X86ISelLowering.cpp revision 0032681424a04c321fafb0e6b28ca7cd59b610f8
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86TargetMachine.h"
19#include "X86TargetObjectFile.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalAlias.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Function.h"
26#include "llvm/Instructions.h"
27#include "llvm/Intrinsics.h"
28#include "llvm/LLVMContext.h"
29#include "llvm/ADT/BitVector.h"
30#include "llvm/ADT/VectorExtras.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/ADT/SmallSet.h"
42#include "llvm/ADT/StringExtras.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/raw_ostream.h"
45using namespace llvm;
46
47static cl::opt<bool>
48DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
49
50// Disable16Bit - 16-bit operations typically have a larger encoding than
51// corresponding 32-bit instructions, and 16-bit code is slow on some
52// processors. This is an experimental flag to disable 16-bit operations
53// (which forces them to be Legalized to 32-bit operations).
54static cl::opt<bool>
55Disable16Bit("disable-16bit", cl::Hidden,
56             cl::desc("Disable use of 16-bit instructions"));
57
58// Forward declarations.
59static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
60                       SDValue V2);
61
62static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
63  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
64  default: llvm_unreachable("unknown subtarget type");
65  case X86Subtarget::isDarwin:
66    if (TM.getSubtarget<X86Subtarget>().is64Bit())
67      return new X8664_MachoTargetObjectFile();
68    return new X8632_MachoTargetObjectFile();
69  case X86Subtarget::isELF:
70    return new TargetLoweringObjectFileELF();
71  case X86Subtarget::isMingw:
72  case X86Subtarget::isCygwin:
73  case X86Subtarget::isWindows:
74    return new TargetLoweringObjectFileCOFF();
75  }
76
77}
78
79X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
80  : TargetLowering(TM, createTLOF(TM)) {
81  Subtarget = &TM.getSubtarget<X86Subtarget>();
82  X86ScalarSSEf64 = Subtarget->hasSSE2();
83  X86ScalarSSEf32 = Subtarget->hasSSE1();
84  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
85
86  RegInfo = TM.getRegisterInfo();
87  TD = getTargetData();
88
89  // Set up the TargetLowering object.
90
91  // X86 is weird, it always uses i8 for shift amounts and setcc results.
92  setShiftAmountType(MVT::i8);
93  setBooleanContents(ZeroOrOneBooleanContent);
94  setSchedulingPreference(SchedulingForRegPressure);
95  setStackPointerRegisterToSaveRestore(X86StackPtr);
96
97  if (Subtarget->isTargetDarwin()) {
98    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
99    setUseUnderscoreSetJmp(false);
100    setUseUnderscoreLongJmp(false);
101  } else if (Subtarget->isTargetMingw()) {
102    // MS runtime is weird: it exports _setjmp, but longjmp!
103    setUseUnderscoreSetJmp(true);
104    setUseUnderscoreLongJmp(false);
105  } else {
106    setUseUnderscoreSetJmp(true);
107    setUseUnderscoreLongJmp(true);
108  }
109
110  // Set up the register classes.
111  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
112  if (!Disable16Bit)
113    addRegisterClass(MVT::i16, X86::GR16RegisterClass);
114  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
115  if (Subtarget->is64Bit())
116    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
117
118  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
119
120  // We don't accept any truncstore of integer registers.
121  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
122  if (!Disable16Bit)
123    setTruncStoreAction(MVT::i64, MVT::i16, Expand);
124  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
125  if (!Disable16Bit)
126    setTruncStoreAction(MVT::i32, MVT::i16, Expand);
127  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
128  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
129
130  // SETOEQ and SETUNE require checking two conditions.
131  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
132  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
133  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
134  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
135  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
136  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
137
138  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
139  // operation.
140  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
141  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
142  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
143
144  if (Subtarget->is64Bit()) {
145    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
146    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
147  } else if (!UseSoftFloat) {
148    if (X86ScalarSSEf64) {
149      // We have an impenetrably clever algorithm for ui64->double only.
150      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
151    }
152    // We have an algorithm for SSE2, and we turn this into a 64-bit
153    // FILD for other targets.
154    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
155  }
156
157  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
158  // this operation.
159  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
160  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
161
162  if (!UseSoftFloat) {
163    // SSE has no i16 to fp conversion, only i32
164    if (X86ScalarSSEf32) {
165      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
166      // f32 and f64 cases are Legal, f80 case is not
167      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
168    } else {
169      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
170      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
171    }
172  } else {
173    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
174    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
175  }
176
177  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
178  // are Legal, f80 is custom lowered.
179  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
180  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
181
182  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
183  // this operation.
184  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
185  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
186
187  if (X86ScalarSSEf32) {
188    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
189    // f32 and f64 cases are Legal, f80 case is not
190    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
191  } else {
192    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
193    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
194  }
195
196  // Handle FP_TO_UINT by promoting the destination to a larger signed
197  // conversion.
198  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
199  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
200  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
201
202  if (Subtarget->is64Bit()) {
203    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
204    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
205  } else if (!UseSoftFloat) {
206    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
207      // Expand FP_TO_UINT into a select.
208      // FIXME: We would like to use a Custom expander here eventually to do
209      // the optimal thing for SSE vs. the default expansion in the legalizer.
210      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
211    else
212      // With SSE3 we can use fisttpll to convert to a signed i64; without
213      // SSE, we're stuck with a fistpll.
214      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
215  }
216
217  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
218  if (!X86ScalarSSEf64) {
219    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
220    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
221  }
222
223  // Scalar integer divide and remainder are lowered to use operations that
224  // produce two results, to match the available instructions. This exposes
225  // the two-result form to trivial CSE, which is able to combine x/y and x%y
226  // into a single instruction.
227  //
228  // Scalar integer multiply-high is also lowered to use two-result
229  // operations, to match the available instructions. However, plain multiply
230  // (low) operations are left as Legal, as there are single-result
231  // instructions for this in x86. Using the two-result multiply instructions
232  // when both high and low results are needed must be arranged by dagcombine.
233  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
234  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
235  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
236  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
237  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
238  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
239  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
240  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
241  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
242  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
243  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
244  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
245  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
246  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
247  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
248  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
249  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
250  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
251  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
252  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
253  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
254  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
255  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
256  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
257
258  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
259  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
260  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
261  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
262  if (Subtarget->is64Bit())
263    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
264  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
265  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
266  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
267  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
268  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
269  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
270  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
271  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
272
273  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
274  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
275  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
276  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
277  if (Disable16Bit) {
278    setOperationAction(ISD::CTTZ           , MVT::i16  , Expand);
279    setOperationAction(ISD::CTLZ           , MVT::i16  , Expand);
280  } else {
281    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
282    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
283  }
284  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
287  if (Subtarget->is64Bit()) {
288    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
289    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
290    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
291  }
292
293  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
294  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
295
296  // These should be promoted to a larger select which is supported.
297  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
298  // X86 wants to expand cmov itself.
299  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
300  if (Disable16Bit)
301    setOperationAction(ISD::SELECT        , MVT::i16  , Expand);
302  else
303    setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
304  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
305  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
306  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
307  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
308  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
309  if (Disable16Bit)
310    setOperationAction(ISD::SETCC         , MVT::i16  , Expand);
311  else
312    setOperationAction(ISD::SETCC         , MVT::i16  , Custom);
313  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
314  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
315  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
316  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
317  if (Subtarget->is64Bit()) {
318    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
319    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
320  }
321  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
322
323  // Darwin ABI issue.
324  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
325  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
326  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
327  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
328  if (Subtarget->is64Bit())
329    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
330  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
331  if (Subtarget->is64Bit()) {
332    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
333    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
334    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
335    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
336  }
337  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
338  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
339  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
340  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
341  if (Subtarget->is64Bit()) {
342    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
343    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
344    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
345  }
346
347  if (Subtarget->hasSSE1())
348    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
349
350  if (!Subtarget->hasSSE2())
351    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
352
353  // Expand certain atomics
354  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
355  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
356  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
357  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
358
359  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
360  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
361  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
362  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
363
364  if (!Subtarget->is64Bit()) {
365    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
366    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
367    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
368    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
369    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
371    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
372  }
373
374  // Use the default ISD::DBG_STOPPOINT.
375  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
376  // FIXME - use subtarget debug flags
377  if (!Subtarget->isTargetDarwin() &&
378      !Subtarget->isTargetELF() &&
379      !Subtarget->isTargetCygMing()) {
380    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
381    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
382  }
383
384  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
385  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
386  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
387  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
388  if (Subtarget->is64Bit()) {
389    setExceptionPointerRegister(X86::RAX);
390    setExceptionSelectorRegister(X86::RDX);
391  } else {
392    setExceptionPointerRegister(X86::EAX);
393    setExceptionSelectorRegister(X86::EDX);
394  }
395  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
396  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
397
398  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
399
400  setOperationAction(ISD::TRAP, MVT::Other, Legal);
401
402  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
403  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
404  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
405  if (Subtarget->is64Bit()) {
406    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
407    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
408  } else {
409    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
410    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
411  }
412
413  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
414  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
415  if (Subtarget->is64Bit())
416    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
417  if (Subtarget->isTargetCygMing())
418    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
419  else
420    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
421
422  if (!UseSoftFloat && X86ScalarSSEf64) {
423    // f32 and f64 use SSE.
424    // Set up the FP register classes.
425    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
426    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
427
428    // Use ANDPD to simulate FABS.
429    setOperationAction(ISD::FABS , MVT::f64, Custom);
430    setOperationAction(ISD::FABS , MVT::f32, Custom);
431
432    // Use XORP to simulate FNEG.
433    setOperationAction(ISD::FNEG , MVT::f64, Custom);
434    setOperationAction(ISD::FNEG , MVT::f32, Custom);
435
436    // Use ANDPD and ORPD to simulate FCOPYSIGN.
437    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
438    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
439
440    // We don't support sin/cos/fmod
441    setOperationAction(ISD::FSIN , MVT::f64, Expand);
442    setOperationAction(ISD::FCOS , MVT::f64, Expand);
443    setOperationAction(ISD::FSIN , MVT::f32, Expand);
444    setOperationAction(ISD::FCOS , MVT::f32, Expand);
445
446    // Expand FP immediates into loads from the stack, except for the special
447    // cases we handle.
448    addLegalFPImmediate(APFloat(+0.0)); // xorpd
449    addLegalFPImmediate(APFloat(+0.0f)); // xorps
450  } else if (!UseSoftFloat && X86ScalarSSEf32) {
451    // Use SSE for f32, x87 for f64.
452    // Set up the FP register classes.
453    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
454    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
455
456    // Use ANDPS to simulate FABS.
457    setOperationAction(ISD::FABS , MVT::f32, Custom);
458
459    // Use XORP to simulate FNEG.
460    setOperationAction(ISD::FNEG , MVT::f32, Custom);
461
462    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
463
464    // Use ANDPS and ORPS to simulate FCOPYSIGN.
465    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
466    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
467
468    // We don't support sin/cos/fmod
469    setOperationAction(ISD::FSIN , MVT::f32, Expand);
470    setOperationAction(ISD::FCOS , MVT::f32, Expand);
471
472    // Special cases we handle for FP constants.
473    addLegalFPImmediate(APFloat(+0.0f)); // xorps
474    addLegalFPImmediate(APFloat(+0.0)); // FLD0
475    addLegalFPImmediate(APFloat(+1.0)); // FLD1
476    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
477    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
478
479    if (!UnsafeFPMath) {
480      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
481      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
482    }
483  } else if (!UseSoftFloat) {
484    // f32 and f64 in x87.
485    // Set up the FP register classes.
486    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
487    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
488
489    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
490    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
491    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
492    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
493
494    if (!UnsafeFPMath) {
495      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
496      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
497    }
498    addLegalFPImmediate(APFloat(+0.0)); // FLD0
499    addLegalFPImmediate(APFloat(+1.0)); // FLD1
500    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
501    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
502    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
503    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
504    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
505    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
506  }
507
508  // Long double always uses X87.
509  if (!UseSoftFloat) {
510    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
511    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
512    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
513    {
514      bool ignored;
515      APFloat TmpFlt(+0.0);
516      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
517                     &ignored);
518      addLegalFPImmediate(TmpFlt);  // FLD0
519      TmpFlt.changeSign();
520      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
521      APFloat TmpFlt2(+1.0);
522      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
523                      &ignored);
524      addLegalFPImmediate(TmpFlt2);  // FLD1
525      TmpFlt2.changeSign();
526      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
527    }
528
529    if (!UnsafeFPMath) {
530      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
531      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
532    }
533  }
534
535  // Always use a library call for pow.
536  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
537  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
538  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
539
540  setOperationAction(ISD::FLOG, MVT::f80, Expand);
541  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
542  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
543  setOperationAction(ISD::FEXP, MVT::f80, Expand);
544  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
545
546  // First set operation action for all vector types to either promote
547  // (for widening) or expand (for scalarization). Then we will selectively
548  // turn on ones that can be effectively codegen'd.
549  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
550       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
551    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
566    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
567    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
599  }
600
601  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
602  // with -msoft-float, disable use of MMX as well.
603  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
604    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
605    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
606    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
607    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
608    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
609
610    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
611    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
612    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
613    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
614
615    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
616    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
617    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
618    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
619
620    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
621    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
622
623    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
624    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
625    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
626    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
627    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
628    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
629    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
630
631    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
632    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
633    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
634    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
635    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
636    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
637    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
638
639    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
640    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
641    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
642    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
643    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
644    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
645    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
646
647    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
648    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
649    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
650    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
651    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
652    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
653    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
654    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
655    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
656
657    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
658    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
659    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
660    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
661    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
662
663    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
664    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
665    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
666    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
667
668    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
669    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
670    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
671    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
672
673    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
674
675    setTruncStoreAction(MVT::v8i16,             MVT::v8i8, Expand);
676    setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand);
677    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
678    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
679    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
680    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
681    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
682    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
683    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
684  }
685
686  if (!UseSoftFloat && Subtarget->hasSSE1()) {
687    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
688
689    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
690    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
691    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
692    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
693    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
694    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
695    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
696    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
697    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
698    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
699    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
700    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
701  }
702
703  if (!UseSoftFloat && Subtarget->hasSSE2()) {
704    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
705
706    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
707    // registers cannot be used even for integer operations.
708    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
709    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
710    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
711    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
712
713    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
714    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
715    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
716    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
717    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
718    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
719    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
720    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
721    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
722    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
723    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
724    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
725    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
726    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
727    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
728    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
729
730    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
731    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
732    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
733    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
734
735    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
736    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
737    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
738    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
739    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
740
741    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
742    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
743      EVT VT = (MVT::SimpleValueType)i;
744      // Do not attempt to custom lower non-power-of-2 vectors
745      if (!isPowerOf2_32(VT.getVectorNumElements()))
746        continue;
747      // Do not attempt to custom lower non-128-bit vectors
748      if (!VT.is128BitVector())
749        continue;
750      setOperationAction(ISD::BUILD_VECTOR,
751                         VT.getSimpleVT().SimpleTy, Custom);
752      setOperationAction(ISD::VECTOR_SHUFFLE,
753                         VT.getSimpleVT().SimpleTy, Custom);
754      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
755                         VT.getSimpleVT().SimpleTy, Custom);
756    }
757
758    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
759    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
760    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
761    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
762    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
763    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
764
765    if (Subtarget->is64Bit()) {
766      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
767      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
768    }
769
770    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
771    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
772      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
773      EVT VT = SVT;
774
775      // Do not attempt to promote non-128-bit vectors
776      if (!VT.is128BitVector()) {
777        continue;
778      }
779      setOperationAction(ISD::AND,    SVT, Promote);
780      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
781      setOperationAction(ISD::OR,     SVT, Promote);
782      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
783      setOperationAction(ISD::XOR,    SVT, Promote);
784      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
785      setOperationAction(ISD::LOAD,   SVT, Promote);
786      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
787      setOperationAction(ISD::SELECT, SVT, Promote);
788      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
789    }
790
791    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
792
793    // Custom lower v2i64 and v2f64 selects.
794    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
795    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
796    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
797    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
798
799    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
800    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
801    if (!DisableMMX && Subtarget->hasMMX()) {
802      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
803      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
804    }
805  }
806
807  if (Subtarget->hasSSE41()) {
808    // FIXME: Do we need to handle scalar-to-vector here?
809    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
810
811    // i8 and i16 vectors are custom , because the source register and source
812    // source memory operand types are not the same width.  f32 vectors are
813    // custom since the immediate controlling the insert encodes additional
814    // information.
815    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
816    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
817    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
818    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
819
820    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
821    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
822    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
823    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
824
825    if (Subtarget->is64Bit()) {
826      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
827      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
828    }
829  }
830
831  if (Subtarget->hasSSE42()) {
832    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
833  }
834
835  if (!UseSoftFloat && Subtarget->hasAVX()) {
836    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
837    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
838    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
839    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
840
841    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
842    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
843    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
844    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
845    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
846    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
847    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
848    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
849    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
850    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
851    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
852    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
853    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
854    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
855    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
856
857    // Operations to consider commented out -v16i16 v32i8
858    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
859    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
860    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
861    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
862    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
863    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
864    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
865    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
866    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
867    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
868    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
869    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
870    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
871    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
872
873    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
874    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
875    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
876    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
877
878    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
879    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
880    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
881    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
882    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
883
884    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
885    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
886    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
887    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
888    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
889    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
890
891#if 0
892    // Not sure we want to do this since there are no 256-bit integer
893    // operations in AVX
894
895    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
896    // This includes 256-bit vectors
897    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
898      EVT VT = (MVT::SimpleValueType)i;
899
900      // Do not attempt to custom lower non-power-of-2 vectors
901      if (!isPowerOf2_32(VT.getVectorNumElements()))
902        continue;
903
904      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
905      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
906      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
907    }
908
909    if (Subtarget->is64Bit()) {
910      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
911      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
912    }
913#endif
914
915#if 0
916    // Not sure we want to do this since there are no 256-bit integer
917    // operations in AVX
918
919    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
920    // Including 256-bit vectors
921    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
922      EVT VT = (MVT::SimpleValueType)i;
923
924      if (!VT.is256BitVector()) {
925        continue;
926      }
927      setOperationAction(ISD::AND,    VT, Promote);
928      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
929      setOperationAction(ISD::OR,     VT, Promote);
930      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
931      setOperationAction(ISD::XOR,    VT, Promote);
932      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
933      setOperationAction(ISD::LOAD,   VT, Promote);
934      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
935      setOperationAction(ISD::SELECT, VT, Promote);
936      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
937    }
938
939    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
940#endif
941  }
942
943  // We want to custom lower some of our intrinsics.
944  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
945
946  // Add/Sub/Mul with overflow operations are custom lowered.
947  setOperationAction(ISD::SADDO, MVT::i32, Custom);
948  setOperationAction(ISD::SADDO, MVT::i64, Custom);
949  setOperationAction(ISD::UADDO, MVT::i32, Custom);
950  setOperationAction(ISD::UADDO, MVT::i64, Custom);
951  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
952  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
953  setOperationAction(ISD::USUBO, MVT::i32, Custom);
954  setOperationAction(ISD::USUBO, MVT::i64, Custom);
955  setOperationAction(ISD::SMULO, MVT::i32, Custom);
956  setOperationAction(ISD::SMULO, MVT::i64, Custom);
957
958  if (!Subtarget->is64Bit()) {
959    // These libcalls are not available in 32-bit.
960    setLibcallName(RTLIB::SHL_I128, 0);
961    setLibcallName(RTLIB::SRL_I128, 0);
962    setLibcallName(RTLIB::SRA_I128, 0);
963  }
964
965  // We have target-specific dag combine patterns for the following nodes:
966  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
967  setTargetDAGCombine(ISD::BUILD_VECTOR);
968  setTargetDAGCombine(ISD::SELECT);
969  setTargetDAGCombine(ISD::SHL);
970  setTargetDAGCombine(ISD::SRA);
971  setTargetDAGCombine(ISD::SRL);
972  setTargetDAGCombine(ISD::STORE);
973  setTargetDAGCombine(ISD::MEMBARRIER);
974  if (Subtarget->is64Bit())
975    setTargetDAGCombine(ISD::MUL);
976
977  computeRegisterProperties();
978
979  // FIXME: These should be based on subtarget info. Plus, the values should
980  // be smaller when we are in optimizing for size mode.
981  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
982  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
983  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
984  setPrefLoopAlignment(16);
985  benefitFromCodePlacementOpt = true;
986}
987
988
989MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
990  return MVT::i8;
991}
992
993
994/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
995/// the desired ByVal argument alignment.
996static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
997  if (MaxAlign == 16)
998    return;
999  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1000    if (VTy->getBitWidth() == 128)
1001      MaxAlign = 16;
1002  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1003    unsigned EltAlign = 0;
1004    getMaxByValAlign(ATy->getElementType(), EltAlign);
1005    if (EltAlign > MaxAlign)
1006      MaxAlign = EltAlign;
1007  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1008    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1009      unsigned EltAlign = 0;
1010      getMaxByValAlign(STy->getElementType(i), EltAlign);
1011      if (EltAlign > MaxAlign)
1012        MaxAlign = EltAlign;
1013      if (MaxAlign == 16)
1014        break;
1015    }
1016  }
1017  return;
1018}
1019
1020/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1021/// function arguments in the caller parameter area. For X86, aggregates
1022/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1023/// are at 4-byte boundaries.
1024unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1025  if (Subtarget->is64Bit()) {
1026    // Max of 8 and alignment of type.
1027    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1028    if (TyAlign > 8)
1029      return TyAlign;
1030    return 8;
1031  }
1032
1033  unsigned Align = 4;
1034  if (Subtarget->hasSSE1())
1035    getMaxByValAlign(Ty, Align);
1036  return Align;
1037}
1038
1039/// getOptimalMemOpType - Returns the target specific optimal type for load
1040/// and store operations as a result of memset, memcpy, and memmove
1041/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
1042/// determining it.
1043EVT
1044X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
1045                                       bool isSrcConst, bool isSrcStr,
1046                                       SelectionDAG &DAG) const {
1047  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1048  // linux.  This is because the stack realignment code can't handle certain
1049  // cases like PR2962.  This should be removed when PR2962 is fixed.
1050  const Function *F = DAG.getMachineFunction().getFunction();
1051  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
1052  if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
1053    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
1054      return MVT::v4i32;
1055    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
1056      return MVT::v4f32;
1057  }
1058  if (Subtarget->is64Bit() && Size >= 8)
1059    return MVT::i64;
1060  return MVT::i32;
1061}
1062
1063/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1064/// jumptable.
1065SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1066                                                      SelectionDAG &DAG) const {
1067  if (usesGlobalOffsetTable())
1068    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1069  if (!Subtarget->is64Bit())
1070    // This doesn't have DebugLoc associated with it, but is not really the
1071    // same as a Register.
1072    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1073                       getPointerTy());
1074  return Table;
1075}
1076
1077/// getFunctionAlignment - Return the Log2 alignment of this function.
1078unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1079  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1080}
1081
1082//===----------------------------------------------------------------------===//
1083//               Return Value Calling Convention Implementation
1084//===----------------------------------------------------------------------===//
1085
1086#include "X86GenCallingConv.inc"
1087
1088SDValue
1089X86TargetLowering::LowerReturn(SDValue Chain,
1090                               CallingConv::ID CallConv, bool isVarArg,
1091                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1092                               DebugLoc dl, SelectionDAG &DAG) {
1093
1094  SmallVector<CCValAssign, 16> RVLocs;
1095  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1096                 RVLocs, *DAG.getContext());
1097  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1098
1099  // If this is the first return lowered for this function, add the regs to the
1100  // liveout set for the function.
1101  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1102    for (unsigned i = 0; i != RVLocs.size(); ++i)
1103      if (RVLocs[i].isRegLoc())
1104        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1105  }
1106
1107  SDValue Flag;
1108
1109  SmallVector<SDValue, 6> RetOps;
1110  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1111  // Operand #1 = Bytes To Pop
1112  RetOps.push_back(DAG.getTargetConstant(getBytesToPopOnReturn(), MVT::i16));
1113
1114  // Copy the result values into the output registers.
1115  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1116    CCValAssign &VA = RVLocs[i];
1117    assert(VA.isRegLoc() && "Can only return in registers!");
1118    SDValue ValToCopy = Outs[i].Val;
1119
1120    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1121    // the RET instruction and handled by the FP Stackifier.
1122    if (VA.getLocReg() == X86::ST0 ||
1123        VA.getLocReg() == X86::ST1) {
1124      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1125      // change the value to the FP stack register class.
1126      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1127        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1128      RetOps.push_back(ValToCopy);
1129      // Don't emit a copytoreg.
1130      continue;
1131    }
1132
1133    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1134    // which is returned in RAX / RDX.
1135    if (Subtarget->is64Bit()) {
1136      EVT ValVT = ValToCopy.getValueType();
1137      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1138        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1139        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1140          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1141      }
1142    }
1143
1144    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1145    Flag = Chain.getValue(1);
1146  }
1147
1148  // The x86-64 ABI for returning structs by value requires that we copy
1149  // the sret argument into %rax for the return. We saved the argument into
1150  // a virtual register in the entry block, so now we copy the value out
1151  // and into %rax.
1152  if (Subtarget->is64Bit() &&
1153      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1154    MachineFunction &MF = DAG.getMachineFunction();
1155    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1156    unsigned Reg = FuncInfo->getSRetReturnReg();
1157    if (!Reg) {
1158      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1159      FuncInfo->setSRetReturnReg(Reg);
1160    }
1161    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1162
1163    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1164    Flag = Chain.getValue(1);
1165
1166    // RAX now acts like a return value.
1167    MF.getRegInfo().addLiveOut(X86::RAX);
1168  }
1169
1170  RetOps[0] = Chain;  // Update chain.
1171
1172  // Add the flag if we have it.
1173  if (Flag.getNode())
1174    RetOps.push_back(Flag);
1175
1176  return DAG.getNode(X86ISD::RET_FLAG, dl,
1177                     MVT::Other, &RetOps[0], RetOps.size());
1178}
1179
1180/// LowerCallResult - Lower the result values of a call into the
1181/// appropriate copies out of appropriate physical registers.
1182///
1183SDValue
1184X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1185                                   CallingConv::ID CallConv, bool isVarArg,
1186                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1187                                   DebugLoc dl, SelectionDAG &DAG,
1188                                   SmallVectorImpl<SDValue> &InVals) {
1189
1190  // Assign locations to each value returned by this call.
1191  SmallVector<CCValAssign, 16> RVLocs;
1192  bool Is64Bit = Subtarget->is64Bit();
1193  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1194                 RVLocs, *DAG.getContext());
1195  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1196
1197  // Copy all of the result registers out of their specified physreg.
1198  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1199    CCValAssign &VA = RVLocs[i];
1200    EVT CopyVT = VA.getValVT();
1201
1202    // If this is x86-64, and we disabled SSE, we can't return FP values
1203    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1204        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1205      llvm_report_error("SSE register return with SSE disabled");
1206    }
1207
1208    // If this is a call to a function that returns an fp value on the floating
1209    // point stack, but where we prefer to use the value in xmm registers, copy
1210    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1211    if ((VA.getLocReg() == X86::ST0 ||
1212         VA.getLocReg() == X86::ST1) &&
1213        isScalarFPTypeInSSEReg(VA.getValVT())) {
1214      CopyVT = MVT::f80;
1215    }
1216
1217    SDValue Val;
1218    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1219      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1220      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1221        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1222                                   MVT::v2i64, InFlag).getValue(1);
1223        Val = Chain.getValue(0);
1224        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1225                          Val, DAG.getConstant(0, MVT::i64));
1226      } else {
1227        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1228                                   MVT::i64, InFlag).getValue(1);
1229        Val = Chain.getValue(0);
1230      }
1231      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1232    } else {
1233      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1234                                 CopyVT, InFlag).getValue(1);
1235      Val = Chain.getValue(0);
1236    }
1237    InFlag = Chain.getValue(2);
1238
1239    if (CopyVT != VA.getValVT()) {
1240      // Round the F80 the right size, which also moves to the appropriate xmm
1241      // register.
1242      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1243                        // This truncation won't change the value.
1244                        DAG.getIntPtrConstant(1));
1245    }
1246
1247    InVals.push_back(Val);
1248  }
1249
1250  return Chain;
1251}
1252
1253
1254//===----------------------------------------------------------------------===//
1255//                C & StdCall & Fast Calling Convention implementation
1256//===----------------------------------------------------------------------===//
1257//  StdCall calling convention seems to be standard for many Windows' API
1258//  routines and around. It differs from C calling convention just a little:
1259//  callee should clean up the stack, not caller. Symbols should be also
1260//  decorated in some fancy way :) It doesn't support any vector arguments.
1261//  For info on fast calling convention see Fast Calling Convention (tail call)
1262//  implementation LowerX86_32FastCCCallTo.
1263
1264/// CallIsStructReturn - Determines whether a call uses struct return
1265/// semantics.
1266static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1267  if (Outs.empty())
1268    return false;
1269
1270  return Outs[0].Flags.isSRet();
1271}
1272
1273/// ArgsAreStructReturn - Determines whether a function uses struct
1274/// return semantics.
1275static bool
1276ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1277  if (Ins.empty())
1278    return false;
1279
1280  return Ins[0].Flags.isSRet();
1281}
1282
1283/// IsCalleePop - Determines whether the callee is required to pop its
1284/// own arguments. Callee pop is necessary to support tail calls.
1285bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){
1286  if (IsVarArg)
1287    return false;
1288
1289  switch (CallingConv) {
1290  default:
1291    return false;
1292  case CallingConv::X86_StdCall:
1293    return !Subtarget->is64Bit();
1294  case CallingConv::X86_FastCall:
1295    return !Subtarget->is64Bit();
1296  case CallingConv::Fast:
1297    return PerformTailCallOpt;
1298  }
1299}
1300
1301/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1302/// given CallingConvention value.
1303CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1304  if (Subtarget->is64Bit()) {
1305    if (Subtarget->isTargetWin64())
1306      return CC_X86_Win64_C;
1307    else
1308      return CC_X86_64_C;
1309  }
1310
1311  if (CC == CallingConv::X86_FastCall)
1312    return CC_X86_32_FastCall;
1313  else if (CC == CallingConv::Fast)
1314    return CC_X86_32_FastCC;
1315  else
1316    return CC_X86_32_C;
1317}
1318
1319/// NameDecorationForCallConv - Selects the appropriate decoration to
1320/// apply to a MachineFunction containing a given calling convention.
1321NameDecorationStyle
1322X86TargetLowering::NameDecorationForCallConv(CallingConv::ID CallConv) {
1323  if (CallConv == CallingConv::X86_FastCall)
1324    return FastCall;
1325  else if (CallConv == CallingConv::X86_StdCall)
1326    return StdCall;
1327  return None;
1328}
1329
1330
1331/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1332/// by "Src" to address "Dst" with size and alignment information specified by
1333/// the specific parameter attribute. The copy will be passed as a byval
1334/// function parameter.
1335static SDValue
1336CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1337                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1338                          DebugLoc dl) {
1339  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1340  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1341                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1342}
1343
1344SDValue
1345X86TargetLowering::LowerMemArgument(SDValue Chain,
1346                                    CallingConv::ID CallConv,
1347                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1348                                    DebugLoc dl, SelectionDAG &DAG,
1349                                    const CCValAssign &VA,
1350                                    MachineFrameInfo *MFI,
1351                                    unsigned i) {
1352
1353  // Create the nodes corresponding to a load from this parameter slot.
1354  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1355  bool AlwaysUseMutable = (CallConv==CallingConv::Fast) && PerformTailCallOpt;
1356  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1357  EVT ValVT;
1358
1359  // If value is passed by pointer we have address passed instead of the value
1360  // itself.
1361  if (VA.getLocInfo() == CCValAssign::Indirect)
1362    ValVT = VA.getLocVT();
1363  else
1364    ValVT = VA.getValVT();
1365
1366  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1367  // changed with more analysis.
1368  // In case of tail call optimization mark all arguments mutable. Since they
1369  // could be overwritten by lowering of arguments in case of a tail call.
1370  int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1371                                  VA.getLocMemOffset(), isImmutable);
1372  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1373  if (Flags.isByVal())
1374    return FIN;
1375  return DAG.getLoad(ValVT, dl, Chain, FIN,
1376                     PseudoSourceValue::getFixedStack(FI), 0);
1377}
1378
1379SDValue
1380X86TargetLowering::LowerFormalArguments(SDValue Chain,
1381                                        CallingConv::ID CallConv,
1382                                        bool isVarArg,
1383                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1384                                        DebugLoc dl,
1385                                        SelectionDAG &DAG,
1386                                        SmallVectorImpl<SDValue> &InVals) {
1387
1388  MachineFunction &MF = DAG.getMachineFunction();
1389  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1390
1391  const Function* Fn = MF.getFunction();
1392  if (Fn->hasExternalLinkage() &&
1393      Subtarget->isTargetCygMing() &&
1394      Fn->getName() == "main")
1395    FuncInfo->setForceFramePointer(true);
1396
1397  // Decorate the function name.
1398  FuncInfo->setDecorationStyle(NameDecorationForCallConv(CallConv));
1399
1400  MachineFrameInfo *MFI = MF.getFrameInfo();
1401  bool Is64Bit = Subtarget->is64Bit();
1402  bool IsWin64 = Subtarget->isTargetWin64();
1403
1404  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1405         "Var args not supported with calling convention fastcc");
1406
1407  // Assign locations to all of the incoming arguments.
1408  SmallVector<CCValAssign, 16> ArgLocs;
1409  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1410                 ArgLocs, *DAG.getContext());
1411  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1412
1413  unsigned LastVal = ~0U;
1414  SDValue ArgValue;
1415  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1416    CCValAssign &VA = ArgLocs[i];
1417    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1418    // places.
1419    assert(VA.getValNo() != LastVal &&
1420           "Don't support value assigned to multiple locs yet");
1421    LastVal = VA.getValNo();
1422
1423    if (VA.isRegLoc()) {
1424      EVT RegVT = VA.getLocVT();
1425      TargetRegisterClass *RC = NULL;
1426      if (RegVT == MVT::i32)
1427        RC = X86::GR32RegisterClass;
1428      else if (Is64Bit && RegVT == MVT::i64)
1429        RC = X86::GR64RegisterClass;
1430      else if (RegVT == MVT::f32)
1431        RC = X86::FR32RegisterClass;
1432      else if (RegVT == MVT::f64)
1433        RC = X86::FR64RegisterClass;
1434      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1435        RC = X86::VR128RegisterClass;
1436      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1437        RC = X86::VR64RegisterClass;
1438      else
1439        llvm_unreachable("Unknown argument type!");
1440
1441      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1442      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1443
1444      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1445      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1446      // right size.
1447      if (VA.getLocInfo() == CCValAssign::SExt)
1448        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1449                               DAG.getValueType(VA.getValVT()));
1450      else if (VA.getLocInfo() == CCValAssign::ZExt)
1451        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1452                               DAG.getValueType(VA.getValVT()));
1453      else if (VA.getLocInfo() == CCValAssign::BCvt)
1454        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1455
1456      if (VA.isExtInLoc()) {
1457        // Handle MMX values passed in XMM regs.
1458        if (RegVT.isVector()) {
1459          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1460                                 ArgValue, DAG.getConstant(0, MVT::i64));
1461          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1462        } else
1463          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1464      }
1465    } else {
1466      assert(VA.isMemLoc());
1467      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1468    }
1469
1470    // If value is passed via pointer - do a load.
1471    if (VA.getLocInfo() == CCValAssign::Indirect)
1472      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0);
1473
1474    InVals.push_back(ArgValue);
1475  }
1476
1477  // The x86-64 ABI for returning structs by value requires that we copy
1478  // the sret argument into %rax for the return. Save the argument into
1479  // a virtual register so that we can access it from the return points.
1480  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1481    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1482    unsigned Reg = FuncInfo->getSRetReturnReg();
1483    if (!Reg) {
1484      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1485      FuncInfo->setSRetReturnReg(Reg);
1486    }
1487    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1488    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1489  }
1490
1491  unsigned StackSize = CCInfo.getNextStackOffset();
1492  // align stack specially for tail calls
1493  if (PerformTailCallOpt && CallConv == CallingConv::Fast)
1494    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1495
1496  // If the function takes variable number of arguments, make a frame index for
1497  // the start of the first vararg value... for expansion of llvm.va_start.
1498  if (isVarArg) {
1499    if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1500      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1501    }
1502    if (Is64Bit) {
1503      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1504
1505      // FIXME: We should really autogenerate these arrays
1506      static const unsigned GPR64ArgRegsWin64[] = {
1507        X86::RCX, X86::RDX, X86::R8,  X86::R9
1508      };
1509      static const unsigned XMMArgRegsWin64[] = {
1510        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1511      };
1512      static const unsigned GPR64ArgRegs64Bit[] = {
1513        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1514      };
1515      static const unsigned XMMArgRegs64Bit[] = {
1516        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1517        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1518      };
1519      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1520
1521      if (IsWin64) {
1522        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1523        GPR64ArgRegs = GPR64ArgRegsWin64;
1524        XMMArgRegs = XMMArgRegsWin64;
1525      } else {
1526        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1527        GPR64ArgRegs = GPR64ArgRegs64Bit;
1528        XMMArgRegs = XMMArgRegs64Bit;
1529      }
1530      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1531                                                       TotalNumIntRegs);
1532      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1533                                                       TotalNumXMMRegs);
1534
1535      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1536      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1537             "SSE register cannot be used when SSE is disabled!");
1538      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1539             "SSE register cannot be used when SSE is disabled!");
1540      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1541        // Kernel mode asks for SSE to be disabled, so don't push them
1542        // on the stack.
1543        TotalNumXMMRegs = 0;
1544
1545      // For X86-64, if there are vararg parameters that are passed via
1546      // registers, then we must store them to their spots on the stack so they
1547      // may be loaded by deferencing the result of va_next.
1548      VarArgsGPOffset = NumIntRegs * 8;
1549      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1550      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1551                                                 TotalNumXMMRegs * 16, 16);
1552
1553      // Store the integer parameter registers.
1554      SmallVector<SDValue, 8> MemOps;
1555      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1556      unsigned Offset = VarArgsGPOffset;
1557      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1558        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1559                                  DAG.getIntPtrConstant(Offset));
1560        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1561                                     X86::GR64RegisterClass);
1562        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1563        SDValue Store =
1564          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1565                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
1566                       Offset);
1567        MemOps.push_back(Store);
1568        Offset += 8;
1569      }
1570
1571      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1572        // Now store the XMM (fp + vector) parameter registers.
1573        SmallVector<SDValue, 11> SaveXMMOps;
1574        SaveXMMOps.push_back(Chain);
1575
1576        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1577        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1578        SaveXMMOps.push_back(ALVal);
1579
1580        SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
1581        SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
1582
1583        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1584          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1585                                       X86::VR128RegisterClass);
1586          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1587          SaveXMMOps.push_back(Val);
1588        }
1589        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1590                                     MVT::Other,
1591                                     &SaveXMMOps[0], SaveXMMOps.size()));
1592      }
1593
1594      if (!MemOps.empty())
1595        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1596                            &MemOps[0], MemOps.size());
1597    }
1598  }
1599
1600  // Some CCs need callee pop.
1601  if (IsCalleePop(isVarArg, CallConv)) {
1602    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1603    BytesCallerReserves = 0;
1604  } else {
1605    BytesToPopOnReturn  = 0; // Callee pops nothing.
1606    // If this is an sret function, the return should pop the hidden pointer.
1607    if (!Is64Bit && CallConv != CallingConv::Fast && ArgsAreStructReturn(Ins))
1608      BytesToPopOnReturn = 4;
1609    BytesCallerReserves = StackSize;
1610  }
1611
1612  if (!Is64Bit) {
1613    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1614    if (CallConv == CallingConv::X86_FastCall)
1615      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1616  }
1617
1618  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1619
1620  return Chain;
1621}
1622
1623SDValue
1624X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1625                                    SDValue StackPtr, SDValue Arg,
1626                                    DebugLoc dl, SelectionDAG &DAG,
1627                                    const CCValAssign &VA,
1628                                    ISD::ArgFlagsTy Flags) {
1629  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1630  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1631  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1632  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1633  if (Flags.isByVal()) {
1634    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1635  }
1636  return DAG.getStore(Chain, dl, Arg, PtrOff,
1637                      PseudoSourceValue::getStack(), LocMemOffset);
1638}
1639
1640/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1641/// optimization is performed and it is required.
1642SDValue
1643X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1644                                           SDValue &OutRetAddr,
1645                                           SDValue Chain,
1646                                           bool IsTailCall,
1647                                           bool Is64Bit,
1648                                           int FPDiff,
1649                                           DebugLoc dl) {
1650  if (!IsTailCall || FPDiff==0) return Chain;
1651
1652  // Adjust the Return address stack slot.
1653  EVT VT = getPointerTy();
1654  OutRetAddr = getReturnAddressFrameIndex(DAG);
1655
1656  // Load the "old" Return address.
1657  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
1658  return SDValue(OutRetAddr.getNode(), 1);
1659}
1660
1661/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1662/// optimization is performed and it is required (FPDiff!=0).
1663static SDValue
1664EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1665                         SDValue Chain, SDValue RetAddrFrIdx,
1666                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1667  // Store the return address to the appropriate stack slot.
1668  if (!FPDiff) return Chain;
1669  // Calculate the new stack slot for the return address.
1670  int SlotSize = Is64Bit ? 8 : 4;
1671  int NewReturnAddrFI =
1672    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1673  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1674  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1675  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1676                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1677  return Chain;
1678}
1679
1680SDValue
1681X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1682                             CallingConv::ID CallConv, bool isVarArg,
1683                             bool isTailCall,
1684                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1685                             const SmallVectorImpl<ISD::InputArg> &Ins,
1686                             DebugLoc dl, SelectionDAG &DAG,
1687                             SmallVectorImpl<SDValue> &InVals) {
1688
1689  MachineFunction &MF = DAG.getMachineFunction();
1690  bool Is64Bit        = Subtarget->is64Bit();
1691  bool IsStructRet    = CallIsStructReturn(Outs);
1692
1693  assert((!isTailCall ||
1694          (CallConv == CallingConv::Fast && PerformTailCallOpt)) &&
1695         "IsEligibleForTailCallOptimization missed a case!");
1696  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1697         "Var args not supported with calling convention fastcc");
1698
1699  // Analyze operands of the call, assigning locations to each operand.
1700  SmallVector<CCValAssign, 16> ArgLocs;
1701  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1702                 ArgLocs, *DAG.getContext());
1703  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1704
1705  // Get a count of how many bytes are to be pushed on the stack.
1706  unsigned NumBytes = CCInfo.getNextStackOffset();
1707  if (PerformTailCallOpt && CallConv == CallingConv::Fast)
1708    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1709
1710  int FPDiff = 0;
1711  if (isTailCall) {
1712    // Lower arguments at fp - stackoffset + fpdiff.
1713    unsigned NumBytesCallerPushed =
1714      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1715    FPDiff = NumBytesCallerPushed - NumBytes;
1716
1717    // Set the delta of movement of the returnaddr stackslot.
1718    // But only set if delta is greater than previous delta.
1719    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1720      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1721  }
1722
1723  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1724
1725  SDValue RetAddrFrIdx;
1726  // Load return adress for tail calls.
1727  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, Is64Bit,
1728                                  FPDiff, dl);
1729
1730  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1731  SmallVector<SDValue, 8> MemOpChains;
1732  SDValue StackPtr;
1733
1734  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1735  // of tail call optimization arguments are handle later.
1736  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1737    CCValAssign &VA = ArgLocs[i];
1738    EVT RegVT = VA.getLocVT();
1739    SDValue Arg = Outs[i].Val;
1740    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1741    bool isByVal = Flags.isByVal();
1742
1743    // Promote the value if needed.
1744    switch (VA.getLocInfo()) {
1745    default: llvm_unreachable("Unknown loc info!");
1746    case CCValAssign::Full: break;
1747    case CCValAssign::SExt:
1748      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1749      break;
1750    case CCValAssign::ZExt:
1751      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1752      break;
1753    case CCValAssign::AExt:
1754      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1755        // Special case: passing MMX values in XMM registers.
1756        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1757        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1758        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1759      } else
1760        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1761      break;
1762    case CCValAssign::BCvt:
1763      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1764      break;
1765    case CCValAssign::Indirect: {
1766      // Store the argument.
1767      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1768      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1769      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1770                           PseudoSourceValue::getFixedStack(FI), 0);
1771      Arg = SpillSlot;
1772      break;
1773    }
1774    }
1775
1776    if (VA.isRegLoc()) {
1777      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1778    } else {
1779      if (!isTailCall || (isTailCall && isByVal)) {
1780        assert(VA.isMemLoc());
1781        if (StackPtr.getNode() == 0)
1782          StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1783
1784        MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1785                                               dl, DAG, VA, Flags));
1786      }
1787    }
1788  }
1789
1790  if (!MemOpChains.empty())
1791    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1792                        &MemOpChains[0], MemOpChains.size());
1793
1794  // Build a sequence of copy-to-reg nodes chained together with token chain
1795  // and flag operands which copy the outgoing args into registers.
1796  SDValue InFlag;
1797  // Tail call byval lowering might overwrite argument registers so in case of
1798  // tail call optimization the copies to registers are lowered later.
1799  if (!isTailCall)
1800    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1801      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1802                               RegsToPass[i].second, InFlag);
1803      InFlag = Chain.getValue(1);
1804    }
1805
1806
1807  if (Subtarget->isPICStyleGOT()) {
1808    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1809    // GOT pointer.
1810    if (!isTailCall) {
1811      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1812                               DAG.getNode(X86ISD::GlobalBaseReg,
1813                                           DebugLoc::getUnknownLoc(),
1814                                           getPointerTy()),
1815                               InFlag);
1816      InFlag = Chain.getValue(1);
1817    } else {
1818      // If we are tail calling and generating PIC/GOT style code load the
1819      // address of the callee into ECX. The value in ecx is used as target of
1820      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1821      // for tail calls on PIC/GOT architectures. Normally we would just put the
1822      // address of GOT into ebx and then call target@PLT. But for tail calls
1823      // ebx would be restored (since ebx is callee saved) before jumping to the
1824      // target@PLT.
1825
1826      // Note: The actual moving to ECX is done further down.
1827      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1828      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1829          !G->getGlobal()->hasProtectedVisibility())
1830        Callee = LowerGlobalAddress(Callee, DAG);
1831      else if (isa<ExternalSymbolSDNode>(Callee))
1832        Callee = LowerExternalSymbol(Callee, DAG);
1833    }
1834  }
1835
1836  if (Is64Bit && isVarArg) {
1837    // From AMD64 ABI document:
1838    // For calls that may call functions that use varargs or stdargs
1839    // (prototype-less calls or calls to functions containing ellipsis (...) in
1840    // the declaration) %al is used as hidden argument to specify the number
1841    // of SSE registers used. The contents of %al do not need to match exactly
1842    // the number of registers, but must be an ubound on the number of SSE
1843    // registers used and is in the range 0 - 8 inclusive.
1844
1845    // FIXME: Verify this on Win64
1846    // Count the number of XMM registers allocated.
1847    static const unsigned XMMArgRegs[] = {
1848      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1849      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1850    };
1851    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1852    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1853           && "SSE registers cannot be used when SSE is disabled");
1854
1855    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1856                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1857    InFlag = Chain.getValue(1);
1858  }
1859
1860
1861  // For tail calls lower the arguments to the 'real' stack slot.
1862  if (isTailCall) {
1863    // Force all the incoming stack arguments to be loaded from the stack
1864    // before any new outgoing arguments are stored to the stack, because the
1865    // outgoing stack slots may alias the incoming argument stack slots, and
1866    // the alias isn't otherwise explicit. This is slightly more conservative
1867    // than necessary, because it means that each store effectively depends
1868    // on every argument instead of just those arguments it would clobber.
1869    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
1870
1871    SmallVector<SDValue, 8> MemOpChains2;
1872    SDValue FIN;
1873    int FI = 0;
1874    // Do not flag preceeding copytoreg stuff together with the following stuff.
1875    InFlag = SDValue();
1876    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1877      CCValAssign &VA = ArgLocs[i];
1878      if (!VA.isRegLoc()) {
1879        assert(VA.isMemLoc());
1880        SDValue Arg = Outs[i].Val;
1881        ISD::ArgFlagsTy Flags = Outs[i].Flags;
1882        // Create frame index.
1883        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1884        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1885        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1886        FIN = DAG.getFrameIndex(FI, getPointerTy());
1887
1888        if (Flags.isByVal()) {
1889          // Copy relative to framepointer.
1890          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1891          if (StackPtr.getNode() == 0)
1892            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1893                                          getPointerTy());
1894          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1895
1896          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
1897                                                           ArgChain,
1898                                                           Flags, DAG, dl));
1899        } else {
1900          // Store relative to framepointer.
1901          MemOpChains2.push_back(
1902            DAG.getStore(ArgChain, dl, Arg, FIN,
1903                         PseudoSourceValue::getFixedStack(FI), 0));
1904        }
1905      }
1906    }
1907
1908    if (!MemOpChains2.empty())
1909      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1910                          &MemOpChains2[0], MemOpChains2.size());
1911
1912    // Copy arguments to their registers.
1913    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1914      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1915                               RegsToPass[i].second, InFlag);
1916      InFlag = Chain.getValue(1);
1917    }
1918    InFlag =SDValue();
1919
1920    // Store the return address to the appropriate stack slot.
1921    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1922                                     FPDiff, dl);
1923  }
1924
1925  // If the callee is a GlobalAddress node (quite common, every direct call is)
1926  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1927  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1928    // We should use extra load for direct calls to dllimported functions in
1929    // non-JIT mode.
1930    GlobalValue *GV = G->getGlobal();
1931    if (!GV->hasDLLImportLinkage()) {
1932      unsigned char OpFlags = 0;
1933
1934      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1935      // external symbols most go through the PLT in PIC mode.  If the symbol
1936      // has hidden or protected visibility, or if it is static or local, then
1937      // we don't need to use the PLT - we can directly call it.
1938      if (Subtarget->isTargetELF() &&
1939          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1940          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1941        OpFlags = X86II::MO_PLT;
1942      } else if (Subtarget->isPICStyleStubAny() &&
1943               (GV->isDeclaration() || GV->isWeakForLinker()) &&
1944               Subtarget->getDarwinVers() < 9) {
1945        // PC-relative references to external symbols should go through $stub,
1946        // unless we're building with the leopard linker or later, which
1947        // automatically synthesizes these stubs.
1948        OpFlags = X86II::MO_DARWIN_STUB;
1949      }
1950
1951      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
1952                                          G->getOffset(), OpFlags);
1953    }
1954  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1955    unsigned char OpFlags = 0;
1956
1957    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
1958    // symbols should go through the PLT.
1959    if (Subtarget->isTargetELF() &&
1960        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1961      OpFlags = X86II::MO_PLT;
1962    } else if (Subtarget->isPICStyleStubAny() &&
1963             Subtarget->getDarwinVers() < 9) {
1964      // PC-relative references to external symbols should go through $stub,
1965      // unless we're building with the leopard linker or later, which
1966      // automatically synthesizes these stubs.
1967      OpFlags = X86II::MO_DARWIN_STUB;
1968    }
1969
1970    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
1971                                         OpFlags);
1972  } else if (isTailCall) {
1973    unsigned Opc = Is64Bit ? X86::R11 : X86::EAX;
1974
1975    Chain = DAG.getCopyToReg(Chain,  dl,
1976                             DAG.getRegister(Opc, getPointerTy()),
1977                             Callee,InFlag);
1978    Callee = DAG.getRegister(Opc, getPointerTy());
1979    // Add register as live out.
1980    MF.getRegInfo().addLiveOut(Opc);
1981  }
1982
1983  // Returns a chain & a flag for retval copy to use.
1984  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1985  SmallVector<SDValue, 8> Ops;
1986
1987  if (isTailCall) {
1988    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1989                           DAG.getIntPtrConstant(0, true), InFlag);
1990    InFlag = Chain.getValue(1);
1991  }
1992
1993  Ops.push_back(Chain);
1994  Ops.push_back(Callee);
1995
1996  if (isTailCall)
1997    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1998
1999  // Add argument registers to the end of the list so that they are known live
2000  // into the call.
2001  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2002    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2003                                  RegsToPass[i].second.getValueType()));
2004
2005  // Add an implicit use GOT pointer in EBX.
2006  if (!isTailCall && Subtarget->isPICStyleGOT())
2007    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2008
2009  // Add an implicit use of AL for x86 vararg functions.
2010  if (Is64Bit && isVarArg)
2011    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2012
2013  if (InFlag.getNode())
2014    Ops.push_back(InFlag);
2015
2016  if (isTailCall) {
2017    // If this is the first return lowered for this function, add the regs
2018    // to the liveout set for the function.
2019    if (MF.getRegInfo().liveout_empty()) {
2020      SmallVector<CCValAssign, 16> RVLocs;
2021      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2022                     *DAG.getContext());
2023      CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2024      for (unsigned i = 0; i != RVLocs.size(); ++i)
2025        if (RVLocs[i].isRegLoc())
2026          MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2027    }
2028
2029    assert(((Callee.getOpcode() == ISD::Register &&
2030               (cast<RegisterSDNode>(Callee)->getReg() == X86::EAX ||
2031                cast<RegisterSDNode>(Callee)->getReg() == X86::R9)) ||
2032              Callee.getOpcode() == ISD::TargetExternalSymbol ||
2033              Callee.getOpcode() == ISD::TargetGlobalAddress) &&
2034             "Expecting an global address, external symbol, or register");
2035
2036    return DAG.getNode(X86ISD::TC_RETURN, dl,
2037                       NodeTys, &Ops[0], Ops.size());
2038  }
2039
2040  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2041  InFlag = Chain.getValue(1);
2042
2043  // Create the CALLSEQ_END node.
2044  unsigned NumBytesForCalleeToPush;
2045  if (IsCalleePop(isVarArg, CallConv))
2046    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2047  else if (!Is64Bit && CallConv != CallingConv::Fast && IsStructRet)
2048    // If this is is a call to a struct-return function, the callee
2049    // pops the hidden struct pointer, so we have to push it back.
2050    // This is common for Darwin/X86, Linux & Mingw32 targets.
2051    NumBytesForCalleeToPush = 4;
2052  else
2053    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2054
2055  // Returns a flag for retval copy to use.
2056  Chain = DAG.getCALLSEQ_END(Chain,
2057                             DAG.getIntPtrConstant(NumBytes, true),
2058                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2059                                                   true),
2060                             InFlag);
2061  InFlag = Chain.getValue(1);
2062
2063  // Handle result values, copying them out of physregs into vregs that we
2064  // return.
2065  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2066                         Ins, dl, DAG, InVals);
2067}
2068
2069
2070//===----------------------------------------------------------------------===//
2071//                Fast Calling Convention (tail call) implementation
2072//===----------------------------------------------------------------------===//
2073
2074//  Like std call, callee cleans arguments, convention except that ECX is
2075//  reserved for storing the tail called function address. Only 2 registers are
2076//  free for argument passing (inreg). Tail call optimization is performed
2077//  provided:
2078//                * tailcallopt is enabled
2079//                * caller/callee are fastcc
2080//  On X86_64 architecture with GOT-style position independent code only local
2081//  (within module) calls are supported at the moment.
2082//  To keep the stack aligned according to platform abi the function
2083//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2084//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2085//  If a tail called function callee has more arguments than the caller the
2086//  caller needs to make sure that there is room to move the RETADDR to. This is
2087//  achieved by reserving an area the size of the argument delta right after the
2088//  original REtADDR, but before the saved framepointer or the spilled registers
2089//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2090//  stack layout:
2091//    arg1
2092//    arg2
2093//    RETADDR
2094//    [ new RETADDR
2095//      move area ]
2096//    (possible EBP)
2097//    ESI
2098//    EDI
2099//    local1 ..
2100
2101/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2102/// for a 16 byte align requirement.
2103unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2104                                                        SelectionDAG& DAG) {
2105  MachineFunction &MF = DAG.getMachineFunction();
2106  const TargetMachine &TM = MF.getTarget();
2107  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2108  unsigned StackAlignment = TFI.getStackAlignment();
2109  uint64_t AlignMask = StackAlignment - 1;
2110  int64_t Offset = StackSize;
2111  uint64_t SlotSize = TD->getPointerSize();
2112  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2113    // Number smaller than 12 so just add the difference.
2114    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2115  } else {
2116    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2117    Offset = ((~AlignMask) & Offset) + StackAlignment +
2118      (StackAlignment-SlotSize);
2119  }
2120  return Offset;
2121}
2122
2123/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2124/// for tail call optimization. Targets which want to do tail call
2125/// optimization should implement this function.
2126bool
2127X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2128                                                     CallingConv::ID CalleeCC,
2129                                                     bool isVarArg,
2130                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2131                                                     SelectionDAG& DAG) const {
2132  MachineFunction &MF = DAG.getMachineFunction();
2133  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2134  return CalleeCC == CallingConv::Fast && CallerCC == CalleeCC;
2135}
2136
2137FastISel *
2138X86TargetLowering::createFastISel(MachineFunction &mf,
2139                                  MachineModuleInfo *mmo,
2140                                  DwarfWriter *dw,
2141                                  DenseMap<const Value *, unsigned> &vm,
2142                                  DenseMap<const BasicBlock *,
2143                                           MachineBasicBlock *> &bm,
2144                                  DenseMap<const AllocaInst *, int> &am
2145#ifndef NDEBUG
2146                                  , SmallSet<Instruction*, 8> &cil
2147#endif
2148                                  ) {
2149  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2150#ifndef NDEBUG
2151                             , cil
2152#endif
2153                             );
2154}
2155
2156
2157//===----------------------------------------------------------------------===//
2158//                           Other Lowering Hooks
2159//===----------------------------------------------------------------------===//
2160
2161
2162SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2163  MachineFunction &MF = DAG.getMachineFunction();
2164  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2165  int ReturnAddrIndex = FuncInfo->getRAIndex();
2166
2167  if (ReturnAddrIndex == 0) {
2168    // Set up a frame object for the return address.
2169    uint64_t SlotSize = TD->getPointerSize();
2170    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
2171    FuncInfo->setRAIndex(ReturnAddrIndex);
2172  }
2173
2174  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2175}
2176
2177
2178bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2179                                       bool hasSymbolicDisplacement) {
2180  // Offset should fit into 32 bit immediate field.
2181  if (!isInt32(Offset))
2182    return false;
2183
2184  // If we don't have a symbolic displacement - we don't have any extra
2185  // restrictions.
2186  if (!hasSymbolicDisplacement)
2187    return true;
2188
2189  // FIXME: Some tweaks might be needed for medium code model.
2190  if (M != CodeModel::Small && M != CodeModel::Kernel)
2191    return false;
2192
2193  // For small code model we assume that latest object is 16MB before end of 31
2194  // bits boundary. We may also accept pretty large negative constants knowing
2195  // that all objects are in the positive half of address space.
2196  if (M == CodeModel::Small && Offset < 16*1024*1024)
2197    return true;
2198
2199  // For kernel code model we know that all object resist in the negative half
2200  // of 32bits address space. We may not accept negative offsets, since they may
2201  // be just off and we may accept pretty large positive ones.
2202  if (M == CodeModel::Kernel && Offset > 0)
2203    return true;
2204
2205  return false;
2206}
2207
2208/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2209/// specific condition code, returning the condition code and the LHS/RHS of the
2210/// comparison to make.
2211static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2212                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2213  if (!isFP) {
2214    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2215      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2216        // X > -1   -> X == 0, jump !sign.
2217        RHS = DAG.getConstant(0, RHS.getValueType());
2218        return X86::COND_NS;
2219      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2220        // X < 0   -> X == 0, jump on sign.
2221        return X86::COND_S;
2222      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2223        // X < 1   -> X <= 0
2224        RHS = DAG.getConstant(0, RHS.getValueType());
2225        return X86::COND_LE;
2226      }
2227    }
2228
2229    switch (SetCCOpcode) {
2230    default: llvm_unreachable("Invalid integer condition!");
2231    case ISD::SETEQ:  return X86::COND_E;
2232    case ISD::SETGT:  return X86::COND_G;
2233    case ISD::SETGE:  return X86::COND_GE;
2234    case ISD::SETLT:  return X86::COND_L;
2235    case ISD::SETLE:  return X86::COND_LE;
2236    case ISD::SETNE:  return X86::COND_NE;
2237    case ISD::SETULT: return X86::COND_B;
2238    case ISD::SETUGT: return X86::COND_A;
2239    case ISD::SETULE: return X86::COND_BE;
2240    case ISD::SETUGE: return X86::COND_AE;
2241    }
2242  }
2243
2244  // First determine if it is required or is profitable to flip the operands.
2245
2246  // If LHS is a foldable load, but RHS is not, flip the condition.
2247  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2248      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2249    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2250    std::swap(LHS, RHS);
2251  }
2252
2253  switch (SetCCOpcode) {
2254  default: break;
2255  case ISD::SETOLT:
2256  case ISD::SETOLE:
2257  case ISD::SETUGT:
2258  case ISD::SETUGE:
2259    std::swap(LHS, RHS);
2260    break;
2261  }
2262
2263  // On a floating point condition, the flags are set as follows:
2264  // ZF  PF  CF   op
2265  //  0 | 0 | 0 | X > Y
2266  //  0 | 0 | 1 | X < Y
2267  //  1 | 0 | 0 | X == Y
2268  //  1 | 1 | 1 | unordered
2269  switch (SetCCOpcode) {
2270  default: llvm_unreachable("Condcode should be pre-legalized away");
2271  case ISD::SETUEQ:
2272  case ISD::SETEQ:   return X86::COND_E;
2273  case ISD::SETOLT:              // flipped
2274  case ISD::SETOGT:
2275  case ISD::SETGT:   return X86::COND_A;
2276  case ISD::SETOLE:              // flipped
2277  case ISD::SETOGE:
2278  case ISD::SETGE:   return X86::COND_AE;
2279  case ISD::SETUGT:              // flipped
2280  case ISD::SETULT:
2281  case ISD::SETLT:   return X86::COND_B;
2282  case ISD::SETUGE:              // flipped
2283  case ISD::SETULE:
2284  case ISD::SETLE:   return X86::COND_BE;
2285  case ISD::SETONE:
2286  case ISD::SETNE:   return X86::COND_NE;
2287  case ISD::SETUO:   return X86::COND_P;
2288  case ISD::SETO:    return X86::COND_NP;
2289  }
2290}
2291
2292/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2293/// code. Current x86 isa includes the following FP cmov instructions:
2294/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2295static bool hasFPCMov(unsigned X86CC) {
2296  switch (X86CC) {
2297  default:
2298    return false;
2299  case X86::COND_B:
2300  case X86::COND_BE:
2301  case X86::COND_E:
2302  case X86::COND_P:
2303  case X86::COND_A:
2304  case X86::COND_AE:
2305  case X86::COND_NE:
2306  case X86::COND_NP:
2307    return true;
2308  }
2309}
2310
2311/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2312/// the specified range (L, H].
2313static bool isUndefOrInRange(int Val, int Low, int Hi) {
2314  return (Val < 0) || (Val >= Low && Val < Hi);
2315}
2316
2317/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2318/// specified value.
2319static bool isUndefOrEqual(int Val, int CmpVal) {
2320  if (Val < 0 || Val == CmpVal)
2321    return true;
2322  return false;
2323}
2324
2325/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2326/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2327/// the second operand.
2328static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2329  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2330    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2331  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2332    return (Mask[0] < 2 && Mask[1] < 2);
2333  return false;
2334}
2335
2336bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2337  SmallVector<int, 8> M;
2338  N->getMask(M);
2339  return ::isPSHUFDMask(M, N->getValueType(0));
2340}
2341
2342/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2343/// is suitable for input to PSHUFHW.
2344static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2345  if (VT != MVT::v8i16)
2346    return false;
2347
2348  // Lower quadword copied in order or undef.
2349  for (int i = 0; i != 4; ++i)
2350    if (Mask[i] >= 0 && Mask[i] != i)
2351      return false;
2352
2353  // Upper quadword shuffled.
2354  for (int i = 4; i != 8; ++i)
2355    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2356      return false;
2357
2358  return true;
2359}
2360
2361bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2362  SmallVector<int, 8> M;
2363  N->getMask(M);
2364  return ::isPSHUFHWMask(M, N->getValueType(0));
2365}
2366
2367/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2368/// is suitable for input to PSHUFLW.
2369static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2370  if (VT != MVT::v8i16)
2371    return false;
2372
2373  // Upper quadword copied in order.
2374  for (int i = 4; i != 8; ++i)
2375    if (Mask[i] >= 0 && Mask[i] != i)
2376      return false;
2377
2378  // Lower quadword shuffled.
2379  for (int i = 0; i != 4; ++i)
2380    if (Mask[i] >= 4)
2381      return false;
2382
2383  return true;
2384}
2385
2386bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2387  SmallVector<int, 8> M;
2388  N->getMask(M);
2389  return ::isPSHUFLWMask(M, N->getValueType(0));
2390}
2391
2392/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2393/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2394static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2395  int NumElems = VT.getVectorNumElements();
2396  if (NumElems != 2 && NumElems != 4)
2397    return false;
2398
2399  int Half = NumElems / 2;
2400  for (int i = 0; i < Half; ++i)
2401    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2402      return false;
2403  for (int i = Half; i < NumElems; ++i)
2404    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2405      return false;
2406
2407  return true;
2408}
2409
2410bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2411  SmallVector<int, 8> M;
2412  N->getMask(M);
2413  return ::isSHUFPMask(M, N->getValueType(0));
2414}
2415
2416/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2417/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2418/// half elements to come from vector 1 (which would equal the dest.) and
2419/// the upper half to come from vector 2.
2420static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2421  int NumElems = VT.getVectorNumElements();
2422
2423  if (NumElems != 2 && NumElems != 4)
2424    return false;
2425
2426  int Half = NumElems / 2;
2427  for (int i = 0; i < Half; ++i)
2428    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2429      return false;
2430  for (int i = Half; i < NumElems; ++i)
2431    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2432      return false;
2433  return true;
2434}
2435
2436static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2437  SmallVector<int, 8> M;
2438  N->getMask(M);
2439  return isCommutedSHUFPMask(M, N->getValueType(0));
2440}
2441
2442/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2443/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2444bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2445  if (N->getValueType(0).getVectorNumElements() != 4)
2446    return false;
2447
2448  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2449  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2450         isUndefOrEqual(N->getMaskElt(1), 7) &&
2451         isUndefOrEqual(N->getMaskElt(2), 2) &&
2452         isUndefOrEqual(N->getMaskElt(3), 3);
2453}
2454
2455/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2456/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2457bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2458  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2459
2460  if (NumElems != 2 && NumElems != 4)
2461    return false;
2462
2463  for (unsigned i = 0; i < NumElems/2; ++i)
2464    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2465      return false;
2466
2467  for (unsigned i = NumElems/2; i < NumElems; ++i)
2468    if (!isUndefOrEqual(N->getMaskElt(i), i))
2469      return false;
2470
2471  return true;
2472}
2473
2474/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2475/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2476/// and MOVLHPS.
2477bool X86::isMOVHPMask(ShuffleVectorSDNode *N) {
2478  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2479
2480  if (NumElems != 2 && NumElems != 4)
2481    return false;
2482
2483  for (unsigned i = 0; i < NumElems/2; ++i)
2484    if (!isUndefOrEqual(N->getMaskElt(i), i))
2485      return false;
2486
2487  for (unsigned i = 0; i < NumElems/2; ++i)
2488    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2489      return false;
2490
2491  return true;
2492}
2493
2494/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2495/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2496/// <2, 3, 2, 3>
2497bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2498  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2499
2500  if (NumElems != 4)
2501    return false;
2502
2503  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2504         isUndefOrEqual(N->getMaskElt(1), 3) &&
2505         isUndefOrEqual(N->getMaskElt(2), 2) &&
2506         isUndefOrEqual(N->getMaskElt(3), 3);
2507}
2508
2509/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2510/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2511static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2512                         bool V2IsSplat = false) {
2513  int NumElts = VT.getVectorNumElements();
2514  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2515    return false;
2516
2517  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2518    int BitI  = Mask[i];
2519    int BitI1 = Mask[i+1];
2520    if (!isUndefOrEqual(BitI, j))
2521      return false;
2522    if (V2IsSplat) {
2523      if (!isUndefOrEqual(BitI1, NumElts))
2524        return false;
2525    } else {
2526      if (!isUndefOrEqual(BitI1, j + NumElts))
2527        return false;
2528    }
2529  }
2530  return true;
2531}
2532
2533bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2534  SmallVector<int, 8> M;
2535  N->getMask(M);
2536  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2537}
2538
2539/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2540/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2541static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2542                         bool V2IsSplat = false) {
2543  int NumElts = VT.getVectorNumElements();
2544  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2545    return false;
2546
2547  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2548    int BitI  = Mask[i];
2549    int BitI1 = Mask[i+1];
2550    if (!isUndefOrEqual(BitI, j + NumElts/2))
2551      return false;
2552    if (V2IsSplat) {
2553      if (isUndefOrEqual(BitI1, NumElts))
2554        return false;
2555    } else {
2556      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2557        return false;
2558    }
2559  }
2560  return true;
2561}
2562
2563bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2564  SmallVector<int, 8> M;
2565  N->getMask(M);
2566  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2567}
2568
2569/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2570/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2571/// <0, 0, 1, 1>
2572static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2573  int NumElems = VT.getVectorNumElements();
2574  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2575    return false;
2576
2577  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2578    int BitI  = Mask[i];
2579    int BitI1 = Mask[i+1];
2580    if (!isUndefOrEqual(BitI, j))
2581      return false;
2582    if (!isUndefOrEqual(BitI1, j))
2583      return false;
2584  }
2585  return true;
2586}
2587
2588bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2589  SmallVector<int, 8> M;
2590  N->getMask(M);
2591  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2592}
2593
2594/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2595/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2596/// <2, 2, 3, 3>
2597static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2598  int NumElems = VT.getVectorNumElements();
2599  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2600    return false;
2601
2602  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2603    int BitI  = Mask[i];
2604    int BitI1 = Mask[i+1];
2605    if (!isUndefOrEqual(BitI, j))
2606      return false;
2607    if (!isUndefOrEqual(BitI1, j))
2608      return false;
2609  }
2610  return true;
2611}
2612
2613bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2614  SmallVector<int, 8> M;
2615  N->getMask(M);
2616  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2617}
2618
2619/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2620/// specifies a shuffle of elements that is suitable for input to MOVSS,
2621/// MOVSD, and MOVD, i.e. setting the lowest element.
2622static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2623  if (VT.getVectorElementType().getSizeInBits() < 32)
2624    return false;
2625
2626  int NumElts = VT.getVectorNumElements();
2627
2628  if (!isUndefOrEqual(Mask[0], NumElts))
2629    return false;
2630
2631  for (int i = 1; i < NumElts; ++i)
2632    if (!isUndefOrEqual(Mask[i], i))
2633      return false;
2634
2635  return true;
2636}
2637
2638bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2639  SmallVector<int, 8> M;
2640  N->getMask(M);
2641  return ::isMOVLMask(M, N->getValueType(0));
2642}
2643
2644/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2645/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2646/// element of vector 2 and the other elements to come from vector 1 in order.
2647static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2648                               bool V2IsSplat = false, bool V2IsUndef = false) {
2649  int NumOps = VT.getVectorNumElements();
2650  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2651    return false;
2652
2653  if (!isUndefOrEqual(Mask[0], 0))
2654    return false;
2655
2656  for (int i = 1; i < NumOps; ++i)
2657    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2658          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2659          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2660      return false;
2661
2662  return true;
2663}
2664
2665static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2666                           bool V2IsUndef = false) {
2667  SmallVector<int, 8> M;
2668  N->getMask(M);
2669  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2670}
2671
2672/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2673/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2674bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2675  if (N->getValueType(0).getVectorNumElements() != 4)
2676    return false;
2677
2678  // Expect 1, 1, 3, 3
2679  for (unsigned i = 0; i < 2; ++i) {
2680    int Elt = N->getMaskElt(i);
2681    if (Elt >= 0 && Elt != 1)
2682      return false;
2683  }
2684
2685  bool HasHi = false;
2686  for (unsigned i = 2; i < 4; ++i) {
2687    int Elt = N->getMaskElt(i);
2688    if (Elt >= 0 && Elt != 3)
2689      return false;
2690    if (Elt == 3)
2691      HasHi = true;
2692  }
2693  // Don't use movshdup if it can be done with a shufps.
2694  // FIXME: verify that matching u, u, 3, 3 is what we want.
2695  return HasHi;
2696}
2697
2698/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2699/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2700bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2701  if (N->getValueType(0).getVectorNumElements() != 4)
2702    return false;
2703
2704  // Expect 0, 0, 2, 2
2705  for (unsigned i = 0; i < 2; ++i)
2706    if (N->getMaskElt(i) > 0)
2707      return false;
2708
2709  bool HasHi = false;
2710  for (unsigned i = 2; i < 4; ++i) {
2711    int Elt = N->getMaskElt(i);
2712    if (Elt >= 0 && Elt != 2)
2713      return false;
2714    if (Elt == 2)
2715      HasHi = true;
2716  }
2717  // Don't use movsldup if it can be done with a shufps.
2718  return HasHi;
2719}
2720
2721/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2722/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2723bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
2724  int e = N->getValueType(0).getVectorNumElements() / 2;
2725
2726  for (int i = 0; i < e; ++i)
2727    if (!isUndefOrEqual(N->getMaskElt(i), i))
2728      return false;
2729  for (int i = 0; i < e; ++i)
2730    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
2731      return false;
2732  return true;
2733}
2734
2735/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2736/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2737/// instructions.
2738unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2739  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2740  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
2741
2742  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2743  unsigned Mask = 0;
2744  for (int i = 0; i < NumOperands; ++i) {
2745    int Val = SVOp->getMaskElt(NumOperands-i-1);
2746    if (Val < 0) Val = 0;
2747    if (Val >= NumOperands) Val -= NumOperands;
2748    Mask |= Val;
2749    if (i != NumOperands - 1)
2750      Mask <<= Shift;
2751  }
2752  return Mask;
2753}
2754
2755/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2756/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2757/// instructions.
2758unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2759  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2760  unsigned Mask = 0;
2761  // 8 nodes, but we only care about the last 4.
2762  for (unsigned i = 7; i >= 4; --i) {
2763    int Val = SVOp->getMaskElt(i);
2764    if (Val >= 0)
2765      Mask |= (Val - 4);
2766    if (i != 4)
2767      Mask <<= 2;
2768  }
2769  return Mask;
2770}
2771
2772/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2773/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2774/// instructions.
2775unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2776  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2777  unsigned Mask = 0;
2778  // 8 nodes, but we only care about the first 4.
2779  for (int i = 3; i >= 0; --i) {
2780    int Val = SVOp->getMaskElt(i);
2781    if (Val >= 0)
2782      Mask |= Val;
2783    if (i != 0)
2784      Mask <<= 2;
2785  }
2786  return Mask;
2787}
2788
2789/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2790/// constant +0.0.
2791bool X86::isZeroNode(SDValue Elt) {
2792  return ((isa<ConstantSDNode>(Elt) &&
2793           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2794          (isa<ConstantFPSDNode>(Elt) &&
2795           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2796}
2797
2798/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2799/// their permute mask.
2800static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
2801                                    SelectionDAG &DAG) {
2802  EVT VT = SVOp->getValueType(0);
2803  unsigned NumElems = VT.getVectorNumElements();
2804  SmallVector<int, 8> MaskVec;
2805
2806  for (unsigned i = 0; i != NumElems; ++i) {
2807    int idx = SVOp->getMaskElt(i);
2808    if (idx < 0)
2809      MaskVec.push_back(idx);
2810    else if (idx < (int)NumElems)
2811      MaskVec.push_back(idx + NumElems);
2812    else
2813      MaskVec.push_back(idx - NumElems);
2814  }
2815  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
2816                              SVOp->getOperand(0), &MaskVec[0]);
2817}
2818
2819/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2820/// the two vector operands have swapped position.
2821static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
2822  unsigned NumElems = VT.getVectorNumElements();
2823  for (unsigned i = 0; i != NumElems; ++i) {
2824    int idx = Mask[i];
2825    if (idx < 0)
2826      continue;
2827    else if (idx < (int)NumElems)
2828      Mask[i] = idx + NumElems;
2829    else
2830      Mask[i] = idx - NumElems;
2831  }
2832}
2833
2834/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2835/// match movhlps. The lower half elements should come from upper half of
2836/// V1 (and in order), and the upper half elements should come from the upper
2837/// half of V2 (and in order).
2838static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
2839  if (Op->getValueType(0).getVectorNumElements() != 4)
2840    return false;
2841  for (unsigned i = 0, e = 2; i != e; ++i)
2842    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
2843      return false;
2844  for (unsigned i = 2; i != 4; ++i)
2845    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
2846      return false;
2847  return true;
2848}
2849
2850/// isScalarLoadToVector - Returns true if the node is a scalar load that
2851/// is promoted to a vector. It also returns the LoadSDNode by reference if
2852/// required.
2853static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2854  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2855    return false;
2856  N = N->getOperand(0).getNode();
2857  if (!ISD::isNON_EXTLoad(N))
2858    return false;
2859  if (LD)
2860    *LD = cast<LoadSDNode>(N);
2861  return true;
2862}
2863
2864/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2865/// match movlp{s|d}. The lower half elements should come from lower half of
2866/// V1 (and in order), and the upper half elements should come from the upper
2867/// half of V2 (and in order). And since V1 will become the source of the
2868/// MOVLP, it must be either a vector load or a scalar load to vector.
2869static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
2870                               ShuffleVectorSDNode *Op) {
2871  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2872    return false;
2873  // Is V2 is a vector load, don't do this transformation. We will try to use
2874  // load folding shufps op.
2875  if (ISD::isNON_EXTLoad(V2))
2876    return false;
2877
2878  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
2879
2880  if (NumElems != 2 && NumElems != 4)
2881    return false;
2882  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2883    if (!isUndefOrEqual(Op->getMaskElt(i), i))
2884      return false;
2885  for (unsigned i = NumElems/2; i != NumElems; ++i)
2886    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
2887      return false;
2888  return true;
2889}
2890
2891/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2892/// all the same.
2893static bool isSplatVector(SDNode *N) {
2894  if (N->getOpcode() != ISD::BUILD_VECTOR)
2895    return false;
2896
2897  SDValue SplatValue = N->getOperand(0);
2898  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2899    if (N->getOperand(i) != SplatValue)
2900      return false;
2901  return true;
2902}
2903
2904/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2905/// to an zero vector.
2906/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
2907static bool isZeroShuffle(ShuffleVectorSDNode *N) {
2908  SDValue V1 = N->getOperand(0);
2909  SDValue V2 = N->getOperand(1);
2910  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2911  for (unsigned i = 0; i != NumElems; ++i) {
2912    int Idx = N->getMaskElt(i);
2913    if (Idx >= (int)NumElems) {
2914      unsigned Opc = V2.getOpcode();
2915      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2916        continue;
2917      if (Opc != ISD::BUILD_VECTOR ||
2918          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
2919        return false;
2920    } else if (Idx >= 0) {
2921      unsigned Opc = V1.getOpcode();
2922      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2923        continue;
2924      if (Opc != ISD::BUILD_VECTOR ||
2925          !X86::isZeroNode(V1.getOperand(Idx)))
2926        return false;
2927    }
2928  }
2929  return true;
2930}
2931
2932/// getZeroVector - Returns a vector of specified type with all zero elements.
2933///
2934static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
2935                             DebugLoc dl) {
2936  assert(VT.isVector() && "Expected a vector type");
2937
2938  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2939  // type.  This ensures they get CSE'd.
2940  SDValue Vec;
2941  if (VT.getSizeInBits() == 64) { // MMX
2942    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2943    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2944  } else if (HasSSE2) {  // SSE2
2945    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2946    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2947  } else { // SSE1
2948    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2949    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
2950  }
2951  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2952}
2953
2954/// getOnesVector - Returns a vector of specified type with all bits set.
2955///
2956static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2957  assert(VT.isVector() && "Expected a vector type");
2958
2959  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2960  // type.  This ensures they get CSE'd.
2961  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2962  SDValue Vec;
2963  if (VT.getSizeInBits() == 64)  // MMX
2964    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2965  else                                              // SSE
2966    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2967  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2968}
2969
2970
2971/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2972/// that point to V2 points to its first element.
2973static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
2974  EVT VT = SVOp->getValueType(0);
2975  unsigned NumElems = VT.getVectorNumElements();
2976
2977  bool Changed = false;
2978  SmallVector<int, 8> MaskVec;
2979  SVOp->getMask(MaskVec);
2980
2981  for (unsigned i = 0; i != NumElems; ++i) {
2982    if (MaskVec[i] > (int)NumElems) {
2983      MaskVec[i] = NumElems;
2984      Changed = true;
2985    }
2986  }
2987  if (Changed)
2988    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
2989                                SVOp->getOperand(1), &MaskVec[0]);
2990  return SDValue(SVOp, 0);
2991}
2992
2993/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2994/// operation of specified width.
2995static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
2996                       SDValue V2) {
2997  unsigned NumElems = VT.getVectorNumElements();
2998  SmallVector<int, 8> Mask;
2999  Mask.push_back(NumElems);
3000  for (unsigned i = 1; i != NumElems; ++i)
3001    Mask.push_back(i);
3002  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3003}
3004
3005/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3006static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3007                          SDValue V2) {
3008  unsigned NumElems = VT.getVectorNumElements();
3009  SmallVector<int, 8> Mask;
3010  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3011    Mask.push_back(i);
3012    Mask.push_back(i + NumElems);
3013  }
3014  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3015}
3016
3017/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3018static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3019                          SDValue V2) {
3020  unsigned NumElems = VT.getVectorNumElements();
3021  unsigned Half = NumElems/2;
3022  SmallVector<int, 8> Mask;
3023  for (unsigned i = 0; i != Half; ++i) {
3024    Mask.push_back(i + Half);
3025    Mask.push_back(i + NumElems + Half);
3026  }
3027  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3028}
3029
3030/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3031static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3032                            bool HasSSE2) {
3033  if (SV->getValueType(0).getVectorNumElements() <= 4)
3034    return SDValue(SV, 0);
3035
3036  EVT PVT = MVT::v4f32;
3037  EVT VT = SV->getValueType(0);
3038  DebugLoc dl = SV->getDebugLoc();
3039  SDValue V1 = SV->getOperand(0);
3040  int NumElems = VT.getVectorNumElements();
3041  int EltNo = SV->getSplatIndex();
3042
3043  // unpack elements to the correct location
3044  while (NumElems > 4) {
3045    if (EltNo < NumElems/2) {
3046      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3047    } else {
3048      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3049      EltNo -= NumElems/2;
3050    }
3051    NumElems >>= 1;
3052  }
3053
3054  // Perform the splat.
3055  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3056  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3057  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3058  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3059}
3060
3061/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3062/// vector of zero or undef vector.  This produces a shuffle where the low
3063/// element of V2 is swizzled into the zero/undef vector, landing at element
3064/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3065static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3066                                             bool isZero, bool HasSSE2,
3067                                             SelectionDAG &DAG) {
3068  EVT VT = V2.getValueType();
3069  SDValue V1 = isZero
3070    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3071  unsigned NumElems = VT.getVectorNumElements();
3072  SmallVector<int, 16> MaskVec;
3073  for (unsigned i = 0; i != NumElems; ++i)
3074    // If this is the insertion idx, put the low elt of V2 here.
3075    MaskVec.push_back(i == Idx ? NumElems : i);
3076  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3077}
3078
3079/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3080/// a shuffle that is zero.
3081static
3082unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3083                                  bool Low, SelectionDAG &DAG) {
3084  unsigned NumZeros = 0;
3085  for (int i = 0; i < NumElems; ++i) {
3086    unsigned Index = Low ? i : NumElems-i-1;
3087    int Idx = SVOp->getMaskElt(Index);
3088    if (Idx < 0) {
3089      ++NumZeros;
3090      continue;
3091    }
3092    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3093    if (Elt.getNode() && X86::isZeroNode(Elt))
3094      ++NumZeros;
3095    else
3096      break;
3097  }
3098  return NumZeros;
3099}
3100
3101/// isVectorShift - Returns true if the shuffle can be implemented as a
3102/// logical left or right shift of a vector.
3103/// FIXME: split into pslldqi, psrldqi, palignr variants.
3104static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3105                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3106  int NumElems = SVOp->getValueType(0).getVectorNumElements();
3107
3108  isLeft = true;
3109  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3110  if (!NumZeros) {
3111    isLeft = false;
3112    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3113    if (!NumZeros)
3114      return false;
3115  }
3116  bool SeenV1 = false;
3117  bool SeenV2 = false;
3118  for (int i = NumZeros; i < NumElems; ++i) {
3119    int Val = isLeft ? (i - NumZeros) : i;
3120    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3121    if (Idx < 0)
3122      continue;
3123    if (Idx < NumElems)
3124      SeenV1 = true;
3125    else {
3126      Idx -= NumElems;
3127      SeenV2 = true;
3128    }
3129    if (Idx != Val)
3130      return false;
3131  }
3132  if (SeenV1 && SeenV2)
3133    return false;
3134
3135  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3136  ShAmt = NumZeros;
3137  return true;
3138}
3139
3140
3141/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3142///
3143static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3144                                       unsigned NumNonZero, unsigned NumZero,
3145                                       SelectionDAG &DAG, TargetLowering &TLI) {
3146  if (NumNonZero > 8)
3147    return SDValue();
3148
3149  DebugLoc dl = Op.getDebugLoc();
3150  SDValue V(0, 0);
3151  bool First = true;
3152  for (unsigned i = 0; i < 16; ++i) {
3153    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3154    if (ThisIsNonZero && First) {
3155      if (NumZero)
3156        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3157      else
3158        V = DAG.getUNDEF(MVT::v8i16);
3159      First = false;
3160    }
3161
3162    if ((i & 1) != 0) {
3163      SDValue ThisElt(0, 0), LastElt(0, 0);
3164      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3165      if (LastIsNonZero) {
3166        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3167                              MVT::i16, Op.getOperand(i-1));
3168      }
3169      if (ThisIsNonZero) {
3170        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3171        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3172                              ThisElt, DAG.getConstant(8, MVT::i8));
3173        if (LastIsNonZero)
3174          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3175      } else
3176        ThisElt = LastElt;
3177
3178      if (ThisElt.getNode())
3179        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3180                        DAG.getIntPtrConstant(i/2));
3181    }
3182  }
3183
3184  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3185}
3186
3187/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3188///
3189static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3190                                       unsigned NumNonZero, unsigned NumZero,
3191                                       SelectionDAG &DAG, TargetLowering &TLI) {
3192  if (NumNonZero > 4)
3193    return SDValue();
3194
3195  DebugLoc dl = Op.getDebugLoc();
3196  SDValue V(0, 0);
3197  bool First = true;
3198  for (unsigned i = 0; i < 8; ++i) {
3199    bool isNonZero = (NonZeros & (1 << i)) != 0;
3200    if (isNonZero) {
3201      if (First) {
3202        if (NumZero)
3203          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3204        else
3205          V = DAG.getUNDEF(MVT::v8i16);
3206        First = false;
3207      }
3208      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3209                      MVT::v8i16, V, Op.getOperand(i),
3210                      DAG.getIntPtrConstant(i));
3211    }
3212  }
3213
3214  return V;
3215}
3216
3217/// getVShift - Return a vector logical shift node.
3218///
3219static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3220                         unsigned NumBits, SelectionDAG &DAG,
3221                         const TargetLowering &TLI, DebugLoc dl) {
3222  bool isMMX = VT.getSizeInBits() == 64;
3223  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3224  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3225  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3226  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3227                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3228                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3229}
3230
3231SDValue
3232X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3233  DebugLoc dl = Op.getDebugLoc();
3234  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3235  if (ISD::isBuildVectorAllZeros(Op.getNode())
3236      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3237    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3238    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3239    // eliminated on x86-32 hosts.
3240    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3241      return Op;
3242
3243    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3244      return getOnesVector(Op.getValueType(), DAG, dl);
3245    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3246  }
3247
3248  EVT VT = Op.getValueType();
3249  EVT ExtVT = VT.getVectorElementType();
3250  unsigned EVTBits = ExtVT.getSizeInBits();
3251
3252  unsigned NumElems = Op.getNumOperands();
3253  unsigned NumZero  = 0;
3254  unsigned NumNonZero = 0;
3255  unsigned NonZeros = 0;
3256  bool IsAllConstants = true;
3257  SmallSet<SDValue, 8> Values;
3258  for (unsigned i = 0; i < NumElems; ++i) {
3259    SDValue Elt = Op.getOperand(i);
3260    if (Elt.getOpcode() == ISD::UNDEF)
3261      continue;
3262    Values.insert(Elt);
3263    if (Elt.getOpcode() != ISD::Constant &&
3264        Elt.getOpcode() != ISD::ConstantFP)
3265      IsAllConstants = false;
3266    if (X86::isZeroNode(Elt))
3267      NumZero++;
3268    else {
3269      NonZeros |= (1 << i);
3270      NumNonZero++;
3271    }
3272  }
3273
3274  if (NumNonZero == 0) {
3275    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3276    return DAG.getUNDEF(VT);
3277  }
3278
3279  // Special case for single non-zero, non-undef, element.
3280  if (NumNonZero == 1) {
3281    unsigned Idx = CountTrailingZeros_32(NonZeros);
3282    SDValue Item = Op.getOperand(Idx);
3283
3284    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3285    // the value are obviously zero, truncate the value to i32 and do the
3286    // insertion that way.  Only do this if the value is non-constant or if the
3287    // value is a constant being inserted into element 0.  It is cheaper to do
3288    // a constant pool load than it is to do a movd + shuffle.
3289    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3290        (!IsAllConstants || Idx == 0)) {
3291      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3292        // Handle MMX and SSE both.
3293        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3294        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3295
3296        // Truncate the value (which may itself be a constant) to i32, and
3297        // convert it to a vector with movd (S2V+shuffle to zero extend).
3298        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3299        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3300        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3301                                           Subtarget->hasSSE2(), DAG);
3302
3303        // Now we have our 32-bit value zero extended in the low element of
3304        // a vector.  If Idx != 0, swizzle it into place.
3305        if (Idx != 0) {
3306          SmallVector<int, 4> Mask;
3307          Mask.push_back(Idx);
3308          for (unsigned i = 1; i != VecElts; ++i)
3309            Mask.push_back(i);
3310          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3311                                      DAG.getUNDEF(Item.getValueType()),
3312                                      &Mask[0]);
3313        }
3314        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3315      }
3316    }
3317
3318    // If we have a constant or non-constant insertion into the low element of
3319    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3320    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3321    // depending on what the source datatype is.
3322    if (Idx == 0) {
3323      if (NumZero == 0) {
3324        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3325      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3326          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3327        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3328        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3329        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3330                                           DAG);
3331      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3332        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3333        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3334        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3335        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3336                                           Subtarget->hasSSE2(), DAG);
3337        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3338      }
3339    }
3340
3341    // Is it a vector logical left shift?
3342    if (NumElems == 2 && Idx == 1 &&
3343        X86::isZeroNode(Op.getOperand(0)) &&
3344        !X86::isZeroNode(Op.getOperand(1))) {
3345      unsigned NumBits = VT.getSizeInBits();
3346      return getVShift(true, VT,
3347                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3348                                   VT, Op.getOperand(1)),
3349                       NumBits/2, DAG, *this, dl);
3350    }
3351
3352    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3353      return SDValue();
3354
3355    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3356    // is a non-constant being inserted into an element other than the low one,
3357    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3358    // movd/movss) to move this into the low element, then shuffle it into
3359    // place.
3360    if (EVTBits == 32) {
3361      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3362
3363      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3364      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3365                                         Subtarget->hasSSE2(), DAG);
3366      SmallVector<int, 8> MaskVec;
3367      for (unsigned i = 0; i < NumElems; i++)
3368        MaskVec.push_back(i == Idx ? 0 : 1);
3369      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3370    }
3371  }
3372
3373  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3374  if (Values.size() == 1)
3375    return SDValue();
3376
3377  // A vector full of immediates; various special cases are already
3378  // handled, so this is best done with a single constant-pool load.
3379  if (IsAllConstants)
3380    return SDValue();
3381
3382  // Let legalizer expand 2-wide build_vectors.
3383  if (EVTBits == 64) {
3384    if (NumNonZero == 1) {
3385      // One half is zero or undef.
3386      unsigned Idx = CountTrailingZeros_32(NonZeros);
3387      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3388                                 Op.getOperand(Idx));
3389      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3390                                         Subtarget->hasSSE2(), DAG);
3391    }
3392    return SDValue();
3393  }
3394
3395  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3396  if (EVTBits == 8 && NumElems == 16) {
3397    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3398                                        *this);
3399    if (V.getNode()) return V;
3400  }
3401
3402  if (EVTBits == 16 && NumElems == 8) {
3403    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3404                                        *this);
3405    if (V.getNode()) return V;
3406  }
3407
3408  // If element VT is == 32 bits, turn it into a number of shuffles.
3409  SmallVector<SDValue, 8> V;
3410  V.resize(NumElems);
3411  if (NumElems == 4 && NumZero > 0) {
3412    for (unsigned i = 0; i < 4; ++i) {
3413      bool isZero = !(NonZeros & (1 << i));
3414      if (isZero)
3415        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3416      else
3417        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3418    }
3419
3420    for (unsigned i = 0; i < 2; ++i) {
3421      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3422        default: break;
3423        case 0:
3424          V[i] = V[i*2];  // Must be a zero vector.
3425          break;
3426        case 1:
3427          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3428          break;
3429        case 2:
3430          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3431          break;
3432        case 3:
3433          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3434          break;
3435      }
3436    }
3437
3438    SmallVector<int, 8> MaskVec;
3439    bool Reverse = (NonZeros & 0x3) == 2;
3440    for (unsigned i = 0; i < 2; ++i)
3441      MaskVec.push_back(Reverse ? 1-i : i);
3442    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3443    for (unsigned i = 0; i < 2; ++i)
3444      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3445    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3446  }
3447
3448  if (Values.size() > 2) {
3449    // If we have SSE 4.1, Expand into a number of inserts unless the number of
3450    // values to be inserted is equal to the number of elements, in which case
3451    // use the unpack code below in the hopes of matching the consecutive elts
3452    // load merge pattern for shuffles.
3453    // FIXME: We could probably just check that here directly.
3454    if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3455        getSubtarget()->hasSSE41()) {
3456      V[0] = DAG.getUNDEF(VT);
3457      for (unsigned i = 0; i < NumElems; ++i)
3458        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3459          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3460                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3461      return V[0];
3462    }
3463    // Expand into a number of unpckl*.
3464    // e.g. for v4f32
3465    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3466    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3467    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3468    for (unsigned i = 0; i < NumElems; ++i)
3469      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3470    NumElems >>= 1;
3471    while (NumElems != 0) {
3472      for (unsigned i = 0; i < NumElems; ++i)
3473        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3474      NumElems >>= 1;
3475    }
3476    return V[0];
3477  }
3478
3479  return SDValue();
3480}
3481
3482// v8i16 shuffles - Prefer shuffles in the following order:
3483// 1. [all]   pshuflw, pshufhw, optional move
3484// 2. [ssse3] 1 x pshufb
3485// 3. [ssse3] 2 x pshufb + 1 x por
3486// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3487static
3488SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3489                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3490  SDValue V1 = SVOp->getOperand(0);
3491  SDValue V2 = SVOp->getOperand(1);
3492  DebugLoc dl = SVOp->getDebugLoc();
3493  SmallVector<int, 8> MaskVals;
3494
3495  // Determine if more than 1 of the words in each of the low and high quadwords
3496  // of the result come from the same quadword of one of the two inputs.  Undef
3497  // mask values count as coming from any quadword, for better codegen.
3498  SmallVector<unsigned, 4> LoQuad(4);
3499  SmallVector<unsigned, 4> HiQuad(4);
3500  BitVector InputQuads(4);
3501  for (unsigned i = 0; i < 8; ++i) {
3502    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3503    int EltIdx = SVOp->getMaskElt(i);
3504    MaskVals.push_back(EltIdx);
3505    if (EltIdx < 0) {
3506      ++Quad[0];
3507      ++Quad[1];
3508      ++Quad[2];
3509      ++Quad[3];
3510      continue;
3511    }
3512    ++Quad[EltIdx / 4];
3513    InputQuads.set(EltIdx / 4);
3514  }
3515
3516  int BestLoQuad = -1;
3517  unsigned MaxQuad = 1;
3518  for (unsigned i = 0; i < 4; ++i) {
3519    if (LoQuad[i] > MaxQuad) {
3520      BestLoQuad = i;
3521      MaxQuad = LoQuad[i];
3522    }
3523  }
3524
3525  int BestHiQuad = -1;
3526  MaxQuad = 1;
3527  for (unsigned i = 0; i < 4; ++i) {
3528    if (HiQuad[i] > MaxQuad) {
3529      BestHiQuad = i;
3530      MaxQuad = HiQuad[i];
3531    }
3532  }
3533
3534  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3535  // of the two input vectors, shuffle them into one input vector so only a
3536  // single pshufb instruction is necessary. If There are more than 2 input
3537  // quads, disable the next transformation since it does not help SSSE3.
3538  bool V1Used = InputQuads[0] || InputQuads[1];
3539  bool V2Used = InputQuads[2] || InputQuads[3];
3540  if (TLI.getSubtarget()->hasSSSE3()) {
3541    if (InputQuads.count() == 2 && V1Used && V2Used) {
3542      BestLoQuad = InputQuads.find_first();
3543      BestHiQuad = InputQuads.find_next(BestLoQuad);
3544    }
3545    if (InputQuads.count() > 2) {
3546      BestLoQuad = -1;
3547      BestHiQuad = -1;
3548    }
3549  }
3550
3551  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3552  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3553  // words from all 4 input quadwords.
3554  SDValue NewV;
3555  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3556    SmallVector<int, 8> MaskV;
3557    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3558    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3559    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3560                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3561                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3562    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3563
3564    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3565    // source words for the shuffle, to aid later transformations.
3566    bool AllWordsInNewV = true;
3567    bool InOrder[2] = { true, true };
3568    for (unsigned i = 0; i != 8; ++i) {
3569      int idx = MaskVals[i];
3570      if (idx != (int)i)
3571        InOrder[i/4] = false;
3572      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3573        continue;
3574      AllWordsInNewV = false;
3575      break;
3576    }
3577
3578    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3579    if (AllWordsInNewV) {
3580      for (int i = 0; i != 8; ++i) {
3581        int idx = MaskVals[i];
3582        if (idx < 0)
3583          continue;
3584        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3585        if ((idx != i) && idx < 4)
3586          pshufhw = false;
3587        if ((idx != i) && idx > 3)
3588          pshuflw = false;
3589      }
3590      V1 = NewV;
3591      V2Used = false;
3592      BestLoQuad = 0;
3593      BestHiQuad = 1;
3594    }
3595
3596    // If we've eliminated the use of V2, and the new mask is a pshuflw or
3597    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
3598    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3599      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
3600                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
3601    }
3602  }
3603
3604  // If we have SSSE3, and all words of the result are from 1 input vector,
3605  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
3606  // is present, fall back to case 4.
3607  if (TLI.getSubtarget()->hasSSSE3()) {
3608    SmallVector<SDValue,16> pshufbMask;
3609
3610    // If we have elements from both input vectors, set the high bit of the
3611    // shuffle mask element to zero out elements that come from V2 in the V1
3612    // mask, and elements that come from V1 in the V2 mask, so that the two
3613    // results can be OR'd together.
3614    bool TwoInputs = V1Used && V2Used;
3615    for (unsigned i = 0; i != 8; ++i) {
3616      int EltIdx = MaskVals[i] * 2;
3617      if (TwoInputs && (EltIdx >= 16)) {
3618        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3619        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3620        continue;
3621      }
3622      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
3623      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
3624    }
3625    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
3626    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3627                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3628                                 MVT::v16i8, &pshufbMask[0], 16));
3629    if (!TwoInputs)
3630      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3631
3632    // Calculate the shuffle mask for the second input, shuffle it, and
3633    // OR it with the first shuffled input.
3634    pshufbMask.clear();
3635    for (unsigned i = 0; i != 8; ++i) {
3636      int EltIdx = MaskVals[i] * 2;
3637      if (EltIdx < 16) {
3638        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3639        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3640        continue;
3641      }
3642      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3643      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
3644    }
3645    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
3646    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3647                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3648                                 MVT::v16i8, &pshufbMask[0], 16));
3649    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3650    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3651  }
3652
3653  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3654  // and update MaskVals with new element order.
3655  BitVector InOrder(8);
3656  if (BestLoQuad >= 0) {
3657    SmallVector<int, 8> MaskV;
3658    for (int i = 0; i != 4; ++i) {
3659      int idx = MaskVals[i];
3660      if (idx < 0) {
3661        MaskV.push_back(-1);
3662        InOrder.set(i);
3663      } else if ((idx / 4) == BestLoQuad) {
3664        MaskV.push_back(idx & 3);
3665        InOrder.set(i);
3666      } else {
3667        MaskV.push_back(-1);
3668      }
3669    }
3670    for (unsigned i = 4; i != 8; ++i)
3671      MaskV.push_back(i);
3672    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3673                                &MaskV[0]);
3674  }
3675
3676  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3677  // and update MaskVals with the new element order.
3678  if (BestHiQuad >= 0) {
3679    SmallVector<int, 8> MaskV;
3680    for (unsigned i = 0; i != 4; ++i)
3681      MaskV.push_back(i);
3682    for (unsigned i = 4; i != 8; ++i) {
3683      int idx = MaskVals[i];
3684      if (idx < 0) {
3685        MaskV.push_back(-1);
3686        InOrder.set(i);
3687      } else if ((idx / 4) == BestHiQuad) {
3688        MaskV.push_back((idx & 3) + 4);
3689        InOrder.set(i);
3690      } else {
3691        MaskV.push_back(-1);
3692      }
3693    }
3694    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3695                                &MaskV[0]);
3696  }
3697
3698  // In case BestHi & BestLo were both -1, which means each quadword has a word
3699  // from each of the four input quadwords, calculate the InOrder bitvector now
3700  // before falling through to the insert/extract cleanup.
3701  if (BestLoQuad == -1 && BestHiQuad == -1) {
3702    NewV = V1;
3703    for (int i = 0; i != 8; ++i)
3704      if (MaskVals[i] < 0 || MaskVals[i] == i)
3705        InOrder.set(i);
3706  }
3707
3708  // The other elements are put in the right place using pextrw and pinsrw.
3709  for (unsigned i = 0; i != 8; ++i) {
3710    if (InOrder[i])
3711      continue;
3712    int EltIdx = MaskVals[i];
3713    if (EltIdx < 0)
3714      continue;
3715    SDValue ExtOp = (EltIdx < 8)
3716    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
3717                  DAG.getIntPtrConstant(EltIdx))
3718    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
3719                  DAG.getIntPtrConstant(EltIdx - 8));
3720    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
3721                       DAG.getIntPtrConstant(i));
3722  }
3723  return NewV;
3724}
3725
3726// v16i8 shuffles - Prefer shuffles in the following order:
3727// 1. [ssse3] 1 x pshufb
3728// 2. [ssse3] 2 x pshufb + 1 x por
3729// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
3730static
3731SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
3732                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3733  SDValue V1 = SVOp->getOperand(0);
3734  SDValue V2 = SVOp->getOperand(1);
3735  DebugLoc dl = SVOp->getDebugLoc();
3736  SmallVector<int, 16> MaskVals;
3737  SVOp->getMask(MaskVals);
3738
3739  // If we have SSSE3, case 1 is generated when all result bytes come from
3740  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
3741  // present, fall back to case 3.
3742  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3743  bool V1Only = true;
3744  bool V2Only = true;
3745  for (unsigned i = 0; i < 16; ++i) {
3746    int EltIdx = MaskVals[i];
3747    if (EltIdx < 0)
3748      continue;
3749    if (EltIdx < 16)
3750      V2Only = false;
3751    else
3752      V1Only = false;
3753  }
3754
3755  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3756  if (TLI.getSubtarget()->hasSSSE3()) {
3757    SmallVector<SDValue,16> pshufbMask;
3758
3759    // If all result elements are from one input vector, then only translate
3760    // undef mask values to 0x80 (zero out result) in the pshufb mask.
3761    //
3762    // Otherwise, we have elements from both input vectors, and must zero out
3763    // elements that come from V2 in the first mask, and V1 in the second mask
3764    // so that we can OR them together.
3765    bool TwoInputs = !(V1Only || V2Only);
3766    for (unsigned i = 0; i != 16; ++i) {
3767      int EltIdx = MaskVals[i];
3768      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
3769        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3770        continue;
3771      }
3772      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3773    }
3774    // If all the elements are from V2, assign it to V1 and return after
3775    // building the first pshufb.
3776    if (V2Only)
3777      V1 = V2;
3778    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3779                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3780                                 MVT::v16i8, &pshufbMask[0], 16));
3781    if (!TwoInputs)
3782      return V1;
3783
3784    // Calculate the shuffle mask for the second input, shuffle it, and
3785    // OR it with the first shuffled input.
3786    pshufbMask.clear();
3787    for (unsigned i = 0; i != 16; ++i) {
3788      int EltIdx = MaskVals[i];
3789      if (EltIdx < 16) {
3790        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3791        continue;
3792      }
3793      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3794    }
3795    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3796                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3797                                 MVT::v16i8, &pshufbMask[0], 16));
3798    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3799  }
3800
3801  // No SSSE3 - Calculate in place words and then fix all out of place words
3802  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
3803  // the 16 different words that comprise the two doublequadword input vectors.
3804  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3805  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
3806  SDValue NewV = V2Only ? V2 : V1;
3807  for (int i = 0; i != 8; ++i) {
3808    int Elt0 = MaskVals[i*2];
3809    int Elt1 = MaskVals[i*2+1];
3810
3811    // This word of the result is all undef, skip it.
3812    if (Elt0 < 0 && Elt1 < 0)
3813      continue;
3814
3815    // This word of the result is already in the correct place, skip it.
3816    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
3817      continue;
3818    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
3819      continue;
3820
3821    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
3822    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
3823    SDValue InsElt;
3824
3825    // If Elt0 and Elt1 are defined, are consecutive, and can be load
3826    // using a single extract together, load it and store it.
3827    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
3828      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3829                           DAG.getIntPtrConstant(Elt1 / 2));
3830      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3831                        DAG.getIntPtrConstant(i));
3832      continue;
3833    }
3834
3835    // If Elt1 is defined, extract it from the appropriate source.  If the
3836    // source byte is not also odd, shift the extracted word left 8 bits
3837    // otherwise clear the bottom 8 bits if we need to do an or.
3838    if (Elt1 >= 0) {
3839      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3840                           DAG.getIntPtrConstant(Elt1 / 2));
3841      if ((Elt1 & 1) == 0)
3842        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
3843                             DAG.getConstant(8, TLI.getShiftAmountTy()));
3844      else if (Elt0 >= 0)
3845        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
3846                             DAG.getConstant(0xFF00, MVT::i16));
3847    }
3848    // If Elt0 is defined, extract it from the appropriate source.  If the
3849    // source byte is not also even, shift the extracted word right 8 bits. If
3850    // Elt1 was also defined, OR the extracted values together before
3851    // inserting them in the result.
3852    if (Elt0 >= 0) {
3853      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
3854                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
3855      if ((Elt0 & 1) != 0)
3856        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
3857                              DAG.getConstant(8, TLI.getShiftAmountTy()));
3858      else if (Elt1 >= 0)
3859        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
3860                             DAG.getConstant(0x00FF, MVT::i16));
3861      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
3862                         : InsElt0;
3863    }
3864    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3865                       DAG.getIntPtrConstant(i));
3866  }
3867  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
3868}
3869
3870/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3871/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3872/// done when every pair / quad of shuffle mask elements point to elements in
3873/// the right sequence. e.g.
3874/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3875static
3876SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
3877                                 SelectionDAG &DAG,
3878                                 TargetLowering &TLI, DebugLoc dl) {
3879  EVT VT = SVOp->getValueType(0);
3880  SDValue V1 = SVOp->getOperand(0);
3881  SDValue V2 = SVOp->getOperand(1);
3882  unsigned NumElems = VT.getVectorNumElements();
3883  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3884  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3885  EVT MaskEltVT = MaskVT.getVectorElementType();
3886  EVT NewVT = MaskVT;
3887  switch (VT.getSimpleVT().SimpleTy) {
3888  default: assert(false && "Unexpected!");
3889  case MVT::v4f32: NewVT = MVT::v2f64; break;
3890  case MVT::v4i32: NewVT = MVT::v2i64; break;
3891  case MVT::v8i16: NewVT = MVT::v4i32; break;
3892  case MVT::v16i8: NewVT = MVT::v4i32; break;
3893  }
3894
3895  if (NewWidth == 2) {
3896    if (VT.isInteger())
3897      NewVT = MVT::v2i64;
3898    else
3899      NewVT = MVT::v2f64;
3900  }
3901  int Scale = NumElems / NewWidth;
3902  SmallVector<int, 8> MaskVec;
3903  for (unsigned i = 0; i < NumElems; i += Scale) {
3904    int StartIdx = -1;
3905    for (int j = 0; j < Scale; ++j) {
3906      int EltIdx = SVOp->getMaskElt(i+j);
3907      if (EltIdx < 0)
3908        continue;
3909      if (StartIdx == -1)
3910        StartIdx = EltIdx - (EltIdx % Scale);
3911      if (EltIdx != StartIdx + j)
3912        return SDValue();
3913    }
3914    if (StartIdx == -1)
3915      MaskVec.push_back(-1);
3916    else
3917      MaskVec.push_back(StartIdx / Scale);
3918  }
3919
3920  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
3921  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
3922  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
3923}
3924
3925/// getVZextMovL - Return a zero-extending vector move low node.
3926///
3927static SDValue getVZextMovL(EVT VT, EVT OpVT,
3928                            SDValue SrcOp, SelectionDAG &DAG,
3929                            const X86Subtarget *Subtarget, DebugLoc dl) {
3930  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3931    LoadSDNode *LD = NULL;
3932    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
3933      LD = dyn_cast<LoadSDNode>(SrcOp);
3934    if (!LD) {
3935      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3936      // instead.
3937      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3938      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
3939          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3940          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3941          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
3942        // PR2108
3943        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3944        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3945                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3946                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3947                                                   OpVT,
3948                                                   SrcOp.getOperand(0)
3949                                                          .getOperand(0))));
3950      }
3951    }
3952  }
3953
3954  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3955                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3956                                 DAG.getNode(ISD::BIT_CONVERT, dl,
3957                                             OpVT, SrcOp)));
3958}
3959
3960/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3961/// shuffles.
3962static SDValue
3963LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3964  SDValue V1 = SVOp->getOperand(0);
3965  SDValue V2 = SVOp->getOperand(1);
3966  DebugLoc dl = SVOp->getDebugLoc();
3967  EVT VT = SVOp->getValueType(0);
3968
3969  SmallVector<std::pair<int, int>, 8> Locs;
3970  Locs.resize(4);
3971  SmallVector<int, 8> Mask1(4U, -1);
3972  SmallVector<int, 8> PermMask;
3973  SVOp->getMask(PermMask);
3974
3975  unsigned NumHi = 0;
3976  unsigned NumLo = 0;
3977  for (unsigned i = 0; i != 4; ++i) {
3978    int Idx = PermMask[i];
3979    if (Idx < 0) {
3980      Locs[i] = std::make_pair(-1, -1);
3981    } else {
3982      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
3983      if (Idx < 4) {
3984        Locs[i] = std::make_pair(0, NumLo);
3985        Mask1[NumLo] = Idx;
3986        NumLo++;
3987      } else {
3988        Locs[i] = std::make_pair(1, NumHi);
3989        if (2+NumHi < 4)
3990          Mask1[2+NumHi] = Idx;
3991        NumHi++;
3992      }
3993    }
3994  }
3995
3996  if (NumLo <= 2 && NumHi <= 2) {
3997    // If no more than two elements come from either vector. This can be
3998    // implemented with two shuffles. First shuffle gather the elements.
3999    // The second shuffle, which takes the first shuffle as both of its
4000    // vector operands, put the elements into the right order.
4001    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4002
4003    SmallVector<int, 8> Mask2(4U, -1);
4004
4005    for (unsigned i = 0; i != 4; ++i) {
4006      if (Locs[i].first == -1)
4007        continue;
4008      else {
4009        unsigned Idx = (i < 2) ? 0 : 4;
4010        Idx += Locs[i].first * 2 + Locs[i].second;
4011        Mask2[i] = Idx;
4012      }
4013    }
4014
4015    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4016  } else if (NumLo == 3 || NumHi == 3) {
4017    // Otherwise, we must have three elements from one vector, call it X, and
4018    // one element from the other, call it Y.  First, use a shufps to build an
4019    // intermediate vector with the one element from Y and the element from X
4020    // that will be in the same half in the final destination (the indexes don't
4021    // matter). Then, use a shufps to build the final vector, taking the half
4022    // containing the element from Y from the intermediate, and the other half
4023    // from X.
4024    if (NumHi == 3) {
4025      // Normalize it so the 3 elements come from V1.
4026      CommuteVectorShuffleMask(PermMask, VT);
4027      std::swap(V1, V2);
4028    }
4029
4030    // Find the element from V2.
4031    unsigned HiIndex;
4032    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4033      int Val = PermMask[HiIndex];
4034      if (Val < 0)
4035        continue;
4036      if (Val >= 4)
4037        break;
4038    }
4039
4040    Mask1[0] = PermMask[HiIndex];
4041    Mask1[1] = -1;
4042    Mask1[2] = PermMask[HiIndex^1];
4043    Mask1[3] = -1;
4044    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4045
4046    if (HiIndex >= 2) {
4047      Mask1[0] = PermMask[0];
4048      Mask1[1] = PermMask[1];
4049      Mask1[2] = HiIndex & 1 ? 6 : 4;
4050      Mask1[3] = HiIndex & 1 ? 4 : 6;
4051      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4052    } else {
4053      Mask1[0] = HiIndex & 1 ? 2 : 0;
4054      Mask1[1] = HiIndex & 1 ? 0 : 2;
4055      Mask1[2] = PermMask[2];
4056      Mask1[3] = PermMask[3];
4057      if (Mask1[2] >= 0)
4058        Mask1[2] += 4;
4059      if (Mask1[3] >= 0)
4060        Mask1[3] += 4;
4061      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4062    }
4063  }
4064
4065  // Break it into (shuffle shuffle_hi, shuffle_lo).
4066  Locs.clear();
4067  SmallVector<int,8> LoMask(4U, -1);
4068  SmallVector<int,8> HiMask(4U, -1);
4069
4070  SmallVector<int,8> *MaskPtr = &LoMask;
4071  unsigned MaskIdx = 0;
4072  unsigned LoIdx = 0;
4073  unsigned HiIdx = 2;
4074  for (unsigned i = 0; i != 4; ++i) {
4075    if (i == 2) {
4076      MaskPtr = &HiMask;
4077      MaskIdx = 1;
4078      LoIdx = 0;
4079      HiIdx = 2;
4080    }
4081    int Idx = PermMask[i];
4082    if (Idx < 0) {
4083      Locs[i] = std::make_pair(-1, -1);
4084    } else if (Idx < 4) {
4085      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4086      (*MaskPtr)[LoIdx] = Idx;
4087      LoIdx++;
4088    } else {
4089      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4090      (*MaskPtr)[HiIdx] = Idx;
4091      HiIdx++;
4092    }
4093  }
4094
4095  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4096  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4097  SmallVector<int, 8> MaskOps;
4098  for (unsigned i = 0; i != 4; ++i) {
4099    if (Locs[i].first == -1) {
4100      MaskOps.push_back(-1);
4101    } else {
4102      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4103      MaskOps.push_back(Idx);
4104    }
4105  }
4106  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4107}
4108
4109SDValue
4110X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4111  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4112  SDValue V1 = Op.getOperand(0);
4113  SDValue V2 = Op.getOperand(1);
4114  EVT VT = Op.getValueType();
4115  DebugLoc dl = Op.getDebugLoc();
4116  unsigned NumElems = VT.getVectorNumElements();
4117  bool isMMX = VT.getSizeInBits() == 64;
4118  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4119  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4120  bool V1IsSplat = false;
4121  bool V2IsSplat = false;
4122
4123  if (isZeroShuffle(SVOp))
4124    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4125
4126  // Promote splats to v4f32.
4127  if (SVOp->isSplat()) {
4128    if (isMMX || NumElems < 4)
4129      return Op;
4130    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4131  }
4132
4133  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4134  // do it!
4135  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4136    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4137    if (NewOp.getNode())
4138      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4139                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4140  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4141    // FIXME: Figure out a cleaner way to do this.
4142    // Try to make use of movq to zero out the top part.
4143    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4144      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4145      if (NewOp.getNode()) {
4146        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4147          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4148                              DAG, Subtarget, dl);
4149      }
4150    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4151      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4152      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4153        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4154                            DAG, Subtarget, dl);
4155    }
4156  }
4157
4158  if (X86::isPSHUFDMask(SVOp))
4159    return Op;
4160
4161  // Check if this can be converted into a logical shift.
4162  bool isLeft = false;
4163  unsigned ShAmt = 0;
4164  SDValue ShVal;
4165  bool isShift = getSubtarget()->hasSSE2() &&
4166  isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4167  if (isShift && ShVal.hasOneUse()) {
4168    // If the shifted value has multiple uses, it may be cheaper to use
4169    // v_set0 + movlhps or movhlps, etc.
4170    EVT EltVT = VT.getVectorElementType();
4171    ShAmt *= EltVT.getSizeInBits();
4172    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4173  }
4174
4175  if (X86::isMOVLMask(SVOp)) {
4176    if (V1IsUndef)
4177      return V2;
4178    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4179      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4180    if (!isMMX)
4181      return Op;
4182  }
4183
4184  // FIXME: fold these into legal mask.
4185  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4186                 X86::isMOVSLDUPMask(SVOp) ||
4187                 X86::isMOVHLPSMask(SVOp) ||
4188                 X86::isMOVHPMask(SVOp) ||
4189                 X86::isMOVLPMask(SVOp)))
4190    return Op;
4191
4192  if (ShouldXformToMOVHLPS(SVOp) ||
4193      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4194    return CommuteVectorShuffle(SVOp, DAG);
4195
4196  if (isShift) {
4197    // No better options. Use a vshl / vsrl.
4198    EVT EltVT = VT.getVectorElementType();
4199    ShAmt *= EltVT.getSizeInBits();
4200    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4201  }
4202
4203  bool Commuted = false;
4204  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4205  // 1,1,1,1 -> v8i16 though.
4206  V1IsSplat = isSplatVector(V1.getNode());
4207  V2IsSplat = isSplatVector(V2.getNode());
4208
4209  // Canonicalize the splat or undef, if present, to be on the RHS.
4210  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4211    Op = CommuteVectorShuffle(SVOp, DAG);
4212    SVOp = cast<ShuffleVectorSDNode>(Op);
4213    V1 = SVOp->getOperand(0);
4214    V2 = SVOp->getOperand(1);
4215    std::swap(V1IsSplat, V2IsSplat);
4216    std::swap(V1IsUndef, V2IsUndef);
4217    Commuted = true;
4218  }
4219
4220  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4221    // Shuffling low element of v1 into undef, just return v1.
4222    if (V2IsUndef)
4223      return V1;
4224    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4225    // the instruction selector will not match, so get a canonical MOVL with
4226    // swapped operands to undo the commute.
4227    return getMOVL(DAG, dl, VT, V2, V1);
4228  }
4229
4230  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4231      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4232      X86::isUNPCKLMask(SVOp) ||
4233      X86::isUNPCKHMask(SVOp))
4234    return Op;
4235
4236  if (V2IsSplat) {
4237    // Normalize mask so all entries that point to V2 points to its first
4238    // element then try to match unpck{h|l} again. If match, return a
4239    // new vector_shuffle with the corrected mask.
4240    SDValue NewMask = NormalizeMask(SVOp, DAG);
4241    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4242    if (NSVOp != SVOp) {
4243      if (X86::isUNPCKLMask(NSVOp, true)) {
4244        return NewMask;
4245      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4246        return NewMask;
4247      }
4248    }
4249  }
4250
4251  if (Commuted) {
4252    // Commute is back and try unpck* again.
4253    // FIXME: this seems wrong.
4254    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4255    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4256    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4257        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4258        X86::isUNPCKLMask(NewSVOp) ||
4259        X86::isUNPCKHMask(NewSVOp))
4260      return NewOp;
4261  }
4262
4263  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4264
4265  // Normalize the node to match x86 shuffle ops if needed
4266  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4267    return CommuteVectorShuffle(SVOp, DAG);
4268
4269  // Check for legal shuffle and return?
4270  SmallVector<int, 16> PermMask;
4271  SVOp->getMask(PermMask);
4272  if (isShuffleMaskLegal(PermMask, VT))
4273    return Op;
4274
4275  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4276  if (VT == MVT::v8i16) {
4277    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4278    if (NewOp.getNode())
4279      return NewOp;
4280  }
4281
4282  if (VT == MVT::v16i8) {
4283    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4284    if (NewOp.getNode())
4285      return NewOp;
4286  }
4287
4288  // Handle all 4 wide cases with a number of shuffles except for MMX.
4289  if (NumElems == 4 && !isMMX)
4290    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4291
4292  return SDValue();
4293}
4294
4295SDValue
4296X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4297                                                SelectionDAG &DAG) {
4298  EVT VT = Op.getValueType();
4299  DebugLoc dl = Op.getDebugLoc();
4300  if (VT.getSizeInBits() == 8) {
4301    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4302                                    Op.getOperand(0), Op.getOperand(1));
4303    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4304                                    DAG.getValueType(VT));
4305    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4306  } else if (VT.getSizeInBits() == 16) {
4307    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4308    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4309    if (Idx == 0)
4310      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4311                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4312                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4313                                                 MVT::v4i32,
4314                                                 Op.getOperand(0)),
4315                                     Op.getOperand(1)));
4316    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4317                                    Op.getOperand(0), Op.getOperand(1));
4318    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4319                                    DAG.getValueType(VT));
4320    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4321  } else if (VT == MVT::f32) {
4322    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4323    // the result back to FR32 register. It's only worth matching if the
4324    // result has a single use which is a store or a bitcast to i32.  And in
4325    // the case of a store, it's not worth it if the index is a constant 0,
4326    // because a MOVSSmr can be used instead, which is smaller and faster.
4327    if (!Op.hasOneUse())
4328      return SDValue();
4329    SDNode *User = *Op.getNode()->use_begin();
4330    if ((User->getOpcode() != ISD::STORE ||
4331         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4332          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4333        (User->getOpcode() != ISD::BIT_CONVERT ||
4334         User->getValueType(0) != MVT::i32))
4335      return SDValue();
4336    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4337                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4338                                              Op.getOperand(0)),
4339                                              Op.getOperand(1));
4340    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4341  } else if (VT == MVT::i32) {
4342    // ExtractPS works with constant index.
4343    if (isa<ConstantSDNode>(Op.getOperand(1)))
4344      return Op;
4345  }
4346  return SDValue();
4347}
4348
4349
4350SDValue
4351X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4352  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4353    return SDValue();
4354
4355  if (Subtarget->hasSSE41()) {
4356    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4357    if (Res.getNode())
4358      return Res;
4359  }
4360
4361  EVT VT = Op.getValueType();
4362  DebugLoc dl = Op.getDebugLoc();
4363  // TODO: handle v16i8.
4364  if (VT.getSizeInBits() == 16) {
4365    SDValue Vec = Op.getOperand(0);
4366    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4367    if (Idx == 0)
4368      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4369                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4370                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4371                                                 MVT::v4i32, Vec),
4372                                     Op.getOperand(1)));
4373    // Transform it so it match pextrw which produces a 32-bit result.
4374    EVT EltVT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy+1);
4375    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
4376                                    Op.getOperand(0), Op.getOperand(1));
4377    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
4378                                    DAG.getValueType(VT));
4379    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4380  } else if (VT.getSizeInBits() == 32) {
4381    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4382    if (Idx == 0)
4383      return Op;
4384
4385    // SHUFPS the element to the lowest double word, then movss.
4386    int Mask[4] = { Idx, -1, -1, -1 };
4387    EVT VVT = Op.getOperand(0).getValueType();
4388    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4389                                       DAG.getUNDEF(VVT), Mask);
4390    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4391                       DAG.getIntPtrConstant(0));
4392  } else if (VT.getSizeInBits() == 64) {
4393    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4394    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4395    //        to match extract_elt for f64.
4396    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4397    if (Idx == 0)
4398      return Op;
4399
4400    // UNPCKHPD the element to the lowest double word, then movsd.
4401    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4402    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4403    int Mask[2] = { 1, -1 };
4404    EVT VVT = Op.getOperand(0).getValueType();
4405    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4406                                       DAG.getUNDEF(VVT), Mask);
4407    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4408                       DAG.getIntPtrConstant(0));
4409  }
4410
4411  return SDValue();
4412}
4413
4414SDValue
4415X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4416  EVT VT = Op.getValueType();
4417  EVT EltVT = VT.getVectorElementType();
4418  DebugLoc dl = Op.getDebugLoc();
4419
4420  SDValue N0 = Op.getOperand(0);
4421  SDValue N1 = Op.getOperand(1);
4422  SDValue N2 = Op.getOperand(2);
4423
4424  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
4425      isa<ConstantSDNode>(N2)) {
4426    unsigned Opc = (EltVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4427                                                : X86ISD::PINSRW;
4428    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4429    // argument.
4430    if (N1.getValueType() != MVT::i32)
4431      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4432    if (N2.getValueType() != MVT::i32)
4433      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4434    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4435  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4436    // Bits [7:6] of the constant are the source select.  This will always be
4437    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4438    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4439    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4440    // Bits [5:4] of the constant are the destination select.  This is the
4441    //  value of the incoming immediate.
4442    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4443    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4444    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4445    // Create this as a scalar to vector..
4446    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4447    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4448  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4449    // PINSR* works with constant index.
4450    return Op;
4451  }
4452  return SDValue();
4453}
4454
4455SDValue
4456X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4457  EVT VT = Op.getValueType();
4458  EVT EltVT = VT.getVectorElementType();
4459
4460  if (Subtarget->hasSSE41())
4461    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4462
4463  if (EltVT == MVT::i8)
4464    return SDValue();
4465
4466  DebugLoc dl = Op.getDebugLoc();
4467  SDValue N0 = Op.getOperand(0);
4468  SDValue N1 = Op.getOperand(1);
4469  SDValue N2 = Op.getOperand(2);
4470
4471  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4472    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4473    // as its second argument.
4474    if (N1.getValueType() != MVT::i32)
4475      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4476    if (N2.getValueType() != MVT::i32)
4477      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4478    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4479  }
4480  return SDValue();
4481}
4482
4483SDValue
4484X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4485  DebugLoc dl = Op.getDebugLoc();
4486  if (Op.getValueType() == MVT::v2f32)
4487    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4488                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4489                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4490                                               Op.getOperand(0))));
4491
4492  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
4493    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
4494
4495  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4496  EVT VT = MVT::v2i32;
4497  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4498  default: break;
4499  case MVT::v16i8:
4500  case MVT::v8i16:
4501    VT = MVT::v4i32;
4502    break;
4503  }
4504  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4505                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4506}
4507
4508// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4509// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4510// one of the above mentioned nodes. It has to be wrapped because otherwise
4511// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4512// be used to form addressing mode. These wrapped nodes will be selected
4513// into MOV32ri.
4514SDValue
4515X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4516  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4517
4518  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4519  // global base reg.
4520  unsigned char OpFlag = 0;
4521  unsigned WrapperKind = X86ISD::Wrapper;
4522  CodeModel::Model M = getTargetMachine().getCodeModel();
4523
4524  if (Subtarget->isPICStyleRIPRel() &&
4525      (M == CodeModel::Small || M == CodeModel::Kernel))
4526    WrapperKind = X86ISD::WrapperRIP;
4527  else if (Subtarget->isPICStyleGOT())
4528    OpFlag = X86II::MO_GOTOFF;
4529  else if (Subtarget->isPICStyleStubPIC())
4530    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4531
4532  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4533                                             CP->getAlignment(),
4534                                             CP->getOffset(), OpFlag);
4535  DebugLoc DL = CP->getDebugLoc();
4536  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4537  // With PIC, the address is actually $g + Offset.
4538  if (OpFlag) {
4539    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4540                         DAG.getNode(X86ISD::GlobalBaseReg,
4541                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4542                         Result);
4543  }
4544
4545  return Result;
4546}
4547
4548SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4549  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4550
4551  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4552  // global base reg.
4553  unsigned char OpFlag = 0;
4554  unsigned WrapperKind = X86ISD::Wrapper;
4555  CodeModel::Model M = getTargetMachine().getCodeModel();
4556
4557  if (Subtarget->isPICStyleRIPRel() &&
4558      (M == CodeModel::Small || M == CodeModel::Kernel))
4559    WrapperKind = X86ISD::WrapperRIP;
4560  else if (Subtarget->isPICStyleGOT())
4561    OpFlag = X86II::MO_GOTOFF;
4562  else if (Subtarget->isPICStyleStubPIC())
4563    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4564
4565  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
4566                                          OpFlag);
4567  DebugLoc DL = JT->getDebugLoc();
4568  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4569
4570  // With PIC, the address is actually $g + Offset.
4571  if (OpFlag) {
4572    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4573                         DAG.getNode(X86ISD::GlobalBaseReg,
4574                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4575                         Result);
4576  }
4577
4578  return Result;
4579}
4580
4581SDValue
4582X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4583  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4584
4585  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4586  // global base reg.
4587  unsigned char OpFlag = 0;
4588  unsigned WrapperKind = X86ISD::Wrapper;
4589  CodeModel::Model M = getTargetMachine().getCodeModel();
4590
4591  if (Subtarget->isPICStyleRIPRel() &&
4592      (M == CodeModel::Small || M == CodeModel::Kernel))
4593    WrapperKind = X86ISD::WrapperRIP;
4594  else if (Subtarget->isPICStyleGOT())
4595    OpFlag = X86II::MO_GOTOFF;
4596  else if (Subtarget->isPICStyleStubPIC())
4597    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4598
4599  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
4600
4601  DebugLoc DL = Op.getDebugLoc();
4602  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4603
4604
4605  // With PIC, the address is actually $g + Offset.
4606  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4607      !Subtarget->is64Bit()) {
4608    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4609                         DAG.getNode(X86ISD::GlobalBaseReg,
4610                                     DebugLoc::getUnknownLoc(),
4611                                     getPointerTy()),
4612                         Result);
4613  }
4614
4615  return Result;
4616}
4617
4618SDValue
4619X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
4620                                      int64_t Offset,
4621                                      SelectionDAG &DAG) const {
4622  // Create the TargetGlobalAddress node, folding in the constant
4623  // offset if it is legal.
4624  unsigned char OpFlags =
4625    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
4626  CodeModel::Model M = getTargetMachine().getCodeModel();
4627  SDValue Result;
4628  if (OpFlags == X86II::MO_NO_FLAG &&
4629      X86::isOffsetSuitableForCodeModel(Offset, M)) {
4630    // A direct static reference to a global.
4631    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4632    Offset = 0;
4633  } else {
4634    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
4635  }
4636
4637  if (Subtarget->isPICStyleRIPRel() &&
4638      (M == CodeModel::Small || M == CodeModel::Kernel))
4639    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
4640  else
4641    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4642
4643  // With PIC, the address is actually $g + Offset.
4644  if (isGlobalRelativeToPICBase(OpFlags)) {
4645    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4646                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
4647                         Result);
4648  }
4649
4650  // For globals that require a load from a stub to get the address, emit the
4651  // load.
4652  if (isGlobalStubReference(OpFlags))
4653    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
4654                         PseudoSourceValue::getGOT(), 0);
4655
4656  // If there was a non-zero offset that we didn't fold, create an explicit
4657  // addition for it.
4658  if (Offset != 0)
4659    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
4660                         DAG.getConstant(Offset, getPointerTy()));
4661
4662  return Result;
4663}
4664
4665SDValue
4666X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4667  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4668  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4669  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
4670}
4671
4672static SDValue
4673GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
4674           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
4675           unsigned char OperandFlags) {
4676  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4677  DebugLoc dl = GA->getDebugLoc();
4678  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4679                                           GA->getValueType(0),
4680                                           GA->getOffset(),
4681                                           OperandFlags);
4682  if (InFlag) {
4683    SDValue Ops[] = { Chain,  TGA, *InFlag };
4684    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
4685  } else {
4686    SDValue Ops[]  = { Chain, TGA };
4687    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
4688  }
4689  SDValue Flag = Chain.getValue(1);
4690  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
4691}
4692
4693// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4694static SDValue
4695LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4696                                const EVT PtrVT) {
4697  SDValue InFlag;
4698  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
4699  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
4700                                     DAG.getNode(X86ISD::GlobalBaseReg,
4701                                                 DebugLoc::getUnknownLoc(),
4702                                                 PtrVT), InFlag);
4703  InFlag = Chain.getValue(1);
4704
4705  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
4706}
4707
4708// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4709static SDValue
4710LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4711                                const EVT PtrVT) {
4712  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
4713                    X86::RAX, X86II::MO_TLSGD);
4714}
4715
4716// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4717// "local exec" model.
4718static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4719                                   const EVT PtrVT, TLSModel::Model model,
4720                                   bool is64Bit) {
4721  DebugLoc dl = GA->getDebugLoc();
4722  // Get the Thread Pointer
4723  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
4724                             DebugLoc::getUnknownLoc(), PtrVT,
4725                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
4726                                             MVT::i32));
4727
4728  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
4729                                      NULL, 0);
4730
4731  unsigned char OperandFlags = 0;
4732  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
4733  // initialexec.
4734  unsigned WrapperKind = X86ISD::Wrapper;
4735  if (model == TLSModel::LocalExec) {
4736    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
4737  } else if (is64Bit) {
4738    assert(model == TLSModel::InitialExec);
4739    OperandFlags = X86II::MO_GOTTPOFF;
4740    WrapperKind = X86ISD::WrapperRIP;
4741  } else {
4742    assert(model == TLSModel::InitialExec);
4743    OperandFlags = X86II::MO_INDNTPOFF;
4744  }
4745
4746  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4747  // exec)
4748  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4749                                           GA->getOffset(), OperandFlags);
4750  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
4751
4752  if (model == TLSModel::InitialExec)
4753    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
4754                         PseudoSourceValue::getGOT(), 0);
4755
4756  // The address of the thread local variable is the add of the thread
4757  // pointer with the offset of the variable.
4758  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
4759}
4760
4761SDValue
4762X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4763  // TODO: implement the "local dynamic" model
4764  // TODO: implement the "initial exec"model for pic executables
4765  assert(Subtarget->isTargetELF() &&
4766         "TLS not implemented for non-ELF targets");
4767  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4768  const GlobalValue *GV = GA->getGlobal();
4769
4770  // If GV is an alias then use the aliasee for determining
4771  // thread-localness.
4772  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
4773    GV = GA->resolveAliasedGlobal(false);
4774
4775  TLSModel::Model model = getTLSModel(GV,
4776                                      getTargetMachine().getRelocationModel());
4777
4778  switch (model) {
4779  case TLSModel::GeneralDynamic:
4780  case TLSModel::LocalDynamic: // not implemented
4781    if (Subtarget->is64Bit())
4782      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4783    return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4784
4785  case TLSModel::InitialExec:
4786  case TLSModel::LocalExec:
4787    return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
4788                               Subtarget->is64Bit());
4789  }
4790
4791  llvm_unreachable("Unreachable");
4792  return SDValue();
4793}
4794
4795
4796/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4797/// take a 2 x i32 value to shift plus a shift amount.
4798SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4799  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4800  EVT VT = Op.getValueType();
4801  unsigned VTBits = VT.getSizeInBits();
4802  DebugLoc dl = Op.getDebugLoc();
4803  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4804  SDValue ShOpLo = Op.getOperand(0);
4805  SDValue ShOpHi = Op.getOperand(1);
4806  SDValue ShAmt  = Op.getOperand(2);
4807  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
4808                                     DAG.getConstant(VTBits - 1, MVT::i8))
4809                       : DAG.getConstant(0, VT);
4810
4811  SDValue Tmp2, Tmp3;
4812  if (Op.getOpcode() == ISD::SHL_PARTS) {
4813    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
4814    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4815  } else {
4816    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
4817    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
4818  }
4819
4820  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
4821                                DAG.getConstant(VTBits, MVT::i8));
4822  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
4823                             AndNode, DAG.getConstant(0, MVT::i8));
4824
4825  SDValue Hi, Lo;
4826  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4827  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4828  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4829
4830  if (Op.getOpcode() == ISD::SHL_PARTS) {
4831    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4832    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4833  } else {
4834    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4835    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4836  }
4837
4838  SDValue Ops[2] = { Lo, Hi };
4839  return DAG.getMergeValues(Ops, 2, dl);
4840}
4841
4842SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4843  EVT SrcVT = Op.getOperand(0).getValueType();
4844
4845  if (SrcVT.isVector()) {
4846    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
4847      return Op;
4848    }
4849    return SDValue();
4850  }
4851
4852  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4853         "Unknown SINT_TO_FP to lower!");
4854
4855  // These are really Legal; return the operand so the caller accepts it as
4856  // Legal.
4857  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4858    return Op;
4859  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
4860      Subtarget->is64Bit()) {
4861    return Op;
4862  }
4863
4864  DebugLoc dl = Op.getDebugLoc();
4865  unsigned Size = SrcVT.getSizeInBits()/8;
4866  MachineFunction &MF = DAG.getMachineFunction();
4867  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4868  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4869  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4870                               StackSlot,
4871                               PseudoSourceValue::getFixedStack(SSFI), 0);
4872  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
4873}
4874
4875SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
4876                                     SDValue StackSlot,
4877                                     SelectionDAG &DAG) {
4878  // Build the FILD
4879  DebugLoc dl = Op.getDebugLoc();
4880  SDVTList Tys;
4881  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4882  if (useSSE)
4883    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4884  else
4885    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4886  SmallVector<SDValue, 8> Ops;
4887  Ops.push_back(Chain);
4888  Ops.push_back(StackSlot);
4889  Ops.push_back(DAG.getValueType(SrcVT));
4890  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
4891                                 Tys, &Ops[0], Ops.size());
4892
4893  if (useSSE) {
4894    Chain = Result.getValue(1);
4895    SDValue InFlag = Result.getValue(2);
4896
4897    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4898    // shouldn't be necessary except that RFP cannot be live across
4899    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4900    MachineFunction &MF = DAG.getMachineFunction();
4901    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4902    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4903    Tys = DAG.getVTList(MVT::Other);
4904    SmallVector<SDValue, 8> Ops;
4905    Ops.push_back(Chain);
4906    Ops.push_back(Result);
4907    Ops.push_back(StackSlot);
4908    Ops.push_back(DAG.getValueType(Op.getValueType()));
4909    Ops.push_back(InFlag);
4910    Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
4911    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
4912                         PseudoSourceValue::getFixedStack(SSFI), 0);
4913  }
4914
4915  return Result;
4916}
4917
4918// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4919SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
4920  // This algorithm is not obvious. Here it is in C code, more or less:
4921  /*
4922    double uint64_to_double( uint32_t hi, uint32_t lo ) {
4923      static const __m128i exp = { 0x4330000045300000ULL, 0 };
4924      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4925
4926      // Copy ints to xmm registers.
4927      __m128i xh = _mm_cvtsi32_si128( hi );
4928      __m128i xl = _mm_cvtsi32_si128( lo );
4929
4930      // Combine into low half of a single xmm register.
4931      __m128i x = _mm_unpacklo_epi32( xh, xl );
4932      __m128d d;
4933      double sd;
4934
4935      // Merge in appropriate exponents to give the integer bits the right
4936      // magnitude.
4937      x = _mm_unpacklo_epi32( x, exp );
4938
4939      // Subtract away the biases to deal with the IEEE-754 double precision
4940      // implicit 1.
4941      d = _mm_sub_pd( (__m128d) x, bias );
4942
4943      // All conversions up to here are exact. The correctly rounded result is
4944      // calculated using the current rounding mode using the following
4945      // horizontal add.
4946      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4947      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
4948                                // store doesn't really need to be here (except
4949                                // maybe to zero the other double)
4950      return sd;
4951    }
4952  */
4953
4954  DebugLoc dl = Op.getDebugLoc();
4955  LLVMContext *Context = DAG.getContext();
4956
4957  // Build some magic constants.
4958  std::vector<Constant*> CV0;
4959  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
4960  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
4961  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
4962  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
4963  Constant *C0 = ConstantVector::get(CV0);
4964  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
4965
4966  std::vector<Constant*> CV1;
4967  CV1.push_back(
4968    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
4969  CV1.push_back(
4970    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
4971  Constant *C1 = ConstantVector::get(CV1);
4972  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
4973
4974  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4975                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4976                                        Op.getOperand(0),
4977                                        DAG.getIntPtrConstant(1)));
4978  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4979                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4980                                        Op.getOperand(0),
4981                                        DAG.getIntPtrConstant(0)));
4982  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
4983  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
4984                              PseudoSourceValue::getConstantPool(), 0,
4985                              false, 16);
4986  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
4987  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
4988  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
4989                              PseudoSourceValue::getConstantPool(), 0,
4990                              false, 16);
4991  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
4992
4993  // Add the halves; easiest way is to swap them into another reg first.
4994  int ShufMask[2] = { 1, -1 };
4995  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
4996                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
4997  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
4998  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
4999                     DAG.getIntPtrConstant(0));
5000}
5001
5002// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5003SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
5004  DebugLoc dl = Op.getDebugLoc();
5005  // FP constant to bias correct the final result.
5006  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5007                                   MVT::f64);
5008
5009  // Load the 32-bit value into an XMM register.
5010  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5011                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5012                                         Op.getOperand(0),
5013                                         DAG.getIntPtrConstant(0)));
5014
5015  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5016                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5017                     DAG.getIntPtrConstant(0));
5018
5019  // Or the load with the bias.
5020  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5021                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5022                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5023                                                   MVT::v2f64, Load)),
5024                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5025                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5026                                                   MVT::v2f64, Bias)));
5027  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5028                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5029                   DAG.getIntPtrConstant(0));
5030
5031  // Subtract the bias.
5032  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5033
5034  // Handle final rounding.
5035  EVT DestVT = Op.getValueType();
5036
5037  if (DestVT.bitsLT(MVT::f64)) {
5038    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5039                       DAG.getIntPtrConstant(0));
5040  } else if (DestVT.bitsGT(MVT::f64)) {
5041    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5042  }
5043
5044  // Handle final rounding.
5045  return Sub;
5046}
5047
5048SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5049  SDValue N0 = Op.getOperand(0);
5050  DebugLoc dl = Op.getDebugLoc();
5051
5052  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5053  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5054  // the optimization here.
5055  if (DAG.SignBitIsZero(N0))
5056    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5057
5058  EVT SrcVT = N0.getValueType();
5059  if (SrcVT == MVT::i64) {
5060    // We only handle SSE2 f64 target here; caller can expand the rest.
5061    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5062      return SDValue();
5063
5064    return LowerUINT_TO_FP_i64(Op, DAG);
5065  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5066    return LowerUINT_TO_FP_i32(Op, DAG);
5067  }
5068
5069  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5070
5071  // Make a 64-bit buffer, and use it to build an FILD.
5072  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5073  SDValue WordOff = DAG.getConstant(4, getPointerTy());
5074  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5075                                   getPointerTy(), StackSlot, WordOff);
5076  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5077                                StackSlot, NULL, 0);
5078  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5079                                OffsetSlot, NULL, 0);
5080  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5081}
5082
5083std::pair<SDValue,SDValue> X86TargetLowering::
5084FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5085  DebugLoc dl = Op.getDebugLoc();
5086
5087  EVT DstTy = Op.getValueType();
5088
5089  if (!IsSigned) {
5090    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5091    DstTy = MVT::i64;
5092  }
5093
5094  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5095         DstTy.getSimpleVT() >= MVT::i16 &&
5096         "Unknown FP_TO_SINT to lower!");
5097
5098  // These are really Legal.
5099  if (DstTy == MVT::i32 &&
5100      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5101    return std::make_pair(SDValue(), SDValue());
5102  if (Subtarget->is64Bit() &&
5103      DstTy == MVT::i64 &&
5104      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5105    return std::make_pair(SDValue(), SDValue());
5106
5107  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5108  // stack slot.
5109  MachineFunction &MF = DAG.getMachineFunction();
5110  unsigned MemSize = DstTy.getSizeInBits()/8;
5111  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5112  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5113
5114  unsigned Opc;
5115  switch (DstTy.getSimpleVT().SimpleTy) {
5116  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5117  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5118  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5119  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5120  }
5121
5122  SDValue Chain = DAG.getEntryNode();
5123  SDValue Value = Op.getOperand(0);
5124  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5125    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5126    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5127                         PseudoSourceValue::getFixedStack(SSFI), 0);
5128    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5129    SDValue Ops[] = {
5130      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5131    };
5132    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5133    Chain = Value.getValue(1);
5134    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5135    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5136  }
5137
5138  // Build the FP_TO_INT*_IN_MEM
5139  SDValue Ops[] = { Chain, Value, StackSlot };
5140  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5141
5142  return std::make_pair(FIST, StackSlot);
5143}
5144
5145SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5146  if (Op.getValueType().isVector()) {
5147    if (Op.getValueType() == MVT::v2i32 &&
5148        Op.getOperand(0).getValueType() == MVT::v2f64) {
5149      return Op;
5150    }
5151    return SDValue();
5152  }
5153
5154  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5155  SDValue FIST = Vals.first, StackSlot = Vals.second;
5156  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5157  if (FIST.getNode() == 0) return Op;
5158
5159  // Load the result.
5160  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5161                     FIST, StackSlot, NULL, 0);
5162}
5163
5164SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5165  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5166  SDValue FIST = Vals.first, StackSlot = Vals.second;
5167  assert(FIST.getNode() && "Unexpected failure");
5168
5169  // Load the result.
5170  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5171                     FIST, StackSlot, NULL, 0);
5172}
5173
5174SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5175  LLVMContext *Context = DAG.getContext();
5176  DebugLoc dl = Op.getDebugLoc();
5177  EVT VT = Op.getValueType();
5178  EVT EltVT = VT;
5179  if (VT.isVector())
5180    EltVT = VT.getVectorElementType();
5181  std::vector<Constant*> CV;
5182  if (EltVT == MVT::f64) {
5183    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5184    CV.push_back(C);
5185    CV.push_back(C);
5186  } else {
5187    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5188    CV.push_back(C);
5189    CV.push_back(C);
5190    CV.push_back(C);
5191    CV.push_back(C);
5192  }
5193  Constant *C = ConstantVector::get(CV);
5194  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5195  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5196                               PseudoSourceValue::getConstantPool(), 0,
5197                               false, 16);
5198  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5199}
5200
5201SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5202  LLVMContext *Context = DAG.getContext();
5203  DebugLoc dl = Op.getDebugLoc();
5204  EVT VT = Op.getValueType();
5205  EVT EltVT = VT;
5206  if (VT.isVector())
5207    EltVT = VT.getVectorElementType();
5208  std::vector<Constant*> CV;
5209  if (EltVT == MVT::f64) {
5210    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5211    CV.push_back(C);
5212    CV.push_back(C);
5213  } else {
5214    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5215    CV.push_back(C);
5216    CV.push_back(C);
5217    CV.push_back(C);
5218    CV.push_back(C);
5219  }
5220  Constant *C = ConstantVector::get(CV);
5221  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5222  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5223                               PseudoSourceValue::getConstantPool(), 0,
5224                               false, 16);
5225  if (VT.isVector()) {
5226    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5227                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5228                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5229                                Op.getOperand(0)),
5230                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5231  } else {
5232    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5233  }
5234}
5235
5236SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5237  LLVMContext *Context = DAG.getContext();
5238  SDValue Op0 = Op.getOperand(0);
5239  SDValue Op1 = Op.getOperand(1);
5240  DebugLoc dl = Op.getDebugLoc();
5241  EVT VT = Op.getValueType();
5242  EVT SrcVT = Op1.getValueType();
5243
5244  // If second operand is smaller, extend it first.
5245  if (SrcVT.bitsLT(VT)) {
5246    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5247    SrcVT = VT;
5248  }
5249  // And if it is bigger, shrink it first.
5250  if (SrcVT.bitsGT(VT)) {
5251    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5252    SrcVT = VT;
5253  }
5254
5255  // At this point the operands and the result should have the same
5256  // type, and that won't be f80 since that is not custom lowered.
5257
5258  // First get the sign bit of second operand.
5259  std::vector<Constant*> CV;
5260  if (SrcVT == MVT::f64) {
5261    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5262    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5263  } else {
5264    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5265    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5266    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5267    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5268  }
5269  Constant *C = ConstantVector::get(CV);
5270  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5271  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5272                                PseudoSourceValue::getConstantPool(), 0,
5273                                false, 16);
5274  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5275
5276  // Shift sign bit right or left if the two operands have different types.
5277  if (SrcVT.bitsGT(VT)) {
5278    // Op0 is MVT::f32, Op1 is MVT::f64.
5279    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5280    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5281                          DAG.getConstant(32, MVT::i32));
5282    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5283    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5284                          DAG.getIntPtrConstant(0));
5285  }
5286
5287  // Clear first operand sign bit.
5288  CV.clear();
5289  if (VT == MVT::f64) {
5290    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5291    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5292  } else {
5293    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5294    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5295    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5296    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5297  }
5298  C = ConstantVector::get(CV);
5299  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5300  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5301                                PseudoSourceValue::getConstantPool(), 0,
5302                                false, 16);
5303  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5304
5305  // Or the value with the sign bit.
5306  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5307}
5308
5309/// Emit nodes that will be selected as "test Op0,Op0", or something
5310/// equivalent.
5311SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5312                                    SelectionDAG &DAG) {
5313  DebugLoc dl = Op.getDebugLoc();
5314
5315  // CF and OF aren't always set the way we want. Determine which
5316  // of these we need.
5317  bool NeedCF = false;
5318  bool NeedOF = false;
5319  switch (X86CC) {
5320  case X86::COND_A: case X86::COND_AE:
5321  case X86::COND_B: case X86::COND_BE:
5322    NeedCF = true;
5323    break;
5324  case X86::COND_G: case X86::COND_GE:
5325  case X86::COND_L: case X86::COND_LE:
5326  case X86::COND_O: case X86::COND_NO:
5327    NeedOF = true;
5328    break;
5329  default: break;
5330  }
5331
5332  // See if we can use the EFLAGS value from the operand instead of
5333  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5334  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5335  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5336    unsigned Opcode = 0;
5337    unsigned NumOperands = 0;
5338    switch (Op.getNode()->getOpcode()) {
5339    case ISD::ADD:
5340      // Due to an isel shortcoming, be conservative if this add is likely to
5341      // be selected as part of a load-modify-store instruction. When the root
5342      // node in a match is a store, isel doesn't know how to remap non-chain
5343      // non-flag uses of other nodes in the match, such as the ADD in this
5344      // case. This leads to the ADD being left around and reselected, with
5345      // the result being two adds in the output.
5346      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5347           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5348        if (UI->getOpcode() == ISD::STORE)
5349          goto default_case;
5350      if (ConstantSDNode *C =
5351            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5352        // An add of one will be selected as an INC.
5353        if (C->getAPIntValue() == 1) {
5354          Opcode = X86ISD::INC;
5355          NumOperands = 1;
5356          break;
5357        }
5358        // An add of negative one (subtract of one) will be selected as a DEC.
5359        if (C->getAPIntValue().isAllOnesValue()) {
5360          Opcode = X86ISD::DEC;
5361          NumOperands = 1;
5362          break;
5363        }
5364      }
5365      // Otherwise use a regular EFLAGS-setting add.
5366      Opcode = X86ISD::ADD;
5367      NumOperands = 2;
5368      break;
5369    case ISD::AND: {
5370      // If the primary and result isn't used, don't bother using X86ISD::AND,
5371      // because a TEST instruction will be better.
5372      bool NonFlagUse = false;
5373      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5374           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5375        if (UI->getOpcode() != ISD::BRCOND &&
5376            UI->getOpcode() != ISD::SELECT &&
5377            UI->getOpcode() != ISD::SETCC) {
5378          NonFlagUse = true;
5379          break;
5380        }
5381      if (!NonFlagUse)
5382        break;
5383    }
5384    // FALL THROUGH
5385    case ISD::SUB:
5386    case ISD::OR:
5387    case ISD::XOR:
5388      // Due to the ISEL shortcoming noted above, be conservative if this op is
5389      // likely to be selected as part of a load-modify-store instruction.
5390      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5391           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5392        if (UI->getOpcode() == ISD::STORE)
5393          goto default_case;
5394      // Otherwise use a regular EFLAGS-setting instruction.
5395      switch (Op.getNode()->getOpcode()) {
5396      case ISD::SUB: Opcode = X86ISD::SUB; break;
5397      case ISD::OR:  Opcode = X86ISD::OR;  break;
5398      case ISD::XOR: Opcode = X86ISD::XOR; break;
5399      case ISD::AND: Opcode = X86ISD::AND; break;
5400      default: llvm_unreachable("unexpected operator!");
5401      }
5402      NumOperands = 2;
5403      break;
5404    case X86ISD::ADD:
5405    case X86ISD::SUB:
5406    case X86ISD::INC:
5407    case X86ISD::DEC:
5408    case X86ISD::OR:
5409    case X86ISD::XOR:
5410    case X86ISD::AND:
5411      return SDValue(Op.getNode(), 1);
5412    default:
5413    default_case:
5414      break;
5415    }
5416    if (Opcode != 0) {
5417      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5418      SmallVector<SDValue, 4> Ops;
5419      for (unsigned i = 0; i != NumOperands; ++i)
5420        Ops.push_back(Op.getOperand(i));
5421      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5422      DAG.ReplaceAllUsesWith(Op, New);
5423      return SDValue(New.getNode(), 1);
5424    }
5425  }
5426
5427  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5428  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5429                     DAG.getConstant(0, Op.getValueType()));
5430}
5431
5432/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5433/// equivalent.
5434SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5435                                   SelectionDAG &DAG) {
5436  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5437    if (C->getAPIntValue() == 0)
5438      return EmitTest(Op0, X86CC, DAG);
5439
5440  DebugLoc dl = Op0.getDebugLoc();
5441  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5442}
5443
5444SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5445  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5446  SDValue Op0 = Op.getOperand(0);
5447  SDValue Op1 = Op.getOperand(1);
5448  DebugLoc dl = Op.getDebugLoc();
5449  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5450
5451  // Lower (X & (1 << N)) == 0 to BT(X, N).
5452  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5453  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5454  if (Op0.getOpcode() == ISD::AND &&
5455      Op0.hasOneUse() &&
5456      Op1.getOpcode() == ISD::Constant &&
5457      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5458      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5459    SDValue LHS, RHS;
5460    if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5461      if (ConstantSDNode *Op010C =
5462            dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5463        if (Op010C->getZExtValue() == 1) {
5464          LHS = Op0.getOperand(0);
5465          RHS = Op0.getOperand(1).getOperand(1);
5466        }
5467    } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5468      if (ConstantSDNode *Op000C =
5469            dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5470        if (Op000C->getZExtValue() == 1) {
5471          LHS = Op0.getOperand(1);
5472          RHS = Op0.getOperand(0).getOperand(1);
5473        }
5474    } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5475      ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5476      SDValue AndLHS = Op0.getOperand(0);
5477      if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5478        LHS = AndLHS.getOperand(0);
5479        RHS = AndLHS.getOperand(1);
5480      }
5481    }
5482
5483    if (LHS.getNode()) {
5484      // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5485      // instruction.  Since the shift amount is in-range-or-undefined, we know
5486      // that doing a bittest on the i16 value is ok.  We extend to i32 because
5487      // the encoding for the i16 version is larger than the i32 version.
5488      if (LHS.getValueType() == MVT::i8)
5489        LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5490
5491      // If the operand types disagree, extend the shift amount to match.  Since
5492      // BT ignores high bits (like shifts) we can use anyextend.
5493      if (LHS.getValueType() != RHS.getValueType())
5494        RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5495
5496      SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5497      unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5498      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5499                         DAG.getConstant(Cond, MVT::i8), BT);
5500    }
5501  }
5502
5503  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5504  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5505
5506  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5507  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5508                     DAG.getConstant(X86CC, MVT::i8), Cond);
5509}
5510
5511SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5512  SDValue Cond;
5513  SDValue Op0 = Op.getOperand(0);
5514  SDValue Op1 = Op.getOperand(1);
5515  SDValue CC = Op.getOperand(2);
5516  EVT VT = Op.getValueType();
5517  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5518  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5519  DebugLoc dl = Op.getDebugLoc();
5520
5521  if (isFP) {
5522    unsigned SSECC = 8;
5523    EVT VT0 = Op0.getValueType();
5524    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5525    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5526    bool Swap = false;
5527
5528    switch (SetCCOpcode) {
5529    default: break;
5530    case ISD::SETOEQ:
5531    case ISD::SETEQ:  SSECC = 0; break;
5532    case ISD::SETOGT:
5533    case ISD::SETGT: Swap = true; // Fallthrough
5534    case ISD::SETLT:
5535    case ISD::SETOLT: SSECC = 1; break;
5536    case ISD::SETOGE:
5537    case ISD::SETGE: Swap = true; // Fallthrough
5538    case ISD::SETLE:
5539    case ISD::SETOLE: SSECC = 2; break;
5540    case ISD::SETUO:  SSECC = 3; break;
5541    case ISD::SETUNE:
5542    case ISD::SETNE:  SSECC = 4; break;
5543    case ISD::SETULE: Swap = true;
5544    case ISD::SETUGE: SSECC = 5; break;
5545    case ISD::SETULT: Swap = true;
5546    case ISD::SETUGT: SSECC = 6; break;
5547    case ISD::SETO:   SSECC = 7; break;
5548    }
5549    if (Swap)
5550      std::swap(Op0, Op1);
5551
5552    // In the two special cases we can't handle, emit two comparisons.
5553    if (SSECC == 8) {
5554      if (SetCCOpcode == ISD::SETUEQ) {
5555        SDValue UNORD, EQ;
5556        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5557        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5558        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
5559      }
5560      else if (SetCCOpcode == ISD::SETONE) {
5561        SDValue ORD, NEQ;
5562        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5563        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5564        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
5565      }
5566      llvm_unreachable("Illegal FP comparison");
5567    }
5568    // Handle all other FP comparisons here.
5569    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5570  }
5571
5572  // We are handling one of the integer comparisons here.  Since SSE only has
5573  // GT and EQ comparisons for integer, swapping operands and multiple
5574  // operations may be required for some comparisons.
5575  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5576  bool Swap = false, Invert = false, FlipSigns = false;
5577
5578  switch (VT.getSimpleVT().SimpleTy) {
5579  default: break;
5580  case MVT::v8i8:
5581  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5582  case MVT::v4i16:
5583  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5584  case MVT::v2i32:
5585  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5586  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5587  }
5588
5589  switch (SetCCOpcode) {
5590  default: break;
5591  case ISD::SETNE:  Invert = true;
5592  case ISD::SETEQ:  Opc = EQOpc; break;
5593  case ISD::SETLT:  Swap = true;
5594  case ISD::SETGT:  Opc = GTOpc; break;
5595  case ISD::SETGE:  Swap = true;
5596  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5597  case ISD::SETULT: Swap = true;
5598  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5599  case ISD::SETUGE: Swap = true;
5600  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5601  }
5602  if (Swap)
5603    std::swap(Op0, Op1);
5604
5605  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5606  // bits of the inputs before performing those operations.
5607  if (FlipSigns) {
5608    EVT EltVT = VT.getVectorElementType();
5609    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
5610                                      EltVT);
5611    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5612    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
5613                                    SignBits.size());
5614    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
5615    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
5616  }
5617
5618  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
5619
5620  // If the logical-not of the result is required, perform that now.
5621  if (Invert)
5622    Result = DAG.getNOT(dl, Result, VT);
5623
5624  return Result;
5625}
5626
5627// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5628static bool isX86LogicalCmp(SDValue Op) {
5629  unsigned Opc = Op.getNode()->getOpcode();
5630  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
5631    return true;
5632  if (Op.getResNo() == 1 &&
5633      (Opc == X86ISD::ADD ||
5634       Opc == X86ISD::SUB ||
5635       Opc == X86ISD::SMUL ||
5636       Opc == X86ISD::UMUL ||
5637       Opc == X86ISD::INC ||
5638       Opc == X86ISD::DEC ||
5639       Opc == X86ISD::OR ||
5640       Opc == X86ISD::XOR ||
5641       Opc == X86ISD::AND))
5642    return true;
5643
5644  return false;
5645}
5646
5647SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5648  bool addTest = true;
5649  SDValue Cond  = Op.getOperand(0);
5650  DebugLoc dl = Op.getDebugLoc();
5651  SDValue CC;
5652
5653  if (Cond.getOpcode() == ISD::SETCC)
5654    Cond = LowerSETCC(Cond, DAG);
5655
5656  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5657  // setting operand in place of the X86ISD::SETCC.
5658  if (Cond.getOpcode() == X86ISD::SETCC) {
5659    CC = Cond.getOperand(0);
5660
5661    SDValue Cmp = Cond.getOperand(1);
5662    unsigned Opc = Cmp.getOpcode();
5663    EVT VT = Op.getValueType();
5664
5665    bool IllegalFPCMov = false;
5666    if (VT.isFloatingPoint() && !VT.isVector() &&
5667        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5668      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5669
5670    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
5671        Opc == X86ISD::BT) { // FIXME
5672      Cond = Cmp;
5673      addTest = false;
5674    }
5675  }
5676
5677  if (addTest) {
5678    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5679    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5680  }
5681
5682  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
5683  SmallVector<SDValue, 4> Ops;
5684  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5685  // condition is true.
5686  Ops.push_back(Op.getOperand(2));
5687  Ops.push_back(Op.getOperand(1));
5688  Ops.push_back(CC);
5689  Ops.push_back(Cond);
5690  return DAG.getNode(X86ISD::CMOV, dl, VTs, &Ops[0], Ops.size());
5691}
5692
5693// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5694// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5695// from the AND / OR.
5696static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5697  Opc = Op.getOpcode();
5698  if (Opc != ISD::OR && Opc != ISD::AND)
5699    return false;
5700  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5701          Op.getOperand(0).hasOneUse() &&
5702          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5703          Op.getOperand(1).hasOneUse());
5704}
5705
5706// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5707// 1 and that the SETCC node has a single use.
5708static bool isXor1OfSetCC(SDValue Op) {
5709  if (Op.getOpcode() != ISD::XOR)
5710    return false;
5711  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5712  if (N1C && N1C->getAPIntValue() == 1) {
5713    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5714      Op.getOperand(0).hasOneUse();
5715  }
5716  return false;
5717}
5718
5719SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5720  bool addTest = true;
5721  SDValue Chain = Op.getOperand(0);
5722  SDValue Cond  = Op.getOperand(1);
5723  SDValue Dest  = Op.getOperand(2);
5724  DebugLoc dl = Op.getDebugLoc();
5725  SDValue CC;
5726
5727  if (Cond.getOpcode() == ISD::SETCC)
5728    Cond = LowerSETCC(Cond, DAG);
5729#if 0
5730  // FIXME: LowerXALUO doesn't handle these!!
5731  else if (Cond.getOpcode() == X86ISD::ADD  ||
5732           Cond.getOpcode() == X86ISD::SUB  ||
5733           Cond.getOpcode() == X86ISD::SMUL ||
5734           Cond.getOpcode() == X86ISD::UMUL)
5735    Cond = LowerXALUO(Cond, DAG);
5736#endif
5737
5738  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5739  // setting operand in place of the X86ISD::SETCC.
5740  if (Cond.getOpcode() == X86ISD::SETCC) {
5741    CC = Cond.getOperand(0);
5742
5743    SDValue Cmp = Cond.getOperand(1);
5744    unsigned Opc = Cmp.getOpcode();
5745    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5746    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
5747      Cond = Cmp;
5748      addTest = false;
5749    } else {
5750      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5751      default: break;
5752      case X86::COND_O:
5753      case X86::COND_B:
5754        // These can only come from an arithmetic instruction with overflow,
5755        // e.g. SADDO, UADDO.
5756        Cond = Cond.getNode()->getOperand(1);
5757        addTest = false;
5758        break;
5759      }
5760    }
5761  } else {
5762    unsigned CondOpc;
5763    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5764      SDValue Cmp = Cond.getOperand(0).getOperand(1);
5765      if (CondOpc == ISD::OR) {
5766        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5767        // two branches instead of an explicit OR instruction with a
5768        // separate test.
5769        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5770            isX86LogicalCmp(Cmp)) {
5771          CC = Cond.getOperand(0).getOperand(0);
5772          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5773                              Chain, Dest, CC, Cmp);
5774          CC = Cond.getOperand(1).getOperand(0);
5775          Cond = Cmp;
5776          addTest = false;
5777        }
5778      } else { // ISD::AND
5779        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5780        // two branches instead of an explicit AND instruction with a
5781        // separate test. However, we only do this if this block doesn't
5782        // have a fall-through edge, because this requires an explicit
5783        // jmp when the condition is false.
5784        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5785            isX86LogicalCmp(Cmp) &&
5786            Op.getNode()->hasOneUse()) {
5787          X86::CondCode CCode =
5788            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5789          CCode = X86::GetOppositeBranchCondition(CCode);
5790          CC = DAG.getConstant(CCode, MVT::i8);
5791          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5792          // Look for an unconditional branch following this conditional branch.
5793          // We need this because we need to reverse the successors in order
5794          // to implement FCMP_OEQ.
5795          if (User.getOpcode() == ISD::BR) {
5796            SDValue FalseBB = User.getOperand(1);
5797            SDValue NewBR =
5798              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5799            assert(NewBR == User);
5800            Dest = FalseBB;
5801
5802            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5803                                Chain, Dest, CC, Cmp);
5804            X86::CondCode CCode =
5805              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5806            CCode = X86::GetOppositeBranchCondition(CCode);
5807            CC = DAG.getConstant(CCode, MVT::i8);
5808            Cond = Cmp;
5809            addTest = false;
5810          }
5811        }
5812      }
5813    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
5814      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5815      // It should be transformed during dag combiner except when the condition
5816      // is set by a arithmetics with overflow node.
5817      X86::CondCode CCode =
5818        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5819      CCode = X86::GetOppositeBranchCondition(CCode);
5820      CC = DAG.getConstant(CCode, MVT::i8);
5821      Cond = Cond.getOperand(0).getOperand(1);
5822      addTest = false;
5823    }
5824  }
5825
5826  if (addTest) {
5827    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5828    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5829  }
5830  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5831                     Chain, Dest, CC, Cond);
5832}
5833
5834
5835// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5836// Calls to _alloca is needed to probe the stack when allocating more than 4k
5837// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5838// that the guard pages used by the OS virtual memory manager are allocated in
5839// correct sequence.
5840SDValue
5841X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5842                                           SelectionDAG &DAG) {
5843  assert(Subtarget->isTargetCygMing() &&
5844         "This should be used only on Cygwin/Mingw targets");
5845  DebugLoc dl = Op.getDebugLoc();
5846
5847  // Get the inputs.
5848  SDValue Chain = Op.getOperand(0);
5849  SDValue Size  = Op.getOperand(1);
5850  // FIXME: Ensure alignment here
5851
5852  SDValue Flag;
5853
5854  EVT IntPtr = getPointerTy();
5855  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5856
5857  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5858
5859  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
5860  Flag = Chain.getValue(1);
5861
5862  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5863  SDValue Ops[] = { Chain,
5864                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5865                      DAG.getRegister(X86::EAX, IntPtr),
5866                      DAG.getRegister(X86StackPtr, SPTy),
5867                      Flag };
5868  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
5869  Flag = Chain.getValue(1);
5870
5871  Chain = DAG.getCALLSEQ_END(Chain,
5872                             DAG.getIntPtrConstant(0, true),
5873                             DAG.getIntPtrConstant(0, true),
5874                             Flag);
5875
5876  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
5877
5878  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5879  return DAG.getMergeValues(Ops1, 2, dl);
5880}
5881
5882SDValue
5883X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
5884                                           SDValue Chain,
5885                                           SDValue Dst, SDValue Src,
5886                                           SDValue Size, unsigned Align,
5887                                           const Value *DstSV,
5888                                           uint64_t DstSVOff) {
5889  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5890
5891  // If not DWORD aligned or size is more than the threshold, call the library.
5892  // The libc version is likely to be faster for these cases. It can use the
5893  // address value and run time information about the CPU.
5894  if ((Align & 3) != 0 ||
5895      !ConstantSize ||
5896      ConstantSize->getZExtValue() >
5897        getSubtarget()->getMaxInlineSizeThreshold()) {
5898    SDValue InFlag(0, 0);
5899
5900    // Check to see if there is a specialized entry-point for memory zeroing.
5901    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5902
5903    if (const char *bzeroEntry =  V &&
5904        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5905      EVT IntPtr = getPointerTy();
5906      const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
5907      TargetLowering::ArgListTy Args;
5908      TargetLowering::ArgListEntry Entry;
5909      Entry.Node = Dst;
5910      Entry.Ty = IntPtrTy;
5911      Args.push_back(Entry);
5912      Entry.Node = Size;
5913      Args.push_back(Entry);
5914      std::pair<SDValue,SDValue> CallResult =
5915        LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
5916                    false, false, false, false,
5917                    0, CallingConv::C, false, /*isReturnValueUsed=*/false,
5918                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
5919      return CallResult.second;
5920    }
5921
5922    // Otherwise have the target-independent code call memset.
5923    return SDValue();
5924  }
5925
5926  uint64_t SizeVal = ConstantSize->getZExtValue();
5927  SDValue InFlag(0, 0);
5928  EVT AVT;
5929  SDValue Count;
5930  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5931  unsigned BytesLeft = 0;
5932  bool TwoRepStos = false;
5933  if (ValC) {
5934    unsigned ValReg;
5935    uint64_t Val = ValC->getZExtValue() & 255;
5936
5937    // If the value is a constant, then we can potentially use larger sets.
5938    switch (Align & 3) {
5939    case 2:   // WORD aligned
5940      AVT = MVT::i16;
5941      ValReg = X86::AX;
5942      Val = (Val << 8) | Val;
5943      break;
5944    case 0:  // DWORD aligned
5945      AVT = MVT::i32;
5946      ValReg = X86::EAX;
5947      Val = (Val << 8)  | Val;
5948      Val = (Val << 16) | Val;
5949      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
5950        AVT = MVT::i64;
5951        ValReg = X86::RAX;
5952        Val = (Val << 32) | Val;
5953      }
5954      break;
5955    default:  // Byte aligned
5956      AVT = MVT::i8;
5957      ValReg = X86::AL;
5958      Count = DAG.getIntPtrConstant(SizeVal);
5959      break;
5960    }
5961
5962    if (AVT.bitsGT(MVT::i8)) {
5963      unsigned UBytes = AVT.getSizeInBits() / 8;
5964      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5965      BytesLeft = SizeVal % UBytes;
5966    }
5967
5968    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
5969                              InFlag);
5970    InFlag = Chain.getValue(1);
5971  } else {
5972    AVT = MVT::i8;
5973    Count  = DAG.getIntPtrConstant(SizeVal);
5974    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
5975    InFlag = Chain.getValue(1);
5976  }
5977
5978  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5979                                                              X86::ECX,
5980                            Count, InFlag);
5981  InFlag = Chain.getValue(1);
5982  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5983                                                              X86::EDI,
5984                            Dst, InFlag);
5985  InFlag = Chain.getValue(1);
5986
5987  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5988  SmallVector<SDValue, 8> Ops;
5989  Ops.push_back(Chain);
5990  Ops.push_back(DAG.getValueType(AVT));
5991  Ops.push_back(InFlag);
5992  Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5993
5994  if (TwoRepStos) {
5995    InFlag = Chain.getValue(1);
5996    Count  = Size;
5997    EVT CVT = Count.getValueType();
5998    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
5999                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
6000    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
6001                                                             X86::ECX,
6002                              Left, InFlag);
6003    InFlag = Chain.getValue(1);
6004    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6005    Ops.clear();
6006    Ops.push_back(Chain);
6007    Ops.push_back(DAG.getValueType(MVT::i8));
6008    Ops.push_back(InFlag);
6009    Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
6010  } else if (BytesLeft) {
6011    // Handle the last 1 - 7 bytes.
6012    unsigned Offset = SizeVal - BytesLeft;
6013    EVT AddrVT = Dst.getValueType();
6014    EVT SizeVT = Size.getValueType();
6015
6016    Chain = DAG.getMemset(Chain, dl,
6017                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
6018                                      DAG.getConstant(Offset, AddrVT)),
6019                          Src,
6020                          DAG.getConstant(BytesLeft, SizeVT),
6021                          Align, DstSV, DstSVOff + Offset);
6022  }
6023
6024  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
6025  return Chain;
6026}
6027
6028SDValue
6029X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
6030                                      SDValue Chain, SDValue Dst, SDValue Src,
6031                                      SDValue Size, unsigned Align,
6032                                      bool AlwaysInline,
6033                                      const Value *DstSV, uint64_t DstSVOff,
6034                                      const Value *SrcSV, uint64_t SrcSVOff) {
6035  // This requires the copy size to be a constant, preferrably
6036  // within a subtarget-specific limit.
6037  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6038  if (!ConstantSize)
6039    return SDValue();
6040  uint64_t SizeVal = ConstantSize->getZExtValue();
6041  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6042    return SDValue();
6043
6044  /// If not DWORD aligned, call the library.
6045  if ((Align & 3) != 0)
6046    return SDValue();
6047
6048  // DWORD aligned
6049  EVT AVT = MVT::i32;
6050  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
6051    AVT = MVT::i64;
6052
6053  unsigned UBytes = AVT.getSizeInBits() / 8;
6054  unsigned CountVal = SizeVal / UBytes;
6055  SDValue Count = DAG.getIntPtrConstant(CountVal);
6056  unsigned BytesLeft = SizeVal % UBytes;
6057
6058  SDValue InFlag(0, 0);
6059  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6060                                                              X86::ECX,
6061                            Count, InFlag);
6062  InFlag = Chain.getValue(1);
6063  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6064                                                             X86::EDI,
6065                            Dst, InFlag);
6066  InFlag = Chain.getValue(1);
6067  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6068                                                              X86::ESI,
6069                            Src, InFlag);
6070  InFlag = Chain.getValue(1);
6071
6072  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6073  SmallVector<SDValue, 8> Ops;
6074  Ops.push_back(Chain);
6075  Ops.push_back(DAG.getValueType(AVT));
6076  Ops.push_back(InFlag);
6077  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size());
6078
6079  SmallVector<SDValue, 4> Results;
6080  Results.push_back(RepMovs);
6081  if (BytesLeft) {
6082    // Handle the last 1 - 7 bytes.
6083    unsigned Offset = SizeVal - BytesLeft;
6084    EVT DstVT = Dst.getValueType();
6085    EVT SrcVT = Src.getValueType();
6086    EVT SizeVT = Size.getValueType();
6087    Results.push_back(DAG.getMemcpy(Chain, dl,
6088                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6089                                                DAG.getConstant(Offset, DstVT)),
6090                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6091                                                DAG.getConstant(Offset, SrcVT)),
6092                                    DAG.getConstant(BytesLeft, SizeVT),
6093                                    Align, AlwaysInline,
6094                                    DstSV, DstSVOff + Offset,
6095                                    SrcSV, SrcSVOff + Offset));
6096  }
6097
6098  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6099                     &Results[0], Results.size());
6100}
6101
6102SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6103  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6104  DebugLoc dl = Op.getDebugLoc();
6105
6106  if (!Subtarget->is64Bit()) {
6107    // vastart just stores the address of the VarArgsFrameIndex slot into the
6108    // memory location argument.
6109    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6110    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
6111  }
6112
6113  // __va_list_tag:
6114  //   gp_offset         (0 - 6 * 8)
6115  //   fp_offset         (48 - 48 + 8 * 16)
6116  //   overflow_arg_area (point to parameters coming in memory).
6117  //   reg_save_area
6118  SmallVector<SDValue, 8> MemOps;
6119  SDValue FIN = Op.getOperand(1);
6120  // Store gp_offset
6121  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6122                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
6123                                 FIN, SV, 0);
6124  MemOps.push_back(Store);
6125
6126  // Store fp_offset
6127  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6128                    FIN, DAG.getIntPtrConstant(4));
6129  Store = DAG.getStore(Op.getOperand(0), dl,
6130                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6131                       FIN, SV, 0);
6132  MemOps.push_back(Store);
6133
6134  // Store ptr to overflow_arg_area
6135  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6136                    FIN, DAG.getIntPtrConstant(4));
6137  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6138  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
6139  MemOps.push_back(Store);
6140
6141  // Store ptr to reg_save_area.
6142  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6143                    FIN, DAG.getIntPtrConstant(8));
6144  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6145  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
6146  MemOps.push_back(Store);
6147  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6148                     &MemOps[0], MemOps.size());
6149}
6150
6151SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6152  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6153  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6154  SDValue Chain = Op.getOperand(0);
6155  SDValue SrcPtr = Op.getOperand(1);
6156  SDValue SrcSV = Op.getOperand(2);
6157
6158  llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6159  return SDValue();
6160}
6161
6162SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6163  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6164  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6165  SDValue Chain = Op.getOperand(0);
6166  SDValue DstPtr = Op.getOperand(1);
6167  SDValue SrcPtr = Op.getOperand(2);
6168  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6169  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6170  DebugLoc dl = Op.getDebugLoc();
6171
6172  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6173                       DAG.getIntPtrConstant(24), 8, false,
6174                       DstSV, 0, SrcSV, 0);
6175}
6176
6177SDValue
6178X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6179  DebugLoc dl = Op.getDebugLoc();
6180  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6181  switch (IntNo) {
6182  default: return SDValue();    // Don't custom lower most intrinsics.
6183  // Comparison intrinsics.
6184  case Intrinsic::x86_sse_comieq_ss:
6185  case Intrinsic::x86_sse_comilt_ss:
6186  case Intrinsic::x86_sse_comile_ss:
6187  case Intrinsic::x86_sse_comigt_ss:
6188  case Intrinsic::x86_sse_comige_ss:
6189  case Intrinsic::x86_sse_comineq_ss:
6190  case Intrinsic::x86_sse_ucomieq_ss:
6191  case Intrinsic::x86_sse_ucomilt_ss:
6192  case Intrinsic::x86_sse_ucomile_ss:
6193  case Intrinsic::x86_sse_ucomigt_ss:
6194  case Intrinsic::x86_sse_ucomige_ss:
6195  case Intrinsic::x86_sse_ucomineq_ss:
6196  case Intrinsic::x86_sse2_comieq_sd:
6197  case Intrinsic::x86_sse2_comilt_sd:
6198  case Intrinsic::x86_sse2_comile_sd:
6199  case Intrinsic::x86_sse2_comigt_sd:
6200  case Intrinsic::x86_sse2_comige_sd:
6201  case Intrinsic::x86_sse2_comineq_sd:
6202  case Intrinsic::x86_sse2_ucomieq_sd:
6203  case Intrinsic::x86_sse2_ucomilt_sd:
6204  case Intrinsic::x86_sse2_ucomile_sd:
6205  case Intrinsic::x86_sse2_ucomigt_sd:
6206  case Intrinsic::x86_sse2_ucomige_sd:
6207  case Intrinsic::x86_sse2_ucomineq_sd: {
6208    unsigned Opc = 0;
6209    ISD::CondCode CC = ISD::SETCC_INVALID;
6210    switch (IntNo) {
6211    default: break;
6212    case Intrinsic::x86_sse_comieq_ss:
6213    case Intrinsic::x86_sse2_comieq_sd:
6214      Opc = X86ISD::COMI;
6215      CC = ISD::SETEQ;
6216      break;
6217    case Intrinsic::x86_sse_comilt_ss:
6218    case Intrinsic::x86_sse2_comilt_sd:
6219      Opc = X86ISD::COMI;
6220      CC = ISD::SETLT;
6221      break;
6222    case Intrinsic::x86_sse_comile_ss:
6223    case Intrinsic::x86_sse2_comile_sd:
6224      Opc = X86ISD::COMI;
6225      CC = ISD::SETLE;
6226      break;
6227    case Intrinsic::x86_sse_comigt_ss:
6228    case Intrinsic::x86_sse2_comigt_sd:
6229      Opc = X86ISD::COMI;
6230      CC = ISD::SETGT;
6231      break;
6232    case Intrinsic::x86_sse_comige_ss:
6233    case Intrinsic::x86_sse2_comige_sd:
6234      Opc = X86ISD::COMI;
6235      CC = ISD::SETGE;
6236      break;
6237    case Intrinsic::x86_sse_comineq_ss:
6238    case Intrinsic::x86_sse2_comineq_sd:
6239      Opc = X86ISD::COMI;
6240      CC = ISD::SETNE;
6241      break;
6242    case Intrinsic::x86_sse_ucomieq_ss:
6243    case Intrinsic::x86_sse2_ucomieq_sd:
6244      Opc = X86ISD::UCOMI;
6245      CC = ISD::SETEQ;
6246      break;
6247    case Intrinsic::x86_sse_ucomilt_ss:
6248    case Intrinsic::x86_sse2_ucomilt_sd:
6249      Opc = X86ISD::UCOMI;
6250      CC = ISD::SETLT;
6251      break;
6252    case Intrinsic::x86_sse_ucomile_ss:
6253    case Intrinsic::x86_sse2_ucomile_sd:
6254      Opc = X86ISD::UCOMI;
6255      CC = ISD::SETLE;
6256      break;
6257    case Intrinsic::x86_sse_ucomigt_ss:
6258    case Intrinsic::x86_sse2_ucomigt_sd:
6259      Opc = X86ISD::UCOMI;
6260      CC = ISD::SETGT;
6261      break;
6262    case Intrinsic::x86_sse_ucomige_ss:
6263    case Intrinsic::x86_sse2_ucomige_sd:
6264      Opc = X86ISD::UCOMI;
6265      CC = ISD::SETGE;
6266      break;
6267    case Intrinsic::x86_sse_ucomineq_ss:
6268    case Intrinsic::x86_sse2_ucomineq_sd:
6269      Opc = X86ISD::UCOMI;
6270      CC = ISD::SETNE;
6271      break;
6272    }
6273
6274    SDValue LHS = Op.getOperand(1);
6275    SDValue RHS = Op.getOperand(2);
6276    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6277    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6278    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6279                                DAG.getConstant(X86CC, MVT::i8), Cond);
6280    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6281  }
6282  // ptest intrinsics. The intrinsic these come from are designed to return
6283  // an integer value, not just an instruction so lower it to the ptest
6284  // pattern and a setcc for the result.
6285  case Intrinsic::x86_sse41_ptestz:
6286  case Intrinsic::x86_sse41_ptestc:
6287  case Intrinsic::x86_sse41_ptestnzc:{
6288    unsigned X86CC = 0;
6289    switch (IntNo) {
6290    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6291    case Intrinsic::x86_sse41_ptestz:
6292      // ZF = 1
6293      X86CC = X86::COND_E;
6294      break;
6295    case Intrinsic::x86_sse41_ptestc:
6296      // CF = 1
6297      X86CC = X86::COND_B;
6298      break;
6299    case Intrinsic::x86_sse41_ptestnzc:
6300      // ZF and CF = 0
6301      X86CC = X86::COND_A;
6302      break;
6303    }
6304
6305    SDValue LHS = Op.getOperand(1);
6306    SDValue RHS = Op.getOperand(2);
6307    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6308    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6309    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6310    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6311  }
6312
6313  // Fix vector shift instructions where the last operand is a non-immediate
6314  // i32 value.
6315  case Intrinsic::x86_sse2_pslli_w:
6316  case Intrinsic::x86_sse2_pslli_d:
6317  case Intrinsic::x86_sse2_pslli_q:
6318  case Intrinsic::x86_sse2_psrli_w:
6319  case Intrinsic::x86_sse2_psrli_d:
6320  case Intrinsic::x86_sse2_psrli_q:
6321  case Intrinsic::x86_sse2_psrai_w:
6322  case Intrinsic::x86_sse2_psrai_d:
6323  case Intrinsic::x86_mmx_pslli_w:
6324  case Intrinsic::x86_mmx_pslli_d:
6325  case Intrinsic::x86_mmx_pslli_q:
6326  case Intrinsic::x86_mmx_psrli_w:
6327  case Intrinsic::x86_mmx_psrli_d:
6328  case Intrinsic::x86_mmx_psrli_q:
6329  case Intrinsic::x86_mmx_psrai_w:
6330  case Intrinsic::x86_mmx_psrai_d: {
6331    SDValue ShAmt = Op.getOperand(2);
6332    if (isa<ConstantSDNode>(ShAmt))
6333      return SDValue();
6334
6335    unsigned NewIntNo = 0;
6336    EVT ShAmtVT = MVT::v4i32;
6337    switch (IntNo) {
6338    case Intrinsic::x86_sse2_pslli_w:
6339      NewIntNo = Intrinsic::x86_sse2_psll_w;
6340      break;
6341    case Intrinsic::x86_sse2_pslli_d:
6342      NewIntNo = Intrinsic::x86_sse2_psll_d;
6343      break;
6344    case Intrinsic::x86_sse2_pslli_q:
6345      NewIntNo = Intrinsic::x86_sse2_psll_q;
6346      break;
6347    case Intrinsic::x86_sse2_psrli_w:
6348      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6349      break;
6350    case Intrinsic::x86_sse2_psrli_d:
6351      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6352      break;
6353    case Intrinsic::x86_sse2_psrli_q:
6354      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6355      break;
6356    case Intrinsic::x86_sse2_psrai_w:
6357      NewIntNo = Intrinsic::x86_sse2_psra_w;
6358      break;
6359    case Intrinsic::x86_sse2_psrai_d:
6360      NewIntNo = Intrinsic::x86_sse2_psra_d;
6361      break;
6362    default: {
6363      ShAmtVT = MVT::v2i32;
6364      switch (IntNo) {
6365      case Intrinsic::x86_mmx_pslli_w:
6366        NewIntNo = Intrinsic::x86_mmx_psll_w;
6367        break;
6368      case Intrinsic::x86_mmx_pslli_d:
6369        NewIntNo = Intrinsic::x86_mmx_psll_d;
6370        break;
6371      case Intrinsic::x86_mmx_pslli_q:
6372        NewIntNo = Intrinsic::x86_mmx_psll_q;
6373        break;
6374      case Intrinsic::x86_mmx_psrli_w:
6375        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6376        break;
6377      case Intrinsic::x86_mmx_psrli_d:
6378        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6379        break;
6380      case Intrinsic::x86_mmx_psrli_q:
6381        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6382        break;
6383      case Intrinsic::x86_mmx_psrai_w:
6384        NewIntNo = Intrinsic::x86_mmx_psra_w;
6385        break;
6386      case Intrinsic::x86_mmx_psrai_d:
6387        NewIntNo = Intrinsic::x86_mmx_psra_d;
6388        break;
6389      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6390      }
6391      break;
6392    }
6393    }
6394
6395    // The vector shift intrinsics with scalars uses 32b shift amounts but
6396    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
6397    // to be zero.
6398    SDValue ShOps[4];
6399    ShOps[0] = ShAmt;
6400    ShOps[1] = DAG.getConstant(0, MVT::i32);
6401    if (ShAmtVT == MVT::v4i32) {
6402      ShOps[2] = DAG.getUNDEF(MVT::i32);
6403      ShOps[3] = DAG.getUNDEF(MVT::i32);
6404      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
6405    } else {
6406      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
6407    }
6408
6409    EVT VT = Op.getValueType();
6410    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
6411    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6412                       DAG.getConstant(NewIntNo, MVT::i32),
6413                       Op.getOperand(1), ShAmt);
6414  }
6415  }
6416}
6417
6418SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6419  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6420  DebugLoc dl = Op.getDebugLoc();
6421
6422  if (Depth > 0) {
6423    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6424    SDValue Offset =
6425      DAG.getConstant(TD->getPointerSize(),
6426                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6427    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6428                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6429                                   FrameAddr, Offset),
6430                       NULL, 0);
6431  }
6432
6433  // Just load the return address.
6434  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6435  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6436                     RetAddrFI, NULL, 0);
6437}
6438
6439SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6440  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6441  MFI->setFrameAddressIsTaken(true);
6442  EVT VT = Op.getValueType();
6443  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
6444  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6445  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6446  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6447  while (Depth--)
6448    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
6449  return FrameAddr;
6450}
6451
6452SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6453                                                     SelectionDAG &DAG) {
6454  return DAG.getIntPtrConstant(2*TD->getPointerSize());
6455}
6456
6457SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6458{
6459  MachineFunction &MF = DAG.getMachineFunction();
6460  SDValue Chain     = Op.getOperand(0);
6461  SDValue Offset    = Op.getOperand(1);
6462  SDValue Handler   = Op.getOperand(2);
6463  DebugLoc dl       = Op.getDebugLoc();
6464
6465  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6466                                  getPointerTy());
6467  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6468
6469  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6470                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6471  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6472  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
6473  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
6474  MF.getRegInfo().addLiveOut(StoreAddrReg);
6475
6476  return DAG.getNode(X86ISD::EH_RETURN, dl,
6477                     MVT::Other,
6478                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6479}
6480
6481SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6482                                             SelectionDAG &DAG) {
6483  SDValue Root = Op.getOperand(0);
6484  SDValue Trmp = Op.getOperand(1); // trampoline
6485  SDValue FPtr = Op.getOperand(2); // nested function
6486  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6487  DebugLoc dl  = Op.getDebugLoc();
6488
6489  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6490
6491  const X86InstrInfo *TII =
6492    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6493
6494  if (Subtarget->is64Bit()) {
6495    SDValue OutChains[6];
6496
6497    // Large code-model.
6498
6499    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
6500    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6501
6502    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6503    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6504
6505    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6506
6507    // Load the pointer to the nested function into R11.
6508    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6509    SDValue Addr = Trmp;
6510    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6511                                Addr, TrmpAddr, 0);
6512
6513    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6514                       DAG.getConstant(2, MVT::i64));
6515    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
6516
6517    // Load the 'nest' parameter value into R10.
6518    // R10 is specified in X86CallingConv.td
6519    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6520    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6521                       DAG.getConstant(10, MVT::i64));
6522    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6523                                Addr, TrmpAddr, 10);
6524
6525    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6526                       DAG.getConstant(12, MVT::i64));
6527    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
6528
6529    // Jump to the nested function.
6530    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6531    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6532                       DAG.getConstant(20, MVT::i64));
6533    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6534                                Addr, TrmpAddr, 20);
6535
6536    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6537    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6538                       DAG.getConstant(22, MVT::i64));
6539    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
6540                                TrmpAddr, 22);
6541
6542    SDValue Ops[] =
6543      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
6544    return DAG.getMergeValues(Ops, 2, dl);
6545  } else {
6546    const Function *Func =
6547      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6548    CallingConv::ID CC = Func->getCallingConv();
6549    unsigned NestReg;
6550
6551    switch (CC) {
6552    default:
6553      llvm_unreachable("Unsupported calling convention");
6554    case CallingConv::C:
6555    case CallingConv::X86_StdCall: {
6556      // Pass 'nest' parameter in ECX.
6557      // Must be kept in sync with X86CallingConv.td
6558      NestReg = X86::ECX;
6559
6560      // Check that ECX wasn't needed by an 'inreg' parameter.
6561      const FunctionType *FTy = Func->getFunctionType();
6562      const AttrListPtr &Attrs = Func->getAttributes();
6563
6564      if (!Attrs.isEmpty() && !Func->isVarArg()) {
6565        unsigned InRegCount = 0;
6566        unsigned Idx = 1;
6567
6568        for (FunctionType::param_iterator I = FTy->param_begin(),
6569             E = FTy->param_end(); I != E; ++I, ++Idx)
6570          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6571            // FIXME: should only count parameters that are lowered to integers.
6572            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6573
6574        if (InRegCount > 2) {
6575          llvm_report_error("Nest register in use - reduce number of inreg parameters!");
6576        }
6577      }
6578      break;
6579    }
6580    case CallingConv::X86_FastCall:
6581    case CallingConv::Fast:
6582      // Pass 'nest' parameter in EAX.
6583      // Must be kept in sync with X86CallingConv.td
6584      NestReg = X86::EAX;
6585      break;
6586    }
6587
6588    SDValue OutChains[4];
6589    SDValue Addr, Disp;
6590
6591    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6592                       DAG.getConstant(10, MVT::i32));
6593    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
6594
6595    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6596    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6597    OutChains[0] = DAG.getStore(Root, dl,
6598                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6599                                Trmp, TrmpAddr, 0);
6600
6601    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6602                       DAG.getConstant(1, MVT::i32));
6603    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
6604
6605    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6606    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6607                       DAG.getConstant(5, MVT::i32));
6608    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
6609                                TrmpAddr, 5, false, 1);
6610
6611    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6612                       DAG.getConstant(6, MVT::i32));
6613    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
6614
6615    SDValue Ops[] =
6616      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
6617    return DAG.getMergeValues(Ops, 2, dl);
6618  }
6619}
6620
6621SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6622  /*
6623   The rounding mode is in bits 11:10 of FPSR, and has the following
6624   settings:
6625     00 Round to nearest
6626     01 Round to -inf
6627     10 Round to +inf
6628     11 Round to 0
6629
6630  FLT_ROUNDS, on the other hand, expects the following:
6631    -1 Undefined
6632     0 Round to 0
6633     1 Round to nearest
6634     2 Round to +inf
6635     3 Round to -inf
6636
6637  To perform the conversion, we do:
6638    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6639  */
6640
6641  MachineFunction &MF = DAG.getMachineFunction();
6642  const TargetMachine &TM = MF.getTarget();
6643  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6644  unsigned StackAlignment = TFI.getStackAlignment();
6645  EVT VT = Op.getValueType();
6646  DebugLoc dl = Op.getDebugLoc();
6647
6648  // Save FP Control Word to stack slot
6649  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6650  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6651
6652  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
6653                              DAG.getEntryNode(), StackSlot);
6654
6655  // Load FP Control Word from stack slot
6656  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
6657
6658  // Transform as necessary
6659  SDValue CWD1 =
6660    DAG.getNode(ISD::SRL, dl, MVT::i16,
6661                DAG.getNode(ISD::AND, dl, MVT::i16,
6662                            CWD, DAG.getConstant(0x800, MVT::i16)),
6663                DAG.getConstant(11, MVT::i8));
6664  SDValue CWD2 =
6665    DAG.getNode(ISD::SRL, dl, MVT::i16,
6666                DAG.getNode(ISD::AND, dl, MVT::i16,
6667                            CWD, DAG.getConstant(0x400, MVT::i16)),
6668                DAG.getConstant(9, MVT::i8));
6669
6670  SDValue RetVal =
6671    DAG.getNode(ISD::AND, dl, MVT::i16,
6672                DAG.getNode(ISD::ADD, dl, MVT::i16,
6673                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
6674                            DAG.getConstant(1, MVT::i16)),
6675                DAG.getConstant(3, MVT::i16));
6676
6677
6678  return DAG.getNode((VT.getSizeInBits() < 16 ?
6679                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6680}
6681
6682SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6683  EVT VT = Op.getValueType();
6684  EVT OpVT = VT;
6685  unsigned NumBits = VT.getSizeInBits();
6686  DebugLoc dl = Op.getDebugLoc();
6687
6688  Op = Op.getOperand(0);
6689  if (VT == MVT::i8) {
6690    // Zero extend to i32 since there is not an i8 bsr.
6691    OpVT = MVT::i32;
6692    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6693  }
6694
6695  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6696  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6697  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
6698
6699  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6700  SmallVector<SDValue, 4> Ops;
6701  Ops.push_back(Op);
6702  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6703  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6704  Ops.push_back(Op.getValue(1));
6705  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6706
6707  // Finally xor with NumBits-1.
6708  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6709
6710  if (VT == MVT::i8)
6711    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6712  return Op;
6713}
6714
6715SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6716  EVT VT = Op.getValueType();
6717  EVT OpVT = VT;
6718  unsigned NumBits = VT.getSizeInBits();
6719  DebugLoc dl = Op.getDebugLoc();
6720
6721  Op = Op.getOperand(0);
6722  if (VT == MVT::i8) {
6723    OpVT = MVT::i32;
6724    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6725  }
6726
6727  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6728  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6729  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
6730
6731  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6732  SmallVector<SDValue, 4> Ops;
6733  Ops.push_back(Op);
6734  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6735  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6736  Ops.push_back(Op.getValue(1));
6737  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6738
6739  if (VT == MVT::i8)
6740    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6741  return Op;
6742}
6743
6744SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6745  EVT VT = Op.getValueType();
6746  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6747  DebugLoc dl = Op.getDebugLoc();
6748
6749  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6750  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6751  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6752  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6753  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6754  //
6755  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6756  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6757  //  return AloBlo + AloBhi + AhiBlo;
6758
6759  SDValue A = Op.getOperand(0);
6760  SDValue B = Op.getOperand(1);
6761
6762  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6763                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6764                       A, DAG.getConstant(32, MVT::i32));
6765  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6766                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6767                       B, DAG.getConstant(32, MVT::i32));
6768  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6769                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6770                       A, B);
6771  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6772                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6773                       A, Bhi);
6774  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6775                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6776                       Ahi, B);
6777  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6778                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6779                       AloBhi, DAG.getConstant(32, MVT::i32));
6780  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6781                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6782                       AhiBlo, DAG.getConstant(32, MVT::i32));
6783  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
6784  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
6785  return Res;
6786}
6787
6788
6789SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6790  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6791  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6792  // looks for this combo and may remove the "setcc" instruction if the "setcc"
6793  // has only one use.
6794  SDNode *N = Op.getNode();
6795  SDValue LHS = N->getOperand(0);
6796  SDValue RHS = N->getOperand(1);
6797  unsigned BaseOp = 0;
6798  unsigned Cond = 0;
6799  DebugLoc dl = Op.getDebugLoc();
6800
6801  switch (Op.getOpcode()) {
6802  default: llvm_unreachable("Unknown ovf instruction!");
6803  case ISD::SADDO:
6804    // A subtract of one will be selected as a INC. Note that INC doesn't
6805    // set CF, so we can't do this for UADDO.
6806    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6807      if (C->getAPIntValue() == 1) {
6808        BaseOp = X86ISD::INC;
6809        Cond = X86::COND_O;
6810        break;
6811      }
6812    BaseOp = X86ISD::ADD;
6813    Cond = X86::COND_O;
6814    break;
6815  case ISD::UADDO:
6816    BaseOp = X86ISD::ADD;
6817    Cond = X86::COND_B;
6818    break;
6819  case ISD::SSUBO:
6820    // A subtract of one will be selected as a DEC. Note that DEC doesn't
6821    // set CF, so we can't do this for USUBO.
6822    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6823      if (C->getAPIntValue() == 1) {
6824        BaseOp = X86ISD::DEC;
6825        Cond = X86::COND_O;
6826        break;
6827      }
6828    BaseOp = X86ISD::SUB;
6829    Cond = X86::COND_O;
6830    break;
6831  case ISD::USUBO:
6832    BaseOp = X86ISD::SUB;
6833    Cond = X86::COND_B;
6834    break;
6835  case ISD::SMULO:
6836    BaseOp = X86ISD::SMUL;
6837    Cond = X86::COND_O;
6838    break;
6839  case ISD::UMULO:
6840    BaseOp = X86ISD::UMUL;
6841    Cond = X86::COND_B;
6842    break;
6843  }
6844
6845  // Also sets EFLAGS.
6846  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6847  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
6848
6849  SDValue SetCC =
6850    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
6851                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6852
6853  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6854  return Sum;
6855}
6856
6857SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6858  EVT T = Op.getValueType();
6859  DebugLoc dl = Op.getDebugLoc();
6860  unsigned Reg = 0;
6861  unsigned size = 0;
6862  switch(T.getSimpleVT().SimpleTy) {
6863  default:
6864    assert(false && "Invalid value type!");
6865  case MVT::i8:  Reg = X86::AL;  size = 1; break;
6866  case MVT::i16: Reg = X86::AX;  size = 2; break;
6867  case MVT::i32: Reg = X86::EAX; size = 4; break;
6868  case MVT::i64:
6869    assert(Subtarget->is64Bit() && "Node not type legal!");
6870    Reg = X86::RAX; size = 8;
6871    break;
6872  }
6873  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
6874                                    Op.getOperand(2), SDValue());
6875  SDValue Ops[] = { cpIn.getValue(0),
6876                    Op.getOperand(1),
6877                    Op.getOperand(3),
6878                    DAG.getTargetConstant(size, MVT::i8),
6879                    cpIn.getValue(1) };
6880  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6881  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
6882  SDValue cpOut =
6883    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
6884  return cpOut;
6885}
6886
6887SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
6888                                                 SelectionDAG &DAG) {
6889  assert(Subtarget->is64Bit() && "Result not type legalized?");
6890  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6891  SDValue TheChain = Op.getOperand(0);
6892  DebugLoc dl = Op.getDebugLoc();
6893  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6894  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
6895  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
6896                                   rax.getValue(2));
6897  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
6898                            DAG.getConstant(32, MVT::i8));
6899  SDValue Ops[] = {
6900    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
6901    rdx.getValue(1)
6902  };
6903  return DAG.getMergeValues(Ops, 2, dl);
6904}
6905
6906SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6907  SDNode *Node = Op.getNode();
6908  DebugLoc dl = Node->getDebugLoc();
6909  EVT T = Node->getValueType(0);
6910  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
6911                              DAG.getConstant(0, T), Node->getOperand(2));
6912  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
6913                       cast<AtomicSDNode>(Node)->getMemoryVT(),
6914                       Node->getOperand(0),
6915                       Node->getOperand(1), negOp,
6916                       cast<AtomicSDNode>(Node)->getSrcValue(),
6917                       cast<AtomicSDNode>(Node)->getAlignment());
6918}
6919
6920/// LowerOperation - Provide custom lowering hooks for some operations.
6921///
6922SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6923  switch (Op.getOpcode()) {
6924  default: llvm_unreachable("Should not custom lower this!");
6925  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
6926  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
6927  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
6928  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
6929  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6930  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
6931  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
6932  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
6933  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
6934  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
6935  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
6936  case ISD::SHL_PARTS:
6937  case ISD::SRA_PARTS:
6938  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
6939  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
6940  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
6941  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
6942  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
6943  case ISD::FABS:               return LowerFABS(Op, DAG);
6944  case ISD::FNEG:               return LowerFNEG(Op, DAG);
6945  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
6946  case ISD::SETCC:              return LowerSETCC(Op, DAG);
6947  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
6948  case ISD::SELECT:             return LowerSELECT(Op, DAG);
6949  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
6950  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
6951  case ISD::VASTART:            return LowerVASTART(Op, DAG);
6952  case ISD::VAARG:              return LowerVAARG(Op, DAG);
6953  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
6954  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6955  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
6956  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
6957  case ISD::FRAME_TO_ARGS_OFFSET:
6958                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6959  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6960  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
6961  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
6962  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
6963  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
6964  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
6965  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
6966  case ISD::SADDO:
6967  case ISD::UADDO:
6968  case ISD::SSUBO:
6969  case ISD::USUBO:
6970  case ISD::SMULO:
6971  case ISD::UMULO:              return LowerXALUO(Op, DAG);
6972  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
6973  }
6974}
6975
6976void X86TargetLowering::
6977ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
6978                        SelectionDAG &DAG, unsigned NewOp) {
6979  EVT T = Node->getValueType(0);
6980  DebugLoc dl = Node->getDebugLoc();
6981  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
6982
6983  SDValue Chain = Node->getOperand(0);
6984  SDValue In1 = Node->getOperand(1);
6985  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6986                             Node->getOperand(2), DAG.getIntPtrConstant(0));
6987  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6988                             Node->getOperand(2), DAG.getIntPtrConstant(1));
6989  SDValue Ops[] = { Chain, In1, In2L, In2H };
6990  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6991  SDValue Result =
6992    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
6993                            cast<MemSDNode>(Node)->getMemOperand());
6994  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
6995  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6996  Results.push_back(Result.getValue(2));
6997}
6998
6999/// ReplaceNodeResults - Replace a node with an illegal result type
7000/// with a new node built out of custom code.
7001void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7002                                           SmallVectorImpl<SDValue>&Results,
7003                                           SelectionDAG &DAG) {
7004  DebugLoc dl = N->getDebugLoc();
7005  switch (N->getOpcode()) {
7006  default:
7007    assert(false && "Do not know how to custom type legalize this operation!");
7008    return;
7009  case ISD::FP_TO_SINT: {
7010    std::pair<SDValue,SDValue> Vals =
7011        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7012    SDValue FIST = Vals.first, StackSlot = Vals.second;
7013    if (FIST.getNode() != 0) {
7014      EVT VT = N->getValueType(0);
7015      // Return a load from the stack slot.
7016      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
7017    }
7018    return;
7019  }
7020  case ISD::READCYCLECOUNTER: {
7021    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7022    SDValue TheChain = N->getOperand(0);
7023    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7024    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7025                                     rd.getValue(1));
7026    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7027                                     eax.getValue(2));
7028    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7029    SDValue Ops[] = { eax, edx };
7030    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7031    Results.push_back(edx.getValue(1));
7032    return;
7033  }
7034  case ISD::ATOMIC_CMP_SWAP: {
7035    EVT T = N->getValueType(0);
7036    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7037    SDValue cpInL, cpInH;
7038    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7039                        DAG.getConstant(0, MVT::i32));
7040    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7041                        DAG.getConstant(1, MVT::i32));
7042    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7043    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7044                             cpInL.getValue(1));
7045    SDValue swapInL, swapInH;
7046    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7047                          DAG.getConstant(0, MVT::i32));
7048    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7049                          DAG.getConstant(1, MVT::i32));
7050    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7051                               cpInH.getValue(1));
7052    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7053                               swapInL.getValue(1));
7054    SDValue Ops[] = { swapInH.getValue(0),
7055                      N->getOperand(1),
7056                      swapInH.getValue(1) };
7057    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7058    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7059    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7060                                        MVT::i32, Result.getValue(1));
7061    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7062                                        MVT::i32, cpOutL.getValue(2));
7063    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7064    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7065    Results.push_back(cpOutH.getValue(1));
7066    return;
7067  }
7068  case ISD::ATOMIC_LOAD_ADD:
7069    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7070    return;
7071  case ISD::ATOMIC_LOAD_AND:
7072    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7073    return;
7074  case ISD::ATOMIC_LOAD_NAND:
7075    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7076    return;
7077  case ISD::ATOMIC_LOAD_OR:
7078    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7079    return;
7080  case ISD::ATOMIC_LOAD_SUB:
7081    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7082    return;
7083  case ISD::ATOMIC_LOAD_XOR:
7084    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7085    return;
7086  case ISD::ATOMIC_SWAP:
7087    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7088    return;
7089  }
7090}
7091
7092const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7093  switch (Opcode) {
7094  default: return NULL;
7095  case X86ISD::BSF:                return "X86ISD::BSF";
7096  case X86ISD::BSR:                return "X86ISD::BSR";
7097  case X86ISD::SHLD:               return "X86ISD::SHLD";
7098  case X86ISD::SHRD:               return "X86ISD::SHRD";
7099  case X86ISD::FAND:               return "X86ISD::FAND";
7100  case X86ISD::FOR:                return "X86ISD::FOR";
7101  case X86ISD::FXOR:               return "X86ISD::FXOR";
7102  case X86ISD::FSRL:               return "X86ISD::FSRL";
7103  case X86ISD::FILD:               return "X86ISD::FILD";
7104  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7105  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7106  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7107  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7108  case X86ISD::FLD:                return "X86ISD::FLD";
7109  case X86ISD::FST:                return "X86ISD::FST";
7110  case X86ISD::CALL:               return "X86ISD::CALL";
7111  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7112  case X86ISD::BT:                 return "X86ISD::BT";
7113  case X86ISD::CMP:                return "X86ISD::CMP";
7114  case X86ISD::COMI:               return "X86ISD::COMI";
7115  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7116  case X86ISD::SETCC:              return "X86ISD::SETCC";
7117  case X86ISD::CMOV:               return "X86ISD::CMOV";
7118  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7119  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7120  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7121  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7122  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7123  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7124  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7125  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7126  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7127  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7128  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7129  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7130  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7131  case X86ISD::FMAX:               return "X86ISD::FMAX";
7132  case X86ISD::FMIN:               return "X86ISD::FMIN";
7133  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7134  case X86ISD::FRCP:               return "X86ISD::FRCP";
7135  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7136  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7137  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7138  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7139  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7140  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7141  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7142  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7143  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7144  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7145  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7146  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7147  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7148  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7149  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7150  case X86ISD::VSHL:               return "X86ISD::VSHL";
7151  case X86ISD::VSRL:               return "X86ISD::VSRL";
7152  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7153  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7154  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7155  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7156  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7157  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7158  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7159  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7160  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7161  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7162  case X86ISD::ADD:                return "X86ISD::ADD";
7163  case X86ISD::SUB:                return "X86ISD::SUB";
7164  case X86ISD::SMUL:               return "X86ISD::SMUL";
7165  case X86ISD::UMUL:               return "X86ISD::UMUL";
7166  case X86ISD::INC:                return "X86ISD::INC";
7167  case X86ISD::DEC:                return "X86ISD::DEC";
7168  case X86ISD::OR:                 return "X86ISD::OR";
7169  case X86ISD::XOR:                return "X86ISD::XOR";
7170  case X86ISD::AND:                return "X86ISD::AND";
7171  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7172  case X86ISD::PTEST:              return "X86ISD::PTEST";
7173  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7174  }
7175}
7176
7177// isLegalAddressingMode - Return true if the addressing mode represented
7178// by AM is legal for this target, for a load/store of the specified type.
7179bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7180                                              const Type *Ty) const {
7181  // X86 supports extremely general addressing modes.
7182  CodeModel::Model M = getTargetMachine().getCodeModel();
7183
7184  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7185  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7186    return false;
7187
7188  if (AM.BaseGV) {
7189    unsigned GVFlags =
7190      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7191
7192    // If a reference to this global requires an extra load, we can't fold it.
7193    if (isGlobalStubReference(GVFlags))
7194      return false;
7195
7196    // If BaseGV requires a register for the PIC base, we cannot also have a
7197    // BaseReg specified.
7198    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7199      return false;
7200
7201    // If lower 4G is not available, then we must use rip-relative addressing.
7202    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7203      return false;
7204  }
7205
7206  switch (AM.Scale) {
7207  case 0:
7208  case 1:
7209  case 2:
7210  case 4:
7211  case 8:
7212    // These scales always work.
7213    break;
7214  case 3:
7215  case 5:
7216  case 9:
7217    // These scales are formed with basereg+scalereg.  Only accept if there is
7218    // no basereg yet.
7219    if (AM.HasBaseReg)
7220      return false;
7221    break;
7222  default:  // Other stuff never works.
7223    return false;
7224  }
7225
7226  return true;
7227}
7228
7229
7230bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7231  if (!Ty1->isInteger() || !Ty2->isInteger())
7232    return false;
7233  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7234  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7235  if (NumBits1 <= NumBits2)
7236    return false;
7237  return Subtarget->is64Bit() || NumBits1 < 64;
7238}
7239
7240bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7241  if (!VT1.isInteger() || !VT2.isInteger())
7242    return false;
7243  unsigned NumBits1 = VT1.getSizeInBits();
7244  unsigned NumBits2 = VT2.getSizeInBits();
7245  if (NumBits1 <= NumBits2)
7246    return false;
7247  return Subtarget->is64Bit() || NumBits1 < 64;
7248}
7249
7250bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7251  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7252  return Ty1 == Type::getInt32Ty(Ty1->getContext()) &&
7253         Ty2 == Type::getInt64Ty(Ty1->getContext()) && Subtarget->is64Bit();
7254}
7255
7256bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7257  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7258  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7259}
7260
7261bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7262  // i16 instructions are longer (0x66 prefix) and potentially slower.
7263  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7264}
7265
7266/// isShuffleMaskLegal - Targets can use this to indicate that they only
7267/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7268/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7269/// are assumed to be legal.
7270bool
7271X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7272                                      EVT VT) const {
7273  // Only do shuffles on 128-bit vector types for now.
7274  if (VT.getSizeInBits() == 64)
7275    return false;
7276
7277  // FIXME: pshufb, blends, palignr, shifts.
7278  return (VT.getVectorNumElements() == 2 ||
7279          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7280          isMOVLMask(M, VT) ||
7281          isSHUFPMask(M, VT) ||
7282          isPSHUFDMask(M, VT) ||
7283          isPSHUFHWMask(M, VT) ||
7284          isPSHUFLWMask(M, VT) ||
7285          isUNPCKLMask(M, VT) ||
7286          isUNPCKHMask(M, VT) ||
7287          isUNPCKL_v_undef_Mask(M, VT) ||
7288          isUNPCKH_v_undef_Mask(M, VT));
7289}
7290
7291bool
7292X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7293                                          EVT VT) const {
7294  unsigned NumElts = VT.getVectorNumElements();
7295  // FIXME: This collection of masks seems suspect.
7296  if (NumElts == 2)
7297    return true;
7298  if (NumElts == 4 && VT.getSizeInBits() == 128) {
7299    return (isMOVLMask(Mask, VT)  ||
7300            isCommutedMOVLMask(Mask, VT, true) ||
7301            isSHUFPMask(Mask, VT) ||
7302            isCommutedSHUFPMask(Mask, VT));
7303  }
7304  return false;
7305}
7306
7307//===----------------------------------------------------------------------===//
7308//                           X86 Scheduler Hooks
7309//===----------------------------------------------------------------------===//
7310
7311// private utility function
7312MachineBasicBlock *
7313X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7314                                                       MachineBasicBlock *MBB,
7315                                                       unsigned regOpc,
7316                                                       unsigned immOpc,
7317                                                       unsigned LoadOpc,
7318                                                       unsigned CXchgOpc,
7319                                                       unsigned copyOpc,
7320                                                       unsigned notOpc,
7321                                                       unsigned EAXreg,
7322                                                       TargetRegisterClass *RC,
7323                                                       bool invSrc) const {
7324  // For the atomic bitwise operator, we generate
7325  //   thisMBB:
7326  //   newMBB:
7327  //     ld  t1 = [bitinstr.addr]
7328  //     op  t2 = t1, [bitinstr.val]
7329  //     mov EAX = t1
7330  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7331  //     bz  newMBB
7332  //     fallthrough -->nextMBB
7333  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7334  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7335  MachineFunction::iterator MBBIter = MBB;
7336  ++MBBIter;
7337
7338  /// First build the CFG
7339  MachineFunction *F = MBB->getParent();
7340  MachineBasicBlock *thisMBB = MBB;
7341  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7342  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7343  F->insert(MBBIter, newMBB);
7344  F->insert(MBBIter, nextMBB);
7345
7346  // Move all successors to thisMBB to nextMBB
7347  nextMBB->transferSuccessors(thisMBB);
7348
7349  // Update thisMBB to fall through to newMBB
7350  thisMBB->addSuccessor(newMBB);
7351
7352  // newMBB jumps to itself and fall through to nextMBB
7353  newMBB->addSuccessor(nextMBB);
7354  newMBB->addSuccessor(newMBB);
7355
7356  // Insert instructions into newMBB based on incoming instruction
7357  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7358         "unexpected number of operands");
7359  DebugLoc dl = bInstr->getDebugLoc();
7360  MachineOperand& destOper = bInstr->getOperand(0);
7361  MachineOperand* argOpers[2 + X86AddrNumOperands];
7362  int numArgs = bInstr->getNumOperands() - 1;
7363  for (int i=0; i < numArgs; ++i)
7364    argOpers[i] = &bInstr->getOperand(i+1);
7365
7366  // x86 address has 4 operands: base, index, scale, and displacement
7367  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7368  int valArgIndx = lastAddrIndx + 1;
7369
7370  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7371  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7372  for (int i=0; i <= lastAddrIndx; ++i)
7373    (*MIB).addOperand(*argOpers[i]);
7374
7375  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7376  if (invSrc) {
7377    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7378  }
7379  else
7380    tt = t1;
7381
7382  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7383  assert((argOpers[valArgIndx]->isReg() ||
7384          argOpers[valArgIndx]->isImm()) &&
7385         "invalid operand");
7386  if (argOpers[valArgIndx]->isReg())
7387    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7388  else
7389    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7390  MIB.addReg(tt);
7391  (*MIB).addOperand(*argOpers[valArgIndx]);
7392
7393  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7394  MIB.addReg(t1);
7395
7396  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7397  for (int i=0; i <= lastAddrIndx; ++i)
7398    (*MIB).addOperand(*argOpers[i]);
7399  MIB.addReg(t2);
7400  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7401  (*MIB).setMemRefs(bInstr->memoperands_begin(),
7402                    bInstr->memoperands_end());
7403
7404  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7405  MIB.addReg(EAXreg);
7406
7407  // insert branch
7408  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7409
7410  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7411  return nextMBB;
7412}
7413
7414// private utility function:  64 bit atomics on 32 bit host.
7415MachineBasicBlock *
7416X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7417                                                       MachineBasicBlock *MBB,
7418                                                       unsigned regOpcL,
7419                                                       unsigned regOpcH,
7420                                                       unsigned immOpcL,
7421                                                       unsigned immOpcH,
7422                                                       bool invSrc) const {
7423  // For the atomic bitwise operator, we generate
7424  //   thisMBB (instructions are in pairs, except cmpxchg8b)
7425  //     ld t1,t2 = [bitinstr.addr]
7426  //   newMBB:
7427  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7428  //     op  t5, t6 <- out1, out2, [bitinstr.val]
7429  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
7430  //     mov ECX, EBX <- t5, t6
7431  //     mov EAX, EDX <- t1, t2
7432  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
7433  //     mov t3, t4 <- EAX, EDX
7434  //     bz  newMBB
7435  //     result in out1, out2
7436  //     fallthrough -->nextMBB
7437
7438  const TargetRegisterClass *RC = X86::GR32RegisterClass;
7439  const unsigned LoadOpc = X86::MOV32rm;
7440  const unsigned copyOpc = X86::MOV32rr;
7441  const unsigned NotOpc = X86::NOT32r;
7442  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7443  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7444  MachineFunction::iterator MBBIter = MBB;
7445  ++MBBIter;
7446
7447  /// First build the CFG
7448  MachineFunction *F = MBB->getParent();
7449  MachineBasicBlock *thisMBB = MBB;
7450  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7451  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7452  F->insert(MBBIter, newMBB);
7453  F->insert(MBBIter, nextMBB);
7454
7455  // Move all successors to thisMBB to nextMBB
7456  nextMBB->transferSuccessors(thisMBB);
7457
7458  // Update thisMBB to fall through to newMBB
7459  thisMBB->addSuccessor(newMBB);
7460
7461  // newMBB jumps to itself and fall through to nextMBB
7462  newMBB->addSuccessor(nextMBB);
7463  newMBB->addSuccessor(newMBB);
7464
7465  DebugLoc dl = bInstr->getDebugLoc();
7466  // Insert instructions into newMBB based on incoming instruction
7467  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7468  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
7469         "unexpected number of operands");
7470  MachineOperand& dest1Oper = bInstr->getOperand(0);
7471  MachineOperand& dest2Oper = bInstr->getOperand(1);
7472  MachineOperand* argOpers[2 + X86AddrNumOperands];
7473  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
7474    argOpers[i] = &bInstr->getOperand(i+2);
7475
7476  // x86 address has 4 operands: base, index, scale, and displacement
7477  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7478
7479  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7480  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
7481  for (int i=0; i <= lastAddrIndx; ++i)
7482    (*MIB).addOperand(*argOpers[i]);
7483  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7484  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
7485  // add 4 to displacement.
7486  for (int i=0; i <= lastAddrIndx-2; ++i)
7487    (*MIB).addOperand(*argOpers[i]);
7488  MachineOperand newOp3 = *(argOpers[3]);
7489  if (newOp3.isImm())
7490    newOp3.setImm(newOp3.getImm()+4);
7491  else
7492    newOp3.setOffset(newOp3.getOffset()+4);
7493  (*MIB).addOperand(newOp3);
7494  (*MIB).addOperand(*argOpers[lastAddrIndx]);
7495
7496  // t3/4 are defined later, at the bottom of the loop
7497  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
7498  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
7499  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
7500    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
7501  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
7502    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
7503
7504  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
7505  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
7506  if (invSrc) {
7507    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
7508    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
7509  } else {
7510    tt1 = t1;
7511    tt2 = t2;
7512  }
7513
7514  int valArgIndx = lastAddrIndx + 1;
7515  assert((argOpers[valArgIndx]->isReg() ||
7516          argOpers[valArgIndx]->isImm()) &&
7517         "invalid operand");
7518  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
7519  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
7520  if (argOpers[valArgIndx]->isReg())
7521    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
7522  else
7523    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
7524  if (regOpcL != X86::MOV32rr)
7525    MIB.addReg(tt1);
7526  (*MIB).addOperand(*argOpers[valArgIndx]);
7527  assert(argOpers[valArgIndx + 1]->isReg() ==
7528         argOpers[valArgIndx]->isReg());
7529  assert(argOpers[valArgIndx + 1]->isImm() ==
7530         argOpers[valArgIndx]->isImm());
7531  if (argOpers[valArgIndx + 1]->isReg())
7532    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
7533  else
7534    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
7535  if (regOpcH != X86::MOV32rr)
7536    MIB.addReg(tt2);
7537  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
7538
7539  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
7540  MIB.addReg(t1);
7541  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
7542  MIB.addReg(t2);
7543
7544  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
7545  MIB.addReg(t5);
7546  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
7547  MIB.addReg(t6);
7548
7549  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
7550  for (int i=0; i <= lastAddrIndx; ++i)
7551    (*MIB).addOperand(*argOpers[i]);
7552
7553  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7554  (*MIB).setMemRefs(bInstr->memoperands_begin(),
7555                    bInstr->memoperands_end());
7556
7557  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
7558  MIB.addReg(X86::EAX);
7559  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
7560  MIB.addReg(X86::EDX);
7561
7562  // insert branch
7563  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7564
7565  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7566  return nextMBB;
7567}
7568
7569// private utility function
7570MachineBasicBlock *
7571X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7572                                                      MachineBasicBlock *MBB,
7573                                                      unsigned cmovOpc) const {
7574  // For the atomic min/max operator, we generate
7575  //   thisMBB:
7576  //   newMBB:
7577  //     ld t1 = [min/max.addr]
7578  //     mov t2 = [min/max.val]
7579  //     cmp  t1, t2
7580  //     cmov[cond] t2 = t1
7581  //     mov EAX = t1
7582  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7583  //     bz   newMBB
7584  //     fallthrough -->nextMBB
7585  //
7586  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7587  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7588  MachineFunction::iterator MBBIter = MBB;
7589  ++MBBIter;
7590
7591  /// First build the CFG
7592  MachineFunction *F = MBB->getParent();
7593  MachineBasicBlock *thisMBB = MBB;
7594  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7595  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7596  F->insert(MBBIter, newMBB);
7597  F->insert(MBBIter, nextMBB);
7598
7599  // Move all successors of thisMBB to nextMBB
7600  nextMBB->transferSuccessors(thisMBB);
7601
7602  // Update thisMBB to fall through to newMBB
7603  thisMBB->addSuccessor(newMBB);
7604
7605  // newMBB jumps to newMBB and fall through to nextMBB
7606  newMBB->addSuccessor(nextMBB);
7607  newMBB->addSuccessor(newMBB);
7608
7609  DebugLoc dl = mInstr->getDebugLoc();
7610  // Insert instructions into newMBB based on incoming instruction
7611  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7612         "unexpected number of operands");
7613  MachineOperand& destOper = mInstr->getOperand(0);
7614  MachineOperand* argOpers[2 + X86AddrNumOperands];
7615  int numArgs = mInstr->getNumOperands() - 1;
7616  for (int i=0; i < numArgs; ++i)
7617    argOpers[i] = &mInstr->getOperand(i+1);
7618
7619  // x86 address has 4 operands: base, index, scale, and displacement
7620  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7621  int valArgIndx = lastAddrIndx + 1;
7622
7623  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7624  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
7625  for (int i=0; i <= lastAddrIndx; ++i)
7626    (*MIB).addOperand(*argOpers[i]);
7627
7628  // We only support register and immediate values
7629  assert((argOpers[valArgIndx]->isReg() ||
7630          argOpers[valArgIndx]->isImm()) &&
7631         "invalid operand");
7632
7633  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7634  if (argOpers[valArgIndx]->isReg())
7635    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7636  else
7637    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7638  (*MIB).addOperand(*argOpers[valArgIndx]);
7639
7640  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
7641  MIB.addReg(t1);
7642
7643  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
7644  MIB.addReg(t1);
7645  MIB.addReg(t2);
7646
7647  // Generate movc
7648  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7649  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
7650  MIB.addReg(t2);
7651  MIB.addReg(t1);
7652
7653  // Cmp and exchange if none has modified the memory location
7654  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
7655  for (int i=0; i <= lastAddrIndx; ++i)
7656    (*MIB).addOperand(*argOpers[i]);
7657  MIB.addReg(t3);
7658  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7659  (*MIB).setMemRefs(mInstr->memoperands_begin(),
7660                    mInstr->memoperands_end());
7661
7662  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
7663  MIB.addReg(X86::EAX);
7664
7665  // insert branch
7666  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7667
7668  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
7669  return nextMBB;
7670}
7671
7672// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
7673// all of this code can be replaced with that in the .td file.
7674MachineBasicBlock *
7675X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
7676                            unsigned numArgs, bool memArg) const {
7677
7678  MachineFunction *F = BB->getParent();
7679  DebugLoc dl = MI->getDebugLoc();
7680  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7681
7682  unsigned Opc;
7683  if (memArg)
7684    Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
7685  else
7686    Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
7687
7688  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
7689
7690  for (unsigned i = 0; i < numArgs; ++i) {
7691    MachineOperand &Op = MI->getOperand(i+1);
7692
7693    if (!(Op.isReg() && Op.isImplicit()))
7694      MIB.addOperand(Op);
7695  }
7696
7697  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
7698    .addReg(X86::XMM0);
7699
7700  F->DeleteMachineInstr(MI);
7701
7702  return BB;
7703}
7704
7705MachineBasicBlock *
7706X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
7707                                                 MachineInstr *MI,
7708                                                 MachineBasicBlock *MBB) const {
7709  // Emit code to save XMM registers to the stack. The ABI says that the
7710  // number of registers to save is given in %al, so it's theoretically
7711  // possible to do an indirect jump trick to avoid saving all of them,
7712  // however this code takes a simpler approach and just executes all
7713  // of the stores if %al is non-zero. It's less code, and it's probably
7714  // easier on the hardware branch predictor, and stores aren't all that
7715  // expensive anyway.
7716
7717  // Create the new basic blocks. One block contains all the XMM stores,
7718  // and one block is the final destination regardless of whether any
7719  // stores were performed.
7720  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7721  MachineFunction *F = MBB->getParent();
7722  MachineFunction::iterator MBBIter = MBB;
7723  ++MBBIter;
7724  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
7725  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
7726  F->insert(MBBIter, XMMSaveMBB);
7727  F->insert(MBBIter, EndMBB);
7728
7729  // Set up the CFG.
7730  // Move any original successors of MBB to the end block.
7731  EndMBB->transferSuccessors(MBB);
7732  // The original block will now fall through to the XMM save block.
7733  MBB->addSuccessor(XMMSaveMBB);
7734  // The XMMSaveMBB will fall through to the end block.
7735  XMMSaveMBB->addSuccessor(EndMBB);
7736
7737  // Now add the instructions.
7738  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7739  DebugLoc DL = MI->getDebugLoc();
7740
7741  unsigned CountReg = MI->getOperand(0).getReg();
7742  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
7743  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
7744
7745  if (!Subtarget->isTargetWin64()) {
7746    // If %al is 0, branch around the XMM save block.
7747    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
7748    BuildMI(MBB, DL, TII->get(X86::JE)).addMBB(EndMBB);
7749    MBB->addSuccessor(EndMBB);
7750  }
7751
7752  // In the XMM save block, save all the XMM argument registers.
7753  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
7754    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
7755    MachineMemOperand *MMO =
7756      F->getMachineMemOperand(
7757        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
7758        MachineMemOperand::MOStore, Offset,
7759        /*Size=*/16, /*Align=*/16);
7760    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
7761      .addFrameIndex(RegSaveFrameIndex)
7762      .addImm(/*Scale=*/1)
7763      .addReg(/*IndexReg=*/0)
7764      .addImm(/*Disp=*/Offset)
7765      .addReg(/*Segment=*/0)
7766      .addReg(MI->getOperand(i).getReg())
7767      .addMemOperand(MMO);
7768  }
7769
7770  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7771
7772  return EndMBB;
7773}
7774
7775MachineBasicBlock *
7776X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
7777                                     MachineBasicBlock *BB,
7778                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
7779  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7780  DebugLoc DL = MI->getDebugLoc();
7781
7782  // To "insert" a SELECT_CC instruction, we actually have to insert the
7783  // diamond control-flow pattern.  The incoming instruction knows the
7784  // destination vreg to set, the condition code register to branch on, the
7785  // true/false values to select between, and a branch opcode to use.
7786  const BasicBlock *LLVM_BB = BB->getBasicBlock();
7787  MachineFunction::iterator It = BB;
7788  ++It;
7789
7790  //  thisMBB:
7791  //  ...
7792  //   TrueVal = ...
7793  //   cmpTY ccX, r1, r2
7794  //   bCC copy1MBB
7795  //   fallthrough --> copy0MBB
7796  MachineBasicBlock *thisMBB = BB;
7797  MachineFunction *F = BB->getParent();
7798  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7799  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7800  unsigned Opc =
7801    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7802  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
7803  F->insert(It, copy0MBB);
7804  F->insert(It, sinkMBB);
7805  // Update machine-CFG edges by first adding all successors of the current
7806  // block to the new block which will contain the Phi node for the select.
7807  // Also inform sdisel of the edge changes.
7808  for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
7809         E = BB->succ_end(); I != E; ++I) {
7810    EM->insert(std::make_pair(*I, sinkMBB));
7811    sinkMBB->addSuccessor(*I);
7812  }
7813  // Next, remove all successors of the current block, and add the true
7814  // and fallthrough blocks as its successors.
7815  while (!BB->succ_empty())
7816    BB->removeSuccessor(BB->succ_begin());
7817  // Add the true and fallthrough blocks as its successors.
7818  BB->addSuccessor(copy0MBB);
7819  BB->addSuccessor(sinkMBB);
7820
7821  //  copy0MBB:
7822  //   %FalseValue = ...
7823  //   # fallthrough to sinkMBB
7824  BB = copy0MBB;
7825
7826  // Update machine-CFG edges
7827  BB->addSuccessor(sinkMBB);
7828
7829  //  sinkMBB:
7830  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7831  //  ...
7832  BB = sinkMBB;
7833  BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
7834    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7835    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7836
7837  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7838  return BB;
7839}
7840
7841
7842MachineBasicBlock *
7843X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7844                                               MachineBasicBlock *BB,
7845                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
7846  switch (MI->getOpcode()) {
7847  default: assert(false && "Unexpected instr type to insert");
7848  case X86::CMOV_GR8:
7849  case X86::CMOV_V1I64:
7850  case X86::CMOV_FR32:
7851  case X86::CMOV_FR64:
7852  case X86::CMOV_V4F32:
7853  case X86::CMOV_V2F64:
7854  case X86::CMOV_V2I64:
7855    return EmitLoweredSelect(MI, BB, EM);
7856
7857  case X86::FP32_TO_INT16_IN_MEM:
7858  case X86::FP32_TO_INT32_IN_MEM:
7859  case X86::FP32_TO_INT64_IN_MEM:
7860  case X86::FP64_TO_INT16_IN_MEM:
7861  case X86::FP64_TO_INT32_IN_MEM:
7862  case X86::FP64_TO_INT64_IN_MEM:
7863  case X86::FP80_TO_INT16_IN_MEM:
7864  case X86::FP80_TO_INT32_IN_MEM:
7865  case X86::FP80_TO_INT64_IN_MEM: {
7866    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7867    DebugLoc DL = MI->getDebugLoc();
7868
7869    // Change the floating point control register to use "round towards zero"
7870    // mode when truncating to an integer value.
7871    MachineFunction *F = BB->getParent();
7872    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
7873    addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7874
7875    // Load the old value of the high byte of the control word...
7876    unsigned OldCW =
7877      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7878    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
7879                      CWFrameIdx);
7880
7881    // Set the high part to be round to zero...
7882    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
7883      .addImm(0xC7F);
7884
7885    // Reload the modified control word now...
7886    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
7887
7888    // Restore the memory image of control word to original value
7889    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
7890      .addReg(OldCW);
7891
7892    // Get the X86 opcode to use.
7893    unsigned Opc;
7894    switch (MI->getOpcode()) {
7895    default: llvm_unreachable("illegal opcode!");
7896    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
7897    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
7898    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
7899    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
7900    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
7901    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
7902    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
7903    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
7904    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
7905    }
7906
7907    X86AddressMode AM;
7908    MachineOperand &Op = MI->getOperand(0);
7909    if (Op.isReg()) {
7910      AM.BaseType = X86AddressMode::RegBase;
7911      AM.Base.Reg = Op.getReg();
7912    } else {
7913      AM.BaseType = X86AddressMode::FrameIndexBase;
7914      AM.Base.FrameIndex = Op.getIndex();
7915    }
7916    Op = MI->getOperand(1);
7917    if (Op.isImm())
7918      AM.Scale = Op.getImm();
7919    Op = MI->getOperand(2);
7920    if (Op.isImm())
7921      AM.IndexReg = Op.getImm();
7922    Op = MI->getOperand(3);
7923    if (Op.isGlobal()) {
7924      AM.GV = Op.getGlobal();
7925    } else {
7926      AM.Disp = Op.getImm();
7927    }
7928    addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
7929                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
7930
7931    // Reload the original control word now.
7932    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
7933
7934    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7935    return BB;
7936  }
7937    // String/text processing lowering.
7938  case X86::PCMPISTRM128REG:
7939    return EmitPCMP(MI, BB, 3, false /* in-mem */);
7940  case X86::PCMPISTRM128MEM:
7941    return EmitPCMP(MI, BB, 3, true /* in-mem */);
7942  case X86::PCMPESTRM128REG:
7943    return EmitPCMP(MI, BB, 5, false /* in mem */);
7944  case X86::PCMPESTRM128MEM:
7945    return EmitPCMP(MI, BB, 5, true /* in mem */);
7946
7947    // Atomic Lowering.
7948  case X86::ATOMAND32:
7949    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7950                                               X86::AND32ri, X86::MOV32rm,
7951                                               X86::LCMPXCHG32, X86::MOV32rr,
7952                                               X86::NOT32r, X86::EAX,
7953                                               X86::GR32RegisterClass);
7954  case X86::ATOMOR32:
7955    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7956                                               X86::OR32ri, X86::MOV32rm,
7957                                               X86::LCMPXCHG32, X86::MOV32rr,
7958                                               X86::NOT32r, X86::EAX,
7959                                               X86::GR32RegisterClass);
7960  case X86::ATOMXOR32:
7961    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7962                                               X86::XOR32ri, X86::MOV32rm,
7963                                               X86::LCMPXCHG32, X86::MOV32rr,
7964                                               X86::NOT32r, X86::EAX,
7965                                               X86::GR32RegisterClass);
7966  case X86::ATOMNAND32:
7967    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7968                                               X86::AND32ri, X86::MOV32rm,
7969                                               X86::LCMPXCHG32, X86::MOV32rr,
7970                                               X86::NOT32r, X86::EAX,
7971                                               X86::GR32RegisterClass, true);
7972  case X86::ATOMMIN32:
7973    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7974  case X86::ATOMMAX32:
7975    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7976  case X86::ATOMUMIN32:
7977    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7978  case X86::ATOMUMAX32:
7979    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7980
7981  case X86::ATOMAND16:
7982    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7983                                               X86::AND16ri, X86::MOV16rm,
7984                                               X86::LCMPXCHG16, X86::MOV16rr,
7985                                               X86::NOT16r, X86::AX,
7986                                               X86::GR16RegisterClass);
7987  case X86::ATOMOR16:
7988    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7989                                               X86::OR16ri, X86::MOV16rm,
7990                                               X86::LCMPXCHG16, X86::MOV16rr,
7991                                               X86::NOT16r, X86::AX,
7992                                               X86::GR16RegisterClass);
7993  case X86::ATOMXOR16:
7994    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7995                                               X86::XOR16ri, X86::MOV16rm,
7996                                               X86::LCMPXCHG16, X86::MOV16rr,
7997                                               X86::NOT16r, X86::AX,
7998                                               X86::GR16RegisterClass);
7999  case X86::ATOMNAND16:
8000    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8001                                               X86::AND16ri, X86::MOV16rm,
8002                                               X86::LCMPXCHG16, X86::MOV16rr,
8003                                               X86::NOT16r, X86::AX,
8004                                               X86::GR16RegisterClass, true);
8005  case X86::ATOMMIN16:
8006    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
8007  case X86::ATOMMAX16:
8008    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
8009  case X86::ATOMUMIN16:
8010    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
8011  case X86::ATOMUMAX16:
8012    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
8013
8014  case X86::ATOMAND8:
8015    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8016                                               X86::AND8ri, X86::MOV8rm,
8017                                               X86::LCMPXCHG8, X86::MOV8rr,
8018                                               X86::NOT8r, X86::AL,
8019                                               X86::GR8RegisterClass);
8020  case X86::ATOMOR8:
8021    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
8022                                               X86::OR8ri, X86::MOV8rm,
8023                                               X86::LCMPXCHG8, X86::MOV8rr,
8024                                               X86::NOT8r, X86::AL,
8025                                               X86::GR8RegisterClass);
8026  case X86::ATOMXOR8:
8027    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
8028                                               X86::XOR8ri, X86::MOV8rm,
8029                                               X86::LCMPXCHG8, X86::MOV8rr,
8030                                               X86::NOT8r, X86::AL,
8031                                               X86::GR8RegisterClass);
8032  case X86::ATOMNAND8:
8033    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8034                                               X86::AND8ri, X86::MOV8rm,
8035                                               X86::LCMPXCHG8, X86::MOV8rr,
8036                                               X86::NOT8r, X86::AL,
8037                                               X86::GR8RegisterClass, true);
8038  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
8039  // This group is for 64-bit host.
8040  case X86::ATOMAND64:
8041    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8042                                               X86::AND64ri32, X86::MOV64rm,
8043                                               X86::LCMPXCHG64, X86::MOV64rr,
8044                                               X86::NOT64r, X86::RAX,
8045                                               X86::GR64RegisterClass);
8046  case X86::ATOMOR64:
8047    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8048                                               X86::OR64ri32, X86::MOV64rm,
8049                                               X86::LCMPXCHG64, X86::MOV64rr,
8050                                               X86::NOT64r, X86::RAX,
8051                                               X86::GR64RegisterClass);
8052  case X86::ATOMXOR64:
8053    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8054                                               X86::XOR64ri32, X86::MOV64rm,
8055                                               X86::LCMPXCHG64, X86::MOV64rr,
8056                                               X86::NOT64r, X86::RAX,
8057                                               X86::GR64RegisterClass);
8058  case X86::ATOMNAND64:
8059    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8060                                               X86::AND64ri32, X86::MOV64rm,
8061                                               X86::LCMPXCHG64, X86::MOV64rr,
8062                                               X86::NOT64r, X86::RAX,
8063                                               X86::GR64RegisterClass, true);
8064  case X86::ATOMMIN64:
8065    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8066  case X86::ATOMMAX64:
8067    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8068  case X86::ATOMUMIN64:
8069    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8070  case X86::ATOMUMAX64:
8071    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8072
8073  // This group does 64-bit operations on a 32-bit host.
8074  case X86::ATOMAND6432:
8075    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8076                                               X86::AND32rr, X86::AND32rr,
8077                                               X86::AND32ri, X86::AND32ri,
8078                                               false);
8079  case X86::ATOMOR6432:
8080    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8081                                               X86::OR32rr, X86::OR32rr,
8082                                               X86::OR32ri, X86::OR32ri,
8083                                               false);
8084  case X86::ATOMXOR6432:
8085    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8086                                               X86::XOR32rr, X86::XOR32rr,
8087                                               X86::XOR32ri, X86::XOR32ri,
8088                                               false);
8089  case X86::ATOMNAND6432:
8090    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8091                                               X86::AND32rr, X86::AND32rr,
8092                                               X86::AND32ri, X86::AND32ri,
8093                                               true);
8094  case X86::ATOMADD6432:
8095    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8096                                               X86::ADD32rr, X86::ADC32rr,
8097                                               X86::ADD32ri, X86::ADC32ri,
8098                                               false);
8099  case X86::ATOMSUB6432:
8100    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8101                                               X86::SUB32rr, X86::SBB32rr,
8102                                               X86::SUB32ri, X86::SBB32ri,
8103                                               false);
8104  case X86::ATOMSWAP6432:
8105    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8106                                               X86::MOV32rr, X86::MOV32rr,
8107                                               X86::MOV32ri, X86::MOV32ri,
8108                                               false);
8109  case X86::VASTART_SAVE_XMM_REGS:
8110    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8111  }
8112}
8113
8114//===----------------------------------------------------------------------===//
8115//                           X86 Optimization Hooks
8116//===----------------------------------------------------------------------===//
8117
8118void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8119                                                       const APInt &Mask,
8120                                                       APInt &KnownZero,
8121                                                       APInt &KnownOne,
8122                                                       const SelectionDAG &DAG,
8123                                                       unsigned Depth) const {
8124  unsigned Opc = Op.getOpcode();
8125  assert((Opc >= ISD::BUILTIN_OP_END ||
8126          Opc == ISD::INTRINSIC_WO_CHAIN ||
8127          Opc == ISD::INTRINSIC_W_CHAIN ||
8128          Opc == ISD::INTRINSIC_VOID) &&
8129         "Should use MaskedValueIsZero if you don't know whether Op"
8130         " is a target node!");
8131
8132  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8133  switch (Opc) {
8134  default: break;
8135  case X86ISD::ADD:
8136  case X86ISD::SUB:
8137  case X86ISD::SMUL:
8138  case X86ISD::UMUL:
8139  case X86ISD::INC:
8140  case X86ISD::DEC:
8141  case X86ISD::OR:
8142  case X86ISD::XOR:
8143  case X86ISD::AND:
8144    // These nodes' second result is a boolean.
8145    if (Op.getResNo() == 0)
8146      break;
8147    // Fallthrough
8148  case X86ISD::SETCC:
8149    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8150                                       Mask.getBitWidth() - 1);
8151    break;
8152  }
8153}
8154
8155/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8156/// node is a GlobalAddress + offset.
8157bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8158                                       GlobalValue* &GA, int64_t &Offset) const{
8159  if (N->getOpcode() == X86ISD::Wrapper) {
8160    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8161      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8162      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8163      return true;
8164    }
8165  }
8166  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8167}
8168
8169static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
8170                               const TargetLowering &TLI) {
8171  GlobalValue *GV;
8172  int64_t Offset = 0;
8173  if (TLI.isGAPlusOffset(Base, GV, Offset))
8174    return (GV->getAlignment() >= N && (Offset % N) == 0);
8175  // DAG combine handles the stack object case.
8176  return false;
8177}
8178
8179static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
8180                                     EVT EltVT, LoadSDNode *&LDBase,
8181                                     unsigned &LastLoadedElt,
8182                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
8183                                     const TargetLowering &TLI) {
8184  LDBase = NULL;
8185  LastLoadedElt = -1U;
8186  for (unsigned i = 0; i < NumElems; ++i) {
8187    if (N->getMaskElt(i) < 0) {
8188      if (!LDBase)
8189        return false;
8190      continue;
8191    }
8192
8193    SDValue Elt = DAG.getShuffleScalarElt(N, i);
8194    if (!Elt.getNode() ||
8195        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
8196      return false;
8197    if (!LDBase) {
8198      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
8199        return false;
8200      LDBase = cast<LoadSDNode>(Elt.getNode());
8201      LastLoadedElt = i;
8202      continue;
8203    }
8204    if (Elt.getOpcode() == ISD::UNDEF)
8205      continue;
8206
8207    LoadSDNode *LD = cast<LoadSDNode>(Elt);
8208    if (!TLI.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i, MFI))
8209      return false;
8210    LastLoadedElt = i;
8211  }
8212  return true;
8213}
8214
8215/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8216/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8217/// if the load addresses are consecutive, non-overlapping, and in the right
8218/// order.  In the case of v2i64, it will see if it can rewrite the
8219/// shuffle to be an appropriate build vector so it can take advantage of
8220// performBuildVectorCombine.
8221static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8222                                     const TargetLowering &TLI) {
8223  DebugLoc dl = N->getDebugLoc();
8224  EVT VT = N->getValueType(0);
8225  EVT EltVT = VT.getVectorElementType();
8226  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8227  unsigned NumElems = VT.getVectorNumElements();
8228
8229  if (VT.getSizeInBits() != 128)
8230    return SDValue();
8231
8232  // Try to combine a vector_shuffle into a 128-bit load.
8233  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8234  LoadSDNode *LD = NULL;
8235  unsigned LastLoadedElt;
8236  if (!EltsFromConsecutiveLoads(SVN, NumElems, EltVT, LD, LastLoadedElt, DAG,
8237                                MFI, TLI))
8238    return SDValue();
8239
8240  if (LastLoadedElt == NumElems - 1) {
8241    if (isBaseAlignmentOfN(16, LD->getBasePtr().getNode(), TLI))
8242      return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8243                         LD->getSrcValue(), LD->getSrcValueOffset(),
8244                         LD->isVolatile());
8245    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8246                       LD->getSrcValue(), LD->getSrcValueOffset(),
8247                       LD->isVolatile(), LD->getAlignment());
8248  } else if (NumElems == 4 && LastLoadedElt == 1) {
8249    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
8250    SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
8251    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
8252    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
8253  }
8254  return SDValue();
8255}
8256
8257/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8258static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8259                                    const X86Subtarget *Subtarget) {
8260  DebugLoc DL = N->getDebugLoc();
8261  SDValue Cond = N->getOperand(0);
8262  // Get the LHS/RHS of the select.
8263  SDValue LHS = N->getOperand(1);
8264  SDValue RHS = N->getOperand(2);
8265
8266  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
8267  // instructions have the peculiarity that if either operand is a NaN,
8268  // they chose what we call the RHS operand (and as such are not symmetric).
8269  // It happens that this matches the semantics of the common C idiom
8270  // x<y?x:y and related forms, so we can recognize these cases.
8271  if (Subtarget->hasSSE2() &&
8272      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
8273      Cond.getOpcode() == ISD::SETCC) {
8274    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
8275
8276    unsigned Opcode = 0;
8277    // Check for x CC y ? x : y.
8278    if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
8279      switch (CC) {
8280      default: break;
8281      case ISD::SETULT:
8282        // This can be a min if we can prove that at least one of the operands
8283        // is not a nan.
8284        if (!FiniteOnlyFPMath()) {
8285          if (DAG.isKnownNeverNaN(RHS)) {
8286            // Put the potential NaN in the RHS so that SSE will preserve it.
8287            std::swap(LHS, RHS);
8288          } else if (!DAG.isKnownNeverNaN(LHS))
8289            break;
8290        }
8291        Opcode = X86ISD::FMIN;
8292        break;
8293      case ISD::SETOLE:
8294        // This can be a min if we can prove that at least one of the operands
8295        // is not a nan.
8296        if (!FiniteOnlyFPMath()) {
8297          if (DAG.isKnownNeverNaN(LHS)) {
8298            // Put the potential NaN in the RHS so that SSE will preserve it.
8299            std::swap(LHS, RHS);
8300          } else if (!DAG.isKnownNeverNaN(RHS))
8301            break;
8302        }
8303        Opcode = X86ISD::FMIN;
8304        break;
8305      case ISD::SETULE:
8306        // This can be a min, but if either operand is a NaN we need it to
8307        // preserve the original LHS.
8308        std::swap(LHS, RHS);
8309      case ISD::SETOLT:
8310      case ISD::SETLT:
8311      case ISD::SETLE:
8312        Opcode = X86ISD::FMIN;
8313        break;
8314
8315      case ISD::SETOGE:
8316        // This can be a max if we can prove that at least one of the operands
8317        // is not a nan.
8318        if (!FiniteOnlyFPMath()) {
8319          if (DAG.isKnownNeverNaN(LHS)) {
8320            // Put the potential NaN in the RHS so that SSE will preserve it.
8321            std::swap(LHS, RHS);
8322          } else if (!DAG.isKnownNeverNaN(RHS))
8323            break;
8324        }
8325        Opcode = X86ISD::FMAX;
8326        break;
8327      case ISD::SETUGT:
8328        // This can be a max if we can prove that at least one of the operands
8329        // is not a nan.
8330        if (!FiniteOnlyFPMath()) {
8331          if (DAG.isKnownNeverNaN(RHS)) {
8332            // Put the potential NaN in the RHS so that SSE will preserve it.
8333            std::swap(LHS, RHS);
8334          } else if (!DAG.isKnownNeverNaN(LHS))
8335            break;
8336        }
8337        Opcode = X86ISD::FMAX;
8338        break;
8339      case ISD::SETUGE:
8340        // This can be a max, but if either operand is a NaN we need it to
8341        // preserve the original LHS.
8342        std::swap(LHS, RHS);
8343      case ISD::SETOGT:
8344      case ISD::SETGT:
8345      case ISD::SETGE:
8346        Opcode = X86ISD::FMAX;
8347        break;
8348      }
8349    // Check for x CC y ? y : x -- a min/max with reversed arms.
8350    } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
8351      switch (CC) {
8352      default: break;
8353      case ISD::SETOGE:
8354        // This can be a min if we can prove that at least one of the operands
8355        // is not a nan.
8356        if (!FiniteOnlyFPMath()) {
8357          if (DAG.isKnownNeverNaN(RHS)) {
8358            // Put the potential NaN in the RHS so that SSE will preserve it.
8359            std::swap(LHS, RHS);
8360          } else if (!DAG.isKnownNeverNaN(LHS))
8361            break;
8362        }
8363        Opcode = X86ISD::FMIN;
8364        break;
8365      case ISD::SETUGT:
8366        // This can be a min if we can prove that at least one of the operands
8367        // is not a nan.
8368        if (!FiniteOnlyFPMath()) {
8369          if (DAG.isKnownNeverNaN(LHS)) {
8370            // Put the potential NaN in the RHS so that SSE will preserve it.
8371            std::swap(LHS, RHS);
8372          } else if (!DAG.isKnownNeverNaN(RHS))
8373            break;
8374        }
8375        Opcode = X86ISD::FMIN;
8376        break;
8377      case ISD::SETUGE:
8378        // This can be a min, but if either operand is a NaN we need it to
8379        // preserve the original LHS.
8380        std::swap(LHS, RHS);
8381      case ISD::SETOGT:
8382      case ISD::SETGT:
8383      case ISD::SETGE:
8384        Opcode = X86ISD::FMIN;
8385        break;
8386
8387      case ISD::SETULT:
8388        // This can be a max if we can prove that at least one of the operands
8389        // is not a nan.
8390        if (!FiniteOnlyFPMath()) {
8391          if (DAG.isKnownNeverNaN(LHS)) {
8392            // Put the potential NaN in the RHS so that SSE will preserve it.
8393            std::swap(LHS, RHS);
8394          } else if (!DAG.isKnownNeverNaN(RHS))
8395            break;
8396        }
8397        Opcode = X86ISD::FMAX;
8398        break;
8399      case ISD::SETOLE:
8400        // This can be a max if we can prove that at least one of the operands
8401        // is not a nan.
8402        if (!FiniteOnlyFPMath()) {
8403          if (DAG.isKnownNeverNaN(RHS)) {
8404            // Put the potential NaN in the RHS so that SSE will preserve it.
8405            std::swap(LHS, RHS);
8406          } else if (!DAG.isKnownNeverNaN(LHS))
8407            break;
8408        }
8409        Opcode = X86ISD::FMAX;
8410        break;
8411      case ISD::SETULE:
8412        // This can be a max, but if either operand is a NaN we need it to
8413        // preserve the original LHS.
8414        std::swap(LHS, RHS);
8415      case ISD::SETOLT:
8416      case ISD::SETLT:
8417      case ISD::SETLE:
8418        Opcode = X86ISD::FMAX;
8419        break;
8420      }
8421    }
8422
8423    if (Opcode)
8424      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
8425  }
8426
8427  // If this is a select between two integer constants, try to do some
8428  // optimizations.
8429  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
8430    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
8431      // Don't do this for crazy integer types.
8432      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
8433        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8434        // so that TrueC (the true value) is larger than FalseC.
8435        bool NeedsCondInvert = false;
8436
8437        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
8438            // Efficiently invertible.
8439            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
8440             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
8441              isa<ConstantSDNode>(Cond.getOperand(1))))) {
8442          NeedsCondInvert = true;
8443          std::swap(TrueC, FalseC);
8444        }
8445
8446        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
8447        if (FalseC->getAPIntValue() == 0 &&
8448            TrueC->getAPIntValue().isPowerOf2()) {
8449          if (NeedsCondInvert) // Invert the condition if needed.
8450            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8451                               DAG.getConstant(1, Cond.getValueType()));
8452
8453          // Zero extend the condition if needed.
8454          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
8455
8456          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8457          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
8458                             DAG.getConstant(ShAmt, MVT::i8));
8459        }
8460
8461        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8462        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8463          if (NeedsCondInvert) // Invert the condition if needed.
8464            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8465                               DAG.getConstant(1, Cond.getValueType()));
8466
8467          // Zero extend the condition if needed.
8468          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8469                             FalseC->getValueType(0), Cond);
8470          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8471                             SDValue(FalseC, 0));
8472        }
8473
8474        // Optimize cases that will turn into an LEA instruction.  This requires
8475        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8476        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8477          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8478          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8479
8480          bool isFastMultiplier = false;
8481          if (Diff < 10) {
8482            switch ((unsigned char)Diff) {
8483              default: break;
8484              case 1:  // result = add base, cond
8485              case 2:  // result = lea base(    , cond*2)
8486              case 3:  // result = lea base(cond, cond*2)
8487              case 4:  // result = lea base(    , cond*4)
8488              case 5:  // result = lea base(cond, cond*4)
8489              case 8:  // result = lea base(    , cond*8)
8490              case 9:  // result = lea base(cond, cond*8)
8491                isFastMultiplier = true;
8492                break;
8493            }
8494          }
8495
8496          if (isFastMultiplier) {
8497            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8498            if (NeedsCondInvert) // Invert the condition if needed.
8499              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8500                                 DAG.getConstant(1, Cond.getValueType()));
8501
8502            // Zero extend the condition if needed.
8503            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8504                               Cond);
8505            // Scale the condition by the difference.
8506            if (Diff != 1)
8507              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8508                                 DAG.getConstant(Diff, Cond.getValueType()));
8509
8510            // Add the base if non-zero.
8511            if (FalseC->getAPIntValue() != 0)
8512              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8513                                 SDValue(FalseC, 0));
8514            return Cond;
8515          }
8516        }
8517      }
8518  }
8519
8520  return SDValue();
8521}
8522
8523/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
8524static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
8525                                  TargetLowering::DAGCombinerInfo &DCI) {
8526  DebugLoc DL = N->getDebugLoc();
8527
8528  // If the flag operand isn't dead, don't touch this CMOV.
8529  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
8530    return SDValue();
8531
8532  // If this is a select between two integer constants, try to do some
8533  // optimizations.  Note that the operands are ordered the opposite of SELECT
8534  // operands.
8535  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
8536    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
8537      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
8538      // larger than FalseC (the false value).
8539      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
8540
8541      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
8542        CC = X86::GetOppositeBranchCondition(CC);
8543        std::swap(TrueC, FalseC);
8544      }
8545
8546      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
8547      // This is efficient for any integer data type (including i8/i16) and
8548      // shift amount.
8549      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
8550        SDValue Cond = N->getOperand(3);
8551        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8552                           DAG.getConstant(CC, MVT::i8), Cond);
8553
8554        // Zero extend the condition if needed.
8555        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
8556
8557        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8558        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
8559                           DAG.getConstant(ShAmt, MVT::i8));
8560        if (N->getNumValues() == 2)  // Dead flag value?
8561          return DCI.CombineTo(N, Cond, SDValue());
8562        return Cond;
8563      }
8564
8565      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
8566      // for any integer data type, including i8/i16.
8567      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8568        SDValue Cond = N->getOperand(3);
8569        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8570                           DAG.getConstant(CC, MVT::i8), Cond);
8571
8572        // Zero extend the condition if needed.
8573        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8574                           FalseC->getValueType(0), Cond);
8575        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8576                           SDValue(FalseC, 0));
8577
8578        if (N->getNumValues() == 2)  // Dead flag value?
8579          return DCI.CombineTo(N, Cond, SDValue());
8580        return Cond;
8581      }
8582
8583      // Optimize cases that will turn into an LEA instruction.  This requires
8584      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8585      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8586        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8587        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8588
8589        bool isFastMultiplier = false;
8590        if (Diff < 10) {
8591          switch ((unsigned char)Diff) {
8592          default: break;
8593          case 1:  // result = add base, cond
8594          case 2:  // result = lea base(    , cond*2)
8595          case 3:  // result = lea base(cond, cond*2)
8596          case 4:  // result = lea base(    , cond*4)
8597          case 5:  // result = lea base(cond, cond*4)
8598          case 8:  // result = lea base(    , cond*8)
8599          case 9:  // result = lea base(cond, cond*8)
8600            isFastMultiplier = true;
8601            break;
8602          }
8603        }
8604
8605        if (isFastMultiplier) {
8606          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8607          SDValue Cond = N->getOperand(3);
8608          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8609                             DAG.getConstant(CC, MVT::i8), Cond);
8610          // Zero extend the condition if needed.
8611          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8612                             Cond);
8613          // Scale the condition by the difference.
8614          if (Diff != 1)
8615            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8616                               DAG.getConstant(Diff, Cond.getValueType()));
8617
8618          // Add the base if non-zero.
8619          if (FalseC->getAPIntValue() != 0)
8620            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8621                               SDValue(FalseC, 0));
8622          if (N->getNumValues() == 2)  // Dead flag value?
8623            return DCI.CombineTo(N, Cond, SDValue());
8624          return Cond;
8625        }
8626      }
8627    }
8628  }
8629  return SDValue();
8630}
8631
8632
8633/// PerformMulCombine - Optimize a single multiply with constant into two
8634/// in order to implement it with two cheaper instructions, e.g.
8635/// LEA + SHL, LEA + LEA.
8636static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
8637                                 TargetLowering::DAGCombinerInfo &DCI) {
8638  if (DAG.getMachineFunction().
8639      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
8640    return SDValue();
8641
8642  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8643    return SDValue();
8644
8645  EVT VT = N->getValueType(0);
8646  if (VT != MVT::i64)
8647    return SDValue();
8648
8649  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8650  if (!C)
8651    return SDValue();
8652  uint64_t MulAmt = C->getZExtValue();
8653  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
8654    return SDValue();
8655
8656  uint64_t MulAmt1 = 0;
8657  uint64_t MulAmt2 = 0;
8658  if ((MulAmt % 9) == 0) {
8659    MulAmt1 = 9;
8660    MulAmt2 = MulAmt / 9;
8661  } else if ((MulAmt % 5) == 0) {
8662    MulAmt1 = 5;
8663    MulAmt2 = MulAmt / 5;
8664  } else if ((MulAmt % 3) == 0) {
8665    MulAmt1 = 3;
8666    MulAmt2 = MulAmt / 3;
8667  }
8668  if (MulAmt2 &&
8669      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
8670    DebugLoc DL = N->getDebugLoc();
8671
8672    if (isPowerOf2_64(MulAmt2) &&
8673        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
8674      // If second multiplifer is pow2, issue it first. We want the multiply by
8675      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8676      // is an add.
8677      std::swap(MulAmt1, MulAmt2);
8678
8679    SDValue NewMul;
8680    if (isPowerOf2_64(MulAmt1))
8681      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
8682                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
8683    else
8684      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
8685                           DAG.getConstant(MulAmt1, VT));
8686
8687    if (isPowerOf2_64(MulAmt2))
8688      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
8689                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
8690    else
8691      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
8692                           DAG.getConstant(MulAmt2, VT));
8693
8694    // Do not add new nodes to DAG combiner worklist.
8695    DCI.CombineTo(N, NewMul, false);
8696  }
8697  return SDValue();
8698}
8699
8700
8701/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8702///                       when possible.
8703static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
8704                                   const X86Subtarget *Subtarget) {
8705  // On X86 with SSE2 support, we can transform this to a vector shift if
8706  // all elements are shifted by the same amount.  We can't do this in legalize
8707  // because the a constant vector is typically transformed to a constant pool
8708  // so we have no knowledge of the shift amount.
8709  if (!Subtarget->hasSSE2())
8710    return SDValue();
8711
8712  EVT VT = N->getValueType(0);
8713  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
8714    return SDValue();
8715
8716  SDValue ShAmtOp = N->getOperand(1);
8717  EVT EltVT = VT.getVectorElementType();
8718  DebugLoc DL = N->getDebugLoc();
8719  SDValue BaseShAmt = SDValue();
8720  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
8721    unsigned NumElts = VT.getVectorNumElements();
8722    unsigned i = 0;
8723    for (; i != NumElts; ++i) {
8724      SDValue Arg = ShAmtOp.getOperand(i);
8725      if (Arg.getOpcode() == ISD::UNDEF) continue;
8726      BaseShAmt = Arg;
8727      break;
8728    }
8729    for (; i != NumElts; ++i) {
8730      SDValue Arg = ShAmtOp.getOperand(i);
8731      if (Arg.getOpcode() == ISD::UNDEF) continue;
8732      if (Arg != BaseShAmt) {
8733        return SDValue();
8734      }
8735    }
8736  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
8737             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
8738    SDValue InVec = ShAmtOp.getOperand(0);
8739    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
8740      unsigned NumElts = InVec.getValueType().getVectorNumElements();
8741      unsigned i = 0;
8742      for (; i != NumElts; ++i) {
8743        SDValue Arg = InVec.getOperand(i);
8744        if (Arg.getOpcode() == ISD::UNDEF) continue;
8745        BaseShAmt = Arg;
8746        break;
8747      }
8748    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
8749       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
8750         unsigned SplatIdx = cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
8751         if (C->getZExtValue() == SplatIdx)
8752           BaseShAmt = InVec.getOperand(1);
8753       }
8754    }
8755    if (BaseShAmt.getNode() == 0)
8756      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
8757                              DAG.getIntPtrConstant(0));
8758  } else
8759    return SDValue();
8760
8761  // The shift amount is an i32.
8762  if (EltVT.bitsGT(MVT::i32))
8763    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
8764  else if (EltVT.bitsLT(MVT::i32))
8765    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
8766
8767  // The shift amount is identical so we can do a vector shift.
8768  SDValue  ValOp = N->getOperand(0);
8769  switch (N->getOpcode()) {
8770  default:
8771    llvm_unreachable("Unknown shift opcode!");
8772    break;
8773  case ISD::SHL:
8774    if (VT == MVT::v2i64)
8775      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8776                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8777                         ValOp, BaseShAmt);
8778    if (VT == MVT::v4i32)
8779      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8780                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8781                         ValOp, BaseShAmt);
8782    if (VT == MVT::v8i16)
8783      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8784                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8785                         ValOp, BaseShAmt);
8786    break;
8787  case ISD::SRA:
8788    if (VT == MVT::v4i32)
8789      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8790                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8791                         ValOp, BaseShAmt);
8792    if (VT == MVT::v8i16)
8793      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8794                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8795                         ValOp, BaseShAmt);
8796    break;
8797  case ISD::SRL:
8798    if (VT == MVT::v2i64)
8799      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8800                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8801                         ValOp, BaseShAmt);
8802    if (VT == MVT::v4i32)
8803      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8804                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8805                         ValOp, BaseShAmt);
8806    if (VT ==  MVT::v8i16)
8807      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8808                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8809                         ValOp, BaseShAmt);
8810    break;
8811  }
8812  return SDValue();
8813}
8814
8815/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8816static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
8817                                   const X86Subtarget *Subtarget) {
8818  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
8819  // the FP state in cases where an emms may be missing.
8820  // A preferable solution to the general problem is to figure out the right
8821  // places to insert EMMS.  This qualifies as a quick hack.
8822
8823  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8824  StoreSDNode *St = cast<StoreSDNode>(N);
8825  EVT VT = St->getValue().getValueType();
8826  if (VT.getSizeInBits() != 64)
8827    return SDValue();
8828
8829  const Function *F = DAG.getMachineFunction().getFunction();
8830  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
8831  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
8832    && Subtarget->hasSSE2();
8833  if ((VT.isVector() ||
8834       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
8835      isa<LoadSDNode>(St->getValue()) &&
8836      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
8837      St->getChain().hasOneUse() && !St->isVolatile()) {
8838    SDNode* LdVal = St->getValue().getNode();
8839    LoadSDNode *Ld = 0;
8840    int TokenFactorIndex = -1;
8841    SmallVector<SDValue, 8> Ops;
8842    SDNode* ChainVal = St->getChain().getNode();
8843    // Must be a store of a load.  We currently handle two cases:  the load
8844    // is a direct child, and it's under an intervening TokenFactor.  It is
8845    // possible to dig deeper under nested TokenFactors.
8846    if (ChainVal == LdVal)
8847      Ld = cast<LoadSDNode>(St->getChain());
8848    else if (St->getValue().hasOneUse() &&
8849             ChainVal->getOpcode() == ISD::TokenFactor) {
8850      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
8851        if (ChainVal->getOperand(i).getNode() == LdVal) {
8852          TokenFactorIndex = i;
8853          Ld = cast<LoadSDNode>(St->getValue());
8854        } else
8855          Ops.push_back(ChainVal->getOperand(i));
8856      }
8857    }
8858
8859    if (!Ld || !ISD::isNormalLoad(Ld))
8860      return SDValue();
8861
8862    // If this is not the MMX case, i.e. we are just turning i64 load/store
8863    // into f64 load/store, avoid the transformation if there are multiple
8864    // uses of the loaded value.
8865    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
8866      return SDValue();
8867
8868    DebugLoc LdDL = Ld->getDebugLoc();
8869    DebugLoc StDL = N->getDebugLoc();
8870    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8871    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8872    // pair instead.
8873    if (Subtarget->is64Bit() || F64IsLegal) {
8874      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
8875      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
8876                                  Ld->getBasePtr(), Ld->getSrcValue(),
8877                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
8878                                  Ld->getAlignment());
8879      SDValue NewChain = NewLd.getValue(1);
8880      if (TokenFactorIndex != -1) {
8881        Ops.push_back(NewChain);
8882        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8883                               Ops.size());
8884      }
8885      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
8886                          St->getSrcValue(), St->getSrcValueOffset(),
8887                          St->isVolatile(), St->getAlignment());
8888    }
8889
8890    // Otherwise, lower to two pairs of 32-bit loads / stores.
8891    SDValue LoAddr = Ld->getBasePtr();
8892    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
8893                                 DAG.getConstant(4, MVT::i32));
8894
8895    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
8896                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
8897                               Ld->isVolatile(), Ld->getAlignment());
8898    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
8899                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
8900                               Ld->isVolatile(),
8901                               MinAlign(Ld->getAlignment(), 4));
8902
8903    SDValue NewChain = LoLd.getValue(1);
8904    if (TokenFactorIndex != -1) {
8905      Ops.push_back(LoLd);
8906      Ops.push_back(HiLd);
8907      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8908                             Ops.size());
8909    }
8910
8911    LoAddr = St->getBasePtr();
8912    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
8913                         DAG.getConstant(4, MVT::i32));
8914
8915    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
8916                                St->getSrcValue(), St->getSrcValueOffset(),
8917                                St->isVolatile(), St->getAlignment());
8918    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
8919                                St->getSrcValue(),
8920                                St->getSrcValueOffset() + 4,
8921                                St->isVolatile(),
8922                                MinAlign(St->getAlignment(), 4));
8923    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
8924  }
8925  return SDValue();
8926}
8927
8928/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8929/// X86ISD::FXOR nodes.
8930static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
8931  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
8932  // F[X]OR(0.0, x) -> x
8933  // F[X]OR(x, 0.0) -> x
8934  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8935    if (C->getValueAPF().isPosZero())
8936      return N->getOperand(1);
8937  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8938    if (C->getValueAPF().isPosZero())
8939      return N->getOperand(0);
8940  return SDValue();
8941}
8942
8943/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8944static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
8945  // FAND(0.0, x) -> 0.0
8946  // FAND(x, 0.0) -> 0.0
8947  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8948    if (C->getValueAPF().isPosZero())
8949      return N->getOperand(0);
8950  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8951    if (C->getValueAPF().isPosZero())
8952      return N->getOperand(1);
8953  return SDValue();
8954}
8955
8956static SDValue PerformBTCombine(SDNode *N,
8957                                SelectionDAG &DAG,
8958                                TargetLowering::DAGCombinerInfo &DCI) {
8959  // BT ignores high bits in the bit index operand.
8960  SDValue Op1 = N->getOperand(1);
8961  if (Op1.hasOneUse()) {
8962    unsigned BitWidth = Op1.getValueSizeInBits();
8963    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
8964    APInt KnownZero, KnownOne;
8965    TargetLowering::TargetLoweringOpt TLO(DAG);
8966    TargetLowering &TLI = DAG.getTargetLoweringInfo();
8967    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
8968        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
8969      DCI.CommitTargetLoweringOpt(TLO);
8970  }
8971  return SDValue();
8972}
8973
8974static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
8975  SDValue Op = N->getOperand(0);
8976  if (Op.getOpcode() == ISD::BIT_CONVERT)
8977    Op = Op.getOperand(0);
8978  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
8979  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
8980      VT.getVectorElementType().getSizeInBits() ==
8981      OpVT.getVectorElementType().getSizeInBits()) {
8982    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
8983  }
8984  return SDValue();
8985}
8986
8987// On X86 and X86-64, atomic operations are lowered to locked instructions.
8988// Locked instructions, in turn, have implicit fence semantics (all memory
8989// operations are flushed before issuing the locked instruction, and the
8990// are not buffered), so we can fold away the common pattern of
8991// fence-atomic-fence.
8992static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
8993  SDValue atomic = N->getOperand(0);
8994  switch (atomic.getOpcode()) {
8995    case ISD::ATOMIC_CMP_SWAP:
8996    case ISD::ATOMIC_SWAP:
8997    case ISD::ATOMIC_LOAD_ADD:
8998    case ISD::ATOMIC_LOAD_SUB:
8999    case ISD::ATOMIC_LOAD_AND:
9000    case ISD::ATOMIC_LOAD_OR:
9001    case ISD::ATOMIC_LOAD_XOR:
9002    case ISD::ATOMIC_LOAD_NAND:
9003    case ISD::ATOMIC_LOAD_MIN:
9004    case ISD::ATOMIC_LOAD_MAX:
9005    case ISD::ATOMIC_LOAD_UMIN:
9006    case ISD::ATOMIC_LOAD_UMAX:
9007      break;
9008    default:
9009      return SDValue();
9010  }
9011
9012  SDValue fence = atomic.getOperand(0);
9013  if (fence.getOpcode() != ISD::MEMBARRIER)
9014    return SDValue();
9015
9016  switch (atomic.getOpcode()) {
9017    case ISD::ATOMIC_CMP_SWAP:
9018      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9019                                    atomic.getOperand(1), atomic.getOperand(2),
9020                                    atomic.getOperand(3));
9021    case ISD::ATOMIC_SWAP:
9022    case ISD::ATOMIC_LOAD_ADD:
9023    case ISD::ATOMIC_LOAD_SUB:
9024    case ISD::ATOMIC_LOAD_AND:
9025    case ISD::ATOMIC_LOAD_OR:
9026    case ISD::ATOMIC_LOAD_XOR:
9027    case ISD::ATOMIC_LOAD_NAND:
9028    case ISD::ATOMIC_LOAD_MIN:
9029    case ISD::ATOMIC_LOAD_MAX:
9030    case ISD::ATOMIC_LOAD_UMIN:
9031    case ISD::ATOMIC_LOAD_UMAX:
9032      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9033                                    atomic.getOperand(1), atomic.getOperand(2));
9034    default:
9035      return SDValue();
9036  }
9037}
9038
9039SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
9040                                             DAGCombinerInfo &DCI) const {
9041  SelectionDAG &DAG = DCI.DAG;
9042  switch (N->getOpcode()) {
9043  default: break;
9044  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
9045  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
9046  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
9047  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
9048  case ISD::SHL:
9049  case ISD::SRA:
9050  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
9051  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
9052  case X86ISD::FXOR:
9053  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
9054  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
9055  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
9056  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
9057  case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
9058  }
9059
9060  return SDValue();
9061}
9062
9063//===----------------------------------------------------------------------===//
9064//                           X86 Inline Assembly Support
9065//===----------------------------------------------------------------------===//
9066
9067static bool LowerToBSwap(CallInst *CI) {
9068  // FIXME: this should verify that we are targetting a 486 or better.  If not,
9069  // we will turn this bswap into something that will be lowered to logical ops
9070  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
9071  // so don't worry about this.
9072
9073  // Verify this is a simple bswap.
9074  if (CI->getNumOperands() != 2 ||
9075      CI->getType() != CI->getOperand(1)->getType() ||
9076      !CI->getType()->isInteger())
9077    return false;
9078
9079  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9080  if (!Ty || Ty->getBitWidth() % 16 != 0)
9081    return false;
9082
9083  // Okay, we can do this xform, do so now.
9084  const Type *Tys[] = { Ty };
9085  Module *M = CI->getParent()->getParent()->getParent();
9086  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
9087
9088  Value *Op = CI->getOperand(1);
9089  Op = CallInst::Create(Int, Op, CI->getName(), CI);
9090
9091  CI->replaceAllUsesWith(Op);
9092  CI->eraseFromParent();
9093  return true;
9094}
9095
9096bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
9097  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9098  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
9099
9100  std::string AsmStr = IA->getAsmString();
9101
9102  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
9103  std::vector<std::string> AsmPieces;
9104  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
9105
9106  switch (AsmPieces.size()) {
9107  default: return false;
9108  case 1:
9109    AsmStr = AsmPieces[0];
9110    AsmPieces.clear();
9111    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
9112
9113    // bswap $0
9114    if (AsmPieces.size() == 2 &&
9115        (AsmPieces[0] == "bswap" ||
9116         AsmPieces[0] == "bswapq" ||
9117         AsmPieces[0] == "bswapl") &&
9118        (AsmPieces[1] == "$0" ||
9119         AsmPieces[1] == "${0:q}")) {
9120      // No need to check constraints, nothing other than the equivalent of
9121      // "=r,0" would be valid here.
9122      return LowerToBSwap(CI);
9123    }
9124    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
9125    if (CI->getType() == Type::getInt16Ty(CI->getContext()) &&
9126        AsmPieces.size() == 3 &&
9127        AsmPieces[0] == "rorw" &&
9128        AsmPieces[1] == "$$8," &&
9129        AsmPieces[2] == "${0:w}" &&
9130        IA->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") {
9131      return LowerToBSwap(CI);
9132    }
9133    break;
9134  case 3:
9135    if (CI->getType() == Type::getInt64Ty(CI->getContext()) &&
9136        Constraints.size() >= 2 &&
9137        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
9138        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
9139      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
9140      std::vector<std::string> Words;
9141      SplitString(AsmPieces[0], Words, " \t");
9142      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
9143        Words.clear();
9144        SplitString(AsmPieces[1], Words, " \t");
9145        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
9146          Words.clear();
9147          SplitString(AsmPieces[2], Words, " \t,");
9148          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
9149              Words[2] == "%edx") {
9150            return LowerToBSwap(CI);
9151          }
9152        }
9153      }
9154    }
9155    break;
9156  }
9157  return false;
9158}
9159
9160
9161
9162/// getConstraintType - Given a constraint letter, return the type of
9163/// constraint it is for this target.
9164X86TargetLowering::ConstraintType
9165X86TargetLowering::getConstraintType(const std::string &Constraint) const {
9166  if (Constraint.size() == 1) {
9167    switch (Constraint[0]) {
9168    case 'A':
9169      return C_Register;
9170    case 'f':
9171    case 'r':
9172    case 'R':
9173    case 'l':
9174    case 'q':
9175    case 'Q':
9176    case 'x':
9177    case 'y':
9178    case 'Y':
9179      return C_RegisterClass;
9180    case 'e':
9181    case 'Z':
9182      return C_Other;
9183    default:
9184      break;
9185    }
9186  }
9187  return TargetLowering::getConstraintType(Constraint);
9188}
9189
9190/// LowerXConstraint - try to replace an X constraint, which matches anything,
9191/// with another that has more specific requirements based on the type of the
9192/// corresponding operand.
9193const char *X86TargetLowering::
9194LowerXConstraint(EVT ConstraintVT) const {
9195  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
9196  // 'f' like normal targets.
9197  if (ConstraintVT.isFloatingPoint()) {
9198    if (Subtarget->hasSSE2())
9199      return "Y";
9200    if (Subtarget->hasSSE1())
9201      return "x";
9202  }
9203
9204  return TargetLowering::LowerXConstraint(ConstraintVT);
9205}
9206
9207/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
9208/// vector.  If it is invalid, don't add anything to Ops.
9209void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
9210                                                     char Constraint,
9211                                                     bool hasMemory,
9212                                                     std::vector<SDValue>&Ops,
9213                                                     SelectionDAG &DAG) const {
9214  SDValue Result(0, 0);
9215
9216  switch (Constraint) {
9217  default: break;
9218  case 'I':
9219    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9220      if (C->getZExtValue() <= 31) {
9221        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9222        break;
9223      }
9224    }
9225    return;
9226  case 'J':
9227    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9228      if (C->getZExtValue() <= 63) {
9229        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9230        break;
9231      }
9232    }
9233    return;
9234  case 'K':
9235    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9236      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
9237        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9238        break;
9239      }
9240    }
9241    return;
9242  case 'N':
9243    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9244      if (C->getZExtValue() <= 255) {
9245        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9246        break;
9247      }
9248    }
9249    return;
9250  case 'e': {
9251    // 32-bit signed value
9252    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9253      const ConstantInt *CI = C->getConstantIntValue();
9254      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9255                                  C->getSExtValue())) {
9256        // Widen to 64 bits here to get it sign extended.
9257        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
9258        break;
9259      }
9260    // FIXME gcc accepts some relocatable values here too, but only in certain
9261    // memory models; it's complicated.
9262    }
9263    return;
9264  }
9265  case 'Z': {
9266    // 32-bit unsigned value
9267    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9268      const ConstantInt *CI = C->getConstantIntValue();
9269      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9270                                  C->getZExtValue())) {
9271        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9272        break;
9273      }
9274    }
9275    // FIXME gcc accepts some relocatable values here too, but only in certain
9276    // memory models; it's complicated.
9277    return;
9278  }
9279  case 'i': {
9280    // Literal immediates are always ok.
9281    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
9282      // Widen to 64 bits here to get it sign extended.
9283      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
9284      break;
9285    }
9286
9287    // If we are in non-pic codegen mode, we allow the address of a global (with
9288    // an optional displacement) to be used with 'i'.
9289    GlobalAddressSDNode *GA = 0;
9290    int64_t Offset = 0;
9291
9292    // Match either (GA), (GA+C), (GA+C1+C2), etc.
9293    while (1) {
9294      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
9295        Offset += GA->getOffset();
9296        break;
9297      } else if (Op.getOpcode() == ISD::ADD) {
9298        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9299          Offset += C->getZExtValue();
9300          Op = Op.getOperand(0);
9301          continue;
9302        }
9303      } else if (Op.getOpcode() == ISD::SUB) {
9304        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9305          Offset += -C->getZExtValue();
9306          Op = Op.getOperand(0);
9307          continue;
9308        }
9309      }
9310
9311      // Otherwise, this isn't something we can handle, reject it.
9312      return;
9313    }
9314
9315    GlobalValue *GV = GA->getGlobal();
9316    // If we require an extra load to get this address, as in PIC mode, we
9317    // can't accept it.
9318    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
9319                                                        getTargetMachine())))
9320      return;
9321
9322    if (hasMemory)
9323      Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
9324    else
9325      Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
9326    Result = Op;
9327    break;
9328  }
9329  }
9330
9331  if (Result.getNode()) {
9332    Ops.push_back(Result);
9333    return;
9334  }
9335  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
9336                                                      Ops, DAG);
9337}
9338
9339std::vector<unsigned> X86TargetLowering::
9340getRegClassForInlineAsmConstraint(const std::string &Constraint,
9341                                  EVT VT) const {
9342  if (Constraint.size() == 1) {
9343    // FIXME: not handling fp-stack yet!
9344    switch (Constraint[0]) {      // GCC X86 Constraint Letters
9345    default: break;  // Unknown constraint letter
9346    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
9347      if (Subtarget->is64Bit()) {
9348        if (VT == MVT::i32)
9349          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
9350                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
9351                                       X86::R10D,X86::R11D,X86::R12D,
9352                                       X86::R13D,X86::R14D,X86::R15D,
9353                                       X86::EBP, X86::ESP, 0);
9354        else if (VT == MVT::i16)
9355          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
9356                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
9357                                       X86::R10W,X86::R11W,X86::R12W,
9358                                       X86::R13W,X86::R14W,X86::R15W,
9359                                       X86::BP,  X86::SP, 0);
9360        else if (VT == MVT::i8)
9361          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
9362                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
9363                                       X86::R10B,X86::R11B,X86::R12B,
9364                                       X86::R13B,X86::R14B,X86::R15B,
9365                                       X86::BPL, X86::SPL, 0);
9366
9367        else if (VT == MVT::i64)
9368          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
9369                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
9370                                       X86::R10, X86::R11, X86::R12,
9371                                       X86::R13, X86::R14, X86::R15,
9372                                       X86::RBP, X86::RSP, 0);
9373
9374        break;
9375      }
9376      // 32-bit fallthrough
9377    case 'Q':   // Q_REGS
9378      if (VT == MVT::i32)
9379        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
9380      else if (VT == MVT::i16)
9381        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
9382      else if (VT == MVT::i8)
9383        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
9384      else if (VT == MVT::i64)
9385        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
9386      break;
9387    }
9388  }
9389
9390  return std::vector<unsigned>();
9391}
9392
9393std::pair<unsigned, const TargetRegisterClass*>
9394X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
9395                                                EVT VT) const {
9396  // First, see if this is a constraint that directly corresponds to an LLVM
9397  // register class.
9398  if (Constraint.size() == 1) {
9399    // GCC Constraint Letters
9400    switch (Constraint[0]) {
9401    default: break;
9402    case 'r':   // GENERAL_REGS
9403    case 'l':   // INDEX_REGS
9404      if (VT == MVT::i8)
9405        return std::make_pair(0U, X86::GR8RegisterClass);
9406      if (VT == MVT::i16)
9407        return std::make_pair(0U, X86::GR16RegisterClass);
9408      if (VT == MVT::i32 || !Subtarget->is64Bit())
9409        return std::make_pair(0U, X86::GR32RegisterClass);
9410      return std::make_pair(0U, X86::GR64RegisterClass);
9411    case 'R':   // LEGACY_REGS
9412      if (VT == MVT::i8)
9413        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
9414      if (VT == MVT::i16)
9415        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
9416      if (VT == MVT::i32 || !Subtarget->is64Bit())
9417        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
9418      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
9419    case 'f':  // FP Stack registers.
9420      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
9421      // value to the correct fpstack register class.
9422      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
9423        return std::make_pair(0U, X86::RFP32RegisterClass);
9424      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
9425        return std::make_pair(0U, X86::RFP64RegisterClass);
9426      return std::make_pair(0U, X86::RFP80RegisterClass);
9427    case 'y':   // MMX_REGS if MMX allowed.
9428      if (!Subtarget->hasMMX()) break;
9429      return std::make_pair(0U, X86::VR64RegisterClass);
9430    case 'Y':   // SSE_REGS if SSE2 allowed
9431      if (!Subtarget->hasSSE2()) break;
9432      // FALL THROUGH.
9433    case 'x':   // SSE_REGS if SSE1 allowed
9434      if (!Subtarget->hasSSE1()) break;
9435
9436      switch (VT.getSimpleVT().SimpleTy) {
9437      default: break;
9438      // Scalar SSE types.
9439      case MVT::f32:
9440      case MVT::i32:
9441        return std::make_pair(0U, X86::FR32RegisterClass);
9442      case MVT::f64:
9443      case MVT::i64:
9444        return std::make_pair(0U, X86::FR64RegisterClass);
9445      // Vector types.
9446      case MVT::v16i8:
9447      case MVT::v8i16:
9448      case MVT::v4i32:
9449      case MVT::v2i64:
9450      case MVT::v4f32:
9451      case MVT::v2f64:
9452        return std::make_pair(0U, X86::VR128RegisterClass);
9453      }
9454      break;
9455    }
9456  }
9457
9458  // Use the default implementation in TargetLowering to convert the register
9459  // constraint into a member of a register class.
9460  std::pair<unsigned, const TargetRegisterClass*> Res;
9461  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
9462
9463  // Not found as a standard register?
9464  if (Res.second == 0) {
9465    // Map st(0) -> st(7) -> ST0
9466    if (Constraint.size() == 7 && Constraint[0] == '{' &&
9467        tolower(Constraint[1]) == 's' &&
9468        tolower(Constraint[2]) == 't' &&
9469        Constraint[3] == '(' &&
9470        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
9471        Constraint[5] == ')' &&
9472        Constraint[6] == '}') {
9473
9474      Res.first = X86::ST0+Constraint[4]-'0';
9475      Res.second = X86::RFP80RegisterClass;
9476      return Res;
9477    }
9478
9479    // GCC allows "st(0)" to be called just plain "st".
9480    if (StringsEqualNoCase("{st}", Constraint)) {
9481      Res.first = X86::ST0;
9482      Res.second = X86::RFP80RegisterClass;
9483      return Res;
9484    }
9485
9486    // flags -> EFLAGS
9487    if (StringsEqualNoCase("{flags}", Constraint)) {
9488      Res.first = X86::EFLAGS;
9489      Res.second = X86::CCRRegisterClass;
9490      return Res;
9491    }
9492
9493    // 'A' means EAX + EDX.
9494    if (Constraint == "A") {
9495      Res.first = X86::EAX;
9496      Res.second = X86::GR32_ADRegisterClass;
9497      return Res;
9498    }
9499    return Res;
9500  }
9501
9502  // Otherwise, check to see if this is a register class of the wrong value
9503  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
9504  // turn into {ax},{dx}.
9505  if (Res.second->hasType(VT))
9506    return Res;   // Correct type already, nothing to do.
9507
9508  // All of the single-register GCC register classes map their values onto
9509  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
9510  // really want an 8-bit or 32-bit register, map to the appropriate register
9511  // class and return the appropriate register.
9512  if (Res.second == X86::GR16RegisterClass) {
9513    if (VT == MVT::i8) {
9514      unsigned DestReg = 0;
9515      switch (Res.first) {
9516      default: break;
9517      case X86::AX: DestReg = X86::AL; break;
9518      case X86::DX: DestReg = X86::DL; break;
9519      case X86::CX: DestReg = X86::CL; break;
9520      case X86::BX: DestReg = X86::BL; break;
9521      }
9522      if (DestReg) {
9523        Res.first = DestReg;
9524        Res.second = X86::GR8RegisterClass;
9525      }
9526    } else if (VT == MVT::i32) {
9527      unsigned DestReg = 0;
9528      switch (Res.first) {
9529      default: break;
9530      case X86::AX: DestReg = X86::EAX; break;
9531      case X86::DX: DestReg = X86::EDX; break;
9532      case X86::CX: DestReg = X86::ECX; break;
9533      case X86::BX: DestReg = X86::EBX; break;
9534      case X86::SI: DestReg = X86::ESI; break;
9535      case X86::DI: DestReg = X86::EDI; break;
9536      case X86::BP: DestReg = X86::EBP; break;
9537      case X86::SP: DestReg = X86::ESP; break;
9538      }
9539      if (DestReg) {
9540        Res.first = DestReg;
9541        Res.second = X86::GR32RegisterClass;
9542      }
9543    } else if (VT == MVT::i64) {
9544      unsigned DestReg = 0;
9545      switch (Res.first) {
9546      default: break;
9547      case X86::AX: DestReg = X86::RAX; break;
9548      case X86::DX: DestReg = X86::RDX; break;
9549      case X86::CX: DestReg = X86::RCX; break;
9550      case X86::BX: DestReg = X86::RBX; break;
9551      case X86::SI: DestReg = X86::RSI; break;
9552      case X86::DI: DestReg = X86::RDI; break;
9553      case X86::BP: DestReg = X86::RBP; break;
9554      case X86::SP: DestReg = X86::RSP; break;
9555      }
9556      if (DestReg) {
9557        Res.first = DestReg;
9558        Res.second = X86::GR64RegisterClass;
9559      }
9560    }
9561  } else if (Res.second == X86::FR32RegisterClass ||
9562             Res.second == X86::FR64RegisterClass ||
9563             Res.second == X86::VR128RegisterClass) {
9564    // Handle references to XMM physical registers that got mapped into the
9565    // wrong class.  This can happen with constraints like {xmm0} where the
9566    // target independent register mapper will just pick the first match it can
9567    // find, ignoring the required type.
9568    if (VT == MVT::f32)
9569      Res.second = X86::FR32RegisterClass;
9570    else if (VT == MVT::f64)
9571      Res.second = X86::FR64RegisterClass;
9572    else if (X86::VR128RegisterClass->hasType(VT))
9573      Res.second = X86::VR128RegisterClass;
9574  }
9575
9576  return Res;
9577}
9578
9579//===----------------------------------------------------------------------===//
9580//                           X86 Widen vector type
9581//===----------------------------------------------------------------------===//
9582
9583/// getWidenVectorType: given a vector type, returns the type to widen
9584/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
9585/// If there is no vector type that we want to widen to, returns MVT::Other
9586/// When and where to widen is target dependent based on the cost of
9587/// scalarizing vs using the wider vector type.
9588
9589EVT X86TargetLowering::getWidenVectorType(EVT VT) const {
9590  assert(VT.isVector());
9591  if (isTypeLegal(VT))
9592    return VT;
9593
9594  // TODO: In computeRegisterProperty, we can compute the list of legal vector
9595  //       type based on element type.  This would speed up our search (though
9596  //       it may not be worth it since the size of the list is relatively
9597  //       small).
9598  EVT EltVT = VT.getVectorElementType();
9599  unsigned NElts = VT.getVectorNumElements();
9600
9601  // On X86, it make sense to widen any vector wider than 1
9602  if (NElts <= 1)
9603    return MVT::Other;
9604
9605  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
9606       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
9607    EVT SVT = (MVT::SimpleValueType)nVT;
9608
9609    if (isTypeLegal(SVT) &&
9610        SVT.getVectorElementType() == EltVT &&
9611        SVT.getVectorNumElements() > NElts)
9612      return SVT;
9613  }
9614  return MVT::Other;
9615}
9616