MipsISelLowering.cpp revision 648f00c2f0eb29c0ae2a333fa0bfa55970059f08
1//=== --MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "mips-lower"
16#include "MipsISelLowering.h"
17#include "MipsMachineFunction.h"
18#include "MipsTargetMachine.h"
19#include "MipsTargetObjectFile.h"
20#include "MipsSubtarget.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/CallingConv.h"
26#include "InstPrinter/MipsInstPrinter.h"
27#include "MCTargetDesc/MipsBaseInfo.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SelectionDAGISel.h"
34#include "llvm/CodeGen/ValueTypes.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37using namespace llvm;
38
39// If I is a shifted mask, set the size (Size) and the first bit of the
40// mask (Pos), and return true.
41// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
42static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
43  if (!isShiftedMask_64(I))
44     return false;
45
46  Size = CountPopulation_64(I);
47  Pos = CountTrailingZeros_64(I);
48  return true;
49}
50
51static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) {
52  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
53  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
54}
55
56const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
57  switch (Opcode) {
58  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
59  case MipsISD::Hi:                return "MipsISD::Hi";
60  case MipsISD::Lo:                return "MipsISD::Lo";
61  case MipsISD::GPRel:             return "MipsISD::GPRel";
62  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
63  case MipsISD::Ret:               return "MipsISD::Ret";
64  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
65  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
66  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
67  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
68  case MipsISD::FPRound:           return "MipsISD::FPRound";
69  case MipsISD::MAdd:              return "MipsISD::MAdd";
70  case MipsISD::MAddu:             return "MipsISD::MAddu";
71  case MipsISD::MSub:              return "MipsISD::MSub";
72  case MipsISD::MSubu:             return "MipsISD::MSubu";
73  case MipsISD::DivRem:            return "MipsISD::DivRem";
74  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
75  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
76  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
77  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
78  case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
79  case MipsISD::Sync:              return "MipsISD::Sync";
80  case MipsISD::Ext:               return "MipsISD::Ext";
81  case MipsISD::Ins:               return "MipsISD::Ins";
82  default:                         return NULL;
83  }
84}
85
86MipsTargetLowering::
87MipsTargetLowering(MipsTargetMachine &TM)
88  : TargetLowering(TM, new MipsTargetObjectFile()),
89    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
90    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
91    IsO32(Subtarget->isABI_O32()) {
92
93  // Mips does not have i1 type, so use i32 for
94  // setcc operations results (slt, sgt, ...).
95  setBooleanContents(ZeroOrOneBooleanContent);
96  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
97
98  // Set up the register classes
99  addRegisterClass(MVT::i32, Mips::CPURegsRegisterClass);
100
101  if (HasMips64)
102    addRegisterClass(MVT::i64, Mips::CPU64RegsRegisterClass);
103
104  if (!TM.Options.UseSoftFloat) {
105    addRegisterClass(MVT::f32, Mips::FGR32RegisterClass);
106
107    // When dealing with single precision only, use libcalls
108    if (!Subtarget->isSingleFloat()) {
109      if (HasMips64)
110        addRegisterClass(MVT::f64, Mips::FGR64RegisterClass);
111      else
112        addRegisterClass(MVT::f64, Mips::AFGR64RegisterClass);
113    }
114  }
115
116  // Load extented operations for i1 types must be promoted
117  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
118  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
119  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
120
121  // MIPS doesn't have extending float->double load/store
122  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
123  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
124
125  // Used by legalize types to correctly generate the setcc result.
126  // Without this, every float setcc comes with a AND/OR with the result,
127  // we don't want this, since the fpcmp result goes to a flag register,
128  // which is used implicitly by brcond and select operations.
129  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
130
131  // Mips Custom Operations
132  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
133  setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
134  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
135  setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
136  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
137  setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
138  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
139  setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
140  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
141  setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
142  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
143  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
144  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
145  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
146  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,   Custom);
147  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,   Custom);
148  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
149
150  setOperationAction(ISD::SDIV, MVT::i32, Expand);
151  setOperationAction(ISD::SREM, MVT::i32, Expand);
152  setOperationAction(ISD::UDIV, MVT::i32, Expand);
153  setOperationAction(ISD::UREM, MVT::i32, Expand);
154  setOperationAction(ISD::SDIV, MVT::i64, Expand);
155  setOperationAction(ISD::SREM, MVT::i64, Expand);
156  setOperationAction(ISD::UDIV, MVT::i64, Expand);
157  setOperationAction(ISD::UREM, MVT::i64, Expand);
158
159  // Operations not directly supported by Mips.
160  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
161  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
162  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
163  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
164  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
165  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
166  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
167  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
168  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
169  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
170  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
171  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
172  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
173  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
174  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
175  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
176  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
177  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
178
179  if (!Subtarget->hasMips32r2())
180    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
181
182  if (!Subtarget->hasMips64r2())
183    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
184
185  setOperationAction(ISD::SHL_PARTS,         MVT::i32,   Expand);
186  setOperationAction(ISD::SRA_PARTS,         MVT::i32,   Expand);
187  setOperationAction(ISD::SRL_PARTS,         MVT::i32,   Expand);
188  setOperationAction(ISD::FCOPYSIGN,         MVT::f32,   Custom);
189  setOperationAction(ISD::FCOPYSIGN,         MVT::f64,   Custom);
190  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
191  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
192  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
193  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
194  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
195  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
196  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
197  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
198  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
199  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
200  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
201  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
202  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
203
204  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
205  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
206  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
207  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
208
209  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
210  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
211  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
212
213  // Use the default for now
214  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
215  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
216
217  setOperationAction(ISD::MEMBARRIER,        MVT::Other, Custom);
218  setOperationAction(ISD::ATOMIC_FENCE,      MVT::Other, Custom);
219
220  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
221  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
222  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
223  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
224
225  setInsertFencesForAtomic(true);
226
227  if (Subtarget->isSingleFloat())
228    setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
229
230  if (!Subtarget->hasSEInReg()) {
231    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
232    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
233  }
234
235  if (!Subtarget->hasBitCount()) {
236    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
237    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
238  }
239
240  if (!Subtarget->hasSwap()) {
241    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
242    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
243  }
244
245  setTargetDAGCombine(ISD::ADDE);
246  setTargetDAGCombine(ISD::SUBE);
247  setTargetDAGCombine(ISD::SDIVREM);
248  setTargetDAGCombine(ISD::UDIVREM);
249  setTargetDAGCombine(ISD::SETCC);
250  setTargetDAGCombine(ISD::AND);
251  setTargetDAGCombine(ISD::OR);
252
253  setMinFunctionAlignment(2);
254
255  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
256  computeRegisterProperties();
257
258  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
259  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
260}
261
262bool MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
263  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
264  return SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16;
265}
266
267EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
268  return MVT::i32;
269}
270
271// SelectMadd -
272// Transforms a subgraph in CurDAG if the following pattern is found:
273//  (addc multLo, Lo0), (adde multHi, Hi0),
274// where,
275//  multHi/Lo: product of multiplication
276//  Lo0: initial value of Lo register
277//  Hi0: initial value of Hi register
278// Return true if pattern matching was successful.
279static bool SelectMadd(SDNode* ADDENode, SelectionDAG* CurDAG) {
280  // ADDENode's second operand must be a flag output of an ADDC node in order
281  // for the matching to be successful.
282  SDNode* ADDCNode = ADDENode->getOperand(2).getNode();
283
284  if (ADDCNode->getOpcode() != ISD::ADDC)
285    return false;
286
287  SDValue MultHi = ADDENode->getOperand(0);
288  SDValue MultLo = ADDCNode->getOperand(0);
289  SDNode* MultNode = MultHi.getNode();
290  unsigned MultOpc = MultHi.getOpcode();
291
292  // MultHi and MultLo must be generated by the same node,
293  if (MultLo.getNode() != MultNode)
294    return false;
295
296  // and it must be a multiplication.
297  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
298    return false;
299
300  // MultLo amd MultHi must be the first and second output of MultNode
301  // respectively.
302  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
303    return false;
304
305  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
306  // of the values of MultNode, in which case MultNode will be removed in later
307  // phases.
308  // If there exist users other than ADDENode or ADDCNode, this function returns
309  // here, which will result in MultNode being mapped to a single MULT
310  // instruction node rather than a pair of MULT and MADD instructions being
311  // produced.
312  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
313    return false;
314
315  SDValue Chain = CurDAG->getEntryNode();
316  DebugLoc dl = ADDENode->getDebugLoc();
317
318  // create MipsMAdd(u) node
319  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
320
321  SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue,
322                                 MultNode->getOperand(0),// Factor 0
323                                 MultNode->getOperand(1),// Factor 1
324                                 ADDCNode->getOperand(1),// Lo0
325                                 ADDENode->getOperand(1));// Hi0
326
327  // create CopyFromReg nodes
328  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
329                                              MAdd);
330  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
331                                              Mips::HI, MVT::i32,
332                                              CopyFromLo.getValue(2));
333
334  // replace uses of adde and addc here
335  if (!SDValue(ADDCNode, 0).use_empty())
336    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
337
338  if (!SDValue(ADDENode, 0).use_empty())
339    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
340
341  return true;
342}
343
344// SelectMsub -
345// Transforms a subgraph in CurDAG if the following pattern is found:
346//  (addc Lo0, multLo), (sube Hi0, multHi),
347// where,
348//  multHi/Lo: product of multiplication
349//  Lo0: initial value of Lo register
350//  Hi0: initial value of Hi register
351// Return true if pattern matching was successful.
352static bool SelectMsub(SDNode* SUBENode, SelectionDAG* CurDAG) {
353  // SUBENode's second operand must be a flag output of an SUBC node in order
354  // for the matching to be successful.
355  SDNode* SUBCNode = SUBENode->getOperand(2).getNode();
356
357  if (SUBCNode->getOpcode() != ISD::SUBC)
358    return false;
359
360  SDValue MultHi = SUBENode->getOperand(1);
361  SDValue MultLo = SUBCNode->getOperand(1);
362  SDNode* MultNode = MultHi.getNode();
363  unsigned MultOpc = MultHi.getOpcode();
364
365  // MultHi and MultLo must be generated by the same node,
366  if (MultLo.getNode() != MultNode)
367    return false;
368
369  // and it must be a multiplication.
370  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
371    return false;
372
373  // MultLo amd MultHi must be the first and second output of MultNode
374  // respectively.
375  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
376    return false;
377
378  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
379  // of the values of MultNode, in which case MultNode will be removed in later
380  // phases.
381  // If there exist users other than SUBENode or SUBCNode, this function returns
382  // here, which will result in MultNode being mapped to a single MULT
383  // instruction node rather than a pair of MULT and MSUB instructions being
384  // produced.
385  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
386    return false;
387
388  SDValue Chain = CurDAG->getEntryNode();
389  DebugLoc dl = SUBENode->getDebugLoc();
390
391  // create MipsSub(u) node
392  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
393
394  SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue,
395                                 MultNode->getOperand(0),// Factor 0
396                                 MultNode->getOperand(1),// Factor 1
397                                 SUBCNode->getOperand(0),// Lo0
398                                 SUBENode->getOperand(0));// Hi0
399
400  // create CopyFromReg nodes
401  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
402                                              MSub);
403  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
404                                              Mips::HI, MVT::i32,
405                                              CopyFromLo.getValue(2));
406
407  // replace uses of sube and subc here
408  if (!SDValue(SUBCNode, 0).use_empty())
409    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
410
411  if (!SDValue(SUBENode, 0).use_empty())
412    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
413
414  return true;
415}
416
417static SDValue PerformADDECombine(SDNode *N, SelectionDAG& DAG,
418                                  TargetLowering::DAGCombinerInfo &DCI,
419                                  const MipsSubtarget* Subtarget) {
420  if (DCI.isBeforeLegalize())
421    return SDValue();
422
423  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
424      SelectMadd(N, &DAG))
425    return SDValue(N, 0);
426
427  return SDValue();
428}
429
430static SDValue PerformSUBECombine(SDNode *N, SelectionDAG& DAG,
431                                  TargetLowering::DAGCombinerInfo &DCI,
432                                  const MipsSubtarget* Subtarget) {
433  if (DCI.isBeforeLegalize())
434    return SDValue();
435
436  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
437      SelectMsub(N, &DAG))
438    return SDValue(N, 0);
439
440  return SDValue();
441}
442
443static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG& DAG,
444                                    TargetLowering::DAGCombinerInfo &DCI,
445                                    const MipsSubtarget* Subtarget) {
446  if (DCI.isBeforeLegalizeOps())
447    return SDValue();
448
449  EVT Ty = N->getValueType(0);
450  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
451  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
452  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
453                                                  MipsISD::DivRemU;
454  DebugLoc dl = N->getDebugLoc();
455
456  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
457                               N->getOperand(0), N->getOperand(1));
458  SDValue InChain = DAG.getEntryNode();
459  SDValue InGlue = DivRem;
460
461  // insert MFLO
462  if (N->hasAnyUseOfValue(0)) {
463    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
464                                            InGlue);
465    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
466    InChain = CopyFromLo.getValue(1);
467    InGlue = CopyFromLo.getValue(2);
468  }
469
470  // insert MFHI
471  if (N->hasAnyUseOfValue(1)) {
472    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
473                                            HI, Ty, InGlue);
474    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
475  }
476
477  return SDValue();
478}
479
480static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
481  switch (CC) {
482  default: llvm_unreachable("Unknown fp condition code!");
483  case ISD::SETEQ:
484  case ISD::SETOEQ: return Mips::FCOND_OEQ;
485  case ISD::SETUNE: return Mips::FCOND_UNE;
486  case ISD::SETLT:
487  case ISD::SETOLT: return Mips::FCOND_OLT;
488  case ISD::SETGT:
489  case ISD::SETOGT: return Mips::FCOND_OGT;
490  case ISD::SETLE:
491  case ISD::SETOLE: return Mips::FCOND_OLE;
492  case ISD::SETGE:
493  case ISD::SETOGE: return Mips::FCOND_OGE;
494  case ISD::SETULT: return Mips::FCOND_ULT;
495  case ISD::SETULE: return Mips::FCOND_ULE;
496  case ISD::SETUGT: return Mips::FCOND_UGT;
497  case ISD::SETUGE: return Mips::FCOND_UGE;
498  case ISD::SETUO:  return Mips::FCOND_UN;
499  case ISD::SETO:   return Mips::FCOND_OR;
500  case ISD::SETNE:
501  case ISD::SETONE: return Mips::FCOND_ONE;
502  case ISD::SETUEQ: return Mips::FCOND_UEQ;
503  }
504}
505
506
507// Returns true if condition code has to be inverted.
508static bool InvertFPCondCode(Mips::CondCode CC) {
509  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
510    return false;
511
512  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
513         "Illegal Condition Code");
514
515  return true;
516}
517
518// Creates and returns an FPCmp node from a setcc node.
519// Returns Op if setcc is not a floating point comparison.
520static SDValue CreateFPCmp(SelectionDAG& DAG, const SDValue& Op) {
521  // must be a SETCC node
522  if (Op.getOpcode() != ISD::SETCC)
523    return Op;
524
525  SDValue LHS = Op.getOperand(0);
526
527  if (!LHS.getValueType().isFloatingPoint())
528    return Op;
529
530  SDValue RHS = Op.getOperand(1);
531  DebugLoc dl = Op.getDebugLoc();
532
533  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
534  // node if necessary.
535  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
536
537  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
538                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
539}
540
541// Creates and returns a CMovFPT/F node.
542static SDValue CreateCMovFP(SelectionDAG& DAG, SDValue Cond, SDValue True,
543                            SDValue False, DebugLoc DL) {
544  bool invert = InvertFPCondCode((Mips::CondCode)
545                                 cast<ConstantSDNode>(Cond.getOperand(2))
546                                 ->getSExtValue());
547
548  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
549                     True.getValueType(), True, False, Cond);
550}
551
552static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG& DAG,
553                                   TargetLowering::DAGCombinerInfo &DCI,
554                                   const MipsSubtarget* Subtarget) {
555  if (DCI.isBeforeLegalizeOps())
556    return SDValue();
557
558  SDValue Cond = CreateFPCmp(DAG, SDValue(N, 0));
559
560  if (Cond.getOpcode() != MipsISD::FPCmp)
561    return SDValue();
562
563  SDValue True  = DAG.getConstant(1, MVT::i32);
564  SDValue False = DAG.getConstant(0, MVT::i32);
565
566  return CreateCMovFP(DAG, Cond, True, False, N->getDebugLoc());
567}
568
569static SDValue PerformANDCombine(SDNode *N, SelectionDAG& DAG,
570                                 TargetLowering::DAGCombinerInfo &DCI,
571                                 const MipsSubtarget* Subtarget) {
572  // Pattern match EXT.
573  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
574  //  => ext $dst, $src, size, pos
575  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
576    return SDValue();
577
578  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
579  unsigned ShiftRightOpc = ShiftRight.getOpcode();
580
581  // Op's first operand must be a shift right.
582  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
583    return SDValue();
584
585  // The second operand of the shift must be an immediate.
586  ConstantSDNode *CN;
587  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
588    return SDValue();
589
590  uint64_t Pos = CN->getZExtValue();
591  uint64_t SMPos, SMSize;
592
593  // Op's second operand must be a shifted mask.
594  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
595      !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
596    return SDValue();
597
598  // Return if the shifted mask does not start at bit 0 or the sum of its size
599  // and Pos exceeds the word's size.
600  EVT ValTy = N->getValueType(0);
601  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
602    return SDValue();
603
604  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
605                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
606                     DAG.getConstant(SMSize, MVT::i32));
607}
608
609static SDValue PerformORCombine(SDNode *N, SelectionDAG& DAG,
610                                TargetLowering::DAGCombinerInfo &DCI,
611                                const MipsSubtarget* Subtarget) {
612  // Pattern match INS.
613  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
614  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
615  //  => ins $dst, $src, size, pos, $src1
616  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
617    return SDValue();
618
619  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
620  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
621  ConstantSDNode *CN;
622
623  // See if Op's first operand matches (and $src1 , mask0).
624  if (And0.getOpcode() != ISD::AND)
625    return SDValue();
626
627  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
628      !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
629    return SDValue();
630
631  // See if Op's second operand matches (and (shl $src, pos), mask1).
632  if (And1.getOpcode() != ISD::AND)
633    return SDValue();
634
635  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
636      !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
637    return SDValue();
638
639  // The shift masks must have the same position and size.
640  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
641    return SDValue();
642
643  SDValue Shl = And1.getOperand(0);
644  if (Shl.getOpcode() != ISD::SHL)
645    return SDValue();
646
647  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
648    return SDValue();
649
650  unsigned Shamt = CN->getZExtValue();
651
652  // Return if the shift amount and the first bit position of mask are not the
653  // same.
654  EVT ValTy = N->getValueType(0);
655  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
656    return SDValue();
657
658  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
659                     DAG.getConstant(SMPos0, MVT::i32),
660                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
661}
662
663SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
664  const {
665  SelectionDAG &DAG = DCI.DAG;
666  unsigned opc = N->getOpcode();
667
668  switch (opc) {
669  default: break;
670  case ISD::ADDE:
671    return PerformADDECombine(N, DAG, DCI, Subtarget);
672  case ISD::SUBE:
673    return PerformSUBECombine(N, DAG, DCI, Subtarget);
674  case ISD::SDIVREM:
675  case ISD::UDIVREM:
676    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
677  case ISD::SETCC:
678    return PerformSETCCCombine(N, DAG, DCI, Subtarget);
679  case ISD::AND:
680    return PerformANDCombine(N, DAG, DCI, Subtarget);
681  case ISD::OR:
682    return PerformORCombine(N, DAG, DCI, Subtarget);
683  }
684
685  return SDValue();
686}
687
688SDValue MipsTargetLowering::
689LowerOperation(SDValue Op, SelectionDAG &DAG) const
690{
691  switch (Op.getOpcode())
692  {
693    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
694    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
695    case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
696    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
697    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
698    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
699    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
700    case ISD::SELECT:             return LowerSELECT(Op, DAG);
701    case ISD::VASTART:            return LowerVASTART(Op, DAG);
702    case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
703    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
704    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
705    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
706  }
707  return SDValue();
708}
709
710//===----------------------------------------------------------------------===//
711//  Lower helper functions
712//===----------------------------------------------------------------------===//
713
714// AddLiveIn - This helper function adds the specified physical register to the
715// MachineFunction as a live in value.  It also creates a corresponding
716// virtual register for it.
717static unsigned
718AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
719{
720  assert(RC->contains(PReg) && "Not the correct regclass!");
721  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
722  MF.getRegInfo().addLiveIn(PReg, VReg);
723  return VReg;
724}
725
726// Get fp branch code (not opcode) from condition code.
727static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
728  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
729    return Mips::BRANCH_T;
730
731  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
732         "Invalid CondCode.");
733
734  return Mips::BRANCH_F;
735}
736
737/*
738static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
739                                        DebugLoc dl,
740                                        const MipsSubtarget* Subtarget,
741                                        const TargetInstrInfo *TII,
742                                        bool isFPCmp, unsigned Opc) {
743  // There is no need to expand CMov instructions if target has
744  // conditional moves.
745  if (Subtarget->hasCondMov())
746    return BB;
747
748  // To "insert" a SELECT_CC instruction, we actually have to insert the
749  // diamond control-flow pattern.  The incoming instruction knows the
750  // destination vreg to set, the condition code register to branch on, the
751  // true/false values to select between, and a branch opcode to use.
752  const BasicBlock *LLVM_BB = BB->getBasicBlock();
753  MachineFunction::iterator It = BB;
754  ++It;
755
756  //  thisMBB:
757  //  ...
758  //   TrueVal = ...
759  //   setcc r1, r2, r3
760  //   bNE   r1, r0, copy1MBB
761  //   fallthrough --> copy0MBB
762  MachineBasicBlock *thisMBB  = BB;
763  MachineFunction *F = BB->getParent();
764  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
765  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
766  F->insert(It, copy0MBB);
767  F->insert(It, sinkMBB);
768
769  // Transfer the remainder of BB and its successor edges to sinkMBB.
770  sinkMBB->splice(sinkMBB->begin(), BB,
771                  llvm::next(MachineBasicBlock::iterator(MI)),
772                  BB->end());
773  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
774
775  // Next, add the true and fallthrough blocks as its successors.
776  BB->addSuccessor(copy0MBB);
777  BB->addSuccessor(sinkMBB);
778
779  // Emit the right instruction according to the type of the operands compared
780  if (isFPCmp)
781    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
782  else
783    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
784      .addReg(Mips::ZERO).addMBB(sinkMBB);
785
786  //  copy0MBB:
787  //   %FalseValue = ...
788  //   # fallthrough to sinkMBB
789  BB = copy0MBB;
790
791  // Update machine-CFG edges
792  BB->addSuccessor(sinkMBB);
793
794  //  sinkMBB:
795  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
796  //  ...
797  BB = sinkMBB;
798
799  if (isFPCmp)
800    BuildMI(*BB, BB->begin(), dl,
801            TII->get(Mips::PHI), MI->getOperand(0).getReg())
802      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
803      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
804  else
805    BuildMI(*BB, BB->begin(), dl,
806            TII->get(Mips::PHI), MI->getOperand(0).getReg())
807      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
808      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
809
810  MI->eraseFromParent();   // The pseudo instruction is gone now.
811  return BB;
812}
813*/
814MachineBasicBlock *
815MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
816                                                MachineBasicBlock *BB) const {
817  switch (MI->getOpcode()) {
818  default: llvm_unreachable("Unexpected instr type to insert");
819  case Mips::ATOMIC_LOAD_ADD_I8:
820  case Mips::ATOMIC_LOAD_ADD_I8_P8:
821    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
822  case Mips::ATOMIC_LOAD_ADD_I16:
823  case Mips::ATOMIC_LOAD_ADD_I16_P8:
824    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
825  case Mips::ATOMIC_LOAD_ADD_I32:
826  case Mips::ATOMIC_LOAD_ADD_I32_P8:
827    return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
828  case Mips::ATOMIC_LOAD_ADD_I64:
829  case Mips::ATOMIC_LOAD_ADD_I64_P8:
830    return EmitAtomicBinary(MI, BB, 8, Mips::DADDu);
831
832  case Mips::ATOMIC_LOAD_AND_I8:
833  case Mips::ATOMIC_LOAD_AND_I8_P8:
834    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
835  case Mips::ATOMIC_LOAD_AND_I16:
836  case Mips::ATOMIC_LOAD_AND_I16_P8:
837    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
838  case Mips::ATOMIC_LOAD_AND_I32:
839  case Mips::ATOMIC_LOAD_AND_I32_P8:
840    return EmitAtomicBinary(MI, BB, 4, Mips::AND);
841  case Mips::ATOMIC_LOAD_AND_I64:
842  case Mips::ATOMIC_LOAD_AND_I64_P8:
843    return EmitAtomicBinary(MI, BB, 8, Mips::AND64);
844
845  case Mips::ATOMIC_LOAD_OR_I8:
846  case Mips::ATOMIC_LOAD_OR_I8_P8:
847    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
848  case Mips::ATOMIC_LOAD_OR_I16:
849  case Mips::ATOMIC_LOAD_OR_I16_P8:
850    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
851  case Mips::ATOMIC_LOAD_OR_I32:
852  case Mips::ATOMIC_LOAD_OR_I32_P8:
853    return EmitAtomicBinary(MI, BB, 4, Mips::OR);
854  case Mips::ATOMIC_LOAD_OR_I64:
855  case Mips::ATOMIC_LOAD_OR_I64_P8:
856    return EmitAtomicBinary(MI, BB, 8, Mips::OR64);
857
858  case Mips::ATOMIC_LOAD_XOR_I8:
859  case Mips::ATOMIC_LOAD_XOR_I8_P8:
860    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
861  case Mips::ATOMIC_LOAD_XOR_I16:
862  case Mips::ATOMIC_LOAD_XOR_I16_P8:
863    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
864  case Mips::ATOMIC_LOAD_XOR_I32:
865  case Mips::ATOMIC_LOAD_XOR_I32_P8:
866    return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
867  case Mips::ATOMIC_LOAD_XOR_I64:
868  case Mips::ATOMIC_LOAD_XOR_I64_P8:
869    return EmitAtomicBinary(MI, BB, 8, Mips::XOR64);
870
871  case Mips::ATOMIC_LOAD_NAND_I8:
872  case Mips::ATOMIC_LOAD_NAND_I8_P8:
873    return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
874  case Mips::ATOMIC_LOAD_NAND_I16:
875  case Mips::ATOMIC_LOAD_NAND_I16_P8:
876    return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
877  case Mips::ATOMIC_LOAD_NAND_I32:
878  case Mips::ATOMIC_LOAD_NAND_I32_P8:
879    return EmitAtomicBinary(MI, BB, 4, 0, true);
880  case Mips::ATOMIC_LOAD_NAND_I64:
881  case Mips::ATOMIC_LOAD_NAND_I64_P8:
882    return EmitAtomicBinary(MI, BB, 8, 0, true);
883
884  case Mips::ATOMIC_LOAD_SUB_I8:
885  case Mips::ATOMIC_LOAD_SUB_I8_P8:
886    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
887  case Mips::ATOMIC_LOAD_SUB_I16:
888  case Mips::ATOMIC_LOAD_SUB_I16_P8:
889    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
890  case Mips::ATOMIC_LOAD_SUB_I32:
891  case Mips::ATOMIC_LOAD_SUB_I32_P8:
892    return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
893  case Mips::ATOMIC_LOAD_SUB_I64:
894  case Mips::ATOMIC_LOAD_SUB_I64_P8:
895    return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu);
896
897  case Mips::ATOMIC_SWAP_I8:
898  case Mips::ATOMIC_SWAP_I8_P8:
899    return EmitAtomicBinaryPartword(MI, BB, 1, 0);
900  case Mips::ATOMIC_SWAP_I16:
901  case Mips::ATOMIC_SWAP_I16_P8:
902    return EmitAtomicBinaryPartword(MI, BB, 2, 0);
903  case Mips::ATOMIC_SWAP_I32:
904  case Mips::ATOMIC_SWAP_I32_P8:
905    return EmitAtomicBinary(MI, BB, 4, 0);
906  case Mips::ATOMIC_SWAP_I64:
907  case Mips::ATOMIC_SWAP_I64_P8:
908    return EmitAtomicBinary(MI, BB, 8, 0);
909
910  case Mips::ATOMIC_CMP_SWAP_I8:
911  case Mips::ATOMIC_CMP_SWAP_I8_P8:
912    return EmitAtomicCmpSwapPartword(MI, BB, 1);
913  case Mips::ATOMIC_CMP_SWAP_I16:
914  case Mips::ATOMIC_CMP_SWAP_I16_P8:
915    return EmitAtomicCmpSwapPartword(MI, BB, 2);
916  case Mips::ATOMIC_CMP_SWAP_I32:
917  case Mips::ATOMIC_CMP_SWAP_I32_P8:
918    return EmitAtomicCmpSwap(MI, BB, 4);
919  case Mips::ATOMIC_CMP_SWAP_I64:
920  case Mips::ATOMIC_CMP_SWAP_I64_P8:
921    return EmitAtomicCmpSwap(MI, BB, 8);
922  }
923}
924
925// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
926// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
927MachineBasicBlock *
928MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
929                                     unsigned Size, unsigned BinOpcode,
930                                     bool Nand) const {
931  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
932
933  MachineFunction *MF = BB->getParent();
934  MachineRegisterInfo &RegInfo = MF->getRegInfo();
935  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
936  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
937  DebugLoc dl = MI->getDebugLoc();
938  unsigned LL, SC, AND, NOR, ZERO, BEQ;
939
940  if (Size == 4) {
941    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
942    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
943    AND = Mips::AND;
944    NOR = Mips::NOR;
945    ZERO = Mips::ZERO;
946    BEQ = Mips::BEQ;
947  }
948  else {
949    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
950    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
951    AND = Mips::AND64;
952    NOR = Mips::NOR64;
953    ZERO = Mips::ZERO_64;
954    BEQ = Mips::BEQ64;
955  }
956
957  unsigned OldVal = MI->getOperand(0).getReg();
958  unsigned Ptr = MI->getOperand(1).getReg();
959  unsigned Incr = MI->getOperand(2).getReg();
960
961  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
962  unsigned AndRes = RegInfo.createVirtualRegister(RC);
963  unsigned Success = RegInfo.createVirtualRegister(RC);
964
965  // insert new blocks after the current block
966  const BasicBlock *LLVM_BB = BB->getBasicBlock();
967  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
968  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
969  MachineFunction::iterator It = BB;
970  ++It;
971  MF->insert(It, loopMBB);
972  MF->insert(It, exitMBB);
973
974  // Transfer the remainder of BB and its successor edges to exitMBB.
975  exitMBB->splice(exitMBB->begin(), BB,
976                  llvm::next(MachineBasicBlock::iterator(MI)),
977                  BB->end());
978  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
979
980  //  thisMBB:
981  //    ...
982  //    fallthrough --> loopMBB
983  BB->addSuccessor(loopMBB);
984  loopMBB->addSuccessor(loopMBB);
985  loopMBB->addSuccessor(exitMBB);
986
987  //  loopMBB:
988  //    ll oldval, 0(ptr)
989  //    <binop> storeval, oldval, incr
990  //    sc success, storeval, 0(ptr)
991  //    beq success, $0, loopMBB
992  BB = loopMBB;
993  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
994  if (Nand) {
995    //  and andres, oldval, incr
996    //  nor storeval, $0, andres
997    BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
998    BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
999  } else if (BinOpcode) {
1000    //  <binop> storeval, oldval, incr
1001    BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1002  } else {
1003    StoreVal = Incr;
1004  }
1005  BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1006  BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1007
1008  MI->eraseFromParent();   // The instruction is gone now.
1009
1010  return exitMBB;
1011}
1012
1013MachineBasicBlock *
1014MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
1015                                             MachineBasicBlock *BB,
1016                                             unsigned Size, unsigned BinOpcode,
1017                                             bool Nand) const {
1018  assert((Size == 1 || Size == 2) &&
1019      "Unsupported size for EmitAtomicBinaryPartial.");
1020
1021  MachineFunction *MF = BB->getParent();
1022  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1023  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1024  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1025  DebugLoc dl = MI->getDebugLoc();
1026  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1027  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1028
1029  unsigned Dest = MI->getOperand(0).getReg();
1030  unsigned Ptr = MI->getOperand(1).getReg();
1031  unsigned Incr = MI->getOperand(2).getReg();
1032
1033  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1034  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1035  unsigned Mask = RegInfo.createVirtualRegister(RC);
1036  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1037  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1038  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1039  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1040  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1041  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1042  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1043  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1044  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1045  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1046  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1047  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1048  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1049  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1050  unsigned Success = RegInfo.createVirtualRegister(RC);
1051
1052  // insert new blocks after the current block
1053  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1054  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1055  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1056  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1057  MachineFunction::iterator It = BB;
1058  ++It;
1059  MF->insert(It, loopMBB);
1060  MF->insert(It, sinkMBB);
1061  MF->insert(It, exitMBB);
1062
1063  // Transfer the remainder of BB and its successor edges to exitMBB.
1064  exitMBB->splice(exitMBB->begin(), BB,
1065                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1066  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1067
1068  BB->addSuccessor(loopMBB);
1069  loopMBB->addSuccessor(loopMBB);
1070  loopMBB->addSuccessor(sinkMBB);
1071  sinkMBB->addSuccessor(exitMBB);
1072
1073  //  thisMBB:
1074  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1075  //    and     alignedaddr,ptr,masklsb2
1076  //    andi    ptrlsb2,ptr,3
1077  //    sll     shiftamt,ptrlsb2,3
1078  //    ori     maskupper,$0,255               # 0xff
1079  //    sll     mask,maskupper,shiftamt
1080  //    nor     mask2,$0,mask
1081  //    sll     incr2,incr,shiftamt
1082
1083  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1084  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1085    .addReg(Mips::ZERO).addImm(-4);
1086  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1087    .addReg(Ptr).addReg(MaskLSB2);
1088  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1089  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1090  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1091    .addReg(Mips::ZERO).addImm(MaskImm);
1092  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1093    .addReg(ShiftAmt).addReg(MaskUpper);
1094  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1095  BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1096
1097  // atomic.load.binop
1098  // loopMBB:
1099  //   ll      oldval,0(alignedaddr)
1100  //   binop   binopres,oldval,incr2
1101  //   and     newval,binopres,mask
1102  //   and     maskedoldval0,oldval,mask2
1103  //   or      storeval,maskedoldval0,newval
1104  //   sc      success,storeval,0(alignedaddr)
1105  //   beq     success,$0,loopMBB
1106
1107  // atomic.swap
1108  // loopMBB:
1109  //   ll      oldval,0(alignedaddr)
1110  //   and     newval,incr2,mask
1111  //   and     maskedoldval0,oldval,mask2
1112  //   or      storeval,maskedoldval0,newval
1113  //   sc      success,storeval,0(alignedaddr)
1114  //   beq     success,$0,loopMBB
1115
1116  BB = loopMBB;
1117  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1118  if (Nand) {
1119    //  and andres, oldval, incr2
1120    //  nor binopres, $0, andres
1121    //  and newval, binopres, mask
1122    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1123    BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
1124      .addReg(Mips::ZERO).addReg(AndRes);
1125    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1126  } else if (BinOpcode) {
1127    //  <binop> binopres, oldval, incr2
1128    //  and newval, binopres, mask
1129    BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1130    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1131  } else {// atomic.swap
1132    //  and newval, incr2, mask
1133    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1134  }
1135
1136  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1137    .addReg(OldVal).addReg(Mask2);
1138  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1139    .addReg(MaskedOldVal0).addReg(NewVal);
1140  BuildMI(BB, dl, TII->get(SC), Success)
1141    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1142  BuildMI(BB, dl, TII->get(Mips::BEQ))
1143    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1144
1145  //  sinkMBB:
1146  //    and     maskedoldval1,oldval,mask
1147  //    srl     srlres,maskedoldval1,shiftamt
1148  //    sll     sllres,srlres,24
1149  //    sra     dest,sllres,24
1150  BB = sinkMBB;
1151  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1152
1153  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1154    .addReg(OldVal).addReg(Mask);
1155  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1156      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1157  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1158      .addReg(SrlRes).addImm(ShiftImm);
1159  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1160      .addReg(SllRes).addImm(ShiftImm);
1161
1162  MI->eraseFromParent();   // The instruction is gone now.
1163
1164  return exitMBB;
1165}
1166
1167MachineBasicBlock *
1168MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
1169                                      MachineBasicBlock *BB,
1170                                      unsigned Size) const {
1171  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1172
1173  MachineFunction *MF = BB->getParent();
1174  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1175  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1176  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1177  DebugLoc dl = MI->getDebugLoc();
1178  unsigned LL, SC, ZERO, BNE, BEQ;
1179
1180  if (Size == 4) {
1181    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1182    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1183    ZERO = Mips::ZERO;
1184    BNE = Mips::BNE;
1185    BEQ = Mips::BEQ;
1186  }
1187  else {
1188    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1189    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1190    ZERO = Mips::ZERO_64;
1191    BNE = Mips::BNE64;
1192    BEQ = Mips::BEQ64;
1193  }
1194
1195  unsigned Dest    = MI->getOperand(0).getReg();
1196  unsigned Ptr     = MI->getOperand(1).getReg();
1197  unsigned OldVal  = MI->getOperand(2).getReg();
1198  unsigned NewVal  = MI->getOperand(3).getReg();
1199
1200  unsigned Success = RegInfo.createVirtualRegister(RC);
1201
1202  // insert new blocks after the current block
1203  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1204  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1205  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1206  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1207  MachineFunction::iterator It = BB;
1208  ++It;
1209  MF->insert(It, loop1MBB);
1210  MF->insert(It, loop2MBB);
1211  MF->insert(It, exitMBB);
1212
1213  // Transfer the remainder of BB and its successor edges to exitMBB.
1214  exitMBB->splice(exitMBB->begin(), BB,
1215                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1216  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1217
1218  //  thisMBB:
1219  //    ...
1220  //    fallthrough --> loop1MBB
1221  BB->addSuccessor(loop1MBB);
1222  loop1MBB->addSuccessor(exitMBB);
1223  loop1MBB->addSuccessor(loop2MBB);
1224  loop2MBB->addSuccessor(loop1MBB);
1225  loop2MBB->addSuccessor(exitMBB);
1226
1227  // loop1MBB:
1228  //   ll dest, 0(ptr)
1229  //   bne dest, oldval, exitMBB
1230  BB = loop1MBB;
1231  BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1232  BuildMI(BB, dl, TII->get(BNE))
1233    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1234
1235  // loop2MBB:
1236  //   sc success, newval, 0(ptr)
1237  //   beq success, $0, loop1MBB
1238  BB = loop2MBB;
1239  BuildMI(BB, dl, TII->get(SC), Success)
1240    .addReg(NewVal).addReg(Ptr).addImm(0);
1241  BuildMI(BB, dl, TII->get(BEQ))
1242    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1243
1244  MI->eraseFromParent();   // The instruction is gone now.
1245
1246  return exitMBB;
1247}
1248
1249MachineBasicBlock *
1250MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
1251                                              MachineBasicBlock *BB,
1252                                              unsigned Size) const {
1253  assert((Size == 1 || Size == 2) &&
1254      "Unsupported size for EmitAtomicCmpSwapPartial.");
1255
1256  MachineFunction *MF = BB->getParent();
1257  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1258  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1259  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1260  DebugLoc dl = MI->getDebugLoc();
1261  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1262  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1263
1264  unsigned Dest    = MI->getOperand(0).getReg();
1265  unsigned Ptr     = MI->getOperand(1).getReg();
1266  unsigned CmpVal  = MI->getOperand(2).getReg();
1267  unsigned NewVal  = MI->getOperand(3).getReg();
1268
1269  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1270  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1271  unsigned Mask = RegInfo.createVirtualRegister(RC);
1272  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1273  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1274  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1275  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1276  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1277  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1278  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1279  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1280  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1281  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1282  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1283  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1284  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1285  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1286  unsigned Success = RegInfo.createVirtualRegister(RC);
1287
1288  // insert new blocks after the current block
1289  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1290  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1291  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1292  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1293  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1294  MachineFunction::iterator It = BB;
1295  ++It;
1296  MF->insert(It, loop1MBB);
1297  MF->insert(It, loop2MBB);
1298  MF->insert(It, sinkMBB);
1299  MF->insert(It, exitMBB);
1300
1301  // Transfer the remainder of BB and its successor edges to exitMBB.
1302  exitMBB->splice(exitMBB->begin(), BB,
1303                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1304  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1305
1306  BB->addSuccessor(loop1MBB);
1307  loop1MBB->addSuccessor(sinkMBB);
1308  loop1MBB->addSuccessor(loop2MBB);
1309  loop2MBB->addSuccessor(loop1MBB);
1310  loop2MBB->addSuccessor(sinkMBB);
1311  sinkMBB->addSuccessor(exitMBB);
1312
1313  // FIXME: computation of newval2 can be moved to loop2MBB.
1314  //  thisMBB:
1315  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1316  //    and     alignedaddr,ptr,masklsb2
1317  //    andi    ptrlsb2,ptr,3
1318  //    sll     shiftamt,ptrlsb2,3
1319  //    ori     maskupper,$0,255               # 0xff
1320  //    sll     mask,maskupper,shiftamt
1321  //    nor     mask2,$0,mask
1322  //    andi    maskedcmpval,cmpval,255
1323  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1324  //    andi    maskednewval,newval,255
1325  //    sll     shiftednewval,maskednewval,shiftamt
1326  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1327  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1328    .addReg(Mips::ZERO).addImm(-4);
1329  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1330    .addReg(Ptr).addReg(MaskLSB2);
1331  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1332  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1333  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1334    .addReg(Mips::ZERO).addImm(MaskImm);
1335  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1336    .addReg(ShiftAmt).addReg(MaskUpper);
1337  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1338  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
1339    .addReg(CmpVal).addImm(MaskImm);
1340  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
1341    .addReg(ShiftAmt).addReg(MaskedCmpVal);
1342  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
1343    .addReg(NewVal).addImm(MaskImm);
1344  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
1345    .addReg(ShiftAmt).addReg(MaskedNewVal);
1346
1347  //  loop1MBB:
1348  //    ll      oldval,0(alginedaddr)
1349  //    and     maskedoldval0,oldval,mask
1350  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1351  BB = loop1MBB;
1352  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1353  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1354    .addReg(OldVal).addReg(Mask);
1355  BuildMI(BB, dl, TII->get(Mips::BNE))
1356    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1357
1358  //  loop2MBB:
1359  //    and     maskedoldval1,oldval,mask2
1360  //    or      storeval,maskedoldval1,shiftednewval
1361  //    sc      success,storeval,0(alignedaddr)
1362  //    beq     success,$0,loop1MBB
1363  BB = loop2MBB;
1364  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1365    .addReg(OldVal).addReg(Mask2);
1366  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1367    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1368  BuildMI(BB, dl, TII->get(SC), Success)
1369      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1370  BuildMI(BB, dl, TII->get(Mips::BEQ))
1371      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1372
1373  //  sinkMBB:
1374  //    srl     srlres,maskedoldval0,shiftamt
1375  //    sll     sllres,srlres,24
1376  //    sra     dest,sllres,24
1377  BB = sinkMBB;
1378  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1379
1380  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1381      .addReg(ShiftAmt).addReg(MaskedOldVal0);
1382  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1383      .addReg(SrlRes).addImm(ShiftImm);
1384  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1385      .addReg(SllRes).addImm(ShiftImm);
1386
1387  MI->eraseFromParent();   // The instruction is gone now.
1388
1389  return exitMBB;
1390}
1391
1392//===----------------------------------------------------------------------===//
1393//  Misc Lower Operation implementation
1394//===----------------------------------------------------------------------===//
1395SDValue MipsTargetLowering::
1396LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
1397{
1398  MachineFunction &MF = DAG.getMachineFunction();
1399  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1400  unsigned SP = IsN64 ? Mips::SP_64 : Mips::SP;
1401
1402  assert(getTargetMachine().getFrameLowering()->getStackAlignment() >=
1403         cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue() &&
1404         "Cannot lower if the alignment of the allocated space is larger than \
1405          that of the stack.");
1406
1407  SDValue Chain = Op.getOperand(0);
1408  SDValue Size = Op.getOperand(1);
1409  DebugLoc dl = Op.getDebugLoc();
1410
1411  // Get a reference from Mips stack pointer
1412  SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, SP, getPointerTy());
1413
1414  // Subtract the dynamic size from the actual stack size to
1415  // obtain the new stack size.
1416  SDValue Sub = DAG.getNode(ISD::SUB, dl, getPointerTy(), StackPointer, Size);
1417
1418  // The Sub result contains the new stack start address, so it
1419  // must be placed in the stack pointer register.
1420  Chain = DAG.getCopyToReg(StackPointer.getValue(1), dl, SP, Sub, SDValue());
1421
1422  // This node always has two return values: a new stack pointer
1423  // value and a chain
1424  SDVTList VTLs = DAG.getVTList(getPointerTy(), MVT::Other);
1425  SDValue Ptr = DAG.getFrameIndex(MipsFI->getDynAllocFI(), getPointerTy());
1426  SDValue Ops[] = { Chain, Ptr, Chain.getValue(1) };
1427
1428  return DAG.getNode(MipsISD::DynAlloc, dl, VTLs, Ops, 3);
1429}
1430
1431SDValue MipsTargetLowering::
1432LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1433{
1434  // The first operand is the chain, the second is the condition, the third is
1435  // the block to branch to if the condition is true.
1436  SDValue Chain = Op.getOperand(0);
1437  SDValue Dest = Op.getOperand(2);
1438  DebugLoc dl = Op.getDebugLoc();
1439
1440  SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
1441
1442  // Return if flag is not set by a floating point comparison.
1443  if (CondRes.getOpcode() != MipsISD::FPCmp)
1444    return Op;
1445
1446  SDValue CCNode  = CondRes.getOperand(2);
1447  Mips::CondCode CC =
1448    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1449  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
1450
1451  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
1452                     Dest, CondRes);
1453}
1454
1455SDValue MipsTargetLowering::
1456LowerSELECT(SDValue Op, SelectionDAG &DAG) const
1457{
1458  SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
1459
1460  // Return if flag is not set by a floating point comparison.
1461  if (Cond.getOpcode() != MipsISD::FPCmp)
1462    return Op;
1463
1464  return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1465                      Op.getDebugLoc());
1466}
1467
1468SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
1469                                               SelectionDAG &DAG) const {
1470  // FIXME there isn't actually debug info here
1471  DebugLoc dl = Op.getDebugLoc();
1472  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1473
1474  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1475    SDVTList VTs = DAG.getVTList(MVT::i32);
1476
1477    MipsTargetObjectFile &TLOF = (MipsTargetObjectFile&)getObjFileLowering();
1478
1479    // %gp_rel relocation
1480    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1481      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1482                                              MipsII::MO_GPREL);
1483      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1);
1484      SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1485      return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode);
1486    }
1487    // %hi/%lo relocation
1488    SDValue GAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1489                                              MipsII::MO_ABS_HI);
1490    SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1491                                              MipsII::MO_ABS_LO);
1492    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GAHi, 1);
1493    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
1494    return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1495  }
1496
1497  EVT ValTy = Op.getValueType();
1498  bool HasGotOfst = (GV->hasInternalLinkage() ||
1499                     (GV->hasLocalLinkage() && !isa<Function>(GV)));
1500  unsigned GotFlag = IsN64 ?
1501                     (HasGotOfst ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT_DISP) :
1502                     (HasGotOfst ? MipsII::MO_GOT : MipsII::MO_GOT16);
1503  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0, GotFlag);
1504  GA = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), GA);
1505  SDValue ResNode = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), GA,
1506                                MachinePointerInfo(), false, false, false, 0);
1507  // On functions and global targets not internal linked only
1508  // a load from got/GP is necessary for PIC to work.
1509  if (!HasGotOfst)
1510    return ResNode;
1511  SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0,
1512                                            IsN64 ? MipsII::MO_GOT_OFST :
1513                                                    MipsII::MO_ABS_LO);
1514  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, GALo);
1515  return DAG.getNode(ISD::ADD, dl, ValTy, ResNode, Lo);
1516}
1517
1518SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
1519                                              SelectionDAG &DAG) const {
1520  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1521  // FIXME there isn't actually debug info here
1522  DebugLoc dl = Op.getDebugLoc();
1523
1524  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1525    // %hi/%lo relocation
1526    SDValue BAHi = DAG.getBlockAddress(BA, MVT::i32, true, MipsII::MO_ABS_HI);
1527    SDValue BALo = DAG.getBlockAddress(BA, MVT::i32, true, MipsII::MO_ABS_LO);
1528    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, MVT::i32, BAHi);
1529    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALo);
1530    return DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo);
1531  }
1532
1533  EVT ValTy = Op.getValueType();
1534  unsigned GOTFlag = IsN64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1535  unsigned OFSTFlag = IsN64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1536  SDValue BAGOTOffset = DAG.getBlockAddress(BA, ValTy, true, GOTFlag);
1537  BAGOTOffset = DAG.getNode(MipsISD::Wrapper, dl, ValTy,
1538                            GetGlobalReg(DAG, ValTy), BAGOTOffset);
1539  SDValue BALOOffset = DAG.getBlockAddress(BA, ValTy, true, OFSTFlag);
1540  SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), BAGOTOffset,
1541                             MachinePointerInfo(), false, false, false, 0);
1542  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, BALOOffset);
1543  return DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1544}
1545
1546SDValue MipsTargetLowering::
1547LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1548{
1549  // If the relocation model is PIC, use the General Dynamic TLS Model or
1550  // Local Dynamic TLS model, otherwise use the Initial Exec or
1551  // Local Exec TLS Model.
1552
1553  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1554  DebugLoc dl = GA->getDebugLoc();
1555  const GlobalValue *GV = GA->getGlobal();
1556  EVT PtrVT = getPointerTy();
1557
1558  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1559    // General Dynamic TLS Model
1560    bool LocalDynamic = GV->hasInternalLinkage();
1561    unsigned Flag = LocalDynamic ? MipsII::MO_TLSLDM :MipsII::MO_TLSGD;
1562    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag);
1563    SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT,
1564                                   GetGlobalReg(DAG, PtrVT), TGA);
1565    unsigned PtrSize = PtrVT.getSizeInBits();
1566    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1567
1568    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1569
1570    ArgListTy Args;
1571    ArgListEntry Entry;
1572    Entry.Node = Argument;
1573    Entry.Ty = PtrTy;
1574    Args.push_back(Entry);
1575
1576    std::pair<SDValue, SDValue> CallResult =
1577      LowerCallTo(DAG.getEntryNode(), PtrTy,
1578                  false, false, false, false, 0, CallingConv::C, false, true,
1579                  TlsGetAddr, Args, DAG, dl);
1580
1581    SDValue Ret = CallResult.first;
1582
1583    if (!LocalDynamic)
1584      return Ret;
1585
1586    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1587                                               MipsII::MO_DTPREL_HI);
1588    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1589    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1590                                               MipsII::MO_DTPREL_LO);
1591    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1592    SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret);
1593    return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo);
1594  }
1595
1596  SDValue Offset;
1597  if (GV->isDeclaration()) {
1598    // Initial Exec TLS Model
1599    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1600                                             MipsII::MO_GOTTPREL);
1601    TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1602                      TGA);
1603    Offset = DAG.getLoad(PtrVT, dl,
1604                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1605                         false, false, false, 0);
1606  } else {
1607    // Local Exec TLS Model
1608    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1609                                               MipsII::MO_TPREL_HI);
1610    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1611                                               MipsII::MO_TPREL_LO);
1612    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1613    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1614    Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1615  }
1616
1617  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
1618  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1619}
1620
1621SDValue MipsTargetLowering::
1622LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1623{
1624  SDValue HiPart, JTI, JTILo;
1625  // FIXME there isn't actually debug info here
1626  DebugLoc dl = Op.getDebugLoc();
1627  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
1628  EVT PtrVT = Op.getValueType();
1629  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1630
1631  if (!IsPIC && !IsN64) {
1632    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_HI);
1633    HiPart = DAG.getNode(MipsISD::Hi, dl, PtrVT, JTI);
1634    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_LO);
1635  } else {// Emit Load from Global Pointer
1636    unsigned GOTFlag = IsN64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1637    unsigned OfstFlag = IsN64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1638    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, GOTFlag);
1639    JTI = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1640                      JTI);
1641    HiPart = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), JTI,
1642                         MachinePointerInfo(), false, false, false, 0);
1643    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OfstFlag);
1644  }
1645
1646  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, JTILo);
1647  return DAG.getNode(ISD::ADD, dl, PtrVT, HiPart, Lo);
1648}
1649
1650SDValue MipsTargetLowering::
1651LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1652{
1653  SDValue ResNode;
1654  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1655  const Constant *C = N->getConstVal();
1656  // FIXME there isn't actually debug info here
1657  DebugLoc dl = Op.getDebugLoc();
1658
1659  // gp_rel relocation
1660  // FIXME: we should reference the constant pool using small data sections,
1661  // but the asm printer currently doesn't support this feature without
1662  // hacking it. This feature should come soon so we can uncomment the
1663  // stuff below.
1664  //if (IsInSmallSection(C->getType())) {
1665  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1666  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1667  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1668
1669  if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
1670    SDValue CPHi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1671                                             N->getOffset(), MipsII::MO_ABS_HI);
1672    SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1673                                             N->getOffset(), MipsII::MO_ABS_LO);
1674    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CPHi);
1675    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
1676    ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1677  } else {
1678    EVT ValTy = Op.getValueType();
1679    unsigned GOTFlag = IsN64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1680    unsigned OFSTFlag = IsN64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1681    SDValue CP = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1682                                           N->getOffset(), GOTFlag);
1683    CP = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), CP);
1684    SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), CP,
1685                               MachinePointerInfo::getConstantPool(), false,
1686                               false, false, 0);
1687    SDValue CPLo = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1688                                             N->getOffset(), OFSTFlag);
1689    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, CPLo);
1690    ResNode = DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1691  }
1692
1693  return ResNode;
1694}
1695
1696SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1697  MachineFunction &MF = DAG.getMachineFunction();
1698  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1699
1700  DebugLoc dl = Op.getDebugLoc();
1701  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1702                                 getPointerTy());
1703
1704  // vastart just stores the address of the VarArgsFrameIndex slot into the
1705  // memory location argument.
1706  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1707  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
1708                      MachinePointerInfo(SV), false, false, 0);
1709}
1710
1711// Called if the size of integer registers is large enough to hold the whole
1712// floating point number.
1713static SDValue LowerFCOPYSIGNLargeIntReg(SDValue Op, SelectionDAG &DAG) {
1714  // FIXME: Use ext/ins instructions if target architecture is Mips32r2.
1715  EVT ValTy = Op.getValueType();
1716  EVT IntValTy = MVT::getIntegerVT(ValTy.getSizeInBits());
1717  uint64_t Mask = (uint64_t)1 << (ValTy.getSizeInBits() - 1);
1718  DebugLoc dl = Op.getDebugLoc();
1719  SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, IntValTy, Op.getOperand(0));
1720  SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, IntValTy, Op.getOperand(1));
1721  SDValue And0 = DAG.getNode(ISD::AND, dl, IntValTy, Op0,
1722                             DAG.getConstant(Mask - 1, IntValTy));
1723  SDValue And1 = DAG.getNode(ISD::AND, dl, IntValTy, Op1,
1724                             DAG.getConstant(Mask, IntValTy));
1725  SDValue Result = DAG.getNode(ISD::OR, dl, IntValTy, And0, And1);
1726  return DAG.getNode(ISD::BITCAST, dl, ValTy, Result);
1727}
1728
1729// Called if the size of integer registers is not large enough to hold the whole
1730// floating point number (e.g. f64 & 32-bit integer register).
1731static SDValue
1732LowerFCOPYSIGNSmallIntReg(SDValue Op, SelectionDAG &DAG, bool isLittle) {
1733  // FIXME:
1734  //  Use ext/ins instructions if target architecture is Mips32r2.
1735  //  Eliminate redundant mfc1 and mtc1 instructions.
1736  unsigned LoIdx = 0, HiIdx = 1;
1737
1738  if (!isLittle)
1739    std::swap(LoIdx, HiIdx);
1740
1741  DebugLoc dl = Op.getDebugLoc();
1742  SDValue Word0 = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
1743                              Op.getOperand(0),
1744                              DAG.getConstant(LoIdx, MVT::i32));
1745  SDValue Hi0 = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
1746                            Op.getOperand(0), DAG.getConstant(HiIdx, MVT::i32));
1747  SDValue Hi1 = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
1748                            Op.getOperand(1), DAG.getConstant(HiIdx, MVT::i32));
1749  SDValue And0 = DAG.getNode(ISD::AND, dl, MVT::i32, Hi0,
1750                             DAG.getConstant(0x7fffffff, MVT::i32));
1751  SDValue And1 = DAG.getNode(ISD::AND, dl, MVT::i32, Hi1,
1752                             DAG.getConstant(0x80000000, MVT::i32));
1753  SDValue Word1 = DAG.getNode(ISD::OR, dl, MVT::i32, And0, And1);
1754
1755  if (!isLittle)
1756    std::swap(Word0, Word1);
1757
1758  return DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64, Word0, Word1);
1759}
1760
1761SDValue
1762MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1763  EVT Ty = Op.getValueType();
1764
1765  assert(Ty == MVT::f32 || Ty == MVT::f64);
1766
1767  if (Ty == MVT::f32 || HasMips64)
1768    return LowerFCOPYSIGNLargeIntReg(Op, DAG);
1769
1770  return LowerFCOPYSIGNSmallIntReg(Op, DAG, Subtarget->isLittle());
1771}
1772
1773SDValue MipsTargetLowering::
1774LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1775  // check the depth
1776  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1777         "Frame address can only be determined for current frame.");
1778
1779  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1780  MFI->setFrameAddressIsTaken(true);
1781  EVT VT = Op.getValueType();
1782  DebugLoc dl = Op.getDebugLoc();
1783  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1784                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1785  return FrameAddr;
1786}
1787
1788// TODO: set SType according to the desired memory barrier behavior.
1789SDValue
1790MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG& DAG) const {
1791  unsigned SType = 0;
1792  DebugLoc dl = Op.getDebugLoc();
1793  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
1794                     DAG.getConstant(SType, MVT::i32));
1795}
1796
1797SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
1798                                              SelectionDAG& DAG) const {
1799  // FIXME: Need pseudo-fence for 'singlethread' fences
1800  // FIXME: Set SType for weaker fences where supported/appropriate.
1801  unsigned SType = 0;
1802  DebugLoc dl = Op.getDebugLoc();
1803  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
1804                     DAG.getConstant(SType, MVT::i32));
1805}
1806
1807//===----------------------------------------------------------------------===//
1808//                      Calling Convention Implementation
1809//===----------------------------------------------------------------------===//
1810
1811//===----------------------------------------------------------------------===//
1812// TODO: Implement a generic logic using tblgen that can support this.
1813// Mips O32 ABI rules:
1814// ---
1815// i32 - Passed in A0, A1, A2, A3 and stack
1816// f32 - Only passed in f32 registers if no int reg has been used yet to hold
1817//       an argument. Otherwise, passed in A1, A2, A3 and stack.
1818// f64 - Only passed in two aliased f32 registers if no int reg has been used
1819//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
1820//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
1821//       go to stack.
1822//
1823//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
1824//===----------------------------------------------------------------------===//
1825
1826static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
1827                       MVT LocVT, CCValAssign::LocInfo LocInfo,
1828                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
1829
1830  static const unsigned IntRegsSize=4, FloatRegsSize=2;
1831
1832  static const unsigned IntRegs[] = {
1833      Mips::A0, Mips::A1, Mips::A2, Mips::A3
1834  };
1835  static const unsigned F32Regs[] = {
1836      Mips::F12, Mips::F14
1837  };
1838  static const unsigned F64Regs[] = {
1839      Mips::D6, Mips::D7
1840  };
1841
1842  // ByVal Args
1843  if (ArgFlags.isByVal()) {
1844    State.HandleByVal(ValNo, ValVT, LocVT, LocInfo,
1845                      1 /*MinSize*/, 4 /*MinAlign*/, ArgFlags);
1846    unsigned NextReg = (State.getNextStackOffset() + 3) / 4;
1847    for (unsigned r = State.getFirstUnallocated(IntRegs, IntRegsSize);
1848         r < std::min(IntRegsSize, NextReg); ++r)
1849      State.AllocateReg(IntRegs[r]);
1850    return false;
1851  }
1852
1853  // Promote i8 and i16
1854  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
1855    LocVT = MVT::i32;
1856    if (ArgFlags.isSExt())
1857      LocInfo = CCValAssign::SExt;
1858    else if (ArgFlags.isZExt())
1859      LocInfo = CCValAssign::ZExt;
1860    else
1861      LocInfo = CCValAssign::AExt;
1862  }
1863
1864  unsigned Reg;
1865
1866  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
1867  // is true: function is vararg, argument is 3rd or higher, there is previous
1868  // argument which is not f32 or f64.
1869  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
1870      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
1871  unsigned OrigAlign = ArgFlags.getOrigAlign();
1872  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
1873
1874  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
1875    Reg = State.AllocateReg(IntRegs, IntRegsSize);
1876    // If this is the first part of an i64 arg,
1877    // the allocated register must be either A0 or A2.
1878    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
1879      Reg = State.AllocateReg(IntRegs, IntRegsSize);
1880    LocVT = MVT::i32;
1881  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
1882    // Allocate int register and shadow next int register. If first
1883    // available register is Mips::A1 or Mips::A3, shadow it too.
1884    Reg = State.AllocateReg(IntRegs, IntRegsSize);
1885    if (Reg == Mips::A1 || Reg == Mips::A3)
1886      Reg = State.AllocateReg(IntRegs, IntRegsSize);
1887    State.AllocateReg(IntRegs, IntRegsSize);
1888    LocVT = MVT::i32;
1889  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
1890    // we are guaranteed to find an available float register
1891    if (ValVT == MVT::f32) {
1892      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
1893      // Shadow int register
1894      State.AllocateReg(IntRegs, IntRegsSize);
1895    } else {
1896      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
1897      // Shadow int registers
1898      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
1899      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
1900        State.AllocateReg(IntRegs, IntRegsSize);
1901      State.AllocateReg(IntRegs, IntRegsSize);
1902    }
1903  } else
1904    llvm_unreachable("Cannot handle this ValVT.");
1905
1906  unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
1907  unsigned Offset = State.AllocateStack(SizeInBytes, OrigAlign);
1908
1909  if (!Reg)
1910    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
1911  else
1912    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1913
1914  return false; // CC must always match
1915}
1916
1917static const unsigned Mips64IntRegs[8] =
1918  {Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
1919   Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64};
1920static const unsigned Mips64DPRegs[8] =
1921  {Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
1922   Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64};
1923
1924static bool CC_Mips64Byval(unsigned ValNo, MVT ValVT, MVT LocVT,
1925                           CCValAssign::LocInfo LocInfo,
1926                           ISD::ArgFlagsTy ArgFlags, CCState &State) {
1927  unsigned Align = std::max(ArgFlags.getByValAlign(), (unsigned)8);
1928  unsigned Size  = (ArgFlags.getByValSize() + 7) / 8 * 8;
1929  unsigned FirstIdx = State.getFirstUnallocated(Mips64IntRegs, 8);
1930
1931  assert(Align <= 16 && "Cannot handle alignments larger than 16.");
1932
1933  // If byval is 16-byte aligned, the first arg register must be even.
1934  if ((Align == 16) && (FirstIdx % 2)) {
1935    State.AllocateReg(Mips64IntRegs[FirstIdx], Mips64DPRegs[FirstIdx]);
1936    ++FirstIdx;
1937  }
1938
1939  // Mark the registers allocated.
1940  for (unsigned I = FirstIdx; Size && (I < 8); Size -= 8, ++I)
1941    State.AllocateReg(Mips64IntRegs[I], Mips64DPRegs[I]);
1942
1943  // Allocate space on caller's stack.
1944  unsigned Offset = State.AllocateStack(Size, Align);
1945
1946  if (FirstIdx < 8)
1947    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Mips64IntRegs[FirstIdx],
1948                                     LocVT, LocInfo));
1949  else
1950    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
1951
1952  return true;
1953}
1954
1955#include "MipsGenCallingConv.inc"
1956
1957static void
1958AnalyzeMips64CallOperands(CCState &CCInfo,
1959                          const SmallVectorImpl<ISD::OutputArg> &Outs) {
1960  unsigned NumOps = Outs.size();
1961  for (unsigned i = 0; i != NumOps; ++i) {
1962    MVT ArgVT = Outs[i].VT;
1963    ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
1964    bool R;
1965
1966    if (Outs[i].IsFixed)
1967      R = CC_MipsN(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
1968    else
1969      R = CC_MipsN_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
1970
1971    if (R) {
1972#ifndef NDEBUG
1973      dbgs() << "Call operand #" << i << " has unhandled type "
1974             << EVT(ArgVT).getEVTString();
1975#endif
1976      llvm_unreachable(0);
1977    }
1978  }
1979}
1980
1981//===----------------------------------------------------------------------===//
1982//                  Call Calling Convention Implementation
1983//===----------------------------------------------------------------------===//
1984
1985static const unsigned O32IntRegsSize = 4;
1986
1987static const unsigned O32IntRegs[] = {
1988  Mips::A0, Mips::A1, Mips::A2, Mips::A3
1989};
1990
1991// Return next O32 integer argument register.
1992static unsigned getNextIntArgReg(unsigned Reg) {
1993  assert((Reg == Mips::A0) || (Reg == Mips::A2));
1994  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
1995}
1996
1997// Write ByVal Arg to arg registers and stack.
1998static void
1999WriteByValArg(SDValue& ByValChain, SDValue Chain, DebugLoc dl,
2000              SmallVector<std::pair<unsigned, SDValue>, 16>& RegsToPass,
2001              SmallVector<SDValue, 8>& MemOpChains, int& LastFI,
2002              MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2003              const CCValAssign &VA, const ISD::ArgFlagsTy& Flags,
2004              MVT PtrType, bool isLittle) {
2005  unsigned LocMemOffset = VA.getLocMemOffset();
2006  unsigned Offset = 0;
2007  uint32_t RemainingSize = Flags.getByValSize();
2008  unsigned ByValAlign = Flags.getByValAlign();
2009
2010  // Copy the first 4 words of byval arg to registers A0 - A3.
2011  // FIXME: Use a stricter alignment if it enables better optimization in passes
2012  //        run later.
2013  for (; RemainingSize >= 4 && LocMemOffset < 4 * 4;
2014       Offset += 4, RemainingSize -= 4, LocMemOffset += 4) {
2015    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2016                                  DAG.getConstant(Offset, MVT::i32));
2017    SDValue LoadVal = DAG.getLoad(MVT::i32, dl, Chain, LoadPtr,
2018                                  MachinePointerInfo(), false, false, false,
2019                                  std::min(ByValAlign, (unsigned )4));
2020    MemOpChains.push_back(LoadVal.getValue(1));
2021    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2022    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2023  }
2024
2025  if (RemainingSize == 0)
2026    return;
2027
2028  // If there still is a register available for argument passing, write the
2029  // remaining part of the structure to it using subword loads and shifts.
2030  if (LocMemOffset < 4 * 4) {
2031    assert(RemainingSize <= 3 && RemainingSize >= 1 &&
2032           "There must be one to three bytes remaining.");
2033    unsigned LoadSize = (RemainingSize == 3 ? 2 : RemainingSize);
2034    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2035                                  DAG.getConstant(Offset, MVT::i32));
2036    unsigned Alignment = std::min(ByValAlign, (unsigned )4);
2037    SDValue LoadVal = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2038                                     LoadPtr, MachinePointerInfo(),
2039                                     MVT::getIntegerVT(LoadSize * 8), false,
2040                                     false, Alignment);
2041    MemOpChains.push_back(LoadVal.getValue(1));
2042
2043    // If target is big endian, shift it to the most significant half-word or
2044    // byte.
2045    if (!isLittle)
2046      LoadVal = DAG.getNode(ISD::SHL, dl, MVT::i32, LoadVal,
2047                            DAG.getConstant(32 - LoadSize * 8, MVT::i32));
2048
2049    Offset += LoadSize;
2050    RemainingSize -= LoadSize;
2051
2052    // Read second subword if necessary.
2053    if (RemainingSize != 0)  {
2054      assert(RemainingSize == 1 && "There must be one byte remaining.");
2055      LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2056                            DAG.getConstant(Offset, MVT::i32));
2057      unsigned Alignment = std::min(ByValAlign, (unsigned )2);
2058      SDValue Subword = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2059                                       LoadPtr, MachinePointerInfo(),
2060                                       MVT::i8, false, false, Alignment);
2061      MemOpChains.push_back(Subword.getValue(1));
2062      // Insert the loaded byte to LoadVal.
2063      // FIXME: Use INS if supported by target.
2064      unsigned ShiftAmt = isLittle ? 16 : 8;
2065      SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i32, Subword,
2066                                  DAG.getConstant(ShiftAmt, MVT::i32));
2067      LoadVal = DAG.getNode(ISD::OR, dl, MVT::i32, LoadVal, Shift);
2068    }
2069
2070    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2071    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2072    return;
2073  }
2074
2075  // Create a fixed object on stack at offset LocMemOffset and copy
2076  // remaining part of byval arg to it using memcpy.
2077  SDValue Src = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2078                            DAG.getConstant(Offset, MVT::i32));
2079  LastFI = MFI->CreateFixedObject(RemainingSize, LocMemOffset, true);
2080  SDValue Dst = DAG.getFrameIndex(LastFI, PtrType);
2081  ByValChain = DAG.getMemcpy(ByValChain, dl, Dst, Src,
2082                             DAG.getConstant(RemainingSize, MVT::i32),
2083                             std::min(ByValAlign, (unsigned)4),
2084                             /*isVolatile=*/false, /*AlwaysInline=*/false,
2085                             MachinePointerInfo(0), MachinePointerInfo(0));
2086}
2087
2088// Copy Mips64 byVal arg to registers and stack.
2089void static
2090PassByValArg64(SDValue& ByValChain, SDValue Chain, DebugLoc dl,
2091               SmallVector<std::pair<unsigned, SDValue>, 16>& RegsToPass,
2092               SmallVector<SDValue, 8>& MemOpChains, int& LastFI,
2093               MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2094               const CCValAssign &VA, const ISD::ArgFlagsTy& Flags,
2095               EVT PtrTy, bool isLittle) {
2096  unsigned ByValSize = Flags.getByValSize();
2097  unsigned Alignment = std::min(Flags.getByValAlign(), (unsigned)8);
2098  bool IsRegLoc = VA.isRegLoc();
2099  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
2100  unsigned LocMemOffset = 0;
2101  unsigned MemCpySize = ByValSize;
2102
2103  if (!IsRegLoc)
2104    LocMemOffset = VA.getLocMemOffset();
2105  else {
2106    const unsigned *Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8,
2107                                    VA.getLocReg());
2108    const unsigned *RegEnd = Mips64IntRegs + 8;
2109
2110    // Copy double words to registers.
2111    for (; (Reg != RegEnd) && (ByValSize >= Offset + 8); ++Reg, Offset += 8) {
2112      SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2113                                    DAG.getConstant(Offset, PtrTy));
2114      SDValue LoadVal = DAG.getLoad(MVT::i64, dl, Chain, LoadPtr,
2115                                    MachinePointerInfo(), false, false, false,
2116                                    Alignment);
2117      MemOpChains.push_back(LoadVal.getValue(1));
2118      RegsToPass.push_back(std::make_pair(*Reg, LoadVal));
2119    }
2120
2121    // Return if the struct has been fully copied.
2122    if (!(MemCpySize = ByValSize - Offset))
2123      return;
2124
2125    // If there is an argument register available, copy the remainder of the
2126    // byval argument with sub-doubleword loads and shifts.
2127    if (Reg != RegEnd) {
2128      assert((ByValSize < Offset + 8) &&
2129             "Size of the remainder should be smaller than 8-byte.");
2130      SDValue Val;
2131      for (unsigned LoadSize = 4; Offset < ByValSize; LoadSize /= 2) {
2132        unsigned RemSize = ByValSize - Offset;
2133
2134        if (RemSize < LoadSize)
2135          continue;
2136
2137        SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2138                                      DAG.getConstant(Offset, PtrTy));
2139        SDValue LoadVal =
2140          DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i64, Chain, LoadPtr,
2141                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
2142                         false, false, Alignment);
2143        MemOpChains.push_back(LoadVal.getValue(1));
2144
2145        // Offset in number of bits from double word boundary.
2146        unsigned OffsetDW = (Offset % 8) * 8;
2147        unsigned Shamt = isLittle ? OffsetDW : 64 - (OffsetDW + LoadSize * 8);
2148        SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i64, LoadVal,
2149                                    DAG.getConstant(Shamt, MVT::i32));
2150
2151        Val = Val.getNode() ? DAG.getNode(ISD::OR, dl, MVT::i64, Val, Shift) :
2152                              Shift;
2153        Offset += LoadSize;
2154        Alignment = std::min(Alignment, LoadSize);
2155      }
2156
2157      RegsToPass.push_back(std::make_pair(*Reg, Val));
2158      return;
2159    }
2160  }
2161
2162  assert(MemCpySize && "MemCpySize must not be zero.");
2163
2164  // Create a fixed object on stack at offset LocMemOffset and copy
2165  // remainder of byval arg to it with memcpy.
2166  SDValue Src = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2167                            DAG.getConstant(Offset, PtrTy));
2168  LastFI = MFI->CreateFixedObject(MemCpySize, LocMemOffset, true);
2169  SDValue Dst = DAG.getFrameIndex(LastFI, PtrTy);
2170  ByValChain = DAG.getMemcpy(ByValChain, dl, Dst, Src,
2171                             DAG.getConstant(MemCpySize, PtrTy), Alignment,
2172                             /*isVolatile=*/false, /*AlwaysInline=*/false,
2173                             MachinePointerInfo(0), MachinePointerInfo(0));
2174}
2175
2176/// LowerCall - functions arguments are copied from virtual regs to
2177/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2178/// TODO: isTailCall.
2179SDValue
2180MipsTargetLowering::LowerCall(SDValue InChain, SDValue Callee,
2181                              CallingConv::ID CallConv, bool isVarArg,
2182                              bool &isTailCall,
2183                              const SmallVectorImpl<ISD::OutputArg> &Outs,
2184                              const SmallVectorImpl<SDValue> &OutVals,
2185                              const SmallVectorImpl<ISD::InputArg> &Ins,
2186                              DebugLoc dl, SelectionDAG &DAG,
2187                              SmallVectorImpl<SDValue> &InVals) const {
2188  // MIPs target does not yet support tail call optimization.
2189  isTailCall = false;
2190
2191  MachineFunction &MF = DAG.getMachineFunction();
2192  MachineFrameInfo *MFI = MF.getFrameInfo();
2193  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2194  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2195  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2196
2197  // Analyze operands of the call, assigning locations to each operand.
2198  SmallVector<CCValAssign, 16> ArgLocs;
2199  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2200                 getTargetMachine(), ArgLocs, *DAG.getContext());
2201
2202  if (IsO32)
2203    CCInfo.AnalyzeCallOperands(Outs, CC_MipsO32);
2204  else if (HasMips64)
2205    AnalyzeMips64CallOperands(CCInfo, Outs);
2206  else
2207    CCInfo.AnalyzeCallOperands(Outs, CC_Mips);
2208
2209  // Get a count of how many bytes are to be pushed on the stack.
2210  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2211
2212  // Chain is the output chain of the last Load/Store or CopyToReg node.
2213  // ByValChain is the output chain of the last Memcpy node created for copying
2214  // byval arguments to the stack.
2215  SDValue Chain, CallSeqStart, ByValChain;
2216  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2217  Chain = CallSeqStart = DAG.getCALLSEQ_START(InChain, NextStackOffsetVal);
2218  ByValChain = InChain;
2219
2220  // If this is the first call, create a stack frame object that points to
2221  // a location to which .cprestore saves $gp.
2222  if (IsO32 && IsPIC && MipsFI->globalBaseRegFixed() && !MipsFI->getGPFI())
2223    MipsFI->setGPFI(MFI->CreateFixedObject(4, 0, true));
2224
2225  // Get the frame index of the stack frame object that points to the location
2226  // of dynamically allocated area on the stack.
2227  int DynAllocFI = MipsFI->getDynAllocFI();
2228
2229  // Update size of the maximum argument space.
2230  // For O32, a minimum of four words (16 bytes) of argument space is
2231  // allocated.
2232  if (IsO32)
2233    NextStackOffset = std::max(NextStackOffset, (unsigned)16);
2234
2235  unsigned MaxCallFrameSize = MipsFI->getMaxCallFrameSize();
2236
2237  if (MaxCallFrameSize < NextStackOffset) {
2238    MipsFI->setMaxCallFrameSize(NextStackOffset);
2239
2240    // Set the offsets relative to $sp of the $gp restore slot and dynamically
2241    // allocated stack space. These offsets must be aligned to a boundary
2242    // determined by the stack alignment of the ABI.
2243    unsigned StackAlignment = TFL->getStackAlignment();
2244    NextStackOffset = (NextStackOffset + StackAlignment - 1) /
2245                      StackAlignment * StackAlignment;
2246
2247    if (MipsFI->needGPSaveRestore())
2248      MFI->setObjectOffset(MipsFI->getGPFI(), NextStackOffset);
2249
2250    MFI->setObjectOffset(DynAllocFI, NextStackOffset);
2251  }
2252
2253  // With EABI is it possible to have 16 args on registers.
2254  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
2255  SmallVector<SDValue, 8> MemOpChains;
2256
2257  int FirstFI = -MFI->getNumFixedObjects() - 1, LastFI = 0;
2258
2259  // Walk the register/memloc assignments, inserting copies/loads.
2260  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2261    SDValue Arg = OutVals[i];
2262    CCValAssign &VA = ArgLocs[i];
2263    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2264    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2265
2266    // ByVal Arg.
2267    if (Flags.isByVal()) {
2268      assert(Flags.getByValSize() &&
2269             "ByVal args of size 0 should have been ignored by front-end.");
2270      if (IsO32)
2271        WriteByValArg(ByValChain, Chain, dl, RegsToPass, MemOpChains, LastFI,
2272                      MFI, DAG, Arg, VA, Flags, getPointerTy(),
2273                      Subtarget->isLittle());
2274      else
2275        PassByValArg64(ByValChain, Chain, dl, RegsToPass, MemOpChains, LastFI,
2276                       MFI, DAG, Arg, VA, Flags, getPointerTy(),
2277                       Subtarget->isLittle());
2278      continue;
2279    }
2280
2281    // Promote the value if needed.
2282    switch (VA.getLocInfo()) {
2283    default: llvm_unreachable("Unknown loc info!");
2284    case CCValAssign::Full:
2285      if (VA.isRegLoc()) {
2286        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2287            (ValVT == MVT::f64 && LocVT == MVT::i64))
2288          Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
2289        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2290          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2291                                   Arg, DAG.getConstant(0, MVT::i32));
2292          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2293                                   Arg, DAG.getConstant(1, MVT::i32));
2294          if (!Subtarget->isLittle())
2295            std::swap(Lo, Hi);
2296          unsigned LocRegLo = VA.getLocReg();
2297          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2298          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2299          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2300          continue;
2301        }
2302      }
2303      break;
2304    case CCValAssign::SExt:
2305      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
2306      break;
2307    case CCValAssign::ZExt:
2308      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
2309      break;
2310    case CCValAssign::AExt:
2311      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
2312      break;
2313    }
2314
2315    // Arguments that can be passed on register must be kept at
2316    // RegsToPass vector
2317    if (VA.isRegLoc()) {
2318      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2319      continue;
2320    }
2321
2322    // Register can't get to this point...
2323    assert(VA.isMemLoc());
2324
2325    // Create the frame index object for this incoming parameter
2326    LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2327                                    VA.getLocMemOffset(), true);
2328    SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
2329
2330    // emit ISD::STORE whichs stores the
2331    // parameter value to a stack Location
2332    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2333                                       MachinePointerInfo(), false, false, 0));
2334  }
2335
2336  // Extend range of indices of frame objects for outgoing arguments that were
2337  // created during this function call. Skip this step if no such objects were
2338  // created.
2339  if (LastFI)
2340    MipsFI->extendOutArgFIRange(FirstFI, LastFI);
2341
2342  // If a memcpy has been created to copy a byval arg to a stack, replace the
2343  // chain input of CallSeqStart with ByValChain.
2344  if (InChain != ByValChain)
2345    DAG.UpdateNodeOperands(CallSeqStart.getNode(), ByValChain,
2346                           NextStackOffsetVal);
2347
2348  // Transform all store nodes into one single node because all store
2349  // nodes are independent of each other.
2350  if (!MemOpChains.empty())
2351    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2352                        &MemOpChains[0], MemOpChains.size());
2353
2354  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2355  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2356  // node so that legalize doesn't hack it.
2357  unsigned char OpFlag;
2358  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2359  bool GlobalOrExternal = false;
2360  SDValue CalleeLo;
2361
2362  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2363    if (IsPICCall && G->getGlobal()->hasInternalLinkage()) {
2364      OpFlag = IsO32 ? MipsII::MO_GOT : MipsII::MO_GOT_PAGE;
2365      unsigned char LoFlag = IsO32 ? MipsII::MO_ABS_LO : MipsII::MO_GOT_OFST;
2366      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
2367                                          OpFlag);
2368      CalleeLo = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(),
2369                                            0, LoFlag);
2370    } else {
2371      OpFlag = IsPICCall ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG;
2372      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2373                                          getPointerTy(), 0, OpFlag);
2374    }
2375
2376    GlobalOrExternal = true;
2377  }
2378  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2379    if (IsN64 || (!IsO32 && IsPIC))
2380      OpFlag = MipsII::MO_GOT_DISP;
2381    else if (!IsPIC) // !N64 && static
2382      OpFlag = MipsII::MO_NO_FLAG;
2383    else // O32 & PIC
2384      OpFlag = MipsII::MO_GOT_CALL;
2385    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2386                                         OpFlag);
2387    GlobalOrExternal = true;
2388  }
2389
2390  SDValue InFlag;
2391
2392  // Create nodes that load address of callee and copy it to T9
2393  if (IsPICCall) {
2394    if (GlobalOrExternal) {
2395      // Load callee address
2396      Callee = DAG.getNode(MipsISD::Wrapper, dl, getPointerTy(),
2397                           GetGlobalReg(DAG, getPointerTy()), Callee);
2398      SDValue LoadValue = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
2399                                      Callee, MachinePointerInfo::getGOT(),
2400                                      false, false, false, 0);
2401
2402      // Use GOT+LO if callee has internal linkage.
2403      if (CalleeLo.getNode()) {
2404        SDValue Lo = DAG.getNode(MipsISD::Lo, dl, getPointerTy(), CalleeLo);
2405        Callee = DAG.getNode(ISD::ADD, dl, getPointerTy(), LoadValue, Lo);
2406      } else
2407        Callee = LoadValue;
2408    }
2409  }
2410
2411  // T9 should contain the address of the callee function if
2412  // -reloction-model=pic or it is an indirect call.
2413  if (IsPICCall || !GlobalOrExternal) {
2414    // copy to T9
2415    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
2416    Chain = DAG.getCopyToReg(Chain, dl, T9Reg, Callee, SDValue(0, 0));
2417    InFlag = Chain.getValue(1);
2418    Callee = DAG.getRegister(T9Reg, getPointerTy());
2419  }
2420
2421  // Build a sequence of copy-to-reg nodes chained together with token
2422  // chain and flag operands which copy the outgoing args into registers.
2423  // The InFlag in necessary since all emitted instructions must be
2424  // stuck together.
2425  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2426    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2427                             RegsToPass[i].second, InFlag);
2428    InFlag = Chain.getValue(1);
2429  }
2430
2431  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
2432  //             = Chain, Callee, Reg#1, Reg#2, ...
2433  //
2434  // Returns a chain & a flag for retval copy to use.
2435  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2436  SmallVector<SDValue, 8> Ops;
2437  Ops.push_back(Chain);
2438  Ops.push_back(Callee);
2439
2440  // Add argument registers to the end of the list so that they are
2441  // known live into the call.
2442  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2443    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2444                                  RegsToPass[i].second.getValueType()));
2445
2446  if (InFlag.getNode())
2447    Ops.push_back(InFlag);
2448
2449  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
2450  InFlag = Chain.getValue(1);
2451
2452  // Create the CALLSEQ_END node.
2453  Chain = DAG.getCALLSEQ_END(Chain,
2454                             DAG.getIntPtrConstant(NextStackOffset, true),
2455                             DAG.getIntPtrConstant(0, true), InFlag);
2456  InFlag = Chain.getValue(1);
2457
2458  // Handle result values, copying them out of physregs into vregs that we
2459  // return.
2460  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2461                         Ins, dl, DAG, InVals);
2462}
2463
2464/// LowerCallResult - Lower the result values of a call into the
2465/// appropriate copies out of appropriate physical registers.
2466SDValue
2467MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2468                                    CallingConv::ID CallConv, bool isVarArg,
2469                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2470                                    DebugLoc dl, SelectionDAG &DAG,
2471                                    SmallVectorImpl<SDValue> &InVals) const {
2472  // Assign locations to each value returned by this call.
2473  SmallVector<CCValAssign, 16> RVLocs;
2474  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2475		 getTargetMachine(), RVLocs, *DAG.getContext());
2476
2477  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
2478
2479  // Copy all of the result registers out of their specified physreg.
2480  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2481    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
2482                               RVLocs[i].getValVT(), InFlag).getValue(1);
2483    InFlag = Chain.getValue(2);
2484    InVals.push_back(Chain.getValue(0));
2485  }
2486
2487  return Chain;
2488}
2489
2490//===----------------------------------------------------------------------===//
2491//             Formal Arguments Calling Convention Implementation
2492//===----------------------------------------------------------------------===//
2493static void ReadByValArg(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2494                         std::vector<SDValue>& OutChains,
2495                         SelectionDAG &DAG, unsigned NumWords, SDValue FIN,
2496                         const CCValAssign &VA, const ISD::ArgFlagsTy& Flags) {
2497  unsigned LocMem = VA.getLocMemOffset();
2498  unsigned FirstWord = LocMem / 4;
2499
2500  // copy register A0 - A3 to frame object
2501  for (unsigned i = 0; i < NumWords; ++i) {
2502    unsigned CurWord = FirstWord + i;
2503    if (CurWord >= O32IntRegsSize)
2504      break;
2505
2506    unsigned SrcReg = O32IntRegs[CurWord];
2507    unsigned Reg = AddLiveIn(MF, SrcReg, Mips::CPURegsRegisterClass);
2508    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIN,
2509                                   DAG.getConstant(i * 4, MVT::i32));
2510    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(Reg, MVT::i32),
2511                                 StorePtr, MachinePointerInfo(), false,
2512                                 false, 0);
2513    OutChains.push_back(Store);
2514  }
2515}
2516
2517// Create frame object on stack and copy registers used for byval passing to it.
2518static unsigned
2519CopyMips64ByValRegs(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2520                    std::vector<SDValue>& OutChains, SelectionDAG &DAG,
2521                    const CCValAssign &VA, const ISD::ArgFlagsTy& Flags,
2522                    MachineFrameInfo *MFI, bool IsRegLoc,
2523                    SmallVectorImpl<SDValue> &InVals, MipsFunctionInfo *MipsFI,
2524                    EVT PtrTy) {
2525  const unsigned *Reg = Mips64IntRegs + 8;
2526  int FOOffset; // Frame object offset from virtual frame pointer.
2527
2528  if (IsRegLoc) {
2529    Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8, VA.getLocReg());
2530    FOOffset = (Reg - Mips64IntRegs) * 8 - 8 * 8;
2531  }
2532  else
2533    FOOffset = VA.getLocMemOffset();
2534
2535  // Create frame object.
2536  unsigned NumRegs = (Flags.getByValSize() + 7) / 8;
2537  unsigned LastFI = MFI->CreateFixedObject(NumRegs * 8, FOOffset, true);
2538  SDValue FIN = DAG.getFrameIndex(LastFI, PtrTy);
2539  InVals.push_back(FIN);
2540
2541  // Copy arg registers.
2542  for (unsigned I = 0; (Reg != Mips64IntRegs + 8) && (I < NumRegs);
2543       ++Reg, ++I) {
2544    unsigned VReg = AddLiveIn(MF, *Reg, Mips::CPU64RegsRegisterClass);
2545    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, PtrTy, FIN,
2546                                   DAG.getConstant(I * 8, PtrTy));
2547    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(VReg, MVT::i64),
2548                                 StorePtr, MachinePointerInfo(), false,
2549                                 false, 0);
2550    OutChains.push_back(Store);
2551  }
2552
2553  return LastFI;
2554}
2555
2556/// LowerFormalArguments - transform physical registers into virtual registers
2557/// and generate load operations for arguments places on the stack.
2558SDValue
2559MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2560                                         CallingConv::ID CallConv,
2561                                         bool isVarArg,
2562                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2563                                         DebugLoc dl, SelectionDAG &DAG,
2564                                         SmallVectorImpl<SDValue> &InVals)
2565                                          const {
2566  MachineFunction &MF = DAG.getMachineFunction();
2567  MachineFrameInfo *MFI = MF.getFrameInfo();
2568  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2569
2570  MipsFI->setVarArgsFrameIndex(0);
2571
2572  // Used with vargs to acumulate store chains.
2573  std::vector<SDValue> OutChains;
2574
2575  // Assign locations to all of the incoming arguments.
2576  SmallVector<CCValAssign, 16> ArgLocs;
2577  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2578                 getTargetMachine(), ArgLocs, *DAG.getContext());
2579
2580  if (IsO32)
2581    CCInfo.AnalyzeFormalArguments(Ins, CC_MipsO32);
2582  else
2583    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips);
2584
2585  int LastFI = 0;// MipsFI->LastInArgFI is 0 at the entry of this function.
2586
2587  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2588    CCValAssign &VA = ArgLocs[i];
2589    EVT ValVT = VA.getValVT();
2590    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2591    bool IsRegLoc = VA.isRegLoc();
2592
2593    if (Flags.isByVal()) {
2594      assert(Flags.getByValSize() &&
2595             "ByVal args of size 0 should have been ignored by front-end.");
2596      if (IsO32) {
2597        unsigned NumWords = (Flags.getByValSize() + 3) / 4;
2598        LastFI = MFI->CreateFixedObject(NumWords * 4, VA.getLocMemOffset(),
2599                                        true);
2600        SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
2601        InVals.push_back(FIN);
2602        ReadByValArg(MF, Chain, dl, OutChains, DAG, NumWords, FIN, VA, Flags);
2603      } else // N32/64
2604        LastFI = CopyMips64ByValRegs(MF, Chain, dl, OutChains, DAG, VA, Flags,
2605                                     MFI, IsRegLoc, InVals, MipsFI,
2606                                     getPointerTy());
2607      continue;
2608    }
2609
2610    // Arguments stored on registers
2611    if (IsRegLoc) {
2612      EVT RegVT = VA.getLocVT();
2613      unsigned ArgReg = VA.getLocReg();
2614      const TargetRegisterClass *RC;
2615
2616      if (RegVT == MVT::i32)
2617        RC = Mips::CPURegsRegisterClass;
2618      else if (RegVT == MVT::i64)
2619        RC = Mips::CPU64RegsRegisterClass;
2620      else if (RegVT == MVT::f32)
2621        RC = Mips::FGR32RegisterClass;
2622      else if (RegVT == MVT::f64)
2623        RC = HasMips64 ? Mips::FGR64RegisterClass : Mips::AFGR64RegisterClass;
2624      else
2625        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
2626
2627      // Transform the arguments stored on
2628      // physical registers into virtual ones
2629      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2630      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2631
2632      // If this is an 8 or 16-bit value, it has been passed promoted
2633      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2634      // truncate to the right size.
2635      if (VA.getLocInfo() != CCValAssign::Full) {
2636        unsigned Opcode = 0;
2637        if (VA.getLocInfo() == CCValAssign::SExt)
2638          Opcode = ISD::AssertSext;
2639        else if (VA.getLocInfo() == CCValAssign::ZExt)
2640          Opcode = ISD::AssertZext;
2641        if (Opcode)
2642          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
2643                                 DAG.getValueType(ValVT));
2644        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
2645      }
2646
2647      // Handle floating point arguments passed in integer registers.
2648      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2649          (RegVT == MVT::i64 && ValVT == MVT::f64))
2650        ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
2651      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2652        unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
2653                                  getNextIntArgReg(ArgReg), RC);
2654        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
2655        if (!Subtarget->isLittle())
2656          std::swap(ArgValue, ArgValue2);
2657        ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
2658                               ArgValue, ArgValue2);
2659      }
2660
2661      InVals.push_back(ArgValue);
2662    } else { // VA.isRegLoc()
2663
2664      // sanity check
2665      assert(VA.isMemLoc());
2666
2667      // The stack pointer offset is relative to the caller stack frame.
2668      LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2669                                      VA.getLocMemOffset(), true);
2670
2671      // Create load nodes to retrieve arguments from the stack
2672      SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
2673      InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
2674                                   MachinePointerInfo::getFixedStack(LastFI),
2675                                   false, false, false, 0));
2676    }
2677  }
2678
2679  // The mips ABIs for returning structs by value requires that we copy
2680  // the sret argument into $v0 for the return. Save the argument into
2681  // a virtual register so that we can access it from the return points.
2682  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2683    unsigned Reg = MipsFI->getSRetReturnReg();
2684    if (!Reg) {
2685      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
2686      MipsFI->setSRetReturnReg(Reg);
2687    }
2688    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
2689    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2690  }
2691
2692  if (isVarArg) {
2693    unsigned NumOfRegs = IsO32 ? 4 : 8;
2694    const unsigned *ArgRegs = IsO32 ? O32IntRegs : Mips64IntRegs;
2695    unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumOfRegs);
2696    int FirstRegSlotOffset = IsO32 ? 0 : -64 ; // offset of $a0's slot.
2697    const TargetRegisterClass *RC
2698      = IsO32 ? Mips::CPURegsRegisterClass : Mips::CPU64RegsRegisterClass;
2699    unsigned RegSize = RC->getSize();
2700    int RegSlotOffset = FirstRegSlotOffset + Idx * RegSize;
2701
2702    // Offset of the first variable argument from stack pointer.
2703    int FirstVaArgOffset;
2704
2705    if (IsO32 || (Idx == NumOfRegs)) {
2706      FirstVaArgOffset =
2707        (CCInfo.getNextStackOffset() + RegSize - 1) / RegSize * RegSize;
2708    } else
2709      FirstVaArgOffset = RegSlotOffset;
2710
2711    // Record the frame index of the first variable argument
2712    // which is a value necessary to VASTART.
2713    LastFI = MFI->CreateFixedObject(RegSize, FirstVaArgOffset, true);
2714    MipsFI->setVarArgsFrameIndex(LastFI);
2715
2716    // Copy the integer registers that have not been used for argument passing
2717    // to the argument register save area. For O32, the save area is allocated
2718    // in the caller's stack frame, while for N32/64, it is allocated in the
2719    // callee's stack frame.
2720    for (int StackOffset = RegSlotOffset;
2721         Idx < NumOfRegs; ++Idx, StackOffset += RegSize) {
2722      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgRegs[Idx], RC);
2723      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
2724                                            MVT::getIntegerVT(RegSize * 8));
2725      LastFI = MFI->CreateFixedObject(RegSize, StackOffset, true);
2726      SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
2727      OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
2728                                       MachinePointerInfo(), false, false, 0));
2729    }
2730  }
2731
2732  MipsFI->setLastInArgFI(LastFI);
2733
2734  // All stores are grouped in one node to allow the matching between
2735  // the size of Ins and InVals. This only happens when on varg functions
2736  if (!OutChains.empty()) {
2737    OutChains.push_back(Chain);
2738    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2739                        &OutChains[0], OutChains.size());
2740  }
2741
2742  return Chain;
2743}
2744
2745//===----------------------------------------------------------------------===//
2746//               Return Value Calling Convention Implementation
2747//===----------------------------------------------------------------------===//
2748
2749SDValue
2750MipsTargetLowering::LowerReturn(SDValue Chain,
2751                                CallingConv::ID CallConv, bool isVarArg,
2752                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2753                                const SmallVectorImpl<SDValue> &OutVals,
2754                                DebugLoc dl, SelectionDAG &DAG) const {
2755
2756  // CCValAssign - represent the assignment of
2757  // the return value to a location
2758  SmallVector<CCValAssign, 16> RVLocs;
2759
2760  // CCState - Info about the registers and stack slot.
2761  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2762		 getTargetMachine(), RVLocs, *DAG.getContext());
2763
2764  // Analize return values.
2765  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
2766
2767  // If this is the first return lowered for this function, add
2768  // the regs to the liveout set for the function.
2769  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2770    for (unsigned i = 0; i != RVLocs.size(); ++i)
2771      if (RVLocs[i].isRegLoc())
2772        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2773  }
2774
2775  SDValue Flag;
2776
2777  // Copy the result values into the output registers.
2778  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2779    CCValAssign &VA = RVLocs[i];
2780    assert(VA.isRegLoc() && "Can only return in registers!");
2781
2782    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
2783
2784    // guarantee that all emitted copies are
2785    // stuck together, avoiding something bad
2786    Flag = Chain.getValue(1);
2787  }
2788
2789  // The mips ABIs for returning structs by value requires that we copy
2790  // the sret argument into $v0 for the return. We saved the argument into
2791  // a virtual register in the entry block, so now we copy the value out
2792  // and into $v0.
2793  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2794    MachineFunction &MF      = DAG.getMachineFunction();
2795    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2796    unsigned Reg = MipsFI->getSRetReturnReg();
2797
2798    if (!Reg)
2799      llvm_unreachable("sret virtual register not created in the entry block");
2800    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
2801
2802    Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
2803    Flag = Chain.getValue(1);
2804  }
2805
2806  // Return on Mips is always a "jr $ra"
2807  if (Flag.getNode())
2808    return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
2809                       Chain, DAG.getRegister(Mips::RA, MVT::i32), Flag);
2810  else // Return Void
2811    return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
2812                       Chain, DAG.getRegister(Mips::RA, MVT::i32));
2813}
2814
2815//===----------------------------------------------------------------------===//
2816//                           Mips Inline Assembly Support
2817//===----------------------------------------------------------------------===//
2818
2819/// getConstraintType - Given a constraint letter, return the type of
2820/// constraint it is for this target.
2821MipsTargetLowering::ConstraintType MipsTargetLowering::
2822getConstraintType(const std::string &Constraint) const
2823{
2824  // Mips specific constrainy
2825  // GCC config/mips/constraints.md
2826  //
2827  // 'd' : An address register. Equivalent to r
2828  //       unless generating MIPS16 code.
2829  // 'y' : Equivalent to r; retained for
2830  //       backwards compatibility.
2831  // 'f' : Floating Point registers.
2832  if (Constraint.size() == 1) {
2833    switch (Constraint[0]) {
2834      default : break;
2835      case 'd':
2836      case 'y':
2837      case 'f':
2838        return C_RegisterClass;
2839    }
2840  }
2841  return TargetLowering::getConstraintType(Constraint);
2842}
2843
2844/// Examine constraint type and operand type and determine a weight value.
2845/// This object must already have been set up with the operand type
2846/// and the current alternative constraint selected.
2847TargetLowering::ConstraintWeight
2848MipsTargetLowering::getSingleConstraintMatchWeight(
2849    AsmOperandInfo &info, const char *constraint) const {
2850  ConstraintWeight weight = CW_Invalid;
2851  Value *CallOperandVal = info.CallOperandVal;
2852    // If we don't have a value, we can't do a match,
2853    // but allow it at the lowest weight.
2854  if (CallOperandVal == NULL)
2855    return CW_Default;
2856  Type *type = CallOperandVal->getType();
2857  // Look at the constraint type.
2858  switch (*constraint) {
2859  default:
2860    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2861    break;
2862  case 'd':
2863  case 'y':
2864    if (type->isIntegerTy())
2865      weight = CW_Register;
2866    break;
2867  case 'f':
2868    if (type->isFloatTy())
2869      weight = CW_Register;
2870    break;
2871  }
2872  return weight;
2873}
2874
2875/// Given a register class constraint, like 'r', if this corresponds directly
2876/// to an LLVM register class, return a register of 0 and the register class
2877/// pointer.
2878std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
2879getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
2880{
2881  if (Constraint.size() == 1) {
2882    switch (Constraint[0]) {
2883    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
2884    case 'y': // Same as 'r'. Exists for compatibility.
2885    case 'r':
2886      if (VT == MVT::i32)
2887        return std::make_pair(0U, Mips::CPURegsRegisterClass);
2888      assert(VT == MVT::i64 && "Unexpected type.");
2889      return std::make_pair(0U, Mips::CPU64RegsRegisterClass);
2890    case 'f':
2891      if (VT == MVT::f32)
2892        return std::make_pair(0U, Mips::FGR32RegisterClass);
2893      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
2894        if (Subtarget->isFP64bit())
2895          return std::make_pair(0U, Mips::FGR64RegisterClass);
2896        else
2897          return std::make_pair(0U, Mips::AFGR64RegisterClass);
2898      }
2899    }
2900  }
2901  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2902}
2903
2904bool
2905MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
2906  // The Mips target isn't yet aware of offsets.
2907  return false;
2908}
2909
2910bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2911  if (VT != MVT::f32 && VT != MVT::f64)
2912    return false;
2913  if (Imm.isNegZero())
2914    return false;
2915  return Imm.isZero();
2916}
2917
2918unsigned MipsTargetLowering::getJumpTableEncoding() const {
2919  if (IsN64)
2920    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
2921
2922  return TargetLowering::getJumpTableEncoding();
2923}
2924