X86FastISel.cpp revision ed3a8067a60ecf2c215e77327a57904c3ebc3355
1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/CodeGen/FastISel.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/Support/CallSite.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/GetElementPtrTypeIterator.h"
34#include "llvm/Target/TargetOptions.h"
35using namespace llvm;
36
37namespace {
38
39class X86FastISel : public FastISel {
40  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
41  /// make the right decision when generating code for different targets.
42  const X86Subtarget *Subtarget;
43
44  /// StackPtr - Register used as the stack pointer.
45  ///
46  unsigned StackPtr;
47
48  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
49  /// floating point ops.
50  /// When SSE is available, use it for f32 operations.
51  /// When SSE2 is available, use it for f64 operations.
52  bool X86ScalarSSEf64;
53  bool X86ScalarSSEf32;
54
55public:
56  explicit X86FastISel(MachineFunction &mf,
57                       DenseMap<const Value *, unsigned> &vm,
58                       DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
59                       DenseMap<const AllocaInst *, int> &am
60#ifndef NDEBUG
61                       , SmallSet<Instruction*, 8> &cil
62#endif
63                       )
64    : FastISel(mf, vm, bm, am
65#ifndef NDEBUG
66               , cil
67#endif
68               ) {
69    Subtarget = &TM.getSubtarget<X86Subtarget>();
70    StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
71    X86ScalarSSEf64 = Subtarget->hasSSE2();
72    X86ScalarSSEf32 = Subtarget->hasSSE1();
73  }
74
75  virtual bool TargetSelectInstruction(Instruction *I);
76
77#include "X86GenFastISel.inc"
78
79private:
80  bool X86FastEmitCompare(Value *LHS, Value *RHS, EVT VT);
81
82  bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
83
84  bool X86FastEmitStore(EVT VT, Value *Val,
85                        const X86AddressMode &AM);
86  bool X86FastEmitStore(EVT VT, unsigned Val,
87                        const X86AddressMode &AM);
88
89  bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
90                         unsigned &ResultReg);
91
92  bool X86SelectAddress(Value *V, X86AddressMode &AM);
93  bool X86SelectCallAddress(Value *V, X86AddressMode &AM);
94
95  bool X86SelectLoad(Instruction *I);
96
97  bool X86SelectStore(Instruction *I);
98
99  bool X86SelectCmp(Instruction *I);
100
101  bool X86SelectZExt(Instruction *I);
102
103  bool X86SelectBranch(Instruction *I);
104
105  bool X86SelectShift(Instruction *I);
106
107  bool X86SelectSelect(Instruction *I);
108
109  bool X86SelectTrunc(Instruction *I);
110
111  bool X86SelectFPExt(Instruction *I);
112  bool X86SelectFPTrunc(Instruction *I);
113
114  bool X86SelectExtractValue(Instruction *I);
115
116  bool X86VisitIntrinsicCall(IntrinsicInst &I);
117  bool X86SelectCall(Instruction *I);
118
119  CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool isTailCall = false);
120
121  const X86InstrInfo *getInstrInfo() const {
122    return getTargetMachine()->getInstrInfo();
123  }
124  const X86TargetMachine *getTargetMachine() const {
125    return static_cast<const X86TargetMachine *>(&TM);
126  }
127
128  unsigned TargetMaterializeConstant(Constant *C);
129
130  unsigned TargetMaterializeAlloca(AllocaInst *C);
131
132  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
133  /// computed in an SSE register, not on the X87 floating point stack.
134  bool isScalarFPTypeInSSEReg(EVT VT) const {
135    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
136      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
137  }
138
139  bool isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1 = false);
140};
141
142} // end anonymous namespace.
143
144bool X86FastISel::isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1) {
145  VT = TLI.getValueType(Ty, /*HandleUnknown=*/true);
146  if (VT == MVT::Other || !VT.isSimple())
147    // Unhandled type. Halt "fast" selection and bail.
148    return false;
149
150  // For now, require SSE/SSE2 for performing floating-point operations,
151  // since x87 requires additional work.
152  if (VT == MVT::f64 && !X86ScalarSSEf64)
153     return false;
154  if (VT == MVT::f32 && !X86ScalarSSEf32)
155     return false;
156  // Similarly, no f80 support yet.
157  if (VT == MVT::f80)
158    return false;
159  // We only handle legal types. For example, on x86-32 the instruction
160  // selector contains all of the 64-bit instructions from x86-64,
161  // under the assumption that i64 won't be used if the target doesn't
162  // support it.
163  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
164}
165
166#include "X86GenCallingConv.inc"
167
168/// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
169/// convention.
170CCAssignFn *X86FastISel::CCAssignFnForCall(CallingConv::ID CC,
171                                           bool isTaillCall) {
172  if (Subtarget->is64Bit()) {
173    if (CC == CallingConv::GHC)
174      return CC_X86_64_GHC;
175    else if (Subtarget->isTargetWin64())
176      return CC_X86_Win64_C;
177    else
178      return CC_X86_64_C;
179  }
180
181  if (CC == CallingConv::X86_FastCall)
182    return CC_X86_32_FastCall;
183  else if (CC == CallingConv::Fast)
184    return CC_X86_32_FastCC;
185  else if (CC == CallingConv::GHC)
186    return CC_X86_32_GHC;
187  else
188    return CC_X86_32_C;
189}
190
191/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
192/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
193/// Return true and the result register by reference if it is possible.
194bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
195                                  unsigned &ResultReg) {
196  // Get opcode and regclass of the output for the given load instruction.
197  unsigned Opc = 0;
198  const TargetRegisterClass *RC = NULL;
199  switch (VT.getSimpleVT().SimpleTy) {
200  default: return false;
201  case MVT::i1:
202  case MVT::i8:
203    Opc = X86::MOV8rm;
204    RC  = X86::GR8RegisterClass;
205    break;
206  case MVT::i16:
207    Opc = X86::MOV16rm;
208    RC  = X86::GR16RegisterClass;
209    break;
210  case MVT::i32:
211    Opc = X86::MOV32rm;
212    RC  = X86::GR32RegisterClass;
213    break;
214  case MVT::i64:
215    // Must be in x86-64 mode.
216    Opc = X86::MOV64rm;
217    RC  = X86::GR64RegisterClass;
218    break;
219  case MVT::f32:
220    if (Subtarget->hasSSE1()) {
221      Opc = X86::MOVSSrm;
222      RC  = X86::FR32RegisterClass;
223    } else {
224      Opc = X86::LD_Fp32m;
225      RC  = X86::RFP32RegisterClass;
226    }
227    break;
228  case MVT::f64:
229    if (Subtarget->hasSSE2()) {
230      Opc = X86::MOVSDrm;
231      RC  = X86::FR64RegisterClass;
232    } else {
233      Opc = X86::LD_Fp64m;
234      RC  = X86::RFP64RegisterClass;
235    }
236    break;
237  case MVT::f80:
238    // No f80 support yet.
239    return false;
240  }
241
242  ResultReg = createResultReg(RC);
243  addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
244  return true;
245}
246
247/// X86FastEmitStore - Emit a machine instruction to store a value Val of
248/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
249/// and a displacement offset, or a GlobalAddress,
250/// i.e. V. Return true if it is possible.
251bool
252X86FastISel::X86FastEmitStore(EVT VT, unsigned Val,
253                              const X86AddressMode &AM) {
254  // Get opcode and regclass of the output for the given store instruction.
255  unsigned Opc = 0;
256  switch (VT.getSimpleVT().SimpleTy) {
257  case MVT::f80: // No f80 support yet.
258  default: return false;
259  case MVT::i1: {
260    // Mask out all but lowest bit.
261    unsigned AndResult = createResultReg(X86::GR8RegisterClass);
262    BuildMI(MBB, DL,
263            TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1);
264    Val = AndResult;
265  }
266  // FALLTHROUGH, handling i1 as i8.
267  case MVT::i8:  Opc = X86::MOV8mr;  break;
268  case MVT::i16: Opc = X86::MOV16mr; break;
269  case MVT::i32: Opc = X86::MOV32mr; break;
270  case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
271  case MVT::f32:
272    Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m;
273    break;
274  case MVT::f64:
275    Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m;
276    break;
277  }
278
279  addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM).addReg(Val);
280  return true;
281}
282
283bool X86FastISel::X86FastEmitStore(EVT VT, Value *Val,
284                                   const X86AddressMode &AM) {
285  // Handle 'null' like i32/i64 0.
286  if (isa<ConstantPointerNull>(Val))
287    Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext()));
288
289  // If this is a store of a simple constant, fold the constant into the store.
290  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
291    unsigned Opc = 0;
292    bool Signed = true;
293    switch (VT.getSimpleVT().SimpleTy) {
294    default: break;
295    case MVT::i1:  Signed = false;     // FALLTHROUGH to handle as i8.
296    case MVT::i8:  Opc = X86::MOV8mi;  break;
297    case MVT::i16: Opc = X86::MOV16mi; break;
298    case MVT::i32: Opc = X86::MOV32mi; break;
299    case MVT::i64:
300      // Must be a 32-bit sign extended value.
301      if ((int)CI->getSExtValue() == CI->getSExtValue())
302        Opc = X86::MOV64mi32;
303      break;
304    }
305
306    if (Opc) {
307      addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM)
308                             .addImm(Signed ? CI->getSExtValue() :
309                                              CI->getZExtValue());
310      return true;
311    }
312  }
313
314  unsigned ValReg = getRegForValue(Val);
315  if (ValReg == 0)
316    return false;
317
318  return X86FastEmitStore(VT, ValReg, AM);
319}
320
321/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
322/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
323/// ISD::SIGN_EXTEND).
324bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
325                                    unsigned Src, EVT SrcVT,
326                                    unsigned &ResultReg) {
327  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
328
329  if (RR != 0) {
330    ResultReg = RR;
331    return true;
332  } else
333    return false;
334}
335
336/// X86SelectAddress - Attempt to fill in an address from the given value.
337///
338bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM) {
339  User *U = NULL;
340  unsigned Opcode = Instruction::UserOp1;
341  if (Instruction *I = dyn_cast<Instruction>(V)) {
342    Opcode = I->getOpcode();
343    U = I;
344  } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
345    Opcode = C->getOpcode();
346    U = C;
347  }
348
349  switch (Opcode) {
350  default: break;
351  case Instruction::BitCast:
352    // Look past bitcasts.
353    return X86SelectAddress(U->getOperand(0), AM);
354
355  case Instruction::IntToPtr:
356    // Look past no-op inttoptrs.
357    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
358      return X86SelectAddress(U->getOperand(0), AM);
359    break;
360
361  case Instruction::PtrToInt:
362    // Look past no-op ptrtoints.
363    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
364      return X86SelectAddress(U->getOperand(0), AM);
365    break;
366
367  case Instruction::Alloca: {
368    // Do static allocas.
369    const AllocaInst *A = cast<AllocaInst>(V);
370    DenseMap<const AllocaInst*, int>::iterator SI = StaticAllocaMap.find(A);
371    if (SI != StaticAllocaMap.end()) {
372      AM.BaseType = X86AddressMode::FrameIndexBase;
373      AM.Base.FrameIndex = SI->second;
374      return true;
375    }
376    break;
377  }
378
379  case Instruction::Add: {
380    // Adds of constants are common and easy enough.
381    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
382      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
383      // They have to fit in the 32-bit signed displacement field though.
384      if (isInt<32>(Disp)) {
385        AM.Disp = (uint32_t)Disp;
386        return X86SelectAddress(U->getOperand(0), AM);
387      }
388    }
389    break;
390  }
391
392  case Instruction::GetElementPtr: {
393    X86AddressMode SavedAM = AM;
394
395    // Pattern-match simple GEPs.
396    uint64_t Disp = (int32_t)AM.Disp;
397    unsigned IndexReg = AM.IndexReg;
398    unsigned Scale = AM.Scale;
399    gep_type_iterator GTI = gep_type_begin(U);
400    // Iterate through the indices, folding what we can. Constants can be
401    // folded, and one dynamic index can be handled, if the scale is supported.
402    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end();
403         i != e; ++i, ++GTI) {
404      Value *Op = *i;
405      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
406        const StructLayout *SL = TD.getStructLayout(STy);
407        unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
408        Disp += SL->getElementOffset(Idx);
409      } else {
410        uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
411        if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
412          // Constant-offset addressing.
413          Disp += CI->getSExtValue() * S;
414        } else if (IndexReg == 0 &&
415                   (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
416                   (S == 1 || S == 2 || S == 4 || S == 8)) {
417          // Scaled-index addressing.
418          Scale = S;
419          IndexReg = getRegForGEPIndex(Op);
420          if (IndexReg == 0)
421            return false;
422        } else
423          // Unsupported.
424          goto unsupported_gep;
425      }
426    }
427    // Check for displacement overflow.
428    if (!isInt<32>(Disp))
429      break;
430    // Ok, the GEP indices were covered by constant-offset and scaled-index
431    // addressing. Update the address state and move on to examining the base.
432    AM.IndexReg = IndexReg;
433    AM.Scale = Scale;
434    AM.Disp = (uint32_t)Disp;
435    if (X86SelectAddress(U->getOperand(0), AM))
436      return true;
437
438    // If we couldn't merge the sub value into this addr mode, revert back to
439    // our address and just match the value instead of completely failing.
440    AM = SavedAM;
441    break;
442  unsupported_gep:
443    // Ok, the GEP indices weren't all covered.
444    break;
445  }
446  }
447
448  // Handle constant address.
449  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
450    // Can't handle alternate code models yet.
451    if (TM.getCodeModel() != CodeModel::Small)
452      return false;
453
454    // RIP-relative addresses can't have additional register operands.
455    if (Subtarget->isPICStyleRIPRel() &&
456        (AM.Base.Reg != 0 || AM.IndexReg != 0))
457      return false;
458
459    // Can't handle TLS yet.
460    if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
461      if (GVar->isThreadLocal())
462        return false;
463
464    // Okay, we've committed to selecting this global. Set up the basic address.
465    AM.GV = GV;
466
467    // Allow the subtarget to classify the global.
468    unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
469
470    // If this reference is relative to the pic base, set it now.
471    if (isGlobalRelativeToPICBase(GVFlags)) {
472      // FIXME: How do we know Base.Reg is free??
473      AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(&MF);
474    }
475
476    // Unless the ABI requires an extra load, return a direct reference to
477    // the global.
478    if (!isGlobalStubReference(GVFlags)) {
479      if (Subtarget->isPICStyleRIPRel()) {
480        // Use rip-relative addressing if we can.  Above we verified that the
481        // base and index registers are unused.
482        assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
483        AM.Base.Reg = X86::RIP;
484      }
485      AM.GVOpFlags = GVFlags;
486      return true;
487    }
488
489    // Ok, we need to do a load from a stub.  If we've already loaded from this
490    // stub, reuse the loaded pointer, otherwise emit the load now.
491    DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
492    unsigned LoadReg;
493    if (I != LocalValueMap.end() && I->second != 0) {
494      LoadReg = I->second;
495    } else {
496      // Issue load from stub.
497      unsigned Opc = 0;
498      const TargetRegisterClass *RC = NULL;
499      X86AddressMode StubAM;
500      StubAM.Base.Reg = AM.Base.Reg;
501      StubAM.GV = GV;
502      StubAM.GVOpFlags = GVFlags;
503
504      if (TLI.getPointerTy() == MVT::i64) {
505        Opc = X86::MOV64rm;
506        RC  = X86::GR64RegisterClass;
507
508        if (Subtarget->isPICStyleRIPRel())
509          StubAM.Base.Reg = X86::RIP;
510      } else {
511        Opc = X86::MOV32rm;
512        RC  = X86::GR32RegisterClass;
513      }
514
515      LoadReg = createResultReg(RC);
516      addFullAddress(BuildMI(MBB, DL, TII.get(Opc), LoadReg), StubAM);
517
518      // Prevent loading GV stub multiple times in same MBB.
519      LocalValueMap[V] = LoadReg;
520    }
521
522    // Now construct the final address. Note that the Disp, Scale,
523    // and Index values may already be set here.
524    AM.Base.Reg = LoadReg;
525    AM.GV = 0;
526    return true;
527  }
528
529  // If all else fails, try to materialize the value in a register.
530  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
531    if (AM.Base.Reg == 0) {
532      AM.Base.Reg = getRegForValue(V);
533      return AM.Base.Reg != 0;
534    }
535    if (AM.IndexReg == 0) {
536      assert(AM.Scale == 1 && "Scale with no index!");
537      AM.IndexReg = getRegForValue(V);
538      return AM.IndexReg != 0;
539    }
540  }
541
542  return false;
543}
544
545/// X86SelectCallAddress - Attempt to fill in an address from the given value.
546///
547bool X86FastISel::X86SelectCallAddress(Value *V, X86AddressMode &AM) {
548  User *U = NULL;
549  unsigned Opcode = Instruction::UserOp1;
550  if (Instruction *I = dyn_cast<Instruction>(V)) {
551    Opcode = I->getOpcode();
552    U = I;
553  } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
554    Opcode = C->getOpcode();
555    U = C;
556  }
557
558  switch (Opcode) {
559  default: break;
560  case Instruction::BitCast:
561    // Look past bitcasts.
562    return X86SelectCallAddress(U->getOperand(0), AM);
563
564  case Instruction::IntToPtr:
565    // Look past no-op inttoptrs.
566    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
567      return X86SelectCallAddress(U->getOperand(0), AM);
568    break;
569
570  case Instruction::PtrToInt:
571    // Look past no-op ptrtoints.
572    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
573      return X86SelectCallAddress(U->getOperand(0), AM);
574    break;
575  }
576
577  // Handle constant address.
578  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
579    // Can't handle alternate code models yet.
580    if (TM.getCodeModel() != CodeModel::Small)
581      return false;
582
583    // RIP-relative addresses can't have additional register operands.
584    if (Subtarget->isPICStyleRIPRel() &&
585        (AM.Base.Reg != 0 || AM.IndexReg != 0))
586      return false;
587
588    // Can't handle TLS or DLLImport.
589    if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
590      if (GVar->isThreadLocal() || GVar->hasDLLImportLinkage())
591        return false;
592
593    // Okay, we've committed to selecting this global. Set up the basic address.
594    AM.GV = GV;
595
596    // No ABI requires an extra load for anything other than DLLImport, which
597    // we rejected above. Return a direct reference to the global.
598    if (Subtarget->isPICStyleRIPRel()) {
599      // Use rip-relative addressing if we can.  Above we verified that the
600      // base and index registers are unused.
601      assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
602      AM.Base.Reg = X86::RIP;
603    } else if (Subtarget->isPICStyleStubPIC()) {
604      AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
605    } else if (Subtarget->isPICStyleGOT()) {
606      AM.GVOpFlags = X86II::MO_GOTOFF;
607    }
608
609    return true;
610  }
611
612  // If all else fails, try to materialize the value in a register.
613  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
614    if (AM.Base.Reg == 0) {
615      AM.Base.Reg = getRegForValue(V);
616      return AM.Base.Reg != 0;
617    }
618    if (AM.IndexReg == 0) {
619      assert(AM.Scale == 1 && "Scale with no index!");
620      AM.IndexReg = getRegForValue(V);
621      return AM.IndexReg != 0;
622    }
623  }
624
625  return false;
626}
627
628
629/// X86SelectStore - Select and emit code to implement store instructions.
630bool X86FastISel::X86SelectStore(Instruction* I) {
631  EVT VT;
632  if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true))
633    return false;
634
635  X86AddressMode AM;
636  if (!X86SelectAddress(I->getOperand(1), AM))
637    return false;
638
639  return X86FastEmitStore(VT, I->getOperand(0), AM);
640}
641
642/// X86SelectLoad - Select and emit code to implement load instructions.
643///
644bool X86FastISel::X86SelectLoad(Instruction *I)  {
645  EVT VT;
646  if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true))
647    return false;
648
649  X86AddressMode AM;
650  if (!X86SelectAddress(I->getOperand(0), AM))
651    return false;
652
653  unsigned ResultReg = 0;
654  if (X86FastEmitLoad(VT, AM, ResultReg)) {
655    UpdateValueMap(I, ResultReg);
656    return true;
657  }
658  return false;
659}
660
661static unsigned X86ChooseCmpOpcode(EVT VT) {
662  switch (VT.getSimpleVT().SimpleTy) {
663  default:       return 0;
664  case MVT::i8:  return X86::CMP8rr;
665  case MVT::i16: return X86::CMP16rr;
666  case MVT::i32: return X86::CMP32rr;
667  case MVT::i64: return X86::CMP64rr;
668  case MVT::f32: return X86::UCOMISSrr;
669  case MVT::f64: return X86::UCOMISDrr;
670  }
671}
672
673/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
674/// of the comparison, return an opcode that works for the compare (e.g.
675/// CMP32ri) otherwise return 0.
676static unsigned X86ChooseCmpImmediateOpcode(EVT VT, ConstantInt *RHSC) {
677  switch (VT.getSimpleVT().SimpleTy) {
678  // Otherwise, we can't fold the immediate into this comparison.
679  default: return 0;
680  case MVT::i8: return X86::CMP8ri;
681  case MVT::i16: return X86::CMP16ri;
682  case MVT::i32: return X86::CMP32ri;
683  case MVT::i64:
684    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
685    // field.
686    if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
687      return X86::CMP64ri32;
688    return 0;
689  }
690}
691
692bool X86FastISel::X86FastEmitCompare(Value *Op0, Value *Op1, EVT VT) {
693  unsigned Op0Reg = getRegForValue(Op0);
694  if (Op0Reg == 0) return false;
695
696  // Handle 'null' like i32/i64 0.
697  if (isa<ConstantPointerNull>(Op1))
698    Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext()));
699
700  // We have two options: compare with register or immediate.  If the RHS of
701  // the compare is an immediate that we can fold into this compare, use
702  // CMPri, otherwise use CMPrr.
703  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
704    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
705      BuildMI(MBB, DL, TII.get(CompareImmOpc)).addReg(Op0Reg)
706                                          .addImm(Op1C->getSExtValue());
707      return true;
708    }
709  }
710
711  unsigned CompareOpc = X86ChooseCmpOpcode(VT);
712  if (CompareOpc == 0) return false;
713
714  unsigned Op1Reg = getRegForValue(Op1);
715  if (Op1Reg == 0) return false;
716  BuildMI(MBB, DL, TII.get(CompareOpc)).addReg(Op0Reg).addReg(Op1Reg);
717
718  return true;
719}
720
721bool X86FastISel::X86SelectCmp(Instruction *I) {
722  CmpInst *CI = cast<CmpInst>(I);
723
724  EVT VT;
725  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
726    return false;
727
728  unsigned ResultReg = createResultReg(&X86::GR8RegClass);
729  unsigned SetCCOpc;
730  bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
731  switch (CI->getPredicate()) {
732  case CmpInst::FCMP_OEQ: {
733    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
734      return false;
735
736    unsigned EReg = createResultReg(&X86::GR8RegClass);
737    unsigned NPReg = createResultReg(&X86::GR8RegClass);
738    BuildMI(MBB, DL, TII.get(X86::SETEr), EReg);
739    BuildMI(MBB, DL, TII.get(X86::SETNPr), NPReg);
740    BuildMI(MBB, DL,
741            TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
742    UpdateValueMap(I, ResultReg);
743    return true;
744  }
745  case CmpInst::FCMP_UNE: {
746    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
747      return false;
748
749    unsigned NEReg = createResultReg(&X86::GR8RegClass);
750    unsigned PReg = createResultReg(&X86::GR8RegClass);
751    BuildMI(MBB, DL, TII.get(X86::SETNEr), NEReg);
752    BuildMI(MBB, DL, TII.get(X86::SETPr), PReg);
753    BuildMI(MBB, DL, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg);
754    UpdateValueMap(I, ResultReg);
755    return true;
756  }
757  case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
758  case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
759  case CmpInst::FCMP_OLT: SwapArgs = true;  SetCCOpc = X86::SETAr;  break;
760  case CmpInst::FCMP_OLE: SwapArgs = true;  SetCCOpc = X86::SETAEr; break;
761  case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
762  case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
763  case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr;  break;
764  case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr;  break;
765  case CmpInst::FCMP_UGT: SwapArgs = true;  SetCCOpc = X86::SETBr;  break;
766  case CmpInst::FCMP_UGE: SwapArgs = true;  SetCCOpc = X86::SETBEr; break;
767  case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
768  case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
769
770  case CmpInst::ICMP_EQ:  SwapArgs = false; SetCCOpc = X86::SETEr;  break;
771  case CmpInst::ICMP_NE:  SwapArgs = false; SetCCOpc = X86::SETNEr; break;
772  case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
773  case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
774  case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
775  case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
776  case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr;  break;
777  case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
778  case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr;  break;
779  case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
780  default:
781    return false;
782  }
783
784  Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
785  if (SwapArgs)
786    std::swap(Op0, Op1);
787
788  // Emit a compare of Op0/Op1.
789  if (!X86FastEmitCompare(Op0, Op1, VT))
790    return false;
791
792  BuildMI(MBB, DL, TII.get(SetCCOpc), ResultReg);
793  UpdateValueMap(I, ResultReg);
794  return true;
795}
796
797bool X86FastISel::X86SelectZExt(Instruction *I) {
798  // Handle zero-extension from i1 to i8, which is common.
799  if (I->getType()->isIntegerTy(8) &&
800      I->getOperand(0)->getType()->isIntegerTy(1)) {
801    unsigned ResultReg = getRegForValue(I->getOperand(0));
802    if (ResultReg == 0) return false;
803    // Set the high bits to zero.
804    ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg);
805    if (ResultReg == 0) return false;
806    UpdateValueMap(I, ResultReg);
807    return true;
808  }
809
810  return false;
811}
812
813
814bool X86FastISel::X86SelectBranch(Instruction *I) {
815  // Unconditional branches are selected by tablegen-generated code.
816  // Handle a conditional branch.
817  BranchInst *BI = cast<BranchInst>(I);
818  MachineBasicBlock *TrueMBB = MBBMap[BI->getSuccessor(0)];
819  MachineBasicBlock *FalseMBB = MBBMap[BI->getSuccessor(1)];
820
821  // Fold the common case of a conditional branch with a comparison.
822  if (CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
823    if (CI->hasOneUse()) {
824      EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
825
826      // Try to take advantage of fallthrough opportunities.
827      CmpInst::Predicate Predicate = CI->getPredicate();
828      if (MBB->isLayoutSuccessor(TrueMBB)) {
829        std::swap(TrueMBB, FalseMBB);
830        Predicate = CmpInst::getInversePredicate(Predicate);
831      }
832
833      bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
834      unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
835
836      switch (Predicate) {
837      case CmpInst::FCMP_OEQ:
838        std::swap(TrueMBB, FalseMBB);
839        Predicate = CmpInst::FCMP_UNE;
840        // FALL THROUGH
841      case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
842      case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
843      case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
844      case CmpInst::FCMP_OLT: SwapArgs = true;  BranchOpc = X86::JA_4;  break;
845      case CmpInst::FCMP_OLE: SwapArgs = true;  BranchOpc = X86::JAE_4; break;
846      case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
847      case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break;
848      case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4;  break;
849      case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4;  break;
850      case CmpInst::FCMP_UGT: SwapArgs = true;  BranchOpc = X86::JB_4;  break;
851      case CmpInst::FCMP_UGE: SwapArgs = true;  BranchOpc = X86::JBE_4; break;
852      case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
853      case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
854
855      case CmpInst::ICMP_EQ:  SwapArgs = false; BranchOpc = X86::JE_4;  break;
856      case CmpInst::ICMP_NE:  SwapArgs = false; BranchOpc = X86::JNE_4; break;
857      case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
858      case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
859      case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
860      case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
861      case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4;  break;
862      case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break;
863      case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4;  break;
864      case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break;
865      default:
866        return false;
867      }
868
869      Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
870      if (SwapArgs)
871        std::swap(Op0, Op1);
872
873      // Emit a compare of the LHS and RHS, setting the flags.
874      if (!X86FastEmitCompare(Op0, Op1, VT))
875        return false;
876
877      BuildMI(MBB, DL, TII.get(BranchOpc)).addMBB(TrueMBB);
878
879      if (Predicate == CmpInst::FCMP_UNE) {
880        // X86 requires a second branch to handle UNE (and OEQ,
881        // which is mapped to UNE above).
882        BuildMI(MBB, DL, TII.get(X86::JP_4)).addMBB(TrueMBB);
883      }
884
885      FastEmitBranch(FalseMBB);
886      MBB->addSuccessor(TrueMBB);
887      return true;
888    }
889  } else if (ExtractValueInst *EI =
890             dyn_cast<ExtractValueInst>(BI->getCondition())) {
891    // Check to see if the branch instruction is from an "arithmetic with
892    // overflow" intrinsic. The main way these intrinsics are used is:
893    //
894    //   %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
895    //   %sum = extractvalue { i32, i1 } %t, 0
896    //   %obit = extractvalue { i32, i1 } %t, 1
897    //   br i1 %obit, label %overflow, label %normal
898    //
899    // The %sum and %obit are converted in an ADD and a SETO/SETB before
900    // reaching the branch. Therefore, we search backwards through the MBB
901    // looking for the SETO/SETB instruction. If an instruction modifies the
902    // EFLAGS register before we reach the SETO/SETB instruction, then we can't
903    // convert the branch into a JO/JB instruction.
904    if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(EI->getAggregateOperand())){
905      if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow ||
906          CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) {
907        const MachineInstr *SetMI = 0;
908        unsigned Reg = lookUpRegForValue(EI);
909
910        for (MachineBasicBlock::const_reverse_iterator
911               RI = MBB->rbegin(), RE = MBB->rend(); RI != RE; ++RI) {
912          const MachineInstr &MI = *RI;
913
914          if (MI.modifiesRegister(Reg)) {
915            unsigned Src, Dst, SrcSR, DstSR;
916
917            if (getInstrInfo()->isMoveInstr(MI, Src, Dst, SrcSR, DstSR)) {
918              Reg = Src;
919              continue;
920            }
921
922            SetMI = &MI;
923            break;
924          }
925
926          const TargetInstrDesc &TID = MI.getDesc();
927          if (TID.hasUnmodeledSideEffects() ||
928              TID.hasImplicitDefOfPhysReg(X86::EFLAGS))
929            break;
930        }
931
932        if (SetMI) {
933          unsigned OpCode = SetMI->getOpcode();
934
935          if (OpCode == X86::SETOr || OpCode == X86::SETBr) {
936            BuildMI(MBB, DL, TII.get(OpCode == X86::SETOr ?
937                                        X86::JO_4 : X86::JB_4))
938              .addMBB(TrueMBB);
939            FastEmitBranch(FalseMBB);
940            MBB->addSuccessor(TrueMBB);
941            return true;
942          }
943        }
944      }
945    }
946  }
947
948  // Otherwise do a clumsy setcc and re-test it.
949  unsigned OpReg = getRegForValue(BI->getCondition());
950  if (OpReg == 0) return false;
951
952  BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg);
953  BuildMI(MBB, DL, TII.get(X86::JNE_4)).addMBB(TrueMBB);
954  FastEmitBranch(FalseMBB);
955  MBB->addSuccessor(TrueMBB);
956  return true;
957}
958
959bool X86FastISel::X86SelectShift(Instruction *I) {
960  unsigned CReg = 0, OpReg = 0, OpImm = 0;
961  const TargetRegisterClass *RC = NULL;
962  if (I->getType()->isIntegerTy(8)) {
963    CReg = X86::CL;
964    RC = &X86::GR8RegClass;
965    switch (I->getOpcode()) {
966    case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break;
967    case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break;
968    case Instruction::Shl:  OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
969    default: return false;
970    }
971  } else if (I->getType()->isIntegerTy(16)) {
972    CReg = X86::CX;
973    RC = &X86::GR16RegClass;
974    switch (I->getOpcode()) {
975    case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break;
976    case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break;
977    case Instruction::Shl:  OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
978    default: return false;
979    }
980  } else if (I->getType()->isIntegerTy(32)) {
981    CReg = X86::ECX;
982    RC = &X86::GR32RegClass;
983    switch (I->getOpcode()) {
984    case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break;
985    case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break;
986    case Instruction::Shl:  OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
987    default: return false;
988    }
989  } else if (I->getType()->isIntegerTy(64)) {
990    CReg = X86::RCX;
991    RC = &X86::GR64RegClass;
992    switch (I->getOpcode()) {
993    case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break;
994    case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break;
995    case Instruction::Shl:  OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break;
996    default: return false;
997    }
998  } else {
999    return false;
1000  }
1001
1002  EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
1003  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
1004    return false;
1005
1006  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1007  if (Op0Reg == 0) return false;
1008
1009  // Fold immediate in shl(x,3).
1010  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1011    unsigned ResultReg = createResultReg(RC);
1012    BuildMI(MBB, DL, TII.get(OpImm),
1013            ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff);
1014    UpdateValueMap(I, ResultReg);
1015    return true;
1016  }
1017
1018  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1019  if (Op1Reg == 0) return false;
1020  TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC);
1021
1022  // The shift instruction uses X86::CL. If we defined a super-register
1023  // of X86::CL, emit an EXTRACT_SUBREG to precisely describe what
1024  // we're doing here.
1025  if (CReg != X86::CL)
1026    BuildMI(MBB, DL, TII.get(TargetOpcode::EXTRACT_SUBREG), X86::CL)
1027      .addReg(CReg).addImm(X86::SUBREG_8BIT);
1028
1029  unsigned ResultReg = createResultReg(RC);
1030  BuildMI(MBB, DL, TII.get(OpReg), ResultReg).addReg(Op0Reg);
1031  UpdateValueMap(I, ResultReg);
1032  return true;
1033}
1034
1035bool X86FastISel::X86SelectSelect(Instruction *I) {
1036  EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
1037  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
1038    return false;
1039
1040  unsigned Opc = 0;
1041  const TargetRegisterClass *RC = NULL;
1042  if (VT.getSimpleVT() == MVT::i16) {
1043    Opc = X86::CMOVE16rr;
1044    RC = &X86::GR16RegClass;
1045  } else if (VT.getSimpleVT() == MVT::i32) {
1046    Opc = X86::CMOVE32rr;
1047    RC = &X86::GR32RegClass;
1048  } else if (VT.getSimpleVT() == MVT::i64) {
1049    Opc = X86::CMOVE64rr;
1050    RC = &X86::GR64RegClass;
1051  } else {
1052    return false;
1053  }
1054
1055  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1056  if (Op0Reg == 0) return false;
1057  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1058  if (Op1Reg == 0) return false;
1059  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1060  if (Op2Reg == 0) return false;
1061
1062  BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg);
1063  unsigned ResultReg = createResultReg(RC);
1064  BuildMI(MBB, DL, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg);
1065  UpdateValueMap(I, ResultReg);
1066  return true;
1067}
1068
1069bool X86FastISel::X86SelectFPExt(Instruction *I) {
1070  // fpext from float to double.
1071  if (Subtarget->hasSSE2() &&
1072      I->getType()->isDoubleTy()) {
1073    Value *V = I->getOperand(0);
1074    if (V->getType()->isFloatTy()) {
1075      unsigned OpReg = getRegForValue(V);
1076      if (OpReg == 0) return false;
1077      unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
1078      BuildMI(MBB, DL, TII.get(X86::CVTSS2SDrr), ResultReg).addReg(OpReg);
1079      UpdateValueMap(I, ResultReg);
1080      return true;
1081    }
1082  }
1083
1084  return false;
1085}
1086
1087bool X86FastISel::X86SelectFPTrunc(Instruction *I) {
1088  if (Subtarget->hasSSE2()) {
1089    if (I->getType()->isFloatTy()) {
1090      Value *V = I->getOperand(0);
1091      if (V->getType()->isDoubleTy()) {
1092        unsigned OpReg = getRegForValue(V);
1093        if (OpReg == 0) return false;
1094        unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
1095        BuildMI(MBB, DL, TII.get(X86::CVTSD2SSrr), ResultReg).addReg(OpReg);
1096        UpdateValueMap(I, ResultReg);
1097        return true;
1098      }
1099    }
1100  }
1101
1102  return false;
1103}
1104
1105bool X86FastISel::X86SelectTrunc(Instruction *I) {
1106  if (Subtarget->is64Bit())
1107    // All other cases should be handled by the tblgen generated code.
1108    return false;
1109  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1110  EVT DstVT = TLI.getValueType(I->getType());
1111
1112  // This code only handles truncation to byte right now.
1113  if (DstVT != MVT::i8 && DstVT != MVT::i1)
1114    // All other cases should be handled by the tblgen generated code.
1115    return false;
1116  if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
1117    // All other cases should be handled by the tblgen generated code.
1118    return false;
1119
1120  unsigned InputReg = getRegForValue(I->getOperand(0));
1121  if (!InputReg)
1122    // Unhandled operand.  Halt "fast" selection and bail.
1123    return false;
1124
1125  // First issue a copy to GR16_ABCD or GR32_ABCD.
1126  unsigned CopyOpc = (SrcVT == MVT::i16) ? X86::MOV16rr : X86::MOV32rr;
1127  const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
1128    ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
1129  unsigned CopyReg = createResultReg(CopyRC);
1130  BuildMI(MBB, DL, TII.get(CopyOpc), CopyReg).addReg(InputReg);
1131
1132  // Then issue an extract_subreg.
1133  unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
1134                                                  CopyReg, X86::SUBREG_8BIT);
1135  if (!ResultReg)
1136    return false;
1137
1138  UpdateValueMap(I, ResultReg);
1139  return true;
1140}
1141
1142bool X86FastISel::X86SelectExtractValue(Instruction *I) {
1143  ExtractValueInst *EI = cast<ExtractValueInst>(I);
1144  Value *Agg = EI->getAggregateOperand();
1145
1146  if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(Agg)) {
1147    switch (CI->getIntrinsicID()) {
1148    default: break;
1149    case Intrinsic::sadd_with_overflow:
1150    case Intrinsic::uadd_with_overflow:
1151      // Cheat a little. We know that the registers for "add" and "seto" are
1152      // allocated sequentially. However, we only keep track of the register
1153      // for "add" in the value map. Use extractvalue's index to get the
1154      // correct register for "seto".
1155      UpdateValueMap(I, lookUpRegForValue(Agg) + *EI->idx_begin());
1156      return true;
1157    }
1158  }
1159
1160  return false;
1161}
1162
1163bool X86FastISel::X86VisitIntrinsicCall(IntrinsicInst &I) {
1164  // FIXME: Handle more intrinsics.
1165  switch (I.getIntrinsicID()) {
1166  default: return false;
1167  case Intrinsic::stackprotector: {
1168    // Emit code inline code to store the stack guard onto the stack.
1169    EVT PtrTy = TLI.getPointerTy();
1170
1171    Value *Op1 = I.getOperand(1); // The guard's value.
1172    AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
1173
1174    // Grab the frame index.
1175    X86AddressMode AM;
1176    if (!X86SelectAddress(Slot, AM)) return false;
1177
1178    if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
1179
1180    return true;
1181  }
1182  case Intrinsic::objectsize: {
1183    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
1184    const Type *Ty = I.getCalledFunction()->getReturnType();
1185
1186    assert(CI && "Non-constant type in Intrinsic::objectsize?");
1187
1188    EVT VT;
1189    if (!isTypeLegal(Ty, VT))
1190      return false;
1191
1192    unsigned OpC = 0;
1193    if (VT == MVT::i32)
1194      OpC = X86::MOV32ri;
1195    else if (VT == MVT::i64)
1196      OpC = X86::MOV64ri;
1197    else
1198      return false;
1199
1200    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1201    BuildMI(MBB, DL, TII.get(OpC), ResultReg).
1202                                  addImm(CI->getZExtValue() == 0 ? -1ULL : 0);
1203    UpdateValueMap(&I, ResultReg);
1204    return true;
1205  }
1206  case Intrinsic::dbg_declare: {
1207    DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
1208    X86AddressMode AM;
1209    assert(DI->getAddress() && "Null address should be checked earlier!");
1210    if (!X86SelectAddress(DI->getAddress(), AM))
1211      return false;
1212    const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1213    // FIXME may need to add RegState::Debug to any registers produced,
1214    // although ESP/EBP should be the only ones at the moment.
1215    addFullAddress(BuildMI(MBB, DL, II), AM).addImm(0).
1216                                        addMetadata(DI->getVariable());
1217    return true;
1218  }
1219  case Intrinsic::trap: {
1220    BuildMI(MBB, DL, TII.get(X86::TRAP));
1221    return true;
1222  }
1223  case Intrinsic::sadd_with_overflow:
1224  case Intrinsic::uadd_with_overflow: {
1225    // Replace "add with overflow" intrinsics with an "add" instruction followed
1226    // by a seto/setc instruction. Later on, when the "extractvalue"
1227    // instructions are encountered, we use the fact that two registers were
1228    // created sequentially to get the correct registers for the "sum" and the
1229    // "overflow bit".
1230    const Function *Callee = I.getCalledFunction();
1231    const Type *RetTy =
1232      cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
1233
1234    EVT VT;
1235    if (!isTypeLegal(RetTy, VT))
1236      return false;
1237
1238    Value *Op1 = I.getOperand(1);
1239    Value *Op2 = I.getOperand(2);
1240    unsigned Reg1 = getRegForValue(Op1);
1241    unsigned Reg2 = getRegForValue(Op2);
1242
1243    if (Reg1 == 0 || Reg2 == 0)
1244      // FIXME: Handle values *not* in registers.
1245      return false;
1246
1247    unsigned OpC = 0;
1248    if (VT == MVT::i32)
1249      OpC = X86::ADD32rr;
1250    else if (VT == MVT::i64)
1251      OpC = X86::ADD64rr;
1252    else
1253      return false;
1254
1255    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1256    BuildMI(MBB, DL, TII.get(OpC), ResultReg).addReg(Reg1).addReg(Reg2);
1257    unsigned DestReg1 = UpdateValueMap(&I, ResultReg);
1258
1259    // If the add with overflow is an intra-block value then we just want to
1260    // create temporaries for it like normal.  If it is a cross-block value then
1261    // UpdateValueMap will return the cross-block register used.  Since we
1262    // *really* want the value to be live in the register pair known by
1263    // UpdateValueMap, we have to use DestReg1+1 as the destination register in
1264    // the cross block case.  In the non-cross-block case, we should just make
1265    // another register for the value.
1266    if (DestReg1 != ResultReg)
1267      ResultReg = DestReg1+1;
1268    else
1269      ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8));
1270
1271    unsigned Opc = X86::SETBr;
1272    if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
1273      Opc = X86::SETOr;
1274    BuildMI(MBB, DL, TII.get(Opc), ResultReg);
1275    return true;
1276  }
1277  }
1278}
1279
1280bool X86FastISel::X86SelectCall(Instruction *I) {
1281  CallInst *CI = cast<CallInst>(I);
1282  Value *Callee = I->getOperand(0);
1283
1284  // Can't handle inline asm yet.
1285  if (isa<InlineAsm>(Callee))
1286    return false;
1287
1288  // Handle intrinsic calls.
1289  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
1290    return X86VisitIntrinsicCall(*II);
1291
1292  // Handle only C and fastcc calling conventions for now.
1293  CallSite CS(CI);
1294  CallingConv::ID CC = CS.getCallingConv();
1295  if (CC != CallingConv::C &&
1296      CC != CallingConv::Fast &&
1297      CC != CallingConv::X86_FastCall)
1298    return false;
1299
1300  // fastcc with -tailcallopt is intended to provide a guaranteed
1301  // tail call optimization. Fastisel doesn't know how to do that.
1302  if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
1303    return false;
1304
1305  // Let SDISel handle vararg functions.
1306  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1307  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1308  if (FTy->isVarArg())
1309    return false;
1310
1311  // Handle *simple* calls for now.
1312  const Type *RetTy = CS.getType();
1313  EVT RetVT;
1314  if (RetTy->isVoidTy())
1315    RetVT = MVT::isVoid;
1316  else if (!isTypeLegal(RetTy, RetVT, true))
1317    return false;
1318
1319  // Materialize callee address in a register. FIXME: GV address can be
1320  // handled with a CALLpcrel32 instead.
1321  X86AddressMode CalleeAM;
1322  if (!X86SelectCallAddress(Callee, CalleeAM))
1323    return false;
1324  unsigned CalleeOp = 0;
1325  GlobalValue *GV = 0;
1326  if (CalleeAM.GV != 0) {
1327    GV = CalleeAM.GV;
1328  } else if (CalleeAM.Base.Reg != 0) {
1329    CalleeOp = CalleeAM.Base.Reg;
1330  } else
1331    return false;
1332
1333  // Allow calls which produce i1 results.
1334  bool AndToI1 = false;
1335  if (RetVT == MVT::i1) {
1336    RetVT = MVT::i8;
1337    AndToI1 = true;
1338  }
1339
1340  // Deal with call operands first.
1341  SmallVector<Value*, 8> ArgVals;
1342  SmallVector<unsigned, 8> Args;
1343  SmallVector<EVT, 8> ArgVTs;
1344  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1345  Args.reserve(CS.arg_size());
1346  ArgVals.reserve(CS.arg_size());
1347  ArgVTs.reserve(CS.arg_size());
1348  ArgFlags.reserve(CS.arg_size());
1349  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1350       i != e; ++i) {
1351    unsigned Arg = getRegForValue(*i);
1352    if (Arg == 0)
1353      return false;
1354    ISD::ArgFlagsTy Flags;
1355    unsigned AttrInd = i - CS.arg_begin() + 1;
1356    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1357      Flags.setSExt();
1358    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1359      Flags.setZExt();
1360
1361    // FIXME: Only handle *easy* calls for now.
1362    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1363        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1364        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1365        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1366      return false;
1367
1368    const Type *ArgTy = (*i)->getType();
1369    EVT ArgVT;
1370    if (!isTypeLegal(ArgTy, ArgVT))
1371      return false;
1372    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1373    Flags.setOrigAlign(OriginalAlignment);
1374
1375    Args.push_back(Arg);
1376    ArgVals.push_back(*i);
1377    ArgVTs.push_back(ArgVT);
1378    ArgFlags.push_back(Flags);
1379  }
1380
1381  // Analyze operands of the call, assigning locations to each operand.
1382  SmallVector<CCValAssign, 16> ArgLocs;
1383  CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext());
1384  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
1385
1386  // Get a count of how many bytes are to be pushed on the stack.
1387  unsigned NumBytes = CCInfo.getNextStackOffset();
1388
1389  // Issue CALLSEQ_START
1390  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1391  BuildMI(MBB, DL, TII.get(AdjStackDown)).addImm(NumBytes);
1392
1393  // Process argument: walk the register/memloc assignments, inserting
1394  // copies / loads.
1395  SmallVector<unsigned, 4> RegArgs;
1396  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1397    CCValAssign &VA = ArgLocs[i];
1398    unsigned Arg = Args[VA.getValNo()];
1399    EVT ArgVT = ArgVTs[VA.getValNo()];
1400
1401    // Promote the value if needed.
1402    switch (VA.getLocInfo()) {
1403    default: llvm_unreachable("Unknown loc info!");
1404    case CCValAssign::Full: break;
1405    case CCValAssign::SExt: {
1406      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1407                                       Arg, ArgVT, Arg);
1408      assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted;
1409      Emitted = true;
1410      ArgVT = VA.getLocVT();
1411      break;
1412    }
1413    case CCValAssign::ZExt: {
1414      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1415                                       Arg, ArgVT, Arg);
1416      assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted;
1417      Emitted = true;
1418      ArgVT = VA.getLocVT();
1419      break;
1420    }
1421    case CCValAssign::AExt: {
1422      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1423                                       Arg, ArgVT, Arg);
1424      if (!Emitted)
1425        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1426                                    Arg, ArgVT, Arg);
1427      if (!Emitted)
1428        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1429                                    Arg, ArgVT, Arg);
1430
1431      assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted;
1432      ArgVT = VA.getLocVT();
1433      break;
1434    }
1435    case CCValAssign::BCvt: {
1436      unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT().getSimpleVT(),
1437                               ISD::BIT_CONVERT, Arg);
1438      assert(BC != 0 && "Failed to emit a bitcast!");
1439      Arg = BC;
1440      ArgVT = VA.getLocVT();
1441      break;
1442    }
1443    }
1444
1445    if (VA.isRegLoc()) {
1446      TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT);
1447      bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(),
1448                                      Arg, RC, RC);
1449      assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1450      Emitted = true;
1451      RegArgs.push_back(VA.getLocReg());
1452    } else {
1453      unsigned LocMemOffset = VA.getLocMemOffset();
1454      X86AddressMode AM;
1455      AM.Base.Reg = StackPtr;
1456      AM.Disp = LocMemOffset;
1457      Value *ArgVal = ArgVals[VA.getValNo()];
1458
1459      // If this is a really simple value, emit this with the Value* version of
1460      // X86FastEmitStore.  If it isn't simple, we don't want to do this, as it
1461      // can cause us to reevaluate the argument.
1462      if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal))
1463        X86FastEmitStore(ArgVT, ArgVal, AM);
1464      else
1465        X86FastEmitStore(ArgVT, Arg, AM);
1466    }
1467  }
1468
1469  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1470  // GOT pointer.
1471  if (Subtarget->isPICStyleGOT()) {
1472    TargetRegisterClass *RC = X86::GR32RegisterClass;
1473    unsigned Base = getInstrInfo()->getGlobalBaseReg(&MF);
1474    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC);
1475    assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1476    Emitted = true;
1477  }
1478
1479  // Issue the call.
1480  MachineInstrBuilder MIB;
1481  if (CalleeOp) {
1482    // Register-indirect call.
1483    unsigned CallOpc = Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r;
1484    MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addReg(CalleeOp);
1485
1486  } else {
1487    // Direct call.
1488    assert(GV && "Not a direct call");
1489    unsigned CallOpc =
1490      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
1491
1492    // See if we need any target-specific flags on the GV operand.
1493    unsigned char OpFlags = 0;
1494
1495    // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1496    // external symbols most go through the PLT in PIC mode.  If the symbol
1497    // has hidden or protected visibility, or if it is static or local, then
1498    // we don't need to use the PLT - we can directly call it.
1499    if (Subtarget->isTargetELF() &&
1500        TM.getRelocationModel() == Reloc::PIC_ &&
1501        GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1502      OpFlags = X86II::MO_PLT;
1503    } else if (Subtarget->isPICStyleStubAny() &&
1504               (GV->isDeclaration() || GV->isWeakForLinker()) &&
1505               Subtarget->getDarwinVers() < 9) {
1506      // PC-relative references to external symbols should go through $stub,
1507      // unless we're building with the leopard linker or later, which
1508      // automatically synthesizes these stubs.
1509      OpFlags = X86II::MO_DARWIN_STUB;
1510    }
1511
1512
1513    MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addGlobalAddress(GV, 0, OpFlags);
1514  }
1515
1516  // Add an implicit use GOT pointer in EBX.
1517  if (Subtarget->isPICStyleGOT())
1518    MIB.addReg(X86::EBX);
1519
1520  // Add implicit physical register uses to the call.
1521  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1522    MIB.addReg(RegArgs[i]);
1523
1524  // Issue CALLSEQ_END
1525  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1526  BuildMI(MBB, DL, TII.get(AdjStackUp)).addImm(NumBytes).addImm(0);
1527
1528  // Now handle call return value (if any).
1529  if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) {
1530    SmallVector<CCValAssign, 16> RVLocs;
1531    CCState CCInfo(CC, false, TM, RVLocs, I->getParent()->getContext());
1532    CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
1533
1534    // Copy all of the result registers out of their specified physreg.
1535    assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
1536    EVT CopyVT = RVLocs[0].getValVT();
1537    TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1538    TargetRegisterClass *SrcRC = DstRC;
1539
1540    // If this is a call to a function that returns an fp value on the x87 fp
1541    // stack, but where we prefer to use the value in xmm registers, copy it
1542    // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1543    if ((RVLocs[0].getLocReg() == X86::ST0 ||
1544         RVLocs[0].getLocReg() == X86::ST1) &&
1545        isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
1546      CopyVT = MVT::f80;
1547      SrcRC = X86::RSTRegisterClass;
1548      DstRC = X86::RFP80RegisterClass;
1549    }
1550
1551    unsigned ResultReg = createResultReg(DstRC);
1552    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1553                                    RVLocs[0].getLocReg(), DstRC, SrcRC);
1554    assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1555    Emitted = true;
1556    if (CopyVT != RVLocs[0].getValVT()) {
1557      // Round the F80 the right size, which also moves to the appropriate xmm
1558      // register. This is accomplished by storing the F80 value in memory and
1559      // then loading it back. Ewww...
1560      EVT ResVT = RVLocs[0].getValVT();
1561      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
1562      unsigned MemSize = ResVT.getSizeInBits()/8;
1563      int FI = MFI.CreateStackObject(MemSize, MemSize, false);
1564      addFrameReference(BuildMI(MBB, DL, TII.get(Opc)), FI).addReg(ResultReg);
1565      DstRC = ResVT == MVT::f32
1566        ? X86::FR32RegisterClass : X86::FR64RegisterClass;
1567      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
1568      ResultReg = createResultReg(DstRC);
1569      addFrameReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg), FI);
1570    }
1571
1572    if (AndToI1) {
1573      // Mask out all but lowest bit for some call which produces an i1.
1574      unsigned AndResult = createResultReg(X86::GR8RegisterClass);
1575      BuildMI(MBB, DL,
1576              TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
1577      ResultReg = AndResult;
1578    }
1579
1580    UpdateValueMap(I, ResultReg);
1581  }
1582
1583  return true;
1584}
1585
1586
1587bool
1588X86FastISel::TargetSelectInstruction(Instruction *I)  {
1589  switch (I->getOpcode()) {
1590  default: break;
1591  case Instruction::Load:
1592    return X86SelectLoad(I);
1593  case Instruction::Store:
1594    return X86SelectStore(I);
1595  case Instruction::ICmp:
1596  case Instruction::FCmp:
1597    return X86SelectCmp(I);
1598  case Instruction::ZExt:
1599    return X86SelectZExt(I);
1600  case Instruction::Br:
1601    return X86SelectBranch(I);
1602  case Instruction::Call:
1603    return X86SelectCall(I);
1604  case Instruction::LShr:
1605  case Instruction::AShr:
1606  case Instruction::Shl:
1607    return X86SelectShift(I);
1608  case Instruction::Select:
1609    return X86SelectSelect(I);
1610  case Instruction::Trunc:
1611    return X86SelectTrunc(I);
1612  case Instruction::FPExt:
1613    return X86SelectFPExt(I);
1614  case Instruction::FPTrunc:
1615    return X86SelectFPTrunc(I);
1616  case Instruction::ExtractValue:
1617    return X86SelectExtractValue(I);
1618  case Instruction::IntToPtr: // Deliberate fall-through.
1619  case Instruction::PtrToInt: {
1620    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1621    EVT DstVT = TLI.getValueType(I->getType());
1622    if (DstVT.bitsGT(SrcVT))
1623      return X86SelectZExt(I);
1624    if (DstVT.bitsLT(SrcVT))
1625      return X86SelectTrunc(I);
1626    unsigned Reg = getRegForValue(I->getOperand(0));
1627    if (Reg == 0) return false;
1628    UpdateValueMap(I, Reg);
1629    return true;
1630  }
1631  }
1632
1633  return false;
1634}
1635
1636unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
1637  EVT VT;
1638  if (!isTypeLegal(C->getType(), VT))
1639    return false;
1640
1641  // Get opcode and regclass of the output for the given load instruction.
1642  unsigned Opc = 0;
1643  const TargetRegisterClass *RC = NULL;
1644  switch (VT.getSimpleVT().SimpleTy) {
1645  default: return false;
1646  case MVT::i8:
1647    Opc = X86::MOV8rm;
1648    RC  = X86::GR8RegisterClass;
1649    break;
1650  case MVT::i16:
1651    Opc = X86::MOV16rm;
1652    RC  = X86::GR16RegisterClass;
1653    break;
1654  case MVT::i32:
1655    Opc = X86::MOV32rm;
1656    RC  = X86::GR32RegisterClass;
1657    break;
1658  case MVT::i64:
1659    // Must be in x86-64 mode.
1660    Opc = X86::MOV64rm;
1661    RC  = X86::GR64RegisterClass;
1662    break;
1663  case MVT::f32:
1664    if (Subtarget->hasSSE1()) {
1665      Opc = X86::MOVSSrm;
1666      RC  = X86::FR32RegisterClass;
1667    } else {
1668      Opc = X86::LD_Fp32m;
1669      RC  = X86::RFP32RegisterClass;
1670    }
1671    break;
1672  case MVT::f64:
1673    if (Subtarget->hasSSE2()) {
1674      Opc = X86::MOVSDrm;
1675      RC  = X86::FR64RegisterClass;
1676    } else {
1677      Opc = X86::LD_Fp64m;
1678      RC  = X86::RFP64RegisterClass;
1679    }
1680    break;
1681  case MVT::f80:
1682    // No f80 support yet.
1683    return false;
1684  }
1685
1686  // Materialize addresses with LEA instructions.
1687  if (isa<GlobalValue>(C)) {
1688    X86AddressMode AM;
1689    if (X86SelectAddress(C, AM)) {
1690      if (TLI.getPointerTy() == MVT::i32)
1691        Opc = X86::LEA32r;
1692      else
1693        Opc = X86::LEA64r;
1694      unsigned ResultReg = createResultReg(RC);
1695      addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
1696      return ResultReg;
1697    }
1698    return 0;
1699  }
1700
1701  // MachineConstantPool wants an explicit alignment.
1702  unsigned Align = TD.getPrefTypeAlignment(C->getType());
1703  if (Align == 0) {
1704    // Alignment of vector types.  FIXME!
1705    Align = TD.getTypeAllocSize(C->getType());
1706  }
1707
1708  // x86-32 PIC requires a PIC base register for constant pools.
1709  unsigned PICBase = 0;
1710  unsigned char OpFlag = 0;
1711  if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
1712    OpFlag = X86II::MO_PIC_BASE_OFFSET;
1713    PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
1714  } else if (Subtarget->isPICStyleGOT()) {
1715    OpFlag = X86II::MO_GOTOFF;
1716    PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
1717  } else if (Subtarget->isPICStyleRIPRel() &&
1718             TM.getCodeModel() == CodeModel::Small) {
1719    PICBase = X86::RIP;
1720  }
1721
1722  // Create the load from the constant pool.
1723  unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
1724  unsigned ResultReg = createResultReg(RC);
1725  addConstantPoolReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg),
1726                           MCPOffset, PICBase, OpFlag);
1727
1728  return ResultReg;
1729}
1730
1731unsigned X86FastISel::TargetMaterializeAlloca(AllocaInst *C) {
1732  // Fail on dynamic allocas. At this point, getRegForValue has already
1733  // checked its CSE maps, so if we're here trying to handle a dynamic
1734  // alloca, we're not going to succeed. X86SelectAddress has a
1735  // check for dynamic allocas, because it's called directly from
1736  // various places, but TargetMaterializeAlloca also needs a check
1737  // in order to avoid recursion between getRegForValue,
1738  // X86SelectAddrss, and TargetMaterializeAlloca.
1739  if (!StaticAllocaMap.count(C))
1740    return 0;
1741
1742  X86AddressMode AM;
1743  if (!X86SelectAddress(C, AM))
1744    return 0;
1745  unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
1746  TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
1747  unsigned ResultReg = createResultReg(RC);
1748  addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
1749  return ResultReg;
1750}
1751
1752namespace llvm {
1753  llvm::FastISel *X86::createFastISel(MachineFunction &mf,
1754                        DenseMap<const Value *, unsigned> &vm,
1755                        DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
1756                        DenseMap<const AllocaInst *, int> &am
1757#ifndef NDEBUG
1758                        , SmallSet<Instruction*, 8> &cil
1759#endif
1760                        ) {
1761    return new X86FastISel(mf, vm, bm, am
1762#ifndef NDEBUG
1763                           , cil
1764#endif
1765                           );
1766  }
1767}
1768