X86AsmParser.cpp revision beb6898df8f96ccea4ae147587479b507bb3e491
1//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9 10#include "llvm/Target/TargetAsmParser.h" 11#include "X86.h" 12#include "X86Subtarget.h" 13#include "llvm/Target/TargetRegistry.h" 14#include "llvm/Target/TargetAsmParser.h" 15#include "llvm/MC/MCStreamer.h" 16#include "llvm/MC/MCExpr.h" 17#include "llvm/MC/MCInst.h" 18#include "llvm/MC/MCParser/MCAsmLexer.h" 19#include "llvm/MC/MCParser/MCAsmParser.h" 20#include "llvm/MC/MCParser/MCParsedAsmOperand.h" 21#include "llvm/ADT/SmallString.h" 22#include "llvm/ADT/SmallVector.h" 23#include "llvm/ADT/StringExtras.h" 24#include "llvm/ADT/StringSwitch.h" 25#include "llvm/ADT/Twine.h" 26#include "llvm/Support/SourceMgr.h" 27#include "llvm/Support/raw_ostream.h" 28using namespace llvm; 29 30namespace { 31struct X86Operand; 32 33class X86ATTAsmParser : public TargetAsmParser { 34 MCAsmParser &Parser; 35 TargetMachine &TM; 36 37protected: 38 unsigned Is64Bit : 1; 39 40private: 41 MCAsmParser &getParser() const { return Parser; } 42 43 MCAsmLexer &getLexer() const { return Parser.getLexer(); } 44 45 bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); } 46 47 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc); 48 49 X86Operand *ParseOperand(); 50 X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc); 51 52 bool ParseDirectiveWord(unsigned Size, SMLoc L); 53 54 bool MatchAndEmitInstruction(SMLoc IDLoc, 55 SmallVectorImpl<MCParsedAsmOperand*> &Operands, 56 MCStreamer &Out); 57 58 /// @name Auto-generated Matcher Functions 59 /// { 60 61#define GET_ASSEMBLER_HEADER 62#include "X86GenAsmMatcher.inc" 63 64 /// } 65 66public: 67 X86ATTAsmParser(const Target &T, MCAsmParser &parser, TargetMachine &TM) 68 : TargetAsmParser(T), Parser(parser), TM(TM) { 69 70 // Initialize the set of available features. 71 setAvailableFeatures(ComputeAvailableFeatures( 72 &TM.getSubtarget<X86Subtarget>())); 73 } 74 75 virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc, 76 SmallVectorImpl<MCParsedAsmOperand*> &Operands); 77 78 virtual bool ParseDirective(AsmToken DirectiveID); 79}; 80 81class X86_32ATTAsmParser : public X86ATTAsmParser { 82public: 83 X86_32ATTAsmParser(const Target &T, MCAsmParser &Parser, TargetMachine &TM) 84 : X86ATTAsmParser(T, Parser, TM) { 85 Is64Bit = false; 86 } 87}; 88 89class X86_64ATTAsmParser : public X86ATTAsmParser { 90public: 91 X86_64ATTAsmParser(const Target &T, MCAsmParser &Parser, TargetMachine &TM) 92 : X86ATTAsmParser(T, Parser, TM) { 93 Is64Bit = true; 94 } 95}; 96 97} // end anonymous namespace 98 99/// @name Auto-generated Match Functions 100/// { 101 102static unsigned MatchRegisterName(StringRef Name); 103 104/// } 105 106namespace { 107 108/// X86Operand - Instances of this class represent a parsed X86 machine 109/// instruction. 110struct X86Operand : public MCParsedAsmOperand { 111 enum KindTy { 112 Token, 113 Register, 114 Immediate, 115 Memory 116 } Kind; 117 118 SMLoc StartLoc, EndLoc; 119 120 union { 121 struct { 122 const char *Data; 123 unsigned Length; 124 } Tok; 125 126 struct { 127 unsigned RegNo; 128 } Reg; 129 130 struct { 131 const MCExpr *Val; 132 } Imm; 133 134 struct { 135 unsigned SegReg; 136 const MCExpr *Disp; 137 unsigned BaseReg; 138 unsigned IndexReg; 139 unsigned Scale; 140 } Mem; 141 }; 142 143 X86Operand(KindTy K, SMLoc Start, SMLoc End) 144 : Kind(K), StartLoc(Start), EndLoc(End) {} 145 146 /// getStartLoc - Get the location of the first token of this operand. 147 SMLoc getStartLoc() const { return StartLoc; } 148 /// getEndLoc - Get the location of the last token of this operand. 149 SMLoc getEndLoc() const { return EndLoc; } 150 151 virtual void dump(raw_ostream &OS) const {} 152 153 StringRef getToken() const { 154 assert(Kind == Token && "Invalid access!"); 155 return StringRef(Tok.Data, Tok.Length); 156 } 157 void setTokenValue(StringRef Value) { 158 assert(Kind == Token && "Invalid access!"); 159 Tok.Data = Value.data(); 160 Tok.Length = Value.size(); 161 } 162 163 unsigned getReg() const { 164 assert(Kind == Register && "Invalid access!"); 165 return Reg.RegNo; 166 } 167 168 const MCExpr *getImm() const { 169 assert(Kind == Immediate && "Invalid access!"); 170 return Imm.Val; 171 } 172 173 const MCExpr *getMemDisp() const { 174 assert(Kind == Memory && "Invalid access!"); 175 return Mem.Disp; 176 } 177 unsigned getMemSegReg() const { 178 assert(Kind == Memory && "Invalid access!"); 179 return Mem.SegReg; 180 } 181 unsigned getMemBaseReg() const { 182 assert(Kind == Memory && "Invalid access!"); 183 return Mem.BaseReg; 184 } 185 unsigned getMemIndexReg() const { 186 assert(Kind == Memory && "Invalid access!"); 187 return Mem.IndexReg; 188 } 189 unsigned getMemScale() const { 190 assert(Kind == Memory && "Invalid access!"); 191 return Mem.Scale; 192 } 193 194 bool isToken() const {return Kind == Token; } 195 196 bool isImm() const { return Kind == Immediate; } 197 198 bool isImmSExti16i8() const { 199 if (!isImm()) 200 return false; 201 202 // If this isn't a constant expr, just assume it fits and let relaxation 203 // handle it. 204 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 205 if (!CE) 206 return true; 207 208 // Otherwise, check the value is in a range that makes sense for this 209 // extension. 210 uint64_t Value = CE->getValue(); 211 return (( Value <= 0x000000000000007FULL)|| 212 (0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)|| 213 (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); 214 } 215 bool isImmSExti32i8() const { 216 if (!isImm()) 217 return false; 218 219 // If this isn't a constant expr, just assume it fits and let relaxation 220 // handle it. 221 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 222 if (!CE) 223 return true; 224 225 // Otherwise, check the value is in a range that makes sense for this 226 // extension. 227 uint64_t Value = CE->getValue(); 228 return (( Value <= 0x000000000000007FULL)|| 229 (0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)|| 230 (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); 231 } 232 bool isImmSExti64i8() const { 233 if (!isImm()) 234 return false; 235 236 // If this isn't a constant expr, just assume it fits and let relaxation 237 // handle it. 238 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 239 if (!CE) 240 return true; 241 242 // Otherwise, check the value is in a range that makes sense for this 243 // extension. 244 uint64_t Value = CE->getValue(); 245 return (( Value <= 0x000000000000007FULL)|| 246 (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); 247 } 248 bool isImmSExti64i32() const { 249 if (!isImm()) 250 return false; 251 252 // If this isn't a constant expr, just assume it fits and let relaxation 253 // handle it. 254 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 255 if (!CE) 256 return true; 257 258 // Otherwise, check the value is in a range that makes sense for this 259 // extension. 260 uint64_t Value = CE->getValue(); 261 return (( Value <= 0x000000007FFFFFFFULL)|| 262 (0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); 263 } 264 265 bool isMem() const { return Kind == Memory; } 266 267 bool isAbsMem() const { 268 return Kind == Memory && !getMemSegReg() && !getMemBaseReg() && 269 !getMemIndexReg() && getMemScale() == 1; 270 } 271 272 bool isReg() const { return Kind == Register; } 273 274 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 275 // Add as immediates when possible. 276 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 277 Inst.addOperand(MCOperand::CreateImm(CE->getValue())); 278 else 279 Inst.addOperand(MCOperand::CreateExpr(Expr)); 280 } 281 282 void addRegOperands(MCInst &Inst, unsigned N) const { 283 assert(N == 1 && "Invalid number of operands!"); 284 Inst.addOperand(MCOperand::CreateReg(getReg())); 285 } 286 287 void addImmOperands(MCInst &Inst, unsigned N) const { 288 assert(N == 1 && "Invalid number of operands!"); 289 addExpr(Inst, getImm()); 290 } 291 292 void addMemOperands(MCInst &Inst, unsigned N) const { 293 assert((N == 5) && "Invalid number of operands!"); 294 Inst.addOperand(MCOperand::CreateReg(getMemBaseReg())); 295 Inst.addOperand(MCOperand::CreateImm(getMemScale())); 296 Inst.addOperand(MCOperand::CreateReg(getMemIndexReg())); 297 addExpr(Inst, getMemDisp()); 298 Inst.addOperand(MCOperand::CreateReg(getMemSegReg())); 299 } 300 301 void addAbsMemOperands(MCInst &Inst, unsigned N) const { 302 assert((N == 1) && "Invalid number of operands!"); 303 Inst.addOperand(MCOperand::CreateExpr(getMemDisp())); 304 } 305 306 static X86Operand *CreateToken(StringRef Str, SMLoc Loc) { 307 X86Operand *Res = new X86Operand(Token, Loc, Loc); 308 Res->Tok.Data = Str.data(); 309 Res->Tok.Length = Str.size(); 310 return Res; 311 } 312 313 static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc) { 314 X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc); 315 Res->Reg.RegNo = RegNo; 316 return Res; 317 } 318 319 static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc){ 320 X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc); 321 Res->Imm.Val = Val; 322 return Res; 323 } 324 325 /// Create an absolute memory operand. 326 static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc, 327 SMLoc EndLoc) { 328 X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc); 329 Res->Mem.SegReg = 0; 330 Res->Mem.Disp = Disp; 331 Res->Mem.BaseReg = 0; 332 Res->Mem.IndexReg = 0; 333 Res->Mem.Scale = 1; 334 return Res; 335 } 336 337 /// Create a generalized memory operand. 338 static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp, 339 unsigned BaseReg, unsigned IndexReg, 340 unsigned Scale, SMLoc StartLoc, SMLoc EndLoc) { 341 // We should never just have a displacement, that should be parsed as an 342 // absolute memory operand. 343 assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!"); 344 345 // The scale should always be one of {1,2,4,8}. 346 assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) && 347 "Invalid scale!"); 348 X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc); 349 Res->Mem.SegReg = SegReg; 350 Res->Mem.Disp = Disp; 351 Res->Mem.BaseReg = BaseReg; 352 Res->Mem.IndexReg = IndexReg; 353 Res->Mem.Scale = Scale; 354 return Res; 355 } 356}; 357 358} // end anonymous namespace. 359 360 361bool X86ATTAsmParser::ParseRegister(unsigned &RegNo, 362 SMLoc &StartLoc, SMLoc &EndLoc) { 363 RegNo = 0; 364 const AsmToken &TokPercent = Parser.getTok(); 365 assert(TokPercent.is(AsmToken::Percent) && "Invalid token kind!"); 366 StartLoc = TokPercent.getLoc(); 367 Parser.Lex(); // Eat percent token. 368 369 const AsmToken &Tok = Parser.getTok(); 370 if (Tok.isNot(AsmToken::Identifier)) 371 return Error(Tok.getLoc(), "invalid register name"); 372 373 // FIXME: Validate register for the current architecture; we have to do 374 // validation later, so maybe there is no need for this here. 375 RegNo = MatchRegisterName(Tok.getString()); 376 377 // If the match failed, try the register name as lowercase. 378 if (RegNo == 0) 379 RegNo = MatchRegisterName(LowercaseString(Tok.getString())); 380 381 // FIXME: This should be done using Requires<In32BitMode> and 382 // Requires<In64BitMode> so "eiz" usage in 64-bit instructions 383 // can be also checked. 384 if (RegNo == X86::RIZ && !Is64Bit) 385 return Error(Tok.getLoc(), "riz register in 64-bit mode only"); 386 387 // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens. 388 if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) { 389 RegNo = X86::ST0; 390 EndLoc = Tok.getLoc(); 391 Parser.Lex(); // Eat 'st' 392 393 // Check to see if we have '(4)' after %st. 394 if (getLexer().isNot(AsmToken::LParen)) 395 return false; 396 // Lex the paren. 397 getParser().Lex(); 398 399 const AsmToken &IntTok = Parser.getTok(); 400 if (IntTok.isNot(AsmToken::Integer)) 401 return Error(IntTok.getLoc(), "expected stack index"); 402 switch (IntTok.getIntVal()) { 403 case 0: RegNo = X86::ST0; break; 404 case 1: RegNo = X86::ST1; break; 405 case 2: RegNo = X86::ST2; break; 406 case 3: RegNo = X86::ST3; break; 407 case 4: RegNo = X86::ST4; break; 408 case 5: RegNo = X86::ST5; break; 409 case 6: RegNo = X86::ST6; break; 410 case 7: RegNo = X86::ST7; break; 411 default: return Error(IntTok.getLoc(), "invalid stack index"); 412 } 413 414 if (getParser().Lex().isNot(AsmToken::RParen)) 415 return Error(Parser.getTok().getLoc(), "expected ')'"); 416 417 EndLoc = Tok.getLoc(); 418 Parser.Lex(); // Eat ')' 419 return false; 420 } 421 422 // If this is "db[0-7]", match it as an alias 423 // for dr[0-7]. 424 if (RegNo == 0 && Tok.getString().size() == 3 && 425 Tok.getString().startswith("db")) { 426 switch (Tok.getString()[2]) { 427 case '0': RegNo = X86::DR0; break; 428 case '1': RegNo = X86::DR1; break; 429 case '2': RegNo = X86::DR2; break; 430 case '3': RegNo = X86::DR3; break; 431 case '4': RegNo = X86::DR4; break; 432 case '5': RegNo = X86::DR5; break; 433 case '6': RegNo = X86::DR6; break; 434 case '7': RegNo = X86::DR7; break; 435 } 436 437 if (RegNo != 0) { 438 EndLoc = Tok.getLoc(); 439 Parser.Lex(); // Eat it. 440 return false; 441 } 442 } 443 444 if (RegNo == 0) 445 return Error(Tok.getLoc(), "invalid register name"); 446 447 EndLoc = Tok.getLoc(); 448 Parser.Lex(); // Eat identifier token. 449 return false; 450} 451 452X86Operand *X86ATTAsmParser::ParseOperand() { 453 switch (getLexer().getKind()) { 454 default: 455 // Parse a memory operand with no segment register. 456 return ParseMemOperand(0, Parser.getTok().getLoc()); 457 case AsmToken::Percent: { 458 // Read the register. 459 unsigned RegNo; 460 SMLoc Start, End; 461 if (ParseRegister(RegNo, Start, End)) return 0; 462 if (RegNo == X86::EIZ || RegNo == X86::RIZ) { 463 Error(Start, "eiz and riz can only be used as index registers"); 464 return 0; 465 } 466 467 // If this is a segment register followed by a ':', then this is the start 468 // of a memory reference, otherwise this is a normal register reference. 469 if (getLexer().isNot(AsmToken::Colon)) 470 return X86Operand::CreateReg(RegNo, Start, End); 471 472 473 getParser().Lex(); // Eat the colon. 474 return ParseMemOperand(RegNo, Start); 475 } 476 case AsmToken::Dollar: { 477 // $42 -> immediate. 478 SMLoc Start = Parser.getTok().getLoc(), End; 479 Parser.Lex(); 480 const MCExpr *Val; 481 if (getParser().ParseExpression(Val, End)) 482 return 0; 483 return X86Operand::CreateImm(Val, Start, End); 484 } 485 } 486} 487 488/// ParseMemOperand: segment: disp(basereg, indexreg, scale). The '%ds:' prefix 489/// has already been parsed if present. 490X86Operand *X86ATTAsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) { 491 492 // We have to disambiguate a parenthesized expression "(4+5)" from the start 493 // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The 494 // only way to do this without lookahead is to eat the '(' and see what is 495 // after it. 496 const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext()); 497 if (getLexer().isNot(AsmToken::LParen)) { 498 SMLoc ExprEnd; 499 if (getParser().ParseExpression(Disp, ExprEnd)) return 0; 500 501 // After parsing the base expression we could either have a parenthesized 502 // memory address or not. If not, return now. If so, eat the (. 503 if (getLexer().isNot(AsmToken::LParen)) { 504 // Unless we have a segment register, treat this as an immediate. 505 if (SegReg == 0) 506 return X86Operand::CreateMem(Disp, MemStart, ExprEnd); 507 return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd); 508 } 509 510 // Eat the '('. 511 Parser.Lex(); 512 } else { 513 // Okay, we have a '('. We don't know if this is an expression or not, but 514 // so we have to eat the ( to see beyond it. 515 SMLoc LParenLoc = Parser.getTok().getLoc(); 516 Parser.Lex(); // Eat the '('. 517 518 if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) { 519 // Nothing to do here, fall into the code below with the '(' part of the 520 // memory operand consumed. 521 } else { 522 SMLoc ExprEnd; 523 524 // It must be an parenthesized expression, parse it now. 525 if (getParser().ParseParenExpression(Disp, ExprEnd)) 526 return 0; 527 528 // After parsing the base expression we could either have a parenthesized 529 // memory address or not. If not, return now. If so, eat the (. 530 if (getLexer().isNot(AsmToken::LParen)) { 531 // Unless we have a segment register, treat this as an immediate. 532 if (SegReg == 0) 533 return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd); 534 return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd); 535 } 536 537 // Eat the '('. 538 Parser.Lex(); 539 } 540 } 541 542 // If we reached here, then we just ate the ( of the memory operand. Process 543 // the rest of the memory operand. 544 unsigned BaseReg = 0, IndexReg = 0, Scale = 1; 545 546 if (getLexer().is(AsmToken::Percent)) { 547 SMLoc L; 548 if (ParseRegister(BaseReg, L, L)) return 0; 549 if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) { 550 Error(L, "eiz and riz can only be used as index registers"); 551 return 0; 552 } 553 } 554 555 if (getLexer().is(AsmToken::Comma)) { 556 Parser.Lex(); // Eat the comma. 557 558 // Following the comma we should have either an index register, or a scale 559 // value. We don't support the later form, but we want to parse it 560 // correctly. 561 // 562 // Not that even though it would be completely consistent to support syntax 563 // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this. 564 if (getLexer().is(AsmToken::Percent)) { 565 SMLoc L; 566 if (ParseRegister(IndexReg, L, L)) return 0; 567 568 if (getLexer().isNot(AsmToken::RParen)) { 569 // Parse the scale amount: 570 // ::= ',' [scale-expression] 571 if (getLexer().isNot(AsmToken::Comma)) { 572 Error(Parser.getTok().getLoc(), 573 "expected comma in scale expression"); 574 return 0; 575 } 576 Parser.Lex(); // Eat the comma. 577 578 if (getLexer().isNot(AsmToken::RParen)) { 579 SMLoc Loc = Parser.getTok().getLoc(); 580 581 int64_t ScaleVal; 582 if (getParser().ParseAbsoluteExpression(ScaleVal)) 583 return 0; 584 585 // Validate the scale amount. 586 if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){ 587 Error(Loc, "scale factor in address must be 1, 2, 4 or 8"); 588 return 0; 589 } 590 Scale = (unsigned)ScaleVal; 591 } 592 } 593 } else if (getLexer().isNot(AsmToken::RParen)) { 594 // A scale amount without an index is ignored. 595 // index. 596 SMLoc Loc = Parser.getTok().getLoc(); 597 598 int64_t Value; 599 if (getParser().ParseAbsoluteExpression(Value)) 600 return 0; 601 602 if (Value != 1) 603 Warning(Loc, "scale factor without index register is ignored"); 604 Scale = 1; 605 } 606 } 607 608 // Ok, we've eaten the memory operand, verify we have a ')' and eat it too. 609 if (getLexer().isNot(AsmToken::RParen)) { 610 Error(Parser.getTok().getLoc(), "unexpected token in memory operand"); 611 return 0; 612 } 613 SMLoc MemEnd = Parser.getTok().getLoc(); 614 Parser.Lex(); // Eat the ')'. 615 616 return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, 617 MemStart, MemEnd); 618} 619 620bool X86ATTAsmParser:: 621ParseInstruction(StringRef Name, SMLoc NameLoc, 622 SmallVectorImpl<MCParsedAsmOperand*> &Operands) { 623 StringRef PatchedName = Name; 624 625 // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}. 626 const MCExpr *ExtraImmOp = 0; 627 if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) && 628 (PatchedName.endswith("ss") || PatchedName.endswith("sd") || 629 PatchedName.endswith("ps") || PatchedName.endswith("pd"))) { 630 bool IsVCMP = PatchedName.startswith("vcmp"); 631 unsigned SSECCIdx = IsVCMP ? 4 : 3; 632 unsigned SSEComparisonCode = StringSwitch<unsigned>( 633 PatchedName.slice(SSECCIdx, PatchedName.size() - 2)) 634 .Case("eq", 0) 635 .Case("lt", 1) 636 .Case("le", 2) 637 .Case("unord", 3) 638 .Case("neq", 4) 639 .Case("nlt", 5) 640 .Case("nle", 6) 641 .Case("ord", 7) 642 .Case("eq_uq", 8) 643 .Case("nge", 9) 644 .Case("ngt", 0x0A) 645 .Case("false", 0x0B) 646 .Case("neq_oq", 0x0C) 647 .Case("ge", 0x0D) 648 .Case("gt", 0x0E) 649 .Case("true", 0x0F) 650 .Case("eq_os", 0x10) 651 .Case("lt_oq", 0x11) 652 .Case("le_oq", 0x12) 653 .Case("unord_s", 0x13) 654 .Case("neq_us", 0x14) 655 .Case("nlt_uq", 0x15) 656 .Case("nle_uq", 0x16) 657 .Case("ord_s", 0x17) 658 .Case("eq_us", 0x18) 659 .Case("nge_uq", 0x19) 660 .Case("ngt_uq", 0x1A) 661 .Case("false_os", 0x1B) 662 .Case("neq_os", 0x1C) 663 .Case("ge_oq", 0x1D) 664 .Case("gt_oq", 0x1E) 665 .Case("true_us", 0x1F) 666 .Default(~0U); 667 if (SSEComparisonCode != ~0U) { 668 ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode, 669 getParser().getContext()); 670 if (PatchedName.endswith("ss")) { 671 PatchedName = IsVCMP ? "vcmpss" : "cmpss"; 672 } else if (PatchedName.endswith("sd")) { 673 PatchedName = IsVCMP ? "vcmpsd" : "cmpsd"; 674 } else if (PatchedName.endswith("ps")) { 675 PatchedName = IsVCMP ? "vcmpps" : "cmpps"; 676 } else { 677 assert(PatchedName.endswith("pd") && "Unexpected mnemonic!"); 678 PatchedName = IsVCMP ? "vcmppd" : "cmppd"; 679 } 680 } 681 } 682 683 // FIXME: Hack to recognize vpclmul<src1_quadword, src2_quadword>dq 684 if (PatchedName.startswith("vpclmul")) { 685 unsigned CLMULQuadWordSelect = StringSwitch<unsigned>( 686 PatchedName.slice(7, PatchedName.size() - 2)) 687 .Case("lqlq", 0x00) // src1[63:0], src2[63:0] 688 .Case("hqlq", 0x01) // src1[127:64], src2[63:0] 689 .Case("lqhq", 0x10) // src1[63:0], src2[127:64] 690 .Case("hqhq", 0x11) // src1[127:64], src2[127:64] 691 .Default(~0U); 692 if (CLMULQuadWordSelect != ~0U) { 693 ExtraImmOp = MCConstantExpr::Create(CLMULQuadWordSelect, 694 getParser().getContext()); 695 assert(PatchedName.endswith("dq") && "Unexpected mnemonic!"); 696 PatchedName = "vpclmulqdq"; 697 } 698 } 699 700 Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc)); 701 702 if (ExtraImmOp) 703 Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc)); 704 705 706 // Determine whether this is an instruction prefix. 707 bool isPrefix = 708 Name == "lock" || Name == "rep" || 709 Name == "repe" || Name == "repz" || 710 Name == "repne" || Name == "repnz" || 711 Name == "rex64"; 712 713 714 // This does the actual operand parsing. Don't parse any more if we have a 715 // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we 716 // just want to parse the "lock" as the first instruction and the "incl" as 717 // the next one. 718 if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) { 719 720 // Parse '*' modifier. 721 if (getLexer().is(AsmToken::Star)) { 722 SMLoc Loc = Parser.getTok().getLoc(); 723 Operands.push_back(X86Operand::CreateToken("*", Loc)); 724 Parser.Lex(); // Eat the star. 725 } 726 727 // Read the first operand. 728 if (X86Operand *Op = ParseOperand()) 729 Operands.push_back(Op); 730 else { 731 Parser.EatToEndOfStatement(); 732 return true; 733 } 734 735 while (getLexer().is(AsmToken::Comma)) { 736 Parser.Lex(); // Eat the comma. 737 738 // Parse and remember the operand. 739 if (X86Operand *Op = ParseOperand()) 740 Operands.push_back(Op); 741 else { 742 Parser.EatToEndOfStatement(); 743 return true; 744 } 745 } 746 747 if (getLexer().isNot(AsmToken::EndOfStatement)) { 748 SMLoc Loc = getLexer().getLoc(); 749 Parser.EatToEndOfStatement(); 750 return Error(Loc, "unexpected token in argument list"); 751 } 752 } 753 754 if (getLexer().is(AsmToken::EndOfStatement)) 755 Parser.Lex(); // Consume the EndOfStatement 756 757 // This is a terrible hack to handle "out[bwl]? %al, (%dx)" -> 758 // "outb %al, %dx". Out doesn't take a memory form, but this is a widely 759 // documented form in various unofficial manuals, so a lot of code uses it. 760 if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") && 761 Operands.size() == 3) { 762 X86Operand &Op = *(X86Operand*)Operands.back(); 763 if (Op.isMem() && Op.Mem.SegReg == 0 && 764 isa<MCConstantExpr>(Op.Mem.Disp) && 765 cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 && 766 Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) { 767 SMLoc Loc = Op.getEndLoc(); 768 Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc); 769 delete &Op; 770 } 771 } 772 773 // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>. Canonicalize to 774 // "shift <op>". 775 if ((Name.startswith("shr") || Name.startswith("sar") || 776 Name.startswith("shl") || Name.startswith("sal") || 777 Name.startswith("rcl") || Name.startswith("rcr") || 778 Name.startswith("rol") || Name.startswith("ror")) && 779 Operands.size() == 3) { 780 X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]); 781 if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) && 782 cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) { 783 delete Operands[1]; 784 Operands.erase(Operands.begin() + 1); 785 } 786 } 787 788 return false; 789} 790 791bool X86ATTAsmParser:: 792MatchAndEmitInstruction(SMLoc IDLoc, 793 SmallVectorImpl<MCParsedAsmOperand*> &Operands, 794 MCStreamer &Out) { 795 assert(!Operands.empty() && "Unexpect empty operand list!"); 796 X86Operand *Op = static_cast<X86Operand*>(Operands[0]); 797 assert(Op->isToken() && "Leading operand should always be a mnemonic!"); 798 799 // First, handle aliases that expand to multiple instructions. 800 // FIXME: This should be replaced with a real .td file alias mechanism. 801 // Also, MatchInstructionImpl should do actually *do* the EmitInstruction 802 // call. 803 if (Op->getToken() == "fstsw" || Op->getToken() == "fstcw" || 804 Op->getToken() == "fstsww" || Op->getToken() == "fstcww" || 805 Op->getToken() == "finit" || Op->getToken() == "fsave" || 806 Op->getToken() == "fstenv" || Op->getToken() == "fclex") { 807 MCInst Inst; 808 Inst.setOpcode(X86::WAIT); 809 Out.EmitInstruction(Inst); 810 811 const char *Repl = 812 StringSwitch<const char*>(Op->getToken()) 813 .Case("finit", "fninit") 814 .Case("fsave", "fnsave") 815 .Case("fstcw", "fnstcw") 816 .Case("fstcww", "fnstcw") 817 .Case("fstenv", "fnstenv") 818 .Case("fstsw", "fnstsw") 819 .Case("fstsww", "fnstsw") 820 .Case("fclex", "fnclex") 821 .Default(0); 822 assert(Repl && "Unknown wait-prefixed instruction"); 823 delete Operands[0]; 824 Operands[0] = X86Operand::CreateToken(Repl, IDLoc); 825 } 826 827 bool WasOriginallyInvalidOperand = false; 828 unsigned OrigErrorInfo; 829 MCInst Inst; 830 831 // First, try a direct match. 832 switch (MatchInstructionImpl(Operands, Inst, OrigErrorInfo)) { 833 case Match_Success: 834 Out.EmitInstruction(Inst); 835 return false; 836 case Match_MissingFeature: 837 Error(IDLoc, "instruction requires a CPU feature not currently enabled"); 838 return true; 839 case Match_InvalidOperand: 840 WasOriginallyInvalidOperand = true; 841 break; 842 case Match_MnemonicFail: 843 break; 844 } 845 846 // FIXME: Ideally, we would only attempt suffix matches for things which are 847 // valid prefixes, and we could just infer the right unambiguous 848 // type. However, that requires substantially more matcher support than the 849 // following hack. 850 851 // Change the operand to point to a temporary token. 852 StringRef Base = Op->getToken(); 853 SmallString<16> Tmp; 854 Tmp += Base; 855 Tmp += ' '; 856 Op->setTokenValue(Tmp.str()); 857 858 // If this instruction starts with an 'f', then it is a floating point stack 859 // instruction. These come in up to three forms for 32-bit, 64-bit, and 860 // 80-bit floating point, which use the suffixes s,l,t respectively. 861 // 862 // Otherwise, we assume that this may be an integer instruction, which comes 863 // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively. 864 const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0"; 865 866 // Check for the various suffix matches. 867 Tmp[Base.size()] = Suffixes[0]; 868 unsigned ErrorInfoIgnore; 869 MatchResultTy Match1, Match2, Match3, Match4; 870 871 Match1 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore); 872 Tmp[Base.size()] = Suffixes[1]; 873 Match2 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore); 874 Tmp[Base.size()] = Suffixes[2]; 875 Match3 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore); 876 Tmp[Base.size()] = Suffixes[3]; 877 Match4 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore); 878 879 // Restore the old token. 880 Op->setTokenValue(Base); 881 882 // If exactly one matched, then we treat that as a successful match (and the 883 // instruction will already have been filled in correctly, since the failing 884 // matches won't have modified it). 885 unsigned NumSuccessfulMatches = 886 (Match1 == Match_Success) + (Match2 == Match_Success) + 887 (Match3 == Match_Success) + (Match4 == Match_Success); 888 if (NumSuccessfulMatches == 1) { 889 Out.EmitInstruction(Inst); 890 return false; 891 } 892 893 // Otherwise, the match failed, try to produce a decent error message. 894 895 // If we had multiple suffix matches, then identify this as an ambiguous 896 // match. 897 if (NumSuccessfulMatches > 1) { 898 char MatchChars[4]; 899 unsigned NumMatches = 0; 900 if (Match1 == Match_Success) MatchChars[NumMatches++] = Suffixes[0]; 901 if (Match2 == Match_Success) MatchChars[NumMatches++] = Suffixes[1]; 902 if (Match3 == Match_Success) MatchChars[NumMatches++] = Suffixes[2]; 903 if (Match4 == Match_Success) MatchChars[NumMatches++] = Suffixes[3]; 904 905 SmallString<126> Msg; 906 raw_svector_ostream OS(Msg); 907 OS << "ambiguous instructions require an explicit suffix (could be "; 908 for (unsigned i = 0; i != NumMatches; ++i) { 909 if (i != 0) 910 OS << ", "; 911 if (i + 1 == NumMatches) 912 OS << "or "; 913 OS << "'" << Base << MatchChars[i] << "'"; 914 } 915 OS << ")"; 916 Error(IDLoc, OS.str()); 917 return true; 918 } 919 920 // Okay, we know that none of the variants matched successfully. 921 922 // If all of the instructions reported an invalid mnemonic, then the original 923 // mnemonic was invalid. 924 if ((Match1 == Match_MnemonicFail) && (Match2 == Match_MnemonicFail) && 925 (Match3 == Match_MnemonicFail) && (Match4 == Match_MnemonicFail)) { 926 if (!WasOriginallyInvalidOperand) { 927 Error(IDLoc, "invalid instruction mnemonic '" + Base + "'"); 928 return true; 929 } 930 931 // Recover location info for the operand if we know which was the problem. 932 SMLoc ErrorLoc = IDLoc; 933 if (OrigErrorInfo != ~0U) { 934 if (OrigErrorInfo >= Operands.size()) 935 return Error(IDLoc, "too few operands for instruction"); 936 937 ErrorLoc = ((X86Operand*)Operands[OrigErrorInfo])->getStartLoc(); 938 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 939 } 940 941 return Error(ErrorLoc, "invalid operand for instruction"); 942 } 943 944 // If one instruction matched with a missing feature, report this as a 945 // missing feature. 946 if ((Match1 == Match_MissingFeature) + (Match2 == Match_MissingFeature) + 947 (Match3 == Match_MissingFeature) + (Match4 == Match_MissingFeature) == 1){ 948 Error(IDLoc, "instruction requires a CPU feature not currently enabled"); 949 return true; 950 } 951 952 // If one instruction matched with an invalid operand, report this as an 953 // operand failure. 954 if ((Match1 == Match_InvalidOperand) + (Match2 == Match_InvalidOperand) + 955 (Match3 == Match_InvalidOperand) + (Match4 == Match_InvalidOperand) == 1){ 956 Error(IDLoc, "invalid operand for instruction"); 957 return true; 958 } 959 960 // If all of these were an outright failure, report it in a useless way. 961 // FIXME: We should give nicer diagnostics about the exact failure. 962 Error(IDLoc, "unknown use of instruction mnemonic without a size suffix"); 963 return true; 964} 965 966 967bool X86ATTAsmParser::ParseDirective(AsmToken DirectiveID) { 968 StringRef IDVal = DirectiveID.getIdentifier(); 969 if (IDVal == ".word") 970 return ParseDirectiveWord(2, DirectiveID.getLoc()); 971 return true; 972} 973 974/// ParseDirectiveWord 975/// ::= .word [ expression (, expression)* ] 976bool X86ATTAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) { 977 if (getLexer().isNot(AsmToken::EndOfStatement)) { 978 for (;;) { 979 const MCExpr *Value; 980 if (getParser().ParseExpression(Value)) 981 return true; 982 983 getParser().getStreamer().EmitValue(Value, Size, 0 /*addrspace*/); 984 985 if (getLexer().is(AsmToken::EndOfStatement)) 986 break; 987 988 // FIXME: Improve diagnostic. 989 if (getLexer().isNot(AsmToken::Comma)) 990 return Error(L, "unexpected token in directive"); 991 Parser.Lex(); 992 } 993 } 994 995 Parser.Lex(); 996 return false; 997} 998 999 1000 1001 1002extern "C" void LLVMInitializeX86AsmLexer(); 1003 1004// Force static initialization. 1005extern "C" void LLVMInitializeX86AsmParser() { 1006 RegisterAsmParser<X86_32ATTAsmParser> X(TheX86_32Target); 1007 RegisterAsmParser<X86_64ATTAsmParser> Y(TheX86_64Target); 1008 LLVMInitializeX86AsmLexer(); 1009} 1010 1011#define GET_REGISTER_MATCHER 1012#define GET_MATCHER_IMPLEMENTATION 1013#include "X86GenAsmMatcher.inc" 1014