X86AsmParser.cpp revision 8cb441c9e0acb8b2c68229a783785fc9c3942ec8
1//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9 10#include "llvm/Target/TargetAsmParser.h" 11#include "X86.h" 12#include "X86Subtarget.h" 13#include "llvm/Target/TargetRegistry.h" 14#include "llvm/Target/TargetAsmParser.h" 15#include "llvm/MC/MCStreamer.h" 16#include "llvm/MC/MCExpr.h" 17#include "llvm/MC/MCInst.h" 18#include "llvm/MC/MCParser/MCAsmLexer.h" 19#include "llvm/MC/MCParser/MCAsmParser.h" 20#include "llvm/MC/MCParser/MCParsedAsmOperand.h" 21#include "llvm/ADT/SmallString.h" 22#include "llvm/ADT/SmallVector.h" 23#include "llvm/ADT/StringExtras.h" 24#include "llvm/ADT/StringSwitch.h" 25#include "llvm/ADT/Twine.h" 26#include "llvm/Support/SourceMgr.h" 27#include "llvm/Support/raw_ostream.h" 28using namespace llvm; 29 30namespace { 31struct X86Operand; 32 33class X86ATTAsmParser : public TargetAsmParser { 34 MCAsmParser &Parser; 35 TargetMachine &TM; 36 37protected: 38 unsigned Is64Bit : 1; 39 40private: 41 MCAsmParser &getParser() const { return Parser; } 42 43 MCAsmLexer &getLexer() const { return Parser.getLexer(); } 44 45 bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); } 46 47 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc); 48 49 X86Operand *ParseOperand(); 50 X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc); 51 52 bool ParseDirectiveWord(unsigned Size, SMLoc L); 53 54 bool MatchAndEmitInstruction(SMLoc IDLoc, 55 SmallVectorImpl<MCParsedAsmOperand*> &Operands, 56 MCStreamer &Out); 57 58 /// @name Auto-generated Matcher Functions 59 /// { 60 61#define GET_ASSEMBLER_HEADER 62#include "X86GenAsmMatcher.inc" 63 64 /// } 65 66public: 67 X86ATTAsmParser(const Target &T, MCAsmParser &parser, TargetMachine &TM) 68 : TargetAsmParser(T), Parser(parser), TM(TM) { 69 70 // Initialize the set of available features. 71 setAvailableFeatures(ComputeAvailableFeatures( 72 &TM.getSubtarget<X86Subtarget>())); 73 } 74 75 virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc, 76 SmallVectorImpl<MCParsedAsmOperand*> &Operands); 77 78 virtual bool ParseDirective(AsmToken DirectiveID); 79}; 80 81class X86_32ATTAsmParser : public X86ATTAsmParser { 82public: 83 X86_32ATTAsmParser(const Target &T, MCAsmParser &Parser, TargetMachine &TM) 84 : X86ATTAsmParser(T, Parser, TM) { 85 Is64Bit = false; 86 } 87}; 88 89class X86_64ATTAsmParser : public X86ATTAsmParser { 90public: 91 X86_64ATTAsmParser(const Target &T, MCAsmParser &Parser, TargetMachine &TM) 92 : X86ATTAsmParser(T, Parser, TM) { 93 Is64Bit = true; 94 } 95}; 96 97} // end anonymous namespace 98 99/// @name Auto-generated Match Functions 100/// { 101 102static unsigned MatchRegisterName(StringRef Name); 103 104/// } 105 106namespace { 107 108/// X86Operand - Instances of this class represent a parsed X86 machine 109/// instruction. 110struct X86Operand : public MCParsedAsmOperand { 111 enum KindTy { 112 Token, 113 Register, 114 Immediate, 115 Memory 116 } Kind; 117 118 SMLoc StartLoc, EndLoc; 119 120 union { 121 struct { 122 const char *Data; 123 unsigned Length; 124 } Tok; 125 126 struct { 127 unsigned RegNo; 128 } Reg; 129 130 struct { 131 const MCExpr *Val; 132 } Imm; 133 134 struct { 135 unsigned SegReg; 136 const MCExpr *Disp; 137 unsigned BaseReg; 138 unsigned IndexReg; 139 unsigned Scale; 140 } Mem; 141 }; 142 143 X86Operand(KindTy K, SMLoc Start, SMLoc End) 144 : Kind(K), StartLoc(Start), EndLoc(End) {} 145 146 /// getStartLoc - Get the location of the first token of this operand. 147 SMLoc getStartLoc() const { return StartLoc; } 148 /// getEndLoc - Get the location of the last token of this operand. 149 SMLoc getEndLoc() const { return EndLoc; } 150 151 virtual void dump(raw_ostream &OS) const {} 152 153 StringRef getToken() const { 154 assert(Kind == Token && "Invalid access!"); 155 return StringRef(Tok.Data, Tok.Length); 156 } 157 void setTokenValue(StringRef Value) { 158 assert(Kind == Token && "Invalid access!"); 159 Tok.Data = Value.data(); 160 Tok.Length = Value.size(); 161 } 162 163 unsigned getReg() const { 164 assert(Kind == Register && "Invalid access!"); 165 return Reg.RegNo; 166 } 167 168 const MCExpr *getImm() const { 169 assert(Kind == Immediate && "Invalid access!"); 170 return Imm.Val; 171 } 172 173 const MCExpr *getMemDisp() const { 174 assert(Kind == Memory && "Invalid access!"); 175 return Mem.Disp; 176 } 177 unsigned getMemSegReg() const { 178 assert(Kind == Memory && "Invalid access!"); 179 return Mem.SegReg; 180 } 181 unsigned getMemBaseReg() const { 182 assert(Kind == Memory && "Invalid access!"); 183 return Mem.BaseReg; 184 } 185 unsigned getMemIndexReg() const { 186 assert(Kind == Memory && "Invalid access!"); 187 return Mem.IndexReg; 188 } 189 unsigned getMemScale() const { 190 assert(Kind == Memory && "Invalid access!"); 191 return Mem.Scale; 192 } 193 194 bool isToken() const {return Kind == Token; } 195 196 bool isImm() const { return Kind == Immediate; } 197 198 bool isImmSExti16i8() const { 199 if (!isImm()) 200 return false; 201 202 // If this isn't a constant expr, just assume it fits and let relaxation 203 // handle it. 204 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 205 if (!CE) 206 return true; 207 208 // Otherwise, check the value is in a range that makes sense for this 209 // extension. 210 uint64_t Value = CE->getValue(); 211 return (( Value <= 0x000000000000007FULL)|| 212 (0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)|| 213 (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); 214 } 215 bool isImmSExti32i8() const { 216 if (!isImm()) 217 return false; 218 219 // If this isn't a constant expr, just assume it fits and let relaxation 220 // handle it. 221 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 222 if (!CE) 223 return true; 224 225 // Otherwise, check the value is in a range that makes sense for this 226 // extension. 227 uint64_t Value = CE->getValue(); 228 return (( Value <= 0x000000000000007FULL)|| 229 (0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)|| 230 (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); 231 } 232 bool isImmSExti64i8() const { 233 if (!isImm()) 234 return false; 235 236 // If this isn't a constant expr, just assume it fits and let relaxation 237 // handle it. 238 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 239 if (!CE) 240 return true; 241 242 // Otherwise, check the value is in a range that makes sense for this 243 // extension. 244 uint64_t Value = CE->getValue(); 245 return (( Value <= 0x000000000000007FULL)|| 246 (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); 247 } 248 bool isImmSExti64i32() const { 249 if (!isImm()) 250 return false; 251 252 // If this isn't a constant expr, just assume it fits and let relaxation 253 // handle it. 254 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 255 if (!CE) 256 return true; 257 258 // Otherwise, check the value is in a range that makes sense for this 259 // extension. 260 uint64_t Value = CE->getValue(); 261 return (( Value <= 0x000000007FFFFFFFULL)|| 262 (0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); 263 } 264 265 bool isMem() const { return Kind == Memory; } 266 267 bool isAbsMem() const { 268 return Kind == Memory && !getMemSegReg() && !getMemBaseReg() && 269 !getMemIndexReg() && getMemScale() == 1; 270 } 271 272 bool isReg() const { return Kind == Register; } 273 274 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 275 // Add as immediates when possible. 276 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 277 Inst.addOperand(MCOperand::CreateImm(CE->getValue())); 278 else 279 Inst.addOperand(MCOperand::CreateExpr(Expr)); 280 } 281 282 void addRegOperands(MCInst &Inst, unsigned N) const { 283 assert(N == 1 && "Invalid number of operands!"); 284 Inst.addOperand(MCOperand::CreateReg(getReg())); 285 } 286 287 void addImmOperands(MCInst &Inst, unsigned N) const { 288 assert(N == 1 && "Invalid number of operands!"); 289 addExpr(Inst, getImm()); 290 } 291 292 void addMemOperands(MCInst &Inst, unsigned N) const { 293 assert((N == 5) && "Invalid number of operands!"); 294 Inst.addOperand(MCOperand::CreateReg(getMemBaseReg())); 295 Inst.addOperand(MCOperand::CreateImm(getMemScale())); 296 Inst.addOperand(MCOperand::CreateReg(getMemIndexReg())); 297 addExpr(Inst, getMemDisp()); 298 Inst.addOperand(MCOperand::CreateReg(getMemSegReg())); 299 } 300 301 void addAbsMemOperands(MCInst &Inst, unsigned N) const { 302 assert((N == 1) && "Invalid number of operands!"); 303 Inst.addOperand(MCOperand::CreateExpr(getMemDisp())); 304 } 305 306 static X86Operand *CreateToken(StringRef Str, SMLoc Loc) { 307 X86Operand *Res = new X86Operand(Token, Loc, Loc); 308 Res->Tok.Data = Str.data(); 309 Res->Tok.Length = Str.size(); 310 return Res; 311 } 312 313 static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc) { 314 X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc); 315 Res->Reg.RegNo = RegNo; 316 return Res; 317 } 318 319 static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc){ 320 X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc); 321 Res->Imm.Val = Val; 322 return Res; 323 } 324 325 /// Create an absolute memory operand. 326 static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc, 327 SMLoc EndLoc) { 328 X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc); 329 Res->Mem.SegReg = 0; 330 Res->Mem.Disp = Disp; 331 Res->Mem.BaseReg = 0; 332 Res->Mem.IndexReg = 0; 333 Res->Mem.Scale = 1; 334 return Res; 335 } 336 337 /// Create a generalized memory operand. 338 static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp, 339 unsigned BaseReg, unsigned IndexReg, 340 unsigned Scale, SMLoc StartLoc, SMLoc EndLoc) { 341 // We should never just have a displacement, that should be parsed as an 342 // absolute memory operand. 343 assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!"); 344 345 // The scale should always be one of {1,2,4,8}. 346 assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) && 347 "Invalid scale!"); 348 X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc); 349 Res->Mem.SegReg = SegReg; 350 Res->Mem.Disp = Disp; 351 Res->Mem.BaseReg = BaseReg; 352 Res->Mem.IndexReg = IndexReg; 353 Res->Mem.Scale = Scale; 354 return Res; 355 } 356}; 357 358} // end anonymous namespace. 359 360 361bool X86ATTAsmParser::ParseRegister(unsigned &RegNo, 362 SMLoc &StartLoc, SMLoc &EndLoc) { 363 RegNo = 0; 364 const AsmToken &TokPercent = Parser.getTok(); 365 assert(TokPercent.is(AsmToken::Percent) && "Invalid token kind!"); 366 StartLoc = TokPercent.getLoc(); 367 Parser.Lex(); // Eat percent token. 368 369 const AsmToken &Tok = Parser.getTok(); 370 if (Tok.isNot(AsmToken::Identifier)) 371 return Error(Tok.getLoc(), "invalid register name"); 372 373 // FIXME: Validate register for the current architecture; we have to do 374 // validation later, so maybe there is no need for this here. 375 RegNo = MatchRegisterName(Tok.getString()); 376 377 // If the match failed, try the register name as lowercase. 378 if (RegNo == 0) 379 RegNo = MatchRegisterName(LowercaseString(Tok.getString())); 380 381 // FIXME: This should be done using Requires<In32BitMode> and 382 // Requires<In64BitMode> so "eiz" usage in 64-bit instructions 383 // can be also checked. 384 if (RegNo == X86::RIZ && !Is64Bit) 385 return Error(Tok.getLoc(), "riz register in 64-bit mode only"); 386 387 // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens. 388 if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) { 389 RegNo = X86::ST0; 390 EndLoc = Tok.getLoc(); 391 Parser.Lex(); // Eat 'st' 392 393 // Check to see if we have '(4)' after %st. 394 if (getLexer().isNot(AsmToken::LParen)) 395 return false; 396 // Lex the paren. 397 getParser().Lex(); 398 399 const AsmToken &IntTok = Parser.getTok(); 400 if (IntTok.isNot(AsmToken::Integer)) 401 return Error(IntTok.getLoc(), "expected stack index"); 402 switch (IntTok.getIntVal()) { 403 case 0: RegNo = X86::ST0; break; 404 case 1: RegNo = X86::ST1; break; 405 case 2: RegNo = X86::ST2; break; 406 case 3: RegNo = X86::ST3; break; 407 case 4: RegNo = X86::ST4; break; 408 case 5: RegNo = X86::ST5; break; 409 case 6: RegNo = X86::ST6; break; 410 case 7: RegNo = X86::ST7; break; 411 default: return Error(IntTok.getLoc(), "invalid stack index"); 412 } 413 414 if (getParser().Lex().isNot(AsmToken::RParen)) 415 return Error(Parser.getTok().getLoc(), "expected ')'"); 416 417 EndLoc = Tok.getLoc(); 418 Parser.Lex(); // Eat ')' 419 return false; 420 } 421 422 // If this is "db[0-7]", match it as an alias 423 // for dr[0-7]. 424 if (RegNo == 0 && Tok.getString().size() == 3 && 425 Tok.getString().startswith("db")) { 426 switch (Tok.getString()[2]) { 427 case '0': RegNo = X86::DR0; break; 428 case '1': RegNo = X86::DR1; break; 429 case '2': RegNo = X86::DR2; break; 430 case '3': RegNo = X86::DR3; break; 431 case '4': RegNo = X86::DR4; break; 432 case '5': RegNo = X86::DR5; break; 433 case '6': RegNo = X86::DR6; break; 434 case '7': RegNo = X86::DR7; break; 435 } 436 437 if (RegNo != 0) { 438 EndLoc = Tok.getLoc(); 439 Parser.Lex(); // Eat it. 440 return false; 441 } 442 } 443 444 if (RegNo == 0) 445 return Error(Tok.getLoc(), "invalid register name"); 446 447 EndLoc = Tok.getLoc(); 448 Parser.Lex(); // Eat identifier token. 449 return false; 450} 451 452X86Operand *X86ATTAsmParser::ParseOperand() { 453 switch (getLexer().getKind()) { 454 default: 455 // Parse a memory operand with no segment register. 456 return ParseMemOperand(0, Parser.getTok().getLoc()); 457 case AsmToken::Percent: { 458 // Read the register. 459 unsigned RegNo; 460 SMLoc Start, End; 461 if (ParseRegister(RegNo, Start, End)) return 0; 462 if (RegNo == X86::EIZ || RegNo == X86::RIZ) { 463 Error(Start, "eiz and riz can only be used as index registers"); 464 return 0; 465 } 466 467 // If this is a segment register followed by a ':', then this is the start 468 // of a memory reference, otherwise this is a normal register reference. 469 if (getLexer().isNot(AsmToken::Colon)) 470 return X86Operand::CreateReg(RegNo, Start, End); 471 472 473 getParser().Lex(); // Eat the colon. 474 return ParseMemOperand(RegNo, Start); 475 } 476 case AsmToken::Dollar: { 477 // $42 -> immediate. 478 SMLoc Start = Parser.getTok().getLoc(), End; 479 Parser.Lex(); 480 const MCExpr *Val; 481 if (getParser().ParseExpression(Val, End)) 482 return 0; 483 return X86Operand::CreateImm(Val, Start, End); 484 } 485 } 486} 487 488/// ParseMemOperand: segment: disp(basereg, indexreg, scale). The '%ds:' prefix 489/// has already been parsed if present. 490X86Operand *X86ATTAsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) { 491 492 // We have to disambiguate a parenthesized expression "(4+5)" from the start 493 // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The 494 // only way to do this without lookahead is to eat the '(' and see what is 495 // after it. 496 const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext()); 497 if (getLexer().isNot(AsmToken::LParen)) { 498 SMLoc ExprEnd; 499 if (getParser().ParseExpression(Disp, ExprEnd)) return 0; 500 501 // After parsing the base expression we could either have a parenthesized 502 // memory address or not. If not, return now. If so, eat the (. 503 if (getLexer().isNot(AsmToken::LParen)) { 504 // Unless we have a segment register, treat this as an immediate. 505 if (SegReg == 0) 506 return X86Operand::CreateMem(Disp, MemStart, ExprEnd); 507 return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd); 508 } 509 510 // Eat the '('. 511 Parser.Lex(); 512 } else { 513 // Okay, we have a '('. We don't know if this is an expression or not, but 514 // so we have to eat the ( to see beyond it. 515 SMLoc LParenLoc = Parser.getTok().getLoc(); 516 Parser.Lex(); // Eat the '('. 517 518 if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) { 519 // Nothing to do here, fall into the code below with the '(' part of the 520 // memory operand consumed. 521 } else { 522 SMLoc ExprEnd; 523 524 // It must be an parenthesized expression, parse it now. 525 if (getParser().ParseParenExpression(Disp, ExprEnd)) 526 return 0; 527 528 // After parsing the base expression we could either have a parenthesized 529 // memory address or not. If not, return now. If so, eat the (. 530 if (getLexer().isNot(AsmToken::LParen)) { 531 // Unless we have a segment register, treat this as an immediate. 532 if (SegReg == 0) 533 return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd); 534 return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd); 535 } 536 537 // Eat the '('. 538 Parser.Lex(); 539 } 540 } 541 542 // If we reached here, then we just ate the ( of the memory operand. Process 543 // the rest of the memory operand. 544 unsigned BaseReg = 0, IndexReg = 0, Scale = 1; 545 546 if (getLexer().is(AsmToken::Percent)) { 547 SMLoc L; 548 if (ParseRegister(BaseReg, L, L)) return 0; 549 if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) { 550 Error(L, "eiz and riz can only be used as index registers"); 551 return 0; 552 } 553 } 554 555 if (getLexer().is(AsmToken::Comma)) { 556 Parser.Lex(); // Eat the comma. 557 558 // Following the comma we should have either an index register, or a scale 559 // value. We don't support the later form, but we want to parse it 560 // correctly. 561 // 562 // Not that even though it would be completely consistent to support syntax 563 // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this. 564 if (getLexer().is(AsmToken::Percent)) { 565 SMLoc L; 566 if (ParseRegister(IndexReg, L, L)) return 0; 567 568 if (getLexer().isNot(AsmToken::RParen)) { 569 // Parse the scale amount: 570 // ::= ',' [scale-expression] 571 if (getLexer().isNot(AsmToken::Comma)) { 572 Error(Parser.getTok().getLoc(), 573 "expected comma in scale expression"); 574 return 0; 575 } 576 Parser.Lex(); // Eat the comma. 577 578 if (getLexer().isNot(AsmToken::RParen)) { 579 SMLoc Loc = Parser.getTok().getLoc(); 580 581 int64_t ScaleVal; 582 if (getParser().ParseAbsoluteExpression(ScaleVal)) 583 return 0; 584 585 // Validate the scale amount. 586 if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){ 587 Error(Loc, "scale factor in address must be 1, 2, 4 or 8"); 588 return 0; 589 } 590 Scale = (unsigned)ScaleVal; 591 } 592 } 593 } else if (getLexer().isNot(AsmToken::RParen)) { 594 // A scale amount without an index is ignored. 595 // index. 596 SMLoc Loc = Parser.getTok().getLoc(); 597 598 int64_t Value; 599 if (getParser().ParseAbsoluteExpression(Value)) 600 return 0; 601 602 if (Value != 1) 603 Warning(Loc, "scale factor without index register is ignored"); 604 Scale = 1; 605 } 606 } 607 608 // Ok, we've eaten the memory operand, verify we have a ')' and eat it too. 609 if (getLexer().isNot(AsmToken::RParen)) { 610 Error(Parser.getTok().getLoc(), "unexpected token in memory operand"); 611 return 0; 612 } 613 SMLoc MemEnd = Parser.getTok().getLoc(); 614 Parser.Lex(); // Eat the ')'. 615 616 return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, 617 MemStart, MemEnd); 618} 619 620bool X86ATTAsmParser:: 621ParseInstruction(StringRef Name, SMLoc NameLoc, 622 SmallVectorImpl<MCParsedAsmOperand*> &Operands) { 623 // FIXME: Hack to recognize "sal..." and "rep..." for now. We need a way to 624 // represent alternative syntaxes in the .td file, without requiring 625 // instruction duplication. 626 StringRef PatchedName = StringSwitch<StringRef>(Name) 627 .Case("sal", "shl") 628 .Case("salb", "shlb") 629 .Case("sall", "shll") 630 .Case("salq", "shlq") 631 .Case("salw", "shlw") 632 .Case("repe", "rep") 633 .Case("repz", "rep") 634 .Case("repnz", "repne") 635 .Case("push", Is64Bit ? "pushq" : "pushl") 636 .Case("pop", Is64Bit ? "popq" : "popl") 637 .Case("pushf", Is64Bit ? "pushfq" : "pushfl") 638 .Case("popf", Is64Bit ? "popfq" : "popfl") 639 .Case("pushfd", "pushfl") 640 .Case("popfd", "popfl") 641 .Case("retl", Is64Bit ? "retl" : "ret") 642 .Case("retq", Is64Bit ? "ret" : "retq") 643 // Floating point stack cmov aliases. 644 .Case("fcmovz", "fcmove") 645 .Case("fcmova", "fcmovnbe") 646 .Case("fcmovnae", "fcmovb") 647 .Case("fcmovna", "fcmovbe") 648 .Case("fcmovae", "fcmovnb") 649 .Case("fwait", "wait") 650 .Case("movzx", "movzb") // FIXME: Not correct. 651 .Case("fildq", "fildll") 652 .Case("fcompi", "fcomip") 653 .Case("fnstcww", "fnstcw") 654 .Case("fstcww", "fstcw") 655 .Case("fnstsww", "fnstsw") 656 .Case("fstsww", "fstsw") 657 .Default(Name); 658 659 // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}. 660 const MCExpr *ExtraImmOp = 0; 661 if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) && 662 (PatchedName.endswith("ss") || PatchedName.endswith("sd") || 663 PatchedName.endswith("ps") || PatchedName.endswith("pd"))) { 664 bool IsVCMP = PatchedName.startswith("vcmp"); 665 unsigned SSECCIdx = IsVCMP ? 4 : 3; 666 unsigned SSEComparisonCode = StringSwitch<unsigned>( 667 PatchedName.slice(SSECCIdx, PatchedName.size() - 2)) 668 .Case("eq", 0) 669 .Case("lt", 1) 670 .Case("le", 2) 671 .Case("unord", 3) 672 .Case("neq", 4) 673 .Case("nlt", 5) 674 .Case("nle", 6) 675 .Case("ord", 7) 676 .Case("eq_uq", 8) 677 .Case("nge", 9) 678 .Case("ngt", 0x0A) 679 .Case("false", 0x0B) 680 .Case("neq_oq", 0x0C) 681 .Case("ge", 0x0D) 682 .Case("gt", 0x0E) 683 .Case("true", 0x0F) 684 .Case("eq_os", 0x10) 685 .Case("lt_oq", 0x11) 686 .Case("le_oq", 0x12) 687 .Case("unord_s", 0x13) 688 .Case("neq_us", 0x14) 689 .Case("nlt_uq", 0x15) 690 .Case("nle_uq", 0x16) 691 .Case("ord_s", 0x17) 692 .Case("eq_us", 0x18) 693 .Case("nge_uq", 0x19) 694 .Case("ngt_uq", 0x1A) 695 .Case("false_os", 0x1B) 696 .Case("neq_os", 0x1C) 697 .Case("ge_oq", 0x1D) 698 .Case("gt_oq", 0x1E) 699 .Case("true_us", 0x1F) 700 .Default(~0U); 701 if (SSEComparisonCode != ~0U) { 702 ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode, 703 getParser().getContext()); 704 if (PatchedName.endswith("ss")) { 705 PatchedName = IsVCMP ? "vcmpss" : "cmpss"; 706 } else if (PatchedName.endswith("sd")) { 707 PatchedName = IsVCMP ? "vcmpsd" : "cmpsd"; 708 } else if (PatchedName.endswith("ps")) { 709 PatchedName = IsVCMP ? "vcmpps" : "cmpps"; 710 } else { 711 assert(PatchedName.endswith("pd") && "Unexpected mnemonic!"); 712 PatchedName = IsVCMP ? "vcmppd" : "cmppd"; 713 } 714 } 715 } 716 717 // FIXME: Hack to recognize vpclmul<src1_quadword, src2_quadword>dq 718 if (PatchedName.startswith("vpclmul")) { 719 unsigned CLMULQuadWordSelect = StringSwitch<unsigned>( 720 PatchedName.slice(7, PatchedName.size() - 2)) 721 .Case("lqlq", 0x00) // src1[63:0], src2[63:0] 722 .Case("hqlq", 0x01) // src1[127:64], src2[63:0] 723 .Case("lqhq", 0x10) // src1[63:0], src2[127:64] 724 .Case("hqhq", 0x11) // src1[127:64], src2[127:64] 725 .Default(~0U); 726 if (CLMULQuadWordSelect != ~0U) { 727 ExtraImmOp = MCConstantExpr::Create(CLMULQuadWordSelect, 728 getParser().getContext()); 729 assert(PatchedName.endswith("dq") && "Unexpected mnemonic!"); 730 PatchedName = "vpclmulqdq"; 731 } 732 } 733 734 Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc)); 735 736 if (ExtraImmOp) 737 Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc)); 738 739 740 // Determine whether this is an instruction prefix. 741 bool isPrefix = 742 PatchedName == "lock" || PatchedName == "rep" || 743 PatchedName == "repne"; 744 745 746 // This does the actual operand parsing. Don't parse any more if we have a 747 // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we 748 // just want to parse the "lock" as the first instruction and the "incl" as 749 // the next one. 750 if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) { 751 752 // Parse '*' modifier. 753 if (getLexer().is(AsmToken::Star)) { 754 SMLoc Loc = Parser.getTok().getLoc(); 755 Operands.push_back(X86Operand::CreateToken("*", Loc)); 756 Parser.Lex(); // Eat the star. 757 } 758 759 // Read the first operand. 760 if (X86Operand *Op = ParseOperand()) 761 Operands.push_back(Op); 762 else { 763 Parser.EatToEndOfStatement(); 764 return true; 765 } 766 767 while (getLexer().is(AsmToken::Comma)) { 768 Parser.Lex(); // Eat the comma. 769 770 // Parse and remember the operand. 771 if (X86Operand *Op = ParseOperand()) 772 Operands.push_back(Op); 773 else { 774 Parser.EatToEndOfStatement(); 775 return true; 776 } 777 } 778 779 if (getLexer().isNot(AsmToken::EndOfStatement)) { 780 Parser.EatToEndOfStatement(); 781 return TokError("unexpected token in argument list"); 782 } 783 } 784 785 if (getLexer().is(AsmToken::EndOfStatement)) 786 Parser.Lex(); // Consume the EndOfStatement 787 788 // Hack to allow 'movq <largeimm>, <reg>' as an alias for movabsq. 789 if ((Name == "movq" || Name == "mov") && Operands.size() == 3 && 790 static_cast<X86Operand*>(Operands[2])->isReg() && 791 static_cast<X86Operand*>(Operands[1])->isImm() && 792 !static_cast<X86Operand*>(Operands[1])->isImmSExti64i32()) { 793 delete Operands[0]; 794 Operands[0] = X86Operand::CreateToken("movabsq", NameLoc); 795 } 796 797 // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>. Canonicalize to 798 // "shift <op>". 799 if ((Name.startswith("shr") || Name.startswith("sar") || 800 Name.startswith("shl")) && 801 Operands.size() == 3) { 802 X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]); 803 if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) && 804 cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) { 805 delete Operands[1]; 806 Operands.erase(Operands.begin() + 1); 807 } 808 } 809 810 // FIXME: Hack to handle recognize "rc[lr] <op>" -> "rcl $1, <op>". 811 if ((Name.startswith("rcl") || Name.startswith("rcr")) && 812 Operands.size() == 2) { 813 const MCExpr *One = MCConstantExpr::Create(1, getParser().getContext()); 814 Operands.push_back(X86Operand::CreateImm(One, NameLoc, NameLoc)); 815 std::swap(Operands[1], Operands[2]); 816 } 817 818 // FIXME: Hack to handle recognize "sh[lr]d op,op" -> "shld $1, op,op". 819 if ((Name.startswith("shld") || Name.startswith("shrd")) && 820 Operands.size() == 3) { 821 const MCExpr *One = MCConstantExpr::Create(1, getParser().getContext()); 822 Operands.insert(Operands.begin()+1, 823 X86Operand::CreateImm(One, NameLoc, NameLoc)); 824 } 825 826 827 // FIXME: Hack to handle recognize "in[bwl] <op>". Canonicalize it to 828 // "inb <op>, %al". 829 if ((Name == "inb" || Name == "inw" || Name == "inl") && 830 Operands.size() == 2) { 831 unsigned Reg; 832 if (Name[2] == 'b') 833 Reg = MatchRegisterName("al"); 834 else if (Name[2] == 'w') 835 Reg = MatchRegisterName("ax"); 836 else 837 Reg = MatchRegisterName("eax"); 838 SMLoc Loc = Operands.back()->getEndLoc(); 839 Operands.push_back(X86Operand::CreateReg(Reg, Loc, Loc)); 840 } 841 842 // FIXME: Hack to handle recognize "out[bwl] <op>". Canonicalize it to 843 // "outb %al, <op>". 844 if ((Name == "outb" || Name == "outw" || Name == "outl") && 845 Operands.size() == 2) { 846 unsigned Reg; 847 if (Name[3] == 'b') 848 Reg = MatchRegisterName("al"); 849 else if (Name[3] == 'w') 850 Reg = MatchRegisterName("ax"); 851 else 852 Reg = MatchRegisterName("eax"); 853 SMLoc Loc = Operands.back()->getEndLoc(); 854 Operands.push_back(X86Operand::CreateReg(Reg, Loc, Loc)); 855 std::swap(Operands[1], Operands[2]); 856 } 857 858 // FIXME: Hack to handle "out[bwl]? %al, (%dx)" -> "outb %al, %dx". 859 if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") && 860 Operands.size() == 3) { 861 X86Operand &Op = *(X86Operand*)Operands.back(); 862 if (Op.isMem() && Op.Mem.SegReg == 0 && 863 isa<MCConstantExpr>(Op.Mem.Disp) && 864 cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 && 865 Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) { 866 SMLoc Loc = Op.getEndLoc(); 867 Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc); 868 delete &Op; 869 } 870 } 871 872 // FIXME: Hack to handle "f{mul*,add*,sub*,div*} $op, st(0)" the same as 873 // "f{mul*,add*,sub*,div*} $op" 874 if ((Name.startswith("fmul") || Name.startswith("fadd") || 875 Name.startswith("fsub") || Name.startswith("fdiv")) && 876 Operands.size() == 3 && 877 static_cast<X86Operand*>(Operands[2])->isReg() && 878 static_cast<X86Operand*>(Operands[2])->getReg() == X86::ST0) { 879 delete Operands[2]; 880 Operands.erase(Operands.begin() + 2); 881 } 882 883 // FIXME: Hack to handle "f{mulp,addp} st(0), $op" the same as 884 // "f{mulp,addp} $op", since they commute. We also allow fdivrp/fsubrp even 885 // though they don't commute, solely because gas does support this. 886 if ((Name=="fmulp" || Name=="faddp" || Name=="fsubrp" || Name=="fdivrp") && 887 Operands.size() == 3 && 888 static_cast<X86Operand*>(Operands[1])->isReg() && 889 static_cast<X86Operand*>(Operands[1])->getReg() == X86::ST0) { 890 delete Operands[1]; 891 Operands.erase(Operands.begin() + 1); 892 } 893 894 // FIXME: Hack to handle "imul <imm>, B" which is an alias for "imul <imm>, B, 895 // B". 896 if (Name.startswith("imul") && Operands.size() == 3 && 897 static_cast<X86Operand*>(Operands[1])->isImm() && 898 static_cast<X86Operand*>(Operands.back())->isReg()) { 899 X86Operand *Op = static_cast<X86Operand*>(Operands.back()); 900 Operands.push_back(X86Operand::CreateReg(Op->getReg(), Op->getStartLoc(), 901 Op->getEndLoc())); 902 } 903 904 // 'sldt <mem>' can be encoded with either sldtw or sldtq with the same 905 // effect (both store to a 16-bit mem). Force to sldtw to avoid ambiguity 906 // errors, since its encoding is the most compact. 907 if (Name == "sldt" && Operands.size() == 2 && 908 static_cast<X86Operand*>(Operands[1])->isMem()) { 909 delete Operands[0]; 910 Operands[0] = X86Operand::CreateToken("sldtw", NameLoc); 911 } 912 913 // The assembler accepts "xchgX <reg>, <mem>" and "xchgX <mem>, <reg>" as 914 // synonyms. Our tables only have the "<reg>, <mem>" form, so if we see the 915 // other operand order, swap them. 916 if (Name == "xchgb" || Name == "xchgw" || Name == "xchgl" || Name == "xchgq"|| 917 Name == "xchg") 918 if (Operands.size() == 3 && 919 static_cast<X86Operand*>(Operands[1])->isMem() && 920 static_cast<X86Operand*>(Operands[2])->isReg()) { 921 std::swap(Operands[1], Operands[2]); 922 } 923 924 // The assembler accepts "testX <reg>, <mem>" and "testX <mem>, <reg>" as 925 // synonyms. Our tables only have the "<mem>, <reg>" form, so if we see the 926 // other operand order, swap them. 927 if (Name == "testb" || Name == "testw" || Name == "testl" || Name == "testq"|| 928 Name == "test") 929 if (Operands.size() == 3 && 930 static_cast<X86Operand*>(Operands[1])->isReg() && 931 static_cast<X86Operand*>(Operands[2])->isMem()) { 932 std::swap(Operands[1], Operands[2]); 933 } 934 935 // The assembler accepts these instructions with no operand as a synonym for 936 // an instruction acting on st(1). e.g. "fxch" -> "fxch %st(1)". 937 if ((Name == "fxch" || Name == "fucom" || Name == "fucomp" || 938 Name == "faddp" || Name == "fsubp" || Name == "fsubrp" || 939 Name == "fmulp" || Name == "fdivp" || Name == "fdivrp") && 940 Operands.size() == 1) { 941 Operands.push_back(X86Operand::CreateReg(MatchRegisterName("st(1)"), 942 NameLoc, NameLoc)); 943 } 944 945 // The assembler accepts this instruction with no operand as a synonym for an 946 // instruction taking %st(1),%st(0). e.g. "fcompi" -> "fcompi %st(1),st(0)". 947 if (Name == "fcompi" && Operands.size() == 1) { 948 Operands.push_back(X86Operand::CreateReg(MatchRegisterName("st(1)"), 949 NameLoc, NameLoc)); 950 Operands.push_back(X86Operand::CreateReg(MatchRegisterName("st(0)"), 951 NameLoc, NameLoc)); 952 } 953 954 // The assembler accepts these instructions with two few operands as a synonym 955 // for taking %st(1),%st(0) or X, %st(0). 956 if ((Name == "fcomi" || Name == "fucomi" || Name == "fucompi" || 957 Name == "fcompi" ) && 958 Operands.size() < 3) { 959 if (Operands.size() == 1) 960 Operands.push_back(X86Operand::CreateReg(MatchRegisterName("st(1)"), 961 NameLoc, NameLoc)); 962 Operands.push_back(X86Operand::CreateReg(MatchRegisterName("st(0)"), 963 NameLoc, NameLoc)); 964 } 965 966 // The assembler accepts various amounts of brokenness for fnstsw. 967 if (Name == "fnstsw") { 968 if (Operands.size() == 2 && 969 static_cast<X86Operand*>(Operands[1])->isReg()) { 970 // "fnstsw al" and "fnstsw eax" -> "fnstw" 971 unsigned Reg = static_cast<X86Operand*>(Operands[1])->Reg.RegNo; 972 if (Reg == MatchRegisterName("eax") || 973 Reg == MatchRegisterName("al")) { 974 delete Operands[1]; 975 Operands.pop_back(); 976 } 977 } 978 979 // "fnstw" -> "fnstw %ax" 980 if (Operands.size() == 1) 981 Operands.push_back(X86Operand::CreateReg(MatchRegisterName("ax"), 982 NameLoc, NameLoc)); 983 } 984 985 // jmp $42,$5 -> ljmp, similarly for call. 986 if ((Name.startswith("call") || Name.startswith("jmp")) && 987 Operands.size() == 3 && 988 static_cast<X86Operand*>(Operands[1])->isImm() && 989 static_cast<X86Operand*>(Operands[2])->isImm()) { 990 const char *NewOpName = StringSwitch<const char *>(Name) 991 .Case("jmp", "ljmp") 992 .Case("jmpw", "ljmpw") 993 .Case("jmpl", "ljmpl") 994 .Case("jmpq", "ljmpq") 995 .Case("call", "lcall") 996 .Case("callw", "lcallw") 997 .Case("calll", "lcalll") 998 .Case("callq", "lcallq") 999 .Default(0); 1000 if (NewOpName) { 1001 delete Operands[0]; 1002 Operands[0] = X86Operand::CreateToken(NewOpName, NameLoc); 1003 Name = NewOpName; 1004 } 1005 } 1006 1007 // lcall and ljmp -> lcalll and ljmpl 1008 if ((Name == "lcall" || Name == "ljmp") && Operands.size() == 3) { 1009 delete Operands[0]; 1010 Operands[0] = X86Operand::CreateToken(Name == "lcall" ? "lcalll" : "ljmpl", 1011 NameLoc); 1012 } 1013 1014 // call foo is not ambiguous with callw. 1015 if (Name == "call" && Operands.size() == 2) { 1016 const char *NewName = Is64Bit ? "callq" : "calll"; 1017 delete Operands[0]; 1018 Operands[0] = X86Operand::CreateToken(NewName, NameLoc); 1019 Name = NewName; 1020 } 1021 1022 // movsd -> movsl (when no operands are specified). 1023 if (Name == "movsd" && Operands.size() == 1) { 1024 delete Operands[0]; 1025 Operands[0] = X86Operand::CreateToken("movsl", NameLoc); 1026 } 1027 1028 // fstp <mem> -> fstps <mem>. Without this, we'll default to fstpl due to 1029 // suffix searching. 1030 if (Name == "fstp" && Operands.size() == 2 && 1031 static_cast<X86Operand*>(Operands[1])->isMem()) { 1032 delete Operands[0]; 1033 Operands[0] = X86Operand::CreateToken("fstps", NameLoc); 1034 } 1035 1036 1037 // "clr <reg>" -> "xor <reg>, <reg>". 1038 if ((Name == "clrb" || Name == "clrw" || Name == "clrl" || Name == "clrq" || 1039 Name == "clr") && Operands.size() == 2 && 1040 static_cast<X86Operand*>(Operands[1])->isReg()) { 1041 unsigned RegNo = static_cast<X86Operand*>(Operands[1])->getReg(); 1042 Operands.push_back(X86Operand::CreateReg(RegNo, NameLoc, NameLoc)); 1043 delete Operands[0]; 1044 Operands[0] = X86Operand::CreateToken("xor", NameLoc); 1045 } 1046 1047 // FIXME: Hack to handle recognize "aa[dm]" -> "aa[dm] $0xA". 1048 if ((Name.startswith("aad") || Name.startswith("aam")) && 1049 Operands.size() == 1) { 1050 const MCExpr *A = MCConstantExpr::Create(0xA, getParser().getContext()); 1051 Operands.push_back(X86Operand::CreateImm(A, NameLoc, NameLoc)); 1052 } 1053 1054 // "lgdtl" is not ambiguous 32-bit mode and is the same as "lgdt". 1055 // "lgdtq" is not ambiguous 64-bit mode and is the same as "lgdt". 1056 if ((Name == "lgdtl" && Is64Bit == false) || 1057 (Name == "lgdtq" && Is64Bit == true)) { 1058 const char *NewName = "lgdt"; 1059 delete Operands[0]; 1060 Operands[0] = X86Operand::CreateToken(NewName, NameLoc); 1061 Name = NewName; 1062 } 1063 1064 // "lidtl" is not ambiguous 32-bit mode and is the same as "lidt". 1065 // "lidtq" is not ambiguous 64-bit mode and is the same as "lidt". 1066 if ((Name == "lidtl" && Is64Bit == false) || 1067 (Name == "lidtq" && Is64Bit == true)) { 1068 const char *NewName = "lidt"; 1069 delete Operands[0]; 1070 Operands[0] = X86Operand::CreateToken(NewName, NameLoc); 1071 Name = NewName; 1072 } 1073 1074 // "sgdtl" is not ambiguous 32-bit mode and is the same as "sgdt". 1075 // "sgdtq" is not ambiguous 64-bit mode and is the same as "sgdt". 1076 if ((Name == "sgdtl" && Is64Bit == false) || 1077 (Name == "sgdtq" && Is64Bit == true)) { 1078 const char *NewName = "sgdt"; 1079 delete Operands[0]; 1080 Operands[0] = X86Operand::CreateToken(NewName, NameLoc); 1081 Name = NewName; 1082 } 1083 1084 // "sidtl" is not ambiguous 32-bit mode and is the same as "sidt". 1085 // "sidtq" is not ambiguous 64-bit mode and is the same as "sidt". 1086 if ((Name == "sidtl" && Is64Bit == false) || 1087 (Name == "sidtq" && Is64Bit == true)) { 1088 const char *NewName = "sidt"; 1089 delete Operands[0]; 1090 Operands[0] = X86Operand::CreateToken(NewName, NameLoc); 1091 Name = NewName; 1092 } 1093 1094 return false; 1095} 1096 1097bool X86ATTAsmParser:: 1098MatchAndEmitInstruction(SMLoc IDLoc, 1099 SmallVectorImpl<MCParsedAsmOperand*> &Operands, 1100 MCStreamer &Out) { 1101 assert(!Operands.empty() && "Unexpect empty operand list!"); 1102 X86Operand *Op = static_cast<X86Operand*>(Operands[0]); 1103 assert(Op->isToken() && "Leading operand should always be a mnemonic!"); 1104 1105 // First, handle aliases that expand to multiple instructions. 1106 // FIXME: This should be replaced with a real .td file alias mechanism. 1107 if (Op->getToken() == "fstsw" || Op->getToken() == "fstcw" || 1108 Op->getToken() == "finit" || Op->getToken() == "fsave" || 1109 Op->getToken() == "fstenv" || Op->getToken() == "fclex") { 1110 MCInst Inst; 1111 Inst.setOpcode(X86::WAIT); 1112 Out.EmitInstruction(Inst); 1113 1114 const char *Repl = 1115 StringSwitch<const char*>(Op->getToken()) 1116 .Case("finit", "fninit") 1117 .Case("fsave", "fnsave") 1118 .Case("fstcw", "fnstcw") 1119 .Case("fstenv", "fnstenv") 1120 .Case("fstsw", "fnstsw") 1121 .Case("fclex", "fnclex") 1122 .Default(0); 1123 assert(Repl && "Unknown wait-prefixed instruction"); 1124 delete Operands[0]; 1125 Operands[0] = X86Operand::CreateToken(Repl, IDLoc); 1126 } 1127 1128 bool WasOriginallyInvalidOperand = false; 1129 unsigned OrigErrorInfo; 1130 MCInst Inst; 1131 1132 // First, try a direct match. 1133 switch (MatchInstructionImpl(Operands, Inst, OrigErrorInfo)) { 1134 case Match_Success: 1135 Out.EmitInstruction(Inst); 1136 return false; 1137 case Match_MissingFeature: 1138 Error(IDLoc, "instruction requires a CPU feature not currently enabled"); 1139 return true; 1140 case Match_InvalidOperand: 1141 WasOriginallyInvalidOperand = true; 1142 break; 1143 case Match_MnemonicFail: 1144 break; 1145 } 1146 1147 // FIXME: Ideally, we would only attempt suffix matches for things which are 1148 // valid prefixes, and we could just infer the right unambiguous 1149 // type. However, that requires substantially more matcher support than the 1150 // following hack. 1151 1152 // Change the operand to point to a temporary token. 1153 StringRef Base = Op->getToken(); 1154 SmallString<16> Tmp; 1155 Tmp += Base; 1156 Tmp += ' '; 1157 Op->setTokenValue(Tmp.str()); 1158 1159 // Check for the various suffix matches. 1160 Tmp[Base.size()] = 'b'; 1161 unsigned BErrorInfo, WErrorInfo, LErrorInfo, QErrorInfo; 1162 MatchResultTy MatchB = MatchInstructionImpl(Operands, Inst, BErrorInfo); 1163 Tmp[Base.size()] = 'w'; 1164 MatchResultTy MatchW = MatchInstructionImpl(Operands, Inst, WErrorInfo); 1165 Tmp[Base.size()] = 'l'; 1166 MatchResultTy MatchL = MatchInstructionImpl(Operands, Inst, LErrorInfo); 1167 Tmp[Base.size()] = 'q'; 1168 MatchResultTy MatchQ = MatchInstructionImpl(Operands, Inst, QErrorInfo); 1169 1170 // Restore the old token. 1171 Op->setTokenValue(Base); 1172 1173 // If exactly one matched, then we treat that as a successful match (and the 1174 // instruction will already have been filled in correctly, since the failing 1175 // matches won't have modified it). 1176 unsigned NumSuccessfulMatches = 1177 (MatchB == Match_Success) + (MatchW == Match_Success) + 1178 (MatchL == Match_Success) + (MatchQ == Match_Success); 1179 if (NumSuccessfulMatches == 1) { 1180 Out.EmitInstruction(Inst); 1181 return false; 1182 } 1183 1184 // Otherwise, the match failed, try to produce a decent error message. 1185 1186 // If we had multiple suffix matches, then identify this as an ambiguous 1187 // match. 1188 if (NumSuccessfulMatches > 1) { 1189 char MatchChars[4]; 1190 unsigned NumMatches = 0; 1191 if (MatchB == Match_Success) 1192 MatchChars[NumMatches++] = 'b'; 1193 if (MatchW == Match_Success) 1194 MatchChars[NumMatches++] = 'w'; 1195 if (MatchL == Match_Success) 1196 MatchChars[NumMatches++] = 'l'; 1197 if (MatchQ == Match_Success) 1198 MatchChars[NumMatches++] = 'q'; 1199 1200 SmallString<126> Msg; 1201 raw_svector_ostream OS(Msg); 1202 OS << "ambiguous instructions require an explicit suffix (could be "; 1203 for (unsigned i = 0; i != NumMatches; ++i) { 1204 if (i != 0) 1205 OS << ", "; 1206 if (i + 1 == NumMatches) 1207 OS << "or "; 1208 OS << "'" << Base << MatchChars[i] << "'"; 1209 } 1210 OS << ")"; 1211 Error(IDLoc, OS.str()); 1212 return true; 1213 } 1214 1215 // Okay, we know that none of the variants matched successfully. 1216 1217 // If all of the instructions reported an invalid mnemonic, then the original 1218 // mnemonic was invalid. 1219 if ((MatchB == Match_MnemonicFail) && (MatchW == Match_MnemonicFail) && 1220 (MatchL == Match_MnemonicFail) && (MatchQ == Match_MnemonicFail)) { 1221 if (!WasOriginallyInvalidOperand) { 1222 Error(IDLoc, "invalid instruction mnemonic '" + Base + "'"); 1223 return true; 1224 } 1225 1226 // Recover location info for the operand if we know which was the problem. 1227 SMLoc ErrorLoc = IDLoc; 1228 if (OrigErrorInfo != ~0U) { 1229 if (OrigErrorInfo >= Operands.size()) 1230 return Error(IDLoc, "too few operands for instruction"); 1231 1232 ErrorLoc = ((X86Operand*)Operands[OrigErrorInfo])->getStartLoc(); 1233 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 1234 } 1235 1236 return Error(ErrorLoc, "invalid operand for instruction"); 1237 } 1238 1239 // If one instruction matched with a missing feature, report this as a 1240 // missing feature. 1241 if ((MatchB == Match_MissingFeature) + (MatchW == Match_MissingFeature) + 1242 (MatchL == Match_MissingFeature) + (MatchQ == Match_MissingFeature) == 1){ 1243 Error(IDLoc, "instruction requires a CPU feature not currently enabled"); 1244 return true; 1245 } 1246 1247 // If one instruction matched with an invalid operand, report this as an 1248 // operand failure. 1249 if ((MatchB == Match_InvalidOperand) + (MatchW == Match_InvalidOperand) + 1250 (MatchL == Match_InvalidOperand) + (MatchQ == Match_InvalidOperand) == 1){ 1251 Error(IDLoc, "invalid operand for instruction"); 1252 return true; 1253 } 1254 1255 // If all of these were an outright failure, report it in a useless way. 1256 // FIXME: We should give nicer diagnostics about the exact failure. 1257 Error(IDLoc, "unknown use of instruction mnemonic without a size suffix"); 1258 return true; 1259} 1260 1261 1262bool X86ATTAsmParser::ParseDirective(AsmToken DirectiveID) { 1263 StringRef IDVal = DirectiveID.getIdentifier(); 1264 if (IDVal == ".word") 1265 return ParseDirectiveWord(2, DirectiveID.getLoc()); 1266 return true; 1267} 1268 1269/// ParseDirectiveWord 1270/// ::= .word [ expression (, expression)* ] 1271bool X86ATTAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) { 1272 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1273 for (;;) { 1274 const MCExpr *Value; 1275 if (getParser().ParseExpression(Value)) 1276 return true; 1277 1278 getParser().getStreamer().EmitValue(Value, Size, 0 /*addrspace*/); 1279 1280 if (getLexer().is(AsmToken::EndOfStatement)) 1281 break; 1282 1283 // FIXME: Improve diagnostic. 1284 if (getLexer().isNot(AsmToken::Comma)) 1285 return Error(L, "unexpected token in directive"); 1286 Parser.Lex(); 1287 } 1288 } 1289 1290 Parser.Lex(); 1291 return false; 1292} 1293 1294 1295 1296 1297extern "C" void LLVMInitializeX86AsmLexer(); 1298 1299// Force static initialization. 1300extern "C" void LLVMInitializeX86AsmParser() { 1301 RegisterAsmParser<X86_32ATTAsmParser> X(TheX86_32Target); 1302 RegisterAsmParser<X86_64ATTAsmParser> Y(TheX86_64Target); 1303 LLVMInitializeX86AsmLexer(); 1304} 1305 1306#define GET_REGISTER_MATCHER 1307#define GET_MATCHER_IMPLEMENTATION 1308#include "X86GenAsmMatcher.inc" 1309