X86AsmParser.cpp revision 3b96e1fe3b695e6d845668ea90d75016f0f46a17
19682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
29682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall//
39682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall//                     The LLVM Compiler Infrastructure
49682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall//
59682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall// This file is distributed under the University of Illinois Open Source
69682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall// License. See LICENSE.TXT for details.
79682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall//
89682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall//===----------------------------------------------------------------------===//
99682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
109682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall#include "MCTargetDesc/X86BaseInfo.h"
119682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall#include "llvm/MC/MCTargetAsmParser.h"
129682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall#include "llvm/MC/MCStreamer.h"
139682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall#include "llvm/MC/MCExpr.h"
149682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall#include "llvm/MC/MCInst.h"
159682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall#include "llvm/MC/MCRegisterInfo.h"
169682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall#include "llvm/MC/MCSubtargetInfo.h"
179682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall#include "llvm/MC/MCParser/MCAsmLexer.h"
189682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall#include "llvm/MC/MCParser/MCAsmParser.h"
199682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
209682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall#include "llvm/ADT/OwningPtr.h"
219682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall#include "llvm/ADT/SmallString.h"
229682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall#include "llvm/ADT/SmallVector.h"
239682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall#include "llvm/ADT/StringSwitch.h"
249682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall#include "llvm/ADT/Twine.h"
259682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall#include "llvm/Support/SourceMgr.h"
269682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall#include "llvm/Support/TargetRegistry.h"
279682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall#include "llvm/Support/raw_ostream.h"
289682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
299682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hallusing namespace llvm;
309682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
319682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hallnamespace {
329682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hallstruct X86Operand;
339682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
349682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hallclass X86AsmParser : public MCTargetAsmParser {
359682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  MCSubtargetInfo &STI;
369682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  MCAsmParser &Parser;
379682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
389682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hallprivate:
399682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  MCAsmParser &getParser() const { return Parser; }
409682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
419682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  MCAsmLexer &getLexer() const { return Parser.getLexer(); }
429682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
439682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  bool Error(SMLoc L, const Twine &Msg,
449682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall             ArrayRef<SMRange> Ranges = ArrayRef<SMRange>()) {
459682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    return Parser.Error(L, Msg, Ranges);
469682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  }
479682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
489682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  X86Operand *ErrorOperand(SMLoc Loc, StringRef Msg) {
499682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    Error(Loc, Msg);
509682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    return 0;
519682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  }
529682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
539682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  X86Operand *ParseOperand();
549682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  X86Operand *ParseATTOperand();
559682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  X86Operand *ParseIntelOperand();
569682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  X86Operand *ParseIntelMemOperand();
579682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  X86Operand *ParseIntelBracExpression(unsigned SegReg, unsigned Size);
589682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc);
599682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
609682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  bool ParseDirectiveWord(unsigned Size, SMLoc L);
619682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
629682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
639682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  bool processInstruction(MCInst &Inst,
649682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall                          const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
659682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
669682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  bool MatchAndEmitInstruction(SMLoc IDLoc,
679682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall                               SmallVectorImpl<MCParsedAsmOperand*> &Operands,
689682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall                               MCStreamer &Out);
699682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
709682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  /// isSrcOp - Returns true if operand is either (%rsi) or %ds:%(rsi)
719682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  /// in 64bit mode or (%edi) or %es:(%edi) in 32bit mode.
729682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  bool isSrcOp(X86Operand &Op);
739682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
749682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  /// isDstOp - Returns true if operand is either %es:(%rdi) in 64bit mode
759682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  /// or %es:(%edi) in 32bit mode.
769682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  bool isDstOp(X86Operand &Op);
779682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
789682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  bool is64BitMode() const {
799682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    // FIXME: Can tablegen auto-generate this?
809682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
819682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  }
829682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  void SwitchMode() {
839682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(X86::Mode64Bit));
849682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    setAvailableFeatures(FB);
859682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  }
869682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
879682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  /// @name Auto-generated Matcher Functions
889682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  /// {
899682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
909682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall#define GET_ASSEMBLER_HEADER
919682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall#include "X86GenAsmMatcher.inc"
929682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
939682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  /// }
949682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
959682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hallpublic:
969682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  X86AsmParser(MCSubtargetInfo &sti, MCAsmParser &parser)
979682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    : MCTargetAsmParser(), STI(sti), Parser(parser) {
989682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
999682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    // Initialize the set of available features.
1009682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
1019682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  }
1029682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
1039682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1049682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc,
1059682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall                                SmallVectorImpl<MCParsedAsmOperand*> &Operands);
1069682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1079682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  virtual bool ParseDirective(AsmToken DirectiveID);
1089682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall};
1099682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall} // end anonymous namespace
1109682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1119682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall/// @name Auto-generated Match Functions
1129682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall/// {
1139682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1149682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hallstatic unsigned MatchRegisterName(StringRef Name);
1159682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1169682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall/// }
1179682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1189682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hallstatic  bool isImmSExti16i8Value(uint64_t Value) {
1199682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  return ((                                  Value <= 0x000000000000007FULL)||
1209682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall          (0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)||
1219682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall          (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
1229682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall}
1239682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1249682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hallstatic bool isImmSExti32i8Value(uint64_t Value) {
1259682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  return ((                                  Value <= 0x000000000000007FULL)||
1269682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall          (0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)||
1279682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall          (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
1289682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall}
1299682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1309682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hallstatic bool isImmZExtu32u8Value(uint64_t Value) {
1319682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    return (Value <= 0x00000000000000FFULL);
1329682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall}
1339682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1349682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hallstatic bool isImmSExti64i8Value(uint64_t Value) {
1359682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  return ((                                  Value <= 0x000000000000007FULL)||
1369682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall	  (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
1379682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall}
1389682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1399682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hallstatic bool isImmSExti64i32Value(uint64_t Value) {
1409682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  return ((                                  Value <= 0x000000007FFFFFFFULL)||
1419682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall	  (0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
1429682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall}
1439682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hallnamespace {
1449682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1459682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall/// X86Operand - Instances of this class represent a parsed X86 machine
1469682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall/// instruction.
1479682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hallstruct X86Operand : public MCParsedAsmOperand {
1489682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  enum KindTy {
1499682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    Token,
1509682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    Register,
1519682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    Immediate,
1529682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    Memory
1539682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  } Kind;
1549682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1559682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  SMLoc StartLoc, EndLoc;
1569682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1579682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  union {
1589682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    struct {
1599682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall      const char *Data;
1609682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall      unsigned Length;
1619682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    } Tok;
1629682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1639682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    struct {
1649682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall      unsigned RegNo;
1659682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    } Reg;
1669682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1679682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    struct {
1689682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall      const MCExpr *Val;
1699682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    } Imm;
1709682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1719682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    struct {
1729682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall      unsigned SegReg;
1739682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall      const MCExpr *Disp;
1749682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall      unsigned BaseReg;
1759682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall      unsigned IndexReg;
1769682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall      unsigned Scale;
1779682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall      unsigned Size;
1789682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    } Mem;
1799682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  };
1809682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1819682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  X86Operand(KindTy K, SMLoc Start, SMLoc End)
1829682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    : Kind(K), StartLoc(Start), EndLoc(End) {}
1839682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1849682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  /// getStartLoc - Get the location of the first token of this operand.
1859682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  SMLoc getStartLoc() const { return StartLoc; }
1869682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  /// getEndLoc - Get the location of the last token of this operand.
1879682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  SMLoc getEndLoc() const { return EndLoc; }
1889682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1899682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
1909682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1919682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  virtual void print(raw_ostream &OS) const {}
1929682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
1939682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  StringRef getToken() const {
1949682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    assert(Kind == Token && "Invalid access!");
1959682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    return StringRef(Tok.Data, Tok.Length);
1969682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  }
1979682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  void setTokenValue(StringRef Value) {
1989682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    assert(Kind == Token && "Invalid access!");
1999682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    Tok.Data = Value.data();
2009682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    Tok.Length = Value.size();
2019682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  }
2029682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
2039682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  unsigned getReg() const {
2049682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    assert(Kind == Register && "Invalid access!");
2059682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    return Reg.RegNo;
2069682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  }
2079682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
2089682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  const MCExpr *getImm() const {
2099682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    assert(Kind == Immediate && "Invalid access!");
2109682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    return Imm.Val;
2119682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  }
2129682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall
2139682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  const MCExpr *getMemDisp() const {
2149682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    assert(Kind == Memory && "Invalid access!");
2159682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    return Mem.Disp;
2169682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  }
2179682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  unsigned getMemSegReg() const {
2189682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    assert(Kind == Memory && "Invalid access!");
2199682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    return Mem.SegReg;
2209682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  }
2219682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  unsigned getMemBaseReg() const {
2229682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    assert(Kind == Memory && "Invalid access!");
2239682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    return Mem.BaseReg;
2249682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  }
2259682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall  unsigned getMemIndexReg() const {
2269682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    assert(Kind == Memory && "Invalid access!");
2279682c8870b8ff5e4ac2e4c70b759f791c6f38c1fJesse Hall    return Mem.IndexReg;
228  }
229  unsigned getMemScale() const {
230    assert(Kind == Memory && "Invalid access!");
231    return Mem.Scale;
232  }
233
234  bool isToken() const {return Kind == Token; }
235
236  bool isImm() const { return Kind == Immediate; }
237
238  bool isImmSExti16i8() const {
239    if (!isImm())
240      return false;
241
242    // If this isn't a constant expr, just assume it fits and let relaxation
243    // handle it.
244    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
245    if (!CE)
246      return true;
247
248    // Otherwise, check the value is in a range that makes sense for this
249    // extension.
250    return isImmSExti16i8Value(CE->getValue());
251  }
252  bool isImmSExti32i8() const {
253    if (!isImm())
254      return false;
255
256    // If this isn't a constant expr, just assume it fits and let relaxation
257    // handle it.
258    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
259    if (!CE)
260      return true;
261
262    // Otherwise, check the value is in a range that makes sense for this
263    // extension.
264    return isImmSExti32i8Value(CE->getValue());
265  }
266  bool isImmZExtu32u8() const {
267    if (!isImm())
268      return false;
269
270    // If this isn't a constant expr, just assume it fits and let relaxation
271    // handle it.
272    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
273    if (!CE)
274      return true;
275
276    // Otherwise, check the value is in a range that makes sense for this
277    // extension.
278    return isImmZExtu32u8Value(CE->getValue());
279  }
280  bool isImmSExti64i8() const {
281    if (!isImm())
282      return false;
283
284    // If this isn't a constant expr, just assume it fits and let relaxation
285    // handle it.
286    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
287    if (!CE)
288      return true;
289
290    // Otherwise, check the value is in a range that makes sense for this
291    // extension.
292    return isImmSExti64i8Value(CE->getValue());
293  }
294  bool isImmSExti64i32() const {
295    if (!isImm())
296      return false;
297
298    // If this isn't a constant expr, just assume it fits and let relaxation
299    // handle it.
300    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
301    if (!CE)
302      return true;
303
304    // Otherwise, check the value is in a range that makes sense for this
305    // extension.
306    return isImmSExti64i32Value(CE->getValue());
307  }
308
309  bool isMem() const { return Kind == Memory; }
310  bool isMem8() const {
311    return Kind == Memory && (!Mem.Size || Mem.Size == 8);
312  }
313  bool isMem16() const {
314    return Kind == Memory && (!Mem.Size || Mem.Size == 16);
315  }
316  bool isMem32() const {
317    return Kind == Memory && (!Mem.Size || Mem.Size == 32);
318  }
319  bool isMem64() const {
320    return Kind == Memory && (!Mem.Size || Mem.Size == 64);
321  }
322  bool isMem80() const {
323    return Kind == Memory && (!Mem.Size || Mem.Size == 80);
324  }
325  bool isMem128() const {
326    return Kind == Memory && (!Mem.Size || Mem.Size == 128);
327  }
328  bool isMem256() const {
329    return Kind == Memory && (!Mem.Size || Mem.Size == 256);
330  }
331
332  bool isAbsMem() const {
333    return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
334      !getMemIndexReg() && getMemScale() == 1;
335  }
336
337  bool isReg() const { return Kind == Register; }
338
339  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
340    // Add as immediates when possible.
341    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
342      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
343    else
344      Inst.addOperand(MCOperand::CreateExpr(Expr));
345  }
346
347  void addRegOperands(MCInst &Inst, unsigned N) const {
348    assert(N == 1 && "Invalid number of operands!");
349    Inst.addOperand(MCOperand::CreateReg(getReg()));
350  }
351
352  void addImmOperands(MCInst &Inst, unsigned N) const {
353    assert(N == 1 && "Invalid number of operands!");
354    addExpr(Inst, getImm());
355  }
356
357  void addMem8Operands(MCInst &Inst, unsigned N) const {
358    addMemOperands(Inst, N);
359  }
360  void addMem16Operands(MCInst &Inst, unsigned N) const {
361    addMemOperands(Inst, N);
362  }
363  void addMem32Operands(MCInst &Inst, unsigned N) const {
364    addMemOperands(Inst, N);
365  }
366  void addMem64Operands(MCInst &Inst, unsigned N) const {
367    addMemOperands(Inst, N);
368  }
369  void addMem80Operands(MCInst &Inst, unsigned N) const {
370    addMemOperands(Inst, N);
371  }
372  void addMem128Operands(MCInst &Inst, unsigned N) const {
373    addMemOperands(Inst, N);
374  }
375  void addMem256Operands(MCInst &Inst, unsigned N) const {
376    addMemOperands(Inst, N);
377  }
378
379  void addMemOperands(MCInst &Inst, unsigned N) const {
380    assert((N == 5) && "Invalid number of operands!");
381    Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
382    Inst.addOperand(MCOperand::CreateImm(getMemScale()));
383    Inst.addOperand(MCOperand::CreateReg(getMemIndexReg()));
384    addExpr(Inst, getMemDisp());
385    Inst.addOperand(MCOperand::CreateReg(getMemSegReg()));
386  }
387
388  void addAbsMemOperands(MCInst &Inst, unsigned N) const {
389    assert((N == 1) && "Invalid number of operands!");
390    Inst.addOperand(MCOperand::CreateExpr(getMemDisp()));
391  }
392
393  static X86Operand *CreateToken(StringRef Str, SMLoc Loc) {
394    SMLoc EndLoc = SMLoc::getFromPointer(Loc.getPointer() + Str.size() - 1);
395    X86Operand *Res = new X86Operand(Token, Loc, EndLoc);
396    Res->Tok.Data = Str.data();
397    Res->Tok.Length = Str.size();
398    return Res;
399  }
400
401  static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc) {
402    X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc);
403    Res->Reg.RegNo = RegNo;
404    return Res;
405  }
406
407  static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc){
408    X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc);
409    Res->Imm.Val = Val;
410    return Res;
411  }
412
413  /// Create an absolute memory operand.
414  static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc,
415                               SMLoc EndLoc, unsigned Size = 0) {
416    X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
417    Res->Mem.SegReg   = 0;
418    Res->Mem.Disp     = Disp;
419    Res->Mem.BaseReg  = 0;
420    Res->Mem.IndexReg = 0;
421    Res->Mem.Scale    = 1;
422    Res->Mem.Size     = Size;
423    return Res;
424  }
425
426  /// Create a generalized memory operand.
427  static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp,
428                               unsigned BaseReg, unsigned IndexReg,
429                               unsigned Scale, SMLoc StartLoc, SMLoc EndLoc,
430                               unsigned Size = 0) {
431    // We should never just have a displacement, that should be parsed as an
432    // absolute memory operand.
433    assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!");
434
435    // The scale should always be one of {1,2,4,8}.
436    assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) &&
437           "Invalid scale!");
438    X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
439    Res->Mem.SegReg   = SegReg;
440    Res->Mem.Disp     = Disp;
441    Res->Mem.BaseReg  = BaseReg;
442    Res->Mem.IndexReg = IndexReg;
443    Res->Mem.Scale    = Scale;
444    Res->Mem.Size     = Size;
445    return Res;
446  }
447};
448
449} // end anonymous namespace.
450
451bool X86AsmParser::isSrcOp(X86Operand &Op) {
452  unsigned basereg = is64BitMode() ? X86::RSI : X86::ESI;
453
454  return (Op.isMem() &&
455    (Op.Mem.SegReg == 0 || Op.Mem.SegReg == X86::DS) &&
456    isa<MCConstantExpr>(Op.Mem.Disp) &&
457    cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
458    Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0);
459}
460
461bool X86AsmParser::isDstOp(X86Operand &Op) {
462  unsigned basereg = is64BitMode() ? X86::RDI : X86::EDI;
463
464  return Op.isMem() && Op.Mem.SegReg == X86::ES &&
465    isa<MCConstantExpr>(Op.Mem.Disp) &&
466    cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
467    Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0;
468}
469
470bool X86AsmParser::ParseRegister(unsigned &RegNo,
471                                 SMLoc &StartLoc, SMLoc &EndLoc) {
472  RegNo = 0;
473  bool IntelSyntax = getParser().getAssemblerDialect();
474  if (!IntelSyntax) {
475    const AsmToken &TokPercent = Parser.getTok();
476    assert(TokPercent.is(AsmToken::Percent) && "Invalid token kind!");
477    StartLoc = TokPercent.getLoc();
478    Parser.Lex(); // Eat percent token.
479  }
480
481  const AsmToken &Tok = Parser.getTok();
482  if (Tok.isNot(AsmToken::Identifier)) {
483    if (IntelSyntax) return true;
484    return Error(StartLoc, "invalid register name",
485                 SMRange(StartLoc, Tok.getEndLoc()));
486  }
487
488  RegNo = MatchRegisterName(Tok.getString());
489
490  // If the match failed, try the register name as lowercase.
491  if (RegNo == 0)
492    RegNo = MatchRegisterName(Tok.getString().lower());
493
494  if (!is64BitMode()) {
495    // FIXME: This should be done using Requires<In32BitMode> and
496    // Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
497    // checked.
498    // FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a
499    // REX prefix.
500    if (RegNo == X86::RIZ ||
501        X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
502        X86II::isX86_64NonExtLowByteReg(RegNo) ||
503        X86II::isX86_64ExtendedReg(RegNo))
504      return Error(StartLoc, "register %"
505                   + Tok.getString() + " is only available in 64-bit mode",
506                   SMRange(StartLoc, Tok.getEndLoc()));
507  }
508
509  // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
510  if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
511    RegNo = X86::ST0;
512    EndLoc = Tok.getLoc();
513    Parser.Lex(); // Eat 'st'
514
515    // Check to see if we have '(4)' after %st.
516    if (getLexer().isNot(AsmToken::LParen))
517      return false;
518    // Lex the paren.
519    getParser().Lex();
520
521    const AsmToken &IntTok = Parser.getTok();
522    if (IntTok.isNot(AsmToken::Integer))
523      return Error(IntTok.getLoc(), "expected stack index");
524    switch (IntTok.getIntVal()) {
525    case 0: RegNo = X86::ST0; break;
526    case 1: RegNo = X86::ST1; break;
527    case 2: RegNo = X86::ST2; break;
528    case 3: RegNo = X86::ST3; break;
529    case 4: RegNo = X86::ST4; break;
530    case 5: RegNo = X86::ST5; break;
531    case 6: RegNo = X86::ST6; break;
532    case 7: RegNo = X86::ST7; break;
533    default: return Error(IntTok.getLoc(), "invalid stack index");
534    }
535
536    if (getParser().Lex().isNot(AsmToken::RParen))
537      return Error(Parser.getTok().getLoc(), "expected ')'");
538
539    EndLoc = Tok.getLoc();
540    Parser.Lex(); // Eat ')'
541    return false;
542  }
543
544  // If this is "db[0-7]", match it as an alias
545  // for dr[0-7].
546  if (RegNo == 0 && Tok.getString().size() == 3 &&
547      Tok.getString().startswith("db")) {
548    switch (Tok.getString()[2]) {
549    case '0': RegNo = X86::DR0; break;
550    case '1': RegNo = X86::DR1; break;
551    case '2': RegNo = X86::DR2; break;
552    case '3': RegNo = X86::DR3; break;
553    case '4': RegNo = X86::DR4; break;
554    case '5': RegNo = X86::DR5; break;
555    case '6': RegNo = X86::DR6; break;
556    case '7': RegNo = X86::DR7; break;
557    }
558
559    if (RegNo != 0) {
560      EndLoc = Tok.getLoc();
561      Parser.Lex(); // Eat it.
562      return false;
563    }
564  }
565
566  if (RegNo == 0) {
567    if (IntelSyntax) return true;
568    return Error(StartLoc, "invalid register name",
569                 SMRange(StartLoc, Tok.getEndLoc()));
570  }
571
572  EndLoc = Tok.getEndLoc();
573  Parser.Lex(); // Eat identifier token.
574  return false;
575}
576
577X86Operand *X86AsmParser::ParseOperand() {
578  if (getParser().getAssemblerDialect())
579    return ParseIntelOperand();
580  return ParseATTOperand();
581}
582
583/// getIntelMemOperandSize - Return intel memory operand size.
584static unsigned getIntelMemOperandSize(StringRef OpStr) {
585  unsigned Size = 0;
586  if (OpStr == "BYTE") Size = 8;
587  if (OpStr == "WORD") Size = 16;
588  if (OpStr == "DWORD") Size = 32;
589  if (OpStr == "QWORD") Size = 64;
590  if (OpStr == "XWORD") Size = 80;
591  if (OpStr == "XMMWORD") Size = 128;
592  if (OpStr == "YMMWORD") Size = 256;
593  return Size;
594}
595
596X86Operand *X86AsmParser::ParseIntelBracExpression(unsigned SegReg,
597                                                   unsigned Size) {
598  unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
599  SMLoc Start = Parser.getTok().getLoc(), End;
600
601  const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
602  // Parse [ BaseReg + Scale*IndexReg + Disp ] or [ symbol ]
603
604  // Eat '['
605  if (getLexer().isNot(AsmToken::LBrac))
606    return ErrorOperand(Start, "Expected '[' token!");
607  Parser.Lex();
608
609  if (getLexer().is(AsmToken::Identifier)) {
610    // Parse BaseReg
611    if (ParseRegister(BaseReg, Start, End)) {
612      // Handle '[' 'symbol' ']'
613      const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
614      if (getParser().ParseExpression(Disp, End)) return 0;
615      if (getLexer().isNot(AsmToken::RBrac))
616        return ErrorOperand(Start, "Expected ']' token!");
617      Parser.Lex();
618      return X86Operand::CreateMem(Disp, Start, End, Size);
619    }
620  } else if (getLexer().is(AsmToken::Integer)) {
621      int64_t Val = Parser.getTok().getIntVal();
622      Parser.Lex();
623      SMLoc Loc = Parser.getTok().getLoc();
624      if (getLexer().is(AsmToken::RBrac)) {
625        // Handle '[' number ']'
626        Parser.Lex();
627        return X86Operand::CreateMem(MCConstantExpr::Create(Val, getContext()),
628                                     Start, End, Size);
629      } else if (getLexer().is(AsmToken::Star)) {
630        // Handle '[' Scale*IndexReg ']'
631        Parser.Lex();
632        SMLoc IdxRegLoc = Parser.getTok().getLoc();
633	if (ParseRegister(IndexReg, IdxRegLoc, End))
634	  return ErrorOperand(IdxRegLoc, "Expected register");
635        Scale = Val;
636      } else
637        return ErrorOperand(Loc, "Unepxeted token");
638  }
639
640  if (getLexer().is(AsmToken::Plus) || getLexer().is(AsmToken::Minus)) {
641    bool isPlus = getLexer().is(AsmToken::Plus);
642    Parser.Lex();
643    SMLoc PlusLoc = Parser.getTok().getLoc();
644    if (getLexer().is(AsmToken::Integer)) {
645      int64_t Val = Parser.getTok().getIntVal();
646      Parser.Lex();
647      if (getLexer().is(AsmToken::Star)) {
648        Parser.Lex();
649        SMLoc IdxRegLoc = Parser.getTok().getLoc();
650	if (ParseRegister(IndexReg, IdxRegLoc, End))
651	  return ErrorOperand(IdxRegLoc, "Expected register");
652        Scale = Val;
653      } else if (getLexer().is(AsmToken::RBrac)) {
654        const MCExpr *ValExpr = MCConstantExpr::Create(Val, getContext());
655        Disp = isPlus ? ValExpr : MCConstantExpr::Create(0-Val, getContext());
656      } else
657        return ErrorOperand(PlusLoc, "unexpected token after +");
658    } else if (getLexer().is(AsmToken::Identifier)) {
659      // This could be an index register or a displacement expression.
660      End = Parser.getTok().getLoc();
661      if (!IndexReg)
662        ParseRegister(IndexReg, Start, End);
663      else if (getParser().ParseExpression(Disp, End)) return 0;
664    }
665  }
666
667  if (getLexer().isNot(AsmToken::RBrac))
668    if (getParser().ParseExpression(Disp, End)) return 0;
669
670  End = Parser.getTok().getLoc();
671  if (getLexer().isNot(AsmToken::RBrac))
672    return ErrorOperand(End, "expected ']' token!");
673  Parser.Lex();
674  End = Parser.getTok().getLoc();
675
676  // handle [-42]
677  if (!BaseReg && !IndexReg)
678    return X86Operand::CreateMem(Disp, Start, End, Size);
679
680  return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
681                               Start, End, Size);
682}
683
684/// ParseIntelMemOperand - Parse intel style memory operand.
685X86Operand *X86AsmParser::ParseIntelMemOperand() {
686  const AsmToken &Tok = Parser.getTok();
687  SMLoc Start = Parser.getTok().getLoc(), End;
688  unsigned SegReg = 0;
689
690  unsigned Size = getIntelMemOperandSize(Tok.getString());
691  if (Size) {
692    Parser.Lex();
693    assert (Tok.getString() == "PTR" && "Unexpected token!");
694    Parser.Lex();
695  }
696
697  if (getLexer().is(AsmToken::LBrac))
698    return ParseIntelBracExpression(SegReg, Size);
699
700  if (!ParseRegister(SegReg, Start, End)) {
701    // Handel SegReg : [ ... ]
702    if (getLexer().isNot(AsmToken::Colon))
703      return ErrorOperand(Start, "Expected ':' token!");
704    Parser.Lex(); // Eat :
705    if (getLexer().isNot(AsmToken::LBrac))
706      return ErrorOperand(Start, "Expected '[' token!");
707    return ParseIntelBracExpression(SegReg, Size);
708  }
709
710  const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
711  if (getParser().ParseExpression(Disp, End)) return 0;
712  return X86Operand::CreateMem(Disp, Start, End, Size);
713}
714
715X86Operand *X86AsmParser::ParseIntelOperand() {
716  SMLoc Start = Parser.getTok().getLoc(), End;
717
718  // immediate.
719  if (getLexer().is(AsmToken::Integer) || getLexer().is(AsmToken::Real) ||
720      getLexer().is(AsmToken::Minus)) {
721    const MCExpr *Val;
722    if (!getParser().ParseExpression(Val, End)) {
723      End = Parser.getTok().getLoc();
724      return X86Operand::CreateImm(Val, Start, End);
725    }
726  }
727
728  // register
729  unsigned RegNo = 0;
730  if (!ParseRegister(RegNo, Start, End)) {
731    End = Parser.getTok().getLoc();
732    return X86Operand::CreateReg(RegNo, Start, End);
733  }
734
735  // mem operand
736  return ParseIntelMemOperand();
737}
738
739X86Operand *X86AsmParser::ParseATTOperand() {
740  switch (getLexer().getKind()) {
741  default:
742    // Parse a memory operand with no segment register.
743    return ParseMemOperand(0, Parser.getTok().getLoc());
744  case AsmToken::Percent: {
745    // Read the register.
746    unsigned RegNo;
747    SMLoc Start, End;
748    if (ParseRegister(RegNo, Start, End)) return 0;
749    if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
750      Error(Start, "%eiz and %riz can only be used as index registers",
751            SMRange(Start, End));
752      return 0;
753    }
754
755    // If this is a segment register followed by a ':', then this is the start
756    // of a memory reference, otherwise this is a normal register reference.
757    if (getLexer().isNot(AsmToken::Colon))
758      return X86Operand::CreateReg(RegNo, Start, End);
759
760
761    getParser().Lex(); // Eat the colon.
762    return ParseMemOperand(RegNo, Start);
763  }
764  case AsmToken::Dollar: {
765    // $42 -> immediate.
766    SMLoc Start = Parser.getTok().getLoc(), End;
767    Parser.Lex();
768    const MCExpr *Val;
769    if (getParser().ParseExpression(Val, End))
770      return 0;
771    return X86Operand::CreateImm(Val, Start, End);
772  }
773  }
774}
775
776/// ParseMemOperand: segment: disp(basereg, indexreg, scale).  The '%ds:' prefix
777/// has already been parsed if present.
778X86Operand *X86AsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) {
779
780  // We have to disambiguate a parenthesized expression "(4+5)" from the start
781  // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)".  The
782  // only way to do this without lookahead is to eat the '(' and see what is
783  // after it.
784  const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
785  if (getLexer().isNot(AsmToken::LParen)) {
786    SMLoc ExprEnd;
787    if (getParser().ParseExpression(Disp, ExprEnd)) return 0;
788
789    // After parsing the base expression we could either have a parenthesized
790    // memory address or not.  If not, return now.  If so, eat the (.
791    if (getLexer().isNot(AsmToken::LParen)) {
792      // Unless we have a segment register, treat this as an immediate.
793      if (SegReg == 0)
794        return X86Operand::CreateMem(Disp, MemStart, ExprEnd);
795      return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
796    }
797
798    // Eat the '('.
799    Parser.Lex();
800  } else {
801    // Okay, we have a '('.  We don't know if this is an expression or not, but
802    // so we have to eat the ( to see beyond it.
803    SMLoc LParenLoc = Parser.getTok().getLoc();
804    Parser.Lex(); // Eat the '('.
805
806    if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
807      // Nothing to do here, fall into the code below with the '(' part of the
808      // memory operand consumed.
809    } else {
810      SMLoc ExprEnd;
811
812      // It must be an parenthesized expression, parse it now.
813      if (getParser().ParseParenExpression(Disp, ExprEnd))
814        return 0;
815
816      // After parsing the base expression we could either have a parenthesized
817      // memory address or not.  If not, return now.  If so, eat the (.
818      if (getLexer().isNot(AsmToken::LParen)) {
819        // Unless we have a segment register, treat this as an immediate.
820        if (SegReg == 0)
821          return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd);
822        return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
823      }
824
825      // Eat the '('.
826      Parser.Lex();
827    }
828  }
829
830  // If we reached here, then we just ate the ( of the memory operand.  Process
831  // the rest of the memory operand.
832  unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
833
834  if (getLexer().is(AsmToken::Percent)) {
835    SMLoc StartLoc, EndLoc;
836    if (ParseRegister(BaseReg, StartLoc, EndLoc)) return 0;
837    if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
838      Error(StartLoc, "eiz and riz can only be used as index registers",
839            SMRange(StartLoc, EndLoc));
840      return 0;
841    }
842  }
843
844  if (getLexer().is(AsmToken::Comma)) {
845    Parser.Lex(); // Eat the comma.
846
847    // Following the comma we should have either an index register, or a scale
848    // value. We don't support the later form, but we want to parse it
849    // correctly.
850    //
851    // Not that even though it would be completely consistent to support syntax
852    // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
853    if (getLexer().is(AsmToken::Percent)) {
854      SMLoc L;
855      if (ParseRegister(IndexReg, L, L)) return 0;
856
857      if (getLexer().isNot(AsmToken::RParen)) {
858        // Parse the scale amount:
859        //  ::= ',' [scale-expression]
860        if (getLexer().isNot(AsmToken::Comma)) {
861          Error(Parser.getTok().getLoc(),
862                "expected comma in scale expression");
863          return 0;
864        }
865        Parser.Lex(); // Eat the comma.
866
867        if (getLexer().isNot(AsmToken::RParen)) {
868          SMLoc Loc = Parser.getTok().getLoc();
869
870          int64_t ScaleVal;
871          if (getParser().ParseAbsoluteExpression(ScaleVal))
872            return 0;
873
874          // Validate the scale amount.
875          if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){
876            Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
877            return 0;
878          }
879          Scale = (unsigned)ScaleVal;
880        }
881      }
882    } else if (getLexer().isNot(AsmToken::RParen)) {
883      // A scale amount without an index is ignored.
884      // index.
885      SMLoc Loc = Parser.getTok().getLoc();
886
887      int64_t Value;
888      if (getParser().ParseAbsoluteExpression(Value))
889        return 0;
890
891      if (Value != 1)
892        Warning(Loc, "scale factor without index register is ignored");
893      Scale = 1;
894    }
895  }
896
897  // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
898  if (getLexer().isNot(AsmToken::RParen)) {
899    Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
900    return 0;
901  }
902  SMLoc MemEnd = Parser.getTok().getLoc();
903  Parser.Lex(); // Eat the ')'.
904
905  return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
906                               MemStart, MemEnd);
907}
908
909bool X86AsmParser::
910ParseInstruction(StringRef Name, SMLoc NameLoc,
911                 SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
912  StringRef PatchedName = Name;
913
914  // FIXME: Hack to recognize setneb as setne.
915  if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
916      PatchedName != "setb" && PatchedName != "setnb")
917    PatchedName = PatchedName.substr(0, Name.size()-1);
918
919  // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
920  const MCExpr *ExtraImmOp = 0;
921  if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
922      (PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
923       PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
924    bool IsVCMP = PatchedName.startswith("vcmp");
925    unsigned SSECCIdx = IsVCMP ? 4 : 3;
926    unsigned SSEComparisonCode = StringSwitch<unsigned>(
927      PatchedName.slice(SSECCIdx, PatchedName.size() - 2))
928      .Case("eq",          0)
929      .Case("lt",          1)
930      .Case("le",          2)
931      .Case("unord",       3)
932      .Case("neq",         4)
933      .Case("nlt",         5)
934      .Case("nle",         6)
935      .Case("ord",         7)
936      .Case("eq_uq",       8)
937      .Case("nge",         9)
938      .Case("ngt",      0x0A)
939      .Case("false",    0x0B)
940      .Case("neq_oq",   0x0C)
941      .Case("ge",       0x0D)
942      .Case("gt",       0x0E)
943      .Case("true",     0x0F)
944      .Case("eq_os",    0x10)
945      .Case("lt_oq",    0x11)
946      .Case("le_oq",    0x12)
947      .Case("unord_s",  0x13)
948      .Case("neq_us",   0x14)
949      .Case("nlt_uq",   0x15)
950      .Case("nle_uq",   0x16)
951      .Case("ord_s",    0x17)
952      .Case("eq_us",    0x18)
953      .Case("nge_uq",   0x19)
954      .Case("ngt_uq",   0x1A)
955      .Case("false_os", 0x1B)
956      .Case("neq_os",   0x1C)
957      .Case("ge_oq",    0x1D)
958      .Case("gt_oq",    0x1E)
959      .Case("true_us",  0x1F)
960      .Default(~0U);
961    if (SSEComparisonCode != ~0U) {
962      ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode,
963                                          getParser().getContext());
964      if (PatchedName.endswith("ss")) {
965        PatchedName = IsVCMP ? "vcmpss" : "cmpss";
966      } else if (PatchedName.endswith("sd")) {
967        PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
968      } else if (PatchedName.endswith("ps")) {
969        PatchedName = IsVCMP ? "vcmpps" : "cmpps";
970      } else {
971        assert(PatchedName.endswith("pd") && "Unexpected mnemonic!");
972        PatchedName = IsVCMP ? "vcmppd" : "cmppd";
973      }
974    }
975  }
976
977  Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
978
979  if (ExtraImmOp)
980    Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
981
982
983  // Determine whether this is an instruction prefix.
984  bool isPrefix =
985    Name == "lock" || Name == "rep" ||
986    Name == "repe" || Name == "repz" ||
987    Name == "repne" || Name == "repnz" ||
988    Name == "rex64" || Name == "data16";
989
990
991  // This does the actual operand parsing.  Don't parse any more if we have a
992  // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
993  // just want to parse the "lock" as the first instruction and the "incl" as
994  // the next one.
995  if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
996
997    // Parse '*' modifier.
998    if (getLexer().is(AsmToken::Star)) {
999      SMLoc Loc = Parser.getTok().getLoc();
1000      Operands.push_back(X86Operand::CreateToken("*", Loc));
1001      Parser.Lex(); // Eat the star.
1002    }
1003
1004    // Read the first operand.
1005    if (X86Operand *Op = ParseOperand())
1006      Operands.push_back(Op);
1007    else {
1008      Parser.EatToEndOfStatement();
1009      return true;
1010    }
1011
1012    while (getLexer().is(AsmToken::Comma)) {
1013      Parser.Lex();  // Eat the comma.
1014
1015      // Parse and remember the operand.
1016      if (X86Operand *Op = ParseOperand())
1017        Operands.push_back(Op);
1018      else {
1019        Parser.EatToEndOfStatement();
1020        return true;
1021      }
1022    }
1023
1024    if (getLexer().isNot(AsmToken::EndOfStatement)) {
1025      SMLoc Loc = getLexer().getLoc();
1026      Parser.EatToEndOfStatement();
1027      return Error(Loc, "unexpected token in argument list");
1028    }
1029  }
1030
1031  if (getLexer().is(AsmToken::EndOfStatement))
1032    Parser.Lex(); // Consume the EndOfStatement
1033  else if (isPrefix && getLexer().is(AsmToken::Slash))
1034    Parser.Lex(); // Consume the prefix separator Slash
1035
1036  // This is a terrible hack to handle "out[bwl]? %al, (%dx)" ->
1037  // "outb %al, %dx".  Out doesn't take a memory form, but this is a widely
1038  // documented form in various unofficial manuals, so a lot of code uses it.
1039  if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") &&
1040      Operands.size() == 3) {
1041    X86Operand &Op = *(X86Operand*)Operands.back();
1042    if (Op.isMem() && Op.Mem.SegReg == 0 &&
1043        isa<MCConstantExpr>(Op.Mem.Disp) &&
1044        cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
1045        Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
1046      SMLoc Loc = Op.getEndLoc();
1047      Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
1048      delete &Op;
1049    }
1050  }
1051  // Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al".
1052  if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") &&
1053      Operands.size() == 3) {
1054    X86Operand &Op = *(X86Operand*)Operands.begin()[1];
1055    if (Op.isMem() && Op.Mem.SegReg == 0 &&
1056        isa<MCConstantExpr>(Op.Mem.Disp) &&
1057        cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
1058        Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
1059      SMLoc Loc = Op.getEndLoc();
1060      Operands.begin()[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
1061      delete &Op;
1062    }
1063  }
1064  // Transform "ins[bwl] %dx, %es:(%edi)" into "ins[bwl]"
1065  if (Name.startswith("ins") && Operands.size() == 3 &&
1066      (Name == "insb" || Name == "insw" || Name == "insl")) {
1067    X86Operand &Op = *(X86Operand*)Operands.begin()[1];
1068    X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
1069    if (Op.isReg() && Op.getReg() == X86::DX && isDstOp(Op2)) {
1070      Operands.pop_back();
1071      Operands.pop_back();
1072      delete &Op;
1073      delete &Op2;
1074    }
1075  }
1076
1077  // Transform "outs[bwl] %ds:(%esi), %dx" into "out[bwl]"
1078  if (Name.startswith("outs") && Operands.size() == 3 &&
1079      (Name == "outsb" || Name == "outsw" || Name == "outsl")) {
1080    X86Operand &Op = *(X86Operand*)Operands.begin()[1];
1081    X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
1082    if (isSrcOp(Op) && Op2.isReg() && Op2.getReg() == X86::DX) {
1083      Operands.pop_back();
1084      Operands.pop_back();
1085      delete &Op;
1086      delete &Op2;
1087    }
1088  }
1089
1090  // Transform "movs[bwl] %ds:(%esi), %es:(%edi)" into "movs[bwl]"
1091  if (Name.startswith("movs") && Operands.size() == 3 &&
1092      (Name == "movsb" || Name == "movsw" || Name == "movsl" ||
1093       (is64BitMode() && Name == "movsq"))) {
1094    X86Operand &Op = *(X86Operand*)Operands.begin()[1];
1095    X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
1096    if (isSrcOp(Op) && isDstOp(Op2)) {
1097      Operands.pop_back();
1098      Operands.pop_back();
1099      delete &Op;
1100      delete &Op2;
1101    }
1102  }
1103  // Transform "lods[bwl] %ds:(%esi),{%al,%ax,%eax,%rax}" into "lods[bwl]"
1104  if (Name.startswith("lods") && Operands.size() == 3 &&
1105      (Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
1106       Name == "lodsl" || (is64BitMode() && Name == "lodsq"))) {
1107    X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
1108    X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]);
1109    if (isSrcOp(*Op1) && Op2->isReg()) {
1110      const char *ins;
1111      unsigned reg = Op2->getReg();
1112      bool isLods = Name == "lods";
1113      if (reg == X86::AL && (isLods || Name == "lodsb"))
1114        ins = "lodsb";
1115      else if (reg == X86::AX && (isLods || Name == "lodsw"))
1116        ins = "lodsw";
1117      else if (reg == X86::EAX && (isLods || Name == "lodsl"))
1118        ins = "lodsl";
1119      else if (reg == X86::RAX && (isLods || Name == "lodsq"))
1120        ins = "lodsq";
1121      else
1122        ins = NULL;
1123      if (ins != NULL) {
1124        Operands.pop_back();
1125        Operands.pop_back();
1126        delete Op1;
1127        delete Op2;
1128        if (Name != ins)
1129          static_cast<X86Operand*>(Operands[0])->setTokenValue(ins);
1130      }
1131    }
1132  }
1133  // Transform "stos[bwl] {%al,%ax,%eax,%rax},%es:(%edi)" into "stos[bwl]"
1134  if (Name.startswith("stos") && Operands.size() == 3 &&
1135      (Name == "stos" || Name == "stosb" || Name == "stosw" ||
1136       Name == "stosl" || (is64BitMode() && Name == "stosq"))) {
1137    X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
1138    X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]);
1139    if (isDstOp(*Op2) && Op1->isReg()) {
1140      const char *ins;
1141      unsigned reg = Op1->getReg();
1142      bool isStos = Name == "stos";
1143      if (reg == X86::AL && (isStos || Name == "stosb"))
1144        ins = "stosb";
1145      else if (reg == X86::AX && (isStos || Name == "stosw"))
1146        ins = "stosw";
1147      else if (reg == X86::EAX && (isStos || Name == "stosl"))
1148        ins = "stosl";
1149      else if (reg == X86::RAX && (isStos || Name == "stosq"))
1150        ins = "stosq";
1151      else
1152        ins = NULL;
1153      if (ins != NULL) {
1154        Operands.pop_back();
1155        Operands.pop_back();
1156        delete Op1;
1157        delete Op2;
1158        if (Name != ins)
1159          static_cast<X86Operand*>(Operands[0])->setTokenValue(ins);
1160      }
1161    }
1162  }
1163
1164  // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>.  Canonicalize to
1165  // "shift <op>".
1166  if ((Name.startswith("shr") || Name.startswith("sar") ||
1167       Name.startswith("shl") || Name.startswith("sal") ||
1168       Name.startswith("rcl") || Name.startswith("rcr") ||
1169       Name.startswith("rol") || Name.startswith("ror")) &&
1170      Operands.size() == 3) {
1171    if (getParser().getAssemblerDialect()) {
1172      // Intel syntax
1173      X86Operand *Op1 = static_cast<X86Operand*>(Operands[2]);
1174      if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
1175	  cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) {
1176	delete Operands[2];
1177	Operands.pop_back();
1178      }
1179    } else {
1180      X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
1181      if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
1182	  cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) {
1183	delete Operands[1];
1184	Operands.erase(Operands.begin() + 1);
1185      }
1186    }
1187  }
1188
1189  // Transforms "int $3" into "int3" as a size optimization.  We can't write an
1190  // instalias with an immediate operand yet.
1191  if (Name == "int" && Operands.size() == 2) {
1192    X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
1193    if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
1194        cast<MCConstantExpr>(Op1->getImm())->getValue() == 3) {
1195      delete Operands[1];
1196      Operands.erase(Operands.begin() + 1);
1197      static_cast<X86Operand*>(Operands[0])->setTokenValue("int3");
1198    }
1199  }
1200
1201  return false;
1202}
1203
1204bool X86AsmParser::
1205processInstruction(MCInst &Inst,
1206                   const SmallVectorImpl<MCParsedAsmOperand*> &Ops) {
1207  switch (Inst.getOpcode()) {
1208  default: return false;
1209  case X86::AND16i16: {
1210    if (!Inst.getOperand(0).isImm() ||
1211        !isImmSExti16i8Value(Inst.getOperand(0).getImm()))
1212      return false;
1213
1214    MCInst TmpInst;
1215    TmpInst.setOpcode(X86::AND16ri8);
1216    TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
1217    TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
1218    TmpInst.addOperand(Inst.getOperand(0));
1219    Inst = TmpInst;
1220    return true;
1221  }
1222  case X86::AND32i32: {
1223    if (!Inst.getOperand(0).isImm() ||
1224        !isImmSExti32i8Value(Inst.getOperand(0).getImm()))
1225      return false;
1226
1227    MCInst TmpInst;
1228    TmpInst.setOpcode(X86::AND32ri8);
1229    TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
1230    TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
1231    TmpInst.addOperand(Inst.getOperand(0));
1232    Inst = TmpInst;
1233    return true;
1234  }
1235  case X86::AND64i32: {
1236    if (!Inst.getOperand(0).isImm() ||
1237        !isImmSExti64i8Value(Inst.getOperand(0).getImm()))
1238      return false;
1239
1240    MCInst TmpInst;
1241    TmpInst.setOpcode(X86::AND64ri8);
1242    TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
1243    TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
1244    TmpInst.addOperand(Inst.getOperand(0));
1245    Inst = TmpInst;
1246    return true;
1247  }
1248  case X86::XOR16i16: {
1249    if (!Inst.getOperand(0).isImm() ||
1250        !isImmSExti16i8Value(Inst.getOperand(0).getImm()))
1251      return false;
1252
1253    MCInst TmpInst;
1254    TmpInst.setOpcode(X86::XOR16ri8);
1255    TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
1256    TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
1257    TmpInst.addOperand(Inst.getOperand(0));
1258    Inst = TmpInst;
1259    return true;
1260  }
1261  case X86::XOR32i32: {
1262    if (!Inst.getOperand(0).isImm() ||
1263        !isImmSExti32i8Value(Inst.getOperand(0).getImm()))
1264      return false;
1265
1266    MCInst TmpInst;
1267    TmpInst.setOpcode(X86::XOR32ri8);
1268    TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
1269    TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
1270    TmpInst.addOperand(Inst.getOperand(0));
1271    Inst = TmpInst;
1272    return true;
1273  }
1274  case X86::XOR64i32: {
1275    if (!Inst.getOperand(0).isImm() ||
1276        !isImmSExti64i8Value(Inst.getOperand(0).getImm()))
1277      return false;
1278
1279    MCInst TmpInst;
1280    TmpInst.setOpcode(X86::XOR64ri8);
1281    TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
1282    TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
1283    TmpInst.addOperand(Inst.getOperand(0));
1284    Inst = TmpInst;
1285    return true;
1286  }
1287  case X86::OR16i16: {
1288    if (!Inst.getOperand(0).isImm() ||
1289        !isImmSExti16i8Value(Inst.getOperand(0).getImm()))
1290      return false;
1291
1292    MCInst TmpInst;
1293    TmpInst.setOpcode(X86::OR16ri8);
1294    TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
1295    TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
1296    TmpInst.addOperand(Inst.getOperand(0));
1297    Inst = TmpInst;
1298    return true;
1299  }
1300  case X86::OR32i32: {
1301    if (!Inst.getOperand(0).isImm() ||
1302        !isImmSExti32i8Value(Inst.getOperand(0).getImm()))
1303      return false;
1304
1305    MCInst TmpInst;
1306    TmpInst.setOpcode(X86::OR32ri8);
1307    TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
1308    TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
1309    TmpInst.addOperand(Inst.getOperand(0));
1310    Inst = TmpInst;
1311    return true;
1312  }
1313  case X86::OR64i32: {
1314    if (!Inst.getOperand(0).isImm() ||
1315        !isImmSExti64i8Value(Inst.getOperand(0).getImm()))
1316      return false;
1317
1318    MCInst TmpInst;
1319    TmpInst.setOpcode(X86::OR64ri8);
1320    TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
1321    TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
1322    TmpInst.addOperand(Inst.getOperand(0));
1323    Inst = TmpInst;
1324    return true;
1325  }
1326  case X86::CMP16i16: {
1327    if (!Inst.getOperand(0).isImm() ||
1328        !isImmSExti16i8Value(Inst.getOperand(0).getImm()))
1329      return false;
1330
1331    MCInst TmpInst;
1332    TmpInst.setOpcode(X86::CMP16ri8);
1333    TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
1334    TmpInst.addOperand(Inst.getOperand(0));
1335    Inst = TmpInst;
1336    return true;
1337  }
1338  case X86::CMP32i32: {
1339    if (!Inst.getOperand(0).isImm() ||
1340        !isImmSExti32i8Value(Inst.getOperand(0).getImm()))
1341      return false;
1342
1343    MCInst TmpInst;
1344    TmpInst.setOpcode(X86::CMP32ri8);
1345    TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
1346    TmpInst.addOperand(Inst.getOperand(0));
1347    Inst = TmpInst;
1348    return true;
1349  }
1350  case X86::CMP64i32: {
1351    if (!Inst.getOperand(0).isImm() ||
1352        !isImmSExti64i8Value(Inst.getOperand(0).getImm()))
1353      return false;
1354
1355    MCInst TmpInst;
1356    TmpInst.setOpcode(X86::CMP64ri8);
1357    TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
1358    TmpInst.addOperand(Inst.getOperand(0));
1359    Inst = TmpInst;
1360    return true;
1361  }
1362  case X86::ADD16i16: {
1363    if (!Inst.getOperand(0).isImm() ||
1364        !isImmSExti16i8Value(Inst.getOperand(0).getImm()))
1365      return false;
1366
1367    MCInst TmpInst;
1368    TmpInst.setOpcode(X86::ADD16ri8);
1369    TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
1370    TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
1371    TmpInst.addOperand(Inst.getOperand(0));
1372    Inst = TmpInst;
1373    return true;
1374  }
1375  case X86::ADD32i32: {
1376    if (!Inst.getOperand(0).isImm() ||
1377        !isImmSExti32i8Value(Inst.getOperand(0).getImm()))
1378      return false;
1379
1380    MCInst TmpInst;
1381    TmpInst.setOpcode(X86::ADD32ri8);
1382    TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
1383    TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
1384    TmpInst.addOperand(Inst.getOperand(0));
1385    Inst = TmpInst;
1386    return true;
1387  }
1388  case X86::ADD64i32: {
1389    if (!Inst.getOperand(0).isImm() ||
1390        !isImmSExti64i8Value(Inst.getOperand(0).getImm()))
1391      return false;
1392
1393    MCInst TmpInst;
1394    TmpInst.setOpcode(X86::ADD64ri8);
1395    TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
1396    TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
1397    TmpInst.addOperand(Inst.getOperand(0));
1398    Inst = TmpInst;
1399    return true;
1400  }
1401  case X86::SUB16i16: {
1402    if (!Inst.getOperand(0).isImm() ||
1403        !isImmSExti16i8Value(Inst.getOperand(0).getImm()))
1404      return false;
1405
1406    MCInst TmpInst;
1407    TmpInst.setOpcode(X86::SUB16ri8);
1408    TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
1409    TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
1410    TmpInst.addOperand(Inst.getOperand(0));
1411    Inst = TmpInst;
1412    return true;
1413  }
1414  case X86::SUB32i32: {
1415    if (!Inst.getOperand(0).isImm() ||
1416        !isImmSExti32i8Value(Inst.getOperand(0).getImm()))
1417      return false;
1418
1419    MCInst TmpInst;
1420    TmpInst.setOpcode(X86::SUB32ri8);
1421    TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
1422    TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
1423    TmpInst.addOperand(Inst.getOperand(0));
1424    Inst = TmpInst;
1425    return true;
1426  }
1427  case X86::SUB64i32: {
1428    if (!Inst.getOperand(0).isImm() ||
1429        !isImmSExti64i8Value(Inst.getOperand(0).getImm()))
1430      return false;
1431
1432    MCInst TmpInst;
1433    TmpInst.setOpcode(X86::SUB64ri8);
1434    TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
1435    TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
1436    TmpInst.addOperand(Inst.getOperand(0));
1437    Inst = TmpInst;
1438    return true;
1439  }
1440  }
1441  return false;
1442}
1443
1444bool X86AsmParser::
1445MatchAndEmitInstruction(SMLoc IDLoc,
1446                        SmallVectorImpl<MCParsedAsmOperand*> &Operands,
1447                        MCStreamer &Out) {
1448  assert(!Operands.empty() && "Unexpect empty operand list!");
1449  X86Operand *Op = static_cast<X86Operand*>(Operands[0]);
1450  assert(Op->isToken() && "Leading operand should always be a mnemonic!");
1451
1452  // First, handle aliases that expand to multiple instructions.
1453  // FIXME: This should be replaced with a real .td file alias mechanism.
1454  // Also, MatchInstructionImpl should do actually *do* the EmitInstruction
1455  // call.
1456  if (Op->getToken() == "fstsw" || Op->getToken() == "fstcw" ||
1457      Op->getToken() == "fstsww" || Op->getToken() == "fstcww" ||
1458      Op->getToken() == "finit" || Op->getToken() == "fsave" ||
1459      Op->getToken() == "fstenv" || Op->getToken() == "fclex") {
1460    MCInst Inst;
1461    Inst.setOpcode(X86::WAIT);
1462    Out.EmitInstruction(Inst);
1463
1464    const char *Repl =
1465      StringSwitch<const char*>(Op->getToken())
1466        .Case("finit",  "fninit")
1467        .Case("fsave",  "fnsave")
1468        .Case("fstcw",  "fnstcw")
1469        .Case("fstcww",  "fnstcw")
1470        .Case("fstenv", "fnstenv")
1471        .Case("fstsw",  "fnstsw")
1472        .Case("fstsww", "fnstsw")
1473        .Case("fclex",  "fnclex")
1474        .Default(0);
1475    assert(Repl && "Unknown wait-prefixed instruction");
1476    delete Operands[0];
1477    Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
1478  }
1479
1480  bool WasOriginallyInvalidOperand = false;
1481  unsigned OrigErrorInfo;
1482  MCInst Inst;
1483
1484  // First, try a direct match.
1485  switch (MatchInstructionImpl(Operands, Inst, OrigErrorInfo,
1486                               getParser().getAssemblerDialect())) {
1487  default: break;
1488  case Match_Success:
1489    // Some instructions need post-processing to, for example, tweak which
1490    // encoding is selected. Loop on it while changes happen so the
1491    // individual transformations can chain off each other.
1492    while (processInstruction(Inst, Operands))
1493      ;
1494
1495    Out.EmitInstruction(Inst);
1496    return false;
1497  case Match_MissingFeature:
1498    Error(IDLoc, "instruction requires a CPU feature not currently enabled");
1499    return true;
1500  case Match_ConversionFail:
1501    return Error(IDLoc, "unable to convert operands to instruction");
1502  case Match_InvalidOperand:
1503    WasOriginallyInvalidOperand = true;
1504    break;
1505  case Match_MnemonicFail:
1506    break;
1507  }
1508
1509  // FIXME: Ideally, we would only attempt suffix matches for things which are
1510  // valid prefixes, and we could just infer the right unambiguous
1511  // type. However, that requires substantially more matcher support than the
1512  // following hack.
1513
1514  // Change the operand to point to a temporary token.
1515  StringRef Base = Op->getToken();
1516  SmallString<16> Tmp;
1517  Tmp += Base;
1518  Tmp += ' ';
1519  Op->setTokenValue(Tmp.str());
1520
1521  // If this instruction starts with an 'f', then it is a floating point stack
1522  // instruction.  These come in up to three forms for 32-bit, 64-bit, and
1523  // 80-bit floating point, which use the suffixes s,l,t respectively.
1524  //
1525  // Otherwise, we assume that this may be an integer instruction, which comes
1526  // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
1527  const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
1528
1529  // Check for the various suffix matches.
1530  Tmp[Base.size()] = Suffixes[0];
1531  unsigned ErrorInfoIgnore;
1532  unsigned Match1, Match2, Match3, Match4;
1533
1534  Match1 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore);
1535  Tmp[Base.size()] = Suffixes[1];
1536  Match2 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore);
1537  Tmp[Base.size()] = Suffixes[2];
1538  Match3 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore);
1539  Tmp[Base.size()] = Suffixes[3];
1540  Match4 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore);
1541
1542  // Restore the old token.
1543  Op->setTokenValue(Base);
1544
1545  // If exactly one matched, then we treat that as a successful match (and the
1546  // instruction will already have been filled in correctly, since the failing
1547  // matches won't have modified it).
1548  unsigned NumSuccessfulMatches =
1549    (Match1 == Match_Success) + (Match2 == Match_Success) +
1550    (Match3 == Match_Success) + (Match4 == Match_Success);
1551  if (NumSuccessfulMatches == 1) {
1552    Out.EmitInstruction(Inst);
1553    return false;
1554  }
1555
1556  // Otherwise, the match failed, try to produce a decent error message.
1557
1558  // If we had multiple suffix matches, then identify this as an ambiguous
1559  // match.
1560  if (NumSuccessfulMatches > 1) {
1561    char MatchChars[4];
1562    unsigned NumMatches = 0;
1563    if (Match1 == Match_Success) MatchChars[NumMatches++] = Suffixes[0];
1564    if (Match2 == Match_Success) MatchChars[NumMatches++] = Suffixes[1];
1565    if (Match3 == Match_Success) MatchChars[NumMatches++] = Suffixes[2];
1566    if (Match4 == Match_Success) MatchChars[NumMatches++] = Suffixes[3];
1567
1568    SmallString<126> Msg;
1569    raw_svector_ostream OS(Msg);
1570    OS << "ambiguous instructions require an explicit suffix (could be ";
1571    for (unsigned i = 0; i != NumMatches; ++i) {
1572      if (i != 0)
1573        OS << ", ";
1574      if (i + 1 == NumMatches)
1575        OS << "or ";
1576      OS << "'" << Base << MatchChars[i] << "'";
1577    }
1578    OS << ")";
1579    Error(IDLoc, OS.str());
1580    return true;
1581  }
1582
1583  // Okay, we know that none of the variants matched successfully.
1584
1585  // If all of the instructions reported an invalid mnemonic, then the original
1586  // mnemonic was invalid.
1587  if ((Match1 == Match_MnemonicFail) && (Match2 == Match_MnemonicFail) &&
1588      (Match3 == Match_MnemonicFail) && (Match4 == Match_MnemonicFail)) {
1589    if (!WasOriginallyInvalidOperand) {
1590      return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
1591                   Op->getLocRange());
1592    }
1593
1594    // Recover location info for the operand if we know which was the problem.
1595    if (OrigErrorInfo != ~0U) {
1596      if (OrigErrorInfo >= Operands.size())
1597        return Error(IDLoc, "too few operands for instruction");
1598
1599      X86Operand *Operand = (X86Operand*)Operands[OrigErrorInfo];
1600      if (Operand->getStartLoc().isValid()) {
1601        SMRange OperandRange = Operand->getLocRange();
1602        return Error(Operand->getStartLoc(), "invalid operand for instruction",
1603                     OperandRange);
1604      }
1605    }
1606
1607    return Error(IDLoc, "invalid operand for instruction");
1608  }
1609
1610  // If one instruction matched with a missing feature, report this as a
1611  // missing feature.
1612  if ((Match1 == Match_MissingFeature) + (Match2 == Match_MissingFeature) +
1613      (Match3 == Match_MissingFeature) + (Match4 == Match_MissingFeature) == 1){
1614    Error(IDLoc, "instruction requires a CPU feature not currently enabled");
1615    return true;
1616  }
1617
1618  // If one instruction matched with an invalid operand, report this as an
1619  // operand failure.
1620  if ((Match1 == Match_InvalidOperand) + (Match2 == Match_InvalidOperand) +
1621      (Match3 == Match_InvalidOperand) + (Match4 == Match_InvalidOperand) == 1){
1622    Error(IDLoc, "invalid operand for instruction");
1623    return true;
1624  }
1625
1626  // If all of these were an outright failure, report it in a useless way.
1627  Error(IDLoc, "unknown use of instruction mnemonic without a size suffix");
1628  return true;
1629}
1630
1631
1632bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
1633  StringRef IDVal = DirectiveID.getIdentifier();
1634  if (IDVal == ".word")
1635    return ParseDirectiveWord(2, DirectiveID.getLoc());
1636  else if (IDVal.startswith(".code"))
1637    return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
1638  return true;
1639}
1640
1641/// ParseDirectiveWord
1642///  ::= .word [ expression (, expression)* ]
1643bool X86AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
1644  if (getLexer().isNot(AsmToken::EndOfStatement)) {
1645    for (;;) {
1646      const MCExpr *Value;
1647      if (getParser().ParseExpression(Value))
1648        return true;
1649
1650      getParser().getStreamer().EmitValue(Value, Size, 0 /*addrspace*/);
1651
1652      if (getLexer().is(AsmToken::EndOfStatement))
1653        break;
1654
1655      // FIXME: Improve diagnostic.
1656      if (getLexer().isNot(AsmToken::Comma))
1657        return Error(L, "unexpected token in directive");
1658      Parser.Lex();
1659    }
1660  }
1661
1662  Parser.Lex();
1663  return false;
1664}
1665
1666/// ParseDirectiveCode
1667///  ::= .code32 | .code64
1668bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
1669  if (IDVal == ".code32") {
1670    Parser.Lex();
1671    if (is64BitMode()) {
1672      SwitchMode();
1673      getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
1674    }
1675  } else if (IDVal == ".code64") {
1676    Parser.Lex();
1677    if (!is64BitMode()) {
1678      SwitchMode();
1679      getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64);
1680    }
1681  } else {
1682    return Error(L, "unexpected directive " + IDVal);
1683  }
1684
1685  return false;
1686}
1687
1688
1689extern "C" void LLVMInitializeX86AsmLexer();
1690
1691// Force static initialization.
1692extern "C" void LLVMInitializeX86AsmParser() {
1693  RegisterMCAsmParser<X86AsmParser> X(TheX86_32Target);
1694  RegisterMCAsmParser<X86AsmParser> Y(TheX86_64Target);
1695  LLVMInitializeX86AsmLexer();
1696}
1697
1698#define GET_REGISTER_MATCHER
1699#define GET_MATCHER_IMPLEMENTATION
1700#include "X86GenAsmMatcher.inc"
1701