X86AsmParser.cpp revision 8cb441c9e0acb8b2c68229a783785fc9c3942ec8
1//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/Target/TargetAsmParser.h"
11#include "X86.h"
12#include "X86Subtarget.h"
13#include "llvm/Target/TargetRegistry.h"
14#include "llvm/Target/TargetAsmParser.h"
15#include "llvm/MC/MCStreamer.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/MC/MCInst.h"
18#include "llvm/MC/MCParser/MCAsmLexer.h"
19#include "llvm/MC/MCParser/MCAsmParser.h"
20#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
21#include "llvm/ADT/SmallString.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/ADT/StringSwitch.h"
25#include "llvm/ADT/Twine.h"
26#include "llvm/Support/SourceMgr.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30namespace {
31struct X86Operand;
32
33class X86ATTAsmParser : public TargetAsmParser {
34  MCAsmParser &Parser;
35  TargetMachine &TM;
36
37protected:
38  unsigned Is64Bit : 1;
39
40private:
41  MCAsmParser &getParser() const { return Parser; }
42
43  MCAsmLexer &getLexer() const { return Parser.getLexer(); }
44
45  bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
46
47  bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
48
49  X86Operand *ParseOperand();
50  X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc);
51
52  bool ParseDirectiveWord(unsigned Size, SMLoc L);
53
54  bool MatchAndEmitInstruction(SMLoc IDLoc,
55                               SmallVectorImpl<MCParsedAsmOperand*> &Operands,
56                               MCStreamer &Out);
57
58  /// @name Auto-generated Matcher Functions
59  /// {
60
61#define GET_ASSEMBLER_HEADER
62#include "X86GenAsmMatcher.inc"
63
64  /// }
65
66public:
67  X86ATTAsmParser(const Target &T, MCAsmParser &parser, TargetMachine &TM)
68    : TargetAsmParser(T), Parser(parser), TM(TM) {
69
70    // Initialize the set of available features.
71    setAvailableFeatures(ComputeAvailableFeatures(
72                           &TM.getSubtarget<X86Subtarget>()));
73  }
74
75  virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc,
76                                SmallVectorImpl<MCParsedAsmOperand*> &Operands);
77
78  virtual bool ParseDirective(AsmToken DirectiveID);
79};
80
81class X86_32ATTAsmParser : public X86ATTAsmParser {
82public:
83  X86_32ATTAsmParser(const Target &T, MCAsmParser &Parser, TargetMachine &TM)
84    : X86ATTAsmParser(T, Parser, TM) {
85    Is64Bit = false;
86  }
87};
88
89class X86_64ATTAsmParser : public X86ATTAsmParser {
90public:
91  X86_64ATTAsmParser(const Target &T, MCAsmParser &Parser, TargetMachine &TM)
92    : X86ATTAsmParser(T, Parser, TM) {
93    Is64Bit = true;
94  }
95};
96
97} // end anonymous namespace
98
99/// @name Auto-generated Match Functions
100/// {
101
102static unsigned MatchRegisterName(StringRef Name);
103
104/// }
105
106namespace {
107
108/// X86Operand - Instances of this class represent a parsed X86 machine
109/// instruction.
110struct X86Operand : public MCParsedAsmOperand {
111  enum KindTy {
112    Token,
113    Register,
114    Immediate,
115    Memory
116  } Kind;
117
118  SMLoc StartLoc, EndLoc;
119
120  union {
121    struct {
122      const char *Data;
123      unsigned Length;
124    } Tok;
125
126    struct {
127      unsigned RegNo;
128    } Reg;
129
130    struct {
131      const MCExpr *Val;
132    } Imm;
133
134    struct {
135      unsigned SegReg;
136      const MCExpr *Disp;
137      unsigned BaseReg;
138      unsigned IndexReg;
139      unsigned Scale;
140    } Mem;
141  };
142
143  X86Operand(KindTy K, SMLoc Start, SMLoc End)
144    : Kind(K), StartLoc(Start), EndLoc(End) {}
145
146  /// getStartLoc - Get the location of the first token of this operand.
147  SMLoc getStartLoc() const { return StartLoc; }
148  /// getEndLoc - Get the location of the last token of this operand.
149  SMLoc getEndLoc() const { return EndLoc; }
150
151  virtual void dump(raw_ostream &OS) const {}
152
153  StringRef getToken() const {
154    assert(Kind == Token && "Invalid access!");
155    return StringRef(Tok.Data, Tok.Length);
156  }
157  void setTokenValue(StringRef Value) {
158    assert(Kind == Token && "Invalid access!");
159    Tok.Data = Value.data();
160    Tok.Length = Value.size();
161  }
162
163  unsigned getReg() const {
164    assert(Kind == Register && "Invalid access!");
165    return Reg.RegNo;
166  }
167
168  const MCExpr *getImm() const {
169    assert(Kind == Immediate && "Invalid access!");
170    return Imm.Val;
171  }
172
173  const MCExpr *getMemDisp() const {
174    assert(Kind == Memory && "Invalid access!");
175    return Mem.Disp;
176  }
177  unsigned getMemSegReg() const {
178    assert(Kind == Memory && "Invalid access!");
179    return Mem.SegReg;
180  }
181  unsigned getMemBaseReg() const {
182    assert(Kind == Memory && "Invalid access!");
183    return Mem.BaseReg;
184  }
185  unsigned getMemIndexReg() const {
186    assert(Kind == Memory && "Invalid access!");
187    return Mem.IndexReg;
188  }
189  unsigned getMemScale() const {
190    assert(Kind == Memory && "Invalid access!");
191    return Mem.Scale;
192  }
193
194  bool isToken() const {return Kind == Token; }
195
196  bool isImm() const { return Kind == Immediate; }
197
198  bool isImmSExti16i8() const {
199    if (!isImm())
200      return false;
201
202    // If this isn't a constant expr, just assume it fits and let relaxation
203    // handle it.
204    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
205    if (!CE)
206      return true;
207
208    // Otherwise, check the value is in a range that makes sense for this
209    // extension.
210    uint64_t Value = CE->getValue();
211    return ((                                  Value <= 0x000000000000007FULL)||
212            (0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)||
213            (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
214  }
215  bool isImmSExti32i8() const {
216    if (!isImm())
217      return false;
218
219    // If this isn't a constant expr, just assume it fits and let relaxation
220    // handle it.
221    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
222    if (!CE)
223      return true;
224
225    // Otherwise, check the value is in a range that makes sense for this
226    // extension.
227    uint64_t Value = CE->getValue();
228    return ((                                  Value <= 0x000000000000007FULL)||
229            (0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)||
230            (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
231  }
232  bool isImmSExti64i8() const {
233    if (!isImm())
234      return false;
235
236    // If this isn't a constant expr, just assume it fits and let relaxation
237    // handle it.
238    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
239    if (!CE)
240      return true;
241
242    // Otherwise, check the value is in a range that makes sense for this
243    // extension.
244    uint64_t Value = CE->getValue();
245    return ((                                  Value <= 0x000000000000007FULL)||
246            (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
247  }
248  bool isImmSExti64i32() const {
249    if (!isImm())
250      return false;
251
252    // If this isn't a constant expr, just assume it fits and let relaxation
253    // handle it.
254    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
255    if (!CE)
256      return true;
257
258    // Otherwise, check the value is in a range that makes sense for this
259    // extension.
260    uint64_t Value = CE->getValue();
261    return ((                                  Value <= 0x000000007FFFFFFFULL)||
262            (0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
263  }
264
265  bool isMem() const { return Kind == Memory; }
266
267  bool isAbsMem() const {
268    return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
269      !getMemIndexReg() && getMemScale() == 1;
270  }
271
272  bool isReg() const { return Kind == Register; }
273
274  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
275    // Add as immediates when possible.
276    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
277      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
278    else
279      Inst.addOperand(MCOperand::CreateExpr(Expr));
280  }
281
282  void addRegOperands(MCInst &Inst, unsigned N) const {
283    assert(N == 1 && "Invalid number of operands!");
284    Inst.addOperand(MCOperand::CreateReg(getReg()));
285  }
286
287  void addImmOperands(MCInst &Inst, unsigned N) const {
288    assert(N == 1 && "Invalid number of operands!");
289    addExpr(Inst, getImm());
290  }
291
292  void addMemOperands(MCInst &Inst, unsigned N) const {
293    assert((N == 5) && "Invalid number of operands!");
294    Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
295    Inst.addOperand(MCOperand::CreateImm(getMemScale()));
296    Inst.addOperand(MCOperand::CreateReg(getMemIndexReg()));
297    addExpr(Inst, getMemDisp());
298    Inst.addOperand(MCOperand::CreateReg(getMemSegReg()));
299  }
300
301  void addAbsMemOperands(MCInst &Inst, unsigned N) const {
302    assert((N == 1) && "Invalid number of operands!");
303    Inst.addOperand(MCOperand::CreateExpr(getMemDisp()));
304  }
305
306  static X86Operand *CreateToken(StringRef Str, SMLoc Loc) {
307    X86Operand *Res = new X86Operand(Token, Loc, Loc);
308    Res->Tok.Data = Str.data();
309    Res->Tok.Length = Str.size();
310    return Res;
311  }
312
313  static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc) {
314    X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc);
315    Res->Reg.RegNo = RegNo;
316    return Res;
317  }
318
319  static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc){
320    X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc);
321    Res->Imm.Val = Val;
322    return Res;
323  }
324
325  /// Create an absolute memory operand.
326  static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc,
327                               SMLoc EndLoc) {
328    X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
329    Res->Mem.SegReg   = 0;
330    Res->Mem.Disp     = Disp;
331    Res->Mem.BaseReg  = 0;
332    Res->Mem.IndexReg = 0;
333    Res->Mem.Scale    = 1;
334    return Res;
335  }
336
337  /// Create a generalized memory operand.
338  static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp,
339                               unsigned BaseReg, unsigned IndexReg,
340                               unsigned Scale, SMLoc StartLoc, SMLoc EndLoc) {
341    // We should never just have a displacement, that should be parsed as an
342    // absolute memory operand.
343    assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!");
344
345    // The scale should always be one of {1,2,4,8}.
346    assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) &&
347           "Invalid scale!");
348    X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
349    Res->Mem.SegReg   = SegReg;
350    Res->Mem.Disp     = Disp;
351    Res->Mem.BaseReg  = BaseReg;
352    Res->Mem.IndexReg = IndexReg;
353    Res->Mem.Scale    = Scale;
354    return Res;
355  }
356};
357
358} // end anonymous namespace.
359
360
361bool X86ATTAsmParser::ParseRegister(unsigned &RegNo,
362                                    SMLoc &StartLoc, SMLoc &EndLoc) {
363  RegNo = 0;
364  const AsmToken &TokPercent = Parser.getTok();
365  assert(TokPercent.is(AsmToken::Percent) && "Invalid token kind!");
366  StartLoc = TokPercent.getLoc();
367  Parser.Lex(); // Eat percent token.
368
369  const AsmToken &Tok = Parser.getTok();
370  if (Tok.isNot(AsmToken::Identifier))
371    return Error(Tok.getLoc(), "invalid register name");
372
373  // FIXME: Validate register for the current architecture; we have to do
374  // validation later, so maybe there is no need for this here.
375  RegNo = MatchRegisterName(Tok.getString());
376
377  // If the match failed, try the register name as lowercase.
378  if (RegNo == 0)
379    RegNo = MatchRegisterName(LowercaseString(Tok.getString()));
380
381  // FIXME: This should be done using Requires<In32BitMode> and
382  // Requires<In64BitMode> so "eiz" usage in 64-bit instructions
383  // can be also checked.
384  if (RegNo == X86::RIZ && !Is64Bit)
385    return Error(Tok.getLoc(), "riz register in 64-bit mode only");
386
387  // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
388  if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
389    RegNo = X86::ST0;
390    EndLoc = Tok.getLoc();
391    Parser.Lex(); // Eat 'st'
392
393    // Check to see if we have '(4)' after %st.
394    if (getLexer().isNot(AsmToken::LParen))
395      return false;
396    // Lex the paren.
397    getParser().Lex();
398
399    const AsmToken &IntTok = Parser.getTok();
400    if (IntTok.isNot(AsmToken::Integer))
401      return Error(IntTok.getLoc(), "expected stack index");
402    switch (IntTok.getIntVal()) {
403    case 0: RegNo = X86::ST0; break;
404    case 1: RegNo = X86::ST1; break;
405    case 2: RegNo = X86::ST2; break;
406    case 3: RegNo = X86::ST3; break;
407    case 4: RegNo = X86::ST4; break;
408    case 5: RegNo = X86::ST5; break;
409    case 6: RegNo = X86::ST6; break;
410    case 7: RegNo = X86::ST7; break;
411    default: return Error(IntTok.getLoc(), "invalid stack index");
412    }
413
414    if (getParser().Lex().isNot(AsmToken::RParen))
415      return Error(Parser.getTok().getLoc(), "expected ')'");
416
417    EndLoc = Tok.getLoc();
418    Parser.Lex(); // Eat ')'
419    return false;
420  }
421
422  // If this is "db[0-7]", match it as an alias
423  // for dr[0-7].
424  if (RegNo == 0 && Tok.getString().size() == 3 &&
425      Tok.getString().startswith("db")) {
426    switch (Tok.getString()[2]) {
427    case '0': RegNo = X86::DR0; break;
428    case '1': RegNo = X86::DR1; break;
429    case '2': RegNo = X86::DR2; break;
430    case '3': RegNo = X86::DR3; break;
431    case '4': RegNo = X86::DR4; break;
432    case '5': RegNo = X86::DR5; break;
433    case '6': RegNo = X86::DR6; break;
434    case '7': RegNo = X86::DR7; break;
435    }
436
437    if (RegNo != 0) {
438      EndLoc = Tok.getLoc();
439      Parser.Lex(); // Eat it.
440      return false;
441    }
442  }
443
444  if (RegNo == 0)
445    return Error(Tok.getLoc(), "invalid register name");
446
447  EndLoc = Tok.getLoc();
448  Parser.Lex(); // Eat identifier token.
449  return false;
450}
451
452X86Operand *X86ATTAsmParser::ParseOperand() {
453  switch (getLexer().getKind()) {
454  default:
455    // Parse a memory operand with no segment register.
456    return ParseMemOperand(0, Parser.getTok().getLoc());
457  case AsmToken::Percent: {
458    // Read the register.
459    unsigned RegNo;
460    SMLoc Start, End;
461    if (ParseRegister(RegNo, Start, End)) return 0;
462    if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
463      Error(Start, "eiz and riz can only be used as index registers");
464      return 0;
465    }
466
467    // If this is a segment register followed by a ':', then this is the start
468    // of a memory reference, otherwise this is a normal register reference.
469    if (getLexer().isNot(AsmToken::Colon))
470      return X86Operand::CreateReg(RegNo, Start, End);
471
472
473    getParser().Lex(); // Eat the colon.
474    return ParseMemOperand(RegNo, Start);
475  }
476  case AsmToken::Dollar: {
477    // $42 -> immediate.
478    SMLoc Start = Parser.getTok().getLoc(), End;
479    Parser.Lex();
480    const MCExpr *Val;
481    if (getParser().ParseExpression(Val, End))
482      return 0;
483    return X86Operand::CreateImm(Val, Start, End);
484  }
485  }
486}
487
488/// ParseMemOperand: segment: disp(basereg, indexreg, scale).  The '%ds:' prefix
489/// has already been parsed if present.
490X86Operand *X86ATTAsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) {
491
492  // We have to disambiguate a parenthesized expression "(4+5)" from the start
493  // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)".  The
494  // only way to do this without lookahead is to eat the '(' and see what is
495  // after it.
496  const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
497  if (getLexer().isNot(AsmToken::LParen)) {
498    SMLoc ExprEnd;
499    if (getParser().ParseExpression(Disp, ExprEnd)) return 0;
500
501    // After parsing the base expression we could either have a parenthesized
502    // memory address or not.  If not, return now.  If so, eat the (.
503    if (getLexer().isNot(AsmToken::LParen)) {
504      // Unless we have a segment register, treat this as an immediate.
505      if (SegReg == 0)
506        return X86Operand::CreateMem(Disp, MemStart, ExprEnd);
507      return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
508    }
509
510    // Eat the '('.
511    Parser.Lex();
512  } else {
513    // Okay, we have a '('.  We don't know if this is an expression or not, but
514    // so we have to eat the ( to see beyond it.
515    SMLoc LParenLoc = Parser.getTok().getLoc();
516    Parser.Lex(); // Eat the '('.
517
518    if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
519      // Nothing to do here, fall into the code below with the '(' part of the
520      // memory operand consumed.
521    } else {
522      SMLoc ExprEnd;
523
524      // It must be an parenthesized expression, parse it now.
525      if (getParser().ParseParenExpression(Disp, ExprEnd))
526        return 0;
527
528      // After parsing the base expression we could either have a parenthesized
529      // memory address or not.  If not, return now.  If so, eat the (.
530      if (getLexer().isNot(AsmToken::LParen)) {
531        // Unless we have a segment register, treat this as an immediate.
532        if (SegReg == 0)
533          return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd);
534        return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
535      }
536
537      // Eat the '('.
538      Parser.Lex();
539    }
540  }
541
542  // If we reached here, then we just ate the ( of the memory operand.  Process
543  // the rest of the memory operand.
544  unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
545
546  if (getLexer().is(AsmToken::Percent)) {
547    SMLoc L;
548    if (ParseRegister(BaseReg, L, L)) return 0;
549    if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
550      Error(L, "eiz and riz can only be used as index registers");
551      return 0;
552    }
553  }
554
555  if (getLexer().is(AsmToken::Comma)) {
556    Parser.Lex(); // Eat the comma.
557
558    // Following the comma we should have either an index register, or a scale
559    // value. We don't support the later form, but we want to parse it
560    // correctly.
561    //
562    // Not that even though it would be completely consistent to support syntax
563    // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
564    if (getLexer().is(AsmToken::Percent)) {
565      SMLoc L;
566      if (ParseRegister(IndexReg, L, L)) return 0;
567
568      if (getLexer().isNot(AsmToken::RParen)) {
569        // Parse the scale amount:
570        //  ::= ',' [scale-expression]
571        if (getLexer().isNot(AsmToken::Comma)) {
572          Error(Parser.getTok().getLoc(),
573                "expected comma in scale expression");
574          return 0;
575        }
576        Parser.Lex(); // Eat the comma.
577
578        if (getLexer().isNot(AsmToken::RParen)) {
579          SMLoc Loc = Parser.getTok().getLoc();
580
581          int64_t ScaleVal;
582          if (getParser().ParseAbsoluteExpression(ScaleVal))
583            return 0;
584
585          // Validate the scale amount.
586          if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){
587            Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
588            return 0;
589          }
590          Scale = (unsigned)ScaleVal;
591        }
592      }
593    } else if (getLexer().isNot(AsmToken::RParen)) {
594      // A scale amount without an index is ignored.
595      // index.
596      SMLoc Loc = Parser.getTok().getLoc();
597
598      int64_t Value;
599      if (getParser().ParseAbsoluteExpression(Value))
600        return 0;
601
602      if (Value != 1)
603        Warning(Loc, "scale factor without index register is ignored");
604      Scale = 1;
605    }
606  }
607
608  // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
609  if (getLexer().isNot(AsmToken::RParen)) {
610    Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
611    return 0;
612  }
613  SMLoc MemEnd = Parser.getTok().getLoc();
614  Parser.Lex(); // Eat the ')'.
615
616  return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
617                               MemStart, MemEnd);
618}
619
620bool X86ATTAsmParser::
621ParseInstruction(StringRef Name, SMLoc NameLoc,
622                 SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
623  // FIXME: Hack to recognize "sal..." and "rep..." for now. We need a way to
624  // represent alternative syntaxes in the .td file, without requiring
625  // instruction duplication.
626  StringRef PatchedName = StringSwitch<StringRef>(Name)
627    .Case("sal", "shl")
628    .Case("salb", "shlb")
629    .Case("sall", "shll")
630    .Case("salq", "shlq")
631    .Case("salw", "shlw")
632    .Case("repe", "rep")
633    .Case("repz", "rep")
634    .Case("repnz", "repne")
635    .Case("push", Is64Bit ? "pushq" : "pushl")
636    .Case("pop", Is64Bit ? "popq" : "popl")
637    .Case("pushf", Is64Bit ? "pushfq" : "pushfl")
638    .Case("popf",  Is64Bit ? "popfq"  : "popfl")
639    .Case("pushfd", "pushfl")
640    .Case("popfd",  "popfl")
641    .Case("retl", Is64Bit ? "retl" : "ret")
642    .Case("retq", Is64Bit ? "ret" : "retq")
643    // Floating point stack cmov aliases.
644    .Case("fcmovz", "fcmove")
645    .Case("fcmova", "fcmovnbe")
646    .Case("fcmovnae", "fcmovb")
647    .Case("fcmovna", "fcmovbe")
648    .Case("fcmovae", "fcmovnb")
649    .Case("fwait", "wait")
650    .Case("movzx", "movzb")  // FIXME: Not correct.
651    .Case("fildq", "fildll")
652    .Case("fcompi", "fcomip")
653    .Case("fnstcww", "fnstcw")
654    .Case("fstcww", "fstcw")
655    .Case("fnstsww", "fnstsw")
656    .Case("fstsww", "fstsw")
657    .Default(Name);
658
659  // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
660  const MCExpr *ExtraImmOp = 0;
661  if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
662      (PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
663       PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
664    bool IsVCMP = PatchedName.startswith("vcmp");
665    unsigned SSECCIdx = IsVCMP ? 4 : 3;
666    unsigned SSEComparisonCode = StringSwitch<unsigned>(
667      PatchedName.slice(SSECCIdx, PatchedName.size() - 2))
668      .Case("eq",          0)
669      .Case("lt",          1)
670      .Case("le",          2)
671      .Case("unord",       3)
672      .Case("neq",         4)
673      .Case("nlt",         5)
674      .Case("nle",         6)
675      .Case("ord",         7)
676      .Case("eq_uq",       8)
677      .Case("nge",         9)
678      .Case("ngt",      0x0A)
679      .Case("false",    0x0B)
680      .Case("neq_oq",   0x0C)
681      .Case("ge",       0x0D)
682      .Case("gt",       0x0E)
683      .Case("true",     0x0F)
684      .Case("eq_os",    0x10)
685      .Case("lt_oq",    0x11)
686      .Case("le_oq",    0x12)
687      .Case("unord_s",  0x13)
688      .Case("neq_us",   0x14)
689      .Case("nlt_uq",   0x15)
690      .Case("nle_uq",   0x16)
691      .Case("ord_s",    0x17)
692      .Case("eq_us",    0x18)
693      .Case("nge_uq",   0x19)
694      .Case("ngt_uq",   0x1A)
695      .Case("false_os", 0x1B)
696      .Case("neq_os",   0x1C)
697      .Case("ge_oq",    0x1D)
698      .Case("gt_oq",    0x1E)
699      .Case("true_us",  0x1F)
700      .Default(~0U);
701    if (SSEComparisonCode != ~0U) {
702      ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode,
703                                          getParser().getContext());
704      if (PatchedName.endswith("ss")) {
705        PatchedName = IsVCMP ? "vcmpss" : "cmpss";
706      } else if (PatchedName.endswith("sd")) {
707        PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
708      } else if (PatchedName.endswith("ps")) {
709        PatchedName = IsVCMP ? "vcmpps" : "cmpps";
710      } else {
711        assert(PatchedName.endswith("pd") && "Unexpected mnemonic!");
712        PatchedName = IsVCMP ? "vcmppd" : "cmppd";
713      }
714    }
715  }
716
717  // FIXME: Hack to recognize vpclmul<src1_quadword, src2_quadword>dq
718  if (PatchedName.startswith("vpclmul")) {
719    unsigned CLMULQuadWordSelect = StringSwitch<unsigned>(
720      PatchedName.slice(7, PatchedName.size() - 2))
721      .Case("lqlq", 0x00) // src1[63:0],   src2[63:0]
722      .Case("hqlq", 0x01) // src1[127:64], src2[63:0]
723      .Case("lqhq", 0x10) // src1[63:0],   src2[127:64]
724      .Case("hqhq", 0x11) // src1[127:64], src2[127:64]
725      .Default(~0U);
726    if (CLMULQuadWordSelect != ~0U) {
727      ExtraImmOp = MCConstantExpr::Create(CLMULQuadWordSelect,
728                                          getParser().getContext());
729      assert(PatchedName.endswith("dq") && "Unexpected mnemonic!");
730      PatchedName = "vpclmulqdq";
731    }
732  }
733
734  Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
735
736  if (ExtraImmOp)
737    Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
738
739
740  // Determine whether this is an instruction prefix.
741  bool isPrefix =
742    PatchedName == "lock" || PatchedName == "rep" ||
743    PatchedName == "repne";
744
745
746  // This does the actual operand parsing.  Don't parse any more if we have a
747  // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
748  // just want to parse the "lock" as the first instruction and the "incl" as
749  // the next one.
750  if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
751
752    // Parse '*' modifier.
753    if (getLexer().is(AsmToken::Star)) {
754      SMLoc Loc = Parser.getTok().getLoc();
755      Operands.push_back(X86Operand::CreateToken("*", Loc));
756      Parser.Lex(); // Eat the star.
757    }
758
759    // Read the first operand.
760    if (X86Operand *Op = ParseOperand())
761      Operands.push_back(Op);
762    else {
763      Parser.EatToEndOfStatement();
764      return true;
765    }
766
767    while (getLexer().is(AsmToken::Comma)) {
768      Parser.Lex();  // Eat the comma.
769
770      // Parse and remember the operand.
771      if (X86Operand *Op = ParseOperand())
772        Operands.push_back(Op);
773      else {
774        Parser.EatToEndOfStatement();
775        return true;
776      }
777    }
778
779    if (getLexer().isNot(AsmToken::EndOfStatement)) {
780      Parser.EatToEndOfStatement();
781      return TokError("unexpected token in argument list");
782    }
783  }
784
785  if (getLexer().is(AsmToken::EndOfStatement))
786    Parser.Lex(); // Consume the EndOfStatement
787
788  // Hack to allow 'movq <largeimm>, <reg>' as an alias for movabsq.
789  if ((Name == "movq" || Name == "mov") && Operands.size() == 3 &&
790      static_cast<X86Operand*>(Operands[2])->isReg() &&
791      static_cast<X86Operand*>(Operands[1])->isImm() &&
792      !static_cast<X86Operand*>(Operands[1])->isImmSExti64i32()) {
793    delete Operands[0];
794    Operands[0] = X86Operand::CreateToken("movabsq", NameLoc);
795  }
796
797  // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>.  Canonicalize to
798  // "shift <op>".
799  if ((Name.startswith("shr") || Name.startswith("sar") ||
800       Name.startswith("shl")) &&
801      Operands.size() == 3) {
802    X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
803    if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
804        cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) {
805      delete Operands[1];
806      Operands.erase(Operands.begin() + 1);
807    }
808  }
809
810  // FIXME: Hack to handle recognize "rc[lr] <op>" -> "rcl $1, <op>".
811  if ((Name.startswith("rcl") || Name.startswith("rcr")) &&
812      Operands.size() == 2) {
813    const MCExpr *One = MCConstantExpr::Create(1, getParser().getContext());
814    Operands.push_back(X86Operand::CreateImm(One, NameLoc, NameLoc));
815    std::swap(Operands[1], Operands[2]);
816  }
817
818  // FIXME: Hack to handle recognize "sh[lr]d op,op" -> "shld $1, op,op".
819  if ((Name.startswith("shld") || Name.startswith("shrd")) &&
820      Operands.size() == 3) {
821    const MCExpr *One = MCConstantExpr::Create(1, getParser().getContext());
822    Operands.insert(Operands.begin()+1,
823                    X86Operand::CreateImm(One, NameLoc, NameLoc));
824  }
825
826
827  // FIXME: Hack to handle recognize "in[bwl] <op>".  Canonicalize it to
828  // "inb <op>, %al".
829  if ((Name == "inb" || Name == "inw" || Name == "inl") &&
830      Operands.size() == 2) {
831    unsigned Reg;
832    if (Name[2] == 'b')
833      Reg = MatchRegisterName("al");
834    else if (Name[2] == 'w')
835      Reg = MatchRegisterName("ax");
836    else
837      Reg = MatchRegisterName("eax");
838    SMLoc Loc = Operands.back()->getEndLoc();
839    Operands.push_back(X86Operand::CreateReg(Reg, Loc, Loc));
840  }
841
842  // FIXME: Hack to handle recognize "out[bwl] <op>".  Canonicalize it to
843  // "outb %al, <op>".
844  if ((Name == "outb" || Name == "outw" || Name == "outl") &&
845      Operands.size() == 2) {
846    unsigned Reg;
847    if (Name[3] == 'b')
848      Reg = MatchRegisterName("al");
849    else if (Name[3] == 'w')
850      Reg = MatchRegisterName("ax");
851    else
852      Reg = MatchRegisterName("eax");
853    SMLoc Loc = Operands.back()->getEndLoc();
854    Operands.push_back(X86Operand::CreateReg(Reg, Loc, Loc));
855    std::swap(Operands[1], Operands[2]);
856  }
857
858  // FIXME: Hack to handle "out[bwl]? %al, (%dx)" -> "outb %al, %dx".
859  if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") &&
860      Operands.size() == 3) {
861    X86Operand &Op = *(X86Operand*)Operands.back();
862    if (Op.isMem() && Op.Mem.SegReg == 0 &&
863        isa<MCConstantExpr>(Op.Mem.Disp) &&
864        cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
865        Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
866      SMLoc Loc = Op.getEndLoc();
867      Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
868      delete &Op;
869    }
870  }
871
872  // FIXME: Hack to handle "f{mul*,add*,sub*,div*} $op, st(0)" the same as
873  // "f{mul*,add*,sub*,div*} $op"
874  if ((Name.startswith("fmul") || Name.startswith("fadd") ||
875       Name.startswith("fsub") || Name.startswith("fdiv")) &&
876      Operands.size() == 3 &&
877      static_cast<X86Operand*>(Operands[2])->isReg() &&
878      static_cast<X86Operand*>(Operands[2])->getReg() == X86::ST0) {
879    delete Operands[2];
880    Operands.erase(Operands.begin() + 2);
881  }
882
883  // FIXME: Hack to handle "f{mulp,addp} st(0), $op" the same as
884  // "f{mulp,addp} $op", since they commute.  We also allow fdivrp/fsubrp even
885  // though they don't commute, solely because gas does support this.
886  if ((Name=="fmulp" || Name=="faddp" || Name=="fsubrp" || Name=="fdivrp") &&
887      Operands.size() == 3 &&
888      static_cast<X86Operand*>(Operands[1])->isReg() &&
889      static_cast<X86Operand*>(Operands[1])->getReg() == X86::ST0) {
890    delete Operands[1];
891    Operands.erase(Operands.begin() + 1);
892  }
893
894  // FIXME: Hack to handle "imul <imm>, B" which is an alias for "imul <imm>, B,
895  // B".
896  if (Name.startswith("imul") && Operands.size() == 3 &&
897      static_cast<X86Operand*>(Operands[1])->isImm() &&
898      static_cast<X86Operand*>(Operands.back())->isReg()) {
899    X86Operand *Op = static_cast<X86Operand*>(Operands.back());
900    Operands.push_back(X86Operand::CreateReg(Op->getReg(), Op->getStartLoc(),
901                                             Op->getEndLoc()));
902  }
903
904  // 'sldt <mem>' can be encoded with either sldtw or sldtq with the same
905  // effect (both store to a 16-bit mem).  Force to sldtw to avoid ambiguity
906  // errors, since its encoding is the most compact.
907  if (Name == "sldt" && Operands.size() == 2 &&
908      static_cast<X86Operand*>(Operands[1])->isMem()) {
909    delete Operands[0];
910    Operands[0] = X86Operand::CreateToken("sldtw", NameLoc);
911  }
912
913  // The assembler accepts "xchgX <reg>, <mem>" and "xchgX <mem>, <reg>" as
914  // synonyms.  Our tables only have the "<reg>, <mem>" form, so if we see the
915  // other operand order, swap them.
916  if (Name == "xchgb" || Name == "xchgw" || Name == "xchgl" || Name == "xchgq"||
917      Name == "xchg")
918    if (Operands.size() == 3 &&
919        static_cast<X86Operand*>(Operands[1])->isMem() &&
920        static_cast<X86Operand*>(Operands[2])->isReg()) {
921      std::swap(Operands[1], Operands[2]);
922    }
923
924  // The assembler accepts "testX <reg>, <mem>" and "testX <mem>, <reg>" as
925  // synonyms.  Our tables only have the "<mem>, <reg>" form, so if we see the
926  // other operand order, swap them.
927  if (Name == "testb" || Name == "testw" || Name == "testl" || Name == "testq"||
928      Name == "test")
929    if (Operands.size() == 3 &&
930        static_cast<X86Operand*>(Operands[1])->isReg() &&
931        static_cast<X86Operand*>(Operands[2])->isMem()) {
932      std::swap(Operands[1], Operands[2]);
933    }
934
935  // The assembler accepts these instructions with no operand as a synonym for
936  // an instruction acting on st(1).  e.g. "fxch" -> "fxch %st(1)".
937  if ((Name == "fxch" || Name == "fucom" || Name == "fucomp" ||
938       Name == "faddp" || Name == "fsubp" || Name == "fsubrp" ||
939       Name == "fmulp" || Name == "fdivp" || Name == "fdivrp") &&
940      Operands.size() == 1) {
941    Operands.push_back(X86Operand::CreateReg(MatchRegisterName("st(1)"),
942                                             NameLoc, NameLoc));
943  }
944
945  // The assembler accepts this instruction with no operand as a synonym for an
946  // instruction taking %st(1),%st(0). e.g. "fcompi" -> "fcompi %st(1),st(0)".
947  if (Name == "fcompi" && Operands.size() == 1) {
948    Operands.push_back(X86Operand::CreateReg(MatchRegisterName("st(1)"),
949                                             NameLoc, NameLoc));
950    Operands.push_back(X86Operand::CreateReg(MatchRegisterName("st(0)"),
951                                             NameLoc, NameLoc));
952  }
953
954  // The assembler accepts these instructions with two few operands as a synonym
955  // for taking %st(1),%st(0) or X, %st(0).
956  if ((Name == "fcomi" || Name == "fucomi" || Name == "fucompi" ||
957       Name == "fcompi" ) &&
958      Operands.size() < 3) {
959    if (Operands.size() == 1)
960      Operands.push_back(X86Operand::CreateReg(MatchRegisterName("st(1)"),
961                                               NameLoc, NameLoc));
962    Operands.push_back(X86Operand::CreateReg(MatchRegisterName("st(0)"),
963                                             NameLoc, NameLoc));
964  }
965
966  // The assembler accepts various amounts of brokenness for fnstsw.
967  if (Name == "fnstsw") {
968    if (Operands.size() == 2 &&
969        static_cast<X86Operand*>(Operands[1])->isReg()) {
970      // "fnstsw al" and "fnstsw eax" -> "fnstw"
971      unsigned Reg = static_cast<X86Operand*>(Operands[1])->Reg.RegNo;
972      if (Reg == MatchRegisterName("eax") ||
973          Reg == MatchRegisterName("al")) {
974        delete Operands[1];
975        Operands.pop_back();
976      }
977    }
978
979    // "fnstw" -> "fnstw %ax"
980    if (Operands.size() == 1)
981      Operands.push_back(X86Operand::CreateReg(MatchRegisterName("ax"),
982                                               NameLoc, NameLoc));
983  }
984
985  // jmp $42,$5 -> ljmp, similarly for call.
986  if ((Name.startswith("call") || Name.startswith("jmp")) &&
987      Operands.size() == 3 &&
988      static_cast<X86Operand*>(Operands[1])->isImm() &&
989      static_cast<X86Operand*>(Operands[2])->isImm()) {
990    const char *NewOpName = StringSwitch<const char *>(Name)
991      .Case("jmp", "ljmp")
992      .Case("jmpw", "ljmpw")
993      .Case("jmpl", "ljmpl")
994      .Case("jmpq", "ljmpq")
995      .Case("call", "lcall")
996      .Case("callw", "lcallw")
997      .Case("calll", "lcalll")
998      .Case("callq", "lcallq")
999    .Default(0);
1000    if (NewOpName) {
1001      delete Operands[0];
1002      Operands[0] = X86Operand::CreateToken(NewOpName, NameLoc);
1003      Name = NewOpName;
1004    }
1005  }
1006
1007  // lcall  and ljmp  -> lcalll and ljmpl
1008  if ((Name == "lcall" || Name == "ljmp") && Operands.size() == 3) {
1009    delete Operands[0];
1010    Operands[0] = X86Operand::CreateToken(Name == "lcall" ? "lcalll" : "ljmpl",
1011                                          NameLoc);
1012  }
1013
1014  // call foo is not ambiguous with callw.
1015  if (Name == "call" && Operands.size() == 2) {
1016    const char *NewName = Is64Bit ? "callq" : "calll";
1017    delete Operands[0];
1018    Operands[0] = X86Operand::CreateToken(NewName, NameLoc);
1019    Name = NewName;
1020  }
1021
1022  // movsd -> movsl (when no operands are specified).
1023  if (Name == "movsd" && Operands.size() == 1) {
1024    delete Operands[0];
1025    Operands[0] = X86Operand::CreateToken("movsl", NameLoc);
1026  }
1027
1028  // fstp <mem> -> fstps <mem>.  Without this, we'll default to fstpl due to
1029  // suffix searching.
1030  if (Name == "fstp" && Operands.size() == 2 &&
1031      static_cast<X86Operand*>(Operands[1])->isMem()) {
1032    delete Operands[0];
1033    Operands[0] = X86Operand::CreateToken("fstps", NameLoc);
1034  }
1035
1036
1037  // "clr <reg>" -> "xor <reg>, <reg>".
1038  if ((Name == "clrb" || Name == "clrw" || Name == "clrl" || Name == "clrq" ||
1039       Name == "clr") && Operands.size() == 2 &&
1040      static_cast<X86Operand*>(Operands[1])->isReg()) {
1041    unsigned RegNo = static_cast<X86Operand*>(Operands[1])->getReg();
1042    Operands.push_back(X86Operand::CreateReg(RegNo, NameLoc, NameLoc));
1043    delete Operands[0];
1044    Operands[0] = X86Operand::CreateToken("xor", NameLoc);
1045  }
1046
1047  // FIXME: Hack to handle recognize "aa[dm]" -> "aa[dm] $0xA".
1048  if ((Name.startswith("aad") || Name.startswith("aam")) &&
1049      Operands.size() == 1) {
1050    const MCExpr *A = MCConstantExpr::Create(0xA, getParser().getContext());
1051    Operands.push_back(X86Operand::CreateImm(A, NameLoc, NameLoc));
1052  }
1053
1054  // "lgdtl" is not ambiguous 32-bit mode and is the same as "lgdt".
1055  // "lgdtq" is not ambiguous 64-bit mode and is the same as "lgdt".
1056  if ((Name == "lgdtl" && Is64Bit == false) ||
1057      (Name == "lgdtq" && Is64Bit == true)) {
1058    const char *NewName = "lgdt";
1059    delete Operands[0];
1060    Operands[0] = X86Operand::CreateToken(NewName, NameLoc);
1061    Name = NewName;
1062  }
1063
1064  // "lidtl" is not ambiguous 32-bit mode and is the same as "lidt".
1065  // "lidtq" is not ambiguous 64-bit mode and is the same as "lidt".
1066  if ((Name == "lidtl" && Is64Bit == false) ||
1067      (Name == "lidtq" && Is64Bit == true)) {
1068    const char *NewName = "lidt";
1069    delete Operands[0];
1070    Operands[0] = X86Operand::CreateToken(NewName, NameLoc);
1071    Name = NewName;
1072  }
1073
1074  // "sgdtl" is not ambiguous 32-bit mode and is the same as "sgdt".
1075  // "sgdtq" is not ambiguous 64-bit mode and is the same as "sgdt".
1076  if ((Name == "sgdtl" && Is64Bit == false) ||
1077      (Name == "sgdtq" && Is64Bit == true)) {
1078    const char *NewName = "sgdt";
1079    delete Operands[0];
1080    Operands[0] = X86Operand::CreateToken(NewName, NameLoc);
1081    Name = NewName;
1082  }
1083
1084  // "sidtl" is not ambiguous 32-bit mode and is the same as "sidt".
1085  // "sidtq" is not ambiguous 64-bit mode and is the same as "sidt".
1086  if ((Name == "sidtl" && Is64Bit == false) ||
1087      (Name == "sidtq" && Is64Bit == true)) {
1088    const char *NewName = "sidt";
1089    delete Operands[0];
1090    Operands[0] = X86Operand::CreateToken(NewName, NameLoc);
1091    Name = NewName;
1092  }
1093
1094  return false;
1095}
1096
1097bool X86ATTAsmParser::
1098MatchAndEmitInstruction(SMLoc IDLoc,
1099                        SmallVectorImpl<MCParsedAsmOperand*> &Operands,
1100                        MCStreamer &Out) {
1101  assert(!Operands.empty() && "Unexpect empty operand list!");
1102  X86Operand *Op = static_cast<X86Operand*>(Operands[0]);
1103  assert(Op->isToken() && "Leading operand should always be a mnemonic!");
1104
1105  // First, handle aliases that expand to multiple instructions.
1106  // FIXME: This should be replaced with a real .td file alias mechanism.
1107  if (Op->getToken() == "fstsw" || Op->getToken() == "fstcw" ||
1108      Op->getToken() == "finit" || Op->getToken() == "fsave" ||
1109      Op->getToken() == "fstenv" || Op->getToken() == "fclex") {
1110    MCInst Inst;
1111    Inst.setOpcode(X86::WAIT);
1112    Out.EmitInstruction(Inst);
1113
1114    const char *Repl =
1115      StringSwitch<const char*>(Op->getToken())
1116        .Case("finit", "fninit")
1117        .Case("fsave", "fnsave")
1118        .Case("fstcw", "fnstcw")
1119        .Case("fstenv", "fnstenv")
1120        .Case("fstsw", "fnstsw")
1121        .Case("fclex", "fnclex")
1122        .Default(0);
1123    assert(Repl && "Unknown wait-prefixed instruction");
1124    delete Operands[0];
1125    Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
1126  }
1127
1128  bool WasOriginallyInvalidOperand = false;
1129  unsigned OrigErrorInfo;
1130  MCInst Inst;
1131
1132  // First, try a direct match.
1133  switch (MatchInstructionImpl(Operands, Inst, OrigErrorInfo)) {
1134  case Match_Success:
1135    Out.EmitInstruction(Inst);
1136    return false;
1137  case Match_MissingFeature:
1138    Error(IDLoc, "instruction requires a CPU feature not currently enabled");
1139    return true;
1140  case Match_InvalidOperand:
1141    WasOriginallyInvalidOperand = true;
1142    break;
1143  case Match_MnemonicFail:
1144    break;
1145  }
1146
1147  // FIXME: Ideally, we would only attempt suffix matches for things which are
1148  // valid prefixes, and we could just infer the right unambiguous
1149  // type. However, that requires substantially more matcher support than the
1150  // following hack.
1151
1152  // Change the operand to point to a temporary token.
1153  StringRef Base = Op->getToken();
1154  SmallString<16> Tmp;
1155  Tmp += Base;
1156  Tmp += ' ';
1157  Op->setTokenValue(Tmp.str());
1158
1159  // Check for the various suffix matches.
1160  Tmp[Base.size()] = 'b';
1161  unsigned BErrorInfo, WErrorInfo, LErrorInfo, QErrorInfo;
1162  MatchResultTy MatchB = MatchInstructionImpl(Operands, Inst, BErrorInfo);
1163  Tmp[Base.size()] = 'w';
1164  MatchResultTy MatchW = MatchInstructionImpl(Operands, Inst, WErrorInfo);
1165  Tmp[Base.size()] = 'l';
1166  MatchResultTy MatchL = MatchInstructionImpl(Operands, Inst, LErrorInfo);
1167  Tmp[Base.size()] = 'q';
1168  MatchResultTy MatchQ = MatchInstructionImpl(Operands, Inst, QErrorInfo);
1169
1170  // Restore the old token.
1171  Op->setTokenValue(Base);
1172
1173  // If exactly one matched, then we treat that as a successful match (and the
1174  // instruction will already have been filled in correctly, since the failing
1175  // matches won't have modified it).
1176  unsigned NumSuccessfulMatches =
1177    (MatchB == Match_Success) + (MatchW == Match_Success) +
1178    (MatchL == Match_Success) + (MatchQ == Match_Success);
1179  if (NumSuccessfulMatches == 1) {
1180    Out.EmitInstruction(Inst);
1181    return false;
1182  }
1183
1184  // Otherwise, the match failed, try to produce a decent error message.
1185
1186  // If we had multiple suffix matches, then identify this as an ambiguous
1187  // match.
1188  if (NumSuccessfulMatches > 1) {
1189    char MatchChars[4];
1190    unsigned NumMatches = 0;
1191    if (MatchB == Match_Success)
1192      MatchChars[NumMatches++] = 'b';
1193    if (MatchW == Match_Success)
1194      MatchChars[NumMatches++] = 'w';
1195    if (MatchL == Match_Success)
1196      MatchChars[NumMatches++] = 'l';
1197    if (MatchQ == Match_Success)
1198      MatchChars[NumMatches++] = 'q';
1199
1200    SmallString<126> Msg;
1201    raw_svector_ostream OS(Msg);
1202    OS << "ambiguous instructions require an explicit suffix (could be ";
1203    for (unsigned i = 0; i != NumMatches; ++i) {
1204      if (i != 0)
1205        OS << ", ";
1206      if (i + 1 == NumMatches)
1207        OS << "or ";
1208      OS << "'" << Base << MatchChars[i] << "'";
1209    }
1210    OS << ")";
1211    Error(IDLoc, OS.str());
1212    return true;
1213  }
1214
1215  // Okay, we know that none of the variants matched successfully.
1216
1217  // If all of the instructions reported an invalid mnemonic, then the original
1218  // mnemonic was invalid.
1219  if ((MatchB == Match_MnemonicFail) && (MatchW == Match_MnemonicFail) &&
1220      (MatchL == Match_MnemonicFail) && (MatchQ == Match_MnemonicFail)) {
1221    if (!WasOriginallyInvalidOperand) {
1222      Error(IDLoc, "invalid instruction mnemonic '" + Base + "'");
1223      return true;
1224    }
1225
1226    // Recover location info for the operand if we know which was the problem.
1227    SMLoc ErrorLoc = IDLoc;
1228    if (OrigErrorInfo != ~0U) {
1229      if (OrigErrorInfo >= Operands.size())
1230        return Error(IDLoc, "too few operands for instruction");
1231
1232      ErrorLoc = ((X86Operand*)Operands[OrigErrorInfo])->getStartLoc();
1233      if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
1234    }
1235
1236    return Error(ErrorLoc, "invalid operand for instruction");
1237  }
1238
1239  // If one instruction matched with a missing feature, report this as a
1240  // missing feature.
1241  if ((MatchB == Match_MissingFeature) + (MatchW == Match_MissingFeature) +
1242      (MatchL == Match_MissingFeature) + (MatchQ == Match_MissingFeature) == 1){
1243    Error(IDLoc, "instruction requires a CPU feature not currently enabled");
1244    return true;
1245  }
1246
1247  // If one instruction matched with an invalid operand, report this as an
1248  // operand failure.
1249  if ((MatchB == Match_InvalidOperand) + (MatchW == Match_InvalidOperand) +
1250      (MatchL == Match_InvalidOperand) + (MatchQ == Match_InvalidOperand) == 1){
1251    Error(IDLoc, "invalid operand for instruction");
1252    return true;
1253  }
1254
1255  // If all of these were an outright failure, report it in a useless way.
1256  // FIXME: We should give nicer diagnostics about the exact failure.
1257  Error(IDLoc, "unknown use of instruction mnemonic without a size suffix");
1258  return true;
1259}
1260
1261
1262bool X86ATTAsmParser::ParseDirective(AsmToken DirectiveID) {
1263  StringRef IDVal = DirectiveID.getIdentifier();
1264  if (IDVal == ".word")
1265    return ParseDirectiveWord(2, DirectiveID.getLoc());
1266  return true;
1267}
1268
1269/// ParseDirectiveWord
1270///  ::= .word [ expression (, expression)* ]
1271bool X86ATTAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
1272  if (getLexer().isNot(AsmToken::EndOfStatement)) {
1273    for (;;) {
1274      const MCExpr *Value;
1275      if (getParser().ParseExpression(Value))
1276        return true;
1277
1278      getParser().getStreamer().EmitValue(Value, Size, 0 /*addrspace*/);
1279
1280      if (getLexer().is(AsmToken::EndOfStatement))
1281        break;
1282
1283      // FIXME: Improve diagnostic.
1284      if (getLexer().isNot(AsmToken::Comma))
1285        return Error(L, "unexpected token in directive");
1286      Parser.Lex();
1287    }
1288  }
1289
1290  Parser.Lex();
1291  return false;
1292}
1293
1294
1295
1296
1297extern "C" void LLVMInitializeX86AsmLexer();
1298
1299// Force static initialization.
1300extern "C" void LLVMInitializeX86AsmParser() {
1301  RegisterAsmParser<X86_32ATTAsmParser> X(TheX86_32Target);
1302  RegisterAsmParser<X86_64ATTAsmParser> Y(TheX86_64Target);
1303  LLVMInitializeX86AsmLexer();
1304}
1305
1306#define GET_REGISTER_MATCHER
1307#define GET_MATCHER_IMPLEMENTATION
1308#include "X86GenAsmMatcher.inc"
1309