MipsISelLowering.cpp revision b4d8d31e59b11e7a4d560c01377ce02f1245f056
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "mips-lower"
16//#include <algorithm>
17#include "MipsISelLowering.h"
18#include "MipsMachineFunction.h"
19#include "MipsTargetMachine.h"
20#include "MipsTargetObjectFile.h"
21#include "MipsSubtarget.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/CallingConvLower.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/SelectionDAGISel.h"
33#include "llvm/CodeGen/ValueTypes.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36using namespace llvm;
37
38const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
39  switch (Opcode) {
40  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
41  case MipsISD::Hi:                return "MipsISD::Hi";
42  case MipsISD::Lo:                return "MipsISD::Lo";
43  case MipsISD::GPRel:             return "MipsISD::GPRel";
44  case MipsISD::Ret:               return "MipsISD::Ret";
45  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
46  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
47  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
48  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
49  case MipsISD::FPRound:           return "MipsISD::FPRound";
50  case MipsISD::MAdd:              return "MipsISD::MAdd";
51  case MipsISD::MAddu:             return "MipsISD::MAddu";
52  case MipsISD::MSub:              return "MipsISD::MSub";
53  case MipsISD::MSubu:             return "MipsISD::MSubu";
54  case MipsISD::DivRem:            return "MipsISD::DivRem";
55  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
56  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
57  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
58  default: return NULL;
59  }
60}
61
62MipsTargetLowering::
63MipsTargetLowering(MipsTargetMachine &TM)
64  : TargetLowering(TM, new MipsTargetObjectFile()) {
65  Subtarget = &TM.getSubtarget<MipsSubtarget>();
66
67  // Mips does not have i1 type, so use i32 for
68  // setcc operations results (slt, sgt, ...).
69  setBooleanContents(ZeroOrOneBooleanContent);
70
71  // Set up the register classes
72  addRegisterClass(MVT::i32, Mips::CPURegsRegisterClass);
73  addRegisterClass(MVT::f32, Mips::FGR32RegisterClass);
74
75  // When dealing with single precision only, use libcalls
76  if (!Subtarget->isSingleFloat())
77    if (!Subtarget->isFP64bit())
78      addRegisterClass(MVT::f64, Mips::AFGR64RegisterClass);
79
80  // Load extented operations for i1 types must be promoted
81  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
82  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
83  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
84
85  // MIPS doesn't have extending float->double load/store
86  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
87  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
88
89  // Used by legalize types to correctly generate the setcc result.
90  // Without this, every float setcc comes with a AND/OR with the result,
91  // we don't want this, since the fpcmp result goes to a flag register,
92  // which is used implicitly by brcond and select operations.
93  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
94
95  // Mips Custom Operations
96  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
97  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
98  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
99  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
100  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
101  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
102  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
103  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
104  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
105  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,   Custom);
106  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
107  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
108
109  setOperationAction(ISD::SDIV, MVT::i32, Expand);
110  setOperationAction(ISD::SREM, MVT::i32, Expand);
111  setOperationAction(ISD::UDIV, MVT::i32, Expand);
112  setOperationAction(ISD::UREM, MVT::i32, Expand);
113
114  // Operations not directly supported by Mips.
115  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
116  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
117  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
118  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
119  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
120  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
121  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
122  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
123  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
124
125  if (!Subtarget->isMips32r2())
126    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
127
128  setOperationAction(ISD::SHL_PARTS,         MVT::i32,   Expand);
129  setOperationAction(ISD::SRA_PARTS,         MVT::i32,   Expand);
130  setOperationAction(ISD::SRL_PARTS,         MVT::i32,   Expand);
131  setOperationAction(ISD::FCOPYSIGN,         MVT::f32,   Expand);
132  setOperationAction(ISD::FCOPYSIGN,         MVT::f64,   Expand);
133  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
134  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
135  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
136  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
137  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
138  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
139  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
140  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
141  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
142  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
143  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
144
145  setOperationAction(ISD::EH_LABEL,          MVT::Other, Expand);
146
147  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
148  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
149  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
150
151  // Use the default for now
152  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
153  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
154  setOperationAction(ISD::MEMBARRIER,        MVT::Other, Expand);
155
156  if (Subtarget->isSingleFloat())
157    setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
158
159  if (!Subtarget->hasSEInReg()) {
160    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
161    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
162  }
163
164  if (!Subtarget->hasBitCount())
165    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
166
167  if (!Subtarget->hasSwap())
168    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
169
170  setTargetDAGCombine(ISD::ADDE);
171  setTargetDAGCombine(ISD::SUBE);
172  setTargetDAGCombine(ISD::SDIVREM);
173  setTargetDAGCombine(ISD::UDIVREM);
174  setTargetDAGCombine(ISD::SETCC);
175
176  setMinFunctionAlignment(2);
177
178  setStackPointerRegisterToSaveRestore(Mips::SP);
179  computeRegisterProperties();
180}
181
182MVT::SimpleValueType MipsTargetLowering::getSetCCResultType(EVT VT) const {
183  return MVT::i32;
184}
185
186// SelectMadd -
187// Transforms a subgraph in CurDAG if the following pattern is found:
188//  (addc multLo, Lo0), (adde multHi, Hi0),
189// where,
190//  multHi/Lo: product of multiplication
191//  Lo0: initial value of Lo register
192//  Hi0: initial value of Hi register
193// Return true if pattern matching was successful.
194static bool SelectMadd(SDNode* ADDENode, SelectionDAG* CurDAG) {
195  // ADDENode's second operand must be a flag output of an ADDC node in order
196  // for the matching to be successful.
197  SDNode* ADDCNode = ADDENode->getOperand(2).getNode();
198
199  if (ADDCNode->getOpcode() != ISD::ADDC)
200    return false;
201
202  SDValue MultHi = ADDENode->getOperand(0);
203  SDValue MultLo = ADDCNode->getOperand(0);
204  SDNode* MultNode = MultHi.getNode();
205  unsigned MultOpc = MultHi.getOpcode();
206
207  // MultHi and MultLo must be generated by the same node,
208  if (MultLo.getNode() != MultNode)
209    return false;
210
211  // and it must be a multiplication.
212  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
213    return false;
214
215  // MultLo amd MultHi must be the first and second output of MultNode
216  // respectively.
217  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
218    return false;
219
220  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
221  // of the values of MultNode, in which case MultNode will be removed in later
222  // phases.
223  // If there exist users other than ADDENode or ADDCNode, this function returns
224  // here, which will result in MultNode being mapped to a single MULT
225  // instruction node rather than a pair of MULT and MADD instructions being
226  // produced.
227  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
228    return false;
229
230  SDValue Chain = CurDAG->getEntryNode();
231  DebugLoc dl = ADDENode->getDebugLoc();
232
233  // create MipsMAdd(u) node
234  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
235
236  SDValue MAdd = CurDAG->getNode(MultOpc, dl,
237                                 MVT::Glue,
238                                 MultNode->getOperand(0),// Factor 0
239                                 MultNode->getOperand(1),// Factor 1
240                                 ADDCNode->getOperand(1),// Lo0
241                                 ADDENode->getOperand(1));// Hi0
242
243  // create CopyFromReg nodes
244  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
245                                              MAdd);
246  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
247                                              Mips::HI, MVT::i32,
248                                              CopyFromLo.getValue(2));
249
250  // replace uses of adde and addc here
251  if (!SDValue(ADDCNode, 0).use_empty())
252    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
253
254  if (!SDValue(ADDENode, 0).use_empty())
255    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
256
257  return true;
258}
259
260// SelectMsub -
261// Transforms a subgraph in CurDAG if the following pattern is found:
262//  (addc Lo0, multLo), (sube Hi0, multHi),
263// where,
264//  multHi/Lo: product of multiplication
265//  Lo0: initial value of Lo register
266//  Hi0: initial value of Hi register
267// Return true if pattern matching was successful.
268static bool SelectMsub(SDNode* SUBENode, SelectionDAG* CurDAG) {
269  // SUBENode's second operand must be a flag output of an SUBC node in order
270  // for the matching to be successful.
271  SDNode* SUBCNode = SUBENode->getOperand(2).getNode();
272
273  if (SUBCNode->getOpcode() != ISD::SUBC)
274    return false;
275
276  SDValue MultHi = SUBENode->getOperand(1);
277  SDValue MultLo = SUBCNode->getOperand(1);
278  SDNode* MultNode = MultHi.getNode();
279  unsigned MultOpc = MultHi.getOpcode();
280
281  // MultHi and MultLo must be generated by the same node,
282  if (MultLo.getNode() != MultNode)
283    return false;
284
285  // and it must be a multiplication.
286  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
287    return false;
288
289  // MultLo amd MultHi must be the first and second output of MultNode
290  // respectively.
291  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
292    return false;
293
294  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
295  // of the values of MultNode, in which case MultNode will be removed in later
296  // phases.
297  // If there exist users other than SUBENode or SUBCNode, this function returns
298  // here, which will result in MultNode being mapped to a single MULT
299  // instruction node rather than a pair of MULT and MSUB instructions being
300  // produced.
301  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
302    return false;
303
304  SDValue Chain = CurDAG->getEntryNode();
305  DebugLoc dl = SUBENode->getDebugLoc();
306
307  // create MipsSub(u) node
308  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
309
310  SDValue MSub = CurDAG->getNode(MultOpc, dl,
311                                 MVT::Glue,
312                                 MultNode->getOperand(0),// Factor 0
313                                 MultNode->getOperand(1),// Factor 1
314                                 SUBCNode->getOperand(0),// Lo0
315                                 SUBENode->getOperand(0));// Hi0
316
317  // create CopyFromReg nodes
318  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
319                                              MSub);
320  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
321                                              Mips::HI, MVT::i32,
322                                              CopyFromLo.getValue(2));
323
324  // replace uses of sube and subc here
325  if (!SDValue(SUBCNode, 0).use_empty())
326    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
327
328  if (!SDValue(SUBENode, 0).use_empty())
329    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
330
331  return true;
332}
333
334static SDValue PerformADDECombine(SDNode *N, SelectionDAG& DAG,
335                                  TargetLowering::DAGCombinerInfo &DCI,
336                                  const MipsSubtarget* Subtarget) {
337  if (DCI.isBeforeLegalize())
338    return SDValue();
339
340  if (Subtarget->isMips32() && SelectMadd(N, &DAG))
341    return SDValue(N, 0);
342
343  return SDValue();
344}
345
346static SDValue PerformSUBECombine(SDNode *N, SelectionDAG& DAG,
347                                  TargetLowering::DAGCombinerInfo &DCI,
348                                  const MipsSubtarget* Subtarget) {
349  if (DCI.isBeforeLegalize())
350    return SDValue();
351
352  if (Subtarget->isMips32() && SelectMsub(N, &DAG))
353    return SDValue(N, 0);
354
355  return SDValue();
356}
357
358static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG& DAG,
359                                    TargetLowering::DAGCombinerInfo &DCI,
360                                    const MipsSubtarget* Subtarget) {
361  if (DCI.isBeforeLegalizeOps())
362    return SDValue();
363
364  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
365                                                  MipsISD::DivRemU;
366  DebugLoc dl = N->getDebugLoc();
367
368  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
369                               N->getOperand(0), N->getOperand(1));
370  SDValue InChain = DAG.getEntryNode();
371  SDValue InGlue = DivRem;
372
373  // insert MFLO
374  if (N->hasAnyUseOfValue(0)) {
375    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, Mips::LO, MVT::i32,
376                                            InGlue);
377    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
378    InChain = CopyFromLo.getValue(1);
379    InGlue = CopyFromLo.getValue(2);
380  }
381
382  // insert MFHI
383  if (N->hasAnyUseOfValue(1)) {
384    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
385                                            Mips::HI, MVT::i32, InGlue);
386    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
387  }
388
389  return SDValue();
390}
391
392static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
393  switch (CC) {
394  default: llvm_unreachable("Unknown fp condition code!");
395  case ISD::SETEQ:
396  case ISD::SETOEQ: return Mips::FCOND_OEQ;
397  case ISD::SETUNE: return Mips::FCOND_UNE;
398  case ISD::SETLT:
399  case ISD::SETOLT: return Mips::FCOND_OLT;
400  case ISD::SETGT:
401  case ISD::SETOGT: return Mips::FCOND_OGT;
402  case ISD::SETLE:
403  case ISD::SETOLE: return Mips::FCOND_OLE;
404  case ISD::SETGE:
405  case ISD::SETOGE: return Mips::FCOND_OGE;
406  case ISD::SETULT: return Mips::FCOND_ULT;
407  case ISD::SETULE: return Mips::FCOND_ULE;
408  case ISD::SETUGT: return Mips::FCOND_UGT;
409  case ISD::SETUGE: return Mips::FCOND_UGE;
410  case ISD::SETUO:  return Mips::FCOND_UN;
411  case ISD::SETO:   return Mips::FCOND_OR;
412  case ISD::SETNE:
413  case ISD::SETONE: return Mips::FCOND_ONE;
414  case ISD::SETUEQ: return Mips::FCOND_UEQ;
415  }
416}
417
418
419// Returns true if condition code has to be inverted.
420static bool InvertFPCondCode(Mips::CondCode CC) {
421  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
422    return false;
423
424  if (CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT)
425    return true;
426
427  assert(false && "Illegal Condition Code");
428  return false;
429}
430
431// Creates and returns an FPCmp node from a setcc node.
432// Returns Op if setcc is not a floating point comparison.
433static SDValue CreateFPCmp(SelectionDAG& DAG, const SDValue& Op) {
434  // must be a SETCC node
435  if (Op.getOpcode() != ISD::SETCC)
436    return Op;
437
438  SDValue LHS = Op.getOperand(0);
439
440  if (!LHS.getValueType().isFloatingPoint())
441    return Op;
442
443  SDValue RHS = Op.getOperand(1);
444  DebugLoc dl = Op.getDebugLoc();
445
446  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
447  // node if necessary.
448  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
449
450  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
451                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
452}
453
454// Creates and returns a CMovFPT/F node.
455static SDValue CreateCMovFP(SelectionDAG& DAG, SDValue Cond, SDValue True,
456                            SDValue False, DebugLoc DL) {
457  bool invert = InvertFPCondCode((Mips::CondCode)
458                                 cast<ConstantSDNode>(Cond.getOperand(2))
459                                 ->getSExtValue());
460
461  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
462                     True.getValueType(), True, False, Cond);
463}
464
465static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG& DAG,
466                                   TargetLowering::DAGCombinerInfo &DCI,
467                                   const MipsSubtarget* Subtarget) {
468  if (DCI.isBeforeLegalizeOps())
469    return SDValue();
470
471  SDValue Cond = CreateFPCmp(DAG, SDValue(N, 0));
472
473  if (Cond.getOpcode() != MipsISD::FPCmp)
474    return SDValue();
475
476  SDValue True  = DAG.getConstant(1, MVT::i32);
477  SDValue False = DAG.getConstant(0, MVT::i32);
478
479  return CreateCMovFP(DAG, Cond, True, False, N->getDebugLoc());
480}
481
482SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
483  const {
484  SelectionDAG &DAG = DCI.DAG;
485  unsigned opc = N->getOpcode();
486
487  switch (opc) {
488  default: break;
489  case ISD::ADDE:
490    return PerformADDECombine(N, DAG, DCI, Subtarget);
491  case ISD::SUBE:
492    return PerformSUBECombine(N, DAG, DCI, Subtarget);
493  case ISD::SDIVREM:
494  case ISD::UDIVREM:
495    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
496  case ISD::SETCC:
497    return PerformSETCCCombine(N, DAG, DCI, Subtarget);
498  }
499
500  return SDValue();
501}
502
503SDValue MipsTargetLowering::
504LowerOperation(SDValue Op, SelectionDAG &DAG) const
505{
506  switch (Op.getOpcode())
507  {
508    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
509    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
510    case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
511    case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
512    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
513    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
514    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
515    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
516    case ISD::SELECT:             return LowerSELECT(Op, DAG);
517    case ISD::VASTART:            return LowerVASTART(Op, DAG);
518  }
519  return SDValue();
520}
521
522//===----------------------------------------------------------------------===//
523//  Lower helper functions
524//===----------------------------------------------------------------------===//
525
526// AddLiveIn - This helper function adds the specified physical register to the
527// MachineFunction as a live in value.  It also creates a corresponding
528// virtual register for it.
529static unsigned
530AddLiveIn(MachineFunction &MF, unsigned PReg, TargetRegisterClass *RC)
531{
532  assert(RC->contains(PReg) && "Not the correct regclass!");
533  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
534  MF.getRegInfo().addLiveIn(PReg, VReg);
535  return VReg;
536}
537
538// Get fp branch code (not opcode) from condition code.
539static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
540  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
541    return Mips::BRANCH_T;
542
543  if (CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT)
544    return Mips::BRANCH_F;
545
546  return Mips::BRANCH_INVALID;
547}
548
549MachineBasicBlock *
550MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
551                                                MachineBasicBlock *BB) const {
552  // There is no need to expand CMov instructions if target has
553  // conditional moves.
554  if (Subtarget->hasCondMov())
555    return BB;
556
557  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
558  bool isFPCmp = false;
559  DebugLoc dl = MI->getDebugLoc();
560  unsigned Opc;
561
562  switch (MI->getOpcode()) {
563  default: assert(false && "Unexpected instr type to insert");
564  case Mips::MOVT:
565  case Mips::MOVT_S:
566  case Mips::MOVT_D:
567    isFPCmp = true;
568    Opc = Mips::BC1F;
569    break;
570  case Mips::MOVF:
571  case Mips::MOVF_S:
572  case Mips::MOVF_D:
573    isFPCmp = true;
574    Opc = Mips::BC1T;
575    break;
576  case Mips::MOVZ_I:
577  case Mips::MOVZ_S:
578  case Mips::MOVZ_D:
579    Opc = Mips::BNE;
580    break;
581  case Mips::MOVN_I:
582  case Mips::MOVN_S:
583  case Mips::MOVN_D:
584    Opc = Mips::BEQ;
585    break;
586  }
587
588  // To "insert" a SELECT_CC instruction, we actually have to insert the
589  // diamond control-flow pattern.  The incoming instruction knows the
590  // destination vreg to set, the condition code register to branch on, the
591  // true/false values to select between, and a branch opcode to use.
592  const BasicBlock *LLVM_BB = BB->getBasicBlock();
593  MachineFunction::iterator It = BB;
594  ++It;
595
596  //  thisMBB:
597  //  ...
598  //   TrueVal = ...
599  //   setcc r1, r2, r3
600  //   bNE   r1, r0, copy1MBB
601  //   fallthrough --> copy0MBB
602  MachineBasicBlock *thisMBB  = BB;
603  MachineFunction *F = BB->getParent();
604  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
605  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
606  F->insert(It, copy0MBB);
607  F->insert(It, sinkMBB);
608
609  // Transfer the remainder of BB and its successor edges to sinkMBB.
610  sinkMBB->splice(sinkMBB->begin(), BB,
611                  llvm::next(MachineBasicBlock::iterator(MI)),
612                  BB->end());
613  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
614
615  // Next, add the true and fallthrough blocks as its successors.
616  BB->addSuccessor(copy0MBB);
617  BB->addSuccessor(sinkMBB);
618
619  // Emit the right instruction according to the type of the operands compared
620  if (isFPCmp)
621    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
622  else
623    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
624      .addReg(Mips::ZERO).addMBB(sinkMBB);
625
626
627  //  copy0MBB:
628  //   %FalseValue = ...
629  //   # fallthrough to sinkMBB
630  BB = copy0MBB;
631
632  // Update machine-CFG edges
633  BB->addSuccessor(sinkMBB);
634
635  //  sinkMBB:
636  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
637  //  ...
638  BB = sinkMBB;
639
640  if (isFPCmp)
641    BuildMI(*BB, BB->begin(), dl,
642            TII->get(Mips::PHI), MI->getOperand(0).getReg())
643      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
644      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
645  else
646    BuildMI(*BB, BB->begin(), dl,
647            TII->get(Mips::PHI), MI->getOperand(0).getReg())
648      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
649      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
650
651  MI->eraseFromParent();   // The pseudo instruction is gone now.
652  return BB;
653}
654
655//===----------------------------------------------------------------------===//
656//  Misc Lower Operation implementation
657//===----------------------------------------------------------------------===//
658
659SDValue MipsTargetLowering::
660LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const
661{
662  if (!Subtarget->isMips1())
663    return Op;
664
665  MachineFunction &MF = DAG.getMachineFunction();
666  unsigned CCReg = AddLiveIn(MF, Mips::FCR31, Mips::CCRRegisterClass);
667
668  SDValue Chain = DAG.getEntryNode();
669  DebugLoc dl = Op.getDebugLoc();
670  SDValue Src = Op.getOperand(0);
671
672  // Set the condition register
673  SDValue CondReg = DAG.getCopyFromReg(Chain, dl, CCReg, MVT::i32);
674  CondReg = DAG.getCopyToReg(Chain, dl, Mips::AT, CondReg);
675  CondReg = DAG.getCopyFromReg(CondReg, dl, Mips::AT, MVT::i32);
676
677  SDValue Cst = DAG.getConstant(3, MVT::i32);
678  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i32, CondReg, Cst);
679  Cst = DAG.getConstant(2, MVT::i32);
680  SDValue Xor = DAG.getNode(ISD::XOR, dl, MVT::i32, Or, Cst);
681
682  SDValue InFlag(0, 0);
683  CondReg = DAG.getCopyToReg(Chain, dl, Mips::FCR31, Xor, InFlag);
684
685  // Emit the round instruction and bit convert to integer
686  SDValue Trunc = DAG.getNode(MipsISD::FPRound, dl, MVT::f32,
687                              Src, CondReg.getValue(1));
688  SDValue BitCvt = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Trunc);
689  return BitCvt;
690}
691
692SDValue MipsTargetLowering::
693LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
694{
695  SDValue Chain = Op.getOperand(0);
696  SDValue Size = Op.getOperand(1);
697  DebugLoc dl = Op.getDebugLoc();
698
699  // Get a reference from Mips stack pointer
700  SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, Mips::SP, MVT::i32);
701
702  // Subtract the dynamic size from the actual stack size to
703  // obtain the new stack size.
704  SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, StackPointer, Size);
705
706  // The Sub result contains the new stack start address, so it
707  // must be placed in the stack pointer register.
708  Chain = DAG.getCopyToReg(StackPointer.getValue(1), dl, Mips::SP, Sub);
709
710  // This node always has two return values: a new stack pointer
711  // value and a chain
712  SDValue Ops[2] = { Sub, Chain };
713  return DAG.getMergeValues(Ops, 2, dl);
714}
715
716SDValue MipsTargetLowering::
717LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
718{
719  // The first operand is the chain, the second is the condition, the third is
720  // the block to branch to if the condition is true.
721  SDValue Chain = Op.getOperand(0);
722  SDValue Dest = Op.getOperand(2);
723  DebugLoc dl = Op.getDebugLoc();
724
725  SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
726
727  // Return if flag is not set by a floating point comparison.
728  if (CondRes.getOpcode() != MipsISD::FPCmp)
729    return Op;
730
731  SDValue CCNode  = CondRes.getOperand(2);
732  Mips::CondCode CC =
733    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
734  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
735
736  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
737                     Dest, CondRes);
738}
739
740SDValue MipsTargetLowering::
741LowerSELECT(SDValue Op, SelectionDAG &DAG) const
742{
743  SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
744
745  // Return if flag is not set by a floating point comparison.
746  if (Cond.getOpcode() != MipsISD::FPCmp)
747    return Op;
748
749  return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
750                      Op.getDebugLoc());
751}
752
753SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
754                                               SelectionDAG &DAG) const {
755  // FIXME there isn't actually debug info here
756  DebugLoc dl = Op.getDebugLoc();
757  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
758
759  if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
760    SDVTList VTs = DAG.getVTList(MVT::i32);
761
762    MipsTargetObjectFile &TLOF = (MipsTargetObjectFile&)getObjFileLowering();
763
764    // %gp_rel relocation
765    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
766      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
767                                              MipsII::MO_GPREL);
768      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1);
769      SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
770      return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode);
771    }
772    // %hi/%lo relocation
773    SDValue GAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
774                                              MipsII::MO_ABS_HI);
775    SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
776                                              MipsII::MO_ABS_LO);
777    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GAHi, 1);
778    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
779    return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
780  } else {
781    SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
782                                            MipsII::MO_GOT);
783    SDValue ResNode = DAG.getLoad(MVT::i32, dl,
784                                  DAG.getEntryNode(), GA, MachinePointerInfo(),
785                                  false, false, 0);
786    // On functions and global targets not internal linked only
787    // a load from got/GP is necessary for PIC to work.
788    if (!GV->hasInternalLinkage() &&
789        (!GV->hasLocalLinkage() || isa<Function>(GV)))
790      return ResNode;
791    SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
792                                              MipsII::MO_ABS_LO);
793    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
794    return DAG.getNode(ISD::ADD, dl, MVT::i32, ResNode, Lo);
795  }
796
797  llvm_unreachable("Dont know how to handle GlobalAddress");
798  return SDValue(0,0);
799}
800
801SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
802                                              SelectionDAG &DAG) const {
803  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
804  // FIXME there isn't actually debug info here
805  DebugLoc dl = Op.getDebugLoc();
806
807  if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
808    // %hi/%lo relocation
809    SDValue BAHi = DAG.getBlockAddress(BA, MVT::i32, true,
810                                       MipsII::MO_ABS_HI);
811    SDValue BALo = DAG.getBlockAddress(BA, MVT::i32, true,
812                                       MipsII::MO_ABS_LO);
813    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, MVT::i32, BAHi);
814    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALo);
815    return DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo);
816  }
817
818  SDValue BAGOTOffset = DAG.getBlockAddress(BA, MVT::i32, true,
819                                            MipsII::MO_GOT);
820  SDValue BALOOffset = DAG.getBlockAddress(BA, MVT::i32, true,
821                                           MipsII::MO_ABS_LO);
822  SDValue Load = DAG.getLoad(MVT::i32, dl,
823                             DAG.getEntryNode(), BAGOTOffset,
824                             MachinePointerInfo(), false, false, 0);
825  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALOOffset);
826  return DAG.getNode(ISD::ADD, dl, MVT::i32, Load, Lo);
827}
828
829SDValue MipsTargetLowering::
830LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
831{
832  llvm_unreachable("TLS not implemented for MIPS.");
833  return SDValue(); // Not reached
834}
835
836SDValue MipsTargetLowering::
837LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
838{
839  SDValue ResNode;
840  SDValue HiPart;
841  // FIXME there isn't actually debug info here
842  DebugLoc dl = Op.getDebugLoc();
843  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
844  unsigned char OpFlag = IsPIC ? MipsII::MO_GOT : MipsII::MO_ABS_HI;
845
846  EVT PtrVT = Op.getValueType();
847  JumpTableSDNode *JT  = cast<JumpTableSDNode>(Op);
848
849  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag);
850
851  if (!IsPIC) {
852    SDValue Ops[] = { JTI };
853    HiPart = DAG.getNode(MipsISD::Hi, dl, DAG.getVTList(MVT::i32), Ops, 1);
854  } else // Emit Load from Global Pointer
855    HiPart = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(), JTI,
856                         MachinePointerInfo(),
857                         false, false, 0);
858
859  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
860                                         MipsII::MO_ABS_LO);
861  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, JTILo);
862  ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
863
864  return ResNode;
865}
866
867SDValue MipsTargetLowering::
868LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
869{
870  SDValue ResNode;
871  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
872  const Constant *C = N->getConstVal();
873  // FIXME there isn't actually debug info here
874  DebugLoc dl = Op.getDebugLoc();
875
876  // gp_rel relocation
877  // FIXME: we should reference the constant pool using small data sections,
878  // but the asm printer currently doesn't support this feature without
879  // hacking it. This feature should come soon so we can uncomment the
880  // stuff below.
881  //if (IsInSmallSection(C->getType())) {
882  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
883  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
884  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
885
886  if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
887    SDValue CPHi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
888                                             N->getOffset(), MipsII::MO_ABS_HI);
889    SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
890                                             N->getOffset(), MipsII::MO_ABS_LO);
891    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CPHi);
892    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
893    ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
894  } else {
895    SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
896                                           N->getOffset(), MipsII::MO_GOT);
897    SDValue Load = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(),
898                               CP, MachinePointerInfo::getConstantPool(),
899                               false, false, 0);
900    SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
901                                             N->getOffset(), MipsII::MO_ABS_LO);
902    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
903    ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, Load, Lo);
904  }
905
906  return ResNode;
907}
908
909SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
910  MachineFunction &MF = DAG.getMachineFunction();
911  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
912
913  DebugLoc dl = Op.getDebugLoc();
914  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
915                                 getPointerTy());
916
917  // vastart just stores the address of the VarArgsFrameIndex slot into the
918  // memory location argument.
919  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
920  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
921                      MachinePointerInfo(SV),
922                      false, false, 0);
923}
924
925//===----------------------------------------------------------------------===//
926//                      Calling Convention Implementation
927//===----------------------------------------------------------------------===//
928
929#include "MipsGenCallingConv.inc"
930
931//===----------------------------------------------------------------------===//
932// TODO: Implement a generic logic using tblgen that can support this.
933// Mips O32 ABI rules:
934// ---
935// i32 - Passed in A0, A1, A2, A3 and stack
936// f32 - Only passed in f32 registers if no int reg has been used yet to hold
937//       an argument. Otherwise, passed in A1, A2, A3 and stack.
938// f64 - Only passed in two aliased f32 registers if no int reg has been used
939//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
940//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
941//       go to stack.
942//
943//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
944//===----------------------------------------------------------------------===//
945
946static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
947                       MVT LocVT, CCValAssign::LocInfo LocInfo,
948                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
949
950  static const unsigned IntRegsSize=4, FloatRegsSize=2;
951
952  static const unsigned IntRegs[] = {
953      Mips::A0, Mips::A1, Mips::A2, Mips::A3
954  };
955  static const unsigned F32Regs[] = {
956      Mips::F12, Mips::F14
957  };
958  static const unsigned F64Regs[] = {
959      Mips::D6, Mips::D7
960  };
961
962  // Promote i8 and i16
963  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
964    LocVT = MVT::i32;
965    if (ArgFlags.isSExt())
966      LocInfo = CCValAssign::SExt;
967    else if (ArgFlags.isZExt())
968      LocInfo = CCValAssign::ZExt;
969    else
970      LocInfo = CCValAssign::AExt;
971  }
972
973  unsigned Reg;
974
975  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
976  // is true: function is vararg, argument is 3rd or higher, there is previous
977  // argument which is not f32 or f64.
978  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
979      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
980  unsigned OrigAlign = ArgFlags.getOrigAlign();
981  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
982
983  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
984    Reg = State.AllocateReg(IntRegs, IntRegsSize);
985    // If this is the first part of an i64 arg,
986    // the allocated register must be either A0 or A2.
987    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
988      Reg = State.AllocateReg(IntRegs, IntRegsSize);
989    LocVT = MVT::i32;
990  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
991    // Allocate int register and shadow next int register. If first
992    // available register is Mips::A1 or Mips::A3, shadow it too.
993    Reg = State.AllocateReg(IntRegs, IntRegsSize);
994    if (Reg == Mips::A1 || Reg == Mips::A3)
995      Reg = State.AllocateReg(IntRegs, IntRegsSize);
996    State.AllocateReg(IntRegs, IntRegsSize);
997    LocVT = MVT::i32;
998  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
999    // we are guaranteed to find an available float register
1000    if (ValVT == MVT::f32) {
1001      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
1002      // Shadow int register
1003      State.AllocateReg(IntRegs, IntRegsSize);
1004    } else {
1005      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
1006      // Shadow int registers
1007      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
1008      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
1009        State.AllocateReg(IntRegs, IntRegsSize);
1010      State.AllocateReg(IntRegs, IntRegsSize);
1011    }
1012  } else
1013    llvm_unreachable("Cannot handle this ValVT.");
1014
1015  unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
1016  unsigned Offset = State.AllocateStack(SizeInBytes, OrigAlign);
1017
1018  if (!Reg)
1019    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
1020  else
1021    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1022
1023  return false; // CC must always match
1024}
1025
1026//===----------------------------------------------------------------------===//
1027//                  Call Calling Convention Implementation
1028//===----------------------------------------------------------------------===//
1029
1030/// LowerCall - functions arguments are copied from virtual regs to
1031/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
1032/// TODO: isTailCall.
1033SDValue
1034MipsTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1035                              CallingConv::ID CallConv, bool isVarArg,
1036                              bool &isTailCall,
1037                              const SmallVectorImpl<ISD::OutputArg> &Outs,
1038                              const SmallVectorImpl<SDValue> &OutVals,
1039                              const SmallVectorImpl<ISD::InputArg> &Ins,
1040                              DebugLoc dl, SelectionDAG &DAG,
1041                              SmallVectorImpl<SDValue> &InVals) const {
1042  // MIPs target does not yet support tail call optimization.
1043  isTailCall = false;
1044
1045  MachineFunction &MF = DAG.getMachineFunction();
1046  MachineFrameInfo *MFI = MF.getFrameInfo();
1047  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
1048  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
1049  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1050
1051  // Analyze operands of the call, assigning locations to each operand.
1052  SmallVector<CCValAssign, 16> ArgLocs;
1053  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1054                 *DAG.getContext());
1055
1056  if (Subtarget->isABI_O32())
1057    CCInfo.AnalyzeCallOperands(Outs, CC_MipsO32);
1058  else
1059    CCInfo.AnalyzeCallOperands(Outs, CC_Mips);
1060
1061  // Get a count of how many bytes are to be pushed on the stack.
1062  unsigned NumBytes = CCInfo.getNextStackOffset();
1063  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1064
1065  // With EABI is it possible to have 16 args on registers.
1066  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
1067  SmallVector<SDValue, 8> MemOpChains;
1068
1069  MipsFI->setHasCall();
1070
1071  // Create GP frame object if this is the first call.
1072  // SPOffset will be updated after call frame size is known.
1073  if (IsPIC && !MipsFI->getGPFI())
1074    MipsFI->setGPFI(MFI->CreateFixedObject(4, 0, true));
1075
1076  int FirstFI = -MFI->getNumFixedObjects() - 1, LastFI = 0;
1077
1078  // Walk the register/memloc assignments, inserting copies/loads.
1079  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1080    SDValue Arg = OutVals[i];
1081    CCValAssign &VA = ArgLocs[i];
1082
1083    // Promote the value if needed.
1084    switch (VA.getLocInfo()) {
1085    default: llvm_unreachable("Unknown loc info!");
1086    case CCValAssign::Full:
1087      if (Subtarget->isABI_O32() && VA.isRegLoc()) {
1088        if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i32)
1089          Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
1090        if (VA.getValVT() == MVT::f64 && VA.getLocVT() == MVT::i32) {
1091          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
1092                                   Arg, DAG.getConstant(0, MVT::i32));
1093          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
1094                                   Arg, DAG.getConstant(1, MVT::i32));
1095          if (!Subtarget->isLittle())
1096            std::swap(Lo, Hi);
1097          RegsToPass.push_back(std::make_pair(VA.getLocReg(), Lo));
1098          RegsToPass.push_back(std::make_pair(VA.getLocReg()+1, Hi));
1099          continue;
1100        }
1101      }
1102      break;
1103    case CCValAssign::SExt:
1104      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1105      break;
1106    case CCValAssign::ZExt:
1107      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1108      break;
1109    case CCValAssign::AExt:
1110      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1111      break;
1112    }
1113
1114    // Arguments that can be passed on register must be kept at
1115    // RegsToPass vector
1116    if (VA.isRegLoc()) {
1117      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1118      continue;
1119    }
1120
1121    // Register can't get to this point...
1122    assert(VA.isMemLoc());
1123
1124    // Create the frame index object for this incoming parameter
1125    // This guarantees that when allocating Local Area the firsts
1126    // 16 bytes which are alwayes reserved won't be overwritten
1127    // if O32 ABI is used. For EABI the first address is zero.
1128    LastFI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1129                                    VA.getLocMemOffset(), true);
1130    SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
1131
1132    // emit ISD::STORE whichs stores the
1133    // parameter value to a stack Location
1134    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
1135                                       MachinePointerInfo(),
1136                                       false, false, 0));
1137  }
1138
1139  // Transform all store nodes into one single node because all store
1140  // nodes are independent of each other.
1141  if (!MemOpChains.empty())
1142    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1143                        &MemOpChains[0], MemOpChains.size());
1144
1145  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1146  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1147  // node so that legalize doesn't hack it.
1148  unsigned char OpFlag = IsPIC ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG;
1149  bool LoadSymAddr = false;
1150  SDValue CalleeLo;
1151
1152  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1153    if (IsPIC && G->getGlobal()->hasInternalLinkage()) {
1154      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
1155                                          getPointerTy(), 0,MipsII:: MO_GOT);
1156      CalleeLo = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(),
1157                                            0, MipsII::MO_ABS_LO);
1158    } else {
1159      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
1160                                          getPointerTy(), 0, OpFlag);
1161    }
1162
1163    LoadSymAddr = true;
1164  }
1165  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1166    Callee = DAG.getTargetExternalSymbol(S->getSymbol(),
1167                                getPointerTy(), OpFlag);
1168    LoadSymAddr = true;
1169  }
1170
1171  SDValue InFlag;
1172
1173  // Create nodes that load address of callee and copy it to T9
1174  if (IsPIC) {
1175    if (LoadSymAddr) {
1176      // Load callee address
1177      SDValue LoadValue = DAG.getLoad(MVT::i32, dl, Chain, Callee,
1178                                      MachinePointerInfo::getGOT(),
1179                                      false, false, 0);
1180
1181      // Use GOT+LO if callee has internal linkage.
1182      if (CalleeLo.getNode()) {
1183        SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CalleeLo);
1184        Callee = DAG.getNode(ISD::ADD, dl, MVT::i32, LoadValue, Lo);
1185      } else
1186        Callee = LoadValue;
1187
1188      // Use chain output from LoadValue
1189      Chain = LoadValue.getValue(1);
1190    }
1191
1192    // copy to T9
1193    Chain = DAG.getCopyToReg(Chain, dl, Mips::T9, Callee, SDValue(0, 0));
1194    InFlag = Chain.getValue(1);
1195    Callee = DAG.getRegister(Mips::T9, MVT::i32);
1196  }
1197
1198  // Build a sequence of copy-to-reg nodes chained together with token
1199  // chain and flag operands which copy the outgoing args into registers.
1200  // The InFlag in necessary since all emitted instructions must be
1201  // stuck together.
1202  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1203    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1204                             RegsToPass[i].second, InFlag);
1205    InFlag = Chain.getValue(1);
1206  }
1207
1208  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
1209  //             = Chain, Callee, Reg#1, Reg#2, ...
1210  //
1211  // Returns a chain & a flag for retval copy to use.
1212  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1213  SmallVector<SDValue, 8> Ops;
1214  Ops.push_back(Chain);
1215  Ops.push_back(Callee);
1216
1217  // Add argument registers to the end of the list so that they are
1218  // known live into the call.
1219  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1220    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1221                                  RegsToPass[i].second.getValueType()));
1222
1223  if (InFlag.getNode())
1224    Ops.push_back(InFlag);
1225
1226  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
1227  InFlag = Chain.getValue(1);
1228
1229  // Create a stack location to hold GP when PIC is used. This stack
1230  // location is used on function prologue to save GP and also after all
1231  // emitted CALL's to restore GP.
1232  if (IsPIC) {
1233    // Function can have an arbitrary number of calls, so
1234    // hold the LastArgStackLoc with the biggest offset.
1235    int MaxCallFrameSize = MipsFI->getMaxCallFrameSize();
1236    unsigned NextStackOffset = CCInfo.getNextStackOffset();
1237
1238    // For O32, a minimum of four words (16 bytes) of argument space is
1239    // allocated.
1240    if (Subtarget->isABI_O32())
1241      NextStackOffset = std::max(NextStackOffset, (unsigned)16);
1242
1243    if (MaxCallFrameSize < (int)NextStackOffset) {
1244      MipsFI->setMaxCallFrameSize(NextStackOffset);
1245
1246      // $gp restore slot must be aligned.
1247      unsigned StackAlignment = TFL->getStackAlignment();
1248      NextStackOffset = (NextStackOffset + StackAlignment - 1) /
1249                        StackAlignment * StackAlignment;
1250      int GPFI = MipsFI->getGPFI();
1251      MFI->setObjectOffset(GPFI, NextStackOffset);
1252    }
1253  }
1254
1255  // Extend range of indices of frame objects for outgoing arguments that were
1256  // created during this function call. Skip this step if no such objects were
1257  // created.
1258  if (LastFI)
1259    MipsFI->extendOutArgFIRange(FirstFI, LastFI);
1260
1261  // Create the CALLSEQ_END node.
1262  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1263                             DAG.getIntPtrConstant(0, true), InFlag);
1264  InFlag = Chain.getValue(1);
1265
1266  // Handle result values, copying them out of physregs into vregs that we
1267  // return.
1268  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
1269                         Ins, dl, DAG, InVals);
1270}
1271
1272/// LowerCallResult - Lower the result values of a call into the
1273/// appropriate copies out of appropriate physical registers.
1274SDValue
1275MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1276                                    CallingConv::ID CallConv, bool isVarArg,
1277                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1278                                    DebugLoc dl, SelectionDAG &DAG,
1279                                    SmallVectorImpl<SDValue> &InVals) const {
1280
1281  // Assign locations to each value returned by this call.
1282  SmallVector<CCValAssign, 16> RVLocs;
1283  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1284                 RVLocs, *DAG.getContext());
1285
1286  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
1287
1288  // Copy all of the result registers out of their specified physreg.
1289  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1290    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
1291                               RVLocs[i].getValVT(), InFlag).getValue(1);
1292    InFlag = Chain.getValue(2);
1293    InVals.push_back(Chain.getValue(0));
1294  }
1295
1296  return Chain;
1297}
1298
1299//===----------------------------------------------------------------------===//
1300//             Formal Arguments Calling Convention Implementation
1301//===----------------------------------------------------------------------===//
1302
1303/// LowerFormalArguments - transform physical registers into virtual registers
1304/// and generate load operations for arguments places on the stack.
1305SDValue
1306MipsTargetLowering::LowerFormalArguments(SDValue Chain,
1307                                         CallingConv::ID CallConv,
1308                                         bool isVarArg,
1309                                         const SmallVectorImpl<ISD::InputArg>
1310                                         &Ins,
1311                                         DebugLoc dl, SelectionDAG &DAG,
1312                                         SmallVectorImpl<SDValue> &InVals)
1313                                          const {
1314
1315  MachineFunction &MF = DAG.getMachineFunction();
1316  MachineFrameInfo *MFI = MF.getFrameInfo();
1317  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1318
1319  MipsFI->setVarArgsFrameIndex(0);
1320
1321  // Used with vargs to acumulate store chains.
1322  std::vector<SDValue> OutChains;
1323
1324  // Assign locations to all of the incoming arguments.
1325  SmallVector<CCValAssign, 16> ArgLocs;
1326  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1327                 ArgLocs, *DAG.getContext());
1328
1329  if (Subtarget->isABI_O32())
1330    CCInfo.AnalyzeFormalArguments(Ins, CC_MipsO32);
1331  else
1332    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips);
1333
1334  int LastFI = 0;// MipsFI->LastInArgFI is 0 at the entry of this function.
1335
1336  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1337    CCValAssign &VA = ArgLocs[i];
1338
1339    // Arguments stored on registers
1340    if (VA.isRegLoc()) {
1341      EVT RegVT = VA.getLocVT();
1342      unsigned ArgReg = VA.getLocReg();
1343      TargetRegisterClass *RC = 0;
1344
1345      if (RegVT == MVT::i32)
1346        RC = Mips::CPURegsRegisterClass;
1347      else if (RegVT == MVT::f32)
1348        RC = Mips::FGR32RegisterClass;
1349      else if (RegVT == MVT::f64) {
1350        if (!Subtarget->isSingleFloat())
1351          RC = Mips::AFGR64RegisterClass;
1352      } else
1353        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
1354
1355      // Transform the arguments stored on
1356      // physical registers into virtual ones
1357      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
1358      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1359
1360      // If this is an 8 or 16-bit value, it has been passed promoted
1361      // to 32 bits.  Insert an assert[sz]ext to capture this, then
1362      // truncate to the right size.
1363      if (VA.getLocInfo() != CCValAssign::Full) {
1364        unsigned Opcode = 0;
1365        if (VA.getLocInfo() == CCValAssign::SExt)
1366          Opcode = ISD::AssertSext;
1367        else if (VA.getLocInfo() == CCValAssign::ZExt)
1368          Opcode = ISD::AssertZext;
1369        if (Opcode)
1370          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
1371                                 DAG.getValueType(VA.getValVT()));
1372        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1373      }
1374
1375      // Handle O32 ABI cases: i32->f32 and (i32,i32)->f64
1376      if (Subtarget->isABI_O32()) {
1377        if (RegVT == MVT::i32 && VA.getValVT() == MVT::f32)
1378          ArgValue = DAG.getNode(ISD::BITCAST, dl, MVT::f32, ArgValue);
1379        if (RegVT == MVT::i32 && VA.getValVT() == MVT::f64) {
1380          unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
1381                                    VA.getLocReg()+1, RC);
1382          SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
1383          if (!Subtarget->isLittle())
1384            std::swap(ArgValue, ArgValue2);
1385          ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
1386                                 ArgValue, ArgValue2);
1387        }
1388      }
1389
1390      InVals.push_back(ArgValue);
1391    } else { // VA.isRegLoc()
1392
1393      // sanity check
1394      assert(VA.isMemLoc());
1395
1396      // The stack pointer offset is relative to the caller stack frame.
1397      // Since the real stack size is unknown here, a negative SPOffset
1398      // is used so there's a way to adjust these offsets when the stack
1399      // size get known (on EliminateFrameIndex). A dummy SPOffset is
1400      // used instead of a direct negative address (which is recorded to
1401      // be used on emitPrologue) to avoid mis-calc of the first stack
1402      // offset on PEI::calculateFrameObjectOffsets.
1403      LastFI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1404                                      VA.getLocMemOffset(), true);
1405
1406      // Create load nodes to retrieve arguments from the stack
1407      SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
1408      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1409                                   MachinePointerInfo::getFixedStack(LastFI),
1410                                   false, false, 0));
1411    }
1412  }
1413
1414  // The mips ABIs for returning structs by value requires that we copy
1415  // the sret argument into $v0 for the return. Save the argument into
1416  // a virtual register so that we can access it from the return points.
1417  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1418    unsigned Reg = MipsFI->getSRetReturnReg();
1419    if (!Reg) {
1420      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
1421      MipsFI->setSRetReturnReg(Reg);
1422    }
1423    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1424    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1425  }
1426
1427  // To meet ABI, when VARARGS are passed on registers, the registers
1428  // must have their values written to the caller stack frame. If the last
1429  // argument was placed in the stack, there's no need to save any register.
1430  if (isVarArg && Subtarget->isABI_O32()) {
1431    // Record the frame index of the first variable argument
1432    // which is a value necessary to VASTART.
1433    unsigned NextStackOffset = CCInfo.getNextStackOffset();
1434    LastFI = MFI->CreateFixedObject(4, NextStackOffset, true);
1435    MipsFI->setVarArgsFrameIndex(LastFI);
1436
1437    const unsigned O32IntRegs[] = {
1438      Mips::A0, Mips::A1, Mips::A2, Mips::A3
1439    };
1440
1441    // Copy variable arguments passed in registers to stack.
1442    for (; NextStackOffset < 16; NextStackOffset += 4) {
1443      TargetRegisterClass *RC = Mips::CPURegsRegisterClass;
1444      unsigned Idx = NextStackOffset / 4;
1445      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), O32IntRegs[Idx], RC);
1446      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, MVT::i32);
1447      LastFI = MFI->CreateFixedObject(4, NextStackOffset, true);
1448      SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
1449      OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
1450                                       MachinePointerInfo(),
1451                                       false, false, 0));
1452    }
1453  }
1454
1455  MipsFI->setLastInArgFI(LastFI);
1456
1457  // All stores are grouped in one node to allow the matching between
1458  // the size of Ins and InVals. This only happens when on varg functions
1459  if (!OutChains.empty()) {
1460    OutChains.push_back(Chain);
1461    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1462                        &OutChains[0], OutChains.size());
1463  }
1464
1465  return Chain;
1466}
1467
1468//===----------------------------------------------------------------------===//
1469//               Return Value Calling Convention Implementation
1470//===----------------------------------------------------------------------===//
1471
1472SDValue
1473MipsTargetLowering::LowerReturn(SDValue Chain,
1474                                CallingConv::ID CallConv, bool isVarArg,
1475                                const SmallVectorImpl<ISD::OutputArg> &Outs,
1476                                const SmallVectorImpl<SDValue> &OutVals,
1477                                DebugLoc dl, SelectionDAG &DAG) const {
1478
1479  // CCValAssign - represent the assignment of
1480  // the return value to a location
1481  SmallVector<CCValAssign, 16> RVLocs;
1482
1483  // CCState - Info about the registers and stack slot.
1484  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1485                 RVLocs, *DAG.getContext());
1486
1487  // Analize return values.
1488  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
1489
1490  // If this is the first return lowered for this function, add
1491  // the regs to the liveout set for the function.
1492  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1493    for (unsigned i = 0; i != RVLocs.size(); ++i)
1494      if (RVLocs[i].isRegLoc())
1495        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1496  }
1497
1498  SDValue Flag;
1499
1500  // Copy the result values into the output registers.
1501  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1502    CCValAssign &VA = RVLocs[i];
1503    assert(VA.isRegLoc() && "Can only return in registers!");
1504
1505    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1506                             OutVals[i], Flag);
1507
1508    // guarantee that all emitted copies are
1509    // stuck together, avoiding something bad
1510    Flag = Chain.getValue(1);
1511  }
1512
1513  // The mips ABIs for returning structs by value requires that we copy
1514  // the sret argument into $v0 for the return. We saved the argument into
1515  // a virtual register in the entry block, so now we copy the value out
1516  // and into $v0.
1517  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1518    MachineFunction &MF      = DAG.getMachineFunction();
1519    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1520    unsigned Reg = MipsFI->getSRetReturnReg();
1521
1522    if (!Reg)
1523      llvm_unreachable("sret virtual register not created in the entry block");
1524    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1525
1526    Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
1527    Flag = Chain.getValue(1);
1528  }
1529
1530  // Return on Mips is always a "jr $ra"
1531  if (Flag.getNode())
1532    return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
1533                       Chain, DAG.getRegister(Mips::RA, MVT::i32), Flag);
1534  else // Return Void
1535    return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
1536                       Chain, DAG.getRegister(Mips::RA, MVT::i32));
1537}
1538
1539//===----------------------------------------------------------------------===//
1540//                           Mips Inline Assembly Support
1541//===----------------------------------------------------------------------===//
1542
1543/// getConstraintType - Given a constraint letter, return the type of
1544/// constraint it is for this target.
1545MipsTargetLowering::ConstraintType MipsTargetLowering::
1546getConstraintType(const std::string &Constraint) const
1547{
1548  // Mips specific constrainy
1549  // GCC config/mips/constraints.md
1550  //
1551  // 'd' : An address register. Equivalent to r
1552  //       unless generating MIPS16 code.
1553  // 'y' : Equivalent to r; retained for
1554  //       backwards compatibility.
1555  // 'f' : Floating Point registers.
1556  if (Constraint.size() == 1) {
1557    switch (Constraint[0]) {
1558      default : break;
1559      case 'd':
1560      case 'y':
1561      case 'f':
1562        return C_RegisterClass;
1563        break;
1564    }
1565  }
1566  return TargetLowering::getConstraintType(Constraint);
1567}
1568
1569/// Examine constraint type and operand type and determine a weight value.
1570/// This object must already have been set up with the operand type
1571/// and the current alternative constraint selected.
1572TargetLowering::ConstraintWeight
1573MipsTargetLowering::getSingleConstraintMatchWeight(
1574    AsmOperandInfo &info, const char *constraint) const {
1575  ConstraintWeight weight = CW_Invalid;
1576  Value *CallOperandVal = info.CallOperandVal;
1577    // If we don't have a value, we can't do a match,
1578    // but allow it at the lowest weight.
1579  if (CallOperandVal == NULL)
1580    return CW_Default;
1581  const Type *type = CallOperandVal->getType();
1582  // Look at the constraint type.
1583  switch (*constraint) {
1584  default:
1585    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1586    break;
1587  case 'd':
1588  case 'y':
1589    if (type->isIntegerTy())
1590      weight = CW_Register;
1591    break;
1592  case 'f':
1593    if (type->isFloatTy())
1594      weight = CW_Register;
1595    break;
1596  }
1597  return weight;
1598}
1599
1600/// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1601/// return a list of registers that can be used to satisfy the constraint.
1602/// This should only be used for C_RegisterClass constraints.
1603std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
1604getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
1605{
1606  if (Constraint.size() == 1) {
1607    switch (Constraint[0]) {
1608    case 'r':
1609      return std::make_pair(0U, Mips::CPURegsRegisterClass);
1610    case 'f':
1611      if (VT == MVT::f32)
1612        return std::make_pair(0U, Mips::FGR32RegisterClass);
1613      if (VT == MVT::f64)
1614        if ((!Subtarget->isSingleFloat()) && (!Subtarget->isFP64bit()))
1615          return std::make_pair(0U, Mips::AFGR64RegisterClass);
1616    }
1617  }
1618  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
1619}
1620
1621/// Given a register class constraint, like 'r', if this corresponds directly
1622/// to an LLVM register class, return a register of 0 and the register class
1623/// pointer.
1624std::vector<unsigned> MipsTargetLowering::
1625getRegClassForInlineAsmConstraint(const std::string &Constraint,
1626                                  EVT VT) const
1627{
1628  if (Constraint.size() != 1)
1629    return std::vector<unsigned>();
1630
1631  switch (Constraint[0]) {
1632    default : break;
1633    case 'r':
1634    // GCC Mips Constraint Letters
1635    case 'd':
1636    case 'y':
1637      return make_vector<unsigned>(Mips::T0, Mips::T1, Mips::T2, Mips::T3,
1638             Mips::T4, Mips::T5, Mips::T6, Mips::T7, Mips::S0, Mips::S1,
1639             Mips::S2, Mips::S3, Mips::S4, Mips::S5, Mips::S6, Mips::S7,
1640             Mips::T8, 0);
1641
1642    case 'f':
1643      if (VT == MVT::f32) {
1644        if (Subtarget->isSingleFloat())
1645          return make_vector<unsigned>(Mips::F2, Mips::F3, Mips::F4, Mips::F5,
1646                 Mips::F6, Mips::F7, Mips::F8, Mips::F9, Mips::F10, Mips::F11,
1647                 Mips::F20, Mips::F21, Mips::F22, Mips::F23, Mips::F24,
1648                 Mips::F25, Mips::F26, Mips::F27, Mips::F28, Mips::F29,
1649                 Mips::F30, Mips::F31, 0);
1650        else
1651          return make_vector<unsigned>(Mips::F2, Mips::F4, Mips::F6, Mips::F8,
1652                 Mips::F10, Mips::F20, Mips::F22, Mips::F24, Mips::F26,
1653                 Mips::F28, Mips::F30, 0);
1654      }
1655
1656      if (VT == MVT::f64)
1657        if ((!Subtarget->isSingleFloat()) && (!Subtarget->isFP64bit()))
1658          return make_vector<unsigned>(Mips::D1, Mips::D2, Mips::D3, Mips::D4,
1659                 Mips::D5, Mips::D10, Mips::D11, Mips::D12, Mips::D13,
1660                 Mips::D14, Mips::D15, 0);
1661  }
1662  return std::vector<unsigned>();
1663}
1664
1665bool
1666MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1667  // The Mips target isn't yet aware of offsets.
1668  return false;
1669}
1670
1671bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
1672  if (VT != MVT::f32 && VT != MVT::f64)
1673    return false;
1674  if (Imm.isNegZero())
1675    return false;
1676  return Imm.isZero();
1677}
1678