X86FastISel.cpp revision 30a64a76492b6a92ccf6d6a6ac907ff8b2b18305
1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/CodeGen/FastISel.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32
33using namespace llvm;
34
35class X86FastISel : public FastISel {
36  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
37  /// make the right decision when generating code for different targets.
38  const X86Subtarget *Subtarget;
39
40  /// StackPtr - Register used as the stack pointer.
41  ///
42  unsigned StackPtr;
43
44  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
45  /// floating point ops.
46  /// When SSE is available, use it for f32 operations.
47  /// When SSE2 is available, use it for f64 operations.
48  bool X86ScalarSSEf64;
49  bool X86ScalarSSEf32;
50
51public:
52  explicit X86FastISel(MachineFunction &mf,
53                       MachineModuleInfo *mmi,
54                       DenseMap<const Value *, unsigned> &vm,
55                       DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
56                       DenseMap<const AllocaInst *, int> &am
57#ifndef NDEBUG
58                       , SmallSet<Instruction*, 8> &cil
59#endif
60                       )
61    : FastISel(mf, mmi, vm, bm, am
62#ifndef NDEBUG
63               , cil
64#endif
65               ) {
66    Subtarget = &TM.getSubtarget<X86Subtarget>();
67    StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
68    X86ScalarSSEf64 = Subtarget->hasSSE2();
69    X86ScalarSSEf32 = Subtarget->hasSSE1();
70  }
71
72  virtual bool TargetSelectInstruction(Instruction *I);
73
74#include "X86GenFastISel.inc"
75
76private:
77  bool X86FastEmitCompare(Value *LHS, Value *RHS, MVT VT);
78
79  bool X86FastEmitLoad(MVT VT, const X86AddressMode &AM, unsigned &RR);
80
81  bool X86FastEmitStore(MVT VT, Value *Val,
82                        const X86AddressMode &AM);
83  bool X86FastEmitStore(MVT VT, unsigned Val,
84                        const X86AddressMode &AM);
85
86  bool X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT, unsigned Src, MVT SrcVT,
87                         unsigned &ResultReg);
88
89  bool X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall);
90
91  bool X86SelectLoad(Instruction *I);
92
93  bool X86SelectStore(Instruction *I);
94
95  bool X86SelectCmp(Instruction *I);
96
97  bool X86SelectZExt(Instruction *I);
98
99  bool X86SelectBranch(Instruction *I);
100
101  bool X86SelectShift(Instruction *I);
102
103  bool X86SelectSelect(Instruction *I);
104
105  bool X86SelectTrunc(Instruction *I);
106
107  bool X86SelectFPExt(Instruction *I);
108  bool X86SelectFPTrunc(Instruction *I);
109
110  bool X86SelectExtractValue(Instruction *I);
111
112  bool X86VisitIntrinsicCall(CallInst &I, unsigned Intrinsic);
113  bool X86SelectCall(Instruction *I);
114
115  CCAssignFn *CCAssignFnForCall(unsigned CC, bool isTailCall = false);
116
117  const X86InstrInfo *getInstrInfo() const {
118    return getTargetMachine()->getInstrInfo();
119  }
120  const X86TargetMachine *getTargetMachine() const {
121    return static_cast<const X86TargetMachine *>(&TM);
122  }
123
124  unsigned TargetMaterializeConstant(Constant *C);
125
126  unsigned TargetMaterializeAlloca(AllocaInst *C);
127
128  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
129  /// computed in an SSE register, not on the X87 floating point stack.
130  bool isScalarFPTypeInSSEReg(MVT VT) const {
131    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
132      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
133  }
134
135  bool isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1 = false);
136};
137
138bool X86FastISel::isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1) {
139  VT = TLI.getValueType(Ty, /*HandleUnknown=*/true);
140  if (VT == MVT::Other || !VT.isSimple())
141    // Unhandled type. Halt "fast" selection and bail.
142    return false;
143
144  // For now, require SSE/SSE2 for performing floating-point operations,
145  // since x87 requires additional work.
146  if (VT == MVT::f64 && !X86ScalarSSEf64)
147     return false;
148  if (VT == MVT::f32 && !X86ScalarSSEf32)
149     return false;
150  // Similarly, no f80 support yet.
151  if (VT == MVT::f80)
152    return false;
153  // We only handle legal types. For example, on x86-32 the instruction
154  // selector contains all of the 64-bit instructions from x86-64,
155  // under the assumption that i64 won't be used if the target doesn't
156  // support it.
157  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
158}
159
160#include "X86GenCallingConv.inc"
161
162/// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
163/// convention.
164CCAssignFn *X86FastISel::CCAssignFnForCall(unsigned CC, bool isTaillCall) {
165  if (Subtarget->is64Bit()) {
166    if (Subtarget->isTargetWin64())
167      return CC_X86_Win64_C;
168    else if (CC == CallingConv::Fast && isTaillCall)
169      return CC_X86_64_TailCall;
170    else
171      return CC_X86_64_C;
172  }
173
174  if (CC == CallingConv::X86_FastCall)
175    return CC_X86_32_FastCall;
176  else if (CC == CallingConv::Fast)
177    return CC_X86_32_FastCC;
178  else
179    return CC_X86_32_C;
180}
181
182/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
183/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
184/// Return true and the result register by reference if it is possible.
185bool X86FastISel::X86FastEmitLoad(MVT VT, const X86AddressMode &AM,
186                                  unsigned &ResultReg) {
187  // Get opcode and regclass of the output for the given load instruction.
188  unsigned Opc = 0;
189  const TargetRegisterClass *RC = NULL;
190  switch (VT.getSimpleVT()) {
191  default: return false;
192  case MVT::i8:
193    Opc = X86::MOV8rm;
194    RC  = X86::GR8RegisterClass;
195    break;
196  case MVT::i16:
197    Opc = X86::MOV16rm;
198    RC  = X86::GR16RegisterClass;
199    break;
200  case MVT::i32:
201    Opc = X86::MOV32rm;
202    RC  = X86::GR32RegisterClass;
203    break;
204  case MVT::i64:
205    // Must be in x86-64 mode.
206    Opc = X86::MOV64rm;
207    RC  = X86::GR64RegisterClass;
208    break;
209  case MVT::f32:
210    if (Subtarget->hasSSE1()) {
211      Opc = X86::MOVSSrm;
212      RC  = X86::FR32RegisterClass;
213    } else {
214      Opc = X86::LD_Fp32m;
215      RC  = X86::RFP32RegisterClass;
216    }
217    break;
218  case MVT::f64:
219    if (Subtarget->hasSSE2()) {
220      Opc = X86::MOVSDrm;
221      RC  = X86::FR64RegisterClass;
222    } else {
223      Opc = X86::LD_Fp64m;
224      RC  = X86::RFP64RegisterClass;
225    }
226    break;
227  case MVT::f80:
228    // No f80 support yet.
229    return false;
230  }
231
232  ResultReg = createResultReg(RC);
233  addFullAddress(BuildMI(MBB, TII.get(Opc), ResultReg), AM);
234  return true;
235}
236
237/// X86FastEmitStore - Emit a machine instruction to store a value Val of
238/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
239/// and a displacement offset, or a GlobalAddress,
240/// i.e. V. Return true if it is possible.
241bool
242X86FastISel::X86FastEmitStore(MVT VT, unsigned Val,
243                              const X86AddressMode &AM) {
244  // Get opcode and regclass of the output for the given store instruction.
245  unsigned Opc = 0;
246  switch (VT.getSimpleVT()) {
247  case MVT::f80: // No f80 support yet.
248  default: return false;
249  case MVT::i8:  Opc = X86::MOV8mr;  break;
250  case MVT::i16: Opc = X86::MOV16mr; break;
251  case MVT::i32: Opc = X86::MOV32mr; break;
252  case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
253  case MVT::f32:
254    Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m;
255    break;
256  case MVT::f64:
257    Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m;
258    break;
259  }
260
261  addFullAddress(BuildMI(MBB, TII.get(Opc)), AM).addReg(Val);
262  return true;
263}
264
265bool X86FastISel::X86FastEmitStore(MVT VT, Value *Val,
266                                   const X86AddressMode &AM) {
267  // Handle 'null' like i32/i64 0.
268  if (isa<ConstantPointerNull>(Val))
269    Val = Constant::getNullValue(TD.getIntPtrType());
270
271  // If this is a store of a simple constant, fold the constant into the store.
272  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
273    unsigned Opc = 0;
274    switch (VT.getSimpleVT()) {
275    default: break;
276    case MVT::i8:  Opc = X86::MOV8mi;  break;
277    case MVT::i16: Opc = X86::MOV16mi; break;
278    case MVT::i32: Opc = X86::MOV32mi; break;
279    case MVT::i64:
280      // Must be a 32-bit sign extended value.
281      if ((int)CI->getSExtValue() == CI->getSExtValue())
282        Opc = X86::MOV64mi32;
283      break;
284    }
285
286    if (Opc) {
287      addFullAddress(BuildMI(MBB, TII.get(Opc)), AM).addImm(CI->getSExtValue());
288      return true;
289    }
290  }
291
292  unsigned ValReg = getRegForValue(Val);
293  if (ValReg == 0)
294    return false;
295
296  return X86FastEmitStore(VT, ValReg, AM);
297}
298
299/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
300/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
301/// ISD::SIGN_EXTEND).
302bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT,
303                                    unsigned Src, MVT SrcVT,
304                                    unsigned &ResultReg) {
305  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
306
307  if (RR != 0) {
308    ResultReg = RR;
309    return true;
310  } else
311    return false;
312}
313
314/// X86SelectAddress - Attempt to fill in an address from the given value.
315///
316bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
317  User *U;
318  unsigned Opcode = Instruction::UserOp1;
319  if (Instruction *I = dyn_cast<Instruction>(V)) {
320    Opcode = I->getOpcode();
321    U = I;
322  } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
323    Opcode = C->getOpcode();
324    U = C;
325  }
326
327  switch (Opcode) {
328  default: break;
329  case Instruction::BitCast:
330    // Look past bitcasts.
331    return X86SelectAddress(U->getOperand(0), AM, isCall);
332
333  case Instruction::IntToPtr:
334    // Look past no-op inttoptrs.
335    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
336      return X86SelectAddress(U->getOperand(0), AM, isCall);
337    break;
338
339  case Instruction::PtrToInt:
340    // Look past no-op ptrtoints.
341    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
342      return X86SelectAddress(U->getOperand(0), AM, isCall);
343    break;
344
345  case Instruction::Alloca: {
346    if (isCall) break;
347    // Do static allocas.
348    const AllocaInst *A = cast<AllocaInst>(V);
349    DenseMap<const AllocaInst*, int>::iterator SI = StaticAllocaMap.find(A);
350    if (SI != StaticAllocaMap.end()) {
351      AM.BaseType = X86AddressMode::FrameIndexBase;
352      AM.Base.FrameIndex = SI->second;
353      return true;
354    }
355    break;
356  }
357
358  case Instruction::Add: {
359    if (isCall) break;
360    // Adds of constants are common and easy enough.
361    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
362      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
363      // They have to fit in the 32-bit signed displacement field though.
364      if (isInt32(Disp)) {
365        AM.Disp = (uint32_t)Disp;
366        return X86SelectAddress(U->getOperand(0), AM, isCall);
367      }
368    }
369    break;
370  }
371
372  case Instruction::GetElementPtr: {
373    if (isCall) break;
374    // Pattern-match simple GEPs.
375    uint64_t Disp = (int32_t)AM.Disp;
376    unsigned IndexReg = AM.IndexReg;
377    unsigned Scale = AM.Scale;
378    gep_type_iterator GTI = gep_type_begin(U);
379    // Iterate through the indices, folding what we can. Constants can be
380    // folded, and one dynamic index can be handled, if the scale is supported.
381    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end();
382         i != e; ++i, ++GTI) {
383      Value *Op = *i;
384      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
385        const StructLayout *SL = TD.getStructLayout(STy);
386        unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
387        Disp += SL->getElementOffset(Idx);
388      } else {
389        uint64_t S = TD.getABITypeSize(GTI.getIndexedType());
390        if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
391          // Constant-offset addressing.
392          Disp += CI->getSExtValue() * S;
393        } else if (IndexReg == 0 &&
394                   (!AM.GV ||
395                    !getTargetMachine()->symbolicAddressesAreRIPRel()) &&
396                   (S == 1 || S == 2 || S == 4 || S == 8)) {
397          // Scaled-index addressing.
398          Scale = S;
399          IndexReg = getRegForGEPIndex(Op);
400          if (IndexReg == 0)
401            return false;
402        } else
403          // Unsupported.
404          goto unsupported_gep;
405      }
406    }
407    // Check for displacement overflow.
408    if (!isInt32(Disp))
409      break;
410    // Ok, the GEP indices were covered by constant-offset and scaled-index
411    // addressing. Update the address state and move on to examining the base.
412    AM.IndexReg = IndexReg;
413    AM.Scale = Scale;
414    AM.Disp = (uint32_t)Disp;
415    return X86SelectAddress(U->getOperand(0), AM, isCall);
416  unsupported_gep:
417    // Ok, the GEP indices weren't all covered.
418    break;
419  }
420  }
421
422  // Handle constant address.
423  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
424    // Can't handle alternate code models yet.
425    if (TM.getCodeModel() != CodeModel::Default &&
426        TM.getCodeModel() != CodeModel::Small)
427      return false;
428
429    // RIP-relative addresses can't have additional register operands.
430    if (getTargetMachine()->symbolicAddressesAreRIPRel() &&
431        (AM.Base.Reg != 0 || AM.IndexReg != 0))
432      return false;
433
434    // Set up the basic address.
435    AM.GV = GV;
436    if (!isCall &&
437        TM.getRelocationModel() == Reloc::PIC_ &&
438        !Subtarget->is64Bit())
439      AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(&MF);
440
441    // Emit an extra load if the ABI requires it.
442    if (Subtarget->GVRequiresExtraLoad(GV, TM, isCall)) {
443      // Check to see if we've already materialized this
444      // value in a register in this block.
445      if (unsigned Reg = LocalValueMap[V]) {
446        AM.Base.Reg = Reg;
447        AM.GV = 0;
448        return true;
449      }
450      // Issue load from stub if necessary.
451      unsigned Opc = 0;
452      const TargetRegisterClass *RC = NULL;
453      if (TLI.getPointerTy() == MVT::i32) {
454        Opc = X86::MOV32rm;
455        RC  = X86::GR32RegisterClass;
456      } else {
457        Opc = X86::MOV64rm;
458        RC  = X86::GR64RegisterClass;
459      }
460
461      X86AddressMode StubAM;
462      StubAM.Base.Reg = AM.Base.Reg;
463      StubAM.GV = AM.GV;
464      unsigned ResultReg = createResultReg(RC);
465      addFullAddress(BuildMI(MBB, TII.get(Opc), ResultReg), StubAM);
466
467      // Now construct the final address. Note that the Disp, Scale,
468      // and Index values may already be set here.
469      AM.Base.Reg = ResultReg;
470      AM.GV = 0;
471
472      // Prevent loading GV stub multiple times in same MBB.
473      LocalValueMap[V] = AM.Base.Reg;
474    }
475    return true;
476  }
477
478  // If all else fails, try to materialize the value in a register.
479  if (!AM.GV || !getTargetMachine()->symbolicAddressesAreRIPRel()) {
480    if (AM.Base.Reg == 0) {
481      AM.Base.Reg = getRegForValue(V);
482      return AM.Base.Reg != 0;
483    }
484    if (AM.IndexReg == 0) {
485      assert(AM.Scale == 1 && "Scale with no index!");
486      AM.IndexReg = getRegForValue(V);
487      return AM.IndexReg != 0;
488    }
489  }
490
491  return false;
492}
493
494/// X86SelectStore - Select and emit code to implement store instructions.
495bool X86FastISel::X86SelectStore(Instruction* I) {
496  MVT VT;
497  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
498    return false;
499
500  X86AddressMode AM;
501  if (!X86SelectAddress(I->getOperand(1), AM, false))
502    return false;
503
504  return X86FastEmitStore(VT, I->getOperand(0), AM);
505}
506
507/// X86SelectLoad - Select and emit code to implement load instructions.
508///
509bool X86FastISel::X86SelectLoad(Instruction *I)  {
510  MVT VT;
511  if (!isTypeLegal(I->getType(), VT))
512    return false;
513
514  X86AddressMode AM;
515  if (!X86SelectAddress(I->getOperand(0), AM, false))
516    return false;
517
518  unsigned ResultReg = 0;
519  if (X86FastEmitLoad(VT, AM, ResultReg)) {
520    UpdateValueMap(I, ResultReg);
521    return true;
522  }
523  return false;
524}
525
526static unsigned X86ChooseCmpOpcode(MVT VT) {
527  switch (VT.getSimpleVT()) {
528  default:       return 0;
529  case MVT::i8:  return X86::CMP8rr;
530  case MVT::i16: return X86::CMP16rr;
531  case MVT::i32: return X86::CMP32rr;
532  case MVT::i64: return X86::CMP64rr;
533  case MVT::f32: return X86::UCOMISSrr;
534  case MVT::f64: return X86::UCOMISDrr;
535  }
536}
537
538/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
539/// of the comparison, return an opcode that works for the compare (e.g.
540/// CMP32ri) otherwise return 0.
541static unsigned X86ChooseCmpImmediateOpcode(MVT VT, ConstantInt *RHSC) {
542  switch (VT.getSimpleVT()) {
543  // Otherwise, we can't fold the immediate into this comparison.
544  default: return 0;
545  case MVT::i8: return X86::CMP8ri;
546  case MVT::i16: return X86::CMP16ri;
547  case MVT::i32: return X86::CMP32ri;
548  case MVT::i64:
549    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
550    // field.
551    if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
552      return X86::CMP64ri32;
553    return 0;
554  }
555}
556
557bool X86FastISel::X86FastEmitCompare(Value *Op0, Value *Op1, MVT VT) {
558  unsigned Op0Reg = getRegForValue(Op0);
559  if (Op0Reg == 0) return false;
560
561  // Handle 'null' like i32/i64 0.
562  if (isa<ConstantPointerNull>(Op1))
563    Op1 = Constant::getNullValue(TD.getIntPtrType());
564
565  // We have two options: compare with register or immediate.  If the RHS of
566  // the compare is an immediate that we can fold into this compare, use
567  // CMPri, otherwise use CMPrr.
568  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
569    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
570      BuildMI(MBB, TII.get(CompareImmOpc)).addReg(Op0Reg)
571                                          .addImm(Op1C->getSExtValue());
572      return true;
573    }
574  }
575
576  unsigned CompareOpc = X86ChooseCmpOpcode(VT);
577  if (CompareOpc == 0) return false;
578
579  unsigned Op1Reg = getRegForValue(Op1);
580  if (Op1Reg == 0) return false;
581  BuildMI(MBB, TII.get(CompareOpc)).addReg(Op0Reg).addReg(Op1Reg);
582
583  return true;
584}
585
586bool X86FastISel::X86SelectCmp(Instruction *I) {
587  CmpInst *CI = cast<CmpInst>(I);
588
589  MVT VT;
590  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
591    return false;
592
593  unsigned ResultReg = createResultReg(&X86::GR8RegClass);
594  unsigned SetCCOpc;
595  bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
596  switch (CI->getPredicate()) {
597  case CmpInst::FCMP_OEQ: {
598    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
599      return false;
600
601    unsigned EReg = createResultReg(&X86::GR8RegClass);
602    unsigned NPReg = createResultReg(&X86::GR8RegClass);
603    BuildMI(MBB, TII.get(X86::SETEr), EReg);
604    BuildMI(MBB, TII.get(X86::SETNPr), NPReg);
605    BuildMI(MBB, TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
606    UpdateValueMap(I, ResultReg);
607    return true;
608  }
609  case CmpInst::FCMP_UNE: {
610    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
611      return false;
612
613    unsigned NEReg = createResultReg(&X86::GR8RegClass);
614    unsigned PReg = createResultReg(&X86::GR8RegClass);
615    BuildMI(MBB, TII.get(X86::SETNEr), NEReg);
616    BuildMI(MBB, TII.get(X86::SETPr), PReg);
617    BuildMI(MBB, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg);
618    UpdateValueMap(I, ResultReg);
619    return true;
620  }
621  case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
622  case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
623  case CmpInst::FCMP_OLT: SwapArgs = true;  SetCCOpc = X86::SETAr;  break;
624  case CmpInst::FCMP_OLE: SwapArgs = true;  SetCCOpc = X86::SETAEr; break;
625  case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
626  case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
627  case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr;  break;
628  case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr;  break;
629  case CmpInst::FCMP_UGT: SwapArgs = true;  SetCCOpc = X86::SETBr;  break;
630  case CmpInst::FCMP_UGE: SwapArgs = true;  SetCCOpc = X86::SETBEr; break;
631  case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
632  case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
633
634  case CmpInst::ICMP_EQ:  SwapArgs = false; SetCCOpc = X86::SETEr;  break;
635  case CmpInst::ICMP_NE:  SwapArgs = false; SetCCOpc = X86::SETNEr; break;
636  case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
637  case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
638  case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
639  case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
640  case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr;  break;
641  case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
642  case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr;  break;
643  case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
644  default:
645    return false;
646  }
647
648  Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
649  if (SwapArgs)
650    std::swap(Op0, Op1);
651
652  // Emit a compare of Op0/Op1.
653  if (!X86FastEmitCompare(Op0, Op1, VT))
654    return false;
655
656  BuildMI(MBB, TII.get(SetCCOpc), ResultReg);
657  UpdateValueMap(I, ResultReg);
658  return true;
659}
660
661bool X86FastISel::X86SelectZExt(Instruction *I) {
662  // Special-case hack: The only i1 values we know how to produce currently
663  // set the upper bits of an i8 value to zero.
664  if (I->getType() == Type::Int8Ty &&
665      I->getOperand(0)->getType() == Type::Int1Ty) {
666    unsigned ResultReg = getRegForValue(I->getOperand(0));
667    if (ResultReg == 0) return false;
668    UpdateValueMap(I, ResultReg);
669    return true;
670  }
671
672  return false;
673}
674
675
676bool X86FastISel::X86SelectBranch(Instruction *I) {
677  // Unconditional branches are selected by tablegen-generated code.
678  // Handle a conditional branch.
679  BranchInst *BI = cast<BranchInst>(I);
680  MachineBasicBlock *TrueMBB = MBBMap[BI->getSuccessor(0)];
681  MachineBasicBlock *FalseMBB = MBBMap[BI->getSuccessor(1)];
682
683  // Fold the common case of a conditional branch with a comparison.
684  if (CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
685    if (CI->hasOneUse()) {
686      MVT VT = TLI.getValueType(CI->getOperand(0)->getType());
687
688      // Try to take advantage of fallthrough opportunities.
689      CmpInst::Predicate Predicate = CI->getPredicate();
690      if (MBB->isLayoutSuccessor(TrueMBB)) {
691        std::swap(TrueMBB, FalseMBB);
692        Predicate = CmpInst::getInversePredicate(Predicate);
693      }
694
695      bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
696      unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
697
698      switch (Predicate) {
699      case CmpInst::FCMP_OEQ:
700        std::swap(TrueMBB, FalseMBB);
701        Predicate = CmpInst::FCMP_UNE;
702        // FALL THROUGH
703      case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE; break;
704      case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA;  break;
705      case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE; break;
706      case CmpInst::FCMP_OLT: SwapArgs = true;  BranchOpc = X86::JA;  break;
707      case CmpInst::FCMP_OLE: SwapArgs = true;  BranchOpc = X86::JAE; break;
708      case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE; break;
709      case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP; break;
710      case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP;  break;
711      case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE;  break;
712      case CmpInst::FCMP_UGT: SwapArgs = true;  BranchOpc = X86::JB;  break;
713      case CmpInst::FCMP_UGE: SwapArgs = true;  BranchOpc = X86::JBE; break;
714      case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB;  break;
715      case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE; break;
716
717      case CmpInst::ICMP_EQ:  SwapArgs = false; BranchOpc = X86::JE;  break;
718      case CmpInst::ICMP_NE:  SwapArgs = false; BranchOpc = X86::JNE; break;
719      case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA;  break;
720      case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE; break;
721      case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB;  break;
722      case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE; break;
723      case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG;  break;
724      case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE; break;
725      case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL;  break;
726      case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE; break;
727      default:
728        return false;
729      }
730
731      Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
732      if (SwapArgs)
733        std::swap(Op0, Op1);
734
735      // Emit a compare of the LHS and RHS, setting the flags.
736      if (!X86FastEmitCompare(Op0, Op1, VT))
737        return false;
738
739      BuildMI(MBB, TII.get(BranchOpc)).addMBB(TrueMBB);
740
741      if (Predicate == CmpInst::FCMP_UNE) {
742        // X86 requires a second branch to handle UNE (and OEQ,
743        // which is mapped to UNE above).
744        BuildMI(MBB, TII.get(X86::JP)).addMBB(TrueMBB);
745      }
746
747      FastEmitBranch(FalseMBB);
748      MBB->addSuccessor(TrueMBB);
749      return true;
750    }
751  } else if (ExtractValueInst *EI =
752             dyn_cast<ExtractValueInst>(BI->getCondition())) {
753    // Check to see if the branch instruction is from an "arithmetic with
754    // overflow" intrinsic. The main way these intrinsics are used is:
755    //
756    //   %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
757    //   %sum = extractvalue { i32, i1 } %t, 0
758    //   %obit = extractvalue { i32, i1 } %t, 1
759    //   br i1 %obit, label %overflow, label %normal
760    //
761    // The %sum and %obit are converted in an ADD and a SETO/SETC before
762    // reaching the branch. Therefore, we search backwards through the MBB
763    // looking for the SETO/SETC instruction. If an instruction modifies the
764    // EFLAGS register before we reach the SETO/SETC instruction, then we can't
765    // convert the branch into a JO/JC instruction.
766    const MachineInstr *SetMI = 0;
767    unsigned Reg = lookUpRegForValue(EI);
768
769    for (MachineBasicBlock::const_reverse_iterator
770           RI = MBB->rbegin(), RE = MBB->rend(); RI != RE; ++RI) {
771      const MachineInstr &MI = *RI;
772
773      if (MI.modifiesRegister(Reg)) {
774        unsigned Src, Dst;
775
776        if (getInstrInfo()->isMoveInstr(MI, Src, Dst)) {
777          Reg = Src;
778          continue;
779        }
780
781        SetMI = &MI;
782        break;
783      }
784
785      const TargetInstrDesc &TID = MI.getDesc();
786      const unsigned *ImpDefs = TID.getImplicitDefs();
787
788      if (TID.hasUnmodeledSideEffects()) break;
789
790      bool ModifiesEFlags = false;
791
792      if (ImpDefs) {
793        for (unsigned u = 0; ImpDefs[u]; ++u)
794          if (ImpDefs[u] == X86::EFLAGS) {
795            ModifiesEFlags = true;
796            break;
797          }
798      }
799
800      if (ModifiesEFlags) break;
801    }
802
803    if (SetMI) {
804      unsigned OpCode = SetMI->getOpcode();
805
806      if (OpCode == X86::SETOr || OpCode == X86::SETCr) {
807        BuildMI(MBB, TII.get((OpCode == X86::SETOr) ?
808                             X86::JO : X86::JC)).addMBB(TrueMBB);
809        FastEmitBranch(FalseMBB);
810        MBB->addSuccessor(TrueMBB);
811        return true;
812      }
813    }
814  }
815
816  // Otherwise do a clumsy setcc and re-test it.
817  unsigned OpReg = getRegForValue(BI->getCondition());
818  if (OpReg == 0) return false;
819
820  BuildMI(MBB, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg);
821  BuildMI(MBB, TII.get(X86::JNE)).addMBB(TrueMBB);
822  FastEmitBranch(FalseMBB);
823  MBB->addSuccessor(TrueMBB);
824  return true;
825}
826
827bool X86FastISel::X86SelectShift(Instruction *I) {
828  unsigned CReg = 0, OpReg = 0, OpImm = 0;
829  const TargetRegisterClass *RC = NULL;
830  if (I->getType() == Type::Int8Ty) {
831    CReg = X86::CL;
832    RC = &X86::GR8RegClass;
833    switch (I->getOpcode()) {
834    case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break;
835    case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break;
836    case Instruction::Shl:  OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
837    default: return false;
838    }
839  } else if (I->getType() == Type::Int16Ty) {
840    CReg = X86::CX;
841    RC = &X86::GR16RegClass;
842    switch (I->getOpcode()) {
843    case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break;
844    case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break;
845    case Instruction::Shl:  OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
846    default: return false;
847    }
848  } else if (I->getType() == Type::Int32Ty) {
849    CReg = X86::ECX;
850    RC = &X86::GR32RegClass;
851    switch (I->getOpcode()) {
852    case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break;
853    case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break;
854    case Instruction::Shl:  OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
855    default: return false;
856    }
857  } else if (I->getType() == Type::Int64Ty) {
858    CReg = X86::RCX;
859    RC = &X86::GR64RegClass;
860    switch (I->getOpcode()) {
861    case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break;
862    case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break;
863    case Instruction::Shl:  OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break;
864    default: return false;
865    }
866  } else {
867    return false;
868  }
869
870  MVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
871  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
872    return false;
873
874  unsigned Op0Reg = getRegForValue(I->getOperand(0));
875  if (Op0Reg == 0) return false;
876
877  // Fold immediate in shl(x,3).
878  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
879    unsigned ResultReg = createResultReg(RC);
880    BuildMI(MBB, TII.get(OpImm),
881            ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue());
882    UpdateValueMap(I, ResultReg);
883    return true;
884  }
885
886  unsigned Op1Reg = getRegForValue(I->getOperand(1));
887  if (Op1Reg == 0) return false;
888  TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC);
889
890  // The shift instruction uses X86::CL. If we defined a super-register
891  // of X86::CL, emit an EXTRACT_SUBREG to precisely describe what
892  // we're doing here.
893  if (CReg != X86::CL)
894    BuildMI(MBB, TII.get(TargetInstrInfo::EXTRACT_SUBREG), X86::CL)
895      .addReg(CReg).addImm(X86::SUBREG_8BIT);
896
897  unsigned ResultReg = createResultReg(RC);
898  BuildMI(MBB, TII.get(OpReg), ResultReg).addReg(Op0Reg);
899  UpdateValueMap(I, ResultReg);
900  return true;
901}
902
903bool X86FastISel::X86SelectSelect(Instruction *I) {
904  MVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
905  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
906    return false;
907
908  unsigned Opc = 0;
909  const TargetRegisterClass *RC = NULL;
910  if (VT.getSimpleVT() == MVT::i16) {
911    Opc = X86::CMOVE16rr;
912    RC = &X86::GR16RegClass;
913  } else if (VT.getSimpleVT() == MVT::i32) {
914    Opc = X86::CMOVE32rr;
915    RC = &X86::GR32RegClass;
916  } else if (VT.getSimpleVT() == MVT::i64) {
917    Opc = X86::CMOVE64rr;
918    RC = &X86::GR64RegClass;
919  } else {
920    return false;
921  }
922
923  unsigned Op0Reg = getRegForValue(I->getOperand(0));
924  if (Op0Reg == 0) return false;
925  unsigned Op1Reg = getRegForValue(I->getOperand(1));
926  if (Op1Reg == 0) return false;
927  unsigned Op2Reg = getRegForValue(I->getOperand(2));
928  if (Op2Reg == 0) return false;
929
930  BuildMI(MBB, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg);
931  unsigned ResultReg = createResultReg(RC);
932  BuildMI(MBB, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg);
933  UpdateValueMap(I, ResultReg);
934  return true;
935}
936
937bool X86FastISel::X86SelectFPExt(Instruction *I) {
938  // fpext from float to double.
939  if (Subtarget->hasSSE2() && I->getType() == Type::DoubleTy) {
940    Value *V = I->getOperand(0);
941    if (V->getType() == Type::FloatTy) {
942      unsigned OpReg = getRegForValue(V);
943      if (OpReg == 0) return false;
944      unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
945      BuildMI(MBB, TII.get(X86::CVTSS2SDrr), ResultReg).addReg(OpReg);
946      UpdateValueMap(I, ResultReg);
947      return true;
948    }
949  }
950
951  return false;
952}
953
954bool X86FastISel::X86SelectFPTrunc(Instruction *I) {
955  if (Subtarget->hasSSE2()) {
956    if (I->getType() == Type::FloatTy) {
957      Value *V = I->getOperand(0);
958      if (V->getType() == Type::DoubleTy) {
959        unsigned OpReg = getRegForValue(V);
960        if (OpReg == 0) return false;
961        unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
962        BuildMI(MBB, TII.get(X86::CVTSD2SSrr), ResultReg).addReg(OpReg);
963        UpdateValueMap(I, ResultReg);
964        return true;
965      }
966    }
967  }
968
969  return false;
970}
971
972bool X86FastISel::X86SelectTrunc(Instruction *I) {
973  if (Subtarget->is64Bit())
974    // All other cases should be handled by the tblgen generated code.
975    return false;
976  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
977  MVT DstVT = TLI.getValueType(I->getType());
978  if (DstVT != MVT::i8)
979    // All other cases should be handled by the tblgen generated code.
980    return false;
981  if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
982    // All other cases should be handled by the tblgen generated code.
983    return false;
984
985  unsigned InputReg = getRegForValue(I->getOperand(0));
986  if (!InputReg)
987    // Unhandled operand.  Halt "fast" selection and bail.
988    return false;
989
990  // First issue a copy to GR16_ or GR32_.
991  unsigned CopyOpc = (SrcVT == MVT::i16) ? X86::MOV16to16_ : X86::MOV32to32_;
992  const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
993    ? X86::GR16_RegisterClass : X86::GR32_RegisterClass;
994  unsigned CopyReg = createResultReg(CopyRC);
995  BuildMI(MBB, TII.get(CopyOpc), CopyReg).addReg(InputReg);
996
997  // Then issue an extract_subreg.
998  unsigned ResultReg = FastEmitInst_extractsubreg(CopyReg, X86::SUBREG_8BIT);
999  if (!ResultReg)
1000    return false;
1001
1002  UpdateValueMap(I, ResultReg);
1003  return true;
1004}
1005
1006bool X86FastISel::X86SelectExtractValue(Instruction *I) {
1007  ExtractValueInst *EI = cast<ExtractValueInst>(I);
1008  Value *Agg = EI->getAggregateOperand();
1009
1010  if (CallInst *CI = dyn_cast<CallInst>(Agg)) {
1011    Function *F = CI->getCalledFunction();
1012
1013    if (F && F->isDeclaration()) {
1014      switch (F->getIntrinsicID()) {
1015      default: break;
1016      case Intrinsic::sadd_with_overflow:
1017      case Intrinsic::uadd_with_overflow:
1018        // Cheat a little. We know that the registers for "add" and "seto" are
1019        // allocated sequentially. However, we only keep track of the register
1020        // for "add" in the value map. Use extractvalue's index to get the
1021        // correct register for "seto".
1022        UpdateValueMap(I, lookUpRegForValue(Agg) + *EI->idx_begin());
1023        return true;
1024      }
1025    }
1026  }
1027
1028  return false;
1029}
1030
1031bool X86FastISel::X86VisitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1032  // FIXME: Handle more intrinsics.
1033  switch (Intrinsic) {
1034  default: return false;
1035  case Intrinsic::sadd_with_overflow:
1036  case Intrinsic::uadd_with_overflow: {
1037    // Replace "add with overflow" intrinsics with an "add" instruction followed
1038    // by a seto/setc instruction. Later on, when the "extractvalue"
1039    // instructions are encountered, we use the fact that two registers were
1040    // created sequentially to get the correct registers for the "sum" and the
1041    // "overflow bit".
1042    MVT VT;
1043    const Function *Callee = I.getCalledFunction();
1044    const Type *RetTy =
1045      cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
1046
1047    if (!isTypeLegal(RetTy, VT))
1048      return false;
1049
1050    Value *Op1 = I.getOperand(1);
1051    Value *Op2 = I.getOperand(2);
1052    unsigned Reg1 = getRegForValue(Op1);
1053    unsigned Reg2 = getRegForValue(Op2);
1054
1055    if (Reg1 == 0 || Reg2 == 0)
1056      // FIXME: Handle values *not* in registers.
1057      return false;
1058
1059    unsigned OpC = 0;
1060
1061    if (VT == MVT::i32)
1062      OpC = X86::ADD32rr;
1063    else if (VT == MVT::i64)
1064      OpC = X86::ADD64rr;
1065    else
1066      return false;
1067
1068    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1069    BuildMI(MBB, TII.get(OpC), ResultReg).addReg(Reg1).addReg(Reg2);
1070    UpdateValueMap(&I, ResultReg);
1071
1072    ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8));
1073    BuildMI(MBB, TII.get((Intrinsic == Intrinsic::sadd_with_overflow) ?
1074                         X86::SETOr : X86::SETCr), ResultReg);
1075    return true;
1076  }
1077  }
1078}
1079
1080bool X86FastISel::X86SelectCall(Instruction *I) {
1081  CallInst *CI = cast<CallInst>(I);
1082  Value *Callee = I->getOperand(0);
1083
1084  // Can't handle inline asm yet.
1085  if (isa<InlineAsm>(Callee))
1086    return false;
1087
1088  // Handle intrinsic calls.
1089  if (Function *F = CI->getCalledFunction())
1090    if (F->isDeclaration())
1091      if (unsigned IID = F->getIntrinsicID())
1092        return X86VisitIntrinsicCall(*CI, IID);
1093
1094  // Handle only C and fastcc calling conventions for now.
1095  CallSite CS(CI);
1096  unsigned CC = CS.getCallingConv();
1097  if (CC != CallingConv::C &&
1098      CC != CallingConv::Fast &&
1099      CC != CallingConv::X86_FastCall)
1100    return false;
1101
1102  // Let SDISel handle vararg functions.
1103  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1104  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1105  if (FTy->isVarArg())
1106    return false;
1107
1108  // Handle *simple* calls for now.
1109  const Type *RetTy = CS.getType();
1110  MVT RetVT;
1111  if (RetTy == Type::VoidTy)
1112    RetVT = MVT::isVoid;
1113  else if (!isTypeLegal(RetTy, RetVT, true))
1114    return false;
1115
1116  // Materialize callee address in a register. FIXME: GV address can be
1117  // handled with a CALLpcrel32 instead.
1118  X86AddressMode CalleeAM;
1119  if (!X86SelectAddress(Callee, CalleeAM, true))
1120    return false;
1121  unsigned CalleeOp = 0;
1122  GlobalValue *GV = 0;
1123  if (CalleeAM.Base.Reg != 0) {
1124    assert(CalleeAM.GV == 0);
1125    CalleeOp = CalleeAM.Base.Reg;
1126  } else if (CalleeAM.GV != 0) {
1127    assert(CalleeAM.GV != 0);
1128    GV = CalleeAM.GV;
1129  } else
1130    return false;
1131
1132  // Allow calls which produce i1 results.
1133  bool AndToI1 = false;
1134  if (RetVT == MVT::i1) {
1135    RetVT = MVT::i8;
1136    AndToI1 = true;
1137  }
1138
1139  // Deal with call operands first.
1140  SmallVector<Value*, 8> ArgVals;
1141  SmallVector<unsigned, 8> Args;
1142  SmallVector<MVT, 8> ArgVTs;
1143  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1144  Args.reserve(CS.arg_size());
1145  ArgVals.reserve(CS.arg_size());
1146  ArgVTs.reserve(CS.arg_size());
1147  ArgFlags.reserve(CS.arg_size());
1148  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1149       i != e; ++i) {
1150    unsigned Arg = getRegForValue(*i);
1151    if (Arg == 0)
1152      return false;
1153    ISD::ArgFlagsTy Flags;
1154    unsigned AttrInd = i - CS.arg_begin() + 1;
1155    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1156      Flags.setSExt();
1157    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1158      Flags.setZExt();
1159
1160    // FIXME: Only handle *easy* calls for now.
1161    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1162        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1163        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1164        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1165      return false;
1166
1167    const Type *ArgTy = (*i)->getType();
1168    MVT ArgVT;
1169    if (!isTypeLegal(ArgTy, ArgVT))
1170      return false;
1171    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1172    Flags.setOrigAlign(OriginalAlignment);
1173
1174    Args.push_back(Arg);
1175    ArgVals.push_back(*i);
1176    ArgVTs.push_back(ArgVT);
1177    ArgFlags.push_back(Flags);
1178  }
1179
1180  // Analyze operands of the call, assigning locations to each operand.
1181  SmallVector<CCValAssign, 16> ArgLocs;
1182  CCState CCInfo(CC, false, TM, ArgLocs);
1183  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
1184
1185  // Get a count of how many bytes are to be pushed on the stack.
1186  unsigned NumBytes = CCInfo.getNextStackOffset();
1187
1188  // Issue CALLSEQ_START
1189  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1190  BuildMI(MBB, TII.get(AdjStackDown)).addImm(NumBytes);
1191
1192  // Process argument: walk the register/memloc assignments, inserting
1193  // copies / loads.
1194  SmallVector<unsigned, 4> RegArgs;
1195  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1196    CCValAssign &VA = ArgLocs[i];
1197    unsigned Arg = Args[VA.getValNo()];
1198    MVT ArgVT = ArgVTs[VA.getValNo()];
1199
1200    // Promote the value if needed.
1201    switch (VA.getLocInfo()) {
1202    default: assert(0 && "Unknown loc info!");
1203    case CCValAssign::Full: break;
1204    case CCValAssign::SExt: {
1205      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1206                                       Arg, ArgVT, Arg);
1207      assert(Emitted && "Failed to emit a sext!");
1208      ArgVT = VA.getLocVT();
1209      break;
1210    }
1211    case CCValAssign::ZExt: {
1212      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1213                                       Arg, ArgVT, Arg);
1214      assert(Emitted && "Failed to emit a zext!");
1215      ArgVT = VA.getLocVT();
1216      break;
1217    }
1218    case CCValAssign::AExt: {
1219      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1220                                       Arg, ArgVT, Arg);
1221      if (!Emitted)
1222        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1223                                    Arg, ArgVT, Arg);
1224      if (!Emitted)
1225        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1226                                    Arg, ArgVT, Arg);
1227
1228      assert(Emitted && "Failed to emit a aext!");
1229      ArgVT = VA.getLocVT();
1230      break;
1231    }
1232    }
1233
1234    if (VA.isRegLoc()) {
1235      TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT);
1236      bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(),
1237                                      Arg, RC, RC);
1238      assert(Emitted && "Failed to emit a copy instruction!");
1239      RegArgs.push_back(VA.getLocReg());
1240    } else {
1241      unsigned LocMemOffset = VA.getLocMemOffset();
1242      X86AddressMode AM;
1243      AM.Base.Reg = StackPtr;
1244      AM.Disp = LocMemOffset;
1245      Value *ArgVal = ArgVals[VA.getValNo()];
1246
1247      // If this is a really simple value, emit this with the Value* version of
1248      // X86FastEmitStore.  If it isn't simple, we don't want to do this, as it
1249      // can cause us to reevaluate the argument.
1250      if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal))
1251        X86FastEmitStore(ArgVT, ArgVal, AM);
1252      else
1253        X86FastEmitStore(ArgVT, Arg, AM);
1254    }
1255  }
1256
1257  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1258  // GOT pointer.
1259  if (!Subtarget->is64Bit() &&
1260      TM.getRelocationModel() == Reloc::PIC_ &&
1261      Subtarget->isPICStyleGOT()) {
1262    TargetRegisterClass *RC = X86::GR32RegisterClass;
1263    unsigned Base = getInstrInfo()->getGlobalBaseReg(&MF);
1264    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC);
1265    assert(Emitted && "Failed to emit a copy instruction!");
1266  }
1267
1268  // Issue the call.
1269  unsigned CallOpc = CalleeOp
1270    ? (Subtarget->is64Bit() ? X86::CALL64r       : X86::CALL32r)
1271    : (Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32);
1272  MachineInstrBuilder MIB = CalleeOp
1273    ? BuildMI(MBB, TII.get(CallOpc)).addReg(CalleeOp)
1274    : BuildMI(MBB, TII.get(CallOpc)).addGlobalAddress(GV);
1275
1276  // Add an implicit use GOT pointer in EBX.
1277  if (!Subtarget->is64Bit() &&
1278      TM.getRelocationModel() == Reloc::PIC_ &&
1279      Subtarget->isPICStyleGOT())
1280    MIB.addReg(X86::EBX);
1281
1282  // Add implicit physical register uses to the call.
1283  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1284    MIB.addReg(RegArgs[i]);
1285
1286  // Issue CALLSEQ_END
1287  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1288  BuildMI(MBB, TII.get(AdjStackUp)).addImm(NumBytes).addImm(0);
1289
1290  // Now handle call return value (if any).
1291  if (RetVT.getSimpleVT() != MVT::isVoid) {
1292    SmallVector<CCValAssign, 16> RVLocs;
1293    CCState CCInfo(CC, false, TM, RVLocs);
1294    CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
1295
1296    // Copy all of the result registers out of their specified physreg.
1297    assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
1298    MVT CopyVT = RVLocs[0].getValVT();
1299    TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1300    TargetRegisterClass *SrcRC = DstRC;
1301
1302    // If this is a call to a function that returns an fp value on the x87 fp
1303    // stack, but where we prefer to use the value in xmm registers, copy it
1304    // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1305    if ((RVLocs[0].getLocReg() == X86::ST0 ||
1306         RVLocs[0].getLocReg() == X86::ST1) &&
1307        isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
1308      CopyVT = MVT::f80;
1309      SrcRC = X86::RSTRegisterClass;
1310      DstRC = X86::RFP80RegisterClass;
1311    }
1312
1313    unsigned ResultReg = createResultReg(DstRC);
1314    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1315                                    RVLocs[0].getLocReg(), DstRC, SrcRC);
1316    assert(Emitted && "Failed to emit a copy instruction!");
1317    if (CopyVT != RVLocs[0].getValVT()) {
1318      // Round the F80 the right size, which also moves to the appropriate xmm
1319      // register. This is accomplished by storing the F80 value in memory and
1320      // then loading it back. Ewww...
1321      MVT ResVT = RVLocs[0].getValVT();
1322      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
1323      unsigned MemSize = ResVT.getSizeInBits()/8;
1324      int FI = MFI.CreateStackObject(MemSize, MemSize);
1325      addFrameReference(BuildMI(MBB, TII.get(Opc)), FI).addReg(ResultReg);
1326      DstRC = ResVT == MVT::f32
1327        ? X86::FR32RegisterClass : X86::FR64RegisterClass;
1328      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
1329      ResultReg = createResultReg(DstRC);
1330      addFrameReference(BuildMI(MBB, TII.get(Opc), ResultReg), FI);
1331    }
1332
1333    if (AndToI1) {
1334      // Mask out all but lowest bit for some call which produces an i1.
1335      unsigned AndResult = createResultReg(X86::GR8RegisterClass);
1336      BuildMI(MBB, TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
1337      ResultReg = AndResult;
1338    }
1339
1340    UpdateValueMap(I, ResultReg);
1341  }
1342
1343  return true;
1344}
1345
1346
1347bool
1348X86FastISel::TargetSelectInstruction(Instruction *I)  {
1349  switch (I->getOpcode()) {
1350  default: break;
1351  case Instruction::Load:
1352    return X86SelectLoad(I);
1353  case Instruction::Store:
1354    return X86SelectStore(I);
1355  case Instruction::ICmp:
1356  case Instruction::FCmp:
1357    return X86SelectCmp(I);
1358  case Instruction::ZExt:
1359    return X86SelectZExt(I);
1360  case Instruction::Br:
1361    return X86SelectBranch(I);
1362  case Instruction::Call:
1363    return X86SelectCall(I);
1364  case Instruction::LShr:
1365  case Instruction::AShr:
1366  case Instruction::Shl:
1367    return X86SelectShift(I);
1368  case Instruction::Select:
1369    return X86SelectSelect(I);
1370  case Instruction::Trunc:
1371    return X86SelectTrunc(I);
1372  case Instruction::FPExt:
1373    return X86SelectFPExt(I);
1374  case Instruction::FPTrunc:
1375    return X86SelectFPTrunc(I);
1376  case Instruction::ExtractValue:
1377    return X86SelectExtractValue(I);
1378  }
1379
1380  return false;
1381}
1382
1383unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
1384  MVT VT;
1385  if (!isTypeLegal(C->getType(), VT))
1386    return false;
1387
1388  // Get opcode and regclass of the output for the given load instruction.
1389  unsigned Opc = 0;
1390  const TargetRegisterClass *RC = NULL;
1391  switch (VT.getSimpleVT()) {
1392  default: return false;
1393  case MVT::i8:
1394    Opc = X86::MOV8rm;
1395    RC  = X86::GR8RegisterClass;
1396    break;
1397  case MVT::i16:
1398    Opc = X86::MOV16rm;
1399    RC  = X86::GR16RegisterClass;
1400    break;
1401  case MVT::i32:
1402    Opc = X86::MOV32rm;
1403    RC  = X86::GR32RegisterClass;
1404    break;
1405  case MVT::i64:
1406    // Must be in x86-64 mode.
1407    Opc = X86::MOV64rm;
1408    RC  = X86::GR64RegisterClass;
1409    break;
1410  case MVT::f32:
1411    if (Subtarget->hasSSE1()) {
1412      Opc = X86::MOVSSrm;
1413      RC  = X86::FR32RegisterClass;
1414    } else {
1415      Opc = X86::LD_Fp32m;
1416      RC  = X86::RFP32RegisterClass;
1417    }
1418    break;
1419  case MVT::f64:
1420    if (Subtarget->hasSSE2()) {
1421      Opc = X86::MOVSDrm;
1422      RC  = X86::FR64RegisterClass;
1423    } else {
1424      Opc = X86::LD_Fp64m;
1425      RC  = X86::RFP64RegisterClass;
1426    }
1427    break;
1428  case MVT::f80:
1429    // No f80 support yet.
1430    return false;
1431  }
1432
1433  // Materialize addresses with LEA instructions.
1434  if (isa<GlobalValue>(C)) {
1435    X86AddressMode AM;
1436    if (X86SelectAddress(C, AM, false)) {
1437      if (TLI.getPointerTy() == MVT::i32)
1438        Opc = X86::LEA32r;
1439      else
1440        Opc = X86::LEA64r;
1441      unsigned ResultReg = createResultReg(RC);
1442      addFullAddress(BuildMI(MBB, TII.get(Opc), ResultReg), AM);
1443      return ResultReg;
1444    }
1445    return 0;
1446  }
1447
1448  // MachineConstantPool wants an explicit alignment.
1449  unsigned Align = TD.getPreferredTypeAlignmentShift(C->getType());
1450  if (Align == 0) {
1451    // Alignment of vector types.  FIXME!
1452    Align = TD.getABITypeSize(C->getType());
1453    Align = Log2_64(Align);
1454  }
1455
1456  // x86-32 PIC requires a PIC base register for constant pools.
1457  unsigned PICBase = 0;
1458  if (TM.getRelocationModel() == Reloc::PIC_ &&
1459      !Subtarget->is64Bit())
1460    PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
1461
1462  // Create the load from the constant pool.
1463  unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
1464  unsigned ResultReg = createResultReg(RC);
1465  addConstantPoolReference(BuildMI(MBB, TII.get(Opc), ResultReg), MCPOffset,
1466                           PICBase);
1467
1468  return ResultReg;
1469}
1470
1471unsigned X86FastISel::TargetMaterializeAlloca(AllocaInst *C) {
1472  // Fail on dynamic allocas. At this point, getRegForValue has already
1473  // checked its CSE maps, so if we're here trying to handle a dynamic
1474  // alloca, we're not going to succeed. X86SelectAddress has a
1475  // check for dynamic allocas, because it's called directly from
1476  // various places, but TargetMaterializeAlloca also needs a check
1477  // in order to avoid recursion between getRegForValue,
1478  // X86SelectAddrss, and TargetMaterializeAlloca.
1479  if (!StaticAllocaMap.count(C))
1480    return 0;
1481
1482  X86AddressMode AM;
1483  if (!X86SelectAddress(C, AM, false))
1484    return 0;
1485  unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
1486  TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
1487  unsigned ResultReg = createResultReg(RC);
1488  addFullAddress(BuildMI(MBB, TII.get(Opc), ResultReg), AM);
1489  return ResultReg;
1490}
1491
1492namespace llvm {
1493  llvm::FastISel *X86::createFastISel(MachineFunction &mf,
1494                        MachineModuleInfo *mmi,
1495                        DenseMap<const Value *, unsigned> &vm,
1496                        DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
1497                        DenseMap<const AllocaInst *, int> &am
1498#ifndef NDEBUG
1499                        , SmallSet<Instruction*, 8> &cil
1500#endif
1501                        ) {
1502    return new X86FastISel(mf, mmi, vm, bm, am
1503#ifndef NDEBUG
1504                           , cil
1505#endif
1506                           );
1507  }
1508}
1509