X86FastISel.cpp revision 7e7f06e70a07be4a5fad81883da6bebf33e1b3f6
1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/CodeGen/FastISel.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/Support/CallSite.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/GetElementPtrTypeIterator.h"
34#include "llvm/Target/TargetOptions.h"
35using namespace llvm;
36
37namespace {
38
39class X86FastISel : public FastISel {
40  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
41  /// make the right decision when generating code for different targets.
42  const X86Subtarget *Subtarget;
43
44  /// StackPtr - Register used as the stack pointer.
45  ///
46  unsigned StackPtr;
47
48  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
49  /// floating point ops.
50  /// When SSE is available, use it for f32 operations.
51  /// When SSE2 is available, use it for f64 operations.
52  bool X86ScalarSSEf64;
53  bool X86ScalarSSEf32;
54
55public:
56  explicit X86FastISel(MachineFunction &mf,
57                       MachineModuleInfo *mmi,
58                       DwarfWriter *dw,
59                       DenseMap<const Value *, unsigned> &vm,
60                       DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
61                       DenseMap<const AllocaInst *, int> &am
62#ifndef NDEBUG
63                       , SmallSet<Instruction*, 8> &cil
64#endif
65                       )
66    : FastISel(mf, mmi, dw, vm, bm, am
67#ifndef NDEBUG
68               , cil
69#endif
70               ) {
71    Subtarget = &TM.getSubtarget<X86Subtarget>();
72    StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
73    X86ScalarSSEf64 = Subtarget->hasSSE2();
74    X86ScalarSSEf32 = Subtarget->hasSSE1();
75  }
76
77  virtual bool TargetSelectInstruction(Instruction *I);
78
79#include "X86GenFastISel.inc"
80
81private:
82  bool X86FastEmitCompare(Value *LHS, Value *RHS, EVT VT);
83
84  bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
85
86  bool X86FastEmitStore(EVT VT, Value *Val,
87                        const X86AddressMode &AM);
88  bool X86FastEmitStore(EVT VT, unsigned Val,
89                        const X86AddressMode &AM);
90
91  bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
92                         unsigned &ResultReg);
93
94  bool X86SelectAddress(Value *V, X86AddressMode &AM);
95  bool X86SelectCallAddress(Value *V, X86AddressMode &AM);
96
97  bool X86SelectLoad(Instruction *I);
98
99  bool X86SelectStore(Instruction *I);
100
101  bool X86SelectCmp(Instruction *I);
102
103  bool X86SelectZExt(Instruction *I);
104
105  bool X86SelectBranch(Instruction *I);
106
107  bool X86SelectShift(Instruction *I);
108
109  bool X86SelectSelect(Instruction *I);
110
111  bool X86SelectTrunc(Instruction *I);
112
113  bool X86SelectFPExt(Instruction *I);
114  bool X86SelectFPTrunc(Instruction *I);
115
116  bool X86SelectExtractValue(Instruction *I);
117
118  bool X86VisitIntrinsicCall(IntrinsicInst &I);
119  bool X86SelectCall(Instruction *I);
120
121  CCAssignFn *CCAssignFnForCall(unsigned CC, bool isTailCall = false);
122
123  const X86InstrInfo *getInstrInfo() const {
124    return getTargetMachine()->getInstrInfo();
125  }
126  const X86TargetMachine *getTargetMachine() const {
127    return static_cast<const X86TargetMachine *>(&TM);
128  }
129
130  unsigned TargetMaterializeConstant(Constant *C);
131
132  unsigned TargetMaterializeAlloca(AllocaInst *C);
133
134  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
135  /// computed in an SSE register, not on the X87 floating point stack.
136  bool isScalarFPTypeInSSEReg(EVT VT) const {
137    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
138      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
139  }
140
141  bool isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1 = false);
142};
143
144} // end anonymous namespace.
145
146bool X86FastISel::isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1) {
147  VT = TLI.getValueType(Ty, /*HandleUnknown=*/true);
148  if (VT == MVT::Other || !VT.isSimple())
149    // Unhandled type. Halt "fast" selection and bail.
150    return false;
151
152  // For now, require SSE/SSE2 for performing floating-point operations,
153  // since x87 requires additional work.
154  if (VT == MVT::f64 && !X86ScalarSSEf64)
155     return false;
156  if (VT == MVT::f32 && !X86ScalarSSEf32)
157     return false;
158  // Similarly, no f80 support yet.
159  if (VT == MVT::f80)
160    return false;
161  // We only handle legal types. For example, on x86-32 the instruction
162  // selector contains all of the 64-bit instructions from x86-64,
163  // under the assumption that i64 won't be used if the target doesn't
164  // support it.
165  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
166}
167
168#include "X86GenCallingConv.inc"
169
170/// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
171/// convention.
172CCAssignFn *X86FastISel::CCAssignFnForCall(unsigned CC, bool isTaillCall) {
173  if (Subtarget->is64Bit()) {
174    if (Subtarget->isTargetWin64())
175      return CC_X86_Win64_C;
176    else
177      return CC_X86_64_C;
178  }
179
180  if (CC == CallingConv::X86_FastCall)
181    return CC_X86_32_FastCall;
182  else if (CC == CallingConv::Fast)
183    return CC_X86_32_FastCC;
184  else
185    return CC_X86_32_C;
186}
187
188/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
189/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
190/// Return true and the result register by reference if it is possible.
191bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
192                                  unsigned &ResultReg) {
193  // Get opcode and regclass of the output for the given load instruction.
194  unsigned Opc = 0;
195  const TargetRegisterClass *RC = NULL;
196  switch (VT.getSimpleVT().SimpleTy) {
197  default: return false;
198  case MVT::i1:
199  case MVT::i8:
200    Opc = X86::MOV8rm;
201    RC  = X86::GR8RegisterClass;
202    break;
203  case MVT::i16:
204    Opc = X86::MOV16rm;
205    RC  = X86::GR16RegisterClass;
206    break;
207  case MVT::i32:
208    Opc = X86::MOV32rm;
209    RC  = X86::GR32RegisterClass;
210    break;
211  case MVT::i64:
212    // Must be in x86-64 mode.
213    Opc = X86::MOV64rm;
214    RC  = X86::GR64RegisterClass;
215    break;
216  case MVT::f32:
217    if (Subtarget->hasSSE1()) {
218      Opc = X86::MOVSSrm;
219      RC  = X86::FR32RegisterClass;
220    } else {
221      Opc = X86::LD_Fp32m;
222      RC  = X86::RFP32RegisterClass;
223    }
224    break;
225  case MVT::f64:
226    if (Subtarget->hasSSE2()) {
227      Opc = X86::MOVSDrm;
228      RC  = X86::FR64RegisterClass;
229    } else {
230      Opc = X86::LD_Fp64m;
231      RC  = X86::RFP64RegisterClass;
232    }
233    break;
234  case MVT::f80:
235    // No f80 support yet.
236    return false;
237  }
238
239  ResultReg = createResultReg(RC);
240  addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
241  return true;
242}
243
244/// X86FastEmitStore - Emit a machine instruction to store a value Val of
245/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
246/// and a displacement offset, or a GlobalAddress,
247/// i.e. V. Return true if it is possible.
248bool
249X86FastISel::X86FastEmitStore(EVT VT, unsigned Val,
250                              const X86AddressMode &AM) {
251  // Get opcode and regclass of the output for the given store instruction.
252  unsigned Opc = 0;
253  switch (VT.getSimpleVT().SimpleTy) {
254  case MVT::f80: // No f80 support yet.
255  default: return false;
256  case MVT::i1: {
257    // Mask out all but lowest bit.
258    unsigned AndResult = createResultReg(X86::GR8RegisterClass);
259    BuildMI(MBB, DL,
260            TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1);
261    Val = AndResult;
262  }
263  // FALLTHROUGH, handling i1 as i8.
264  case MVT::i8:  Opc = X86::MOV8mr;  break;
265  case MVT::i16: Opc = X86::MOV16mr; break;
266  case MVT::i32: Opc = X86::MOV32mr; break;
267  case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
268  case MVT::f32:
269    Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m;
270    break;
271  case MVT::f64:
272    Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m;
273    break;
274  }
275
276  addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM).addReg(Val);
277  return true;
278}
279
280bool X86FastISel::X86FastEmitStore(EVT VT, Value *Val,
281                                   const X86AddressMode &AM) {
282  // Handle 'null' like i32/i64 0.
283  if (isa<ConstantPointerNull>(Val))
284    Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext()));
285
286  // If this is a store of a simple constant, fold the constant into the store.
287  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
288    unsigned Opc = 0;
289    bool Signed = true;
290    switch (VT.getSimpleVT().SimpleTy) {
291    default: break;
292    case MVT::i1:  Signed = false;     // FALLTHROUGH to handle as i8.
293    case MVT::i8:  Opc = X86::MOV8mi;  break;
294    case MVT::i16: Opc = X86::MOV16mi; break;
295    case MVT::i32: Opc = X86::MOV32mi; break;
296    case MVT::i64:
297      // Must be a 32-bit sign extended value.
298      if ((int)CI->getSExtValue() == CI->getSExtValue())
299        Opc = X86::MOV64mi32;
300      break;
301    }
302
303    if (Opc) {
304      addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM)
305                             .addImm(Signed ? CI->getSExtValue() :
306                                              CI->getZExtValue());
307      return true;
308    }
309  }
310
311  unsigned ValReg = getRegForValue(Val);
312  if (ValReg == 0)
313    return false;
314
315  return X86FastEmitStore(VT, ValReg, AM);
316}
317
318/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
319/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
320/// ISD::SIGN_EXTEND).
321bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
322                                    unsigned Src, EVT SrcVT,
323                                    unsigned &ResultReg) {
324  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
325
326  if (RR != 0) {
327    ResultReg = RR;
328    return true;
329  } else
330    return false;
331}
332
333/// X86SelectAddress - Attempt to fill in an address from the given value.
334///
335bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM) {
336  User *U = NULL;
337  unsigned Opcode = Instruction::UserOp1;
338  if (Instruction *I = dyn_cast<Instruction>(V)) {
339    Opcode = I->getOpcode();
340    U = I;
341  } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
342    Opcode = C->getOpcode();
343    U = C;
344  }
345
346  switch (Opcode) {
347  default: break;
348  case Instruction::BitCast:
349    // Look past bitcasts.
350    return X86SelectAddress(U->getOperand(0), AM);
351
352  case Instruction::IntToPtr:
353    // Look past no-op inttoptrs.
354    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
355      return X86SelectAddress(U->getOperand(0), AM);
356    break;
357
358  case Instruction::PtrToInt:
359    // Look past no-op ptrtoints.
360    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
361      return X86SelectAddress(U->getOperand(0), AM);
362    break;
363
364  case Instruction::Alloca: {
365    // Do static allocas.
366    const AllocaInst *A = cast<AllocaInst>(V);
367    DenseMap<const AllocaInst*, int>::iterator SI = StaticAllocaMap.find(A);
368    if (SI != StaticAllocaMap.end()) {
369      AM.BaseType = X86AddressMode::FrameIndexBase;
370      AM.Base.FrameIndex = SI->second;
371      return true;
372    }
373    break;
374  }
375
376  case Instruction::Add: {
377    // Adds of constants are common and easy enough.
378    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
379      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
380      // They have to fit in the 32-bit signed displacement field though.
381      if (isInt32(Disp)) {
382        AM.Disp = (uint32_t)Disp;
383        return X86SelectAddress(U->getOperand(0), AM);
384      }
385    }
386    break;
387  }
388
389  case Instruction::GetElementPtr: {
390    // Pattern-match simple GEPs.
391    uint64_t Disp = (int32_t)AM.Disp;
392    unsigned IndexReg = AM.IndexReg;
393    unsigned Scale = AM.Scale;
394    gep_type_iterator GTI = gep_type_begin(U);
395    // Iterate through the indices, folding what we can. Constants can be
396    // folded, and one dynamic index can be handled, if the scale is supported.
397    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end();
398         i != e; ++i, ++GTI) {
399      Value *Op = *i;
400      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
401        const StructLayout *SL = TD.getStructLayout(STy);
402        unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
403        Disp += SL->getElementOffset(Idx);
404      } else {
405        uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
406        if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
407          // Constant-offset addressing.
408          Disp += CI->getSExtValue() * S;
409        } else if (IndexReg == 0 &&
410                   (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
411                   (S == 1 || S == 2 || S == 4 || S == 8)) {
412          // Scaled-index addressing.
413          Scale = S;
414          IndexReg = getRegForGEPIndex(Op);
415          if (IndexReg == 0)
416            return false;
417        } else
418          // Unsupported.
419          goto unsupported_gep;
420      }
421    }
422    // Check for displacement overflow.
423    if (!isInt32(Disp))
424      break;
425    // Ok, the GEP indices were covered by constant-offset and scaled-index
426    // addressing. Update the address state and move on to examining the base.
427    AM.IndexReg = IndexReg;
428    AM.Scale = Scale;
429    AM.Disp = (uint32_t)Disp;
430    return X86SelectAddress(U->getOperand(0), AM);
431  unsupported_gep:
432    // Ok, the GEP indices weren't all covered.
433    break;
434  }
435  }
436
437  // Handle constant address.
438  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
439    // Can't handle alternate code models yet.
440    if (TM.getCodeModel() != CodeModel::Small)
441      return false;
442
443    // RIP-relative addresses can't have additional register operands.
444    if (Subtarget->isPICStyleRIPRel() &&
445        (AM.Base.Reg != 0 || AM.IndexReg != 0))
446      return false;
447
448    // Can't handle TLS yet.
449    if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
450      if (GVar->isThreadLocal())
451        return false;
452
453    // Okay, we've committed to selecting this global. Set up the basic address.
454    AM.GV = GV;
455
456    // Allow the subtarget to classify the global.
457    unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
458
459    // If this reference is relative to the pic base, set it now.
460    if (isGlobalRelativeToPICBase(GVFlags)) {
461      // FIXME: How do we know Base.Reg is free??
462      AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(&MF);
463    }
464
465    // Unless the ABI requires an extra load, return a direct reference to
466    // the global.
467    if (!isGlobalStubReference(GVFlags)) {
468      if (Subtarget->isPICStyleRIPRel()) {
469        // Use rip-relative addressing if we can.  Above we verified that the
470        // base and index registers are unused.
471        assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
472        AM.Base.Reg = X86::RIP;
473      }
474      AM.GVOpFlags = GVFlags;
475      return true;
476    }
477
478    // Ok, we need to do a load from a stub.  If we've already loaded from this
479    // stub, reuse the loaded pointer, otherwise emit the load now.
480    DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
481    unsigned LoadReg;
482    if (I != LocalValueMap.end() && I->second != 0) {
483      LoadReg = I->second;
484    } else {
485      // Issue load from stub.
486      unsigned Opc = 0;
487      const TargetRegisterClass *RC = NULL;
488      X86AddressMode StubAM;
489      StubAM.Base.Reg = AM.Base.Reg;
490      StubAM.GV = GV;
491      StubAM.GVOpFlags = GVFlags;
492
493      if (TLI.getPointerTy() == MVT::i64) {
494        Opc = X86::MOV64rm;
495        RC  = X86::GR64RegisterClass;
496
497        if (Subtarget->isPICStyleRIPRel())
498          StubAM.Base.Reg = X86::RIP;
499      } else {
500        Opc = X86::MOV32rm;
501        RC  = X86::GR32RegisterClass;
502      }
503
504      LoadReg = createResultReg(RC);
505      addFullAddress(BuildMI(MBB, DL, TII.get(Opc), LoadReg), StubAM);
506
507      // Prevent loading GV stub multiple times in same MBB.
508      LocalValueMap[V] = LoadReg;
509    }
510
511    // Now construct the final address. Note that the Disp, Scale,
512    // and Index values may already be set here.
513    AM.Base.Reg = LoadReg;
514    AM.GV = 0;
515    return true;
516  }
517
518  // If all else fails, try to materialize the value in a register.
519  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
520    if (AM.Base.Reg == 0) {
521      AM.Base.Reg = getRegForValue(V);
522      return AM.Base.Reg != 0;
523    }
524    if (AM.IndexReg == 0) {
525      assert(AM.Scale == 1 && "Scale with no index!");
526      AM.IndexReg = getRegForValue(V);
527      return AM.IndexReg != 0;
528    }
529  }
530
531  return false;
532}
533
534/// X86SelectCallAddress - Attempt to fill in an address from the given value.
535///
536bool X86FastISel::X86SelectCallAddress(Value *V, X86AddressMode &AM) {
537  User *U = NULL;
538  unsigned Opcode = Instruction::UserOp1;
539  if (Instruction *I = dyn_cast<Instruction>(V)) {
540    Opcode = I->getOpcode();
541    U = I;
542  } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
543    Opcode = C->getOpcode();
544    U = C;
545  }
546
547  switch (Opcode) {
548  default: break;
549  case Instruction::BitCast:
550    // Look past bitcasts.
551    return X86SelectCallAddress(U->getOperand(0), AM);
552
553  case Instruction::IntToPtr:
554    // Look past no-op inttoptrs.
555    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
556      return X86SelectCallAddress(U->getOperand(0), AM);
557    break;
558
559  case Instruction::PtrToInt:
560    // Look past no-op ptrtoints.
561    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
562      return X86SelectCallAddress(U->getOperand(0), AM);
563    break;
564  }
565
566  // Handle constant address.
567  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
568    // Can't handle alternate code models yet.
569    if (TM.getCodeModel() != CodeModel::Small)
570      return false;
571
572    // RIP-relative addresses can't have additional register operands.
573    if (Subtarget->isPICStyleRIPRel() &&
574        (AM.Base.Reg != 0 || AM.IndexReg != 0))
575      return false;
576
577    // Can't handle TLS or DLLImport.
578    if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
579      if (GVar->isThreadLocal() || GVar->hasDLLImportLinkage())
580        return false;
581
582    // Okay, we've committed to selecting this global. Set up the basic address.
583    AM.GV = GV;
584
585    // No ABI requires an extra load for anything other than DLLImport, which
586    // we rejected above. Return a direct reference to the global.
587    if (Subtarget->isPICStyleRIPRel()) {
588      // Use rip-relative addressing if we can.  Above we verified that the
589      // base and index registers are unused.
590      assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
591      AM.Base.Reg = X86::RIP;
592    } else if (Subtarget->isPICStyleStubPIC()) {
593      AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
594    } else if (Subtarget->isPICStyleGOT()) {
595      AM.GVOpFlags = X86II::MO_GOTOFF;
596    }
597
598    return true;
599  }
600
601  // If all else fails, try to materialize the value in a register.
602  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
603    if (AM.Base.Reg == 0) {
604      AM.Base.Reg = getRegForValue(V);
605      return AM.Base.Reg != 0;
606    }
607    if (AM.IndexReg == 0) {
608      assert(AM.Scale == 1 && "Scale with no index!");
609      AM.IndexReg = getRegForValue(V);
610      return AM.IndexReg != 0;
611    }
612  }
613
614  return false;
615}
616
617
618/// X86SelectStore - Select and emit code to implement store instructions.
619bool X86FastISel::X86SelectStore(Instruction* I) {
620  EVT VT;
621  if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true))
622    return false;
623
624  X86AddressMode AM;
625  if (!X86SelectAddress(I->getOperand(1), AM))
626    return false;
627
628  return X86FastEmitStore(VT, I->getOperand(0), AM);
629}
630
631/// X86SelectLoad - Select and emit code to implement load instructions.
632///
633bool X86FastISel::X86SelectLoad(Instruction *I)  {
634  EVT VT;
635  if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true))
636    return false;
637
638  X86AddressMode AM;
639  if (!X86SelectAddress(I->getOperand(0), AM))
640    return false;
641
642  unsigned ResultReg = 0;
643  if (X86FastEmitLoad(VT, AM, ResultReg)) {
644    UpdateValueMap(I, ResultReg);
645    return true;
646  }
647  return false;
648}
649
650static unsigned X86ChooseCmpOpcode(EVT VT) {
651  switch (VT.getSimpleVT().SimpleTy) {
652  default:       return 0;
653  case MVT::i8:  return X86::CMP8rr;
654  case MVT::i16: return X86::CMP16rr;
655  case MVT::i32: return X86::CMP32rr;
656  case MVT::i64: return X86::CMP64rr;
657  case MVT::f32: return X86::UCOMISSrr;
658  case MVT::f64: return X86::UCOMISDrr;
659  }
660}
661
662/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
663/// of the comparison, return an opcode that works for the compare (e.g.
664/// CMP32ri) otherwise return 0.
665static unsigned X86ChooseCmpImmediateOpcode(EVT VT, ConstantInt *RHSC) {
666  switch (VT.getSimpleVT().SimpleTy) {
667  // Otherwise, we can't fold the immediate into this comparison.
668  default: return 0;
669  case MVT::i8: return X86::CMP8ri;
670  case MVT::i16: return X86::CMP16ri;
671  case MVT::i32: return X86::CMP32ri;
672  case MVT::i64:
673    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
674    // field.
675    if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
676      return X86::CMP64ri32;
677    return 0;
678  }
679}
680
681bool X86FastISel::X86FastEmitCompare(Value *Op0, Value *Op1, EVT VT) {
682  unsigned Op0Reg = getRegForValue(Op0);
683  if (Op0Reg == 0) return false;
684
685  // Handle 'null' like i32/i64 0.
686  if (isa<ConstantPointerNull>(Op1))
687    Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext()));
688
689  // We have two options: compare with register or immediate.  If the RHS of
690  // the compare is an immediate that we can fold into this compare, use
691  // CMPri, otherwise use CMPrr.
692  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
693    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
694      BuildMI(MBB, DL, TII.get(CompareImmOpc)).addReg(Op0Reg)
695                                          .addImm(Op1C->getSExtValue());
696      return true;
697    }
698  }
699
700  unsigned CompareOpc = X86ChooseCmpOpcode(VT);
701  if (CompareOpc == 0) return false;
702
703  unsigned Op1Reg = getRegForValue(Op1);
704  if (Op1Reg == 0) return false;
705  BuildMI(MBB, DL, TII.get(CompareOpc)).addReg(Op0Reg).addReg(Op1Reg);
706
707  return true;
708}
709
710bool X86FastISel::X86SelectCmp(Instruction *I) {
711  CmpInst *CI = cast<CmpInst>(I);
712
713  EVT VT;
714  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
715    return false;
716
717  unsigned ResultReg = createResultReg(&X86::GR8RegClass);
718  unsigned SetCCOpc;
719  bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
720  switch (CI->getPredicate()) {
721  case CmpInst::FCMP_OEQ: {
722    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
723      return false;
724
725    unsigned EReg = createResultReg(&X86::GR8RegClass);
726    unsigned NPReg = createResultReg(&X86::GR8RegClass);
727    BuildMI(MBB, DL, TII.get(X86::SETEr), EReg);
728    BuildMI(MBB, DL, TII.get(X86::SETNPr), NPReg);
729    BuildMI(MBB, DL,
730            TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
731    UpdateValueMap(I, ResultReg);
732    return true;
733  }
734  case CmpInst::FCMP_UNE: {
735    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
736      return false;
737
738    unsigned NEReg = createResultReg(&X86::GR8RegClass);
739    unsigned PReg = createResultReg(&X86::GR8RegClass);
740    BuildMI(MBB, DL, TII.get(X86::SETNEr), NEReg);
741    BuildMI(MBB, DL, TII.get(X86::SETPr), PReg);
742    BuildMI(MBB, DL, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg);
743    UpdateValueMap(I, ResultReg);
744    return true;
745  }
746  case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
747  case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
748  case CmpInst::FCMP_OLT: SwapArgs = true;  SetCCOpc = X86::SETAr;  break;
749  case CmpInst::FCMP_OLE: SwapArgs = true;  SetCCOpc = X86::SETAEr; break;
750  case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
751  case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
752  case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr;  break;
753  case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr;  break;
754  case CmpInst::FCMP_UGT: SwapArgs = true;  SetCCOpc = X86::SETBr;  break;
755  case CmpInst::FCMP_UGE: SwapArgs = true;  SetCCOpc = X86::SETBEr; break;
756  case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
757  case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
758
759  case CmpInst::ICMP_EQ:  SwapArgs = false; SetCCOpc = X86::SETEr;  break;
760  case CmpInst::ICMP_NE:  SwapArgs = false; SetCCOpc = X86::SETNEr; break;
761  case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
762  case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
763  case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
764  case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
765  case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr;  break;
766  case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
767  case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr;  break;
768  case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
769  default:
770    return false;
771  }
772
773  Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
774  if (SwapArgs)
775    std::swap(Op0, Op1);
776
777  // Emit a compare of Op0/Op1.
778  if (!X86FastEmitCompare(Op0, Op1, VT))
779    return false;
780
781  BuildMI(MBB, DL, TII.get(SetCCOpc), ResultReg);
782  UpdateValueMap(I, ResultReg);
783  return true;
784}
785
786bool X86FastISel::X86SelectZExt(Instruction *I) {
787  // Handle zero-extension from i1 to i8, which is common.
788  if (I->getType() == Type::getInt8Ty(I->getContext()) &&
789      I->getOperand(0)->getType() == Type::getInt1Ty(I->getContext())) {
790    unsigned ResultReg = getRegForValue(I->getOperand(0));
791    if (ResultReg == 0) return false;
792    // Set the high bits to zero.
793    ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg);
794    if (ResultReg == 0) return false;
795    UpdateValueMap(I, ResultReg);
796    return true;
797  }
798
799  return false;
800}
801
802
803bool X86FastISel::X86SelectBranch(Instruction *I) {
804  // Unconditional branches are selected by tablegen-generated code.
805  // Handle a conditional branch.
806  BranchInst *BI = cast<BranchInst>(I);
807  MachineBasicBlock *TrueMBB = MBBMap[BI->getSuccessor(0)];
808  MachineBasicBlock *FalseMBB = MBBMap[BI->getSuccessor(1)];
809
810  // Fold the common case of a conditional branch with a comparison.
811  if (CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
812    if (CI->hasOneUse()) {
813      EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
814
815      // Try to take advantage of fallthrough opportunities.
816      CmpInst::Predicate Predicate = CI->getPredicate();
817      if (MBB->isLayoutSuccessor(TrueMBB)) {
818        std::swap(TrueMBB, FalseMBB);
819        Predicate = CmpInst::getInversePredicate(Predicate);
820      }
821
822      bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
823      unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
824
825      switch (Predicate) {
826      case CmpInst::FCMP_OEQ:
827        std::swap(TrueMBB, FalseMBB);
828        Predicate = CmpInst::FCMP_UNE;
829        // FALL THROUGH
830      case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE; break;
831      case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA;  break;
832      case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE; break;
833      case CmpInst::FCMP_OLT: SwapArgs = true;  BranchOpc = X86::JA;  break;
834      case CmpInst::FCMP_OLE: SwapArgs = true;  BranchOpc = X86::JAE; break;
835      case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE; break;
836      case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP; break;
837      case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP;  break;
838      case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE;  break;
839      case CmpInst::FCMP_UGT: SwapArgs = true;  BranchOpc = X86::JB;  break;
840      case CmpInst::FCMP_UGE: SwapArgs = true;  BranchOpc = X86::JBE; break;
841      case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB;  break;
842      case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE; break;
843
844      case CmpInst::ICMP_EQ:  SwapArgs = false; BranchOpc = X86::JE;  break;
845      case CmpInst::ICMP_NE:  SwapArgs = false; BranchOpc = X86::JNE; break;
846      case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA;  break;
847      case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE; break;
848      case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB;  break;
849      case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE; break;
850      case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG;  break;
851      case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE; break;
852      case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL;  break;
853      case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE; break;
854      default:
855        return false;
856      }
857
858      Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
859      if (SwapArgs)
860        std::swap(Op0, Op1);
861
862      // Emit a compare of the LHS and RHS, setting the flags.
863      if (!X86FastEmitCompare(Op0, Op1, VT))
864        return false;
865
866      BuildMI(MBB, DL, TII.get(BranchOpc)).addMBB(TrueMBB);
867
868      if (Predicate == CmpInst::FCMP_UNE) {
869        // X86 requires a second branch to handle UNE (and OEQ,
870        // which is mapped to UNE above).
871        BuildMI(MBB, DL, TII.get(X86::JP)).addMBB(TrueMBB);
872      }
873
874      FastEmitBranch(FalseMBB);
875      MBB->addSuccessor(TrueMBB);
876      return true;
877    }
878  } else if (ExtractValueInst *EI =
879             dyn_cast<ExtractValueInst>(BI->getCondition())) {
880    // Check to see if the branch instruction is from an "arithmetic with
881    // overflow" intrinsic. The main way these intrinsics are used is:
882    //
883    //   %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
884    //   %sum = extractvalue { i32, i1 } %t, 0
885    //   %obit = extractvalue { i32, i1 } %t, 1
886    //   br i1 %obit, label %overflow, label %normal
887    //
888    // The %sum and %obit are converted in an ADD and a SETO/SETB before
889    // reaching the branch. Therefore, we search backwards through the MBB
890    // looking for the SETO/SETB instruction. If an instruction modifies the
891    // EFLAGS register before we reach the SETO/SETB instruction, then we can't
892    // convert the branch into a JO/JB instruction.
893    if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(EI->getAggregateOperand())){
894      if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow ||
895          CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) {
896        const MachineInstr *SetMI = 0;
897        unsigned Reg = lookUpRegForValue(EI);
898
899        for (MachineBasicBlock::const_reverse_iterator
900               RI = MBB->rbegin(), RE = MBB->rend(); RI != RE; ++RI) {
901          const MachineInstr &MI = *RI;
902
903          if (MI.modifiesRegister(Reg)) {
904            unsigned Src, Dst, SrcSR, DstSR;
905
906            if (getInstrInfo()->isMoveInstr(MI, Src, Dst, SrcSR, DstSR)) {
907              Reg = Src;
908              continue;
909            }
910
911            SetMI = &MI;
912            break;
913          }
914
915          const TargetInstrDesc &TID = MI.getDesc();
916          if (TID.hasUnmodeledSideEffects() ||
917              TID.hasImplicitDefOfPhysReg(X86::EFLAGS))
918            break;
919        }
920
921        if (SetMI) {
922          unsigned OpCode = SetMI->getOpcode();
923
924          if (OpCode == X86::SETOr || OpCode == X86::SETBr) {
925            BuildMI(MBB, DL, TII.get(OpCode == X86::SETOr ? X86::JO : X86::JB))
926              .addMBB(TrueMBB);
927            FastEmitBranch(FalseMBB);
928            MBB->addSuccessor(TrueMBB);
929            return true;
930          }
931        }
932      }
933    }
934  }
935
936  // Otherwise do a clumsy setcc and re-test it.
937  unsigned OpReg = getRegForValue(BI->getCondition());
938  if (OpReg == 0) return false;
939
940  BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg);
941  BuildMI(MBB, DL, TII.get(X86::JNE)).addMBB(TrueMBB);
942  FastEmitBranch(FalseMBB);
943  MBB->addSuccessor(TrueMBB);
944  return true;
945}
946
947bool X86FastISel::X86SelectShift(Instruction *I) {
948  unsigned CReg = 0, OpReg = 0, OpImm = 0;
949  const TargetRegisterClass *RC = NULL;
950  if (I->getType() == Type::getInt8Ty(I->getContext())) {
951    CReg = X86::CL;
952    RC = &X86::GR8RegClass;
953    switch (I->getOpcode()) {
954    case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break;
955    case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break;
956    case Instruction::Shl:  OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
957    default: return false;
958    }
959  } else if (I->getType() == Type::getInt16Ty(I->getContext())) {
960    CReg = X86::CX;
961    RC = &X86::GR16RegClass;
962    switch (I->getOpcode()) {
963    case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break;
964    case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break;
965    case Instruction::Shl:  OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
966    default: return false;
967    }
968  } else if (I->getType() == Type::getInt32Ty(I->getContext())) {
969    CReg = X86::ECX;
970    RC = &X86::GR32RegClass;
971    switch (I->getOpcode()) {
972    case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break;
973    case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break;
974    case Instruction::Shl:  OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
975    default: return false;
976    }
977  } else if (I->getType() == Type::getInt64Ty(I->getContext())) {
978    CReg = X86::RCX;
979    RC = &X86::GR64RegClass;
980    switch (I->getOpcode()) {
981    case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break;
982    case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break;
983    case Instruction::Shl:  OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break;
984    default: return false;
985    }
986  } else {
987    return false;
988  }
989
990  EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
991  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
992    return false;
993
994  unsigned Op0Reg = getRegForValue(I->getOperand(0));
995  if (Op0Reg == 0) return false;
996
997  // Fold immediate in shl(x,3).
998  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
999    unsigned ResultReg = createResultReg(RC);
1000    BuildMI(MBB, DL, TII.get(OpImm),
1001            ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff);
1002    UpdateValueMap(I, ResultReg);
1003    return true;
1004  }
1005
1006  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1007  if (Op1Reg == 0) return false;
1008  TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC);
1009
1010  // The shift instruction uses X86::CL. If we defined a super-register
1011  // of X86::CL, emit an EXTRACT_SUBREG to precisely describe what
1012  // we're doing here.
1013  if (CReg != X86::CL)
1014    BuildMI(MBB, DL, TII.get(TargetInstrInfo::EXTRACT_SUBREG), X86::CL)
1015      .addReg(CReg).addImm(X86::SUBREG_8BIT);
1016
1017  unsigned ResultReg = createResultReg(RC);
1018  BuildMI(MBB, DL, TII.get(OpReg), ResultReg).addReg(Op0Reg);
1019  UpdateValueMap(I, ResultReg);
1020  return true;
1021}
1022
1023bool X86FastISel::X86SelectSelect(Instruction *I) {
1024  EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
1025  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
1026    return false;
1027
1028  unsigned Opc = 0;
1029  const TargetRegisterClass *RC = NULL;
1030  if (VT.getSimpleVT() == MVT::i16) {
1031    Opc = X86::CMOVE16rr;
1032    RC = &X86::GR16RegClass;
1033  } else if (VT.getSimpleVT() == MVT::i32) {
1034    Opc = X86::CMOVE32rr;
1035    RC = &X86::GR32RegClass;
1036  } else if (VT.getSimpleVT() == MVT::i64) {
1037    Opc = X86::CMOVE64rr;
1038    RC = &X86::GR64RegClass;
1039  } else {
1040    return false;
1041  }
1042
1043  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1044  if (Op0Reg == 0) return false;
1045  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1046  if (Op1Reg == 0) return false;
1047  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1048  if (Op2Reg == 0) return false;
1049
1050  BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg);
1051  unsigned ResultReg = createResultReg(RC);
1052  BuildMI(MBB, DL, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg);
1053  UpdateValueMap(I, ResultReg);
1054  return true;
1055}
1056
1057bool X86FastISel::X86SelectFPExt(Instruction *I) {
1058  // fpext from float to double.
1059  if (Subtarget->hasSSE2() &&
1060      I->getType() == Type::getDoubleTy(I->getContext())) {
1061    Value *V = I->getOperand(0);
1062    if (V->getType() == Type::getFloatTy(I->getContext())) {
1063      unsigned OpReg = getRegForValue(V);
1064      if (OpReg == 0) return false;
1065      unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
1066      BuildMI(MBB, DL, TII.get(X86::CVTSS2SDrr), ResultReg).addReg(OpReg);
1067      UpdateValueMap(I, ResultReg);
1068      return true;
1069    }
1070  }
1071
1072  return false;
1073}
1074
1075bool X86FastISel::X86SelectFPTrunc(Instruction *I) {
1076  if (Subtarget->hasSSE2()) {
1077    if (I->getType() == Type::getFloatTy(I->getContext())) {
1078      Value *V = I->getOperand(0);
1079      if (V->getType() == Type::getDoubleTy(I->getContext())) {
1080        unsigned OpReg = getRegForValue(V);
1081        if (OpReg == 0) return false;
1082        unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
1083        BuildMI(MBB, DL, TII.get(X86::CVTSD2SSrr), ResultReg).addReg(OpReg);
1084        UpdateValueMap(I, ResultReg);
1085        return true;
1086      }
1087    }
1088  }
1089
1090  return false;
1091}
1092
1093bool X86FastISel::X86SelectTrunc(Instruction *I) {
1094  if (Subtarget->is64Bit())
1095    // All other cases should be handled by the tblgen generated code.
1096    return false;
1097  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1098  EVT DstVT = TLI.getValueType(I->getType());
1099
1100  // This code only handles truncation to byte right now.
1101  if (DstVT != MVT::i8 && DstVT != MVT::i1)
1102    // All other cases should be handled by the tblgen generated code.
1103    return false;
1104  if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
1105    // All other cases should be handled by the tblgen generated code.
1106    return false;
1107
1108  unsigned InputReg = getRegForValue(I->getOperand(0));
1109  if (!InputReg)
1110    // Unhandled operand.  Halt "fast" selection and bail.
1111    return false;
1112
1113  // First issue a copy to GR16_ABCD or GR32_ABCD.
1114  unsigned CopyOpc = (SrcVT == MVT::i16) ? X86::MOV16rr : X86::MOV32rr;
1115  const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
1116    ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
1117  unsigned CopyReg = createResultReg(CopyRC);
1118  BuildMI(MBB, DL, TII.get(CopyOpc), CopyReg).addReg(InputReg);
1119
1120  // Then issue an extract_subreg.
1121  unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
1122                                                  CopyReg, X86::SUBREG_8BIT);
1123  if (!ResultReg)
1124    return false;
1125
1126  UpdateValueMap(I, ResultReg);
1127  return true;
1128}
1129
1130bool X86FastISel::X86SelectExtractValue(Instruction *I) {
1131  ExtractValueInst *EI = cast<ExtractValueInst>(I);
1132  Value *Agg = EI->getAggregateOperand();
1133
1134  if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(Agg)) {
1135    switch (CI->getIntrinsicID()) {
1136    default: break;
1137    case Intrinsic::sadd_with_overflow:
1138    case Intrinsic::uadd_with_overflow:
1139      // Cheat a little. We know that the registers for "add" and "seto" are
1140      // allocated sequentially. However, we only keep track of the register
1141      // for "add" in the value map. Use extractvalue's index to get the
1142      // correct register for "seto".
1143      UpdateValueMap(I, lookUpRegForValue(Agg) + *EI->idx_begin());
1144      return true;
1145    }
1146  }
1147
1148  return false;
1149}
1150
1151bool X86FastISel::X86VisitIntrinsicCall(IntrinsicInst &I) {
1152  // FIXME: Handle more intrinsics.
1153  switch (I.getIntrinsicID()) {
1154  default: return false;
1155  case Intrinsic::sadd_with_overflow:
1156  case Intrinsic::uadd_with_overflow: {
1157    // Replace "add with overflow" intrinsics with an "add" instruction followed
1158    // by a seto/setc instruction. Later on, when the "extractvalue"
1159    // instructions are encountered, we use the fact that two registers were
1160    // created sequentially to get the correct registers for the "sum" and the
1161    // "overflow bit".
1162    const Function *Callee = I.getCalledFunction();
1163    const Type *RetTy =
1164      cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
1165
1166    EVT VT;
1167    if (!isTypeLegal(RetTy, VT))
1168      return false;
1169
1170    Value *Op1 = I.getOperand(1);
1171    Value *Op2 = I.getOperand(2);
1172    unsigned Reg1 = getRegForValue(Op1);
1173    unsigned Reg2 = getRegForValue(Op2);
1174
1175    if (Reg1 == 0 || Reg2 == 0)
1176      // FIXME: Handle values *not* in registers.
1177      return false;
1178
1179    unsigned OpC = 0;
1180    if (VT == MVT::i32)
1181      OpC = X86::ADD32rr;
1182    else if (VT == MVT::i64)
1183      OpC = X86::ADD64rr;
1184    else
1185      return false;
1186
1187    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1188    BuildMI(MBB, DL, TII.get(OpC), ResultReg).addReg(Reg1).addReg(Reg2);
1189    unsigned DestReg1 = UpdateValueMap(&I, ResultReg);
1190
1191    // If the add with overflow is an intra-block value then we just want to
1192    // create temporaries for it like normal.  If it is a cross-block value then
1193    // UpdateValueMap will return the cross-block register used.  Since we
1194    // *really* want the value to be live in the register pair known by
1195    // UpdateValueMap, we have to use DestReg1+1 as the destination register in
1196    // the cross block case.  In the non-cross-block case, we should just make
1197    // another register for the value.
1198    if (DestReg1 != ResultReg)
1199      ResultReg = DestReg1+1;
1200    else
1201      ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8));
1202
1203    unsigned Opc = X86::SETBr;
1204    if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
1205      Opc = X86::SETOr;
1206    BuildMI(MBB, DL, TII.get(Opc), ResultReg);
1207    return true;
1208  }
1209  }
1210}
1211
1212bool X86FastISel::X86SelectCall(Instruction *I) {
1213  CallInst *CI = cast<CallInst>(I);
1214  Value *Callee = I->getOperand(0);
1215
1216  // Can't handle inline asm yet.
1217  if (isa<InlineAsm>(Callee))
1218    return false;
1219
1220  // Handle intrinsic calls.
1221  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
1222    return X86VisitIntrinsicCall(*II);
1223
1224  // Handle only C and fastcc calling conventions for now.
1225  CallSite CS(CI);
1226  unsigned CC = CS.getCallingConv();
1227  if (CC != CallingConv::C &&
1228      CC != CallingConv::Fast &&
1229      CC != CallingConv::X86_FastCall)
1230    return false;
1231
1232  // On X86, -tailcallopt changes the fastcc ABI. FastISel doesn't
1233  // handle this for now.
1234  if (CC == CallingConv::Fast && PerformTailCallOpt)
1235    return false;
1236
1237  // Let SDISel handle vararg functions.
1238  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1239  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1240  if (FTy->isVarArg())
1241    return false;
1242
1243  // Handle *simple* calls for now.
1244  const Type *RetTy = CS.getType();
1245  EVT RetVT;
1246  if (RetTy == Type::getVoidTy(I->getContext()))
1247    RetVT = MVT::isVoid;
1248  else if (!isTypeLegal(RetTy, RetVT, true))
1249    return false;
1250
1251  // Materialize callee address in a register. FIXME: GV address can be
1252  // handled with a CALLpcrel32 instead.
1253  X86AddressMode CalleeAM;
1254  if (!X86SelectCallAddress(Callee, CalleeAM))
1255    return false;
1256  unsigned CalleeOp = 0;
1257  GlobalValue *GV = 0;
1258  if (CalleeAM.GV != 0) {
1259    GV = CalleeAM.GV;
1260  } else if (CalleeAM.Base.Reg != 0) {
1261    CalleeOp = CalleeAM.Base.Reg;
1262  } else
1263    return false;
1264
1265  // Allow calls which produce i1 results.
1266  bool AndToI1 = false;
1267  if (RetVT == MVT::i1) {
1268    RetVT = MVT::i8;
1269    AndToI1 = true;
1270  }
1271
1272  // Deal with call operands first.
1273  SmallVector<Value*, 8> ArgVals;
1274  SmallVector<unsigned, 8> Args;
1275  SmallVector<EVT, 8> ArgVTs;
1276  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1277  Args.reserve(CS.arg_size());
1278  ArgVals.reserve(CS.arg_size());
1279  ArgVTs.reserve(CS.arg_size());
1280  ArgFlags.reserve(CS.arg_size());
1281  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1282       i != e; ++i) {
1283    unsigned Arg = getRegForValue(*i);
1284    if (Arg == 0)
1285      return false;
1286    ISD::ArgFlagsTy Flags;
1287    unsigned AttrInd = i - CS.arg_begin() + 1;
1288    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1289      Flags.setSExt();
1290    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1291      Flags.setZExt();
1292
1293    // FIXME: Only handle *easy* calls for now.
1294    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1295        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1296        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1297        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1298      return false;
1299
1300    const Type *ArgTy = (*i)->getType();
1301    EVT ArgVT;
1302    if (!isTypeLegal(ArgTy, ArgVT))
1303      return false;
1304    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1305    Flags.setOrigAlign(OriginalAlignment);
1306
1307    Args.push_back(Arg);
1308    ArgVals.push_back(*i);
1309    ArgVTs.push_back(ArgVT);
1310    ArgFlags.push_back(Flags);
1311  }
1312
1313  // Analyze operands of the call, assigning locations to each operand.
1314  SmallVector<CCValAssign, 16> ArgLocs;
1315  CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext());
1316  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
1317
1318  // Get a count of how many bytes are to be pushed on the stack.
1319  unsigned NumBytes = CCInfo.getNextStackOffset();
1320
1321  // Issue CALLSEQ_START
1322  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1323  BuildMI(MBB, DL, TII.get(AdjStackDown)).addImm(NumBytes);
1324
1325  // Process argument: walk the register/memloc assignments, inserting
1326  // copies / loads.
1327  SmallVector<unsigned, 4> RegArgs;
1328  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1329    CCValAssign &VA = ArgLocs[i];
1330    unsigned Arg = Args[VA.getValNo()];
1331    EVT ArgVT = ArgVTs[VA.getValNo()];
1332
1333    // Promote the value if needed.
1334    switch (VA.getLocInfo()) {
1335    default: llvm_unreachable("Unknown loc info!");
1336    case CCValAssign::Full: break;
1337    case CCValAssign::SExt: {
1338      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1339                                       Arg, ArgVT, Arg);
1340      assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted;
1341      Emitted = true;
1342      ArgVT = VA.getLocVT();
1343      break;
1344    }
1345    case CCValAssign::ZExt: {
1346      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1347                                       Arg, ArgVT, Arg);
1348      assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted;
1349      Emitted = true;
1350      ArgVT = VA.getLocVT();
1351      break;
1352    }
1353    case CCValAssign::AExt: {
1354      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1355                                       Arg, ArgVT, Arg);
1356      if (!Emitted)
1357        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1358                                    Arg, ArgVT, Arg);
1359      if (!Emitted)
1360        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1361                                    Arg, ArgVT, Arg);
1362
1363      assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted;
1364      ArgVT = VA.getLocVT();
1365      break;
1366    }
1367    case CCValAssign::BCvt: {
1368      unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT().getSimpleVT(),
1369                               ISD::BIT_CONVERT, Arg);
1370      assert(BC != 0 && "Failed to emit a bitcast!");
1371      Arg = BC;
1372      ArgVT = VA.getLocVT();
1373      break;
1374    }
1375    }
1376
1377    if (VA.isRegLoc()) {
1378      TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT);
1379      bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(),
1380                                      Arg, RC, RC);
1381      assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1382      Emitted = true;
1383      RegArgs.push_back(VA.getLocReg());
1384    } else {
1385      unsigned LocMemOffset = VA.getLocMemOffset();
1386      X86AddressMode AM;
1387      AM.Base.Reg = StackPtr;
1388      AM.Disp = LocMemOffset;
1389      Value *ArgVal = ArgVals[VA.getValNo()];
1390
1391      // If this is a really simple value, emit this with the Value* version of
1392      // X86FastEmitStore.  If it isn't simple, we don't want to do this, as it
1393      // can cause us to reevaluate the argument.
1394      if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal))
1395        X86FastEmitStore(ArgVT, ArgVal, AM);
1396      else
1397        X86FastEmitStore(ArgVT, Arg, AM);
1398    }
1399  }
1400
1401  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1402  // GOT pointer.
1403  if (Subtarget->isPICStyleGOT()) {
1404    TargetRegisterClass *RC = X86::GR32RegisterClass;
1405    unsigned Base = getInstrInfo()->getGlobalBaseReg(&MF);
1406    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC);
1407    assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1408    Emitted = true;
1409  }
1410
1411  // Issue the call.
1412  MachineInstrBuilder MIB;
1413  if (CalleeOp) {
1414    // Register-indirect call.
1415    unsigned CallOpc = Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r;
1416    MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addReg(CalleeOp);
1417
1418  } else {
1419    // Direct call.
1420    assert(GV && "Not a direct call");
1421    unsigned CallOpc =
1422      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
1423
1424    // See if we need any target-specific flags on the GV operand.
1425    unsigned char OpFlags = 0;
1426
1427    // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1428    // external symbols most go through the PLT in PIC mode.  If the symbol
1429    // has hidden or protected visibility, or if it is static or local, then
1430    // we don't need to use the PLT - we can directly call it.
1431    if (Subtarget->isTargetELF() &&
1432        TM.getRelocationModel() == Reloc::PIC_ &&
1433        GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1434      OpFlags = X86II::MO_PLT;
1435    } else if (Subtarget->isPICStyleStubAny() &&
1436               (GV->isDeclaration() || GV->isWeakForLinker()) &&
1437               Subtarget->getDarwinVers() < 9) {
1438      // PC-relative references to external symbols should go through $stub,
1439      // unless we're building with the leopard linker or later, which
1440      // automatically synthesizes these stubs.
1441      OpFlags = X86II::MO_DARWIN_STUB;
1442    }
1443
1444
1445    MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addGlobalAddress(GV, 0, OpFlags);
1446  }
1447
1448  // Add an implicit use GOT pointer in EBX.
1449  if (Subtarget->isPICStyleGOT())
1450    MIB.addReg(X86::EBX);
1451
1452  // Add implicit physical register uses to the call.
1453  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1454    MIB.addReg(RegArgs[i]);
1455
1456  // Issue CALLSEQ_END
1457  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1458  BuildMI(MBB, DL, TII.get(AdjStackUp)).addImm(NumBytes).addImm(0);
1459
1460  // Now handle call return value (if any).
1461  if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) {
1462    SmallVector<CCValAssign, 16> RVLocs;
1463    CCState CCInfo(CC, false, TM, RVLocs, I->getParent()->getContext());
1464    CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
1465
1466    // Copy all of the result registers out of their specified physreg.
1467    assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
1468    EVT CopyVT = RVLocs[0].getValVT();
1469    TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1470    TargetRegisterClass *SrcRC = DstRC;
1471
1472    // If this is a call to a function that returns an fp value on the x87 fp
1473    // stack, but where we prefer to use the value in xmm registers, copy it
1474    // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1475    if ((RVLocs[0].getLocReg() == X86::ST0 ||
1476         RVLocs[0].getLocReg() == X86::ST1) &&
1477        isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
1478      CopyVT = MVT::f80;
1479      SrcRC = X86::RSTRegisterClass;
1480      DstRC = X86::RFP80RegisterClass;
1481    }
1482
1483    unsigned ResultReg = createResultReg(DstRC);
1484    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1485                                    RVLocs[0].getLocReg(), DstRC, SrcRC);
1486    assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1487    Emitted = true;
1488    if (CopyVT != RVLocs[0].getValVT()) {
1489      // Round the F80 the right size, which also moves to the appropriate xmm
1490      // register. This is accomplished by storing the F80 value in memory and
1491      // then loading it back. Ewww...
1492      EVT ResVT = RVLocs[0].getValVT();
1493      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
1494      unsigned MemSize = ResVT.getSizeInBits()/8;
1495      int FI = MFI.CreateStackObject(MemSize, MemSize);
1496      addFrameReference(BuildMI(MBB, DL, TII.get(Opc)), FI).addReg(ResultReg);
1497      DstRC = ResVT == MVT::f32
1498        ? X86::FR32RegisterClass : X86::FR64RegisterClass;
1499      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
1500      ResultReg = createResultReg(DstRC);
1501      addFrameReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg), FI);
1502    }
1503
1504    if (AndToI1) {
1505      // Mask out all but lowest bit for some call which produces an i1.
1506      unsigned AndResult = createResultReg(X86::GR8RegisterClass);
1507      BuildMI(MBB, DL,
1508              TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
1509      ResultReg = AndResult;
1510    }
1511
1512    UpdateValueMap(I, ResultReg);
1513  }
1514
1515  return true;
1516}
1517
1518
1519bool
1520X86FastISel::TargetSelectInstruction(Instruction *I)  {
1521  switch (I->getOpcode()) {
1522  default: break;
1523  case Instruction::Load:
1524    return X86SelectLoad(I);
1525  case Instruction::Store:
1526    return X86SelectStore(I);
1527  case Instruction::ICmp:
1528  case Instruction::FCmp:
1529    return X86SelectCmp(I);
1530  case Instruction::ZExt:
1531    return X86SelectZExt(I);
1532  case Instruction::Br:
1533    return X86SelectBranch(I);
1534  case Instruction::Call:
1535    return X86SelectCall(I);
1536  case Instruction::LShr:
1537  case Instruction::AShr:
1538  case Instruction::Shl:
1539    return X86SelectShift(I);
1540  case Instruction::Select:
1541    return X86SelectSelect(I);
1542  case Instruction::Trunc:
1543    return X86SelectTrunc(I);
1544  case Instruction::FPExt:
1545    return X86SelectFPExt(I);
1546  case Instruction::FPTrunc:
1547    return X86SelectFPTrunc(I);
1548  case Instruction::ExtractValue:
1549    return X86SelectExtractValue(I);
1550  case Instruction::IntToPtr: // Deliberate fall-through.
1551  case Instruction::PtrToInt: {
1552    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1553    EVT DstVT = TLI.getValueType(I->getType());
1554    if (DstVT.bitsGT(SrcVT))
1555      return X86SelectZExt(I);
1556    if (DstVT.bitsLT(SrcVT))
1557      return X86SelectTrunc(I);
1558    unsigned Reg = getRegForValue(I->getOperand(0));
1559    if (Reg == 0) return false;
1560    UpdateValueMap(I, Reg);
1561    return true;
1562  }
1563  }
1564
1565  return false;
1566}
1567
1568unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
1569  EVT VT;
1570  if (!isTypeLegal(C->getType(), VT))
1571    return false;
1572
1573  // Get opcode and regclass of the output for the given load instruction.
1574  unsigned Opc = 0;
1575  const TargetRegisterClass *RC = NULL;
1576  switch (VT.getSimpleVT().SimpleTy) {
1577  default: return false;
1578  case MVT::i8:
1579    Opc = X86::MOV8rm;
1580    RC  = X86::GR8RegisterClass;
1581    break;
1582  case MVT::i16:
1583    Opc = X86::MOV16rm;
1584    RC  = X86::GR16RegisterClass;
1585    break;
1586  case MVT::i32:
1587    Opc = X86::MOV32rm;
1588    RC  = X86::GR32RegisterClass;
1589    break;
1590  case MVT::i64:
1591    // Must be in x86-64 mode.
1592    Opc = X86::MOV64rm;
1593    RC  = X86::GR64RegisterClass;
1594    break;
1595  case MVT::f32:
1596    if (Subtarget->hasSSE1()) {
1597      Opc = X86::MOVSSrm;
1598      RC  = X86::FR32RegisterClass;
1599    } else {
1600      Opc = X86::LD_Fp32m;
1601      RC  = X86::RFP32RegisterClass;
1602    }
1603    break;
1604  case MVT::f64:
1605    if (Subtarget->hasSSE2()) {
1606      Opc = X86::MOVSDrm;
1607      RC  = X86::FR64RegisterClass;
1608    } else {
1609      Opc = X86::LD_Fp64m;
1610      RC  = X86::RFP64RegisterClass;
1611    }
1612    break;
1613  case MVT::f80:
1614    // No f80 support yet.
1615    return false;
1616  }
1617
1618  // Materialize addresses with LEA instructions.
1619  if (isa<GlobalValue>(C)) {
1620    X86AddressMode AM;
1621    if (X86SelectAddress(C, AM)) {
1622      if (TLI.getPointerTy() == MVT::i32)
1623        Opc = X86::LEA32r;
1624      else
1625        Opc = X86::LEA64r;
1626      unsigned ResultReg = createResultReg(RC);
1627      addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
1628      return ResultReg;
1629    }
1630    return 0;
1631  }
1632
1633  // MachineConstantPool wants an explicit alignment.
1634  unsigned Align = TD.getPrefTypeAlignment(C->getType());
1635  if (Align == 0) {
1636    // Alignment of vector types.  FIXME!
1637    Align = TD.getTypeAllocSize(C->getType());
1638  }
1639
1640  // x86-32 PIC requires a PIC base register for constant pools.
1641  unsigned PICBase = 0;
1642  unsigned char OpFlag = 0;
1643  if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
1644    OpFlag = X86II::MO_PIC_BASE_OFFSET;
1645    PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
1646  } else if (Subtarget->isPICStyleGOT()) {
1647    OpFlag = X86II::MO_GOTOFF;
1648    PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
1649  } else if (Subtarget->isPICStyleRIPRel() &&
1650             TM.getCodeModel() == CodeModel::Small) {
1651    PICBase = X86::RIP;
1652  }
1653
1654  // Create the load from the constant pool.
1655  unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
1656  unsigned ResultReg = createResultReg(RC);
1657  addConstantPoolReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg),
1658                           MCPOffset, PICBase, OpFlag);
1659
1660  return ResultReg;
1661}
1662
1663unsigned X86FastISel::TargetMaterializeAlloca(AllocaInst *C) {
1664  // Fail on dynamic allocas. At this point, getRegForValue has already
1665  // checked its CSE maps, so if we're here trying to handle a dynamic
1666  // alloca, we're not going to succeed. X86SelectAddress has a
1667  // check for dynamic allocas, because it's called directly from
1668  // various places, but TargetMaterializeAlloca also needs a check
1669  // in order to avoid recursion between getRegForValue,
1670  // X86SelectAddrss, and TargetMaterializeAlloca.
1671  if (!StaticAllocaMap.count(C))
1672    return 0;
1673
1674  X86AddressMode AM;
1675  if (!X86SelectAddress(C, AM))
1676    return 0;
1677  unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
1678  TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
1679  unsigned ResultReg = createResultReg(RC);
1680  addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
1681  return ResultReg;
1682}
1683
1684namespace llvm {
1685  llvm::FastISel *X86::createFastISel(MachineFunction &mf,
1686                        MachineModuleInfo *mmi,
1687                        DwarfWriter *dw,
1688                        DenseMap<const Value *, unsigned> &vm,
1689                        DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
1690                        DenseMap<const AllocaInst *, int> &am
1691#ifndef NDEBUG
1692                        , SmallSet<Instruction*, 8> &cil
1693#endif
1694                        ) {
1695    return new X86FastISel(mf, mmi, dw, vm, bm, am
1696#ifndef NDEBUG
1697                           , cil
1698#endif
1699                           );
1700  }
1701}
1702