/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2191/// TODO: isTailCall.
2192SDValue
2193MipsTargetLowering::LowerCall(SDValue InChain, SDValue Callee,
2194                              CallingConv::ID CallConv, bool isVarArg,
2195                              bool doesNotRet, bool &isTailCall,
2196                              const SmallVectorImpl<ISD::OutputArg> &Outs,
2197                              const SmallVectorImpl<SDValue> &OutVals,
2198                              const SmallVectorImpl<ISD::InputArg> &Ins,
2199                              DebugLoc dl, SelectionDAG &DAG,
2200                              SmallVectorImpl<SDValue> &InVals) const {
2201  // MIPs target does not yet support tail call optimization.
2202  isTailCall = false;
2203
2204  MachineFunction &MF = DAG.getMachineFunction();
2205  MachineFrameInfo *MFI = MF.getFrameInfo();
2206  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2207  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2208  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2209
2210  // Analyze operands of the call, assigning locations to each operand.
2211  SmallVector<CCValAssign, 16> ArgLocs;
2212  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2213                 getTargetMachine(), ArgLocs, *DAG.getContext());
2214
2215  if (IsO32)
2216    CCInfo.AnalyzeCallOperands(Outs, CC_MipsO32);
2217  else if (HasMips64)
2218    AnalyzeMips64CallOperands(CCInfo, Outs);
2219  else
2220    CCInfo.AnalyzeCallOperands(Outs, CC_Mips);
2221
2222  // Get a count of how many bytes are to be pushed on the stack.
2223  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2224
2225  // Chain is the output chain of the last Load/Store or CopyToReg node.
2226  // ByValChain is the output chain of the last Memcpy node created for copying
2227  // byval arguments to the stack.
2228  SDValue Chain, CallSeqStart, ByValChain;
2229  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2230  Chain = CallSeqStart = DAG.getCALLSEQ_START(InChain, NextStackOffsetVal);
2231  ByValChain = InChain;
2232
2233  // If this is the first call, create a stack frame object that points to
2234  // a location to which .cprestore saves $gp.
2235  if (IsO32 && IsPIC && MipsFI->globalBaseRegFixed() && !MipsFI->getGPFI())
2236    MipsFI->setGPFI(MFI->CreateFixedObject(4, 0, true));
2237
2238  // Get the frame index of the stack frame object that points to the location
2239  // of dynamically allocated area on the stack.
2240  int DynAllocFI = MipsFI->getDynAllocFI();
2241
2242  // Update size of the maximum argument space.
2243  // For O32, a minimum of four words (16 bytes) of argument space is
2244  // allocated.
2245  if (IsO32)
2246    NextStackOffset = std::max(NextStackOffset, (unsigned)16);
2247
2248  unsigned MaxCallFrameSize = MipsFI->getMaxCallFrameSize();
2249
2250  if (MaxCallFrameSize < NextStackOffset) {
2251    MipsFI->setMaxCallFrameSize(NextStackOffset);
2252
2253    // Set the offsets relative to $sp of the $gp restore slot and dynamically
2254    // allocated stack space. These offsets must be aligned to a boundary
2255    // determined by the stack alignment of the ABI.
2256    unsigned StackAlignment = TFL->getStackAlignment();
2257    NextStackOffset = (NextStackOffset + StackAlignment - 1) /
2258                      StackAlignment * StackAlignment;
2259
2260    if (MipsFI->needGPSaveRestore())
2261      MFI->setObjectOffset(MipsFI->getGPFI(), NextStackOffset);
2262
2263    MFI->setObjectOffset(DynAllocFI, NextStackOffset);
2264  }
2265
2266  // With EABI is it possible to have 16 args on registers.
2267  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
2268  SmallVector<SDValue, 8> MemOpChains;
2269
2270  int FirstFI = -MFI->getNumFixedObjects() - 1, LastFI = 0;
2271
2272  // Walk the register/memloc assignments, inserting copies/loads.
2273  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2274    SDValue Arg = OutVals[i];
2275    CCValAssign &VA = ArgLocs[i];
2276    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2277    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2278
2279    // ByVal Arg.
2280    if (Flags.isByVal()) {
2281      assert(Flags.getByValSize() &&
2282             "ByVal args of size 0 should have been ignored by front-end.");
2283      if (IsO32)
2284        WriteByValArg(ByValChain, Chain, dl, RegsToPass, MemOpChains, LastFI,
2285                      MFI, DAG, Arg, VA, Flags, getPointerTy(),
2286                      Subtarget->isLittle());
2287      else
2288        PassByValArg64(ByValChain, Chain, dl, RegsToPass, MemOpChains, LastFI,
2289                       MFI, DAG, Arg, VA, Flags, getPointerTy(),
2290                       Subtarget->isLittle());
2291      continue;
2292    }
2293
2294    // Promote the value if needed.
2295    switch (VA.getLocInfo()) {
2296    default: llvm_unreachable("Unknown loc info!");
2297    case CCValAssign::Full:
2298      if (VA.isRegLoc()) {
2299        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2300            (ValVT == MVT::f64 && LocVT == MVT::i64))
2301          Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
2302        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2303          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2304                                   Arg, DAG.getConstant(0, MVT::i32));
2305          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2306                                   Arg, DAG.getConstant(1, MVT::i32));
2307          if (!Subtarget->isLittle())
2308            std::swap(Lo, Hi);
2309          unsigned LocRegLo = VA.getLocReg();
2310          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2311          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2312          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2313          continue;
2314        }
2315      }
2316      break;
2317    case CCValAssign::SExt:
2318      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
2319      break;
2320    case CCValAssign::ZExt:
2321      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
2322      break;
2323    case CCValAssign::AExt:
2324      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
2325      break;
2326    }
2327
2328    // Arguments that can be passed on register must be kept at
2329    // RegsToPass vector
2330    if (VA.isRegLoc()) {
2331      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2332      continue;
2333    }
2334
2335    // Register can't get to this point...
2336    assert(VA.isMemLoc());
2337
2338    // Create the frame index object for this incoming parameter
2339    LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2340                                    VA.getLocMemOffset(), true);
2341    SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
2342
2343    // emit ISD::STORE whichs stores the
2344    // parameter value to a stack Location
2345    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2346                                       MachinePointerInfo(), false, false, 0));
2347  }
2348
2349  // Extend range of indices of frame objects for outgoing arguments that were
2350  // created during this function call. Skip this step if no such objects were
2351  // created.
2352  if (LastFI)
2353    MipsFI->extendOutArgFIRange(FirstFI, LastFI);
2354
2355  // If a memcpy has been created to copy a byval arg to a stack, replace the
2356  // chain input of CallSeqStart with ByValChain.
2357  if (InChain != ByValChain)
2358    DAG.UpdateNodeOperands(CallSeqStart.getNode(), ByValChain,
2359                           NextStackOffsetVal);
2360
2361  // Transform all store nodes into one single node because all store
2362  // nodes are independent of each other.
2363  if (!MemOpChains.empty())
2364    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2365                        &MemOpChains[0], MemOpChains.size());
2366
2367  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2368  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2369  // node so that legalize doesn't hack it.
2370  unsigned char OpFlag;
2371  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2372  bool GlobalOrExternal = false;
2373  SDValue CalleeLo;
2374
2375  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2376    if (IsPICCall && G->getGlobal()->hasInternalLinkage()) {
2377      OpFlag = IsO32 ? MipsII::MO_GOT : MipsII::MO_GOT_PAGE;
2378      unsigned char LoFlag = IsO32 ? MipsII::MO_ABS_LO : MipsII::MO_GOT_OFST;
2379      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
2380                                          OpFlag);
2381      CalleeLo = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(),
2382                                            0, LoFlag);
2383    } else {
2384      OpFlag = IsPICCall ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG;
2385      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2386                                          getPointerTy(), 0, OpFlag);
2387    }
2388
2389    GlobalOrExternal = true;
2390  }
2391  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2392    if (IsN64 || (!IsO32 && IsPIC))
2393      OpFlag = MipsII::MO_GOT_DISP;
2394    else if (!IsPIC) // !N64 && static
2395      OpFlag = MipsII::MO_NO_FLAG;
2396    else // O32 & PIC
2397      OpFlag = MipsII::MO_GOT_CALL;
2398    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2399                                         OpFlag);
2400    GlobalOrExternal = true;
2401  }
2402
2403  SDValue InFlag;
2404
2405  // Create nodes that load address of callee and copy it to T9
2406  if (IsPICCall) {
2407    if (GlobalOrExternal) {
2408      // Load callee address
2409      Callee = DAG.getNode(MipsISD::Wrapper, dl, getPointerTy(),
2410                           GetGlobalReg(DAG, getPointerTy()), Callee);
2411      SDValue LoadValue = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
2412                                      Callee, MachinePointerInfo::getGOT(),
2413                                      false, false, false, 0);
2414
2415      // Use GOT+LO if callee has internal linkage.
2416      if (CalleeLo.getNode()) {
2417        SDValue Lo = DAG.getNode(MipsISD::Lo, dl, getPointerTy(), CalleeLo);
2418        Callee = DAG.getNode(ISD::ADD, dl, getPointerTy(), LoadValue, Lo);
2419      } else
2420        Callee = LoadValue;
2421    }
2422  }
2423
2424  // T9 should contain the address of the callee function if
2425  // -reloction-model=pic or it is an indirect call.
2426  if (IsPICCall || !GlobalOrExternal) {
2427    // copy to T9
2428    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
2429    Chain = DAG.getCopyToReg(Chain, dl, T9Reg, Callee, SDValue(0, 0));
2430    InFlag = Chain.getValue(1);
2431    Callee = DAG.getRegister(T9Reg, getPointerTy());
2432  }
2433
2434  // Build a sequence of copy-to-reg nodes chained together with token
2435  // chain and flag operands which copy the outgoing args into registers.
2436  // The InFlag in necessary since all emitted instructions must be
2437  // stuck together.
2438  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2439    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2440                             RegsToPass[i].second, InFlag);
2441    InFlag = Chain.getValue(1);
2442  }
2443
2444  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
2445  //             = Chain, Callee, Reg#1, Reg#2, ...
2446  //
2447  // Returns a chain & a flag for retval copy to use.
2448  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2449  SmallVector<SDValue, 8> Ops;
2450  Ops.push_back(Chain);
2451  Ops.push_back(Callee);
2452
2453  // Add argument registers to the end of the list so that they are
2454  // known live into the call.
2455  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2456    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2457                                  RegsToPass[i].second.getValueType()));
2458
2459  if (InFlag.getNode())
2460    Ops.push_back(InFlag);
2461
2462  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
2463  InFlag = Chain.getValue(1);
2464
2465  // Create the CALLSEQ_END node.
2466  Chain = DAG.getCALLSEQ_END(Chain,
2467                             DAG.getIntPtrConstant(NextStackOffset, true),
2468                             DAG.getIntPtrConstant(0, true), InFlag);
2469  InFlag = Chain.getValue(1);
2470
2471  // Handle result values, copying them out of physregs into vregs that we
2472  // return.
2473  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2474                         Ins, dl, DAG, InVals);
2475}
2476
2477/// LowerCallResult - Lower the result values of a call into the
2478/// appropriate copies out of appropriate physical registers.
2479SDValue
2480MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2481                                    CallingConv::ID CallConv, bool isVarArg,
2482                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2483                                    DebugLoc dl, SelectionDAG &DAG,
2484                                    SmallVectorImpl<SDValue> &InVals) const {
2485  // Assign locations to each value returned by this call.
2486  SmallVector<CCValAssign, 16> RVLocs;
2487  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2488		 getTargetMachine(), RVLocs, *DAG.getContext());
2489
2490  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
2491
2492  // Copy all of the result registers out of their specified physreg.
2493  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2494    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
2495                               RVLocs[i].getValVT(), InFlag).getValue(1);
2496    InFlag = Chain.getValue(2);
2497    InVals.push_back(Chain.getValue(0));
2498  }
2499
2500  return Chain;
2501}
2502
2503//===----------------------------------------------------------------------===//
2504//             Formal Arguments Calling Convention Implementation
2505//===----------------------------------------------------------------------===//
2506static void ReadByValArg(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2507                         std::vector<SDValue>& OutChains,
2508                         SelectionDAG &DAG, unsigned NumWords, SDValue FIN,
2509                         const CCValAssign &VA, const ISD::ArgFlagsTy& Flags) {
2510  unsigned LocMem = VA.getLocMemOffset();
2511  unsigned FirstWord = LocMem / 4;
2512
2513  // copy register A0 - A3 to frame object
2514  for (unsigned i = 0; i < NumWords; ++i) {
2515    unsigned CurWord = FirstWord + i;
2516    if (CurWord >= O32IntRegsSize)
2517      break;
2518
2519    unsigned SrcReg = O32IntRegs[CurWord];
2520    unsigned Reg = AddLiveIn(MF, SrcReg, Mips::CPURegsRegisterClass);
2521    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIN,
2522                                   DAG.getConstant(i * 4, MVT::i32));
2523    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(Reg, MVT::i32),
2524                                 StorePtr, MachinePointerInfo(), false,
2525                                 false, 0);
2526    OutChains.push_back(Store);
2527  }
2528}
2529
2530// Create frame object on stack and copy registers used for byval passing to it.
2531static unsigned
2532CopyMips64ByValRegs(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2533                    std::vector<SDValue>& OutChains, SelectionDAG &DAG,
2534                    const CCValAssign &VA, const ISD::ArgFlagsTy& Flags,
2535                    MachineFrameInfo *MFI, bool IsRegLoc,
2536                    SmallVectorImpl<SDValue> &InVals, MipsFunctionInfo *MipsFI,
2537                    EVT PtrTy) {
2538  const unsigned *Reg = Mips64IntRegs + 8;
2539  int FOOffset; // Frame object offset from virtual frame pointer.
2540
2541  if (IsRegLoc) {
2542    Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8, VA.getLocReg());
2543    FOOffset = (Reg - Mips64IntRegs) * 8 - 8 * 8;
2544  }
2545  else
2546    FOOffset = VA.getLocMemOffset();
2547
2548  // Create frame object.
2549  unsigned NumRegs = (Flags.getByValSize() + 7) / 8;
2550  unsigned LastFI = MFI->CreateFixedObject(NumRegs * 8, FOOffset, true);
2551  SDValue FIN = DAG.getFrameIndex(LastFI, PtrTy);
2552  InVals.push_back(FIN);
2553
2554  // Copy arg registers.
2555  for (unsigned I = 0; (Reg != Mips64IntRegs + 8) && (I < NumRegs);
2556       ++Reg, ++I) {
2557    unsigned VReg = AddLiveIn(MF, *Reg, Mips::CPU64RegsRegisterClass);
2558    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, PtrTy, FIN,
2559                                   DAG.getConstant(I * 8, PtrTy));
2560    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(VReg, MVT::i64),
2561                                 StorePtr, MachinePointerInfo(), false,
2562                                 false, 0);
2563    OutChains.push_back(Store);
2564  }
2565
2566  return LastFI;
2567}
2568
2569/// LowerFormalArguments - transform physical registers into virtual registers
2570/// and generate load operations for arguments places on the stack.
2571SDValue
2572MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2573                                         CallingConv::ID CallConv,
2574                                         bool isVarArg,
2575                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2576                                         DebugLoc dl, SelectionDAG &DAG,
2577                                         SmallVectorImpl<SDValue> &InVals)
2578                                          const {
2579  MachineFunction &MF = DAG.getMachineFunction();
2580  MachineFrameInfo *MFI = MF.getFrameInfo();
2581  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2582
2583  MipsFI->setVarArgsFrameIndex(0);
2584
2585  // Used with vargs to acumulate store chains.
2586  std::vector<SDValue> OutChains;
2587
2588  // Assign locations to all of the incoming arguments.
2589  SmallVector<CCValAssign, 16> ArgLocs;
2590  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2591                 getTargetMachine(), ArgLocs, *DAG.getContext());
2592
2593  if (IsO32)
2594    CCInfo.AnalyzeFormalArguments(Ins, CC_MipsO32);
2595  else
2596    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips);
2597
2598  int LastFI = 0;// MipsFI->LastInArgFI is 0 at the entry of this function.
2599
2600  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2601    CCValAssign &VA = ArgLocs[i];
2602    EVT ValVT = VA.getValVT();
2603    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2604    bool IsRegLoc = VA.isRegLoc();
2605
2606    if (Flags.isByVal()) {
2607      assert(Flags.getByValSize() &&
2608             "ByVal args of size 0 should have been ignored by front-end.");
2609      if (IsO32) {
2610        unsigned NumWords = (Flags.getByValSize() + 3) / 4;
2611        LastFI = MFI->CreateFixedObject(NumWords * 4, VA.getLocMemOffset(),
2612                                        true);
2613        SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
2614        InVals.push_back(FIN);
2615        ReadByValArg(MF, Chain, dl, OutChains, DAG, NumWords, FIN, VA, Flags);
2616      } else // N32/64
2617        LastFI = CopyMips64ByValRegs(MF, Chain, dl, OutChains, DAG, VA, Flags,
2618                                     MFI, IsRegLoc, InVals, MipsFI,
2619                                     getPointerTy());
2620      continue;
2621    }
2622
2623    // Arguments stored on registers
2624    if (IsRegLoc) {
2625      EVT RegVT = VA.getLocVT();
2626      unsigned ArgReg = VA.getLocReg();
2627      const TargetRegisterClass *RC;
2628
2629      if (RegVT == MVT::i32)
2630        RC = Mips::CPURegsRegisterClass;
2631      else if (RegVT == MVT::i64)
2632        RC = Mips::CPU64RegsRegisterClass;
2633      else if (RegVT == MVT::f32)
2634        RC = Mips::FGR32RegisterClass;
2635      else if (RegVT == MVT::f64)
2636        RC = HasMips64 ? Mips::FGR64RegisterClass : Mips::AFGR64RegisterClass;
2637      else
2638        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
2639
2640      // Transform the arguments stored on
2641      // physical registers into virtual ones
2642      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2643      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2644
2645      // If this is an 8 or 16-bit value, it has been passed promoted
2646      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2647      // truncate to the right size.
2648      if (VA.getLocInfo() != CCValAssign::Full) {
2649        unsigned Opcode = 0;
2650        if (VA.getLocInfo() == CCValAssign::SExt)
2651          Opcode = ISD::AssertSext;
2652        else if (VA.getLocInfo() == CCValAssign::ZExt)
2653          Opcode = ISD::AssertZext;
2654        if (Opcode)
2655          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
2656                                 DAG.getValueType(ValVT));
2657        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
2658      }
2659
2660      // Handle floating point arguments passed in integer registers.
2661      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2662          (RegVT == MVT::i64 && ValVT == MVT::f64))
2663        ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
2664      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2665        unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
2666                                  getNextIntArgReg(ArgReg), RC);
2667        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
2668        if (!Subtarget->isLittle())
2669          std::swap(ArgValue, ArgValue2);
2670        ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
2671                               ArgValue, ArgValue2);
2672      }
2673
2674      InVals.push_back(ArgValue);
2675    } else { // VA.isRegLoc()
2676
2677      // sanity check
2678      assert(VA.isMemLoc());
2679
2680      // The stack pointer offset is relative to the caller stack frame.
2681      LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2682                                      VA.getLocMemOffset(), true);
2683
2684      // Create load nodes to retrieve arguments from the stack
2685      SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
2686      InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
2687                                   MachinePointerInfo::getFixedStack(LastFI),
2688                                   false, false, false, 0));
2689    }
2690  }
2691
2692  // The mips ABIs for returning structs by value requires that we copy
2693  // the sret argument into $v0 for the return. Save the argument into
2694  // a virtual register so that we can access it from the return points.
2695  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2696    unsigned Reg = MipsFI->getSRetReturnReg();
2697    if (!Reg) {
2698      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
2699      MipsFI->setSRetReturnReg(Reg);
2700    }
2701    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
2702    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2703  }
2704
2705  if (isVarArg) {
2706    unsigned NumOfRegs = IsO32 ? 4 : 8;
2707    const unsigned *ArgRegs = IsO32 ? O32IntRegs : Mips64IntRegs;
2708    unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumOfRegs);
2709    int FirstRegSlotOffset = IsO32 ? 0 : -64 ; // offset of $a0's slot.
2710    const TargetRegisterClass *RC
2711      = IsO32 ? Mips::CPURegsRegisterClass : Mips::CPU64RegsRegisterClass;
2712    unsigned RegSize = RC->getSize();
2713    int RegSlotOffset = FirstRegSlotOffset + Idx * RegSize;
2714
2715    // Offset of the first variable argument from stack pointer.
2716    int FirstVaArgOffset;
2717
2718    if (IsO32 || (Idx == NumOfRegs)) {
2719      FirstVaArgOffset =
2720        (CCInfo.getNextStackOffset() + RegSize - 1) / RegSize * RegSize;
2721    } else
2722      FirstVaArgOffset = RegSlotOffset;
2723
2724    // Record the frame index of the first variable argument
2725    // which is a value necessary to VASTART.
2726    LastFI = MFI->CreateFixedObject(RegSize, FirstVaArgOffset, true);
2727    MipsFI->setVarArgsFrameIndex(LastFI);
2728
2729    // Copy the integer registers that have not been used for argument passing
2730    // to the argument register save area. For O32, the save area is allocated
2731    // in the caller's stack frame, while for N32/64, it is allocated in the
2732    // callee's stack frame.
2733    for (int StackOffset = RegSlotOffset;
2734         Idx < NumOfRegs; ++Idx, StackOffset += RegSize) {
2735      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgRegs[Idx], RC);
2736      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
2737                                            MVT::getIntegerVT(RegSize * 8));
2738      LastFI = MFI->CreateFixedObject(RegSize, StackOffset, true);
2739      SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
2740      OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
2741                                       MachinePointerInfo(), false, false, 0));
2742    }
2743  }
2744
2745  MipsFI->setLastInArgFI(LastFI);
2746
2747  // All stores are grouped in one node to allow the matching between
2748  // the size of Ins and InVals. This only happens when on varg functions
2749  if (!OutChains.empty()) {
2750    OutChains.push_back(Chain);
2751    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2752                        &OutChains[0], OutChains.size());
2753  }
2754
2755  return Chain;
2756}
2757
2758//===----------------------------------------------------------------------===//
2759//               Return Value Calling Convention Implementation
2760//===----------------------------------------------------------------------===//
2761
2762SDValue
2763MipsTargetLowering::LowerReturn(SDValue Chain,
2764                                CallingConv::ID CallConv, bool isVarArg,
2765                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2766                                const SmallVectorImpl<SDValue> &OutVals,
2767                                DebugLoc dl, SelectionDAG &DAG) const {
2768
2769  // CCValAssign - represent the assignment of
2770  // the return value to a location
2771  SmallVector<CCValAssign, 16> RVLocs;
2772
2773  // CCState - Info about the registers and stack slot.
2774  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2775		 getTargetMachine(), RVLocs, *DAG.getContext());
2776
2777  // Analize return values.
2778  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
2779
2780  // If this is the first return lowered for this function, add
2781  // the regs to the liveout set for the function.
2782  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2783    for (unsigned i = 0; i != RVLocs.size(); ++i)
2784      if (RVLocs[i].isRegLoc())
2785        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2786  }
2787
2788  SDValue Flag;
2789
2790  // Copy the result values into the output registers.
2791  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2792    CCValAssign &VA = RVLocs[i];
2793    assert(VA.isRegLoc() && "Can only return in registers!");
2794
2795    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
2796
2797    // guarantee that all emitted copies are
2798    // stuck together, avoiding something bad
2799    Flag = Chain.getValue(1);
2800  }
2801
2802  // The mips ABIs for returning structs by value requires that we copy
2803  // the sret argument into $v0 for the return. We saved the argument into
2804  // a virtual register in the entry block, so now we copy the value out
2805  // and into $v0.
2806  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2807    MachineFunction &MF      = DAG.getMachineFunction();
2808    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2809    unsigned Reg = MipsFI->getSRetReturnReg();
2810
2811    if (!Reg)
2812      llvm_unreachable("sret virtual register not created in the entry block");
2813    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
2814
2815    Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
2816    Flag = Chain.getValue(1);
2817  }
2818
2819  // Return on Mips is always a "jr $ra"
2820  if (Flag.getNode())
2821    return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
2822                       Chain, DAG.getRegister(Mips::RA, MVT::i32), Flag);
2823  else // Return Void
2824    return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
2825                       Chain, DAG.getRegister(Mips::RA, MVT::i32));
2826}
2827
2828//===----------------------------------------------------------------------===//
2829//                           Mips Inline Assembly Support
2830//===----------------------------------------------------------------------===//
2831
2832/// getConstraintType - Given a constraint letter, return the type of
2833/// constraint it is for this target.
2834MipsTargetLowering::ConstraintType MipsTargetLowering::
2835getConstraintType(const std::string &Constraint) const
2836{
2837  // Mips specific constrainy
2838  // GCC config/mips/constraints.md
2839  //
2840  // 'd' : An address register. Equivalent to r
2841  //       unless generating MIPS16 code.
2842  // 'y' : Equivalent to r; retained for
2843  //       backwards compatibility.
2844  // 'f' : Floating Point registers.
2845  if (Constraint.size() == 1) {
2846    switch (Constraint[0]) {
2847      default : break;
2848      case 'd':
2849      case 'y':
2850      case 'f':
2851        return C_RegisterClass;
2852    }
2853  }
2854  return TargetLowering::getConstraintType(Constraint);
2855}
2856
2857/// Examine constraint type and operand type and determine a weight value.
2858/// This object must already have been set up with the operand type
2859/// and the current alternative constraint selected.
2860TargetLowering::ConstraintWeight
2861MipsTargetLowering::getSingleConstraintMatchWeight(
2862    AsmOperandInfo &info, const char *constraint) const {
2863  ConstraintWeight weight = CW_Invalid;
2864  Value *CallOperandVal = info.CallOperandVal;
2865    // If we don't have a value, we can't do a match,
2866    // but allow it at the lowest weight.
2867  if (CallOperandVal == NULL)
2868    return CW_Default;
2869  Type *type = CallOperandVal->getType();
2870  // Look at the constraint type.
2871  switch (*constraint) {
2872  default:
2873    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2874    break;
2875  case 'd':
2876  case 'y':
2877    if (type->isIntegerTy())
2878      weight = CW_Register;
2879    break;
2880  case 'f':
2881    if (type->isFloatTy())
2882      weight = CW_Register;
2883    break;
2884  }
2885  return weight;
2886}
2887
2888/// Given a register class constraint, like 'r', if this corresponds directly
2889/// to an LLVM register class, return a register of 0 and the register class
2890/// pointer.
2891std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
2892getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
2893{
2894  if (Constraint.size() == 1) {
2895    switch (Constraint[0]) {
2896    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
2897    case 'y': // Same as 'r'. Exists for compatibility.
2898    case 'r':
2899      if (VT == MVT::i32)
2900        return std::make_pair(0U, Mips::CPURegsRegisterClass);
2901      assert(VT == MVT::i64 && "Unexpected type.");
2902      return std::make_pair(0U, Mips::CPU64RegsRegisterClass);
2903    case 'f':
2904      if (VT == MVT::f32)
2905        return std::make_pair(0U, Mips::FGR32RegisterClass);
2906      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
2907        if (Subtarget->isFP64bit())
2908          return std::make_pair(0U, Mips::FGR64RegisterClass);
2909        else
2910          return std::make_pair(0U, Mips::AFGR64RegisterClass);
2911      }
2912    }
2913  }
2914  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2915}
2916
2917bool
2918MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
2919  // The Mips target isn't yet aware of offsets.
2920  return false;
2921}
2922
2923bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2924  if (VT != MVT::f32 && VT != MVT::f64)
2925    return false;
2926  if (Imm.isNegZero())
2927    return false;
2928  return Imm.isZero();
2929}
2930
2931unsigned MipsTargetLowering::getJumpTableEncoding() const {
2932  if (IsN64)
2933    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
2934
2935  return TargetLowering::getJumpTableEncoding();
2936}
2937