X86AsmParser.cpp revision 00743c2218ff3f0f4edce972e2d88893a19e6ef8
1//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9 10#include "llvm/Target/TargetAsmParser.h" 11#include "X86.h" 12#include "X86Subtarget.h" 13#include "llvm/Target/TargetRegistry.h" 14#include "llvm/Target/TargetAsmParser.h" 15#include "llvm/MC/MCStreamer.h" 16#include "llvm/MC/MCExpr.h" 17#include "llvm/MC/MCInst.h" 18#include "llvm/MC/MCParser/MCAsmLexer.h" 19#include "llvm/MC/MCParser/MCAsmParser.h" 20#include "llvm/MC/MCParser/MCParsedAsmOperand.h" 21#include "llvm/ADT/SmallString.h" 22#include "llvm/ADT/SmallVector.h" 23#include "llvm/ADT/StringExtras.h" 24#include "llvm/ADT/StringSwitch.h" 25#include "llvm/ADT/Twine.h" 26#include "llvm/Support/SourceMgr.h" 27#include "llvm/Support/raw_ostream.h" 28using namespace llvm; 29 30namespace { 31struct X86Operand; 32 33class X86ATTAsmParser : public TargetAsmParser { 34 MCAsmParser &Parser; 35 TargetMachine &TM; 36 37protected: 38 unsigned Is64Bit : 1; 39 40private: 41 MCAsmParser &getParser() const { return Parser; } 42 43 MCAsmLexer &getLexer() const { return Parser.getLexer(); } 44 45 bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); } 46 47 X86Operand *ParseOperand(); 48 X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc); 49 50 bool ParseDirectiveWord(unsigned Size, SMLoc L); 51 52 bool MatchAndEmitInstruction(SMLoc IDLoc, 53 SmallVectorImpl<MCParsedAsmOperand*> &Operands, 54 MCStreamer &Out); 55 56 /// @name Auto-generated Matcher Functions 57 /// { 58 59#define GET_ASSEMBLER_HEADER 60#include "X86GenAsmMatcher.inc" 61 62 /// } 63 64public: 65 X86ATTAsmParser(const Target &T, MCAsmParser &parser, TargetMachine &TM) 66 : TargetAsmParser(T), Parser(parser), TM(TM) { 67 68 // Initialize the set of available features. 69 setAvailableFeatures(ComputeAvailableFeatures( 70 &TM.getSubtarget<X86Subtarget>())); 71 } 72 virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc); 73 74 virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc, 75 SmallVectorImpl<MCParsedAsmOperand*> &Operands); 76 77 virtual bool ParseDirective(AsmToken DirectiveID); 78}; 79 80class X86_32ATTAsmParser : public X86ATTAsmParser { 81public: 82 X86_32ATTAsmParser(const Target &T, MCAsmParser &Parser, TargetMachine &TM) 83 : X86ATTAsmParser(T, Parser, TM) { 84 Is64Bit = false; 85 } 86}; 87 88class X86_64ATTAsmParser : public X86ATTAsmParser { 89public: 90 X86_64ATTAsmParser(const Target &T, MCAsmParser &Parser, TargetMachine &TM) 91 : X86ATTAsmParser(T, Parser, TM) { 92 Is64Bit = true; 93 } 94}; 95 96} // end anonymous namespace 97 98/// @name Auto-generated Match Functions 99/// { 100 101static unsigned MatchRegisterName(StringRef Name); 102 103/// } 104 105namespace { 106 107/// X86Operand - Instances of this class represent a parsed X86 machine 108/// instruction. 109struct X86Operand : public MCParsedAsmOperand { 110 enum KindTy { 111 Token, 112 Register, 113 Immediate, 114 Memory 115 } Kind; 116 117 SMLoc StartLoc, EndLoc; 118 119 union { 120 struct { 121 const char *Data; 122 unsigned Length; 123 } Tok; 124 125 struct { 126 unsigned RegNo; 127 } Reg; 128 129 struct { 130 const MCExpr *Val; 131 } Imm; 132 133 struct { 134 unsigned SegReg; 135 const MCExpr *Disp; 136 unsigned BaseReg; 137 unsigned IndexReg; 138 unsigned Scale; 139 } Mem; 140 }; 141 142 X86Operand(KindTy K, SMLoc Start, SMLoc End) 143 : Kind(K), StartLoc(Start), EndLoc(End) {} 144 145 /// getStartLoc - Get the location of the first token of this operand. 146 SMLoc getStartLoc() const { return StartLoc; } 147 /// getEndLoc - Get the location of the last token of this operand. 148 SMLoc getEndLoc() const { return EndLoc; } 149 150 virtual void dump(raw_ostream &OS) const {} 151 152 StringRef getToken() const { 153 assert(Kind == Token && "Invalid access!"); 154 return StringRef(Tok.Data, Tok.Length); 155 } 156 void setTokenValue(StringRef Value) { 157 assert(Kind == Token && "Invalid access!"); 158 Tok.Data = Value.data(); 159 Tok.Length = Value.size(); 160 } 161 162 unsigned getReg() const { 163 assert(Kind == Register && "Invalid access!"); 164 return Reg.RegNo; 165 } 166 167 const MCExpr *getImm() const { 168 assert(Kind == Immediate && "Invalid access!"); 169 return Imm.Val; 170 } 171 172 const MCExpr *getMemDisp() const { 173 assert(Kind == Memory && "Invalid access!"); 174 return Mem.Disp; 175 } 176 unsigned getMemSegReg() const { 177 assert(Kind == Memory && "Invalid access!"); 178 return Mem.SegReg; 179 } 180 unsigned getMemBaseReg() const { 181 assert(Kind == Memory && "Invalid access!"); 182 return Mem.BaseReg; 183 } 184 unsigned getMemIndexReg() const { 185 assert(Kind == Memory && "Invalid access!"); 186 return Mem.IndexReg; 187 } 188 unsigned getMemScale() const { 189 assert(Kind == Memory && "Invalid access!"); 190 return Mem.Scale; 191 } 192 193 bool isToken() const {return Kind == Token; } 194 195 bool isImm() const { return Kind == Immediate; } 196 197 bool isImmSExti16i8() const { 198 if (!isImm()) 199 return false; 200 201 // If this isn't a constant expr, just assume it fits and let relaxation 202 // handle it. 203 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 204 if (!CE) 205 return true; 206 207 // Otherwise, check the value is in a range that makes sense for this 208 // extension. 209 uint64_t Value = CE->getValue(); 210 return (( Value <= 0x000000000000007FULL)|| 211 (0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)|| 212 (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); 213 } 214 bool isImmSExti32i8() const { 215 if (!isImm()) 216 return false; 217 218 // If this isn't a constant expr, just assume it fits and let relaxation 219 // handle it. 220 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 221 if (!CE) 222 return true; 223 224 // Otherwise, check the value is in a range that makes sense for this 225 // extension. 226 uint64_t Value = CE->getValue(); 227 return (( Value <= 0x000000000000007FULL)|| 228 (0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)|| 229 (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); 230 } 231 bool isImmSExti64i8() const { 232 if (!isImm()) 233 return false; 234 235 // If this isn't a constant expr, just assume it fits and let relaxation 236 // handle it. 237 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 238 if (!CE) 239 return true; 240 241 // Otherwise, check the value is in a range that makes sense for this 242 // extension. 243 uint64_t Value = CE->getValue(); 244 return (( Value <= 0x000000000000007FULL)|| 245 (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); 246 } 247 bool isImmSExti64i32() const { 248 if (!isImm()) 249 return false; 250 251 // If this isn't a constant expr, just assume it fits and let relaxation 252 // handle it. 253 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 254 if (!CE) 255 return true; 256 257 // Otherwise, check the value is in a range that makes sense for this 258 // extension. 259 uint64_t Value = CE->getValue(); 260 return (( Value <= 0x000000007FFFFFFFULL)|| 261 (0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); 262 } 263 264 bool isMem() const { return Kind == Memory; } 265 266 bool isAbsMem() const { 267 return Kind == Memory && !getMemSegReg() && !getMemBaseReg() && 268 !getMemIndexReg() && getMemScale() == 1; 269 } 270 271 bool isReg() const { return Kind == Register; } 272 273 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 274 // Add as immediates when possible. 275 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 276 Inst.addOperand(MCOperand::CreateImm(CE->getValue())); 277 else 278 Inst.addOperand(MCOperand::CreateExpr(Expr)); 279 } 280 281 void addRegOperands(MCInst &Inst, unsigned N) const { 282 assert(N == 1 && "Invalid number of operands!"); 283 Inst.addOperand(MCOperand::CreateReg(getReg())); 284 } 285 286 void addImmOperands(MCInst &Inst, unsigned N) const { 287 assert(N == 1 && "Invalid number of operands!"); 288 addExpr(Inst, getImm()); 289 } 290 291 void addMemOperands(MCInst &Inst, unsigned N) const { 292 assert((N == 5) && "Invalid number of operands!"); 293 Inst.addOperand(MCOperand::CreateReg(getMemBaseReg())); 294 Inst.addOperand(MCOperand::CreateImm(getMemScale())); 295 Inst.addOperand(MCOperand::CreateReg(getMemIndexReg())); 296 addExpr(Inst, getMemDisp()); 297 Inst.addOperand(MCOperand::CreateReg(getMemSegReg())); 298 } 299 300 void addAbsMemOperands(MCInst &Inst, unsigned N) const { 301 assert((N == 1) && "Invalid number of operands!"); 302 Inst.addOperand(MCOperand::CreateExpr(getMemDisp())); 303 } 304 305 static X86Operand *CreateToken(StringRef Str, SMLoc Loc) { 306 X86Operand *Res = new X86Operand(Token, Loc, Loc); 307 Res->Tok.Data = Str.data(); 308 Res->Tok.Length = Str.size(); 309 return Res; 310 } 311 312 static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc) { 313 X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc); 314 Res->Reg.RegNo = RegNo; 315 return Res; 316 } 317 318 static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc){ 319 X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc); 320 Res->Imm.Val = Val; 321 return Res; 322 } 323 324 /// Create an absolute memory operand. 325 static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc, 326 SMLoc EndLoc) { 327 X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc); 328 Res->Mem.SegReg = 0; 329 Res->Mem.Disp = Disp; 330 Res->Mem.BaseReg = 0; 331 Res->Mem.IndexReg = 0; 332 Res->Mem.Scale = 1; 333 return Res; 334 } 335 336 /// Create a generalized memory operand. 337 static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp, 338 unsigned BaseReg, unsigned IndexReg, 339 unsigned Scale, SMLoc StartLoc, SMLoc EndLoc) { 340 // We should never just have a displacement, that should be parsed as an 341 // absolute memory operand. 342 assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!"); 343 344 // The scale should always be one of {1,2,4,8}. 345 assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) && 346 "Invalid scale!"); 347 X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc); 348 Res->Mem.SegReg = SegReg; 349 Res->Mem.Disp = Disp; 350 Res->Mem.BaseReg = BaseReg; 351 Res->Mem.IndexReg = IndexReg; 352 Res->Mem.Scale = Scale; 353 return Res; 354 } 355}; 356 357} // end anonymous namespace. 358 359 360bool X86ATTAsmParser::ParseRegister(unsigned &RegNo, 361 SMLoc &StartLoc, SMLoc &EndLoc) { 362 RegNo = 0; 363 const AsmToken &TokPercent = Parser.getTok(); 364 assert(TokPercent.is(AsmToken::Percent) && "Invalid token kind!"); 365 StartLoc = TokPercent.getLoc(); 366 Parser.Lex(); // Eat percent token. 367 368 const AsmToken &Tok = Parser.getTok(); 369 if (Tok.isNot(AsmToken::Identifier)) 370 return Error(Tok.getLoc(), "invalid register name"); 371 372 // FIXME: Validate register for the current architecture; we have to do 373 // validation later, so maybe there is no need for this here. 374 RegNo = MatchRegisterName(Tok.getString()); 375 376 // If the match failed, try the register name as lowercase. 377 if (RegNo == 0) 378 RegNo = MatchRegisterName(LowercaseString(Tok.getString())); 379 380 // FIXME: This should be done using Requires<In32BitMode> and 381 // Requires<In64BitMode> so "eiz" usage in 64-bit instructions 382 // can be also checked. 383 if (RegNo == X86::RIZ && !Is64Bit) 384 return Error(Tok.getLoc(), "riz register in 64-bit mode only"); 385 386 // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens. 387 if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) { 388 RegNo = X86::ST0; 389 EndLoc = Tok.getLoc(); 390 Parser.Lex(); // Eat 'st' 391 392 // Check to see if we have '(4)' after %st. 393 if (getLexer().isNot(AsmToken::LParen)) 394 return false; 395 // Lex the paren. 396 getParser().Lex(); 397 398 const AsmToken &IntTok = Parser.getTok(); 399 if (IntTok.isNot(AsmToken::Integer)) 400 return Error(IntTok.getLoc(), "expected stack index"); 401 switch (IntTok.getIntVal()) { 402 case 0: RegNo = X86::ST0; break; 403 case 1: RegNo = X86::ST1; break; 404 case 2: RegNo = X86::ST2; break; 405 case 3: RegNo = X86::ST3; break; 406 case 4: RegNo = X86::ST4; break; 407 case 5: RegNo = X86::ST5; break; 408 case 6: RegNo = X86::ST6; break; 409 case 7: RegNo = X86::ST7; break; 410 default: return Error(IntTok.getLoc(), "invalid stack index"); 411 } 412 413 if (getParser().Lex().isNot(AsmToken::RParen)) 414 return Error(Parser.getTok().getLoc(), "expected ')'"); 415 416 EndLoc = Tok.getLoc(); 417 Parser.Lex(); // Eat ')' 418 return false; 419 } 420 421 // If this is "db[0-7]", match it as an alias 422 // for dr[0-7]. 423 if (RegNo == 0 && Tok.getString().size() == 3 && 424 Tok.getString().startswith("db")) { 425 switch (Tok.getString()[2]) { 426 case '0': RegNo = X86::DR0; break; 427 case '1': RegNo = X86::DR1; break; 428 case '2': RegNo = X86::DR2; break; 429 case '3': RegNo = X86::DR3; break; 430 case '4': RegNo = X86::DR4; break; 431 case '5': RegNo = X86::DR5; break; 432 case '6': RegNo = X86::DR6; break; 433 case '7': RegNo = X86::DR7; break; 434 } 435 436 if (RegNo != 0) { 437 EndLoc = Tok.getLoc(); 438 Parser.Lex(); // Eat it. 439 return false; 440 } 441 } 442 443 if (RegNo == 0) 444 return Error(Tok.getLoc(), "invalid register name"); 445 446 EndLoc = Tok.getLoc(); 447 Parser.Lex(); // Eat identifier token. 448 return false; 449} 450 451X86Operand *X86ATTAsmParser::ParseOperand() { 452 switch (getLexer().getKind()) { 453 default: 454 // Parse a memory operand with no segment register. 455 return ParseMemOperand(0, Parser.getTok().getLoc()); 456 case AsmToken::Percent: { 457 // Read the register. 458 unsigned RegNo; 459 SMLoc Start, End; 460 if (ParseRegister(RegNo, Start, End)) return 0; 461 if (RegNo == X86::EIZ || RegNo == X86::RIZ) { 462 Error(Start, "eiz and riz can only be used as index registers"); 463 return 0; 464 } 465 466 // If this is a segment register followed by a ':', then this is the start 467 // of a memory reference, otherwise this is a normal register reference. 468 if (getLexer().isNot(AsmToken::Colon)) 469 return X86Operand::CreateReg(RegNo, Start, End); 470 471 472 getParser().Lex(); // Eat the colon. 473 return ParseMemOperand(RegNo, Start); 474 } 475 case AsmToken::Dollar: { 476 // $42 -> immediate. 477 SMLoc Start = Parser.getTok().getLoc(), End; 478 Parser.Lex(); 479 const MCExpr *Val; 480 if (getParser().ParseExpression(Val, End)) 481 return 0; 482 return X86Operand::CreateImm(Val, Start, End); 483 } 484 } 485} 486 487/// ParseMemOperand: segment: disp(basereg, indexreg, scale). The '%ds:' prefix 488/// has already been parsed if present. 489X86Operand *X86ATTAsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) { 490 491 // We have to disambiguate a parenthesized expression "(4+5)" from the start 492 // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The 493 // only way to do this without lookahead is to eat the '(' and see what is 494 // after it. 495 const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext()); 496 if (getLexer().isNot(AsmToken::LParen)) { 497 SMLoc ExprEnd; 498 if (getParser().ParseExpression(Disp, ExprEnd)) return 0; 499 500 // After parsing the base expression we could either have a parenthesized 501 // memory address or not. If not, return now. If so, eat the (. 502 if (getLexer().isNot(AsmToken::LParen)) { 503 // Unless we have a segment register, treat this as an immediate. 504 if (SegReg == 0) 505 return X86Operand::CreateMem(Disp, MemStart, ExprEnd); 506 return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd); 507 } 508 509 // Eat the '('. 510 Parser.Lex(); 511 } else { 512 // Okay, we have a '('. We don't know if this is an expression or not, but 513 // so we have to eat the ( to see beyond it. 514 SMLoc LParenLoc = Parser.getTok().getLoc(); 515 Parser.Lex(); // Eat the '('. 516 517 if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) { 518 // Nothing to do here, fall into the code below with the '(' part of the 519 // memory operand consumed. 520 } else { 521 SMLoc ExprEnd; 522 523 // It must be an parenthesized expression, parse it now. 524 if (getParser().ParseParenExpression(Disp, ExprEnd)) 525 return 0; 526 527 // After parsing the base expression we could either have a parenthesized 528 // memory address or not. If not, return now. If so, eat the (. 529 if (getLexer().isNot(AsmToken::LParen)) { 530 // Unless we have a segment register, treat this as an immediate. 531 if (SegReg == 0) 532 return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd); 533 return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd); 534 } 535 536 // Eat the '('. 537 Parser.Lex(); 538 } 539 } 540 541 // If we reached here, then we just ate the ( of the memory operand. Process 542 // the rest of the memory operand. 543 unsigned BaseReg = 0, IndexReg = 0, Scale = 1; 544 545 if (getLexer().is(AsmToken::Percent)) { 546 SMLoc L; 547 if (ParseRegister(BaseReg, L, L)) return 0; 548 if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) { 549 Error(L, "eiz and riz can only be used as index registers"); 550 return 0; 551 } 552 } 553 554 if (getLexer().is(AsmToken::Comma)) { 555 Parser.Lex(); // Eat the comma. 556 557 // Following the comma we should have either an index register, or a scale 558 // value. We don't support the later form, but we want to parse it 559 // correctly. 560 // 561 // Not that even though it would be completely consistent to support syntax 562 // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this. 563 if (getLexer().is(AsmToken::Percent)) { 564 SMLoc L; 565 if (ParseRegister(IndexReg, L, L)) return 0; 566 567 if (getLexer().isNot(AsmToken::RParen)) { 568 // Parse the scale amount: 569 // ::= ',' [scale-expression] 570 if (getLexer().isNot(AsmToken::Comma)) { 571 Error(Parser.getTok().getLoc(), 572 "expected comma in scale expression"); 573 return 0; 574 } 575 Parser.Lex(); // Eat the comma. 576 577 if (getLexer().isNot(AsmToken::RParen)) { 578 SMLoc Loc = Parser.getTok().getLoc(); 579 580 int64_t ScaleVal; 581 if (getParser().ParseAbsoluteExpression(ScaleVal)) 582 return 0; 583 584 // Validate the scale amount. 585 if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){ 586 Error(Loc, "scale factor in address must be 1, 2, 4 or 8"); 587 return 0; 588 } 589 Scale = (unsigned)ScaleVal; 590 } 591 } 592 } else if (getLexer().isNot(AsmToken::RParen)) { 593 // A scale amount without an index is ignored. 594 // index. 595 SMLoc Loc = Parser.getTok().getLoc(); 596 597 int64_t Value; 598 if (getParser().ParseAbsoluteExpression(Value)) 599 return 0; 600 601 if (Value != 1) 602 Warning(Loc, "scale factor without index register is ignored"); 603 Scale = 1; 604 } 605 } 606 607 // Ok, we've eaten the memory operand, verify we have a ')' and eat it too. 608 if (getLexer().isNot(AsmToken::RParen)) { 609 Error(Parser.getTok().getLoc(), "unexpected token in memory operand"); 610 return 0; 611 } 612 SMLoc MemEnd = Parser.getTok().getLoc(); 613 Parser.Lex(); // Eat the ')'. 614 615 return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, 616 MemStart, MemEnd); 617} 618 619bool X86ATTAsmParser:: 620ParseInstruction(StringRef Name, SMLoc NameLoc, 621 SmallVectorImpl<MCParsedAsmOperand*> &Operands) { 622 StringRef PatchedName = Name; 623 624 // FIXME: Hack to recognize setneb as setne. 625 if (PatchedName.startswith("set") && PatchedName.endswith("b") && 626 PatchedName != "setb" && PatchedName != "setnb") 627 PatchedName = PatchedName.substr(0, Name.size()-1); 628 629 // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}. 630 const MCExpr *ExtraImmOp = 0; 631 if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) && 632 (PatchedName.endswith("ss") || PatchedName.endswith("sd") || 633 PatchedName.endswith("ps") || PatchedName.endswith("pd"))) { 634 bool IsVCMP = PatchedName.startswith("vcmp"); 635 unsigned SSECCIdx = IsVCMP ? 4 : 3; 636 unsigned SSEComparisonCode = StringSwitch<unsigned>( 637 PatchedName.slice(SSECCIdx, PatchedName.size() - 2)) 638 .Case("eq", 0) 639 .Case("lt", 1) 640 .Case("le", 2) 641 .Case("unord", 3) 642 .Case("neq", 4) 643 .Case("nlt", 5) 644 .Case("nle", 6) 645 .Case("ord", 7) 646 .Case("eq_uq", 8) 647 .Case("nge", 9) 648 .Case("ngt", 0x0A) 649 .Case("false", 0x0B) 650 .Case("neq_oq", 0x0C) 651 .Case("ge", 0x0D) 652 .Case("gt", 0x0E) 653 .Case("true", 0x0F) 654 .Case("eq_os", 0x10) 655 .Case("lt_oq", 0x11) 656 .Case("le_oq", 0x12) 657 .Case("unord_s", 0x13) 658 .Case("neq_us", 0x14) 659 .Case("nlt_uq", 0x15) 660 .Case("nle_uq", 0x16) 661 .Case("ord_s", 0x17) 662 .Case("eq_us", 0x18) 663 .Case("nge_uq", 0x19) 664 .Case("ngt_uq", 0x1A) 665 .Case("false_os", 0x1B) 666 .Case("neq_os", 0x1C) 667 .Case("ge_oq", 0x1D) 668 .Case("gt_oq", 0x1E) 669 .Case("true_us", 0x1F) 670 .Default(~0U); 671 if (SSEComparisonCode != ~0U) { 672 ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode, 673 getParser().getContext()); 674 if (PatchedName.endswith("ss")) { 675 PatchedName = IsVCMP ? "vcmpss" : "cmpss"; 676 } else if (PatchedName.endswith("sd")) { 677 PatchedName = IsVCMP ? "vcmpsd" : "cmpsd"; 678 } else if (PatchedName.endswith("ps")) { 679 PatchedName = IsVCMP ? "vcmpps" : "cmpps"; 680 } else { 681 assert(PatchedName.endswith("pd") && "Unexpected mnemonic!"); 682 PatchedName = IsVCMP ? "vcmppd" : "cmppd"; 683 } 684 } 685 } 686 687 // FIXME: Hack to recognize vpclmul<src1_quadword, src2_quadword>dq 688 if (PatchedName.startswith("vpclmul")) { 689 unsigned CLMULQuadWordSelect = StringSwitch<unsigned>( 690 PatchedName.slice(7, PatchedName.size() - 2)) 691 .Case("lqlq", 0x00) // src1[63:0], src2[63:0] 692 .Case("hqlq", 0x01) // src1[127:64], src2[63:0] 693 .Case("lqhq", 0x10) // src1[63:0], src2[127:64] 694 .Case("hqhq", 0x11) // src1[127:64], src2[127:64] 695 .Default(~0U); 696 if (CLMULQuadWordSelect != ~0U) { 697 ExtraImmOp = MCConstantExpr::Create(CLMULQuadWordSelect, 698 getParser().getContext()); 699 assert(PatchedName.endswith("dq") && "Unexpected mnemonic!"); 700 PatchedName = "vpclmulqdq"; 701 } 702 } 703 704 Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc)); 705 706 if (ExtraImmOp) 707 Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc)); 708 709 710 // Determine whether this is an instruction prefix. 711 bool isPrefix = 712 Name == "lock" || Name == "rep" || 713 Name == "repe" || Name == "repz" || 714 Name == "repne" || Name == "repnz" || 715 Name == "rex64" || Name == "data16"; 716 717 718 // This does the actual operand parsing. Don't parse any more if we have a 719 // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we 720 // just want to parse the "lock" as the first instruction and the "incl" as 721 // the next one. 722 if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) { 723 724 // Parse '*' modifier. 725 if (getLexer().is(AsmToken::Star)) { 726 SMLoc Loc = Parser.getTok().getLoc(); 727 Operands.push_back(X86Operand::CreateToken("*", Loc)); 728 Parser.Lex(); // Eat the star. 729 } 730 731 // Read the first operand. 732 if (X86Operand *Op = ParseOperand()) 733 Operands.push_back(Op); 734 else { 735 Parser.EatToEndOfStatement(); 736 return true; 737 } 738 739 while (getLexer().is(AsmToken::Comma)) { 740 Parser.Lex(); // Eat the comma. 741 742 // Parse and remember the operand. 743 if (X86Operand *Op = ParseOperand()) 744 Operands.push_back(Op); 745 else { 746 Parser.EatToEndOfStatement(); 747 return true; 748 } 749 } 750 751 if (getLexer().isNot(AsmToken::EndOfStatement)) { 752 SMLoc Loc = getLexer().getLoc(); 753 Parser.EatToEndOfStatement(); 754 return Error(Loc, "unexpected token in argument list"); 755 } 756 } 757 758 if (getLexer().is(AsmToken::EndOfStatement)) 759 Parser.Lex(); // Consume the EndOfStatement 760 else if (isPrefix && getLexer().is(AsmToken::Slash)) 761 Parser.Lex(); // Consume the prefix separator Slash 762 763 // This is a terrible hack to handle "out[bwl]? %al, (%dx)" -> 764 // "outb %al, %dx". Out doesn't take a memory form, but this is a widely 765 // documented form in various unofficial manuals, so a lot of code uses it. 766 if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") && 767 Operands.size() == 3) { 768 X86Operand &Op = *(X86Operand*)Operands.back(); 769 if (Op.isMem() && Op.Mem.SegReg == 0 && 770 isa<MCConstantExpr>(Op.Mem.Disp) && 771 cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 && 772 Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) { 773 SMLoc Loc = Op.getEndLoc(); 774 Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc); 775 delete &Op; 776 } 777 } 778 // Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al". 779 if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") && 780 Operands.size() == 3) { 781 X86Operand &Op = *(X86Operand*)Operands.begin()[1]; 782 if (Op.isMem() && Op.Mem.SegReg == 0 && 783 isa<MCConstantExpr>(Op.Mem.Disp) && 784 cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 && 785 Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) { 786 SMLoc Loc = Op.getEndLoc(); 787 Operands.begin()[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc); 788 delete &Op; 789 } 790 } 791 792 // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>. Canonicalize to 793 // "shift <op>". 794 if ((Name.startswith("shr") || Name.startswith("sar") || 795 Name.startswith("shl") || Name.startswith("sal") || 796 Name.startswith("rcl") || Name.startswith("rcr") || 797 Name.startswith("rol") || Name.startswith("ror")) && 798 Operands.size() == 3) { 799 X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]); 800 if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) && 801 cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) { 802 delete Operands[1]; 803 Operands.erase(Operands.begin() + 1); 804 } 805 } 806 807 return false; 808} 809 810bool X86ATTAsmParser:: 811MatchAndEmitInstruction(SMLoc IDLoc, 812 SmallVectorImpl<MCParsedAsmOperand*> &Operands, 813 MCStreamer &Out) { 814 assert(!Operands.empty() && "Unexpect empty operand list!"); 815 X86Operand *Op = static_cast<X86Operand*>(Operands[0]); 816 assert(Op->isToken() && "Leading operand should always be a mnemonic!"); 817 818 // First, handle aliases that expand to multiple instructions. 819 // FIXME: This should be replaced with a real .td file alias mechanism. 820 // Also, MatchInstructionImpl should do actually *do* the EmitInstruction 821 // call. 822 if (Op->getToken() == "fstsw" || Op->getToken() == "fstcw" || 823 Op->getToken() == "fstsww" || Op->getToken() == "fstcww" || 824 Op->getToken() == "finit" || Op->getToken() == "fsave" || 825 Op->getToken() == "fstenv" || Op->getToken() == "fclex") { 826 MCInst Inst; 827 Inst.setOpcode(X86::WAIT); 828 Out.EmitInstruction(Inst); 829 830 const char *Repl = 831 StringSwitch<const char*>(Op->getToken()) 832 .Case("finit", "fninit") 833 .Case("fsave", "fnsave") 834 .Case("fstcw", "fnstcw") 835 .Case("fstcww", "fnstcw") 836 .Case("fstenv", "fnstenv") 837 .Case("fstsw", "fnstsw") 838 .Case("fstsww", "fnstsw") 839 .Case("fclex", "fnclex") 840 .Default(0); 841 assert(Repl && "Unknown wait-prefixed instruction"); 842 delete Operands[0]; 843 Operands[0] = X86Operand::CreateToken(Repl, IDLoc); 844 } 845 846 bool WasOriginallyInvalidOperand = false; 847 unsigned OrigErrorInfo; 848 MCInst Inst; 849 850 // First, try a direct match. 851 switch (MatchInstructionImpl(Operands, Inst, OrigErrorInfo)) { 852 case Match_Success: 853 Out.EmitInstruction(Inst); 854 return false; 855 case Match_MissingFeature: 856 Error(IDLoc, "instruction requires a CPU feature not currently enabled"); 857 return true; 858 case Match_ConversionFail: 859 return Error(IDLoc, "unable to convert operands to instruction"); 860 case Match_InvalidOperand: 861 WasOriginallyInvalidOperand = true; 862 break; 863 case Match_MnemonicFail: 864 break; 865 } 866 867 // FIXME: Ideally, we would only attempt suffix matches for things which are 868 // valid prefixes, and we could just infer the right unambiguous 869 // type. However, that requires substantially more matcher support than the 870 // following hack. 871 872 // Change the operand to point to a temporary token. 873 StringRef Base = Op->getToken(); 874 SmallString<16> Tmp; 875 Tmp += Base; 876 Tmp += ' '; 877 Op->setTokenValue(Tmp.str()); 878 879 // If this instruction starts with an 'f', then it is a floating point stack 880 // instruction. These come in up to three forms for 32-bit, 64-bit, and 881 // 80-bit floating point, which use the suffixes s,l,t respectively. 882 // 883 // Otherwise, we assume that this may be an integer instruction, which comes 884 // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively. 885 const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0"; 886 887 // Check for the various suffix matches. 888 Tmp[Base.size()] = Suffixes[0]; 889 unsigned ErrorInfoIgnore; 890 MatchResultTy Match1, Match2, Match3, Match4; 891 892 Match1 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore); 893 Tmp[Base.size()] = Suffixes[1]; 894 Match2 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore); 895 Tmp[Base.size()] = Suffixes[2]; 896 Match3 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore); 897 Tmp[Base.size()] = Suffixes[3]; 898 Match4 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore); 899 900 // Restore the old token. 901 Op->setTokenValue(Base); 902 903 // If exactly one matched, then we treat that as a successful match (and the 904 // instruction will already have been filled in correctly, since the failing 905 // matches won't have modified it). 906 unsigned NumSuccessfulMatches = 907 (Match1 == Match_Success) + (Match2 == Match_Success) + 908 (Match3 == Match_Success) + (Match4 == Match_Success); 909 if (NumSuccessfulMatches == 1) { 910 Out.EmitInstruction(Inst); 911 return false; 912 } 913 914 // Otherwise, the match failed, try to produce a decent error message. 915 916 // If we had multiple suffix matches, then identify this as an ambiguous 917 // match. 918 if (NumSuccessfulMatches > 1) { 919 char MatchChars[4]; 920 unsigned NumMatches = 0; 921 if (Match1 == Match_Success) MatchChars[NumMatches++] = Suffixes[0]; 922 if (Match2 == Match_Success) MatchChars[NumMatches++] = Suffixes[1]; 923 if (Match3 == Match_Success) MatchChars[NumMatches++] = Suffixes[2]; 924 if (Match4 == Match_Success) MatchChars[NumMatches++] = Suffixes[3]; 925 926 SmallString<126> Msg; 927 raw_svector_ostream OS(Msg); 928 OS << "ambiguous instructions require an explicit suffix (could be "; 929 for (unsigned i = 0; i != NumMatches; ++i) { 930 if (i != 0) 931 OS << ", "; 932 if (i + 1 == NumMatches) 933 OS << "or "; 934 OS << "'" << Base << MatchChars[i] << "'"; 935 } 936 OS << ")"; 937 Error(IDLoc, OS.str()); 938 return true; 939 } 940 941 // Okay, we know that none of the variants matched successfully. 942 943 // If all of the instructions reported an invalid mnemonic, then the original 944 // mnemonic was invalid. 945 if ((Match1 == Match_MnemonicFail) && (Match2 == Match_MnemonicFail) && 946 (Match3 == Match_MnemonicFail) && (Match4 == Match_MnemonicFail)) { 947 if (!WasOriginallyInvalidOperand) { 948 Error(IDLoc, "invalid instruction mnemonic '" + Base + "'"); 949 return true; 950 } 951 952 // Recover location info for the operand if we know which was the problem. 953 SMLoc ErrorLoc = IDLoc; 954 if (OrigErrorInfo != ~0U) { 955 if (OrigErrorInfo >= Operands.size()) 956 return Error(IDLoc, "too few operands for instruction"); 957 958 ErrorLoc = ((X86Operand*)Operands[OrigErrorInfo])->getStartLoc(); 959 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 960 } 961 962 return Error(ErrorLoc, "invalid operand for instruction"); 963 } 964 965 // If one instruction matched with a missing feature, report this as a 966 // missing feature. 967 if ((Match1 == Match_MissingFeature) + (Match2 == Match_MissingFeature) + 968 (Match3 == Match_MissingFeature) + (Match4 == Match_MissingFeature) == 1){ 969 Error(IDLoc, "instruction requires a CPU feature not currently enabled"); 970 return true; 971 } 972 973 // If one instruction matched with an invalid operand, report this as an 974 // operand failure. 975 if ((Match1 == Match_InvalidOperand) + (Match2 == Match_InvalidOperand) + 976 (Match3 == Match_InvalidOperand) + (Match4 == Match_InvalidOperand) == 1){ 977 Error(IDLoc, "invalid operand for instruction"); 978 return true; 979 } 980 981 // If all of these were an outright failure, report it in a useless way. 982 // FIXME: We should give nicer diagnostics about the exact failure. 983 Error(IDLoc, "unknown use of instruction mnemonic without a size suffix"); 984 return true; 985} 986 987 988bool X86ATTAsmParser::ParseDirective(AsmToken DirectiveID) { 989 StringRef IDVal = DirectiveID.getIdentifier(); 990 if (IDVal == ".word") 991 return ParseDirectiveWord(2, DirectiveID.getLoc()); 992 return true; 993} 994 995/// ParseDirectiveWord 996/// ::= .word [ expression (, expression)* ] 997bool X86ATTAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) { 998 if (getLexer().isNot(AsmToken::EndOfStatement)) { 999 for (;;) { 1000 const MCExpr *Value; 1001 if (getParser().ParseExpression(Value)) 1002 return true; 1003 1004 getParser().getStreamer().EmitValue(Value, Size, 0 /*addrspace*/); 1005 1006 if (getLexer().is(AsmToken::EndOfStatement)) 1007 break; 1008 1009 // FIXME: Improve diagnostic. 1010 if (getLexer().isNot(AsmToken::Comma)) 1011 return Error(L, "unexpected token in directive"); 1012 Parser.Lex(); 1013 } 1014 } 1015 1016 Parser.Lex(); 1017 return false; 1018} 1019 1020 1021 1022 1023extern "C" void LLVMInitializeX86AsmLexer(); 1024 1025// Force static initialization. 1026extern "C" void LLVMInitializeX86AsmParser() { 1027 RegisterAsmParser<X86_32ATTAsmParser> X(TheX86_32Target); 1028 RegisterAsmParser<X86_64ATTAsmParser> Y(TheX86_64Target); 1029 LLVMInitializeX86AsmLexer(); 1030} 1031 1032#define GET_REGISTER_MATCHER 1033#define GET_MATCHER_IMPLEMENTATION 1034#include "X86GenAsmMatcher.inc" 1035