MipsISelLowering.cpp revision b53db4fb321823a8a1f6abc372bdc7c36ef1447f
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "mips-lower"
16
17#include "MipsISelLowering.h"
18#include "MipsMachineFunction.h"
19#include "MipsTargetMachine.h"
20#include "MipsSubtarget.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/CallingConv.h"
26#include "llvm/CodeGen/CallingConvLower.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/SelectionDAGISel.h"
32#include "llvm/CodeGen/ValueTypes.h"
33#include "llvm/Support/Debug.h"
34using namespace llvm;
35
36const char *MipsTargetLowering::
37getTargetNodeName(unsigned Opcode) const
38{
39  switch (Opcode)
40  {
41    case MipsISD::JmpLink    : return "MipsISD::JmpLink";
42    case MipsISD::Hi         : return "MipsISD::Hi";
43    case MipsISD::Lo         : return "MipsISD::Lo";
44    case MipsISD::GPRel      : return "MipsISD::GPRel";
45    case MipsISD::Ret        : return "MipsISD::Ret";
46    case MipsISD::CMov       : return "MipsISD::CMov";
47    case MipsISD::SelectCC   : return "MipsISD::SelectCC";
48    case MipsISD::FPSelectCC : return "MipsISD::FPSelectCC";
49    case MipsISD::FPBrcond   : return "MipsISD::FPBrcond";
50    case MipsISD::FPCmp      : return "MipsISD::FPCmp";
51    default                  : return NULL;
52  }
53}
54
55MipsTargetLowering::
56MipsTargetLowering(MipsTargetMachine &TM): TargetLowering(TM)
57{
58  Subtarget = &TM.getSubtarget<MipsSubtarget>();
59
60  // Mips does not have i1 type, so use i32 for
61  // setcc operations results (slt, sgt, ...).
62  setBooleanContents(ZeroOrOneBooleanContent);
63
64  // JumpTable targets must use GOT when using PIC_
65  setUsesGlobalOffsetTable(true);
66
67  // Set up the register classes
68  addRegisterClass(MVT::i32, Mips::CPURegsRegisterClass);
69
70  // When dealing with single precision only, use libcalls
71  if (!Subtarget->isSingleFloat()) {
72    addRegisterClass(MVT::f32, Mips::AFGR32RegisterClass);
73    if (!Subtarget->isFP64bit())
74      addRegisterClass(MVT::f64, Mips::AFGR64RegisterClass);
75  } else
76    addRegisterClass(MVT::f32, Mips::FGR32RegisterClass);
77
78  // Legal fp constants
79  addLegalFPImmediate(APFloat(+0.0f));
80
81  // Load extented operations for i1 types must be promoted
82  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
83  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
84  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
85
86  // Used by legalize types to correctly generate the setcc result.
87  // Without this, every float setcc comes with a AND/OR with the result,
88  // we don't want this, since the fpcmp result goes to a flag register,
89  // which is used implicitly by brcond and select operations.
90  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
91
92  // Mips Custom Operations
93  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
94  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
95  setOperationAction(ISD::RET,                MVT::Other, Custom);
96  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
97  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
98  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
99  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
100  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
101  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
102  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,   Custom);
103
104  // We custom lower AND/OR to handle the case where the DAG contain 'ands/ors'
105  // with operands comming from setcc fp comparions. This is necessary since
106  // the result from these setcc are in a flag registers (FCR31).
107  setOperationAction(ISD::AND,              MVT::i32,   Custom);
108  setOperationAction(ISD::OR,               MVT::i32,   Custom);
109
110  // Operations not directly supported by Mips.
111  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
112  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
113  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
114  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
115  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
116  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
117  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
118  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
119  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
120  setOperationAction(ISD::SHL_PARTS,         MVT::i32,   Expand);
121  setOperationAction(ISD::SRA_PARTS,         MVT::i32,   Expand);
122  setOperationAction(ISD::SRL_PARTS,         MVT::i32,   Expand);
123  setOperationAction(ISD::FCOPYSIGN,         MVT::f32,   Expand);
124
125  // We don't have line number support yet.
126  setOperationAction(ISD::DBG_STOPPOINT,     MVT::Other, Expand);
127  setOperationAction(ISD::DEBUG_LOC,         MVT::Other, Expand);
128  setOperationAction(ISD::DBG_LABEL,         MVT::Other, Expand);
129  setOperationAction(ISD::EH_LABEL,          MVT::Other, Expand);
130
131  // Use the default for now
132  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
133  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
134  setOperationAction(ISD::MEMBARRIER,        MVT::Other, Expand);
135
136  if (Subtarget->isSingleFloat())
137    setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
138
139  if (!Subtarget->hasSEInReg()) {
140    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
141    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
142  }
143
144  if (!Subtarget->hasBitCount())
145    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
146
147  if (!Subtarget->hasSwap())
148    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
149
150  setStackPointerRegisterToSaveRestore(Mips::SP);
151  computeRegisterProperties();
152}
153
154
155MVT MipsTargetLowering::getSetCCResultType(MVT VT) const {
156  return MVT::i32;
157}
158
159
160SDValue MipsTargetLowering::
161LowerOperation(SDValue Op, SelectionDAG &DAG)
162{
163  switch (Op.getOpcode())
164  {
165    case ISD::AND:                return LowerANDOR(Op, DAG);
166    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
167    case ISD::CALL:               return LowerCALL(Op, DAG);
168    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
169    case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
170    case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
171    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
172    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
173    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
174    case ISD::OR:                 return LowerANDOR(Op, DAG);
175    case ISD::RET:                return LowerRET(Op, DAG);
176    case ISD::SELECT:             return LowerSELECT(Op, DAG);
177    case ISD::SETCC:              return LowerSETCC(Op, DAG);
178  }
179  return SDValue();
180}
181
182//===----------------------------------------------------------------------===//
183//  Lower helper functions
184//===----------------------------------------------------------------------===//
185
186// AddLiveIn - This helper function adds the specified physical register to the
187// MachineFunction as a live in value.  It also creates a corresponding
188// virtual register for it.
189static unsigned
190AddLiveIn(MachineFunction &MF, unsigned PReg, TargetRegisterClass *RC)
191{
192  assert(RC->contains(PReg) && "Not the correct regclass!");
193  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
194  MF.getRegInfo().addLiveIn(PReg, VReg);
195  return VReg;
196}
197
198// A address must be loaded from a small section if its size is less than the
199// small section size threshold. Data in this section must be addressed using
200// gp_rel operator.
201bool MipsTargetLowering::IsInSmallSection(unsigned Size) {
202  return (Size > 0 && (Size <= Subtarget->getSSectionThreshold()));
203}
204
205// Discover if this global address can be placed into small data/bss section.
206bool MipsTargetLowering::IsGlobalInSmallSection(GlobalValue *GV)
207{
208  const TargetData *TD = getTargetData();
209  const GlobalVariable *GVA = dyn_cast<GlobalVariable>(GV);
210
211  if (!GVA)
212    return false;
213
214  const Type *Ty = GV->getType()->getElementType();
215  unsigned Size = TD->getTypePaddedSize(Ty);
216
217  // if this is a internal constant string, there is a special
218  // section for it, but not in small data/bss.
219  if (GVA->hasInitializer() && GV->hasLocalLinkage()) {
220    Constant *C = GVA->getInitializer();
221    const ConstantArray *CVA = dyn_cast<ConstantArray>(C);
222    if (CVA && CVA->isCString())
223      return false;
224  }
225
226  return IsInSmallSection(Size);
227}
228
229// Get fp branch code (not opcode) from condition code.
230static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
231  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
232    return Mips::BRANCH_T;
233
234  if (CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT)
235    return Mips::BRANCH_F;
236
237  return Mips::BRANCH_INVALID;
238}
239
240static unsigned FPBranchCodeToOpc(Mips::FPBranchCode BC) {
241  switch(BC) {
242    default:
243      assert(0 && "Unknown branch code");
244    case Mips::BRANCH_T  : return Mips::BC1T;
245    case Mips::BRANCH_F  : return Mips::BC1F;
246    case Mips::BRANCH_TL : return Mips::BC1TL;
247    case Mips::BRANCH_FL : return Mips::BC1FL;
248  }
249}
250
251static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
252  switch (CC) {
253  default: assert(0 && "Unknown fp condition code!");
254  case ISD::SETEQ:
255  case ISD::SETOEQ: return Mips::FCOND_EQ;
256  case ISD::SETUNE: return Mips::FCOND_OGL;
257  case ISD::SETLT:
258  case ISD::SETOLT: return Mips::FCOND_OLT;
259  case ISD::SETGT:
260  case ISD::SETOGT: return Mips::FCOND_OGT;
261  case ISD::SETLE:
262  case ISD::SETOLE: return Mips::FCOND_OLE;
263  case ISD::SETGE:
264  case ISD::SETOGE: return Mips::FCOND_OGE;
265  case ISD::SETULT: return Mips::FCOND_ULT;
266  case ISD::SETULE: return Mips::FCOND_ULE;
267  case ISD::SETUGT: return Mips::FCOND_UGT;
268  case ISD::SETUGE: return Mips::FCOND_UGE;
269  case ISD::SETUO:  return Mips::FCOND_UN;
270  case ISD::SETO:   return Mips::FCOND_OR;
271  case ISD::SETNE:
272  case ISD::SETONE: return Mips::FCOND_NEQ;
273  case ISD::SETUEQ: return Mips::FCOND_UEQ;
274  }
275}
276
277MachineBasicBlock *
278MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
279                                                MachineBasicBlock *BB) const {
280  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
281  bool isFPCmp = false;
282  DebugLoc dl = MI->getDebugLoc();
283
284  switch (MI->getOpcode()) {
285  default: assert(false && "Unexpected instr type to insert");
286  case Mips::Select_FCC:
287  case Mips::Select_FCC_SO32:
288  case Mips::Select_FCC_AS32:
289  case Mips::Select_FCC_D32:
290    isFPCmp = true; // FALL THROUGH
291  case Mips::Select_CC:
292  case Mips::Select_CC_SO32:
293  case Mips::Select_CC_AS32:
294  case Mips::Select_CC_D32: {
295    // To "insert" a SELECT_CC instruction, we actually have to insert the
296    // diamond control-flow pattern.  The incoming instruction knows the
297    // destination vreg to set, the condition code register to branch on, the
298    // true/false values to select between, and a branch opcode to use.
299    const BasicBlock *LLVM_BB = BB->getBasicBlock();
300    MachineFunction::iterator It = BB;
301    ++It;
302
303    //  thisMBB:
304    //  ...
305    //   TrueVal = ...
306    //   setcc r1, r2, r3
307    //   bNE   r1, r0, copy1MBB
308    //   fallthrough --> copy0MBB
309    MachineBasicBlock *thisMBB  = BB;
310    MachineFunction *F = BB->getParent();
311    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
312    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
313
314    // Emit the right instruction according to the type of the operands compared
315    if (isFPCmp) {
316      // Find the condiction code present in the setcc operation.
317      Mips::CondCode CC = (Mips::CondCode)MI->getOperand(4).getImm();
318      // Get the branch opcode from the branch code.
319      unsigned Opc = FPBranchCodeToOpc(GetFPBranchCodeFromCond(CC));
320      BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
321    } else
322      BuildMI(BB, dl, TII->get(Mips::BNE)).addReg(MI->getOperand(1).getReg())
323        .addReg(Mips::ZERO).addMBB(sinkMBB);
324
325    F->insert(It, copy0MBB);
326    F->insert(It, sinkMBB);
327    // Update machine-CFG edges by first adding all successors of the current
328    // block to the new block which will contain the Phi node for the select.
329    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
330        e = BB->succ_end(); i != e; ++i)
331      sinkMBB->addSuccessor(*i);
332    // Next, remove all successors of the current block, and add the true
333    // and fallthrough blocks as its successors.
334    while(!BB->succ_empty())
335      BB->removeSuccessor(BB->succ_begin());
336    BB->addSuccessor(copy0MBB);
337    BB->addSuccessor(sinkMBB);
338
339    //  copy0MBB:
340    //   %FalseValue = ...
341    //   # fallthrough to sinkMBB
342    BB = copy0MBB;
343
344    // Update machine-CFG edges
345    BB->addSuccessor(sinkMBB);
346
347    //  sinkMBB:
348    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
349    //  ...
350    BB = sinkMBB;
351    BuildMI(BB, dl, TII->get(Mips::PHI), MI->getOperand(0).getReg())
352      .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB)
353      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB);
354
355    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
356    return BB;
357  }
358  }
359}
360
361//===----------------------------------------------------------------------===//
362//  Misc Lower Operation implementation
363//===----------------------------------------------------------------------===//
364
365SDValue MipsTargetLowering::
366LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG)
367{
368  SDValue Chain = Op.getOperand(0);
369  SDValue Size = Op.getOperand(1);
370  DebugLoc dl = Op.getDebugLoc();
371
372  // Get a reference from Mips stack pointer
373  SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, Mips::SP, MVT::i32);
374
375  // Subtract the dynamic size from the actual stack size to
376  // obtain the new stack size.
377  SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, StackPointer, Size);
378
379  // The Sub result contains the new stack start address, so it
380  // must be placed in the stack pointer register.
381  Chain = DAG.getCopyToReg(StackPointer.getValue(1), dl, Mips::SP, Sub);
382
383  // This node always has two return values: a new stack pointer
384  // value and a chain
385  SDValue Ops[2] = { Sub, Chain };
386  return DAG.getMergeValues(Ops, 2, dl);
387}
388
389SDValue MipsTargetLowering::
390LowerANDOR(SDValue Op, SelectionDAG &DAG)
391{
392  SDValue LHS   = Op.getOperand(0);
393  SDValue RHS   = Op.getOperand(1);
394  DebugLoc dl   = Op.getDebugLoc();
395
396  if (LHS.getOpcode() != MipsISD::FPCmp || RHS.getOpcode() != MipsISD::FPCmp)
397    return Op;
398
399  SDValue True  = DAG.getConstant(1, MVT::i32);
400  SDValue False = DAG.getConstant(0, MVT::i32);
401
402  SDValue LSEL = DAG.getNode(MipsISD::FPSelectCC, dl, True.getValueType(),
403                             LHS, True, False, LHS.getOperand(2));
404  SDValue RSEL = DAG.getNode(MipsISD::FPSelectCC, dl, True.getValueType(),
405                             RHS, True, False, RHS.getOperand(2));
406
407  return DAG.getNode(Op.getOpcode(), dl, MVT::i32, LSEL, RSEL);
408}
409
410SDValue MipsTargetLowering::
411LowerBRCOND(SDValue Op, SelectionDAG &DAG)
412{
413  // The first operand is the chain, the second is the condition, the third is
414  // the block to branch to if the condition is true.
415  SDValue Chain = Op.getOperand(0);
416  SDValue Dest = Op.getOperand(2);
417  DebugLoc dl = Op.getDebugLoc();
418
419  if (Op.getOperand(1).getOpcode() != MipsISD::FPCmp)
420    return Op;
421
422  SDValue CondRes = Op.getOperand(1);
423  SDValue CCNode  = CondRes.getOperand(2);
424  Mips::CondCode CC =
425    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
426  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
427
428  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
429             Dest, CondRes);
430}
431
432SDValue MipsTargetLowering::
433LowerSETCC(SDValue Op, SelectionDAG &DAG)
434{
435  // The operands to this are the left and right operands to compare (ops #0,
436  // and #1) and the condition code to compare them with (op #2) as a
437  // CondCodeSDNode.
438  SDValue LHS = Op.getOperand(0);
439  SDValue RHS = Op.getOperand(1);
440  DebugLoc dl = Op.getDebugLoc();
441
442  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
443
444  return DAG.getNode(MipsISD::FPCmp, dl, Op.getValueType(), LHS, RHS,
445                 DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
446}
447
448SDValue MipsTargetLowering::
449LowerSELECT(SDValue Op, SelectionDAG &DAG)
450{
451  SDValue Cond  = Op.getOperand(0);
452  SDValue True  = Op.getOperand(1);
453  SDValue False = Op.getOperand(2);
454  DebugLoc dl = Op.getDebugLoc();
455
456  // if the incomming condition comes from a integer compare, the select
457  // operation must be SelectCC or a conditional move if the subtarget
458  // supports it.
459  if (Cond.getOpcode() != MipsISD::FPCmp) {
460    if (Subtarget->hasCondMov() && !True.getValueType().isFloatingPoint())
461      return Op;
462    return DAG.getNode(MipsISD::SelectCC, dl, True.getValueType(),
463                       Cond, True, False);
464  }
465
466  // if the incomming condition comes from fpcmp, the select
467  // operation must use FPSelectCC.
468  SDValue CCNode = Cond.getOperand(2);
469  return DAG.getNode(MipsISD::FPSelectCC, dl, True.getValueType(),
470                     Cond, True, False, CCNode);
471}
472
473SDValue MipsTargetLowering::
474LowerGlobalAddress(SDValue Op, SelectionDAG &DAG)
475{
476  // FIXME there isn't actually debug info here
477  DebugLoc dl = Op.getDebugLoc();
478  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
479  SDValue GA = DAG.getTargetGlobalAddress(GV, MVT::i32);
480
481  if (!Subtarget->hasABICall()) {
482    const MVT *VTs = DAG.getNodeValueTypes(MVT::i32);
483    SDValue Ops[] = { GA };
484    // %gp_rel relocation
485    if (!isa<Function>(GV) && IsGlobalInSmallSection(GV)) {
486      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, 1, Ops, 1);
487      SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
488      return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode);
489    }
490    // %hi/%lo relocation
491    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, 1, Ops, 1);
492    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GA);
493    return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
494
495  } else { // Abicall relocations, TODO: make this cleaner.
496    SDValue ResNode = DAG.getLoad(MVT::i32, dl,
497                                  DAG.getEntryNode(), GA, NULL, 0);
498    // On functions and global targets not internal linked only
499    // a load from got/GP is necessary for PIC to work.
500    if (!GV->hasLocalLinkage() || isa<Function>(GV))
501      return ResNode;
502    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GA);
503    return DAG.getNode(ISD::ADD, dl, MVT::i32, ResNode, Lo);
504  }
505
506  assert(0 && "Dont know how to handle GlobalAddress");
507  return SDValue(0,0);
508}
509
510SDValue MipsTargetLowering::
511LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG)
512{
513  assert(0 && "TLS not implemented for MIPS.");
514  return SDValue(); // Not reached
515}
516
517SDValue MipsTargetLowering::
518LowerJumpTable(SDValue Op, SelectionDAG &DAG)
519{
520  SDValue ResNode;
521  SDValue HiPart;
522  // FIXME there isn't actually debug info here
523  DebugLoc dl = Op.getDebugLoc();
524
525  MVT PtrVT = Op.getValueType();
526  JumpTableSDNode *JT  = cast<JumpTableSDNode>(Op);
527  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
528
529  if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
530    const MVT *VTs = DAG.getNodeValueTypes(MVT::i32);
531    SDValue Ops[] = { JTI };
532    HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, 1, Ops, 1);
533  } else // Emit Load from Global Pointer
534    HiPart = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(), JTI, NULL, 0);
535
536  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, JTI);
537  ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
538
539  return ResNode;
540}
541
542SDValue MipsTargetLowering::
543LowerConstantPool(SDValue Op, SelectionDAG &DAG)
544{
545  SDValue ResNode;
546  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
547  Constant *C = N->getConstVal();
548  SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment());
549  // FIXME there isn't actually debug info here
550  DebugLoc dl = Op.getDebugLoc();
551
552  // gp_rel relocation
553  // FIXME: we should reference the constant pool using small data sections,
554  // but the asm printer currently doens't support this feature without
555  // hacking it. This feature should come soon so we can uncomment the
556  // stuff below.
557  //if (!Subtarget->hasABICall() &&
558  //    IsInSmallSection(getTargetData()->getTypePaddedSize(C->getType()))) {
559  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
560  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
561  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
562  //} else { // %hi/%lo relocation
563    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CP);
564    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CP);
565    ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
566  //}
567
568  return ResNode;
569}
570
571//===----------------------------------------------------------------------===//
572//                      Calling Convention Implementation
573//
574//  The lower operations present on calling convention works on this order:
575//      LowerCALL (virt regs --> phys regs, virt regs --> stack)
576//      LowerFORMAL_ARGUMENTS (phys --> virt regs, stack --> virt regs)
577//      LowerRET (virt regs --> phys regs)
578//      LowerCALL (phys regs --> virt regs)
579//
580//===----------------------------------------------------------------------===//
581
582#include "MipsGenCallingConv.inc"
583
584//===----------------------------------------------------------------------===//
585// TODO: Implement a generic logic using tblgen that can support this.
586// Mips O32 ABI rules:
587// ---
588// i32 - Passed in A0, A1, A2, A3 and stack
589// f32 - Only passed in f32 registers if no int reg has been used yet to hold
590//       an argument. Otherwise, passed in A1, A2, A3 and stack.
591// f64 - Only passed in two aliased f32 registers if no int reg has been used
592//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
593//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
594//       go to stack.
595//===----------------------------------------------------------------------===//
596
597static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
598                       MVT LocVT, CCValAssign::LocInfo LocInfo,
599                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
600
601  static const unsigned IntRegsSize=4, FloatRegsSize=2;
602
603  static const unsigned IntRegs[] = {
604      Mips::A0, Mips::A1, Mips::A2, Mips::A3
605  };
606  static const unsigned F32Regs[] = {
607      Mips::F12, Mips::F14
608  };
609  static const unsigned F64Regs[] = {
610      Mips::D6, Mips::D7
611  };
612
613  unsigned Reg=0;
614  unsigned UnallocIntReg = State.getFirstUnallocated(IntRegs, IntRegsSize);
615  bool IntRegUsed = (IntRegs[UnallocIntReg] != (unsigned (Mips::A0)));
616
617  // Promote i8 and i16
618  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
619    LocVT = MVT::i32;
620    if (ArgFlags.isSExt())
621      LocInfo = CCValAssign::SExt;
622    else if (ArgFlags.isZExt())
623      LocInfo = CCValAssign::ZExt;
624    else
625      LocInfo = CCValAssign::AExt;
626  }
627
628  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && IntRegUsed)) {
629    Reg = State.AllocateReg(IntRegs, IntRegsSize);
630    IntRegUsed = true;
631    LocVT = MVT::i32;
632  }
633
634  if (ValVT.isFloatingPoint() && !IntRegUsed) {
635    if (ValVT == MVT::f32)
636      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
637    else
638      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
639  }
640
641  if (ValVT == MVT::f64 && IntRegUsed) {
642    if (UnallocIntReg != IntRegsSize) {
643      // If we hit register A3 as the first not allocated, we must
644      // mark it as allocated (shadow) and use the stack instead.
645      if (IntRegs[UnallocIntReg] != (unsigned (Mips::A3)))
646        Reg = Mips::A2;
647      for (;UnallocIntReg < IntRegsSize; ++UnallocIntReg)
648        State.AllocateReg(UnallocIntReg);
649    }
650    LocVT = MVT::i32;
651  }
652
653  if (!Reg) {
654    unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
655    unsigned Offset = State.AllocateStack(SizeInBytes, SizeInBytes);
656    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
657  } else
658    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
659
660  return false; // CC must always match
661}
662
663//===----------------------------------------------------------------------===//
664//                  CALL Calling Convention Implementation
665//===----------------------------------------------------------------------===//
666
667/// LowerCALL - functions arguments are copied from virtual regs to
668/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
669/// TODO: isVarArg, isTailCall.
670SDValue MipsTargetLowering::
671LowerCALL(SDValue Op, SelectionDAG &DAG)
672{
673  MachineFunction &MF = DAG.getMachineFunction();
674
675  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
676  SDValue Chain = TheCall->getChain();
677  SDValue Callee = TheCall->getCallee();
678  bool isVarArg = TheCall->isVarArg();
679  unsigned CC = TheCall->getCallingConv();
680  DebugLoc dl = TheCall->getDebugLoc();
681
682  MachineFrameInfo *MFI = MF.getFrameInfo();
683
684  // Analyze operands of the call, assigning locations to each operand.
685  SmallVector<CCValAssign, 16> ArgLocs;
686  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
687
688  // To meet O32 ABI, Mips must always allocate 16 bytes on
689  // the stack (even if less than 4 are used as arguments)
690  if (Subtarget->isABI_O32()) {
691    int VTsize = MVT(MVT::i32).getSizeInBits()/8;
692    MFI->CreateFixedObject(VTsize, (VTsize*3));
693    CCInfo.AnalyzeCallOperands(TheCall, CC_MipsO32);
694  } else
695    CCInfo.AnalyzeCallOperands(TheCall, CC_Mips);
696
697  // Get a count of how many bytes are to be pushed on the stack.
698  unsigned NumBytes = CCInfo.getNextStackOffset();
699  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
700
701  // With EABI is it possible to have 16 args on registers.
702  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
703  SmallVector<SDValue, 8> MemOpChains;
704
705  // First/LastArgStackLoc contains the first/last
706  // "at stack" argument location.
707  int LastArgStackLoc = 0;
708  unsigned FirstStackArgLoc = (Subtarget->isABI_EABI() ? 0 : 16);
709
710  // Walk the register/memloc assignments, inserting copies/loads.
711  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
712    SDValue Arg = TheCall->getArg(i);
713    CCValAssign &VA = ArgLocs[i];
714
715    // Promote the value if needed.
716    switch (VA.getLocInfo()) {
717    default: assert(0 && "Unknown loc info!");
718    case CCValAssign::Full:
719      if (Subtarget->isABI_O32() && VA.isRegLoc()) {
720        if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i32)
721          Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Arg);
722        if (VA.getValVT() == MVT::f64 && VA.getLocVT() == MVT::i32) {
723          Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
724          SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Arg,
725                                   DAG.getConstant(0, getPointerTy()));
726          SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Arg,
727                                   DAG.getConstant(1, getPointerTy()));
728          RegsToPass.push_back(std::make_pair(VA.getLocReg(), Lo));
729          RegsToPass.push_back(std::make_pair(VA.getLocReg()+1, Hi));
730          continue;
731        }
732      }
733      break;
734    case CCValAssign::SExt:
735      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
736      break;
737    case CCValAssign::ZExt:
738      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
739      break;
740    case CCValAssign::AExt:
741      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
742      break;
743    }
744
745    // Arguments that can be passed on register must be kept at
746    // RegsToPass vector
747    if (VA.isRegLoc()) {
748      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
749      continue;
750    }
751
752    // Register can't get to this point...
753    assert(VA.isMemLoc());
754
755    // Create the frame index object for this incoming parameter
756    // This guarantees that when allocating Local Area the firsts
757    // 16 bytes which are alwayes reserved won't be overwritten
758    // if O32 ABI is used. For EABI the first address is zero.
759    LastArgStackLoc = (FirstStackArgLoc + VA.getLocMemOffset());
760    int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
761                                    LastArgStackLoc);
762
763    SDValue PtrOff = DAG.getFrameIndex(FI,getPointerTy());
764
765    // emit ISD::STORE whichs stores the
766    // parameter value to a stack Location
767    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0));
768  }
769
770  // Transform all store nodes into one single node because all store
771  // nodes are independent of each other.
772  if (!MemOpChains.empty())
773    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
774                        &MemOpChains[0], MemOpChains.size());
775
776  // Build a sequence of copy-to-reg nodes chained together with token
777  // chain and flag operands which copy the outgoing args into registers.
778  // The InFlag in necessary since all emited instructions must be
779  // stuck together.
780  SDValue InFlag;
781  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
782    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
783                             RegsToPass[i].second, InFlag);
784    InFlag = Chain.getValue(1);
785  }
786
787  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
788  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
789  // node so that legalize doesn't hack it.
790  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
791    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
792  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
793    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
794
795  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
796  //             = Chain, Callee, Reg#1, Reg#2, ...
797  //
798  // Returns a chain & a flag for retval copy to use.
799  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
800  SmallVector<SDValue, 8> Ops;
801  Ops.push_back(Chain);
802  Ops.push_back(Callee);
803
804  // Add argument registers to the end of the list so that they are
805  // known live into the call.
806  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
807    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
808                                  RegsToPass[i].second.getValueType()));
809
810  if (InFlag.getNode())
811    Ops.push_back(InFlag);
812
813  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
814  InFlag = Chain.getValue(1);
815
816  // Create the CALLSEQ_END node.
817  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
818                             DAG.getIntPtrConstant(0, true), InFlag);
819  InFlag = Chain.getValue(1);
820
821  // Create a stack location to hold GP when PIC is used. This stack
822  // location is used on function prologue to save GP and also after all
823  // emited CALL's to restore GP.
824  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
825      // Function can have an arbitrary number of calls, so
826      // hold the LastArgStackLoc with the biggest offset.
827      int FI;
828      MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
829      if (LastArgStackLoc >= MipsFI->getGPStackOffset()) {
830        LastArgStackLoc = (!LastArgStackLoc) ? (16) : (LastArgStackLoc+4);
831        // Create the frame index only once. SPOffset here can be anything
832        // (this will be fixed on processFunctionBeforeFrameFinalized)
833        if (MipsFI->getGPStackOffset() == -1) {
834          FI = MFI->CreateFixedObject(4, 0);
835          MipsFI->setGPFI(FI);
836        }
837        MipsFI->setGPStackOffset(LastArgStackLoc);
838      }
839
840      // Reload GP value.
841      FI = MipsFI->getGPFI();
842      SDValue FIN = DAG.getFrameIndex(FI,getPointerTy());
843      SDValue GPLoad = DAG.getLoad(MVT::i32, dl, Chain, FIN, NULL, 0);
844      Chain = GPLoad.getValue(1);
845      Chain = DAG.getCopyToReg(Chain, dl, DAG.getRegister(Mips::GP, MVT::i32),
846                               GPLoad, SDValue(0,0));
847      InFlag = Chain.getValue(1);
848  }
849
850  // Handle result values, copying them out of physregs into vregs that we
851  // return.
852  return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG), Op.getResNo());
853}
854
855/// LowerCallResult - Lower the result values of an ISD::CALL into the
856/// appropriate copies out of appropriate physical registers.  This assumes that
857/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
858/// being lowered. Returns a SDNode with the same number of values as the
859/// ISD::CALL.
860SDNode *MipsTargetLowering::
861LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
862        unsigned CallingConv, SelectionDAG &DAG) {
863
864  bool isVarArg = TheCall->isVarArg();
865  DebugLoc dl = TheCall->getDebugLoc();
866
867  // Assign locations to each value returned by this call.
868  SmallVector<CCValAssign, 16> RVLocs;
869  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
870
871  CCInfo.AnalyzeCallResult(TheCall, RetCC_Mips);
872  SmallVector<SDValue, 8> ResultVals;
873
874  // Copy all of the result registers out of their specified physreg.
875  for (unsigned i = 0; i != RVLocs.size(); ++i) {
876    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
877                                 RVLocs[i].getValVT(), InFlag).getValue(1);
878    InFlag = Chain.getValue(2);
879    ResultVals.push_back(Chain.getValue(0));
880  }
881
882  ResultVals.push_back(Chain);
883
884  // Merge everything together with a MERGE_VALUES node.
885  return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
886                     &ResultVals[0], ResultVals.size()).getNode();
887}
888
889//===----------------------------------------------------------------------===//
890//             FORMAL_ARGUMENTS Calling Convention Implementation
891//===----------------------------------------------------------------------===//
892
893/// LowerFORMAL_ARGUMENTS - transform physical registers into
894/// virtual registers and generate load operations for
895/// arguments places on the stack.
896/// TODO: isVarArg
897SDValue MipsTargetLowering::
898LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG)
899{
900  SDValue Root = Op.getOperand(0);
901  MachineFunction &MF = DAG.getMachineFunction();
902  MachineFrameInfo *MFI = MF.getFrameInfo();
903  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
904  DebugLoc dl = Op.getDebugLoc();
905
906  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
907  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
908
909  unsigned StackReg = MF.getTarget().getRegisterInfo()->getFrameRegister(MF);
910
911  // GP must be live into PIC and non-PIC call target.
912  AddLiveIn(MF, Mips::GP, Mips::CPURegsRegisterClass);
913
914  // Assign locations to all of the incoming arguments.
915  SmallVector<CCValAssign, 16> ArgLocs;
916  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
917
918  if (Subtarget->isABI_O32())
919    CCInfo.AnalyzeFormalArguments(Op.getNode(), CC_MipsO32);
920  else
921    CCInfo.AnalyzeFormalArguments(Op.getNode(), CC_Mips);
922
923  SmallVector<SDValue, 16> ArgValues;
924  SDValue StackPtr;
925
926  unsigned FirstStackArgLoc = (Subtarget->isABI_EABI() ? 0 : 16);
927
928  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
929    CCValAssign &VA = ArgLocs[i];
930
931    // Arguments stored on registers
932    if (VA.isRegLoc()) {
933      MVT RegVT = VA.getLocVT();
934      TargetRegisterClass *RC = 0;
935
936      if (RegVT == MVT::i32)
937        RC = Mips::CPURegsRegisterClass;
938      else if (RegVT == MVT::f32) {
939        if (Subtarget->isSingleFloat())
940          RC = Mips::FGR32RegisterClass;
941        else
942          RC = Mips::AFGR32RegisterClass;
943      } else if (RegVT == MVT::f64) {
944        if (!Subtarget->isSingleFloat())
945          RC = Mips::AFGR64RegisterClass;
946      } else
947        assert(0 && "RegVT not supported by FORMAL_ARGUMENTS Lowering");
948
949      // Transform the arguments stored on
950      // physical registers into virtual ones
951      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
952      SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
953
954      // If this is an 8 or 16-bit value, it has been passed promoted
955      // to 32 bits.  Insert an assert[sz]ext to capture this, then
956      // truncate to the right size.
957      if (VA.getLocInfo() != CCValAssign::Full) {
958        unsigned Opcode;
959        if (VA.getLocInfo() == CCValAssign::SExt)
960          Opcode = ISD::AssertSext;
961        else if (VA.getLocInfo() == CCValAssign::ZExt)
962          Opcode = ISD::AssertZext;
963        ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
964                               DAG.getValueType(VA.getValVT()));
965        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
966      }
967
968      // Handle O32 ABI cases: i32->f32 and (i32,i32)->f64
969      if (Subtarget->isABI_O32()) {
970        if (RegVT == MVT::i32 && VA.getValVT() == MVT::f32)
971          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, ArgValue);
972        if (RegVT == MVT::i32 && VA.getValVT() == MVT::f64) {
973          unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
974                                    VA.getLocReg()+1, RC);
975          SDValue ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg2, RegVT);
976          SDValue Hi = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, ArgValue);
977          SDValue Lo = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, ArgValue2);
978          ArgValue = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::f64, Lo, Hi);
979        }
980      }
981
982      ArgValues.push_back(ArgValue);
983
984      // To meet ABI, when VARARGS are passed on registers, the registers
985      // must have their values written to the caller stack frame.
986      if ((isVarArg) && (Subtarget->isABI_O32())) {
987        if (StackPtr.getNode() == 0)
988          StackPtr = DAG.getRegister(StackReg, getPointerTy());
989
990        // The stack pointer offset is relative to the caller stack frame.
991        // Since the real stack size is unknown here, a negative SPOffset
992        // is used so there's a way to adjust these offsets when the stack
993        // size get known (on EliminateFrameIndex). A dummy SPOffset is
994        // used instead of a direct negative address (which is recorded to
995        // be used on emitPrologue) to avoid mis-calc of the first stack
996        // offset on PEI::calculateFrameObjectOffsets.
997        // Arguments are always 32-bit.
998        int FI = MFI->CreateFixedObject(4, 0);
999        MipsFI->recordStoreVarArgsFI(FI, -(4+(i*4)));
1000        SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
1001
1002        // emit ISD::STORE whichs stores the
1003        // parameter value to a stack Location
1004        ArgValues.push_back(DAG.getStore(Root, dl, ArgValue, PtrOff, NULL, 0));
1005      }
1006
1007    } else { // VA.isRegLoc()
1008
1009      // sanity check
1010      assert(VA.isMemLoc());
1011
1012      // The stack pointer offset is relative to the caller stack frame.
1013      // Since the real stack size is unknown here, a negative SPOffset
1014      // is used so there's a way to adjust these offsets when the stack
1015      // size get known (on EliminateFrameIndex). A dummy SPOffset is
1016      // used instead of a direct negative address (which is recorded to
1017      // be used on emitPrologue) to avoid mis-calc of the first stack
1018      // offset on PEI::calculateFrameObjectOffsets.
1019      // Arguments are always 32-bit.
1020      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
1021      int FI = MFI->CreateFixedObject(ArgSize, 0);
1022      MipsFI->recordLoadArgsFI(FI, -(ArgSize+
1023        (FirstStackArgLoc + VA.getLocMemOffset())));
1024
1025      // Create load nodes to retrieve arguments from the stack
1026      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1027      ArgValues.push_back(DAG.getLoad(VA.getValVT(), dl, Root, FIN, NULL, 0));
1028    }
1029  }
1030
1031  // The mips ABIs for returning structs by value requires that we copy
1032  // the sret argument into $v0 for the return. Save the argument into
1033  // a virtual register so that we can access it from the return points.
1034  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1035    unsigned Reg = MipsFI->getSRetReturnReg();
1036    if (!Reg) {
1037      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
1038      MipsFI->setSRetReturnReg(Reg);
1039    }
1040    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, ArgValues[0]);
1041    Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Root);
1042  }
1043
1044  ArgValues.push_back(Root);
1045
1046  // Return the new list of results.
1047  return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1048                     &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1049}
1050
1051//===----------------------------------------------------------------------===//
1052//               Return Value Calling Convention Implementation
1053//===----------------------------------------------------------------------===//
1054
1055SDValue MipsTargetLowering::
1056LowerRET(SDValue Op, SelectionDAG &DAG)
1057{
1058  // CCValAssign - represent the assignment of
1059  // the return value to a location
1060  SmallVector<CCValAssign, 16> RVLocs;
1061  unsigned CC   = DAG.getMachineFunction().getFunction()->getCallingConv();
1062  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1063  DebugLoc dl = Op.getDebugLoc();
1064
1065  // CCState - Info about the registers and stack slot.
1066  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
1067
1068  // Analize return values of ISD::RET
1069  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_Mips);
1070
1071  // If this is the first return lowered for this function, add
1072  // the regs to the liveout set for the function.
1073  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1074    for (unsigned i = 0; i != RVLocs.size(); ++i)
1075      if (RVLocs[i].isRegLoc())
1076        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1077  }
1078
1079  // The chain is always operand #0
1080  SDValue Chain = Op.getOperand(0);
1081  SDValue Flag;
1082
1083  // Copy the result values into the output registers.
1084  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1085    CCValAssign &VA = RVLocs[i];
1086    assert(VA.isRegLoc() && "Can only return in registers!");
1087
1088    // ISD::RET => ret chain, (regnum1,val1), ...
1089    // So i*2+1 index only the regnums
1090    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1091                             Op.getOperand(i*2+1), Flag);
1092
1093    // guarantee that all emitted copies are
1094    // stuck together, avoiding something bad
1095    Flag = Chain.getValue(1);
1096  }
1097
1098  // The mips ABIs for returning structs by value requires that we copy
1099  // the sret argument into $v0 for the return. We saved the argument into
1100  // a virtual register in the entry block, so now we copy the value out
1101  // and into $v0.
1102  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1103    MachineFunction &MF      = DAG.getMachineFunction();
1104    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1105    unsigned Reg = MipsFI->getSRetReturnReg();
1106
1107    if (!Reg)
1108      assert(0 && "sret virtual register not created in the entry block");
1109    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1110
1111    Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
1112    Flag = Chain.getValue(1);
1113  }
1114
1115  // Return on Mips is always a "jr $ra"
1116  if (Flag.getNode())
1117    return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
1118                       Chain, DAG.getRegister(Mips::RA, MVT::i32), Flag);
1119  else // Return Void
1120    return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
1121                       Chain, DAG.getRegister(Mips::RA, MVT::i32));
1122}
1123
1124//===----------------------------------------------------------------------===//
1125//                           Mips Inline Assembly Support
1126//===----------------------------------------------------------------------===//
1127
1128/// getConstraintType - Given a constraint letter, return the type of
1129/// constraint it is for this target.
1130MipsTargetLowering::ConstraintType MipsTargetLowering::
1131getConstraintType(const std::string &Constraint) const
1132{
1133  // Mips specific constrainy
1134  // GCC config/mips/constraints.md
1135  //
1136  // 'd' : An address register. Equivalent to r
1137  //       unless generating MIPS16 code.
1138  // 'y' : Equivalent to r; retained for
1139  //       backwards compatibility.
1140  // 'f' : Floating Point registers.
1141  if (Constraint.size() == 1) {
1142    switch (Constraint[0]) {
1143      default : break;
1144      case 'd':
1145      case 'y':
1146      case 'f':
1147        return C_RegisterClass;
1148        break;
1149    }
1150  }
1151  return TargetLowering::getConstraintType(Constraint);
1152}
1153
1154/// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1155/// return a list of registers that can be used to satisfy the constraint.
1156/// This should only be used for C_RegisterClass constraints.
1157std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
1158getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
1159{
1160  if (Constraint.size() == 1) {
1161    switch (Constraint[0]) {
1162    case 'r':
1163      return std::make_pair(0U, Mips::CPURegsRegisterClass);
1164    case 'f':
1165      if (VT == MVT::f32) {
1166        if (Subtarget->isSingleFloat())
1167          return std::make_pair(0U, Mips::FGR32RegisterClass);
1168        else
1169          return std::make_pair(0U, Mips::AFGR32RegisterClass);
1170      }
1171      if (VT == MVT::f64)
1172        if ((!Subtarget->isSingleFloat()) && (!Subtarget->isFP64bit()))
1173          return std::make_pair(0U, Mips::AFGR64RegisterClass);
1174    }
1175  }
1176  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
1177}
1178
1179/// Given a register class constraint, like 'r', if this corresponds directly
1180/// to an LLVM register class, return a register of 0 and the register class
1181/// pointer.
1182std::vector<unsigned> MipsTargetLowering::
1183getRegClassForInlineAsmConstraint(const std::string &Constraint,
1184                                  MVT VT) const
1185{
1186  if (Constraint.size() != 1)
1187    return std::vector<unsigned>();
1188
1189  switch (Constraint[0]) {
1190    default : break;
1191    case 'r':
1192    // GCC Mips Constraint Letters
1193    case 'd':
1194    case 'y':
1195      return make_vector<unsigned>(Mips::T0, Mips::T1, Mips::T2, Mips::T3,
1196             Mips::T4, Mips::T5, Mips::T6, Mips::T7, Mips::S0, Mips::S1,
1197             Mips::S2, Mips::S3, Mips::S4, Mips::S5, Mips::S6, Mips::S7,
1198             Mips::T8, 0);
1199
1200    case 'f':
1201      if (VT == MVT::f32) {
1202        if (Subtarget->isSingleFloat())
1203          return make_vector<unsigned>(Mips::F2, Mips::F3, Mips::F4, Mips::F5,
1204                 Mips::F6, Mips::F7, Mips::F8, Mips::F9, Mips::F10, Mips::F11,
1205                 Mips::F20, Mips::F21, Mips::F22, Mips::F23, Mips::F24,
1206                 Mips::F25, Mips::F26, Mips::F27, Mips::F28, Mips::F29,
1207                 Mips::F30, Mips::F31, 0);
1208        else
1209          return make_vector<unsigned>(Mips::F2, Mips::F4, Mips::F6, Mips::F8,
1210                 Mips::F10, Mips::F20, Mips::F22, Mips::F24, Mips::F26,
1211                 Mips::F28, Mips::F30, 0);
1212      }
1213
1214      if (VT == MVT::f64)
1215        if ((!Subtarget->isSingleFloat()) && (!Subtarget->isFP64bit()))
1216          return make_vector<unsigned>(Mips::D1, Mips::D2, Mips::D3, Mips::D4,
1217                 Mips::D5, Mips::D10, Mips::D11, Mips::D12, Mips::D13,
1218                 Mips::D14, Mips::D15, 0);
1219  }
1220  return std::vector<unsigned>();
1221}
1222
1223bool
1224MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1225  // The Mips target isn't yet aware of offsets.
1226  return false;
1227}
1228