X86FastISel.cpp revision b63691350d3e08d4bf6d400b79e3174b5bd1d61d
1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Instructions.h"
25#include "llvm/CodeGen/FastISel.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/Support/CallSite.h"
30
31using namespace llvm;
32
33class X86FastISel : public FastISel {
34  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
35  /// make the right decision when generating code for different targets.
36  const X86Subtarget *Subtarget;
37
38  /// StackPtr - Register used as the stack pointer.
39  ///
40  unsigned StackPtr;
41
42  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
43  /// floating point ops.
44  /// When SSE is available, use it for f32 operations.
45  /// When SSE2 is available, use it for f64 operations.
46  bool X86ScalarSSEf64;
47  bool X86ScalarSSEf32;
48
49public:
50  explicit X86FastISel(MachineFunction &mf,
51                       DenseMap<const Value *, unsigned> &vm,
52                       DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
53                       DenseMap<const AllocaInst *, int> &am)
54    : FastISel(mf, vm, bm, am) {
55    Subtarget = &TM.getSubtarget<X86Subtarget>();
56    StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
57    X86ScalarSSEf64 = Subtarget->hasSSE2();
58    X86ScalarSSEf32 = Subtarget->hasSSE1();
59  }
60
61  virtual bool TargetSelectInstruction(Instruction *I);
62
63#include "X86GenFastISel.inc"
64
65private:
66  bool X86FastEmitLoad(MVT VT, const X86AddressMode &AM, unsigned &RR);
67
68  bool X86FastEmitStore(MVT VT, unsigned Val,
69                        const X86AddressMode &AM);
70
71  bool X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT, unsigned Src, MVT SrcVT,
72                         unsigned &ResultReg);
73
74  bool X86SelectConstAddr(Value *V, unsigned &Op0,
75                          bool isCall = false, bool inReg = false);
76
77  bool X86SelectAddress(Value *V, X86AddressMode &AM);
78
79  bool X86SelectLoad(Instruction *I);
80
81  bool X86SelectStore(Instruction *I);
82
83  bool X86SelectCmp(Instruction *I);
84
85  bool X86SelectZExt(Instruction *I);
86
87  bool X86SelectBranch(Instruction *I);
88
89  bool X86SelectShift(Instruction *I);
90
91  bool X86SelectSelect(Instruction *I);
92
93  bool X86SelectTrunc(Instruction *I);
94
95  bool X86SelectFPExt(Instruction *I);
96  bool X86SelectFPTrunc(Instruction *I);
97
98  bool X86SelectCall(Instruction *I);
99
100  CCAssignFn *CCAssignFnForCall(unsigned CC, bool isTailCall = false);
101
102  unsigned TargetMaterializeConstant(Constant *C);
103
104  unsigned TargetMaterializeAlloca(AllocaInst *C);
105
106  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
107  /// computed in an SSE register, not on the X87 floating point stack.
108  bool isScalarFPTypeInSSEReg(MVT VT) const {
109    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
110      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
111  }
112
113};
114
115static bool isTypeLegal(const Type *Ty, const TargetLowering &TLI, MVT &VT,
116                        bool AllowI1 = false) {
117  VT = MVT::getMVT(Ty, /*HandleUnknown=*/true);
118  if (VT == MVT::Other || !VT.isSimple())
119    // Unhandled type. Halt "fast" selection and bail.
120    return false;
121  if (VT == MVT::iPTR)
122    // Use pointer type.
123    VT = TLI.getPointerTy();
124  // We only handle legal types. For example, on x86-32 the instruction
125  // selector contains all of the 64-bit instructions from x86-64,
126  // under the assumption that i64 won't be used if the target doesn't
127  // support it.
128  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
129}
130
131#include "X86GenCallingConv.inc"
132
133/// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
134/// convention.
135CCAssignFn *X86FastISel::CCAssignFnForCall(unsigned CC, bool isTaillCall) {
136  if (Subtarget->is64Bit()) {
137    if (Subtarget->isTargetWin64())
138      return CC_X86_Win64_C;
139    else if (CC == CallingConv::Fast && isTaillCall)
140      return CC_X86_64_TailCall;
141    else
142      return CC_X86_64_C;
143  }
144
145  if (CC == CallingConv::X86_FastCall)
146    return CC_X86_32_FastCall;
147  else if (CC == CallingConv::Fast && isTaillCall)
148    return CC_X86_32_TailCall;
149  else if (CC == CallingConv::Fast)
150    return CC_X86_32_FastCC;
151  else
152    return CC_X86_32_C;
153}
154
155/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
156/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
157/// Return true and the result register by reference if it is possible.
158bool X86FastISel::X86FastEmitLoad(MVT VT, const X86AddressMode &AM,
159                                  unsigned &ResultReg) {
160  // Get opcode and regclass of the output for the given load instruction.
161  unsigned Opc = 0;
162  const TargetRegisterClass *RC = NULL;
163  switch (VT.getSimpleVT()) {
164  default: return false;
165  case MVT::i8:
166    Opc = X86::MOV8rm;
167    RC  = X86::GR8RegisterClass;
168    break;
169  case MVT::i16:
170    Opc = X86::MOV16rm;
171    RC  = X86::GR16RegisterClass;
172    break;
173  case MVT::i32:
174    Opc = X86::MOV32rm;
175    RC  = X86::GR32RegisterClass;
176    break;
177  case MVT::i64:
178    // Must be in x86-64 mode.
179    Opc = X86::MOV64rm;
180    RC  = X86::GR64RegisterClass;
181    break;
182  case MVT::f32:
183    if (Subtarget->hasSSE1()) {
184      Opc = X86::MOVSSrm;
185      RC  = X86::FR32RegisterClass;
186    } else {
187      Opc = X86::LD_Fp32m;
188      RC  = X86::RFP32RegisterClass;
189    }
190    break;
191  case MVT::f64:
192    if (Subtarget->hasSSE2()) {
193      Opc = X86::MOVSDrm;
194      RC  = X86::FR64RegisterClass;
195    } else {
196      Opc = X86::LD_Fp64m;
197      RC  = X86::RFP64RegisterClass;
198    }
199    break;
200  case MVT::f80:
201    Opc = X86::LD_Fp80m;
202    RC  = X86::RFP80RegisterClass;
203    break;
204  }
205
206  ResultReg = createResultReg(RC);
207  addFullAddress(BuildMI(MBB, TII.get(Opc), ResultReg), AM);
208  return true;
209}
210
211/// X86FastEmitStore - Emit a machine instruction to store a value Val of
212/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
213/// and a displacement offset, or a GlobalAddress,
214/// i.e. V. Return true if it is possible.
215bool
216X86FastISel::X86FastEmitStore(MVT VT, unsigned Val,
217                              const X86AddressMode &AM) {
218  // Get opcode and regclass of the output for the given store instruction.
219  unsigned Opc = 0;
220  const TargetRegisterClass *RC = NULL;
221  switch (VT.getSimpleVT()) {
222  default: return false;
223  case MVT::i8:
224    Opc = X86::MOV8mr;
225    RC  = X86::GR8RegisterClass;
226    break;
227  case MVT::i16:
228    Opc = X86::MOV16mr;
229    RC  = X86::GR16RegisterClass;
230    break;
231  case MVT::i32:
232    Opc = X86::MOV32mr;
233    RC  = X86::GR32RegisterClass;
234    break;
235  case MVT::i64:
236    // Must be in x86-64 mode.
237    Opc = X86::MOV64mr;
238    RC  = X86::GR64RegisterClass;
239    break;
240  case MVT::f32:
241    if (Subtarget->hasSSE1()) {
242      Opc = X86::MOVSSmr;
243      RC  = X86::FR32RegisterClass;
244    } else {
245      Opc = X86::ST_Fp32m;
246      RC  = X86::RFP32RegisterClass;
247    }
248    break;
249  case MVT::f64:
250    if (Subtarget->hasSSE2()) {
251      Opc = X86::MOVSDmr;
252      RC  = X86::FR64RegisterClass;
253    } else {
254      Opc = X86::ST_Fp64m;
255      RC  = X86::RFP64RegisterClass;
256    }
257    break;
258  case MVT::f80:
259    Opc = X86::ST_FP80m;
260    RC  = X86::RFP80RegisterClass;
261    break;
262  }
263
264  addFullAddress(BuildMI(MBB, TII.get(Opc)), AM).addReg(Val);
265  return true;
266}
267
268/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
269/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
270/// ISD::SIGN_EXTEND).
271bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT,
272                                    unsigned Src, MVT SrcVT,
273                                    unsigned &ResultReg) {
274  ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
275  return ResultReg != 0;
276}
277
278/// X86SelectConstAddr - Select and emit code to materialize constant address.
279///
280bool X86FastISel::X86SelectConstAddr(Value *V, unsigned &Op0,
281                                     bool isCall, bool inReg) {
282  // FIXME: Only GlobalAddress for now.
283  GlobalValue *GV = dyn_cast<GlobalValue>(V);
284  if (!GV)
285    return false;
286
287  if (Subtarget->GVRequiresExtraLoad(GV, TM, isCall)) {
288    // Issue load from stub if necessary.
289    unsigned Opc = 0;
290    const TargetRegisterClass *RC = NULL;
291    if (TLI.getPointerTy() == MVT::i32) {
292      Opc = X86::MOV32rm;
293      RC  = X86::GR32RegisterClass;
294    } else {
295      Opc = X86::MOV64rm;
296      RC  = X86::GR64RegisterClass;
297    }
298    Op0 = createResultReg(RC);
299    X86AddressMode AM;
300    AM.GV = GV;
301    addFullAddress(BuildMI(MBB, TII.get(Opc), Op0), AM);
302    // Prevent loading GV stub multiple times in same MBB.
303    LocalValueMap[V] = Op0;
304  } else if (inReg) {
305    unsigned Opc = 0;
306    const TargetRegisterClass *RC = NULL;
307    if (TLI.getPointerTy() == MVT::i32) {
308      Opc = X86::LEA32r;
309      RC  = X86::GR32RegisterClass;
310    } else {
311      Opc = X86::LEA64r;
312      RC  = X86::GR64RegisterClass;
313    }
314    Op0 = createResultReg(RC);
315    X86AddressMode AM;
316    AM.GV = GV;
317    addFullAddress(BuildMI(MBB, TII.get(Opc), Op0), AM);
318    // Prevent materializing GV address multiple times in same MBB.
319    LocalValueMap[V] = Op0;
320  }
321
322  return true;
323}
324
325/// X86SelectAddress - Attempt to fill in an address from the given value.
326///
327bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM) {
328  // Look past bitcasts.
329  if (const BitCastInst *BC = dyn_cast<BitCastInst>(V))
330    return X86SelectAddress(BC->getOperand(0), AM);
331
332  if (const AllocaInst *A = dyn_cast<AllocaInst>(V)) {
333    DenseMap<const AllocaInst*, int>::iterator SI = StaticAllocaMap.find(A);
334    if (SI == StaticAllocaMap.end())
335      return false;
336    AM.BaseType = X86AddressMode::FrameIndexBase;
337    AM.Base.FrameIndex = SI->second;
338  } else if (unsigned Ptr = lookUpRegForValue(V)) {
339    AM.Base.Reg = Ptr;
340  } else {
341    // Handle constant address.
342    // FIXME: If load type is something we can't handle, this can result in
343    // a dead stub load instruction.
344    if (isa<Constant>(V) && X86SelectConstAddr(V, AM.Base.Reg)) {
345      if (AM.Base.Reg == 0)
346        AM.GV = cast<GlobalValue>(V);
347    } else {
348      AM.Base.Reg = getRegForValue(V);
349      if (AM.Base.Reg == 0)
350        // Unhandled operand. Halt "fast" selection and bail.
351        return false;
352    }
353  }
354
355  return true;
356}
357
358/// X86SelectStore - Select and emit code to implement store instructions.
359bool X86FastISel::X86SelectStore(Instruction* I) {
360  MVT VT;
361  if (!isTypeLegal(I->getOperand(0)->getType(), TLI, VT))
362    return false;
363  unsigned Val = getRegForValue(I->getOperand(0));
364  if (Val == 0)
365    // Unhandled operand. Halt "fast" selection and bail.
366    return false;
367
368  X86AddressMode AM;
369  if (!X86SelectAddress(I->getOperand(1), AM))
370    return false;
371
372  return X86FastEmitStore(VT, Val, AM);
373}
374
375/// X86SelectLoad - Select and emit code to implement load instructions.
376///
377bool X86FastISel::X86SelectLoad(Instruction *I)  {
378  MVT VT;
379  if (!isTypeLegal(I->getType(), TLI, VT))
380    return false;
381
382  X86AddressMode AM;
383  if (!X86SelectAddress(I->getOperand(0), AM))
384    return false;
385
386  unsigned ResultReg = 0;
387  if (X86FastEmitLoad(VT, AM, ResultReg)) {
388    UpdateValueMap(I, ResultReg);
389    return true;
390  }
391  return false;
392}
393
394bool X86FastISel::X86SelectCmp(Instruction *I) {
395  CmpInst *CI = cast<CmpInst>(I);
396
397  MVT VT = TLI.getValueType(I->getOperand(0)->getType());
398  if (!TLI.isTypeLegal(VT))
399    return false;
400
401  unsigned Op0Reg = getRegForValue(CI->getOperand(0));
402  if (Op0Reg == 0) return false;
403  unsigned Op1Reg = getRegForValue(CI->getOperand(1));
404  if (Op1Reg == 0) return false;
405
406  unsigned Opc;
407  switch (VT.getSimpleVT()) {
408  case MVT::i8: Opc = X86::CMP8rr; break;
409  case MVT::i16: Opc = X86::CMP16rr; break;
410  case MVT::i32: Opc = X86::CMP32rr; break;
411  case MVT::i64: Opc = X86::CMP64rr; break;
412  case MVT::f32: Opc = X86::UCOMISSrr; break;
413  case MVT::f64: Opc = X86::UCOMISDrr; break;
414  default: return false;
415  }
416
417  unsigned ResultReg = createResultReg(&X86::GR8RegClass);
418  switch (CI->getPredicate()) {
419  case CmpInst::FCMP_OEQ: {
420    unsigned EReg = createResultReg(&X86::GR8RegClass);
421    unsigned NPReg = createResultReg(&X86::GR8RegClass);
422    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
423    BuildMI(MBB, TII.get(X86::SETEr), EReg);
424    BuildMI(MBB, TII.get(X86::SETNPr), NPReg);
425    BuildMI(MBB, TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
426    break;
427  }
428  case CmpInst::FCMP_UNE: {
429    unsigned NEReg = createResultReg(&X86::GR8RegClass);
430    unsigned PReg = createResultReg(&X86::GR8RegClass);
431    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
432    BuildMI(MBB, TII.get(X86::SETNEr), NEReg);
433    BuildMI(MBB, TII.get(X86::SETPr), PReg);
434    BuildMI(MBB, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg);
435    break;
436  }
437  case CmpInst::FCMP_OGT:
438    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
439    BuildMI(MBB, TII.get(X86::SETAr), ResultReg);
440    break;
441  case CmpInst::FCMP_OGE:
442    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
443    BuildMI(MBB, TII.get(X86::SETAEr), ResultReg);
444    break;
445  case CmpInst::FCMP_OLT:
446    BuildMI(MBB, TII.get(Opc)).addReg(Op1Reg).addReg(Op0Reg);
447    BuildMI(MBB, TII.get(X86::SETAr), ResultReg);
448    break;
449  case CmpInst::FCMP_OLE:
450    BuildMI(MBB, TII.get(Opc)).addReg(Op1Reg).addReg(Op0Reg);
451    BuildMI(MBB, TII.get(X86::SETAEr), ResultReg);
452    break;
453  case CmpInst::FCMP_ONE:
454    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
455    BuildMI(MBB, TII.get(X86::SETNEr), ResultReg);
456    break;
457  case CmpInst::FCMP_ORD:
458    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
459    BuildMI(MBB, TII.get(X86::SETNPr), ResultReg);
460    break;
461  case CmpInst::FCMP_UNO:
462    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
463    BuildMI(MBB, TII.get(X86::SETPr), ResultReg);
464    break;
465  case CmpInst::FCMP_UEQ:
466    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
467    BuildMI(MBB, TII.get(X86::SETEr), ResultReg);
468    break;
469  case CmpInst::FCMP_UGT:
470    BuildMI(MBB, TII.get(Opc)).addReg(Op1Reg).addReg(Op0Reg);
471    BuildMI(MBB, TII.get(X86::SETBr), ResultReg);
472    break;
473  case CmpInst::FCMP_UGE:
474    BuildMI(MBB, TII.get(Opc)).addReg(Op1Reg).addReg(Op0Reg);
475    BuildMI(MBB, TII.get(X86::SETBEr), ResultReg);
476    break;
477  case CmpInst::FCMP_ULT:
478    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
479    BuildMI(MBB, TII.get(X86::SETBr), ResultReg);
480    break;
481  case CmpInst::FCMP_ULE:
482    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
483    BuildMI(MBB, TII.get(X86::SETBEr), ResultReg);
484    break;
485  case CmpInst::ICMP_EQ:
486    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
487    BuildMI(MBB, TII.get(X86::SETEr), ResultReg);
488    break;
489  case CmpInst::ICMP_NE:
490    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
491    BuildMI(MBB, TII.get(X86::SETNEr), ResultReg);
492    break;
493  case CmpInst::ICMP_UGT:
494    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
495    BuildMI(MBB, TII.get(X86::SETAr), ResultReg);
496    break;
497  case CmpInst::ICMP_UGE:
498    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
499    BuildMI(MBB, TII.get(X86::SETAEr), ResultReg);
500    break;
501  case CmpInst::ICMP_ULT:
502    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
503    BuildMI(MBB, TII.get(X86::SETBr), ResultReg);
504    break;
505  case CmpInst::ICMP_ULE:
506    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
507    BuildMI(MBB, TII.get(X86::SETBEr), ResultReg);
508    break;
509  case CmpInst::ICMP_SGT:
510    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
511    BuildMI(MBB, TII.get(X86::SETGr), ResultReg);
512    break;
513  case CmpInst::ICMP_SGE:
514    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
515    BuildMI(MBB, TII.get(X86::SETGEr), ResultReg);
516    break;
517  case CmpInst::ICMP_SLT:
518    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
519    BuildMI(MBB, TII.get(X86::SETLr), ResultReg);
520    break;
521  case CmpInst::ICMP_SLE:
522    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
523    BuildMI(MBB, TII.get(X86::SETLEr), ResultReg);
524    break;
525  default:
526    return false;
527  }
528
529  UpdateValueMap(I, ResultReg);
530  return true;
531}
532
533bool X86FastISel::X86SelectZExt(Instruction *I) {
534  // Special-case hack: The only i1 values we know how to produce currently
535  // set the upper bits of an i8 value to zero.
536  if (I->getType() == Type::Int8Ty &&
537      I->getOperand(0)->getType() == Type::Int1Ty) {
538    unsigned ResultReg = getRegForValue(I->getOperand(0));
539    if (ResultReg == 0) return false;
540    UpdateValueMap(I, ResultReg);
541    return true;
542  }
543
544  return false;
545}
546
547bool X86FastISel::X86SelectBranch(Instruction *I) {
548  BranchInst *BI = cast<BranchInst>(I);
549  // Unconditional branches are selected by tablegen-generated code.
550  unsigned OpReg = getRegForValue(BI->getCondition());
551  if (OpReg == 0) return false;
552  MachineBasicBlock *TrueMBB = MBBMap[BI->getSuccessor(0)];
553  MachineBasicBlock *FalseMBB = MBBMap[BI->getSuccessor(1)];
554
555  BuildMI(MBB, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg);
556  BuildMI(MBB, TII.get(X86::JNE)).addMBB(TrueMBB);
557  BuildMI(MBB, TII.get(X86::JMP)).addMBB(FalseMBB);
558
559  MBB->addSuccessor(TrueMBB);
560  MBB->addSuccessor(FalseMBB);
561
562  return true;
563}
564
565bool X86FastISel::X86SelectShift(Instruction *I) {
566  unsigned CReg = 0;
567  unsigned Opc = 0;
568  const TargetRegisterClass *RC = NULL;
569  if (I->getType() == Type::Int8Ty) {
570    CReg = X86::CL;
571    RC = &X86::GR8RegClass;
572    switch (I->getOpcode()) {
573    case Instruction::LShr: Opc = X86::SHR8rCL; break;
574    case Instruction::AShr: Opc = X86::SAR8rCL; break;
575    case Instruction::Shl:  Opc = X86::SHL8rCL; break;
576    default: return false;
577    }
578  } else if (I->getType() == Type::Int16Ty) {
579    CReg = X86::CX;
580    RC = &X86::GR16RegClass;
581    switch (I->getOpcode()) {
582    case Instruction::LShr: Opc = X86::SHR16rCL; break;
583    case Instruction::AShr: Opc = X86::SAR16rCL; break;
584    case Instruction::Shl:  Opc = X86::SHL16rCL; break;
585    default: return false;
586    }
587  } else if (I->getType() == Type::Int32Ty) {
588    CReg = X86::ECX;
589    RC = &X86::GR32RegClass;
590    switch (I->getOpcode()) {
591    case Instruction::LShr: Opc = X86::SHR32rCL; break;
592    case Instruction::AShr: Opc = X86::SAR32rCL; break;
593    case Instruction::Shl:  Opc = X86::SHL32rCL; break;
594    default: return false;
595    }
596  } else if (I->getType() == Type::Int64Ty) {
597    CReg = X86::RCX;
598    RC = &X86::GR64RegClass;
599    switch (I->getOpcode()) {
600    case Instruction::LShr: Opc = X86::SHR64rCL; break;
601    case Instruction::AShr: Opc = X86::SAR64rCL; break;
602    case Instruction::Shl:  Opc = X86::SHL64rCL; break;
603    default: return false;
604    }
605  } else {
606    return false;
607  }
608
609  MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
610  if (VT == MVT::Other || !TLI.isTypeLegal(VT))
611    return false;
612
613  unsigned Op0Reg = getRegForValue(I->getOperand(0));
614  if (Op0Reg == 0) return false;
615  unsigned Op1Reg = getRegForValue(I->getOperand(1));
616  if (Op1Reg == 0) return false;
617  TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC);
618  unsigned ResultReg = createResultReg(RC);
619  BuildMI(MBB, TII.get(Opc), ResultReg).addReg(Op0Reg);
620  UpdateValueMap(I, ResultReg);
621  return true;
622}
623
624bool X86FastISel::X86SelectSelect(Instruction *I) {
625  const Type *Ty = I->getType();
626  if (isa<PointerType>(Ty))
627    Ty = TLI.getTargetData()->getIntPtrType();
628
629  unsigned Opc = 0;
630  const TargetRegisterClass *RC = NULL;
631  if (Ty == Type::Int16Ty) {
632    Opc = X86::CMOVE16rr;
633    RC = &X86::GR16RegClass;
634  } else if (Ty == Type::Int32Ty) {
635    Opc = X86::CMOVE32rr;
636    RC = &X86::GR32RegClass;
637  } else if (Ty == Type::Int64Ty) {
638    Opc = X86::CMOVE64rr;
639    RC = &X86::GR64RegClass;
640  } else {
641    return false;
642  }
643
644  MVT VT = MVT::getMVT(Ty, /*HandleUnknown=*/true);
645  if (VT == MVT::Other || !TLI.isTypeLegal(VT))
646    return false;
647
648  unsigned Op0Reg = getRegForValue(I->getOperand(0));
649  if (Op0Reg == 0) return false;
650  unsigned Op1Reg = getRegForValue(I->getOperand(1));
651  if (Op1Reg == 0) return false;
652  unsigned Op2Reg = getRegForValue(I->getOperand(2));
653  if (Op2Reg == 0) return false;
654
655  BuildMI(MBB, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg);
656  unsigned ResultReg = createResultReg(RC);
657  BuildMI(MBB, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg);
658  UpdateValueMap(I, ResultReg);
659  return true;
660}
661
662bool X86FastISel::X86SelectFPExt(Instruction *I) {
663  if (Subtarget->hasSSE2()) {
664    if (I->getType() == Type::DoubleTy) {
665      Value *V = I->getOperand(0);
666      if (V->getType() == Type::FloatTy) {
667        unsigned OpReg = getRegForValue(V);
668        if (OpReg == 0) return false;
669        unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
670        BuildMI(MBB, TII.get(X86::CVTSS2SDrr), ResultReg).addReg(OpReg);
671        UpdateValueMap(I, ResultReg);
672        return true;
673      }
674    }
675  }
676
677  return false;
678}
679
680bool X86FastISel::X86SelectFPTrunc(Instruction *I) {
681  if (Subtarget->hasSSE2()) {
682    if (I->getType() == Type::FloatTy) {
683      Value *V = I->getOperand(0);
684      if (V->getType() == Type::DoubleTy) {
685        unsigned OpReg = getRegForValue(V);
686        if (OpReg == 0) return false;
687        unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
688        BuildMI(MBB, TII.get(X86::CVTSD2SSrr), ResultReg).addReg(OpReg);
689        UpdateValueMap(I, ResultReg);
690        return true;
691      }
692    }
693  }
694
695  return false;
696}
697
698bool X86FastISel::X86SelectTrunc(Instruction *I) {
699  if (Subtarget->is64Bit())
700    // All other cases should be handled by the tblgen generated code.
701    return false;
702  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
703  MVT DstVT = TLI.getValueType(I->getType());
704  if (DstVT != MVT::i8)
705    // All other cases should be handled by the tblgen generated code.
706    return false;
707  if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
708    // All other cases should be handled by the tblgen generated code.
709    return false;
710
711  unsigned InputReg = getRegForValue(I->getOperand(0));
712  if (!InputReg)
713    // Unhandled operand.  Halt "fast" selection and bail.
714    return false;
715
716  // First issue a copy to GR16_ or GR32_.
717  unsigned CopyOpc = (SrcVT == MVT::i16) ? X86::MOV16to16_ : X86::MOV32to32_;
718  const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
719    ? X86::GR16_RegisterClass : X86::GR32_RegisterClass;
720  unsigned CopyReg = createResultReg(CopyRC);
721  BuildMI(MBB, TII.get(CopyOpc), CopyReg).addReg(InputReg);
722
723  // Then issue an extract_subreg.
724  unsigned ResultReg = FastEmitInst_extractsubreg(CopyReg,1); // x86_subreg_8bit
725  if (!ResultReg)
726    return false;
727
728  UpdateValueMap(I, ResultReg);
729  return true;
730}
731
732bool X86FastISel::X86SelectCall(Instruction *I) {
733  CallInst *CI = cast<CallInst>(I);
734  Value *Callee = I->getOperand(0);
735
736  // Can't handle inline asm yet.
737  if (isa<InlineAsm>(Callee))
738    return false;
739
740  // FIXME: Handle some intrinsics.
741  if (Function *F = CI->getCalledFunction()) {
742    if (F->isDeclaration() &&F->getIntrinsicID())
743      return false;
744  }
745
746  // Materialize callee address in a register. FIXME: GV address can be
747  // handled with a CALLpcrel32 instead.
748  unsigned CalleeOp = getRegForValue(Callee);
749  if (CalleeOp == 0) {
750    if (!isa<Constant>(Callee) || !X86SelectConstAddr(Callee, CalleeOp, true))
751      // Unhandled operand. Halt "fast" selection and bail.
752      return false;
753  }
754
755  // Handle only C and fastcc calling conventions for now.
756  CallSite CS(CI);
757  unsigned CC = CS.getCallingConv();
758  if (CC != CallingConv::C &&
759      CC != CallingConv::Fast &&
760      CC != CallingConv::X86_FastCall)
761    return false;
762
763  // Let SDISel handle vararg functions.
764  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
765  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
766  if (FTy->isVarArg())
767    return false;
768
769  // Handle *simple* calls for now.
770  const Type *RetTy = CS.getType();
771  MVT RetVT;
772  if (!isTypeLegal(RetTy, TLI, RetVT, true))
773    return false;
774
775  // Allow calls which produce i1 results.
776  bool AndToI1 = false;
777  if (RetVT == MVT::i1) {
778    RetVT = MVT::i8;
779    AndToI1 = true;
780  }
781
782  // Deal with call operands first.
783  SmallVector<unsigned, 4> Args;
784  SmallVector<MVT, 4> ArgVTs;
785  SmallVector<ISD::ArgFlagsTy, 4> ArgFlags;
786  Args.reserve(CS.arg_size());
787  ArgVTs.reserve(CS.arg_size());
788  ArgFlags.reserve(CS.arg_size());
789  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
790       i != e; ++i) {
791    unsigned Arg = getRegForValue(*i);
792    if (Arg == 0)
793      return false;
794    ISD::ArgFlagsTy Flags;
795    unsigned AttrInd = i - CS.arg_begin() + 1;
796    if (CS.paramHasAttr(AttrInd, ParamAttr::SExt))
797      Flags.setSExt();
798    if (CS.paramHasAttr(AttrInd, ParamAttr::ZExt))
799      Flags.setZExt();
800
801    // FIXME: Only handle *easy* calls for now.
802    if (CS.paramHasAttr(AttrInd, ParamAttr::InReg) ||
803        CS.paramHasAttr(AttrInd, ParamAttr::StructRet) ||
804        CS.paramHasAttr(AttrInd, ParamAttr::Nest) ||
805        CS.paramHasAttr(AttrInd, ParamAttr::ByVal))
806      return false;
807
808    const Type *ArgTy = (*i)->getType();
809    MVT ArgVT;
810    if (!isTypeLegal(ArgTy, TLI, ArgVT))
811      return false;
812    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
813    Flags.setOrigAlign(OriginalAlignment);
814
815    Args.push_back(Arg);
816    ArgVTs.push_back(ArgVT);
817    ArgFlags.push_back(Flags);
818  }
819
820  // Analyze operands of the call, assigning locations to each operand.
821  SmallVector<CCValAssign, 16> ArgLocs;
822  CCState CCInfo(CC, false, TM, ArgLocs);
823  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
824
825  // Get a count of how many bytes are to be pushed on the stack.
826  unsigned NumBytes = CCInfo.getNextStackOffset();
827
828  // Issue CALLSEQ_START
829  BuildMI(MBB, TII.get(X86::ADJCALLSTACKDOWN)).addImm(NumBytes);
830
831  // Process argumenet: walk the register/memloc assignments, inserting
832  // copies / loads.
833  SmallVector<unsigned, 4> RegArgs;
834  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
835    CCValAssign &VA = ArgLocs[i];
836    unsigned Arg = Args[VA.getValNo()];
837    MVT ArgVT = ArgVTs[VA.getValNo()];
838
839    // Promote the value if needed.
840    switch (VA.getLocInfo()) {
841    default: assert(0 && "Unknown loc info!");
842    case CCValAssign::Full: break;
843    case CCValAssign::SExt: {
844      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
845                                       Arg, ArgVT, Arg);
846      assert(Emitted && "Failed to emit a sext!");
847      ArgVT = VA.getLocVT();
848      break;
849    }
850    case CCValAssign::ZExt: {
851      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
852                                       Arg, ArgVT, Arg);
853      assert(Emitted && "Failed to emit a zext!");
854      ArgVT = VA.getLocVT();
855      break;
856    }
857    case CCValAssign::AExt: {
858      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
859                                       Arg, ArgVT, Arg);
860      if (!Emitted)
861        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
862                                         Arg, ArgVT, Arg);
863      if (!Emitted)
864        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
865                                    Arg, ArgVT, Arg);
866
867      assert(Emitted && "Failed to emit a aext!");
868      ArgVT = VA.getLocVT();
869      break;
870    }
871    }
872
873    if (VA.isRegLoc()) {
874      TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT);
875      bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(),
876                                      Arg, RC, RC);
877      assert(Emitted && "Failed to emit a copy instruction!");
878      RegArgs.push_back(VA.getLocReg());
879    } else {
880      unsigned LocMemOffset = VA.getLocMemOffset();
881      X86AddressMode AM;
882      AM.Base.Reg = StackPtr;
883      AM.Disp = LocMemOffset;
884      X86FastEmitStore(ArgVT, Arg, AM);
885    }
886  }
887
888  // Issue the call.
889  unsigned CallOpc = CalleeOp
890    ? (Subtarget->is64Bit() ? X86::CALL64r       : X86::CALL32r)
891    : (Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32);
892  MachineInstrBuilder MIB = CalleeOp
893    ? BuildMI(MBB, TII.get(CallOpc)).addReg(CalleeOp)
894    :BuildMI(MBB, TII.get(CallOpc)).addGlobalAddress(cast<GlobalValue>(Callee));
895  // Add implicit physical register uses to the call.
896  while (!RegArgs.empty()) {
897    MIB.addReg(RegArgs.back());
898    RegArgs.pop_back();
899  }
900
901  // Issue CALLSEQ_END
902  BuildMI(MBB, TII.get(X86::ADJCALLSTACKUP)).addImm(NumBytes).addImm(0);
903
904  // Now handle call return value (if any).
905  if (RetVT.getSimpleVT() != MVT::isVoid) {
906    SmallVector<CCValAssign, 16> RVLocs;
907    CCState CCInfo(CC, false, TM, RVLocs);
908    CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
909
910    // Copy all of the result registers out of their specified physreg.
911    assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
912    MVT CopyVT = RVLocs[0].getValVT();
913    TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
914    TargetRegisterClass *SrcRC = DstRC;
915
916    // If this is a call to a function that returns an fp value on the x87 fp
917    // stack, but where we prefer to use the value in xmm registers, copy it
918    // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
919    if ((RVLocs[0].getLocReg() == X86::ST0 ||
920         RVLocs[0].getLocReg() == X86::ST1) &&
921        isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
922      CopyVT = MVT::f80;
923      SrcRC = X86::RSTRegisterClass;
924      DstRC = X86::RFP80RegisterClass;
925    }
926
927    unsigned ResultReg = createResultReg(DstRC);
928    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
929                                    RVLocs[0].getLocReg(), DstRC, SrcRC);
930    assert(Emitted && "Failed to emit a copy instruction!");
931    if (CopyVT != RVLocs[0].getValVT()) {
932      // Round the F80 the right size, which also moves to the appropriate xmm
933      // register. This is accomplished by storing the F80 value in memory and
934      // then loading it back. Ewww...
935      MVT ResVT = RVLocs[0].getValVT();
936      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
937      unsigned MemSize = ResVT.getSizeInBits()/8;
938      int FI = MFI.CreateStackObject(MemSize, MemSize);
939      addFrameReference(BuildMI(MBB, TII.get(Opc)), FI).addReg(ResultReg);
940      DstRC = ResVT == MVT::f32
941        ? X86::FR32RegisterClass : X86::FR64RegisterClass;
942      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
943      ResultReg = createResultReg(DstRC);
944      addFrameReference(BuildMI(MBB, TII.get(Opc), ResultReg), FI);
945    }
946
947    if (AndToI1) {
948      // Mask out all but lowest bit for some call which produces an i1.
949      unsigned AndResult = createResultReg(X86::GR8RegisterClass);
950      BuildMI(MBB, TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
951      ResultReg = AndResult;
952    }
953
954    UpdateValueMap(I, ResultReg);
955  }
956
957  return true;
958}
959
960
961bool
962X86FastISel::TargetSelectInstruction(Instruction *I)  {
963  switch (I->getOpcode()) {
964  default: break;
965  case Instruction::Load:
966    return X86SelectLoad(I);
967  case Instruction::Store:
968    return X86SelectStore(I);
969  case Instruction::ICmp:
970  case Instruction::FCmp:
971    return X86SelectCmp(I);
972  case Instruction::ZExt:
973    return X86SelectZExt(I);
974  case Instruction::Br:
975    return X86SelectBranch(I);
976  case Instruction::Call:
977    return X86SelectCall(I);
978  case Instruction::LShr:
979  case Instruction::AShr:
980  case Instruction::Shl:
981    return X86SelectShift(I);
982  case Instruction::Select:
983    return X86SelectSelect(I);
984  case Instruction::Trunc:
985    return X86SelectTrunc(I);
986  case Instruction::FPExt:
987    return X86SelectFPExt(I);
988  case Instruction::FPTrunc:
989    return X86SelectFPTrunc(I);
990  }
991
992  return false;
993}
994
995unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
996  // Can't handle PIC-mode yet.
997  if (TM.getRelocationModel() == Reloc::PIC_)
998    return 0;
999
1000  MVT VT;
1001  if (!isTypeLegal(C->getType(), TLI, VT))
1002    return false;
1003
1004  // Get opcode and regclass of the output for the given load instruction.
1005  unsigned Opc = 0;
1006  const TargetRegisterClass *RC = NULL;
1007  switch (VT.getSimpleVT()) {
1008  default: return false;
1009  case MVT::i8:
1010    Opc = X86::MOV8rm;
1011    RC  = X86::GR8RegisterClass;
1012    break;
1013  case MVT::i16:
1014    Opc = X86::MOV16rm;
1015    RC  = X86::GR16RegisterClass;
1016    break;
1017  case MVT::i32:
1018    Opc = X86::MOV32rm;
1019    RC  = X86::GR32RegisterClass;
1020    break;
1021  case MVT::i64:
1022    // Must be in x86-64 mode.
1023    Opc = X86::MOV64rm;
1024    RC  = X86::GR64RegisterClass;
1025    break;
1026  case MVT::f32:
1027    if (Subtarget->hasSSE1()) {
1028      Opc = X86::MOVSSrm;
1029      RC  = X86::FR32RegisterClass;
1030    } else {
1031      Opc = X86::LD_Fp32m;
1032      RC  = X86::RFP32RegisterClass;
1033    }
1034    break;
1035  case MVT::f64:
1036    if (Subtarget->hasSSE2()) {
1037      Opc = X86::MOVSDrm;
1038      RC  = X86::FR64RegisterClass;
1039    } else {
1040      Opc = X86::LD_Fp64m;
1041      RC  = X86::RFP64RegisterClass;
1042    }
1043    break;
1044  case MVT::f80:
1045    Opc = X86::LD_Fp80m;
1046    RC  = X86::RFP80RegisterClass;
1047    break;
1048  }
1049
1050  unsigned ResultReg = createResultReg(RC);
1051  if (isa<GlobalValue>(C)) {
1052    if (X86SelectConstAddr(C, ResultReg, false, true))
1053      return ResultReg;
1054    return 0;
1055  }
1056
1057  // MachineConstantPool wants an explicit alignment.
1058  unsigned Align =
1059               TM.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1060  if (Align == 0) {
1061    // Alignment of vector types.  FIXME!
1062    Align = TM.getTargetData()->getABITypeSize(C->getType());
1063    Align = Log2_64(Align);
1064  }
1065
1066  unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
1067  addConstantPoolReference(BuildMI(MBB, TII.get(Opc), ResultReg), MCPOffset);
1068  return ResultReg;
1069}
1070
1071unsigned X86FastISel::TargetMaterializeAlloca(AllocaInst *C) {
1072  X86AddressMode AM;
1073  if (!X86SelectAddress(C, AM))
1074    return 0;
1075  unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
1076  TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
1077  unsigned ResultReg = createResultReg(RC);
1078  addFullAddress(BuildMI(MBB, TII.get(Opc), ResultReg), AM);
1079  return ResultReg;
1080}
1081
1082namespace llvm {
1083  llvm::FastISel *X86::createFastISel(MachineFunction &mf,
1084                        DenseMap<const Value *, unsigned> &vm,
1085                        DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
1086                        DenseMap<const AllocaInst *, int> &am) {
1087    return new X86FastISel(mf, vm, bm, am);
1088  }
1089}
1090