X86FastISel.cpp revision 1ba318982e4dcca66b6cf7ce624af2ba8a55d9d8
1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86RegisterInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/CallingConv.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Instructions.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/CodeGen/Analysis.h"
27#include "llvm/CodeGen/FastISel.h"
28#include "llvm/CodeGen/FunctionLoweringInfo.h"
29#include "llvm/CodeGen/MachineConstantPool.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/Support/CallSite.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/GetElementPtrTypeIterator.h"
35#include "llvm/Target/TargetOptions.h"
36using namespace llvm;
37
38namespace {
39
40class X86FastISel : public FastISel {
41  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
42  /// make the right decision when generating code for different targets.
43  const X86Subtarget *Subtarget;
44
45  /// StackPtr - Register used as the stack pointer.
46  ///
47  unsigned StackPtr;
48
49  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
50  /// floating point ops.
51  /// When SSE is available, use it for f32 operations.
52  /// When SSE2 is available, use it for f64 operations.
53  bool X86ScalarSSEf64;
54  bool X86ScalarSSEf32;
55
56public:
57  explicit X86FastISel(FunctionLoweringInfo &funcInfo) : FastISel(funcInfo) {
58    Subtarget = &TM.getSubtarget<X86Subtarget>();
59    StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
60    X86ScalarSSEf64 = Subtarget->hasSSE2();
61    X86ScalarSSEf32 = Subtarget->hasSSE1();
62  }
63
64  virtual bool TargetSelectInstruction(const Instruction *I);
65
66#include "X86GenFastISel.inc"
67
68private:
69  bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT);
70
71  bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
72
73  bool X86FastEmitStore(EVT VT, const Value *Val,
74                        const X86AddressMode &AM);
75  bool X86FastEmitStore(EVT VT, unsigned Val,
76                        const X86AddressMode &AM);
77
78  bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
79                         unsigned &ResultReg);
80
81  bool X86SelectAddress(const Value *V, X86AddressMode &AM);
82  bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
83
84  bool X86SelectLoad(const Instruction *I);
85
86  bool X86SelectStore(const Instruction *I);
87
88  bool X86SelectRet(const Instruction *I);
89
90  bool X86SelectCmp(const Instruction *I);
91
92  bool X86SelectZExt(const Instruction *I);
93
94  bool X86SelectBranch(const Instruction *I);
95
96  bool X86SelectShift(const Instruction *I);
97
98  bool X86SelectSelect(const Instruction *I);
99
100  bool X86SelectTrunc(const Instruction *I);
101
102  bool X86SelectFPExt(const Instruction *I);
103  bool X86SelectFPTrunc(const Instruction *I);
104
105  bool X86SelectExtractValue(const Instruction *I);
106
107  bool X86VisitIntrinsicCall(const IntrinsicInst &I);
108  bool X86SelectCall(const Instruction *I);
109
110  CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool isTailCall = false);
111  CCAssignFn *CCAssignFnForRet(CallingConv::ID CC, bool isTailCall = false);
112
113  const X86InstrInfo *getInstrInfo() const {
114    return getTargetMachine()->getInstrInfo();
115  }
116  const X86TargetMachine *getTargetMachine() const {
117    return static_cast<const X86TargetMachine *>(&TM);
118  }
119
120  unsigned TargetMaterializeConstant(const Constant *C);
121
122  unsigned TargetMaterializeAlloca(const AllocaInst *C);
123
124  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
125  /// computed in an SSE register, not on the X87 floating point stack.
126  bool isScalarFPTypeInSSEReg(EVT VT) const {
127    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
128      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
129  }
130
131  bool isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1 = false);
132};
133
134} // end anonymous namespace.
135
136bool X86FastISel::isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1) {
137  VT = TLI.getValueType(Ty, /*HandleUnknown=*/true);
138  if (VT == MVT::Other || !VT.isSimple())
139    // Unhandled type. Halt "fast" selection and bail.
140    return false;
141
142  // For now, require SSE/SSE2 for performing floating-point operations,
143  // since x87 requires additional work.
144  if (VT == MVT::f64 && !X86ScalarSSEf64)
145     return false;
146  if (VT == MVT::f32 && !X86ScalarSSEf32)
147     return false;
148  // Similarly, no f80 support yet.
149  if (VT == MVT::f80)
150    return false;
151  // We only handle legal types. For example, on x86-32 the instruction
152  // selector contains all of the 64-bit instructions from x86-64,
153  // under the assumption that i64 won't be used if the target doesn't
154  // support it.
155  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
156}
157
158#include "X86GenCallingConv.inc"
159
160/// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
161/// convention.
162CCAssignFn *X86FastISel::CCAssignFnForCall(CallingConv::ID CC,
163                                           bool isTaillCall) {
164  if (Subtarget->is64Bit()) {
165    if (CC == CallingConv::GHC)
166      return CC_X86_64_GHC;
167    else if (Subtarget->isTargetWin64())
168      return CC_X86_Win64_C;
169    else
170      return CC_X86_64_C;
171  }
172
173  if (CC == CallingConv::X86_FastCall)
174    return CC_X86_32_FastCall;
175  else if (CC == CallingConv::X86_ThisCall)
176    return CC_X86_32_ThisCall;
177  else if (CC == CallingConv::Fast)
178    return CC_X86_32_FastCC;
179  else if (CC == CallingConv::GHC)
180    return CC_X86_32_GHC;
181  else
182    return CC_X86_32_C;
183}
184
185/// CCAssignFnForRet - Selects the correct CCAssignFn for a given calling
186/// convention.
187CCAssignFn *X86FastISel::CCAssignFnForRet(CallingConv::ID CC,
188                                          bool isTaillCall) {
189  if (Subtarget->is64Bit()) {
190    if (Subtarget->isTargetWin64())
191      return RetCC_X86_Win64_C;
192    else
193      return RetCC_X86_64_C;
194  }
195
196  return RetCC_X86_32_C;
197}
198
199/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
200/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
201/// Return true and the result register by reference if it is possible.
202bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
203                                  unsigned &ResultReg) {
204  // Get opcode and regclass of the output for the given load instruction.
205  unsigned Opc = 0;
206  const TargetRegisterClass *RC = NULL;
207  switch (VT.getSimpleVT().SimpleTy) {
208  default: return false;
209  case MVT::i1:
210  case MVT::i8:
211    Opc = X86::MOV8rm;
212    RC  = X86::GR8RegisterClass;
213    break;
214  case MVT::i16:
215    Opc = X86::MOV16rm;
216    RC  = X86::GR16RegisterClass;
217    break;
218  case MVT::i32:
219    Opc = X86::MOV32rm;
220    RC  = X86::GR32RegisterClass;
221    break;
222  case MVT::i64:
223    // Must be in x86-64 mode.
224    Opc = X86::MOV64rm;
225    RC  = X86::GR64RegisterClass;
226    break;
227  case MVT::f32:
228    if (Subtarget->hasSSE1()) {
229      Opc = X86::MOVSSrm;
230      RC  = X86::FR32RegisterClass;
231    } else {
232      Opc = X86::LD_Fp32m;
233      RC  = X86::RFP32RegisterClass;
234    }
235    break;
236  case MVT::f64:
237    if (Subtarget->hasSSE2()) {
238      Opc = X86::MOVSDrm;
239      RC  = X86::FR64RegisterClass;
240    } else {
241      Opc = X86::LD_Fp64m;
242      RC  = X86::RFP64RegisterClass;
243    }
244    break;
245  case MVT::f80:
246    // No f80 support yet.
247    return false;
248  }
249
250  ResultReg = createResultReg(RC);
251  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
252                         DL, TII.get(Opc), ResultReg), AM);
253  return true;
254}
255
256/// X86FastEmitStore - Emit a machine instruction to store a value Val of
257/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
258/// and a displacement offset, or a GlobalAddress,
259/// i.e. V. Return true if it is possible.
260bool
261X86FastISel::X86FastEmitStore(EVT VT, unsigned Val,
262                              const X86AddressMode &AM) {
263  // Get opcode and regclass of the output for the given store instruction.
264  unsigned Opc = 0;
265  switch (VT.getSimpleVT().SimpleTy) {
266  case MVT::f80: // No f80 support yet.
267  default: return false;
268  case MVT::i1: {
269    // Mask out all but lowest bit.
270    unsigned AndResult = createResultReg(X86::GR8RegisterClass);
271    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
272            TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1);
273    Val = AndResult;
274  }
275  // FALLTHROUGH, handling i1 as i8.
276  case MVT::i8:  Opc = X86::MOV8mr;  break;
277  case MVT::i16: Opc = X86::MOV16mr; break;
278  case MVT::i32: Opc = X86::MOV32mr; break;
279  case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
280  case MVT::f32:
281    Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m;
282    break;
283  case MVT::f64:
284    Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m;
285    break;
286  }
287
288  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
289                         DL, TII.get(Opc)), AM).addReg(Val);
290  return true;
291}
292
293bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
294                                   const X86AddressMode &AM) {
295  // Handle 'null' like i32/i64 0.
296  if (isa<ConstantPointerNull>(Val))
297    Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext()));
298
299  // If this is a store of a simple constant, fold the constant into the store.
300  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
301    unsigned Opc = 0;
302    bool Signed = true;
303    switch (VT.getSimpleVT().SimpleTy) {
304    default: break;
305    case MVT::i1:  Signed = false;     // FALLTHROUGH to handle as i8.
306    case MVT::i8:  Opc = X86::MOV8mi;  break;
307    case MVT::i16: Opc = X86::MOV16mi; break;
308    case MVT::i32: Opc = X86::MOV32mi; break;
309    case MVT::i64:
310      // Must be a 32-bit sign extended value.
311      if ((int)CI->getSExtValue() == CI->getSExtValue())
312        Opc = X86::MOV64mi32;
313      break;
314    }
315
316    if (Opc) {
317      addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
318                             DL, TII.get(Opc)), AM)
319                             .addImm(Signed ? (uint64_t) CI->getSExtValue() :
320                                              CI->getZExtValue());
321      return true;
322    }
323  }
324
325  unsigned ValReg = getRegForValue(Val);
326  if (ValReg == 0)
327    return false;
328
329  return X86FastEmitStore(VT, ValReg, AM);
330}
331
332/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
333/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
334/// ISD::SIGN_EXTEND).
335bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
336                                    unsigned Src, EVT SrcVT,
337                                    unsigned &ResultReg) {
338  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
339                           Src, /*TODO: Kill=*/false);
340
341  if (RR != 0) {
342    ResultReg = RR;
343    return true;
344  } else
345    return false;
346}
347
348/// X86SelectAddress - Attempt to fill in an address from the given value.
349///
350bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
351  const User *U = NULL;
352  unsigned Opcode = Instruction::UserOp1;
353  if (const Instruction *I = dyn_cast<Instruction>(V)) {
354    // Don't walk into other basic blocks; it's possible we haven't
355    // visited them yet, so the instructions may not yet be assigned
356    // virtual registers.
357    if (FuncInfo.MBBMap[I->getParent()] != FuncInfo.MBB)
358      return false;
359
360    Opcode = I->getOpcode();
361    U = I;
362  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
363    Opcode = C->getOpcode();
364    U = C;
365  }
366
367  if (const PointerType *Ty = dyn_cast<PointerType>(V->getType()))
368    if (Ty->getAddressSpace() > 255)
369      // Fast instruction selection doesn't support the special
370      // address spaces.
371      return false;
372
373  switch (Opcode) {
374  default: break;
375  case Instruction::BitCast:
376    // Look past bitcasts.
377    return X86SelectAddress(U->getOperand(0), AM);
378
379  case Instruction::IntToPtr:
380    // Look past no-op inttoptrs.
381    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
382      return X86SelectAddress(U->getOperand(0), AM);
383    break;
384
385  case Instruction::PtrToInt:
386    // Look past no-op ptrtoints.
387    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
388      return X86SelectAddress(U->getOperand(0), AM);
389    break;
390
391  case Instruction::Alloca: {
392    // Do static allocas.
393    const AllocaInst *A = cast<AllocaInst>(V);
394    DenseMap<const AllocaInst*, int>::iterator SI =
395      FuncInfo.StaticAllocaMap.find(A);
396    if (SI != FuncInfo.StaticAllocaMap.end()) {
397      AM.BaseType = X86AddressMode::FrameIndexBase;
398      AM.Base.FrameIndex = SI->second;
399      return true;
400    }
401    break;
402  }
403
404  case Instruction::Add: {
405    // Adds of constants are common and easy enough.
406    if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
407      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
408      // They have to fit in the 32-bit signed displacement field though.
409      if (isInt<32>(Disp)) {
410        AM.Disp = (uint32_t)Disp;
411        return X86SelectAddress(U->getOperand(0), AM);
412      }
413    }
414    break;
415  }
416
417  case Instruction::GetElementPtr: {
418    X86AddressMode SavedAM = AM;
419
420    // Pattern-match simple GEPs.
421    uint64_t Disp = (int32_t)AM.Disp;
422    unsigned IndexReg = AM.IndexReg;
423    unsigned Scale = AM.Scale;
424    gep_type_iterator GTI = gep_type_begin(U);
425    // Iterate through the indices, folding what we can. Constants can be
426    // folded, and one dynamic index can be handled, if the scale is supported.
427    for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
428         i != e; ++i, ++GTI) {
429      const Value *Op = *i;
430      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
431        const StructLayout *SL = TD.getStructLayout(STy);
432        unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
433        Disp += SL->getElementOffset(Idx);
434      } else {
435        uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
436        SmallVector<const Value *, 4> Worklist;
437        Worklist.push_back(Op);
438        do {
439          Op = Worklist.pop_back_val();
440          if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
441            // Constant-offset addressing.
442            Disp += CI->getSExtValue() * S;
443          } else if (isa<AddOperator>(Op) &&
444                     isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
445            // An add with a constant operand. Fold the constant.
446            ConstantInt *CI =
447              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
448            Disp += CI->getSExtValue() * S;
449            // Add the other operand back to the work list.
450            Worklist.push_back(cast<AddOperator>(Op)->getOperand(0));
451          } else if (IndexReg == 0 &&
452                     (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
453                     (S == 1 || S == 2 || S == 4 || S == 8)) {
454            // Scaled-index addressing.
455            Scale = S;
456            IndexReg = getRegForGEPIndex(Op).first;
457            if (IndexReg == 0)
458              return false;
459          } else
460            // Unsupported.
461            goto unsupported_gep;
462        } while (!Worklist.empty());
463      }
464    }
465    // Check for displacement overflow.
466    if (!isInt<32>(Disp))
467      break;
468    // Ok, the GEP indices were covered by constant-offset and scaled-index
469    // addressing. Update the address state and move on to examining the base.
470    AM.IndexReg = IndexReg;
471    AM.Scale = Scale;
472    AM.Disp = (uint32_t)Disp;
473    if (X86SelectAddress(U->getOperand(0), AM))
474      return true;
475
476    // If we couldn't merge the sub value into this addr mode, revert back to
477    // our address and just match the value instead of completely failing.
478    AM = SavedAM;
479    break;
480  unsupported_gep:
481    // Ok, the GEP indices weren't all covered.
482    break;
483  }
484  }
485
486  // Handle constant address.
487  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
488    // Can't handle alternate code models yet.
489    if (TM.getCodeModel() != CodeModel::Small)
490      return false;
491
492    // RIP-relative addresses can't have additional register operands.
493    if (Subtarget->isPICStyleRIPRel() &&
494        (AM.Base.Reg != 0 || AM.IndexReg != 0))
495      return false;
496
497    // Can't handle TLS yet.
498    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
499      if (GVar->isThreadLocal())
500        return false;
501
502    // Okay, we've committed to selecting this global. Set up the basic address.
503    AM.GV = GV;
504
505    // Allow the subtarget to classify the global.
506    unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
507
508    // If this reference is relative to the pic base, set it now.
509    if (isGlobalRelativeToPICBase(GVFlags)) {
510      // FIXME: How do we know Base.Reg is free??
511      AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
512    }
513
514    // Unless the ABI requires an extra load, return a direct reference to
515    // the global.
516    if (!isGlobalStubReference(GVFlags)) {
517      if (Subtarget->isPICStyleRIPRel()) {
518        // Use rip-relative addressing if we can.  Above we verified that the
519        // base and index registers are unused.
520        assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
521        AM.Base.Reg = X86::RIP;
522      }
523      AM.GVOpFlags = GVFlags;
524      return true;
525    }
526
527    // Ok, we need to do a load from a stub.  If we've already loaded from this
528    // stub, reuse the loaded pointer, otherwise emit the load now.
529    DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
530    unsigned LoadReg;
531    if (I != LocalValueMap.end() && I->second != 0) {
532      LoadReg = I->second;
533    } else {
534      // Issue load from stub.
535      unsigned Opc = 0;
536      const TargetRegisterClass *RC = NULL;
537      X86AddressMode StubAM;
538      StubAM.Base.Reg = AM.Base.Reg;
539      StubAM.GV = GV;
540      StubAM.GVOpFlags = GVFlags;
541
542      // Prepare for inserting code in the local-value area.
543      MachineBasicBlock::iterator SaveInsertPt = enterLocalValueArea();
544
545      if (TLI.getPointerTy() == MVT::i64) {
546        Opc = X86::MOV64rm;
547        RC  = X86::GR64RegisterClass;
548
549        if (Subtarget->isPICStyleRIPRel())
550          StubAM.Base.Reg = X86::RIP;
551      } else {
552        Opc = X86::MOV32rm;
553        RC  = X86::GR32RegisterClass;
554      }
555
556      LoadReg = createResultReg(RC);
557      MachineInstrBuilder LoadMI =
558        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg);
559      addFullAddress(LoadMI, StubAM);
560
561      // Ok, back to normal mode.
562      leaveLocalValueArea(SaveInsertPt);
563
564      // Prevent loading GV stub multiple times in same MBB.
565      LocalValueMap[V] = LoadReg;
566    }
567
568    // Now construct the final address. Note that the Disp, Scale,
569    // and Index values may already be set here.
570    AM.Base.Reg = LoadReg;
571    AM.GV = 0;
572    return true;
573  }
574
575  // If all else fails, try to materialize the value in a register.
576  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
577    if (AM.Base.Reg == 0) {
578      AM.Base.Reg = getRegForValue(V);
579      return AM.Base.Reg != 0;
580    }
581    if (AM.IndexReg == 0) {
582      assert(AM.Scale == 1 && "Scale with no index!");
583      AM.IndexReg = getRegForValue(V);
584      return AM.IndexReg != 0;
585    }
586  }
587
588  return false;
589}
590
591/// X86SelectCallAddress - Attempt to fill in an address from the given value.
592///
593bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
594  const User *U = NULL;
595  unsigned Opcode = Instruction::UserOp1;
596  if (const Instruction *I = dyn_cast<Instruction>(V)) {
597    Opcode = I->getOpcode();
598    U = I;
599  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
600    Opcode = C->getOpcode();
601    U = C;
602  }
603
604  switch (Opcode) {
605  default: break;
606  case Instruction::BitCast:
607    // Look past bitcasts.
608    return X86SelectCallAddress(U->getOperand(0), AM);
609
610  case Instruction::IntToPtr:
611    // Look past no-op inttoptrs.
612    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
613      return X86SelectCallAddress(U->getOperand(0), AM);
614    break;
615
616  case Instruction::PtrToInt:
617    // Look past no-op ptrtoints.
618    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
619      return X86SelectCallAddress(U->getOperand(0), AM);
620    break;
621  }
622
623  // Handle constant address.
624  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
625    // Can't handle alternate code models yet.
626    if (TM.getCodeModel() != CodeModel::Small)
627      return false;
628
629    // RIP-relative addresses can't have additional register operands.
630    if (Subtarget->isPICStyleRIPRel() &&
631        (AM.Base.Reg != 0 || AM.IndexReg != 0))
632      return false;
633
634    // Can't handle TLS or DLLImport.
635    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
636      if (GVar->isThreadLocal() || GVar->hasDLLImportLinkage())
637        return false;
638
639    // Okay, we've committed to selecting this global. Set up the basic address.
640    AM.GV = GV;
641
642    // No ABI requires an extra load for anything other than DLLImport, which
643    // we rejected above. Return a direct reference to the global.
644    if (Subtarget->isPICStyleRIPRel()) {
645      // Use rip-relative addressing if we can.  Above we verified that the
646      // base and index registers are unused.
647      assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
648      AM.Base.Reg = X86::RIP;
649    } else if (Subtarget->isPICStyleStubPIC()) {
650      AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
651    } else if (Subtarget->isPICStyleGOT()) {
652      AM.GVOpFlags = X86II::MO_GOTOFF;
653    }
654
655    return true;
656  }
657
658  // If all else fails, try to materialize the value in a register.
659  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
660    if (AM.Base.Reg == 0) {
661      AM.Base.Reg = getRegForValue(V);
662      return AM.Base.Reg != 0;
663    }
664    if (AM.IndexReg == 0) {
665      assert(AM.Scale == 1 && "Scale with no index!");
666      AM.IndexReg = getRegForValue(V);
667      return AM.IndexReg != 0;
668    }
669  }
670
671  return false;
672}
673
674
675/// X86SelectStore - Select and emit code to implement store instructions.
676bool X86FastISel::X86SelectStore(const Instruction *I) {
677  EVT VT;
678  if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true))
679    return false;
680
681  X86AddressMode AM;
682  if (!X86SelectAddress(I->getOperand(1), AM))
683    return false;
684
685  return X86FastEmitStore(VT, I->getOperand(0), AM);
686}
687
688/// X86SelectRet - Select and emit code to implement ret instructions.
689bool X86FastISel::X86SelectRet(const Instruction *I) {
690  const ReturnInst *Ret = cast<ReturnInst>(I);
691  const Function &F = *I->getParent()->getParent();
692
693  if (!FuncInfo.CanLowerReturn)
694    return false;
695
696  CallingConv::ID CC = F.getCallingConv();
697  if (CC != CallingConv::C &&
698      CC != CallingConv::Fast &&
699      CC != CallingConv::X86_FastCall)
700    return false;
701
702  if (Subtarget->isTargetWin64())
703    return false;
704
705  // Don't handle popping bytes on return for now.
706  if (FuncInfo.MF->getInfo<X86MachineFunctionInfo>()
707        ->getBytesToPopOnReturn() != 0)
708    return 0;
709
710  // fastcc with -tailcallopt is intended to provide a guaranteed
711  // tail call optimization. Fastisel doesn't know how to do that.
712  if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
713    return false;
714
715  // Let SDISel handle vararg functions.
716  if (F.isVarArg())
717    return false;
718
719  if (Ret->getNumOperands() > 0) {
720    SmallVector<ISD::OutputArg, 4> Outs;
721    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
722                  Outs, TLI);
723
724    // Analyze operands of the call, assigning locations to each operand.
725    SmallVector<CCValAssign, 16> ValLocs;
726    CCState CCInfo(CC, F.isVarArg(), TM, ValLocs, I->getContext());
727    CCInfo.AnalyzeReturn(Outs, CCAssignFnForRet(CC));
728
729    const Value *RV = Ret->getOperand(0);
730    unsigned Reg = getRegForValue(RV);
731    if (Reg == 0)
732      return false;
733
734    // Only handle a single return value for now.
735    if (ValLocs.size() != 1)
736      return false;
737
738    CCValAssign &VA = ValLocs[0];
739
740    // Don't bother handling odd stuff for now.
741    if (VA.getLocInfo() != CCValAssign::Full)
742      return false;
743    // Only handle register returns for now.
744    if (!VA.isRegLoc())
745      return false;
746    // TODO: For now, don't try to handle cases where getLocInfo()
747    // says Full but the types don't match.
748    if (VA.getValVT() != TLI.getValueType(RV->getType()))
749      return false;
750
751    // The calling-convention tables for x87 returns don't tell
752    // the whole story.
753    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
754      return false;
755
756    // Make the copy.
757    unsigned SrcReg = Reg + VA.getValNo();
758    unsigned DstReg = VA.getLocReg();
759    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
760    // Avoid a cross-class copy. This is very unlikely.
761    if (!SrcRC->contains(DstReg))
762      return false;
763    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
764            DstReg).addReg(SrcReg);
765
766    // Mark the register as live out of the function.
767    MRI.addLiveOut(VA.getLocReg());
768  }
769
770  // Now emit the RET.
771  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::RET));
772  return true;
773}
774
775/// X86SelectLoad - Select and emit code to implement load instructions.
776///
777bool X86FastISel::X86SelectLoad(const Instruction *I)  {
778  EVT VT;
779  if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true))
780    return false;
781
782  X86AddressMode AM;
783  if (!X86SelectAddress(I->getOperand(0), AM))
784    return false;
785
786  unsigned ResultReg = 0;
787  if (X86FastEmitLoad(VT, AM, ResultReg)) {
788    UpdateValueMap(I, ResultReg);
789    return true;
790  }
791  return false;
792}
793
794static unsigned X86ChooseCmpOpcode(EVT VT) {
795  switch (VT.getSimpleVT().SimpleTy) {
796  default:       return 0;
797  case MVT::i8:  return X86::CMP8rr;
798  case MVT::i16: return X86::CMP16rr;
799  case MVT::i32: return X86::CMP32rr;
800  case MVT::i64: return X86::CMP64rr;
801  case MVT::f32: return X86::UCOMISSrr;
802  case MVT::f64: return X86::UCOMISDrr;
803  }
804}
805
806/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
807/// of the comparison, return an opcode that works for the compare (e.g.
808/// CMP32ri) otherwise return 0.
809static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
810  switch (VT.getSimpleVT().SimpleTy) {
811  // Otherwise, we can't fold the immediate into this comparison.
812  default: return 0;
813  case MVT::i8: return X86::CMP8ri;
814  case MVT::i16: return X86::CMP16ri;
815  case MVT::i32: return X86::CMP32ri;
816  case MVT::i64:
817    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
818    // field.
819    if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
820      return X86::CMP64ri32;
821    return 0;
822  }
823}
824
825bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
826                                     EVT VT) {
827  unsigned Op0Reg = getRegForValue(Op0);
828  if (Op0Reg == 0) return false;
829
830  // Handle 'null' like i32/i64 0.
831  if (isa<ConstantPointerNull>(Op1))
832    Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext()));
833
834  // We have two options: compare with register or immediate.  If the RHS of
835  // the compare is an immediate that we can fold into this compare, use
836  // CMPri, otherwise use CMPrr.
837  if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
838    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
839      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareImmOpc))
840        .addReg(Op0Reg)
841        .addImm(Op1C->getSExtValue());
842      return true;
843    }
844  }
845
846  unsigned CompareOpc = X86ChooseCmpOpcode(VT);
847  if (CompareOpc == 0) return false;
848
849  unsigned Op1Reg = getRegForValue(Op1);
850  if (Op1Reg == 0) return false;
851  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareOpc))
852    .addReg(Op0Reg)
853    .addReg(Op1Reg);
854
855  return true;
856}
857
858bool X86FastISel::X86SelectCmp(const Instruction *I) {
859  const CmpInst *CI = cast<CmpInst>(I);
860
861  EVT VT;
862  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
863    return false;
864
865  unsigned ResultReg = createResultReg(&X86::GR8RegClass);
866  unsigned SetCCOpc;
867  bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
868  switch (CI->getPredicate()) {
869  case CmpInst::FCMP_OEQ: {
870    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
871      return false;
872
873    unsigned EReg = createResultReg(&X86::GR8RegClass);
874    unsigned NPReg = createResultReg(&X86::GR8RegClass);
875    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETEr), EReg);
876    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
877            TII.get(X86::SETNPr), NPReg);
878    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
879            TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
880    UpdateValueMap(I, ResultReg);
881    return true;
882  }
883  case CmpInst::FCMP_UNE: {
884    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
885      return false;
886
887    unsigned NEReg = createResultReg(&X86::GR8RegClass);
888    unsigned PReg = createResultReg(&X86::GR8RegClass);
889    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
890            TII.get(X86::SETNEr), NEReg);
891    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
892            TII.get(X86::SETPr), PReg);
893    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
894            TII.get(X86::OR8rr), ResultReg)
895      .addReg(PReg).addReg(NEReg);
896    UpdateValueMap(I, ResultReg);
897    return true;
898  }
899  case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
900  case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
901  case CmpInst::FCMP_OLT: SwapArgs = true;  SetCCOpc = X86::SETAr;  break;
902  case CmpInst::FCMP_OLE: SwapArgs = true;  SetCCOpc = X86::SETAEr; break;
903  case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
904  case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
905  case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr;  break;
906  case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr;  break;
907  case CmpInst::FCMP_UGT: SwapArgs = true;  SetCCOpc = X86::SETBr;  break;
908  case CmpInst::FCMP_UGE: SwapArgs = true;  SetCCOpc = X86::SETBEr; break;
909  case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
910  case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
911
912  case CmpInst::ICMP_EQ:  SwapArgs = false; SetCCOpc = X86::SETEr;  break;
913  case CmpInst::ICMP_NE:  SwapArgs = false; SetCCOpc = X86::SETNEr; break;
914  case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
915  case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
916  case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
917  case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
918  case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr;  break;
919  case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
920  case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr;  break;
921  case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
922  default:
923    return false;
924  }
925
926  const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
927  if (SwapArgs)
928    std::swap(Op0, Op1);
929
930  // Emit a compare of Op0/Op1.
931  if (!X86FastEmitCompare(Op0, Op1, VT))
932    return false;
933
934  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(SetCCOpc), ResultReg);
935  UpdateValueMap(I, ResultReg);
936  return true;
937}
938
939bool X86FastISel::X86SelectZExt(const Instruction *I) {
940  // Handle zero-extension from i1 to i8, which is common.
941  if (I->getType()->isIntegerTy(8) &&
942      I->getOperand(0)->getType()->isIntegerTy(1)) {
943    unsigned ResultReg = getRegForValue(I->getOperand(0));
944    if (ResultReg == 0) return false;
945    // Set the high bits to zero.
946    ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
947    if (ResultReg == 0) return false;
948    UpdateValueMap(I, ResultReg);
949    return true;
950  }
951
952  return false;
953}
954
955
956bool X86FastISel::X86SelectBranch(const Instruction *I) {
957  // Unconditional branches are selected by tablegen-generated code.
958  // Handle a conditional branch.
959  const BranchInst *BI = cast<BranchInst>(I);
960  MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
961  MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
962
963  // Fold the common case of a conditional branch with a comparison.
964  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
965    if (CI->hasOneUse()) {
966      EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
967
968      // Try to take advantage of fallthrough opportunities.
969      CmpInst::Predicate Predicate = CI->getPredicate();
970      if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
971        std::swap(TrueMBB, FalseMBB);
972        Predicate = CmpInst::getInversePredicate(Predicate);
973      }
974
975      bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
976      unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
977
978      switch (Predicate) {
979      case CmpInst::FCMP_OEQ:
980        std::swap(TrueMBB, FalseMBB);
981        Predicate = CmpInst::FCMP_UNE;
982        // FALL THROUGH
983      case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
984      case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
985      case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
986      case CmpInst::FCMP_OLT: SwapArgs = true;  BranchOpc = X86::JA_4;  break;
987      case CmpInst::FCMP_OLE: SwapArgs = true;  BranchOpc = X86::JAE_4; break;
988      case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
989      case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break;
990      case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4;  break;
991      case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4;  break;
992      case CmpInst::FCMP_UGT: SwapArgs = true;  BranchOpc = X86::JB_4;  break;
993      case CmpInst::FCMP_UGE: SwapArgs = true;  BranchOpc = X86::JBE_4; break;
994      case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
995      case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
996
997      case CmpInst::ICMP_EQ:  SwapArgs = false; BranchOpc = X86::JE_4;  break;
998      case CmpInst::ICMP_NE:  SwapArgs = false; BranchOpc = X86::JNE_4; break;
999      case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
1000      case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
1001      case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
1002      case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
1003      case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4;  break;
1004      case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break;
1005      case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4;  break;
1006      case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break;
1007      default:
1008        return false;
1009      }
1010
1011      const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1012      if (SwapArgs)
1013        std::swap(Op0, Op1);
1014
1015      // Emit a compare of the LHS and RHS, setting the flags.
1016      if (!X86FastEmitCompare(Op0, Op1, VT))
1017        return false;
1018
1019      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BranchOpc))
1020        .addMBB(TrueMBB);
1021
1022      if (Predicate == CmpInst::FCMP_UNE) {
1023        // X86 requires a second branch to handle UNE (and OEQ,
1024        // which is mapped to UNE above).
1025        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JP_4))
1026          .addMBB(TrueMBB);
1027      }
1028
1029      FastEmitBranch(FalseMBB, DL);
1030      FuncInfo.MBB->addSuccessor(TrueMBB);
1031      return true;
1032    }
1033  } else if (ExtractValueInst *EI =
1034             dyn_cast<ExtractValueInst>(BI->getCondition())) {
1035    // Check to see if the branch instruction is from an "arithmetic with
1036    // overflow" intrinsic. The main way these intrinsics are used is:
1037    //
1038    //   %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
1039    //   %sum = extractvalue { i32, i1 } %t, 0
1040    //   %obit = extractvalue { i32, i1 } %t, 1
1041    //   br i1 %obit, label %overflow, label %normal
1042    //
1043    // The %sum and %obit are converted in an ADD and a SETO/SETB before
1044    // reaching the branch. Therefore, we search backwards through the MBB
1045    // looking for the SETO/SETB instruction. If an instruction modifies the
1046    // EFLAGS register before we reach the SETO/SETB instruction, then we can't
1047    // convert the branch into a JO/JB instruction.
1048    if (const IntrinsicInst *CI =
1049          dyn_cast<IntrinsicInst>(EI->getAggregateOperand())){
1050      if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow ||
1051          CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) {
1052        const MachineInstr *SetMI = 0;
1053        unsigned Reg = getRegForValue(EI);
1054
1055        for (MachineBasicBlock::const_reverse_iterator
1056               RI = FuncInfo.MBB->rbegin(), RE = FuncInfo.MBB->rend();
1057             RI != RE; ++RI) {
1058          const MachineInstr &MI = *RI;
1059
1060          if (MI.definesRegister(Reg)) {
1061            unsigned Src, Dst, SrcSR, DstSR;
1062
1063            if (getInstrInfo()->isMoveInstr(MI, Src, Dst, SrcSR, DstSR)) {
1064              Reg = Src;
1065              continue;
1066            }
1067
1068            SetMI = &MI;
1069            break;
1070          }
1071
1072          const TargetInstrDesc &TID = MI.getDesc();
1073          if (TID.hasUnmodeledSideEffects() ||
1074              TID.hasImplicitDefOfPhysReg(X86::EFLAGS))
1075            break;
1076        }
1077
1078        if (SetMI) {
1079          unsigned OpCode = SetMI->getOpcode();
1080
1081          if (OpCode == X86::SETOr || OpCode == X86::SETBr) {
1082            BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1083                    TII.get(OpCode == X86::SETOr ?  X86::JO_4 : X86::JB_4))
1084              .addMBB(TrueMBB);
1085            FastEmitBranch(FalseMBB, DL);
1086            FuncInfo.MBB->addSuccessor(TrueMBB);
1087            return true;
1088          }
1089        }
1090      }
1091    }
1092  }
1093
1094  // Otherwise do a clumsy setcc and re-test it.
1095  unsigned OpReg = getRegForValue(BI->getCondition());
1096  if (OpReg == 0) return false;
1097
1098  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr))
1099    .addReg(OpReg).addReg(OpReg);
1100  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JNE_4))
1101    .addMBB(TrueMBB);
1102  FastEmitBranch(FalseMBB, DL);
1103  FuncInfo.MBB->addSuccessor(TrueMBB);
1104  return true;
1105}
1106
1107bool X86FastISel::X86SelectShift(const Instruction *I) {
1108  unsigned CReg = 0, OpReg = 0, OpImm = 0;
1109  const TargetRegisterClass *RC = NULL;
1110  if (I->getType()->isIntegerTy(8)) {
1111    CReg = X86::CL;
1112    RC = &X86::GR8RegClass;
1113    switch (I->getOpcode()) {
1114    case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break;
1115    case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break;
1116    case Instruction::Shl:  OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
1117    default: return false;
1118    }
1119  } else if (I->getType()->isIntegerTy(16)) {
1120    CReg = X86::CX;
1121    RC = &X86::GR16RegClass;
1122    switch (I->getOpcode()) {
1123    case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break;
1124    case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break;
1125    case Instruction::Shl:  OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
1126    default: return false;
1127    }
1128  } else if (I->getType()->isIntegerTy(32)) {
1129    CReg = X86::ECX;
1130    RC = &X86::GR32RegClass;
1131    switch (I->getOpcode()) {
1132    case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break;
1133    case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break;
1134    case Instruction::Shl:  OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
1135    default: return false;
1136    }
1137  } else if (I->getType()->isIntegerTy(64)) {
1138    CReg = X86::RCX;
1139    RC = &X86::GR64RegClass;
1140    switch (I->getOpcode()) {
1141    case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break;
1142    case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break;
1143    case Instruction::Shl:  OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break;
1144    default: return false;
1145    }
1146  } else {
1147    return false;
1148  }
1149
1150  EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
1151  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
1152    return false;
1153
1154  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1155  if (Op0Reg == 0) return false;
1156
1157  // Fold immediate in shl(x,3).
1158  if (const ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1159    unsigned ResultReg = createResultReg(RC);
1160    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpImm),
1161            ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff);
1162    UpdateValueMap(I, ResultReg);
1163    return true;
1164  }
1165
1166  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1167  if (Op1Reg == 0) return false;
1168  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1169          CReg).addReg(Op1Reg);
1170
1171  // The shift instruction uses X86::CL. If we defined a super-register
1172  // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1173  if (CReg != X86::CL)
1174    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1175            TII.get(TargetOpcode::KILL), X86::CL)
1176      .addReg(CReg, RegState::Kill);
1177
1178  unsigned ResultReg = createResultReg(RC);
1179  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpReg), ResultReg)
1180    .addReg(Op0Reg);
1181  UpdateValueMap(I, ResultReg);
1182  return true;
1183}
1184
1185bool X86FastISel::X86SelectSelect(const Instruction *I) {
1186  EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
1187  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
1188    return false;
1189
1190  unsigned Opc = 0;
1191  const TargetRegisterClass *RC = NULL;
1192  if (VT.getSimpleVT() == MVT::i16) {
1193    Opc = X86::CMOVE16rr;
1194    RC = &X86::GR16RegClass;
1195  } else if (VT.getSimpleVT() == MVT::i32) {
1196    Opc = X86::CMOVE32rr;
1197    RC = &X86::GR32RegClass;
1198  } else if (VT.getSimpleVT() == MVT::i64) {
1199    Opc = X86::CMOVE64rr;
1200    RC = &X86::GR64RegClass;
1201  } else {
1202    return false;
1203  }
1204
1205  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1206  if (Op0Reg == 0) return false;
1207  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1208  if (Op1Reg == 0) return false;
1209  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1210  if (Op2Reg == 0) return false;
1211
1212  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr))
1213    .addReg(Op0Reg).addReg(Op0Reg);
1214  unsigned ResultReg = createResultReg(RC);
1215  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
1216    .addReg(Op1Reg).addReg(Op2Reg);
1217  UpdateValueMap(I, ResultReg);
1218  return true;
1219}
1220
1221bool X86FastISel::X86SelectFPExt(const Instruction *I) {
1222  // fpext from float to double.
1223  if (Subtarget->hasSSE2() &&
1224      I->getType()->isDoubleTy()) {
1225    const Value *V = I->getOperand(0);
1226    if (V->getType()->isFloatTy()) {
1227      unsigned OpReg = getRegForValue(V);
1228      if (OpReg == 0) return false;
1229      unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
1230      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1231              TII.get(X86::CVTSS2SDrr), ResultReg)
1232        .addReg(OpReg);
1233      UpdateValueMap(I, ResultReg);
1234      return true;
1235    }
1236  }
1237
1238  return false;
1239}
1240
1241bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
1242  if (Subtarget->hasSSE2()) {
1243    if (I->getType()->isFloatTy()) {
1244      const Value *V = I->getOperand(0);
1245      if (V->getType()->isDoubleTy()) {
1246        unsigned OpReg = getRegForValue(V);
1247        if (OpReg == 0) return false;
1248        unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
1249        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1250                TII.get(X86::CVTSD2SSrr), ResultReg)
1251          .addReg(OpReg);
1252        UpdateValueMap(I, ResultReg);
1253        return true;
1254      }
1255    }
1256  }
1257
1258  return false;
1259}
1260
1261bool X86FastISel::X86SelectTrunc(const Instruction *I) {
1262  if (Subtarget->is64Bit())
1263    // All other cases should be handled by the tblgen generated code.
1264    return false;
1265  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1266  EVT DstVT = TLI.getValueType(I->getType());
1267
1268  // This code only handles truncation to byte right now.
1269  if (DstVT != MVT::i8 && DstVT != MVT::i1)
1270    // All other cases should be handled by the tblgen generated code.
1271    return false;
1272  if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
1273    // All other cases should be handled by the tblgen generated code.
1274    return false;
1275
1276  unsigned InputReg = getRegForValue(I->getOperand(0));
1277  if (!InputReg)
1278    // Unhandled operand.  Halt "fast" selection and bail.
1279    return false;
1280
1281  // First issue a copy to GR16_ABCD or GR32_ABCD.
1282  unsigned CopyOpc = (SrcVT == MVT::i16) ? X86::MOV16rr : X86::MOV32rr;
1283  const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
1284    ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
1285  unsigned CopyReg = createResultReg(CopyRC);
1286  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CopyOpc), CopyReg)
1287    .addReg(InputReg);
1288
1289  // Then issue an extract_subreg.
1290  unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
1291                                                  CopyReg, /*Kill=*/true,
1292                                                  X86::sub_8bit);
1293  if (!ResultReg)
1294    return false;
1295
1296  UpdateValueMap(I, ResultReg);
1297  return true;
1298}
1299
1300bool X86FastISel::X86SelectExtractValue(const Instruction *I) {
1301  const ExtractValueInst *EI = cast<ExtractValueInst>(I);
1302  const Value *Agg = EI->getAggregateOperand();
1303
1304  if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(Agg)) {
1305    switch (CI->getIntrinsicID()) {
1306    default: break;
1307    case Intrinsic::sadd_with_overflow:
1308    case Intrinsic::uadd_with_overflow: {
1309      // Cheat a little. We know that the registers for "add" and "seto" are
1310      // allocated sequentially. However, we only keep track of the register
1311      // for "add" in the value map. Use extractvalue's index to get the
1312      // correct register for "seto".
1313      unsigned OpReg = getRegForValue(Agg);
1314      if (OpReg == 0)
1315        return false;
1316      UpdateValueMap(I, OpReg + *EI->idx_begin());
1317      return true;
1318    }
1319    }
1320  }
1321
1322  return false;
1323}
1324
1325bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
1326  // FIXME: Handle more intrinsics.
1327  switch (I.getIntrinsicID()) {
1328  default: return false;
1329  case Intrinsic::stackprotector: {
1330    // Emit code inline code to store the stack guard onto the stack.
1331    EVT PtrTy = TLI.getPointerTy();
1332
1333    const Value *Op1 = I.getArgOperand(0); // The guard's value.
1334    const AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
1335
1336    // Grab the frame index.
1337    X86AddressMode AM;
1338    if (!X86SelectAddress(Slot, AM)) return false;
1339
1340    if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
1341
1342    return true;
1343  }
1344  case Intrinsic::objectsize: {
1345    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
1346    const Type *Ty = I.getCalledFunction()->getReturnType();
1347
1348    assert(CI && "Non-constant type in Intrinsic::objectsize?");
1349
1350    EVT VT;
1351    if (!isTypeLegal(Ty, VT))
1352      return false;
1353
1354    unsigned OpC = 0;
1355    if (VT == MVT::i32)
1356      OpC = X86::MOV32ri;
1357    else if (VT == MVT::i64)
1358      OpC = X86::MOV64ri;
1359    else
1360      return false;
1361
1362    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1363    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg).
1364                                  addImm(CI->isZero() ? -1ULL : 0);
1365    UpdateValueMap(&I, ResultReg);
1366    return true;
1367  }
1368  case Intrinsic::dbg_declare: {
1369    const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
1370    X86AddressMode AM;
1371    assert(DI->getAddress() && "Null address should be checked earlier!");
1372    if (!X86SelectAddress(DI->getAddress(), AM))
1373      return false;
1374    const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1375    // FIXME may need to add RegState::Debug to any registers produced,
1376    // although ESP/EBP should be the only ones at the moment.
1377    addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II), AM).
1378      addImm(0).addMetadata(DI->getVariable());
1379    return true;
1380  }
1381  case Intrinsic::trap: {
1382    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TRAP));
1383    return true;
1384  }
1385  case Intrinsic::sadd_with_overflow:
1386  case Intrinsic::uadd_with_overflow: {
1387    // Replace "add with overflow" intrinsics with an "add" instruction followed
1388    // by a seto/setc instruction. Later on, when the "extractvalue"
1389    // instructions are encountered, we use the fact that two registers were
1390    // created sequentially to get the correct registers for the "sum" and the
1391    // "overflow bit".
1392    const Function *Callee = I.getCalledFunction();
1393    const Type *RetTy =
1394      cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
1395
1396    EVT VT;
1397    if (!isTypeLegal(RetTy, VT))
1398      return false;
1399
1400    const Value *Op1 = I.getArgOperand(0);
1401    const Value *Op2 = I.getArgOperand(1);
1402    unsigned Reg1 = getRegForValue(Op1);
1403    unsigned Reg2 = getRegForValue(Op2);
1404
1405    if (Reg1 == 0 || Reg2 == 0)
1406      // FIXME: Handle values *not* in registers.
1407      return false;
1408
1409    unsigned OpC = 0;
1410    if (VT == MVT::i32)
1411      OpC = X86::ADD32rr;
1412    else if (VT == MVT::i64)
1413      OpC = X86::ADD64rr;
1414    else
1415      return false;
1416
1417    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1418    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg)
1419      .addReg(Reg1).addReg(Reg2);
1420    unsigned DestReg1 = UpdateValueMap(&I, ResultReg);
1421
1422    // If the add with overflow is an intra-block value then we just want to
1423    // create temporaries for it like normal.  If it is a cross-block value then
1424    // UpdateValueMap will return the cross-block register used.  Since we
1425    // *really* want the value to be live in the register pair known by
1426    // UpdateValueMap, we have to use DestReg1+1 as the destination register in
1427    // the cross block case.  In the non-cross-block case, we should just make
1428    // another register for the value.
1429    if (DestReg1 != ResultReg)
1430      ResultReg = DestReg1+1;
1431    else
1432      ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8));
1433
1434    unsigned Opc = X86::SETBr;
1435    if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
1436      Opc = X86::SETOr;
1437    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg);
1438    return true;
1439  }
1440  }
1441}
1442
1443bool X86FastISel::X86SelectCall(const Instruction *I) {
1444  const CallInst *CI = cast<CallInst>(I);
1445  const Value *Callee = CI->getCalledValue();
1446
1447  // Can't handle inline asm yet.
1448  if (isa<InlineAsm>(Callee))
1449    return false;
1450
1451  // Handle intrinsic calls.
1452  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
1453    return X86VisitIntrinsicCall(*II);
1454
1455  // Handle only C and fastcc calling conventions for now.
1456  ImmutableCallSite CS(CI);
1457  CallingConv::ID CC = CS.getCallingConv();
1458  if (CC != CallingConv::C &&
1459      CC != CallingConv::Fast &&
1460      CC != CallingConv::X86_FastCall)
1461    return false;
1462
1463  // fastcc with -tailcallopt is intended to provide a guaranteed
1464  // tail call optimization. Fastisel doesn't know how to do that.
1465  if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
1466    return false;
1467
1468  // Let SDISel handle vararg functions.
1469  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1470  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1471  if (FTy->isVarArg())
1472    return false;
1473
1474  // Fast-isel doesn't know about callee-pop yet.
1475  if (Subtarget->IsCalleePop(FTy->isVarArg(), CC))
1476    return false;
1477
1478  // Handle *simple* calls for now.
1479  const Type *RetTy = CS.getType();
1480  EVT RetVT;
1481  if (RetTy->isVoidTy())
1482    RetVT = MVT::isVoid;
1483  else if (!isTypeLegal(RetTy, RetVT, true))
1484    return false;
1485
1486  // Materialize callee address in a register. FIXME: GV address can be
1487  // handled with a CALLpcrel32 instead.
1488  X86AddressMode CalleeAM;
1489  if (!X86SelectCallAddress(Callee, CalleeAM))
1490    return false;
1491  unsigned CalleeOp = 0;
1492  const GlobalValue *GV = 0;
1493  if (CalleeAM.GV != 0) {
1494    GV = CalleeAM.GV;
1495  } else if (CalleeAM.Base.Reg != 0) {
1496    CalleeOp = CalleeAM.Base.Reg;
1497  } else
1498    return false;
1499
1500  // Allow calls which produce i1 results.
1501  bool AndToI1 = false;
1502  if (RetVT == MVT::i1) {
1503    RetVT = MVT::i8;
1504    AndToI1 = true;
1505  }
1506
1507  // Deal with call operands first.
1508  SmallVector<const Value *, 8> ArgVals;
1509  SmallVector<unsigned, 8> Args;
1510  SmallVector<EVT, 8> ArgVTs;
1511  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1512  Args.reserve(CS.arg_size());
1513  ArgVals.reserve(CS.arg_size());
1514  ArgVTs.reserve(CS.arg_size());
1515  ArgFlags.reserve(CS.arg_size());
1516  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1517       i != e; ++i) {
1518    unsigned Arg = getRegForValue(*i);
1519    if (Arg == 0)
1520      return false;
1521    ISD::ArgFlagsTy Flags;
1522    unsigned AttrInd = i - CS.arg_begin() + 1;
1523    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1524      Flags.setSExt();
1525    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1526      Flags.setZExt();
1527
1528    // FIXME: Only handle *easy* calls for now.
1529    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1530        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1531        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1532        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1533      return false;
1534
1535    const Type *ArgTy = (*i)->getType();
1536    EVT ArgVT;
1537    if (!isTypeLegal(ArgTy, ArgVT))
1538      return false;
1539    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1540    Flags.setOrigAlign(OriginalAlignment);
1541
1542    Args.push_back(Arg);
1543    ArgVals.push_back(*i);
1544    ArgVTs.push_back(ArgVT);
1545    ArgFlags.push_back(Flags);
1546  }
1547
1548  // Analyze operands of the call, assigning locations to each operand.
1549  SmallVector<CCValAssign, 16> ArgLocs;
1550  CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext());
1551
1552  // Allocate shadow area for Win64
1553  if (Subtarget->isTargetWin64()) {
1554    CCInfo.AllocateStack(32, 8);
1555  }
1556
1557  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
1558
1559  // Get a count of how many bytes are to be pushed on the stack.
1560  unsigned NumBytes = CCInfo.getNextStackOffset();
1561
1562  // Issue CALLSEQ_START
1563  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1564  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackDown))
1565    .addImm(NumBytes);
1566
1567  // Process argument: walk the register/memloc assignments, inserting
1568  // copies / loads.
1569  SmallVector<unsigned, 4> RegArgs;
1570  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1571    CCValAssign &VA = ArgLocs[i];
1572    unsigned Arg = Args[VA.getValNo()];
1573    EVT ArgVT = ArgVTs[VA.getValNo()];
1574
1575    // Promote the value if needed.
1576    switch (VA.getLocInfo()) {
1577    default: llvm_unreachable("Unknown loc info!");
1578    case CCValAssign::Full: break;
1579    case CCValAssign::SExt: {
1580      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1581                                       Arg, ArgVT, Arg);
1582      assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted;
1583      Emitted = true;
1584      ArgVT = VA.getLocVT();
1585      break;
1586    }
1587    case CCValAssign::ZExt: {
1588      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1589                                       Arg, ArgVT, Arg);
1590      assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted;
1591      Emitted = true;
1592      ArgVT = VA.getLocVT();
1593      break;
1594    }
1595    case CCValAssign::AExt: {
1596      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1597                                       Arg, ArgVT, Arg);
1598      if (!Emitted)
1599        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1600                                    Arg, ArgVT, Arg);
1601      if (!Emitted)
1602        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1603                                    Arg, ArgVT, Arg);
1604
1605      assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted;
1606      ArgVT = VA.getLocVT();
1607      break;
1608    }
1609    case CCValAssign::BCvt: {
1610      unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT().getSimpleVT(),
1611                               ISD::BIT_CONVERT, Arg, /*TODO: Kill=*/false);
1612      assert(BC != 0 && "Failed to emit a bitcast!");
1613      Arg = BC;
1614      ArgVT = VA.getLocVT();
1615      break;
1616    }
1617    }
1618
1619    if (VA.isRegLoc()) {
1620      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1621              VA.getLocReg()).addReg(Arg);
1622      RegArgs.push_back(VA.getLocReg());
1623    } else {
1624      unsigned LocMemOffset = VA.getLocMemOffset();
1625      X86AddressMode AM;
1626      AM.Base.Reg = StackPtr;
1627      AM.Disp = LocMemOffset;
1628      const Value *ArgVal = ArgVals[VA.getValNo()];
1629
1630      // If this is a really simple value, emit this with the Value* version of
1631      // X86FastEmitStore.  If it isn't simple, we don't want to do this, as it
1632      // can cause us to reevaluate the argument.
1633      if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal))
1634        X86FastEmitStore(ArgVT, ArgVal, AM);
1635      else
1636        X86FastEmitStore(ArgVT, Arg, AM);
1637    }
1638  }
1639
1640  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1641  // GOT pointer.
1642  if (Subtarget->isPICStyleGOT()) {
1643    unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
1644    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1645            X86::EBX).addReg(Base);
1646  }
1647
1648  // Issue the call.
1649  MachineInstrBuilder MIB;
1650  if (CalleeOp) {
1651    // Register-indirect call.
1652    unsigned CallOpc = Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r;
1653    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1654      .addReg(CalleeOp);
1655
1656  } else {
1657    // Direct call.
1658    assert(GV && "Not a direct call");
1659    unsigned CallOpc =
1660      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
1661
1662    // See if we need any target-specific flags on the GV operand.
1663    unsigned char OpFlags = 0;
1664
1665    // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1666    // external symbols most go through the PLT in PIC mode.  If the symbol
1667    // has hidden or protected visibility, or if it is static or local, then
1668    // we don't need to use the PLT - we can directly call it.
1669    if (Subtarget->isTargetELF() &&
1670        TM.getRelocationModel() == Reloc::PIC_ &&
1671        GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1672      OpFlags = X86II::MO_PLT;
1673    } else if (Subtarget->isPICStyleStubAny() &&
1674               (GV->isDeclaration() || GV->isWeakForLinker()) &&
1675               Subtarget->getDarwinVers() < 9) {
1676      // PC-relative references to external symbols should go through $stub,
1677      // unless we're building with the leopard linker or later, which
1678      // automatically synthesizes these stubs.
1679      OpFlags = X86II::MO_DARWIN_STUB;
1680    }
1681
1682
1683    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1684      .addGlobalAddress(GV, 0, OpFlags);
1685  }
1686
1687  // Add an implicit use GOT pointer in EBX.
1688  if (Subtarget->isPICStyleGOT())
1689    MIB.addReg(X86::EBX);
1690
1691  // Add implicit physical register uses to the call.
1692  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1693    MIB.addReg(RegArgs[i]);
1694
1695  // Issue CALLSEQ_END
1696  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1697  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp))
1698    .addImm(NumBytes).addImm(0);
1699
1700  // Now handle call return value (if any).
1701  SmallVector<unsigned, 4> UsedRegs;
1702  if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) {
1703    SmallVector<CCValAssign, 16> RVLocs;
1704    CCState CCInfo(CC, false, TM, RVLocs, I->getParent()->getContext());
1705    CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
1706
1707    // Copy all of the result registers out of their specified physreg.
1708    assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
1709    EVT CopyVT = RVLocs[0].getValVT();
1710    TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1711
1712    // If this is a call to a function that returns an fp value on the x87 fp
1713    // stack, but where we prefer to use the value in xmm registers, copy it
1714    // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1715    if ((RVLocs[0].getLocReg() == X86::ST0 ||
1716         RVLocs[0].getLocReg() == X86::ST1) &&
1717        isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
1718      CopyVT = MVT::f80;
1719      DstRC = X86::RFP80RegisterClass;
1720    }
1721
1722    unsigned ResultReg = createResultReg(DstRC);
1723    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1724            ResultReg).addReg(RVLocs[0].getLocReg());
1725    UsedRegs.push_back(RVLocs[0].getLocReg());
1726
1727    if (CopyVT != RVLocs[0].getValVT()) {
1728      // Round the F80 the right size, which also moves to the appropriate xmm
1729      // register. This is accomplished by storing the F80 value in memory and
1730      // then loading it back. Ewww...
1731      EVT ResVT = RVLocs[0].getValVT();
1732      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
1733      unsigned MemSize = ResVT.getSizeInBits()/8;
1734      int FI = MFI.CreateStackObject(MemSize, MemSize, false);
1735      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1736                                TII.get(Opc)), FI)
1737        .addReg(ResultReg);
1738      DstRC = ResVT == MVT::f32
1739        ? X86::FR32RegisterClass : X86::FR64RegisterClass;
1740      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
1741      ResultReg = createResultReg(DstRC);
1742      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1743                                TII.get(Opc), ResultReg), FI);
1744    }
1745
1746    if (AndToI1) {
1747      // Mask out all but lowest bit for some call which produces an i1.
1748      unsigned AndResult = createResultReg(X86::GR8RegisterClass);
1749      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1750              TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
1751      ResultReg = AndResult;
1752    }
1753
1754    UpdateValueMap(I, ResultReg);
1755  }
1756
1757  // Set all unused physreg defs as dead.
1758  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1759
1760  return true;
1761}
1762
1763
1764bool
1765X86FastISel::TargetSelectInstruction(const Instruction *I)  {
1766  switch (I->getOpcode()) {
1767  default: break;
1768  case Instruction::Load:
1769    return X86SelectLoad(I);
1770  case Instruction::Store:
1771    return X86SelectStore(I);
1772  case Instruction::Ret:
1773    return X86SelectRet(I);
1774  case Instruction::ICmp:
1775  case Instruction::FCmp:
1776    return X86SelectCmp(I);
1777  case Instruction::ZExt:
1778    return X86SelectZExt(I);
1779  case Instruction::Br:
1780    return X86SelectBranch(I);
1781  case Instruction::Call:
1782    return X86SelectCall(I);
1783  case Instruction::LShr:
1784  case Instruction::AShr:
1785  case Instruction::Shl:
1786    return X86SelectShift(I);
1787  case Instruction::Select:
1788    return X86SelectSelect(I);
1789  case Instruction::Trunc:
1790    return X86SelectTrunc(I);
1791  case Instruction::FPExt:
1792    return X86SelectFPExt(I);
1793  case Instruction::FPTrunc:
1794    return X86SelectFPTrunc(I);
1795  case Instruction::ExtractValue:
1796    return X86SelectExtractValue(I);
1797  case Instruction::IntToPtr: // Deliberate fall-through.
1798  case Instruction::PtrToInt: {
1799    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1800    EVT DstVT = TLI.getValueType(I->getType());
1801    if (DstVT.bitsGT(SrcVT))
1802      return X86SelectZExt(I);
1803    if (DstVT.bitsLT(SrcVT))
1804      return X86SelectTrunc(I);
1805    unsigned Reg = getRegForValue(I->getOperand(0));
1806    if (Reg == 0) return false;
1807    UpdateValueMap(I, Reg);
1808    return true;
1809  }
1810  }
1811
1812  return false;
1813}
1814
1815unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
1816  EVT VT;
1817  if (!isTypeLegal(C->getType(), VT))
1818    return false;
1819
1820  // Get opcode and regclass of the output for the given load instruction.
1821  unsigned Opc = 0;
1822  const TargetRegisterClass *RC = NULL;
1823  switch (VT.getSimpleVT().SimpleTy) {
1824  default: return false;
1825  case MVT::i8:
1826    Opc = X86::MOV8rm;
1827    RC  = X86::GR8RegisterClass;
1828    break;
1829  case MVT::i16:
1830    Opc = X86::MOV16rm;
1831    RC  = X86::GR16RegisterClass;
1832    break;
1833  case MVT::i32:
1834    Opc = X86::MOV32rm;
1835    RC  = X86::GR32RegisterClass;
1836    break;
1837  case MVT::i64:
1838    // Must be in x86-64 mode.
1839    Opc = X86::MOV64rm;
1840    RC  = X86::GR64RegisterClass;
1841    break;
1842  case MVT::f32:
1843    if (Subtarget->hasSSE1()) {
1844      Opc = X86::MOVSSrm;
1845      RC  = X86::FR32RegisterClass;
1846    } else {
1847      Opc = X86::LD_Fp32m;
1848      RC  = X86::RFP32RegisterClass;
1849    }
1850    break;
1851  case MVT::f64:
1852    if (Subtarget->hasSSE2()) {
1853      Opc = X86::MOVSDrm;
1854      RC  = X86::FR64RegisterClass;
1855    } else {
1856      Opc = X86::LD_Fp64m;
1857      RC  = X86::RFP64RegisterClass;
1858    }
1859    break;
1860  case MVT::f80:
1861    // No f80 support yet.
1862    return false;
1863  }
1864
1865  // Materialize addresses with LEA instructions.
1866  if (isa<GlobalValue>(C)) {
1867    X86AddressMode AM;
1868    if (X86SelectAddress(C, AM)) {
1869      if (TLI.getPointerTy() == MVT::i32)
1870        Opc = X86::LEA32r;
1871      else
1872        Opc = X86::LEA64r;
1873      unsigned ResultReg = createResultReg(RC);
1874      addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1875                             TII.get(Opc), ResultReg), AM);
1876      return ResultReg;
1877    }
1878    return 0;
1879  }
1880
1881  // MachineConstantPool wants an explicit alignment.
1882  unsigned Align = TD.getPrefTypeAlignment(C->getType());
1883  if (Align == 0) {
1884    // Alignment of vector types.  FIXME!
1885    Align = TD.getTypeAllocSize(C->getType());
1886  }
1887
1888  // x86-32 PIC requires a PIC base register for constant pools.
1889  unsigned PICBase = 0;
1890  unsigned char OpFlag = 0;
1891  if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
1892    OpFlag = X86II::MO_PIC_BASE_OFFSET;
1893    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
1894  } else if (Subtarget->isPICStyleGOT()) {
1895    OpFlag = X86II::MO_GOTOFF;
1896    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
1897  } else if (Subtarget->isPICStyleRIPRel() &&
1898             TM.getCodeModel() == CodeModel::Small) {
1899    PICBase = X86::RIP;
1900  }
1901
1902  // Create the load from the constant pool.
1903  unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
1904  unsigned ResultReg = createResultReg(RC);
1905  addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1906                                   TII.get(Opc), ResultReg),
1907                           MCPOffset, PICBase, OpFlag);
1908
1909  return ResultReg;
1910}
1911
1912unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
1913  // Fail on dynamic allocas. At this point, getRegForValue has already
1914  // checked its CSE maps, so if we're here trying to handle a dynamic
1915  // alloca, we're not going to succeed. X86SelectAddress has a
1916  // check for dynamic allocas, because it's called directly from
1917  // various places, but TargetMaterializeAlloca also needs a check
1918  // in order to avoid recursion between getRegForValue,
1919  // X86SelectAddrss, and TargetMaterializeAlloca.
1920  if (!FuncInfo.StaticAllocaMap.count(C))
1921    return 0;
1922
1923  X86AddressMode AM;
1924  if (!X86SelectAddress(C, AM))
1925    return 0;
1926  unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
1927  TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
1928  unsigned ResultReg = createResultReg(RC);
1929  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1930                         TII.get(Opc), ResultReg), AM);
1931  return ResultReg;
1932}
1933
1934namespace llvm {
1935  llvm::FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo) {
1936    return new X86FastISel(funcInfo);
1937  }
1938}
1939