X86FastISel.cpp revision bd13fb62541136a4891d702feec8b7aba5bf695a
1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/CodeGen/FastISel.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/Support/CallSite.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/GetElementPtrTypeIterator.h"
34#include "llvm/Target/TargetOptions.h"
35using namespace llvm;
36
37namespace {
38
39class X86FastISel : public FastISel {
40  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
41  /// make the right decision when generating code for different targets.
42  const X86Subtarget *Subtarget;
43
44  /// StackPtr - Register used as the stack pointer.
45  ///
46  unsigned StackPtr;
47
48  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
49  /// floating point ops.
50  /// When SSE is available, use it for f32 operations.
51  /// When SSE2 is available, use it for f64 operations.
52  bool X86ScalarSSEf64;
53  bool X86ScalarSSEf32;
54
55public:
56  explicit X86FastISel(MachineFunction &mf,
57                       MachineModuleInfo *mmi,
58                       DwarfWriter *dw,
59                       DenseMap<const Value *, unsigned> &vm,
60                       DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
61                       DenseMap<const AllocaInst *, int> &am
62#ifndef NDEBUG
63                       , SmallSet<Instruction*, 8> &cil
64#endif
65                       )
66    : FastISel(mf, mmi, dw, vm, bm, am
67#ifndef NDEBUG
68               , cil
69#endif
70               ) {
71    Subtarget = &TM.getSubtarget<X86Subtarget>();
72    StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
73    X86ScalarSSEf64 = Subtarget->hasSSE2();
74    X86ScalarSSEf32 = Subtarget->hasSSE1();
75  }
76
77  virtual bool TargetSelectInstruction(Instruction *I);
78
79#include "X86GenFastISel.inc"
80
81private:
82  bool X86FastEmitCompare(Value *LHS, Value *RHS, EVT VT);
83
84  bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
85
86  bool X86FastEmitStore(EVT VT, Value *Val,
87                        const X86AddressMode &AM);
88  bool X86FastEmitStore(EVT VT, unsigned Val,
89                        const X86AddressMode &AM);
90
91  bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
92                         unsigned &ResultReg);
93
94  bool X86SelectAddress(Value *V, X86AddressMode &AM);
95  bool X86SelectCallAddress(Value *V, X86AddressMode &AM);
96
97  bool X86SelectLoad(Instruction *I);
98
99  bool X86SelectStore(Instruction *I);
100
101  bool X86SelectCmp(Instruction *I);
102
103  bool X86SelectZExt(Instruction *I);
104
105  bool X86SelectBranch(Instruction *I);
106
107  bool X86SelectShift(Instruction *I);
108
109  bool X86SelectSelect(Instruction *I);
110
111  bool X86SelectTrunc(Instruction *I);
112
113  bool X86SelectFPExt(Instruction *I);
114  bool X86SelectFPTrunc(Instruction *I);
115
116  bool X86SelectExtractValue(Instruction *I);
117
118  bool X86VisitIntrinsicCall(IntrinsicInst &I);
119  bool X86SelectCall(Instruction *I);
120
121  CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool isTailCall = false);
122
123  const X86InstrInfo *getInstrInfo() const {
124    return getTargetMachine()->getInstrInfo();
125  }
126  const X86TargetMachine *getTargetMachine() const {
127    return static_cast<const X86TargetMachine *>(&TM);
128  }
129
130  unsigned TargetMaterializeConstant(Constant *C);
131
132  unsigned TargetMaterializeAlloca(AllocaInst *C);
133
134  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
135  /// computed in an SSE register, not on the X87 floating point stack.
136  bool isScalarFPTypeInSSEReg(EVT VT) const {
137    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
138      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
139  }
140
141  bool isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1 = false);
142};
143
144} // end anonymous namespace.
145
146bool X86FastISel::isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1) {
147  VT = TLI.getValueType(Ty, /*HandleUnknown=*/true);
148  if (VT == MVT::Other || !VT.isSimple())
149    // Unhandled type. Halt "fast" selection and bail.
150    return false;
151
152  // For now, require SSE/SSE2 for performing floating-point operations,
153  // since x87 requires additional work.
154  if (VT == MVT::f64 && !X86ScalarSSEf64)
155     return false;
156  if (VT == MVT::f32 && !X86ScalarSSEf32)
157     return false;
158  // Similarly, no f80 support yet.
159  if (VT == MVT::f80)
160    return false;
161  // We only handle legal types. For example, on x86-32 the instruction
162  // selector contains all of the 64-bit instructions from x86-64,
163  // under the assumption that i64 won't be used if the target doesn't
164  // support it.
165  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
166}
167
168#include "X86GenCallingConv.inc"
169
170/// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
171/// convention.
172CCAssignFn *X86FastISel::CCAssignFnForCall(CallingConv::ID CC,
173                                           bool isTaillCall) {
174  if (Subtarget->is64Bit()) {
175    if (Subtarget->isTargetWin64())
176      return CC_X86_Win64_C;
177    else
178      return CC_X86_64_C;
179  }
180
181  if (CC == CallingConv::X86_FastCall)
182    return CC_X86_32_FastCall;
183  else if (CC == CallingConv::Fast)
184    return CC_X86_32_FastCC;
185  else
186    return CC_X86_32_C;
187}
188
189/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
190/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
191/// Return true and the result register by reference if it is possible.
192bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
193                                  unsigned &ResultReg) {
194  // Get opcode and regclass of the output for the given load instruction.
195  unsigned Opc = 0;
196  const TargetRegisterClass *RC = NULL;
197  switch (VT.getSimpleVT().SimpleTy) {
198  default: return false;
199  case MVT::i1:
200  case MVT::i8:
201    Opc = X86::MOV8rm;
202    RC  = X86::GR8RegisterClass;
203    break;
204  case MVT::i16:
205    Opc = X86::MOV16rm;
206    RC  = X86::GR16RegisterClass;
207    break;
208  case MVT::i32:
209    Opc = X86::MOV32rm;
210    RC  = X86::GR32RegisterClass;
211    break;
212  case MVT::i64:
213    // Must be in x86-64 mode.
214    Opc = X86::MOV64rm;
215    RC  = X86::GR64RegisterClass;
216    break;
217  case MVT::f32:
218    if (Subtarget->hasSSE1()) {
219      Opc = X86::MOVSSrm;
220      RC  = X86::FR32RegisterClass;
221    } else {
222      Opc = X86::LD_Fp32m;
223      RC  = X86::RFP32RegisterClass;
224    }
225    break;
226  case MVT::f64:
227    if (Subtarget->hasSSE2()) {
228      Opc = X86::MOVSDrm;
229      RC  = X86::FR64RegisterClass;
230    } else {
231      Opc = X86::LD_Fp64m;
232      RC  = X86::RFP64RegisterClass;
233    }
234    break;
235  case MVT::f80:
236    // No f80 support yet.
237    return false;
238  }
239
240  ResultReg = createResultReg(RC);
241  addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
242  return true;
243}
244
245/// X86FastEmitStore - Emit a machine instruction to store a value Val of
246/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
247/// and a displacement offset, or a GlobalAddress,
248/// i.e. V. Return true if it is possible.
249bool
250X86FastISel::X86FastEmitStore(EVT VT, unsigned Val,
251                              const X86AddressMode &AM) {
252  // Get opcode and regclass of the output for the given store instruction.
253  unsigned Opc = 0;
254  switch (VT.getSimpleVT().SimpleTy) {
255  case MVT::f80: // No f80 support yet.
256  default: return false;
257  case MVT::i1: {
258    // Mask out all but lowest bit.
259    unsigned AndResult = createResultReg(X86::GR8RegisterClass);
260    BuildMI(MBB, DL,
261            TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1);
262    Val = AndResult;
263  }
264  // FALLTHROUGH, handling i1 as i8.
265  case MVT::i8:  Opc = X86::MOV8mr;  break;
266  case MVT::i16: Opc = X86::MOV16mr; break;
267  case MVT::i32: Opc = X86::MOV32mr; break;
268  case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
269  case MVT::f32:
270    Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m;
271    break;
272  case MVT::f64:
273    Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m;
274    break;
275  }
276
277  addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM).addReg(Val);
278  return true;
279}
280
281bool X86FastISel::X86FastEmitStore(EVT VT, Value *Val,
282                                   const X86AddressMode &AM) {
283  // Handle 'null' like i32/i64 0.
284  if (isa<ConstantPointerNull>(Val))
285    Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext()));
286
287  // If this is a store of a simple constant, fold the constant into the store.
288  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
289    unsigned Opc = 0;
290    bool Signed = true;
291    switch (VT.getSimpleVT().SimpleTy) {
292    default: break;
293    case MVT::i1:  Signed = false;     // FALLTHROUGH to handle as i8.
294    case MVT::i8:  Opc = X86::MOV8mi;  break;
295    case MVT::i16: Opc = X86::MOV16mi; break;
296    case MVT::i32: Opc = X86::MOV32mi; break;
297    case MVT::i64:
298      // Must be a 32-bit sign extended value.
299      if ((int)CI->getSExtValue() == CI->getSExtValue())
300        Opc = X86::MOV64mi32;
301      break;
302    }
303
304    if (Opc) {
305      addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM)
306                             .addImm(Signed ? CI->getSExtValue() :
307                                              CI->getZExtValue());
308      return true;
309    }
310  }
311
312  unsigned ValReg = getRegForValue(Val);
313  if (ValReg == 0)
314    return false;
315
316  return X86FastEmitStore(VT, ValReg, AM);
317}
318
319/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
320/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
321/// ISD::SIGN_EXTEND).
322bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
323                                    unsigned Src, EVT SrcVT,
324                                    unsigned &ResultReg) {
325  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
326
327  if (RR != 0) {
328    ResultReg = RR;
329    return true;
330  } else
331    return false;
332}
333
334/// X86SelectAddress - Attempt to fill in an address from the given value.
335///
336bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM) {
337  User *U = NULL;
338  unsigned Opcode = Instruction::UserOp1;
339  if (Instruction *I = dyn_cast<Instruction>(V)) {
340    Opcode = I->getOpcode();
341    U = I;
342  } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
343    Opcode = C->getOpcode();
344    U = C;
345  }
346
347  switch (Opcode) {
348  default: break;
349  case Instruction::BitCast:
350    // Look past bitcasts.
351    return X86SelectAddress(U->getOperand(0), AM);
352
353  case Instruction::IntToPtr:
354    // Look past no-op inttoptrs.
355    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
356      return X86SelectAddress(U->getOperand(0), AM);
357    break;
358
359  case Instruction::PtrToInt:
360    // Look past no-op ptrtoints.
361    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
362      return X86SelectAddress(U->getOperand(0), AM);
363    break;
364
365  case Instruction::Alloca: {
366    // Do static allocas.
367    const AllocaInst *A = cast<AllocaInst>(V);
368    DenseMap<const AllocaInst*, int>::iterator SI = StaticAllocaMap.find(A);
369    if (SI != StaticAllocaMap.end()) {
370      AM.BaseType = X86AddressMode::FrameIndexBase;
371      AM.Base.FrameIndex = SI->second;
372      return true;
373    }
374    break;
375  }
376
377  case Instruction::Add: {
378    // Adds of constants are common and easy enough.
379    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
380      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
381      // They have to fit in the 32-bit signed displacement field though.
382      if (isInt32(Disp)) {
383        AM.Disp = (uint32_t)Disp;
384        return X86SelectAddress(U->getOperand(0), AM);
385      }
386    }
387    break;
388  }
389
390  case Instruction::GetElementPtr: {
391    // Pattern-match simple GEPs.
392    uint64_t Disp = (int32_t)AM.Disp;
393    unsigned IndexReg = AM.IndexReg;
394    unsigned Scale = AM.Scale;
395    gep_type_iterator GTI = gep_type_begin(U);
396    // Iterate through the indices, folding what we can. Constants can be
397    // folded, and one dynamic index can be handled, if the scale is supported.
398    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end();
399         i != e; ++i, ++GTI) {
400      Value *Op = *i;
401      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
402        const StructLayout *SL = TD.getStructLayout(STy);
403        unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
404        Disp += SL->getElementOffset(Idx);
405      } else {
406        uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
407        if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
408          // Constant-offset addressing.
409          Disp += CI->getSExtValue() * S;
410        } else if (IndexReg == 0 &&
411                   (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
412                   (S == 1 || S == 2 || S == 4 || S == 8)) {
413          // Scaled-index addressing.
414          Scale = S;
415          IndexReg = getRegForGEPIndex(Op);
416          if (IndexReg == 0)
417            return false;
418        } else
419          // Unsupported.
420          goto unsupported_gep;
421      }
422    }
423    // Check for displacement overflow.
424    if (!isInt32(Disp))
425      break;
426    // Ok, the GEP indices were covered by constant-offset and scaled-index
427    // addressing. Update the address state and move on to examining the base.
428    AM.IndexReg = IndexReg;
429    AM.Scale = Scale;
430    AM.Disp = (uint32_t)Disp;
431    return X86SelectAddress(U->getOperand(0), AM);
432  unsupported_gep:
433    // Ok, the GEP indices weren't all covered.
434    break;
435  }
436  }
437
438  // Handle constant address.
439  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
440    // Can't handle alternate code models yet.
441    if (TM.getCodeModel() != CodeModel::Small)
442      return false;
443
444    // RIP-relative addresses can't have additional register operands.
445    if (Subtarget->isPICStyleRIPRel() &&
446        (AM.Base.Reg != 0 || AM.IndexReg != 0))
447      return false;
448
449    // Can't handle TLS yet.
450    if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
451      if (GVar->isThreadLocal())
452        return false;
453
454    // Okay, we've committed to selecting this global. Set up the basic address.
455    AM.GV = GV;
456
457    // Allow the subtarget to classify the global.
458    unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
459
460    // If this reference is relative to the pic base, set it now.
461    if (isGlobalRelativeToPICBase(GVFlags)) {
462      // FIXME: How do we know Base.Reg is free??
463      AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(&MF);
464    }
465
466    // Unless the ABI requires an extra load, return a direct reference to
467    // the global.
468    if (!isGlobalStubReference(GVFlags)) {
469      if (Subtarget->isPICStyleRIPRel()) {
470        // Use rip-relative addressing if we can.  Above we verified that the
471        // base and index registers are unused.
472        assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
473        AM.Base.Reg = X86::RIP;
474      }
475      AM.GVOpFlags = GVFlags;
476      return true;
477    }
478
479    // Ok, we need to do a load from a stub.  If we've already loaded from this
480    // stub, reuse the loaded pointer, otherwise emit the load now.
481    DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
482    unsigned LoadReg;
483    if (I != LocalValueMap.end() && I->second != 0) {
484      LoadReg = I->second;
485    } else {
486      // Issue load from stub.
487      unsigned Opc = 0;
488      const TargetRegisterClass *RC = NULL;
489      X86AddressMode StubAM;
490      StubAM.Base.Reg = AM.Base.Reg;
491      StubAM.GV = GV;
492      StubAM.GVOpFlags = GVFlags;
493
494      if (TLI.getPointerTy() == MVT::i64) {
495        Opc = X86::MOV64rm;
496        RC  = X86::GR64RegisterClass;
497
498        if (Subtarget->isPICStyleRIPRel())
499          StubAM.Base.Reg = X86::RIP;
500      } else {
501        Opc = X86::MOV32rm;
502        RC  = X86::GR32RegisterClass;
503      }
504
505      LoadReg = createResultReg(RC);
506      addFullAddress(BuildMI(MBB, DL, TII.get(Opc), LoadReg), StubAM);
507
508      // Prevent loading GV stub multiple times in same MBB.
509      LocalValueMap[V] = LoadReg;
510    }
511
512    // Now construct the final address. Note that the Disp, Scale,
513    // and Index values may already be set here.
514    AM.Base.Reg = LoadReg;
515    AM.GV = 0;
516    return true;
517  }
518
519  // If all else fails, try to materialize the value in a register.
520  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
521    if (AM.Base.Reg == 0) {
522      AM.Base.Reg = getRegForValue(V);
523      return AM.Base.Reg != 0;
524    }
525    if (AM.IndexReg == 0) {
526      assert(AM.Scale == 1 && "Scale with no index!");
527      AM.IndexReg = getRegForValue(V);
528      return AM.IndexReg != 0;
529    }
530  }
531
532  return false;
533}
534
535/// X86SelectCallAddress - Attempt to fill in an address from the given value.
536///
537bool X86FastISel::X86SelectCallAddress(Value *V, X86AddressMode &AM) {
538  User *U = NULL;
539  unsigned Opcode = Instruction::UserOp1;
540  if (Instruction *I = dyn_cast<Instruction>(V)) {
541    Opcode = I->getOpcode();
542    U = I;
543  } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
544    Opcode = C->getOpcode();
545    U = C;
546  }
547
548  switch (Opcode) {
549  default: break;
550  case Instruction::BitCast:
551    // Look past bitcasts.
552    return X86SelectCallAddress(U->getOperand(0), AM);
553
554  case Instruction::IntToPtr:
555    // Look past no-op inttoptrs.
556    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
557      return X86SelectCallAddress(U->getOperand(0), AM);
558    break;
559
560  case Instruction::PtrToInt:
561    // Look past no-op ptrtoints.
562    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
563      return X86SelectCallAddress(U->getOperand(0), AM);
564    break;
565  }
566
567  // Handle constant address.
568  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
569    // Can't handle alternate code models yet.
570    if (TM.getCodeModel() != CodeModel::Small)
571      return false;
572
573    // RIP-relative addresses can't have additional register operands.
574    if (Subtarget->isPICStyleRIPRel() &&
575        (AM.Base.Reg != 0 || AM.IndexReg != 0))
576      return false;
577
578    // Can't handle TLS or DLLImport.
579    if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
580      if (GVar->isThreadLocal() || GVar->hasDLLImportLinkage())
581        return false;
582
583    // Okay, we've committed to selecting this global. Set up the basic address.
584    AM.GV = GV;
585
586    // No ABI requires an extra load for anything other than DLLImport, which
587    // we rejected above. Return a direct reference to the global.
588    if (Subtarget->isPICStyleRIPRel()) {
589      // Use rip-relative addressing if we can.  Above we verified that the
590      // base and index registers are unused.
591      assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
592      AM.Base.Reg = X86::RIP;
593    } else if (Subtarget->isPICStyleStubPIC()) {
594      AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
595    } else if (Subtarget->isPICStyleGOT()) {
596      AM.GVOpFlags = X86II::MO_GOTOFF;
597    }
598
599    return true;
600  }
601
602  // If all else fails, try to materialize the value in a register.
603  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
604    if (AM.Base.Reg == 0) {
605      AM.Base.Reg = getRegForValue(V);
606      return AM.Base.Reg != 0;
607    }
608    if (AM.IndexReg == 0) {
609      assert(AM.Scale == 1 && "Scale with no index!");
610      AM.IndexReg = getRegForValue(V);
611      return AM.IndexReg != 0;
612    }
613  }
614
615  return false;
616}
617
618
619/// X86SelectStore - Select and emit code to implement store instructions.
620bool X86FastISel::X86SelectStore(Instruction* I) {
621  EVT VT;
622  if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true))
623    return false;
624
625  X86AddressMode AM;
626  if (!X86SelectAddress(I->getOperand(1), AM))
627    return false;
628
629  return X86FastEmitStore(VT, I->getOperand(0), AM);
630}
631
632/// X86SelectLoad - Select and emit code to implement load instructions.
633///
634bool X86FastISel::X86SelectLoad(Instruction *I)  {
635  EVT VT;
636  if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true))
637    return false;
638
639  X86AddressMode AM;
640  if (!X86SelectAddress(I->getOperand(0), AM))
641    return false;
642
643  unsigned ResultReg = 0;
644  if (X86FastEmitLoad(VT, AM, ResultReg)) {
645    UpdateValueMap(I, ResultReg);
646    return true;
647  }
648  return false;
649}
650
651static unsigned X86ChooseCmpOpcode(EVT VT) {
652  switch (VT.getSimpleVT().SimpleTy) {
653  default:       return 0;
654  case MVT::i8:  return X86::CMP8rr;
655  case MVT::i16: return X86::CMP16rr;
656  case MVT::i32: return X86::CMP32rr;
657  case MVT::i64: return X86::CMP64rr;
658  case MVT::f32: return X86::UCOMISSrr;
659  case MVT::f64: return X86::UCOMISDrr;
660  }
661}
662
663/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
664/// of the comparison, return an opcode that works for the compare (e.g.
665/// CMP32ri) otherwise return 0.
666static unsigned X86ChooseCmpImmediateOpcode(EVT VT, ConstantInt *RHSC) {
667  switch (VT.getSimpleVT().SimpleTy) {
668  // Otherwise, we can't fold the immediate into this comparison.
669  default: return 0;
670  case MVT::i8: return X86::CMP8ri;
671  case MVT::i16: return X86::CMP16ri;
672  case MVT::i32: return X86::CMP32ri;
673  case MVT::i64:
674    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
675    // field.
676    if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
677      return X86::CMP64ri32;
678    return 0;
679  }
680}
681
682bool X86FastISel::X86FastEmitCompare(Value *Op0, Value *Op1, EVT VT) {
683  unsigned Op0Reg = getRegForValue(Op0);
684  if (Op0Reg == 0) return false;
685
686  // Handle 'null' like i32/i64 0.
687  if (isa<ConstantPointerNull>(Op1))
688    Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext()));
689
690  // We have two options: compare with register or immediate.  If the RHS of
691  // the compare is an immediate that we can fold into this compare, use
692  // CMPri, otherwise use CMPrr.
693  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
694    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
695      BuildMI(MBB, DL, TII.get(CompareImmOpc)).addReg(Op0Reg)
696                                          .addImm(Op1C->getSExtValue());
697      return true;
698    }
699  }
700
701  unsigned CompareOpc = X86ChooseCmpOpcode(VT);
702  if (CompareOpc == 0) return false;
703
704  unsigned Op1Reg = getRegForValue(Op1);
705  if (Op1Reg == 0) return false;
706  BuildMI(MBB, DL, TII.get(CompareOpc)).addReg(Op0Reg).addReg(Op1Reg);
707
708  return true;
709}
710
711bool X86FastISel::X86SelectCmp(Instruction *I) {
712  CmpInst *CI = cast<CmpInst>(I);
713
714  EVT VT;
715  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
716    return false;
717
718  unsigned ResultReg = createResultReg(&X86::GR8RegClass);
719  unsigned SetCCOpc;
720  bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
721  switch (CI->getPredicate()) {
722  case CmpInst::FCMP_OEQ: {
723    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
724      return false;
725
726    unsigned EReg = createResultReg(&X86::GR8RegClass);
727    unsigned NPReg = createResultReg(&X86::GR8RegClass);
728    BuildMI(MBB, DL, TII.get(X86::SETEr), EReg);
729    BuildMI(MBB, DL, TII.get(X86::SETNPr), NPReg);
730    BuildMI(MBB, DL,
731            TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
732    UpdateValueMap(I, ResultReg);
733    return true;
734  }
735  case CmpInst::FCMP_UNE: {
736    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
737      return false;
738
739    unsigned NEReg = createResultReg(&X86::GR8RegClass);
740    unsigned PReg = createResultReg(&X86::GR8RegClass);
741    BuildMI(MBB, DL, TII.get(X86::SETNEr), NEReg);
742    BuildMI(MBB, DL, TII.get(X86::SETPr), PReg);
743    BuildMI(MBB, DL, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg);
744    UpdateValueMap(I, ResultReg);
745    return true;
746  }
747  case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
748  case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
749  case CmpInst::FCMP_OLT: SwapArgs = true;  SetCCOpc = X86::SETAr;  break;
750  case CmpInst::FCMP_OLE: SwapArgs = true;  SetCCOpc = X86::SETAEr; break;
751  case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
752  case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
753  case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr;  break;
754  case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr;  break;
755  case CmpInst::FCMP_UGT: SwapArgs = true;  SetCCOpc = X86::SETBr;  break;
756  case CmpInst::FCMP_UGE: SwapArgs = true;  SetCCOpc = X86::SETBEr; break;
757  case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
758  case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
759
760  case CmpInst::ICMP_EQ:  SwapArgs = false; SetCCOpc = X86::SETEr;  break;
761  case CmpInst::ICMP_NE:  SwapArgs = false; SetCCOpc = X86::SETNEr; break;
762  case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
763  case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
764  case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
765  case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
766  case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr;  break;
767  case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
768  case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr;  break;
769  case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
770  default:
771    return false;
772  }
773
774  Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
775  if (SwapArgs)
776    std::swap(Op0, Op1);
777
778  // Emit a compare of Op0/Op1.
779  if (!X86FastEmitCompare(Op0, Op1, VT))
780    return false;
781
782  BuildMI(MBB, DL, TII.get(SetCCOpc), ResultReg);
783  UpdateValueMap(I, ResultReg);
784  return true;
785}
786
787bool X86FastISel::X86SelectZExt(Instruction *I) {
788  // Handle zero-extension from i1 to i8, which is common.
789  if (I->getType()->isInteger(8) &&
790      I->getOperand(0)->getType()->isInteger(1)) {
791    unsigned ResultReg = getRegForValue(I->getOperand(0));
792    if (ResultReg == 0) return false;
793    // Set the high bits to zero.
794    ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg);
795    if (ResultReg == 0) return false;
796    UpdateValueMap(I, ResultReg);
797    return true;
798  }
799
800  return false;
801}
802
803
804bool X86FastISel::X86SelectBranch(Instruction *I) {
805  // Unconditional branches are selected by tablegen-generated code.
806  // Handle a conditional branch.
807  BranchInst *BI = cast<BranchInst>(I);
808  MachineBasicBlock *TrueMBB = MBBMap[BI->getSuccessor(0)];
809  MachineBasicBlock *FalseMBB = MBBMap[BI->getSuccessor(1)];
810
811  // Fold the common case of a conditional branch with a comparison.
812  if (CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
813    if (CI->hasOneUse()) {
814      EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
815
816      // Try to take advantage of fallthrough opportunities.
817      CmpInst::Predicate Predicate = CI->getPredicate();
818      if (MBB->isLayoutSuccessor(TrueMBB)) {
819        std::swap(TrueMBB, FalseMBB);
820        Predicate = CmpInst::getInversePredicate(Predicate);
821      }
822
823      bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
824      unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
825
826      switch (Predicate) {
827      case CmpInst::FCMP_OEQ:
828        std::swap(TrueMBB, FalseMBB);
829        Predicate = CmpInst::FCMP_UNE;
830        // FALL THROUGH
831      case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
832      case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
833      case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
834      case CmpInst::FCMP_OLT: SwapArgs = true;  BranchOpc = X86::JA_4;  break;
835      case CmpInst::FCMP_OLE: SwapArgs = true;  BranchOpc = X86::JAE_4; break;
836      case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
837      case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break;
838      case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4;  break;
839      case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4;  break;
840      case CmpInst::FCMP_UGT: SwapArgs = true;  BranchOpc = X86::JB_4;  break;
841      case CmpInst::FCMP_UGE: SwapArgs = true;  BranchOpc = X86::JBE_4; break;
842      case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
843      case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
844
845      case CmpInst::ICMP_EQ:  SwapArgs = false; BranchOpc = X86::JE_4;  break;
846      case CmpInst::ICMP_NE:  SwapArgs = false; BranchOpc = X86::JNE_4; break;
847      case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
848      case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
849      case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
850      case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
851      case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4;  break;
852      case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break;
853      case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4;  break;
854      case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break;
855      default:
856        return false;
857      }
858
859      Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
860      if (SwapArgs)
861        std::swap(Op0, Op1);
862
863      // Emit a compare of the LHS and RHS, setting the flags.
864      if (!X86FastEmitCompare(Op0, Op1, VT))
865        return false;
866
867      BuildMI(MBB, DL, TII.get(BranchOpc)).addMBB(TrueMBB);
868
869      if (Predicate == CmpInst::FCMP_UNE) {
870        // X86 requires a second branch to handle UNE (and OEQ,
871        // which is mapped to UNE above).
872        BuildMI(MBB, DL, TII.get(X86::JP_4)).addMBB(TrueMBB);
873      }
874
875      FastEmitBranch(FalseMBB);
876      MBB->addSuccessor(TrueMBB);
877      return true;
878    }
879  } else if (ExtractValueInst *EI =
880             dyn_cast<ExtractValueInst>(BI->getCondition())) {
881    // Check to see if the branch instruction is from an "arithmetic with
882    // overflow" intrinsic. The main way these intrinsics are used is:
883    //
884    //   %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
885    //   %sum = extractvalue { i32, i1 } %t, 0
886    //   %obit = extractvalue { i32, i1 } %t, 1
887    //   br i1 %obit, label %overflow, label %normal
888    //
889    // The %sum and %obit are converted in an ADD and a SETO/SETB before
890    // reaching the branch. Therefore, we search backwards through the MBB
891    // looking for the SETO/SETB instruction. If an instruction modifies the
892    // EFLAGS register before we reach the SETO/SETB instruction, then we can't
893    // convert the branch into a JO/JB instruction.
894    if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(EI->getAggregateOperand())){
895      if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow ||
896          CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) {
897        const MachineInstr *SetMI = 0;
898        unsigned Reg = lookUpRegForValue(EI);
899
900        for (MachineBasicBlock::const_reverse_iterator
901               RI = MBB->rbegin(), RE = MBB->rend(); RI != RE; ++RI) {
902          const MachineInstr &MI = *RI;
903
904          if (MI.modifiesRegister(Reg)) {
905            unsigned Src, Dst, SrcSR, DstSR;
906
907            if (getInstrInfo()->isMoveInstr(MI, Src, Dst, SrcSR, DstSR)) {
908              Reg = Src;
909              continue;
910            }
911
912            SetMI = &MI;
913            break;
914          }
915
916          const TargetInstrDesc &TID = MI.getDesc();
917          if (TID.hasUnmodeledSideEffects() ||
918              TID.hasImplicitDefOfPhysReg(X86::EFLAGS))
919            break;
920        }
921
922        if (SetMI) {
923          unsigned OpCode = SetMI->getOpcode();
924
925          if (OpCode == X86::SETOr || OpCode == X86::SETBr) {
926            BuildMI(MBB, DL, TII.get(OpCode == X86::SETOr ?
927                                        X86::JO_4 : X86::JB_4))
928              .addMBB(TrueMBB);
929            FastEmitBranch(FalseMBB);
930            MBB->addSuccessor(TrueMBB);
931            return true;
932          }
933        }
934      }
935    }
936  }
937
938  // Otherwise do a clumsy setcc and re-test it.
939  unsigned OpReg = getRegForValue(BI->getCondition());
940  if (OpReg == 0) return false;
941
942  BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg);
943  BuildMI(MBB, DL, TII.get(X86::JNE_4)).addMBB(TrueMBB);
944  FastEmitBranch(FalseMBB);
945  MBB->addSuccessor(TrueMBB);
946  return true;
947}
948
949bool X86FastISel::X86SelectShift(Instruction *I) {
950  unsigned CReg = 0, OpReg = 0, OpImm = 0;
951  const TargetRegisterClass *RC = NULL;
952  if (I->getType()->isInteger(8)) {
953    CReg = X86::CL;
954    RC = &X86::GR8RegClass;
955    switch (I->getOpcode()) {
956    case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break;
957    case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break;
958    case Instruction::Shl:  OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
959    default: return false;
960    }
961  } else if (I->getType()->isInteger(16)) {
962    CReg = X86::CX;
963    RC = &X86::GR16RegClass;
964    switch (I->getOpcode()) {
965    case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break;
966    case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break;
967    case Instruction::Shl:  OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
968    default: return false;
969    }
970  } else if (I->getType()->isInteger(32)) {
971    CReg = X86::ECX;
972    RC = &X86::GR32RegClass;
973    switch (I->getOpcode()) {
974    case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break;
975    case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break;
976    case Instruction::Shl:  OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
977    default: return false;
978    }
979  } else if (I->getType()->isInteger(64)) {
980    CReg = X86::RCX;
981    RC = &X86::GR64RegClass;
982    switch (I->getOpcode()) {
983    case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break;
984    case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break;
985    case Instruction::Shl:  OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break;
986    default: return false;
987    }
988  } else {
989    return false;
990  }
991
992  EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
993  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
994    return false;
995
996  unsigned Op0Reg = getRegForValue(I->getOperand(0));
997  if (Op0Reg == 0) return false;
998
999  // Fold immediate in shl(x,3).
1000  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1001    unsigned ResultReg = createResultReg(RC);
1002    BuildMI(MBB, DL, TII.get(OpImm),
1003            ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff);
1004    UpdateValueMap(I, ResultReg);
1005    return true;
1006  }
1007
1008  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1009  if (Op1Reg == 0) return false;
1010  TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC);
1011
1012  // The shift instruction uses X86::CL. If we defined a super-register
1013  // of X86::CL, emit an EXTRACT_SUBREG to precisely describe what
1014  // we're doing here.
1015  if (CReg != X86::CL)
1016    BuildMI(MBB, DL, TII.get(TargetOpcode::EXTRACT_SUBREG), X86::CL)
1017      .addReg(CReg).addImm(X86::SUBREG_8BIT);
1018
1019  unsigned ResultReg = createResultReg(RC);
1020  BuildMI(MBB, DL, TII.get(OpReg), ResultReg).addReg(Op0Reg);
1021  UpdateValueMap(I, ResultReg);
1022  return true;
1023}
1024
1025bool X86FastISel::X86SelectSelect(Instruction *I) {
1026  EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
1027  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
1028    return false;
1029
1030  unsigned Opc = 0;
1031  const TargetRegisterClass *RC = NULL;
1032  if (VT.getSimpleVT() == MVT::i16) {
1033    Opc = X86::CMOVE16rr;
1034    RC = &X86::GR16RegClass;
1035  } else if (VT.getSimpleVT() == MVT::i32) {
1036    Opc = X86::CMOVE32rr;
1037    RC = &X86::GR32RegClass;
1038  } else if (VT.getSimpleVT() == MVT::i64) {
1039    Opc = X86::CMOVE64rr;
1040    RC = &X86::GR64RegClass;
1041  } else {
1042    return false;
1043  }
1044
1045  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1046  if (Op0Reg == 0) return false;
1047  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1048  if (Op1Reg == 0) return false;
1049  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1050  if (Op2Reg == 0) return false;
1051
1052  BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg);
1053  unsigned ResultReg = createResultReg(RC);
1054  BuildMI(MBB, DL, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg);
1055  UpdateValueMap(I, ResultReg);
1056  return true;
1057}
1058
1059bool X86FastISel::X86SelectFPExt(Instruction *I) {
1060  // fpext from float to double.
1061  if (Subtarget->hasSSE2() &&
1062      I->getType()->isDoubleTy()) {
1063    Value *V = I->getOperand(0);
1064    if (V->getType()->isFloatTy()) {
1065      unsigned OpReg = getRegForValue(V);
1066      if (OpReg == 0) return false;
1067      unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
1068      BuildMI(MBB, DL, TII.get(X86::CVTSS2SDrr), ResultReg).addReg(OpReg);
1069      UpdateValueMap(I, ResultReg);
1070      return true;
1071    }
1072  }
1073
1074  return false;
1075}
1076
1077bool X86FastISel::X86SelectFPTrunc(Instruction *I) {
1078  if (Subtarget->hasSSE2()) {
1079    if (I->getType()->isFloatTy()) {
1080      Value *V = I->getOperand(0);
1081      if (V->getType()->isDoubleTy()) {
1082        unsigned OpReg = getRegForValue(V);
1083        if (OpReg == 0) return false;
1084        unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
1085        BuildMI(MBB, DL, TII.get(X86::CVTSD2SSrr), ResultReg).addReg(OpReg);
1086        UpdateValueMap(I, ResultReg);
1087        return true;
1088      }
1089    }
1090  }
1091
1092  return false;
1093}
1094
1095bool X86FastISel::X86SelectTrunc(Instruction *I) {
1096  if (Subtarget->is64Bit())
1097    // All other cases should be handled by the tblgen generated code.
1098    return false;
1099  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1100  EVT DstVT = TLI.getValueType(I->getType());
1101
1102  // This code only handles truncation to byte right now.
1103  if (DstVT != MVT::i8 && DstVT != MVT::i1)
1104    // All other cases should be handled by the tblgen generated code.
1105    return false;
1106  if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
1107    // All other cases should be handled by the tblgen generated code.
1108    return false;
1109
1110  unsigned InputReg = getRegForValue(I->getOperand(0));
1111  if (!InputReg)
1112    // Unhandled operand.  Halt "fast" selection and bail.
1113    return false;
1114
1115  // First issue a copy to GR16_ABCD or GR32_ABCD.
1116  unsigned CopyOpc = (SrcVT == MVT::i16) ? X86::MOV16rr : X86::MOV32rr;
1117  const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
1118    ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
1119  unsigned CopyReg = createResultReg(CopyRC);
1120  BuildMI(MBB, DL, TII.get(CopyOpc), CopyReg).addReg(InputReg);
1121
1122  // Then issue an extract_subreg.
1123  unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
1124                                                  CopyReg, X86::SUBREG_8BIT);
1125  if (!ResultReg)
1126    return false;
1127
1128  UpdateValueMap(I, ResultReg);
1129  return true;
1130}
1131
1132bool X86FastISel::X86SelectExtractValue(Instruction *I) {
1133  ExtractValueInst *EI = cast<ExtractValueInst>(I);
1134  Value *Agg = EI->getAggregateOperand();
1135
1136  if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(Agg)) {
1137    switch (CI->getIntrinsicID()) {
1138    default: break;
1139    case Intrinsic::sadd_with_overflow:
1140    case Intrinsic::uadd_with_overflow:
1141      // Cheat a little. We know that the registers for "add" and "seto" are
1142      // allocated sequentially. However, we only keep track of the register
1143      // for "add" in the value map. Use extractvalue's index to get the
1144      // correct register for "seto".
1145      UpdateValueMap(I, lookUpRegForValue(Agg) + *EI->idx_begin());
1146      return true;
1147    }
1148  }
1149
1150  return false;
1151}
1152
1153bool X86FastISel::X86VisitIntrinsicCall(IntrinsicInst &I) {
1154  // FIXME: Handle more intrinsics.
1155  switch (I.getIntrinsicID()) {
1156  default: return false;
1157  case Intrinsic::dbg_declare: {
1158    DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
1159    X86AddressMode AM;
1160    assert(DI->getAddress() && "Null address should be checked earlier!");
1161    if (!X86SelectAddress(DI->getAddress(), AM))
1162      return false;
1163    const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1164    addFullAddress(BuildMI(MBB, DL, II), AM).addImm(0).
1165                                        addMetadata(DI->getVariable());
1166    return true;
1167  }
1168  case Intrinsic::trap: {
1169    BuildMI(MBB, DL, TII.get(X86::TRAP));
1170    return true;
1171  }
1172  case Intrinsic::sadd_with_overflow:
1173  case Intrinsic::uadd_with_overflow: {
1174    // Replace "add with overflow" intrinsics with an "add" instruction followed
1175    // by a seto/setc instruction. Later on, when the "extractvalue"
1176    // instructions are encountered, we use the fact that two registers were
1177    // created sequentially to get the correct registers for the "sum" and the
1178    // "overflow bit".
1179    const Function *Callee = I.getCalledFunction();
1180    const Type *RetTy =
1181      cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
1182
1183    EVT VT;
1184    if (!isTypeLegal(RetTy, VT))
1185      return false;
1186
1187    Value *Op1 = I.getOperand(1);
1188    Value *Op2 = I.getOperand(2);
1189    unsigned Reg1 = getRegForValue(Op1);
1190    unsigned Reg2 = getRegForValue(Op2);
1191
1192    if (Reg1 == 0 || Reg2 == 0)
1193      // FIXME: Handle values *not* in registers.
1194      return false;
1195
1196    unsigned OpC = 0;
1197    if (VT == MVT::i32)
1198      OpC = X86::ADD32rr;
1199    else if (VT == MVT::i64)
1200      OpC = X86::ADD64rr;
1201    else
1202      return false;
1203
1204    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1205    BuildMI(MBB, DL, TII.get(OpC), ResultReg).addReg(Reg1).addReg(Reg2);
1206    unsigned DestReg1 = UpdateValueMap(&I, ResultReg);
1207
1208    // If the add with overflow is an intra-block value then we just want to
1209    // create temporaries for it like normal.  If it is a cross-block value then
1210    // UpdateValueMap will return the cross-block register used.  Since we
1211    // *really* want the value to be live in the register pair known by
1212    // UpdateValueMap, we have to use DestReg1+1 as the destination register in
1213    // the cross block case.  In the non-cross-block case, we should just make
1214    // another register for the value.
1215    if (DestReg1 != ResultReg)
1216      ResultReg = DestReg1+1;
1217    else
1218      ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8));
1219
1220    unsigned Opc = X86::SETBr;
1221    if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
1222      Opc = X86::SETOr;
1223    BuildMI(MBB, DL, TII.get(Opc), ResultReg);
1224    return true;
1225  }
1226  }
1227}
1228
1229bool X86FastISel::X86SelectCall(Instruction *I) {
1230  CallInst *CI = cast<CallInst>(I);
1231  Value *Callee = I->getOperand(0);
1232
1233  // Can't handle inline asm yet.
1234  if (isa<InlineAsm>(Callee))
1235    return false;
1236
1237  // Handle intrinsic calls.
1238  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
1239    return X86VisitIntrinsicCall(*II);
1240
1241  // Handle only C and fastcc calling conventions for now.
1242  CallSite CS(CI);
1243  CallingConv::ID CC = CS.getCallingConv();
1244  if (CC != CallingConv::C &&
1245      CC != CallingConv::Fast &&
1246      CC != CallingConv::X86_FastCall)
1247    return false;
1248
1249  // fastcc with -tailcallopt is intended to provide a guaranteed
1250  // tail call optimization. Fastisel doesn't know how to do that.
1251  if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
1252    return false;
1253
1254  // Let SDISel handle vararg functions.
1255  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1256  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1257  if (FTy->isVarArg())
1258    return false;
1259
1260  // Handle *simple* calls for now.
1261  const Type *RetTy = CS.getType();
1262  EVT RetVT;
1263  if (RetTy->isVoidTy())
1264    RetVT = MVT::isVoid;
1265  else if (!isTypeLegal(RetTy, RetVT, true))
1266    return false;
1267
1268  // Materialize callee address in a register. FIXME: GV address can be
1269  // handled with a CALLpcrel32 instead.
1270  X86AddressMode CalleeAM;
1271  if (!X86SelectCallAddress(Callee, CalleeAM))
1272    return false;
1273  unsigned CalleeOp = 0;
1274  GlobalValue *GV = 0;
1275  if (CalleeAM.GV != 0) {
1276    GV = CalleeAM.GV;
1277  } else if (CalleeAM.Base.Reg != 0) {
1278    CalleeOp = CalleeAM.Base.Reg;
1279  } else
1280    return false;
1281
1282  // Allow calls which produce i1 results.
1283  bool AndToI1 = false;
1284  if (RetVT == MVT::i1) {
1285    RetVT = MVT::i8;
1286    AndToI1 = true;
1287  }
1288
1289  // Deal with call operands first.
1290  SmallVector<Value*, 8> ArgVals;
1291  SmallVector<unsigned, 8> Args;
1292  SmallVector<EVT, 8> ArgVTs;
1293  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1294  Args.reserve(CS.arg_size());
1295  ArgVals.reserve(CS.arg_size());
1296  ArgVTs.reserve(CS.arg_size());
1297  ArgFlags.reserve(CS.arg_size());
1298  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1299       i != e; ++i) {
1300    unsigned Arg = getRegForValue(*i);
1301    if (Arg == 0)
1302      return false;
1303    ISD::ArgFlagsTy Flags;
1304    unsigned AttrInd = i - CS.arg_begin() + 1;
1305    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1306      Flags.setSExt();
1307    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1308      Flags.setZExt();
1309
1310    // FIXME: Only handle *easy* calls for now.
1311    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1312        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1313        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1314        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1315      return false;
1316
1317    const Type *ArgTy = (*i)->getType();
1318    EVT ArgVT;
1319    if (!isTypeLegal(ArgTy, ArgVT))
1320      return false;
1321    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1322    Flags.setOrigAlign(OriginalAlignment);
1323
1324    Args.push_back(Arg);
1325    ArgVals.push_back(*i);
1326    ArgVTs.push_back(ArgVT);
1327    ArgFlags.push_back(Flags);
1328  }
1329
1330  // Analyze operands of the call, assigning locations to each operand.
1331  SmallVector<CCValAssign, 16> ArgLocs;
1332  CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext());
1333  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
1334
1335  // Get a count of how many bytes are to be pushed on the stack.
1336  unsigned NumBytes = CCInfo.getNextStackOffset();
1337
1338  // Issue CALLSEQ_START
1339  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1340  BuildMI(MBB, DL, TII.get(AdjStackDown)).addImm(NumBytes);
1341
1342  // Process argument: walk the register/memloc assignments, inserting
1343  // copies / loads.
1344  SmallVector<unsigned, 4> RegArgs;
1345  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1346    CCValAssign &VA = ArgLocs[i];
1347    unsigned Arg = Args[VA.getValNo()];
1348    EVT ArgVT = ArgVTs[VA.getValNo()];
1349
1350    // Promote the value if needed.
1351    switch (VA.getLocInfo()) {
1352    default: llvm_unreachable("Unknown loc info!");
1353    case CCValAssign::Full: break;
1354    case CCValAssign::SExt: {
1355      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1356                                       Arg, ArgVT, Arg);
1357      assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted;
1358      Emitted = true;
1359      ArgVT = VA.getLocVT();
1360      break;
1361    }
1362    case CCValAssign::ZExt: {
1363      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1364                                       Arg, ArgVT, Arg);
1365      assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted;
1366      Emitted = true;
1367      ArgVT = VA.getLocVT();
1368      break;
1369    }
1370    case CCValAssign::AExt: {
1371      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1372                                       Arg, ArgVT, Arg);
1373      if (!Emitted)
1374        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1375                                    Arg, ArgVT, Arg);
1376      if (!Emitted)
1377        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1378                                    Arg, ArgVT, Arg);
1379
1380      assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted;
1381      ArgVT = VA.getLocVT();
1382      break;
1383    }
1384    case CCValAssign::BCvt: {
1385      unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT().getSimpleVT(),
1386                               ISD::BIT_CONVERT, Arg);
1387      assert(BC != 0 && "Failed to emit a bitcast!");
1388      Arg = BC;
1389      ArgVT = VA.getLocVT();
1390      break;
1391    }
1392    }
1393
1394    if (VA.isRegLoc()) {
1395      TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT);
1396      bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(),
1397                                      Arg, RC, RC);
1398      assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1399      Emitted = true;
1400      RegArgs.push_back(VA.getLocReg());
1401    } else {
1402      unsigned LocMemOffset = VA.getLocMemOffset();
1403      X86AddressMode AM;
1404      AM.Base.Reg = StackPtr;
1405      AM.Disp = LocMemOffset;
1406      Value *ArgVal = ArgVals[VA.getValNo()];
1407
1408      // If this is a really simple value, emit this with the Value* version of
1409      // X86FastEmitStore.  If it isn't simple, we don't want to do this, as it
1410      // can cause us to reevaluate the argument.
1411      if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal))
1412        X86FastEmitStore(ArgVT, ArgVal, AM);
1413      else
1414        X86FastEmitStore(ArgVT, Arg, AM);
1415    }
1416  }
1417
1418  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1419  // GOT pointer.
1420  if (Subtarget->isPICStyleGOT()) {
1421    TargetRegisterClass *RC = X86::GR32RegisterClass;
1422    unsigned Base = getInstrInfo()->getGlobalBaseReg(&MF);
1423    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC);
1424    assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1425    Emitted = true;
1426  }
1427
1428  // Issue the call.
1429  MachineInstrBuilder MIB;
1430  if (CalleeOp) {
1431    // Register-indirect call.
1432    unsigned CallOpc = Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r;
1433    MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addReg(CalleeOp);
1434
1435  } else {
1436    // Direct call.
1437    assert(GV && "Not a direct call");
1438    unsigned CallOpc =
1439      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
1440
1441    // See if we need any target-specific flags on the GV operand.
1442    unsigned char OpFlags = 0;
1443
1444    // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1445    // external symbols most go through the PLT in PIC mode.  If the symbol
1446    // has hidden or protected visibility, or if it is static or local, then
1447    // we don't need to use the PLT - we can directly call it.
1448    if (Subtarget->isTargetELF() &&
1449        TM.getRelocationModel() == Reloc::PIC_ &&
1450        GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1451      OpFlags = X86II::MO_PLT;
1452    } else if (Subtarget->isPICStyleStubAny() &&
1453               (GV->isDeclaration() || GV->isWeakForLinker()) &&
1454               Subtarget->getDarwinVers() < 9) {
1455      // PC-relative references to external symbols should go through $stub,
1456      // unless we're building with the leopard linker or later, which
1457      // automatically synthesizes these stubs.
1458      OpFlags = X86II::MO_DARWIN_STUB;
1459    }
1460
1461
1462    MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addGlobalAddress(GV, 0, OpFlags);
1463  }
1464
1465  // Add an implicit use GOT pointer in EBX.
1466  if (Subtarget->isPICStyleGOT())
1467    MIB.addReg(X86::EBX);
1468
1469  // Add implicit physical register uses to the call.
1470  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1471    MIB.addReg(RegArgs[i]);
1472
1473  // Issue CALLSEQ_END
1474  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1475  BuildMI(MBB, DL, TII.get(AdjStackUp)).addImm(NumBytes).addImm(0);
1476
1477  // Now handle call return value (if any).
1478  if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) {
1479    SmallVector<CCValAssign, 16> RVLocs;
1480    CCState CCInfo(CC, false, TM, RVLocs, I->getParent()->getContext());
1481    CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
1482
1483    // Copy all of the result registers out of their specified physreg.
1484    assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
1485    EVT CopyVT = RVLocs[0].getValVT();
1486    TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1487    TargetRegisterClass *SrcRC = DstRC;
1488
1489    // If this is a call to a function that returns an fp value on the x87 fp
1490    // stack, but where we prefer to use the value in xmm registers, copy it
1491    // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1492    if ((RVLocs[0].getLocReg() == X86::ST0 ||
1493         RVLocs[0].getLocReg() == X86::ST1) &&
1494        isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
1495      CopyVT = MVT::f80;
1496      SrcRC = X86::RSTRegisterClass;
1497      DstRC = X86::RFP80RegisterClass;
1498    }
1499
1500    unsigned ResultReg = createResultReg(DstRC);
1501    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1502                                    RVLocs[0].getLocReg(), DstRC, SrcRC);
1503    assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1504    Emitted = true;
1505    if (CopyVT != RVLocs[0].getValVT()) {
1506      // Round the F80 the right size, which also moves to the appropriate xmm
1507      // register. This is accomplished by storing the F80 value in memory and
1508      // then loading it back. Ewww...
1509      EVT ResVT = RVLocs[0].getValVT();
1510      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
1511      unsigned MemSize = ResVT.getSizeInBits()/8;
1512      int FI = MFI.CreateStackObject(MemSize, MemSize, false);
1513      addFrameReference(BuildMI(MBB, DL, TII.get(Opc)), FI).addReg(ResultReg);
1514      DstRC = ResVT == MVT::f32
1515        ? X86::FR32RegisterClass : X86::FR64RegisterClass;
1516      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
1517      ResultReg = createResultReg(DstRC);
1518      addFrameReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg), FI);
1519    }
1520
1521    if (AndToI1) {
1522      // Mask out all but lowest bit for some call which produces an i1.
1523      unsigned AndResult = createResultReg(X86::GR8RegisterClass);
1524      BuildMI(MBB, DL,
1525              TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
1526      ResultReg = AndResult;
1527    }
1528
1529    UpdateValueMap(I, ResultReg);
1530  }
1531
1532  return true;
1533}
1534
1535
1536bool
1537X86FastISel::TargetSelectInstruction(Instruction *I)  {
1538  switch (I->getOpcode()) {
1539  default: break;
1540  case Instruction::Load:
1541    return X86SelectLoad(I);
1542  case Instruction::Store:
1543    return X86SelectStore(I);
1544  case Instruction::ICmp:
1545  case Instruction::FCmp:
1546    return X86SelectCmp(I);
1547  case Instruction::ZExt:
1548    return X86SelectZExt(I);
1549  case Instruction::Br:
1550    return X86SelectBranch(I);
1551  case Instruction::Call:
1552    return X86SelectCall(I);
1553  case Instruction::LShr:
1554  case Instruction::AShr:
1555  case Instruction::Shl:
1556    return X86SelectShift(I);
1557  case Instruction::Select:
1558    return X86SelectSelect(I);
1559  case Instruction::Trunc:
1560    return X86SelectTrunc(I);
1561  case Instruction::FPExt:
1562    return X86SelectFPExt(I);
1563  case Instruction::FPTrunc:
1564    return X86SelectFPTrunc(I);
1565  case Instruction::ExtractValue:
1566    return X86SelectExtractValue(I);
1567  case Instruction::IntToPtr: // Deliberate fall-through.
1568  case Instruction::PtrToInt: {
1569    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1570    EVT DstVT = TLI.getValueType(I->getType());
1571    if (DstVT.bitsGT(SrcVT))
1572      return X86SelectZExt(I);
1573    if (DstVT.bitsLT(SrcVT))
1574      return X86SelectTrunc(I);
1575    unsigned Reg = getRegForValue(I->getOperand(0));
1576    if (Reg == 0) return false;
1577    UpdateValueMap(I, Reg);
1578    return true;
1579  }
1580  }
1581
1582  return false;
1583}
1584
1585unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
1586  EVT VT;
1587  if (!isTypeLegal(C->getType(), VT))
1588    return false;
1589
1590  // Get opcode and regclass of the output for the given load instruction.
1591  unsigned Opc = 0;
1592  const TargetRegisterClass *RC = NULL;
1593  switch (VT.getSimpleVT().SimpleTy) {
1594  default: return false;
1595  case MVT::i8:
1596    Opc = X86::MOV8rm;
1597    RC  = X86::GR8RegisterClass;
1598    break;
1599  case MVT::i16:
1600    Opc = X86::MOV16rm;
1601    RC  = X86::GR16RegisterClass;
1602    break;
1603  case MVT::i32:
1604    Opc = X86::MOV32rm;
1605    RC  = X86::GR32RegisterClass;
1606    break;
1607  case MVT::i64:
1608    // Must be in x86-64 mode.
1609    Opc = X86::MOV64rm;
1610    RC  = X86::GR64RegisterClass;
1611    break;
1612  case MVT::f32:
1613    if (Subtarget->hasSSE1()) {
1614      Opc = X86::MOVSSrm;
1615      RC  = X86::FR32RegisterClass;
1616    } else {
1617      Opc = X86::LD_Fp32m;
1618      RC  = X86::RFP32RegisterClass;
1619    }
1620    break;
1621  case MVT::f64:
1622    if (Subtarget->hasSSE2()) {
1623      Opc = X86::MOVSDrm;
1624      RC  = X86::FR64RegisterClass;
1625    } else {
1626      Opc = X86::LD_Fp64m;
1627      RC  = X86::RFP64RegisterClass;
1628    }
1629    break;
1630  case MVT::f80:
1631    // No f80 support yet.
1632    return false;
1633  }
1634
1635  // Materialize addresses with LEA instructions.
1636  if (isa<GlobalValue>(C)) {
1637    X86AddressMode AM;
1638    if (X86SelectAddress(C, AM)) {
1639      if (TLI.getPointerTy() == MVT::i32)
1640        Opc = X86::LEA32r;
1641      else
1642        Opc = X86::LEA64r;
1643      unsigned ResultReg = createResultReg(RC);
1644      addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
1645      return ResultReg;
1646    }
1647    return 0;
1648  }
1649
1650  // MachineConstantPool wants an explicit alignment.
1651  unsigned Align = TD.getPrefTypeAlignment(C->getType());
1652  if (Align == 0) {
1653    // Alignment of vector types.  FIXME!
1654    Align = TD.getTypeAllocSize(C->getType());
1655  }
1656
1657  // x86-32 PIC requires a PIC base register for constant pools.
1658  unsigned PICBase = 0;
1659  unsigned char OpFlag = 0;
1660  if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
1661    OpFlag = X86II::MO_PIC_BASE_OFFSET;
1662    PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
1663  } else if (Subtarget->isPICStyleGOT()) {
1664    OpFlag = X86II::MO_GOTOFF;
1665    PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
1666  } else if (Subtarget->isPICStyleRIPRel() &&
1667             TM.getCodeModel() == CodeModel::Small) {
1668    PICBase = X86::RIP;
1669  }
1670
1671  // Create the load from the constant pool.
1672  unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
1673  unsigned ResultReg = createResultReg(RC);
1674  addConstantPoolReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg),
1675                           MCPOffset, PICBase, OpFlag);
1676
1677  return ResultReg;
1678}
1679
1680unsigned X86FastISel::TargetMaterializeAlloca(AllocaInst *C) {
1681  // Fail on dynamic allocas. At this point, getRegForValue has already
1682  // checked its CSE maps, so if we're here trying to handle a dynamic
1683  // alloca, we're not going to succeed. X86SelectAddress has a
1684  // check for dynamic allocas, because it's called directly from
1685  // various places, but TargetMaterializeAlloca also needs a check
1686  // in order to avoid recursion between getRegForValue,
1687  // X86SelectAddrss, and TargetMaterializeAlloca.
1688  if (!StaticAllocaMap.count(C))
1689    return 0;
1690
1691  X86AddressMode AM;
1692  if (!X86SelectAddress(C, AM))
1693    return 0;
1694  unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
1695  TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
1696  unsigned ResultReg = createResultReg(RC);
1697  addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
1698  return ResultReg;
1699}
1700
1701namespace llvm {
1702  llvm::FastISel *X86::createFastISel(MachineFunction &mf,
1703                        MachineModuleInfo *mmi,
1704                        DwarfWriter *dw,
1705                        DenseMap<const Value *, unsigned> &vm,
1706                        DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
1707                        DenseMap<const AllocaInst *, int> &am
1708#ifndef NDEBUG
1709                        , SmallSet<Instruction*, 8> &cil
1710#endif
1711                        ) {
1712    return new X86FastISel(mf, mmi, dw, vm, bm, am
1713#ifndef NDEBUG
1714                           , cil
1715#endif
1716                           );
1717  }
1718}
1719