X86ISelLowering.cpp revision 07c70cd86629846a2584e7311964e9f7753c94b0
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/ADT/StringExtras.h"
37using namespace llvm;
38
39X86TargetLowering::X86TargetLowering(TargetMachine &TM)
40  : TargetLowering(TM) {
41  Subtarget = &TM.getSubtarget<X86Subtarget>();
42  X86ScalarSSE = Subtarget->hasSSE2();
43  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
44
45  // Set up the TargetLowering object.
46
47  // X86 is weird, it always uses i8 for shift amounts and setcc results.
48  setShiftAmountType(MVT::i8);
49  setSetCCResultType(MVT::i8);
50  setSetCCResultContents(ZeroOrOneSetCCResult);
51  setSchedulingPreference(SchedulingForRegPressure);
52  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
53  setStackPointerRegisterToSaveRestore(X86StackPtr);
54
55  if (Subtarget->isTargetDarwin()) {
56    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
57    setUseUnderscoreSetJmp(false);
58    setUseUnderscoreLongJmp(false);
59  } else if (Subtarget->isTargetMingw()) {
60    // MS runtime is weird: it exports _setjmp, but longjmp!
61    setUseUnderscoreSetJmp(true);
62    setUseUnderscoreLongJmp(false);
63  } else {
64    setUseUnderscoreSetJmp(true);
65    setUseUnderscoreLongJmp(true);
66  }
67
68  // Set up the register classes.
69  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
70  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
71  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
72  if (Subtarget->is64Bit())
73    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
74
75  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
76
77  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
78  // operation.
79  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
80  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
81  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
82
83  if (Subtarget->is64Bit()) {
84    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
85    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
86  } else {
87    if (X86ScalarSSE)
88      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
89      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
90    else
91      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
92  }
93
94  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
95  // this operation.
96  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
97  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
98  // SSE has no i16 to fp conversion, only i32
99  if (X86ScalarSSE)
100    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
101  else {
102    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
103    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
104  }
105
106  if (!Subtarget->is64Bit()) {
107    // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
108    setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
109    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
110  }
111
112  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
113  // this operation.
114  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
115  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
116
117  if (X86ScalarSSE) {
118    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
119  } else {
120    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
121    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
122  }
123
124  // Handle FP_TO_UINT by promoting the destination to a larger signed
125  // conversion.
126  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
127  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
128  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
129
130  if (Subtarget->is64Bit()) {
131    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
132    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
133  } else {
134    if (X86ScalarSSE && !Subtarget->hasSSE3())
135      // Expand FP_TO_UINT into a select.
136      // FIXME: We would like to use a Custom expander here eventually to do
137      // the optimal thing for SSE vs. the default expansion in the legalizer.
138      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
139    else
140      // With SSE3 we can use fisttpll to convert to a signed i64.
141      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
142  }
143
144  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
145  if (!X86ScalarSSE) {
146    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
147    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
148  }
149
150  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
151  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
152  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
153  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
154  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
155  if (Subtarget->is64Bit())
156    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
157  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand);
158  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Expand);
159  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
160  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
161  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
162
163  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
164  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
165  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
166  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
167  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
168  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
169  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
170  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
171  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
172  if (Subtarget->is64Bit()) {
173    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
174    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
175    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
176  }
177
178  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
179  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
180
181  // These should be promoted to a larger select which is supported.
182  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
183  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
184  // X86 wants to expand cmov itself.
185  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
186  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
187  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
188  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
189  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
190  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
191  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
192  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
193  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
194  if (Subtarget->is64Bit()) {
195    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
196    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
197  }
198  // X86 ret instruction may pop stack.
199  setOperationAction(ISD::RET             , MVT::Other, Custom);
200  // Darwin ABI issue.
201  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
202  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
203  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
204  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
205  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
206  if (Subtarget->is64Bit()) {
207    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
208    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
209    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
210    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
211  }
212  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
213  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
214  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
215  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
216  // X86 wants to expand memset / memcpy itself.
217  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
218  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
219
220  // We don't have line number support yet.
221  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
222  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
223  // FIXME - use subtarget debug flags
224  if (!Subtarget->isTargetDarwin() &&
225      !Subtarget->isTargetELF() &&
226      !Subtarget->isTargetCygMing())
227    setOperationAction(ISD::LABEL, MVT::Other, Expand);
228
229  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
230  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
231  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
232  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
233  if (Subtarget->is64Bit()) {
234    // FIXME: Verify
235    setExceptionPointerRegister(X86::RAX);
236    setExceptionSelectorRegister(X86::RDX);
237  } else {
238    setExceptionPointerRegister(X86::EAX);
239    setExceptionSelectorRegister(X86::EDX);
240  }
241
242  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
243  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
244  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
245  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
246  if (Subtarget->is64Bit())
247    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
248  else
249    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
250
251  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
252  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
253  if (Subtarget->is64Bit())
254    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
255  if (Subtarget->isTargetCygMing())
256    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
257  else
258    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
259
260  if (X86ScalarSSE) {
261    // Set up the FP register classes.
262    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
263    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
264
265    // Use ANDPD to simulate FABS.
266    setOperationAction(ISD::FABS , MVT::f64, Custom);
267    setOperationAction(ISD::FABS , MVT::f32, Custom);
268
269    // Use XORP to simulate FNEG.
270    setOperationAction(ISD::FNEG , MVT::f64, Custom);
271    setOperationAction(ISD::FNEG , MVT::f32, Custom);
272
273    // Use ANDPD and ORPD to simulate FCOPYSIGN.
274    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
275    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
276
277    // We don't support sin/cos/fmod
278    setOperationAction(ISD::FSIN , MVT::f64, Expand);
279    setOperationAction(ISD::FCOS , MVT::f64, Expand);
280    setOperationAction(ISD::FREM , MVT::f64, Expand);
281    setOperationAction(ISD::FSIN , MVT::f32, Expand);
282    setOperationAction(ISD::FCOS , MVT::f32, Expand);
283    setOperationAction(ISD::FREM , MVT::f32, Expand);
284
285    // Expand FP immediates into loads from the stack, except for the special
286    // cases we handle.
287    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
288    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
289    addLegalFPImmediate(+0.0); // xorps / xorpd
290  } else {
291    // Set up the FP register classes.
292    addRegisterClass(MVT::f64, X86::RFPRegisterClass);
293
294    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
295    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
296    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
297
298    if (!UnsafeFPMath) {
299      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
300      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
301    }
302
303    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
304    addLegalFPImmediate(+0.0); // FLD0
305    addLegalFPImmediate(+1.0); // FLD1
306    addLegalFPImmediate(-0.0); // FLD0/FCHS
307    addLegalFPImmediate(-1.0); // FLD1/FCHS
308  }
309
310  // First set operation action for all vector types to expand. Then we
311  // will selectively turn on ones that can be effectively codegen'd.
312  for (unsigned VT = (unsigned)MVT::Vector + 1;
313       VT != (unsigned)MVT::LAST_VALUETYPE; VT++) {
314    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
315    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
316    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
317    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
318    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
319    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
320    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
321    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
322    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
323    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
324    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
325    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
326    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
327    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
328    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
329  }
330
331  if (Subtarget->hasMMX()) {
332    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
333    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
334    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
335    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
336
337    // FIXME: add MMX packed arithmetics
338
339    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
340    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
341    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
342    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
343
344    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
345    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
346    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
347
348    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
349    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
350
351    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
352    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
353    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
354    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
355    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
356    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
357    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
358
359    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
360    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
361    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
362    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
363    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
364    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
365    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
366
367    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
368    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
369    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
370    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
371    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
372    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
373    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
374
375    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
376    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
377    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
378    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
379    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
380    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
381    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
382
383    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
384    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
385    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
386    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
387
388    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
389    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
390    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
391    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
392
393    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
394    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
395    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Custom);
396    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
397  }
398
399  if (Subtarget->hasSSE1()) {
400    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
401
402    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
403    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
404    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
405    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
406    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
407    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
408    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
409    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
410    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
411  }
412
413  if (Subtarget->hasSSE2()) {
414    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
415    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
416    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
417    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
418    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
419
420    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
421    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
422    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
423    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
424    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
425    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
426    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
427    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
428    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
429    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
430    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
431    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
432    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
433
434    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
435    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
436    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
437    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
438    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
439    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
440
441    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
442    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
443      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
444      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
445      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
446    }
447    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
448    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
449    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
450    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
451    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
452    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
453
454    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
455    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
456      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
457      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
458      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
459      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
460      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
461      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
462      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
463      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
464      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
465      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
466    }
467
468    // Custom lower v2i64 and v2f64 selects.
469    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
470    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
471    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
472    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
473  }
474
475  // We want to custom lower some of our intrinsics.
476  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
477
478  // We have target-specific dag combine patterns for the following nodes:
479  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
480  setTargetDAGCombine(ISD::SELECT);
481
482  computeRegisterProperties();
483
484  // FIXME: These should be based on subtarget info. Plus, the values should
485  // be smaller when we are in optimizing for size mode.
486  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
487  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
488  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
489  allowUnalignedMemoryAccesses = true; // x86 supports it!
490}
491
492
493//===----------------------------------------------------------------------===//
494//               Return Value Calling Convention Implementation
495//===----------------------------------------------------------------------===//
496
497#include "X86GenCallingConv.inc"
498
499/// LowerRET - Lower an ISD::RET node.
500SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
501  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
502
503  SmallVector<CCValAssign, 16> RVLocs;
504  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
505  CCState CCInfo(CC, getTargetMachine(), RVLocs);
506  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
507
508
509  // If this is the first return lowered for this function, add the regs to the
510  // liveout set for the function.
511  if (DAG.getMachineFunction().liveout_empty()) {
512    for (unsigned i = 0; i != RVLocs.size(); ++i)
513      if (RVLocs[i].isRegLoc())
514        DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
515  }
516
517  SDOperand Chain = Op.getOperand(0);
518  SDOperand Flag;
519
520  // Copy the result values into the output registers.
521  if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
522      RVLocs[0].getLocReg() != X86::ST0) {
523    for (unsigned i = 0; i != RVLocs.size(); ++i) {
524      CCValAssign &VA = RVLocs[i];
525      assert(VA.isRegLoc() && "Can only return in registers!");
526      Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
527                               Flag);
528      Flag = Chain.getValue(1);
529    }
530  } else {
531    // We need to handle a destination of ST0 specially, because it isn't really
532    // a register.
533    SDOperand Value = Op.getOperand(1);
534
535    // If this is an FP return with ScalarSSE, we need to move the value from
536    // an XMM register onto the fp-stack.
537    if (X86ScalarSSE) {
538      SDOperand MemLoc;
539
540      // If this is a load into a scalarsse value, don't store the loaded value
541      // back to the stack, only to reload it: just replace the scalar-sse load.
542      if (ISD::isNON_EXTLoad(Value.Val) &&
543          (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
544        Chain  = Value.getOperand(0);
545        MemLoc = Value.getOperand(1);
546      } else {
547        // Spill the value to memory and reload it into top of stack.
548        unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
549        MachineFunction &MF = DAG.getMachineFunction();
550        int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
551        MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
552        Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
553      }
554      SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other);
555      SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
556      Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
557      Chain = Value.getValue(1);
558    }
559
560    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
561    SDOperand Ops[] = { Chain, Value };
562    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
563    Flag = Chain.getValue(1);
564  }
565
566  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
567  if (Flag.Val)
568    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
569  else
570    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
571}
572
573
574/// LowerCallResult - Lower the result values of an ISD::CALL into the
575/// appropriate copies out of appropriate physical registers.  This assumes that
576/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
577/// being lowered.  The returns a SDNode with the same number of values as the
578/// ISD::CALL.
579SDNode *X86TargetLowering::
580LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
581                unsigned CallingConv, SelectionDAG &DAG) {
582
583  // Assign locations to each value returned by this call.
584  SmallVector<CCValAssign, 16> RVLocs;
585  CCState CCInfo(CallingConv, getTargetMachine(), RVLocs);
586  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
587
588
589  SmallVector<SDOperand, 8> ResultVals;
590
591  // Copy all of the result registers out of their specified physreg.
592  if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
593    for (unsigned i = 0; i != RVLocs.size(); ++i) {
594      Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
595                                 RVLocs[i].getValVT(), InFlag).getValue(1);
596      InFlag = Chain.getValue(2);
597      ResultVals.push_back(Chain.getValue(0));
598    }
599  } else {
600    // Copies from the FP stack are special, as ST0 isn't a valid register
601    // before the fp stackifier runs.
602
603    // Copy ST0 into an RFP register with FP_GET_RESULT.
604    SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
605    SDOperand GROps[] = { Chain, InFlag };
606    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
607    Chain  = RetVal.getValue(1);
608    InFlag = RetVal.getValue(2);
609
610    // If we are using ScalarSSE, store ST(0) to the stack and reload it into
611    // an XMM register.
612    if (X86ScalarSSE) {
613      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
614      // shouldn't be necessary except that RFP cannot be live across
615      // multiple blocks. When stackifier is fixed, they can be uncoupled.
616      MachineFunction &MF = DAG.getMachineFunction();
617      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
618      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
619      SDOperand Ops[] = {
620        Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
621      };
622      Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
623      RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
624      Chain = RetVal.getValue(1);
625    }
626
627    if (RVLocs[0].getValVT() == MVT::f32 && !X86ScalarSSE)
628      // FIXME: we would really like to remember that this FP_ROUND
629      // operation is okay to eliminate if we allow excess FP precision.
630      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
631    ResultVals.push_back(RetVal);
632  }
633
634  // Merge everything together with a MERGE_VALUES node.
635  ResultVals.push_back(Chain);
636  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
637                     &ResultVals[0], ResultVals.size()).Val;
638}
639
640
641//===----------------------------------------------------------------------===//
642//                C & StdCall Calling Convention implementation
643//===----------------------------------------------------------------------===//
644//  StdCall calling convention seems to be standard for many Windows' API
645//  routines and around. It differs from C calling convention just a little:
646//  callee should clean up the stack, not caller. Symbols should be also
647//  decorated in some fancy way :) It doesn't support any vector arguments.
648
649/// AddLiveIn - This helper function adds the specified physical register to the
650/// MachineFunction as a live in value.  It also creates a corresponding virtual
651/// register for it.
652static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
653                          const TargetRegisterClass *RC) {
654  assert(RC->contains(PReg) && "Not the correct regclass!");
655  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
656  MF.addLiveIn(PReg, VReg);
657  return VReg;
658}
659
660SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
661                                               bool isStdCall) {
662  unsigned NumArgs = Op.Val->getNumValues() - 1;
663  MachineFunction &MF = DAG.getMachineFunction();
664  MachineFrameInfo *MFI = MF.getFrameInfo();
665  SDOperand Root = Op.getOperand(0);
666  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
667
668  // Assign locations to all of the incoming arguments.
669  SmallVector<CCValAssign, 16> ArgLocs;
670  CCState CCInfo(MF.getFunction()->getCallingConv(), getTargetMachine(),
671                 ArgLocs);
672  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
673
674  SmallVector<SDOperand, 8> ArgValues;
675  unsigned LastVal = ~0U;
676  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
677    CCValAssign &VA = ArgLocs[i];
678    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
679    // places.
680    assert(VA.getValNo() != LastVal &&
681           "Don't support value assigned to multiple locs yet");
682    LastVal = VA.getValNo();
683
684    if (VA.isRegLoc()) {
685      MVT::ValueType RegVT = VA.getLocVT();
686      TargetRegisterClass *RC;
687      if (RegVT == MVT::i32)
688        RC = X86::GR32RegisterClass;
689      else {
690        assert(MVT::isVector(RegVT));
691        RC = X86::VR128RegisterClass;
692      }
693
694      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
695      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
696
697      // If this is an 8 or 16-bit value, it is really passed promoted to 32
698      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
699      // right size.
700      if (VA.getLocInfo() == CCValAssign::SExt)
701        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
702                               DAG.getValueType(VA.getValVT()));
703      else if (VA.getLocInfo() == CCValAssign::ZExt)
704        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
705                               DAG.getValueType(VA.getValVT()));
706
707      if (VA.getLocInfo() != CCValAssign::Full)
708        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
709
710      ArgValues.push_back(ArgValue);
711    } else {
712      assert(VA.isMemLoc());
713
714      // Create the nodes corresponding to a load from this parameter slot.
715      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
716                                      VA.getLocMemOffset());
717      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
718      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
719    }
720  }
721
722  unsigned StackSize = CCInfo.getNextStackOffset();
723
724  ArgValues.push_back(Root);
725
726  // If the function takes variable number of arguments, make a frame index for
727  // the start of the first vararg value... for expansion of llvm.va_start.
728  if (isVarArg)
729    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
730
731  if (isStdCall && !isVarArg) {
732    BytesToPopOnReturn  = StackSize;    // Callee pops everything..
733    BytesCallerReserves = 0;
734  } else {
735    BytesToPopOnReturn  = 0; // Callee pops nothing.
736
737    // If this is an sret function, the return should pop the hidden pointer.
738    if (NumArgs &&
739        (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
740         ISD::ParamFlags::StructReturn))
741      BytesToPopOnReturn = 4;
742
743    BytesCallerReserves = StackSize;
744  }
745
746  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
747  ReturnAddrIndex = 0;            // No return address slot generated yet.
748
749  MF.getInfo<X86MachineFunctionInfo>()
750    ->setBytesToPopOnReturn(BytesToPopOnReturn);
751
752  // Return the new list of results.
753  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
754                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
755}
756
757SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
758                                            unsigned CC) {
759  SDOperand Chain     = Op.getOperand(0);
760  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
761  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
762  SDOperand Callee    = Op.getOperand(4);
763  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
764
765  // Analyze operands of the call, assigning locations to each operand.
766  SmallVector<CCValAssign, 16> ArgLocs;
767  CCState CCInfo(CC, getTargetMachine(), ArgLocs);
768  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
769
770  // Get a count of how many bytes are to be pushed on the stack.
771  unsigned NumBytes = CCInfo.getNextStackOffset();
772
773  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
774
775  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
776  SmallVector<SDOperand, 8> MemOpChains;
777
778  SDOperand StackPtr;
779
780  // Walk the register/memloc assignments, inserting copies/loads.
781  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
782    CCValAssign &VA = ArgLocs[i];
783    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
784
785    // Promote the value if needed.
786    switch (VA.getLocInfo()) {
787    default: assert(0 && "Unknown loc info!");
788    case CCValAssign::Full: break;
789    case CCValAssign::SExt:
790      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
791      break;
792    case CCValAssign::ZExt:
793      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
794      break;
795    case CCValAssign::AExt:
796      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
797      break;
798    }
799
800    if (VA.isRegLoc()) {
801      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
802    } else {
803      assert(VA.isMemLoc());
804      if (StackPtr.Val == 0)
805        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
806      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
807      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
808      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
809    }
810  }
811
812  // If the first argument is an sret pointer, remember it.
813  bool isSRet = NumOps &&
814    (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
815     ISD::ParamFlags::StructReturn);
816
817  if (!MemOpChains.empty())
818    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
819                        &MemOpChains[0], MemOpChains.size());
820
821  // Build a sequence of copy-to-reg nodes chained together with token chain
822  // and flag operands which copy the outgoing args into registers.
823  SDOperand InFlag;
824  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
825    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
826                             InFlag);
827    InFlag = Chain.getValue(1);
828  }
829
830  // ELF / PIC requires GOT in the EBX register before function calls via PLT
831  // GOT pointer.
832  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
833      Subtarget->isPICStyleGOT()) {
834    Chain = DAG.getCopyToReg(Chain, X86::EBX,
835                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
836                             InFlag);
837    InFlag = Chain.getValue(1);
838  }
839
840  // If the callee is a GlobalAddress node (quite common, every direct call is)
841  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
842  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
843    // We should use extra load for direct calls to dllimported functions in
844    // non-JIT mode.
845    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
846                                        getTargetMachine(), true))
847      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
848  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
849    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
850
851  // Returns a chain & a flag for retval copy to use.
852  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
853  SmallVector<SDOperand, 8> Ops;
854  Ops.push_back(Chain);
855  Ops.push_back(Callee);
856
857  // Add argument registers to the end of the list so that they are known live
858  // into the call.
859  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
860    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
861                                  RegsToPass[i].second.getValueType()));
862
863  // Add an implicit use GOT pointer in EBX.
864  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
865      Subtarget->isPICStyleGOT())
866    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
867
868  if (InFlag.Val)
869    Ops.push_back(InFlag);
870
871  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
872                      NodeTys, &Ops[0], Ops.size());
873  InFlag = Chain.getValue(1);
874
875  // Create the CALLSEQ_END node.
876  unsigned NumBytesForCalleeToPush = 0;
877
878  if (CC == CallingConv::X86_StdCall) {
879    if (isVarArg)
880      NumBytesForCalleeToPush = isSRet ? 4 : 0;
881    else
882      NumBytesForCalleeToPush = NumBytes;
883  } else {
884    // If this is is a call to a struct-return function, the callee
885    // pops the hidden struct pointer, so we have to push it back.
886    // This is common for Darwin/X86, Linux & Mingw32 targets.
887    NumBytesForCalleeToPush = isSRet ? 4 : 0;
888  }
889
890  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
891  Ops.clear();
892  Ops.push_back(Chain);
893  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
894  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
895  Ops.push_back(InFlag);
896  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
897  InFlag = Chain.getValue(1);
898
899  // Handle result values, copying them out of physregs into vregs that we
900  // return.
901  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
902}
903
904
905//===----------------------------------------------------------------------===//
906//                   FastCall Calling Convention implementation
907//===----------------------------------------------------------------------===//
908//
909// The X86 'fastcall' calling convention passes up to two integer arguments in
910// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
911// and requires that the callee pop its arguments off the stack (allowing proper
912// tail calls), and has the same return value conventions as C calling convs.
913//
914// This calling convention always arranges for the callee pop value to be 8n+4
915// bytes, which is needed for tail recursion elimination and stack alignment
916// reasons.
917SDOperand
918X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
919  MachineFunction &MF = DAG.getMachineFunction();
920  MachineFrameInfo *MFI = MF.getFrameInfo();
921  SDOperand Root = Op.getOperand(0);
922
923  // Assign locations to all of the incoming arguments.
924  SmallVector<CCValAssign, 16> ArgLocs;
925  CCState CCInfo(MF.getFunction()->getCallingConv(), getTargetMachine(),
926                 ArgLocs);
927  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
928
929  SmallVector<SDOperand, 8> ArgValues;
930  unsigned LastVal = ~0U;
931  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
932    CCValAssign &VA = ArgLocs[i];
933    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
934    // places.
935    assert(VA.getValNo() != LastVal &&
936           "Don't support value assigned to multiple locs yet");
937    LastVal = VA.getValNo();
938
939    if (VA.isRegLoc()) {
940      MVT::ValueType RegVT = VA.getLocVT();
941      TargetRegisterClass *RC;
942      if (RegVT == MVT::i32)
943        RC = X86::GR32RegisterClass;
944      else {
945        assert(MVT::isVector(RegVT));
946        RC = X86::VR128RegisterClass;
947      }
948
949      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
950      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
951
952      // If this is an 8 or 16-bit value, it is really passed promoted to 32
953      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
954      // right size.
955      if (VA.getLocInfo() == CCValAssign::SExt)
956        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
957                               DAG.getValueType(VA.getValVT()));
958      else if (VA.getLocInfo() == CCValAssign::ZExt)
959        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
960                               DAG.getValueType(VA.getValVT()));
961
962      if (VA.getLocInfo() != CCValAssign::Full)
963        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
964
965      ArgValues.push_back(ArgValue);
966    } else {
967      assert(VA.isMemLoc());
968
969      // Create the nodes corresponding to a load from this parameter slot.
970      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
971                                      VA.getLocMemOffset());
972      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
973      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
974    }
975  }
976
977  ArgValues.push_back(Root);
978
979  unsigned StackSize = CCInfo.getNextStackOffset();
980
981  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
982    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
983    // arguments and the arguments after the retaddr has been pushed are aligned.
984    if ((StackSize & 7) == 0)
985      StackSize += 4;
986  }
987
988  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
989  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
990  ReturnAddrIndex = 0;             // No return address slot generated yet.
991  BytesToPopOnReturn = StackSize;  // Callee pops all stack arguments.
992  BytesCallerReserves = 0;
993
994  MF.getInfo<X86MachineFunctionInfo>()
995    ->setBytesToPopOnReturn(BytesToPopOnReturn);
996
997  // Return the new list of results.
998  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
999                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1000}
1001
1002SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1003                                               unsigned CC) {
1004  SDOperand Chain     = Op.getOperand(0);
1005  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1006  SDOperand Callee    = Op.getOperand(4);
1007
1008  // Analyze operands of the call, assigning locations to each operand.
1009  SmallVector<CCValAssign, 16> ArgLocs;
1010  CCState CCInfo(CC, getTargetMachine(), ArgLocs);
1011  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1012
1013  // Get a count of how many bytes are to be pushed on the stack.
1014  unsigned NumBytes = CCInfo.getNextStackOffset();
1015
1016  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1017    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1018    // arguments and the arguments after the retaddr has been pushed are aligned.
1019    if ((NumBytes & 7) == 0)
1020      NumBytes += 4;
1021  }
1022
1023  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1024
1025  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1026  SmallVector<SDOperand, 8> MemOpChains;
1027
1028  SDOperand StackPtr;
1029
1030  // Walk the register/memloc assignments, inserting copies/loads.
1031  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1032    CCValAssign &VA = ArgLocs[i];
1033    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1034
1035    // Promote the value if needed.
1036    switch (VA.getLocInfo()) {
1037      default: assert(0 && "Unknown loc info!");
1038      case CCValAssign::Full: break;
1039      case CCValAssign::SExt:
1040        Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1041        break;
1042      case CCValAssign::ZExt:
1043        Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1044        break;
1045      case CCValAssign::AExt:
1046        Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1047        break;
1048    }
1049
1050    if (VA.isRegLoc()) {
1051      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1052    } else {
1053      assert(VA.isMemLoc());
1054      if (StackPtr.Val == 0)
1055        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1056      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1057      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1058      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1059    }
1060  }
1061
1062  if (!MemOpChains.empty())
1063    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1064                        &MemOpChains[0], MemOpChains.size());
1065
1066  // Build a sequence of copy-to-reg nodes chained together with token chain
1067  // and flag operands which copy the outgoing args into registers.
1068  SDOperand InFlag;
1069  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1070    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1071                             InFlag);
1072    InFlag = Chain.getValue(1);
1073  }
1074
1075  // If the callee is a GlobalAddress node (quite common, every direct call is)
1076  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1077  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1078    // We should use extra load for direct calls to dllimported functions in
1079    // non-JIT mode.
1080    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1081                                        getTargetMachine(), true))
1082      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1083  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1084    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1085
1086  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1087  // GOT pointer.
1088  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1089      Subtarget->isPICStyleGOT()) {
1090    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1091                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1092                             InFlag);
1093    InFlag = Chain.getValue(1);
1094  }
1095
1096  // Returns a chain & a flag for retval copy to use.
1097  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1098  SmallVector<SDOperand, 8> Ops;
1099  Ops.push_back(Chain);
1100  Ops.push_back(Callee);
1101
1102  // Add argument registers to the end of the list so that they are known live
1103  // into the call.
1104  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1105    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1106                                  RegsToPass[i].second.getValueType()));
1107
1108  // Add an implicit use GOT pointer in EBX.
1109  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1110      Subtarget->isPICStyleGOT())
1111    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1112
1113  if (InFlag.Val)
1114    Ops.push_back(InFlag);
1115
1116  // FIXME: Do not generate X86ISD::TAILCALL for now.
1117  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1118                      NodeTys, &Ops[0], Ops.size());
1119  InFlag = Chain.getValue(1);
1120
1121  // Returns a flag for retval copy to use.
1122  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1123  Ops.clear();
1124  Ops.push_back(Chain);
1125  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1126  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1127  Ops.push_back(InFlag);
1128  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1129  InFlag = Chain.getValue(1);
1130
1131  // Handle result values, copying them out of physregs into vregs that we
1132  // return.
1133  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1134}
1135
1136
1137//===----------------------------------------------------------------------===//
1138//                 X86-64 C Calling Convention implementation
1139//===----------------------------------------------------------------------===//
1140
1141SDOperand
1142X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1143  MachineFunction &MF = DAG.getMachineFunction();
1144  MachineFrameInfo *MFI = MF.getFrameInfo();
1145  SDOperand Root = Op.getOperand(0);
1146  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1147
1148  static const unsigned GPR64ArgRegs[] = {
1149    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1150  };
1151  static const unsigned XMMArgRegs[] = {
1152    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1153    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1154  };
1155
1156
1157  // Assign locations to all of the incoming arguments.
1158  SmallVector<CCValAssign, 16> ArgLocs;
1159  CCState CCInfo(MF.getFunction()->getCallingConv(), getTargetMachine(),
1160                 ArgLocs);
1161  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1162
1163  SmallVector<SDOperand, 8> ArgValues;
1164  unsigned LastVal = ~0U;
1165  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1166    CCValAssign &VA = ArgLocs[i];
1167    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1168    // places.
1169    assert(VA.getValNo() != LastVal &&
1170           "Don't support value assigned to multiple locs yet");
1171    LastVal = VA.getValNo();
1172
1173    if (VA.isRegLoc()) {
1174      MVT::ValueType RegVT = VA.getLocVT();
1175      TargetRegisterClass *RC;
1176      if (RegVT == MVT::i32)
1177        RC = X86::GR32RegisterClass;
1178      else if (RegVT == MVT::i64)
1179        RC = X86::GR64RegisterClass;
1180      else if (RegVT == MVT::f32)
1181        RC = X86::FR32RegisterClass;
1182      else if (RegVT == MVT::f64)
1183        RC = X86::FR64RegisterClass;
1184      else {
1185        assert(MVT::isVector(RegVT));
1186        RC = X86::VR128RegisterClass;
1187      }
1188
1189      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1190      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1191
1192      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1193      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1194      // right size.
1195      if (VA.getLocInfo() == CCValAssign::SExt)
1196        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1197                               DAG.getValueType(VA.getValVT()));
1198      else if (VA.getLocInfo() == CCValAssign::ZExt)
1199        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1200                               DAG.getValueType(VA.getValVT()));
1201
1202      if (VA.getLocInfo() != CCValAssign::Full)
1203        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1204
1205      ArgValues.push_back(ArgValue);
1206    } else {
1207      assert(VA.isMemLoc());
1208
1209      // Create the nodes corresponding to a load from this parameter slot.
1210      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1211                                      VA.getLocMemOffset());
1212      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1213      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
1214    }
1215  }
1216
1217  unsigned StackSize = CCInfo.getNextStackOffset();
1218
1219  // If the function takes variable number of arguments, make a frame index for
1220  // the start of the first vararg value... for expansion of llvm.va_start.
1221  if (isVarArg) {
1222    unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1223    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1224
1225    // For X86-64, if there are vararg parameters that are passed via
1226    // registers, then we must store them to their spots on the stack so they
1227    // may be loaded by deferencing the result of va_next.
1228    VarArgsGPOffset = NumIntRegs * 8;
1229    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1230    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1231    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1232
1233    // Store the integer parameter registers.
1234    SmallVector<SDOperand, 8> MemOps;
1235    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1236    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1237                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1238    for (; NumIntRegs != 6; ++NumIntRegs) {
1239      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1240                                X86::GR64RegisterClass);
1241      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1242      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1243      MemOps.push_back(Store);
1244      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1245                        DAG.getConstant(8, getPointerTy()));
1246    }
1247
1248    // Now store the XMM (fp + vector) parameter registers.
1249    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1250                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1251    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1252      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1253                                X86::VR128RegisterClass);
1254      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1255      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1256      MemOps.push_back(Store);
1257      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1258                        DAG.getConstant(16, getPointerTy()));
1259    }
1260    if (!MemOps.empty())
1261        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1262                           &MemOps[0], MemOps.size());
1263  }
1264
1265  ArgValues.push_back(Root);
1266
1267  ReturnAddrIndex = 0;     // No return address slot generated yet.
1268  BytesToPopOnReturn = 0;  // Callee pops nothing.
1269  BytesCallerReserves = StackSize;
1270
1271  // Return the new list of results.
1272  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1273                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1274}
1275
1276SDOperand
1277X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1278                                        unsigned CC) {
1279  SDOperand Chain     = Op.getOperand(0);
1280  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1281  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1282  SDOperand Callee    = Op.getOperand(4);
1283
1284  // Analyze operands of the call, assigning locations to each operand.
1285  SmallVector<CCValAssign, 16> ArgLocs;
1286  CCState CCInfo(CC, getTargetMachine(), ArgLocs);
1287  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1288
1289  // Get a count of how many bytes are to be pushed on the stack.
1290  unsigned NumBytes = CCInfo.getNextStackOffset();
1291  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1292
1293  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1294  SmallVector<SDOperand, 8> MemOpChains;
1295
1296  SDOperand StackPtr;
1297
1298  // Walk the register/memloc assignments, inserting copies/loads.
1299  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1300    CCValAssign &VA = ArgLocs[i];
1301    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1302
1303    // Promote the value if needed.
1304    switch (VA.getLocInfo()) {
1305    default: assert(0 && "Unknown loc info!");
1306    case CCValAssign::Full: break;
1307    case CCValAssign::SExt:
1308      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1309      break;
1310    case CCValAssign::ZExt:
1311      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1312      break;
1313    case CCValAssign::AExt:
1314      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1315      break;
1316    }
1317
1318    if (VA.isRegLoc()) {
1319      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1320    } else {
1321      assert(VA.isMemLoc());
1322      if (StackPtr.Val == 0)
1323        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1324      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1325      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1326      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1327    }
1328  }
1329
1330  if (!MemOpChains.empty())
1331    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1332                        &MemOpChains[0], MemOpChains.size());
1333
1334  // Build a sequence of copy-to-reg nodes chained together with token chain
1335  // and flag operands which copy the outgoing args into registers.
1336  SDOperand InFlag;
1337  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1338    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1339                             InFlag);
1340    InFlag = Chain.getValue(1);
1341  }
1342
1343  if (isVarArg) {
1344    // From AMD64 ABI document:
1345    // For calls that may call functions that use varargs or stdargs
1346    // (prototype-less calls or calls to functions containing ellipsis (...) in
1347    // the declaration) %al is used as hidden argument to specify the number
1348    // of SSE registers used. The contents of %al do not need to match exactly
1349    // the number of registers, but must be an ubound on the number of SSE
1350    // registers used and is in the range 0 - 8 inclusive.
1351
1352    // Count the number of XMM registers allocated.
1353    static const unsigned XMMArgRegs[] = {
1354      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1355      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1356    };
1357    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1358
1359    Chain = DAG.getCopyToReg(Chain, X86::AL,
1360                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1361    InFlag = Chain.getValue(1);
1362  }
1363
1364  // If the callee is a GlobalAddress node (quite common, every direct call is)
1365  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1366  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1367    // We should use extra load for direct calls to dllimported functions in
1368    // non-JIT mode.
1369    if (getTargetMachine().getCodeModel() != CodeModel::Large
1370        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1371                                           getTargetMachine(), true))
1372      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1373  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1374    if (getTargetMachine().getCodeModel() != CodeModel::Large)
1375      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1376
1377  // Returns a chain & a flag for retval copy to use.
1378  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1379  SmallVector<SDOperand, 8> Ops;
1380  Ops.push_back(Chain);
1381  Ops.push_back(Callee);
1382
1383  // Add argument registers to the end of the list so that they are known live
1384  // into the call.
1385  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1386    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1387                                  RegsToPass[i].second.getValueType()));
1388
1389  if (InFlag.Val)
1390    Ops.push_back(InFlag);
1391
1392  // FIXME: Do not generate X86ISD::TAILCALL for now.
1393  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1394                      NodeTys, &Ops[0], Ops.size());
1395  InFlag = Chain.getValue(1);
1396
1397  // Returns a flag for retval copy to use.
1398  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1399  Ops.clear();
1400  Ops.push_back(Chain);
1401  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1402  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1403  Ops.push_back(InFlag);
1404  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1405  InFlag = Chain.getValue(1);
1406
1407  // Handle result values, copying them out of physregs into vregs that we
1408  // return.
1409  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1410}
1411
1412
1413//===----------------------------------------------------------------------===//
1414//                           Other Lowering Hooks
1415//===----------------------------------------------------------------------===//
1416
1417
1418SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1419  if (ReturnAddrIndex == 0) {
1420    // Set up a frame object for the return address.
1421    MachineFunction &MF = DAG.getMachineFunction();
1422    if (Subtarget->is64Bit())
1423      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1424    else
1425      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1426  }
1427
1428  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1429}
1430
1431
1432
1433/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1434/// specific condition code. It returns a false if it cannot do a direct
1435/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1436/// needed.
1437static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1438                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1439                           SelectionDAG &DAG) {
1440  X86CC = X86::COND_INVALID;
1441  if (!isFP) {
1442    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1443      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1444        // X > -1   -> X == 0, jump !sign.
1445        RHS = DAG.getConstant(0, RHS.getValueType());
1446        X86CC = X86::COND_NS;
1447        return true;
1448      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1449        // X < 0   -> X == 0, jump on sign.
1450        X86CC = X86::COND_S;
1451        return true;
1452      }
1453    }
1454
1455    switch (SetCCOpcode) {
1456    default: break;
1457    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1458    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1459    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1460    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1461    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1462    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1463    case ISD::SETULT: X86CC = X86::COND_B;  break;
1464    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1465    case ISD::SETULE: X86CC = X86::COND_BE; break;
1466    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1467    }
1468  } else {
1469    // On a floating point condition, the flags are set as follows:
1470    // ZF  PF  CF   op
1471    //  0 | 0 | 0 | X > Y
1472    //  0 | 0 | 1 | X < Y
1473    //  1 | 0 | 0 | X == Y
1474    //  1 | 1 | 1 | unordered
1475    bool Flip = false;
1476    switch (SetCCOpcode) {
1477    default: break;
1478    case ISD::SETUEQ:
1479    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1480    case ISD::SETOLT: Flip = true; // Fallthrough
1481    case ISD::SETOGT:
1482    case ISD::SETGT: X86CC = X86::COND_A;  break;
1483    case ISD::SETOLE: Flip = true; // Fallthrough
1484    case ISD::SETOGE:
1485    case ISD::SETGE: X86CC = X86::COND_AE; break;
1486    case ISD::SETUGT: Flip = true; // Fallthrough
1487    case ISD::SETULT:
1488    case ISD::SETLT: X86CC = X86::COND_B;  break;
1489    case ISD::SETUGE: Flip = true; // Fallthrough
1490    case ISD::SETULE:
1491    case ISD::SETLE: X86CC = X86::COND_BE; break;
1492    case ISD::SETONE:
1493    case ISD::SETNE: X86CC = X86::COND_NE; break;
1494    case ISD::SETUO: X86CC = X86::COND_P;  break;
1495    case ISD::SETO:  X86CC = X86::COND_NP; break;
1496    }
1497    if (Flip)
1498      std::swap(LHS, RHS);
1499  }
1500
1501  return X86CC != X86::COND_INVALID;
1502}
1503
1504/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1505/// code. Current x86 isa includes the following FP cmov instructions:
1506/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1507static bool hasFPCMov(unsigned X86CC) {
1508  switch (X86CC) {
1509  default:
1510    return false;
1511  case X86::COND_B:
1512  case X86::COND_BE:
1513  case X86::COND_E:
1514  case X86::COND_P:
1515  case X86::COND_A:
1516  case X86::COND_AE:
1517  case X86::COND_NE:
1518  case X86::COND_NP:
1519    return true;
1520  }
1521}
1522
1523/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
1524/// true if Op is undef or if its value falls within the specified range (L, H].
1525static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1526  if (Op.getOpcode() == ISD::UNDEF)
1527    return true;
1528
1529  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1530  return (Val >= Low && Val < Hi);
1531}
1532
1533/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
1534/// true if Op is undef or if its value equal to the specified value.
1535static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1536  if (Op.getOpcode() == ISD::UNDEF)
1537    return true;
1538  return cast<ConstantSDNode>(Op)->getValue() == Val;
1539}
1540
1541/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1542/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1543bool X86::isPSHUFDMask(SDNode *N) {
1544  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1545
1546  if (N->getNumOperands() != 4)
1547    return false;
1548
1549  // Check if the value doesn't reference the second vector.
1550  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1551    SDOperand Arg = N->getOperand(i);
1552    if (Arg.getOpcode() == ISD::UNDEF) continue;
1553    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1554    if (cast<ConstantSDNode>(Arg)->getValue() >= 4)
1555      return false;
1556  }
1557
1558  return true;
1559}
1560
1561/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1562/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1563bool X86::isPSHUFHWMask(SDNode *N) {
1564  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1565
1566  if (N->getNumOperands() != 8)
1567    return false;
1568
1569  // Lower quadword copied in order.
1570  for (unsigned i = 0; i != 4; ++i) {
1571    SDOperand Arg = N->getOperand(i);
1572    if (Arg.getOpcode() == ISD::UNDEF) continue;
1573    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1574    if (cast<ConstantSDNode>(Arg)->getValue() != i)
1575      return false;
1576  }
1577
1578  // Upper quadword shuffled.
1579  for (unsigned i = 4; i != 8; ++i) {
1580    SDOperand Arg = N->getOperand(i);
1581    if (Arg.getOpcode() == ISD::UNDEF) continue;
1582    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1583    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1584    if (Val < 4 || Val > 7)
1585      return false;
1586  }
1587
1588  return true;
1589}
1590
1591/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1592/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1593bool X86::isPSHUFLWMask(SDNode *N) {
1594  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1595
1596  if (N->getNumOperands() != 8)
1597    return false;
1598
1599  // Upper quadword copied in order.
1600  for (unsigned i = 4; i != 8; ++i)
1601    if (!isUndefOrEqual(N->getOperand(i), i))
1602      return false;
1603
1604  // Lower quadword shuffled.
1605  for (unsigned i = 0; i != 4; ++i)
1606    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1607      return false;
1608
1609  return true;
1610}
1611
1612/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1613/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1614static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1615  if (NumElems != 2 && NumElems != 4) return false;
1616
1617  unsigned Half = NumElems / 2;
1618  for (unsigned i = 0; i < Half; ++i)
1619    if (!isUndefOrInRange(Elems[i], 0, NumElems))
1620      return false;
1621  for (unsigned i = Half; i < NumElems; ++i)
1622    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1623      return false;
1624
1625  return true;
1626}
1627
1628bool X86::isSHUFPMask(SDNode *N) {
1629  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1630  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1631}
1632
1633/// isCommutedSHUFP - Returns true if the shuffle mask is except
1634/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1635/// half elements to come from vector 1 (which would equal the dest.) and
1636/// the upper half to come from vector 2.
1637static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1638  if (NumOps != 2 && NumOps != 4) return false;
1639
1640  unsigned Half = NumOps / 2;
1641  for (unsigned i = 0; i < Half; ++i)
1642    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1643      return false;
1644  for (unsigned i = Half; i < NumOps; ++i)
1645    if (!isUndefOrInRange(Ops[i], 0, NumOps))
1646      return false;
1647  return true;
1648}
1649
1650static bool isCommutedSHUFP(SDNode *N) {
1651  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1652  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1653}
1654
1655/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1656/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1657bool X86::isMOVHLPSMask(SDNode *N) {
1658  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1659
1660  if (N->getNumOperands() != 4)
1661    return false;
1662
1663  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1664  return isUndefOrEqual(N->getOperand(0), 6) &&
1665         isUndefOrEqual(N->getOperand(1), 7) &&
1666         isUndefOrEqual(N->getOperand(2), 2) &&
1667         isUndefOrEqual(N->getOperand(3), 3);
1668}
1669
1670/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1671/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1672/// <2, 3, 2, 3>
1673bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1674  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1675
1676  if (N->getNumOperands() != 4)
1677    return false;
1678
1679  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1680  return isUndefOrEqual(N->getOperand(0), 2) &&
1681         isUndefOrEqual(N->getOperand(1), 3) &&
1682         isUndefOrEqual(N->getOperand(2), 2) &&
1683         isUndefOrEqual(N->getOperand(3), 3);
1684}
1685
1686/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1687/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1688bool X86::isMOVLPMask(SDNode *N) {
1689  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1690
1691  unsigned NumElems = N->getNumOperands();
1692  if (NumElems != 2 && NumElems != 4)
1693    return false;
1694
1695  for (unsigned i = 0; i < NumElems/2; ++i)
1696    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1697      return false;
1698
1699  for (unsigned i = NumElems/2; i < NumElems; ++i)
1700    if (!isUndefOrEqual(N->getOperand(i), i))
1701      return false;
1702
1703  return true;
1704}
1705
1706/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1707/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1708/// and MOVLHPS.
1709bool X86::isMOVHPMask(SDNode *N) {
1710  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1711
1712  unsigned NumElems = N->getNumOperands();
1713  if (NumElems != 2 && NumElems != 4)
1714    return false;
1715
1716  for (unsigned i = 0; i < NumElems/2; ++i)
1717    if (!isUndefOrEqual(N->getOperand(i), i))
1718      return false;
1719
1720  for (unsigned i = 0; i < NumElems/2; ++i) {
1721    SDOperand Arg = N->getOperand(i + NumElems/2);
1722    if (!isUndefOrEqual(Arg, i + NumElems))
1723      return false;
1724  }
1725
1726  return true;
1727}
1728
1729/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1730/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1731bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1732                         bool V2IsSplat = false) {
1733  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1734    return false;
1735
1736  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1737    SDOperand BitI  = Elts[i];
1738    SDOperand BitI1 = Elts[i+1];
1739    if (!isUndefOrEqual(BitI, j))
1740      return false;
1741    if (V2IsSplat) {
1742      if (isUndefOrEqual(BitI1, NumElts))
1743        return false;
1744    } else {
1745      if (!isUndefOrEqual(BitI1, j + NumElts))
1746        return false;
1747    }
1748  }
1749
1750  return true;
1751}
1752
1753bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
1754  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1755  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1756}
1757
1758/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1759/// specifies a shuffle of elements that is suitable for input to UNPCKH.
1760bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
1761                         bool V2IsSplat = false) {
1762  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1763    return false;
1764
1765  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1766    SDOperand BitI  = Elts[i];
1767    SDOperand BitI1 = Elts[i+1];
1768    if (!isUndefOrEqual(BitI, j + NumElts/2))
1769      return false;
1770    if (V2IsSplat) {
1771      if (isUndefOrEqual(BitI1, NumElts))
1772        return false;
1773    } else {
1774      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
1775        return false;
1776    }
1777  }
1778
1779  return true;
1780}
1781
1782bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
1783  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1784  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1785}
1786
1787/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
1788/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
1789/// <0, 0, 1, 1>
1790bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
1791  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1792
1793  unsigned NumElems = N->getNumOperands();
1794  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1795    return false;
1796
1797  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1798    SDOperand BitI  = N->getOperand(i);
1799    SDOperand BitI1 = N->getOperand(i+1);
1800
1801    if (!isUndefOrEqual(BitI, j))
1802      return false;
1803    if (!isUndefOrEqual(BitI1, j))
1804      return false;
1805  }
1806
1807  return true;
1808}
1809
1810/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
1811/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
1812/// <2, 2, 3, 3>
1813bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
1814  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1815
1816  unsigned NumElems = N->getNumOperands();
1817  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1818    return false;
1819
1820  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
1821    SDOperand BitI  = N->getOperand(i);
1822    SDOperand BitI1 = N->getOperand(i + 1);
1823
1824    if (!isUndefOrEqual(BitI, j))
1825      return false;
1826    if (!isUndefOrEqual(BitI1, j))
1827      return false;
1828  }
1829
1830  return true;
1831}
1832
1833/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
1834/// specifies a shuffle of elements that is suitable for input to MOVSS,
1835/// MOVSD, and MOVD, i.e. setting the lowest element.
1836static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
1837  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1838    return false;
1839
1840  if (!isUndefOrEqual(Elts[0], NumElts))
1841    return false;
1842
1843  for (unsigned i = 1; i < NumElts; ++i) {
1844    if (!isUndefOrEqual(Elts[i], i))
1845      return false;
1846  }
1847
1848  return true;
1849}
1850
1851bool X86::isMOVLMask(SDNode *N) {
1852  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1853  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
1854}
1855
1856/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
1857/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
1858/// element of vector 2 and the other elements to come from vector 1 in order.
1859static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
1860                           bool V2IsSplat = false,
1861                           bool V2IsUndef = false) {
1862  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
1863    return false;
1864
1865  if (!isUndefOrEqual(Ops[0], 0))
1866    return false;
1867
1868  for (unsigned i = 1; i < NumOps; ++i) {
1869    SDOperand Arg = Ops[i];
1870    if (!(isUndefOrEqual(Arg, i+NumOps) ||
1871          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
1872          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
1873      return false;
1874  }
1875
1876  return true;
1877}
1878
1879static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
1880                           bool V2IsUndef = false) {
1881  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1882  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
1883                        V2IsSplat, V2IsUndef);
1884}
1885
1886/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1887/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
1888bool X86::isMOVSHDUPMask(SDNode *N) {
1889  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1890
1891  if (N->getNumOperands() != 4)
1892    return false;
1893
1894  // Expect 1, 1, 3, 3
1895  for (unsigned i = 0; i < 2; ++i) {
1896    SDOperand Arg = N->getOperand(i);
1897    if (Arg.getOpcode() == ISD::UNDEF) continue;
1898    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1899    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1900    if (Val != 1) return false;
1901  }
1902
1903  bool HasHi = false;
1904  for (unsigned i = 2; i < 4; ++i) {
1905    SDOperand Arg = N->getOperand(i);
1906    if (Arg.getOpcode() == ISD::UNDEF) continue;
1907    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1908    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1909    if (Val != 3) return false;
1910    HasHi = true;
1911  }
1912
1913  // Don't use movshdup if it can be done with a shufps.
1914  return HasHi;
1915}
1916
1917/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1918/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
1919bool X86::isMOVSLDUPMask(SDNode *N) {
1920  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1921
1922  if (N->getNumOperands() != 4)
1923    return false;
1924
1925  // Expect 0, 0, 2, 2
1926  for (unsigned i = 0; i < 2; ++i) {
1927    SDOperand Arg = N->getOperand(i);
1928    if (Arg.getOpcode() == ISD::UNDEF) continue;
1929    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1930    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1931    if (Val != 0) return false;
1932  }
1933
1934  bool HasHi = false;
1935  for (unsigned i = 2; i < 4; ++i) {
1936    SDOperand Arg = N->getOperand(i);
1937    if (Arg.getOpcode() == ISD::UNDEF) continue;
1938    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1939    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1940    if (Val != 2) return false;
1941    HasHi = true;
1942  }
1943
1944  // Don't use movshdup if it can be done with a shufps.
1945  return HasHi;
1946}
1947
1948/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
1949/// a splat of a single element.
1950static bool isSplatMask(SDNode *N) {
1951  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1952
1953  // This is a splat operation if each element of the permute is the same, and
1954  // if the value doesn't reference the second vector.
1955  unsigned NumElems = N->getNumOperands();
1956  SDOperand ElementBase;
1957  unsigned i = 0;
1958  for (; i != NumElems; ++i) {
1959    SDOperand Elt = N->getOperand(i);
1960    if (isa<ConstantSDNode>(Elt)) {
1961      ElementBase = Elt;
1962      break;
1963    }
1964  }
1965
1966  if (!ElementBase.Val)
1967    return false;
1968
1969  for (; i != NumElems; ++i) {
1970    SDOperand Arg = N->getOperand(i);
1971    if (Arg.getOpcode() == ISD::UNDEF) continue;
1972    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1973    if (Arg != ElementBase) return false;
1974  }
1975
1976  // Make sure it is a splat of the first vector operand.
1977  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
1978}
1979
1980/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
1981/// a splat of a single element and it's a 2 or 4 element mask.
1982bool X86::isSplatMask(SDNode *N) {
1983  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1984
1985  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
1986  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
1987    return false;
1988  return ::isSplatMask(N);
1989}
1990
1991/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
1992/// specifies a splat of zero element.
1993bool X86::isSplatLoMask(SDNode *N) {
1994  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1995
1996  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
1997    if (!isUndefOrEqual(N->getOperand(i), 0))
1998      return false;
1999  return true;
2000}
2001
2002/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2003/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2004/// instructions.
2005unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2006  unsigned NumOperands = N->getNumOperands();
2007  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2008  unsigned Mask = 0;
2009  for (unsigned i = 0; i < NumOperands; ++i) {
2010    unsigned Val = 0;
2011    SDOperand Arg = N->getOperand(NumOperands-i-1);
2012    if (Arg.getOpcode() != ISD::UNDEF)
2013      Val = cast<ConstantSDNode>(Arg)->getValue();
2014    if (Val >= NumOperands) Val -= NumOperands;
2015    Mask |= Val;
2016    if (i != NumOperands - 1)
2017      Mask <<= Shift;
2018  }
2019
2020  return Mask;
2021}
2022
2023/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2024/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2025/// instructions.
2026unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2027  unsigned Mask = 0;
2028  // 8 nodes, but we only care about the last 4.
2029  for (unsigned i = 7; i >= 4; --i) {
2030    unsigned Val = 0;
2031    SDOperand Arg = N->getOperand(i);
2032    if (Arg.getOpcode() != ISD::UNDEF)
2033      Val = cast<ConstantSDNode>(Arg)->getValue();
2034    Mask |= (Val - 4);
2035    if (i != 4)
2036      Mask <<= 2;
2037  }
2038
2039  return Mask;
2040}
2041
2042/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2043/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2044/// instructions.
2045unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2046  unsigned Mask = 0;
2047  // 8 nodes, but we only care about the first 4.
2048  for (int i = 3; i >= 0; --i) {
2049    unsigned Val = 0;
2050    SDOperand Arg = N->getOperand(i);
2051    if (Arg.getOpcode() != ISD::UNDEF)
2052      Val = cast<ConstantSDNode>(Arg)->getValue();
2053    Mask |= Val;
2054    if (i != 0)
2055      Mask <<= 2;
2056  }
2057
2058  return Mask;
2059}
2060
2061/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2062/// specifies a 8 element shuffle that can be broken into a pair of
2063/// PSHUFHW and PSHUFLW.
2064static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2065  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2066
2067  if (N->getNumOperands() != 8)
2068    return false;
2069
2070  // Lower quadword shuffled.
2071  for (unsigned i = 0; i != 4; ++i) {
2072    SDOperand Arg = N->getOperand(i);
2073    if (Arg.getOpcode() == ISD::UNDEF) continue;
2074    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2075    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2076    if (Val > 4)
2077      return false;
2078  }
2079
2080  // Upper quadword shuffled.
2081  for (unsigned i = 4; i != 8; ++i) {
2082    SDOperand Arg = N->getOperand(i);
2083    if (Arg.getOpcode() == ISD::UNDEF) continue;
2084    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2085    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2086    if (Val < 4 || Val > 7)
2087      return false;
2088  }
2089
2090  return true;
2091}
2092
2093/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2094/// values in ther permute mask.
2095static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2096                                      SDOperand &V2, SDOperand &Mask,
2097                                      SelectionDAG &DAG) {
2098  MVT::ValueType VT = Op.getValueType();
2099  MVT::ValueType MaskVT = Mask.getValueType();
2100  MVT::ValueType EltVT = MVT::getVectorBaseType(MaskVT);
2101  unsigned NumElems = Mask.getNumOperands();
2102  SmallVector<SDOperand, 8> MaskVec;
2103
2104  for (unsigned i = 0; i != NumElems; ++i) {
2105    SDOperand Arg = Mask.getOperand(i);
2106    if (Arg.getOpcode() == ISD::UNDEF) {
2107      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2108      continue;
2109    }
2110    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2111    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2112    if (Val < NumElems)
2113      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2114    else
2115      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2116  }
2117
2118  std::swap(V1, V2);
2119  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2120  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2121}
2122
2123/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2124/// match movhlps. The lower half elements should come from upper half of
2125/// V1 (and in order), and the upper half elements should come from the upper
2126/// half of V2 (and in order).
2127static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2128  unsigned NumElems = Mask->getNumOperands();
2129  if (NumElems != 4)
2130    return false;
2131  for (unsigned i = 0, e = 2; i != e; ++i)
2132    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2133      return false;
2134  for (unsigned i = 2; i != 4; ++i)
2135    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2136      return false;
2137  return true;
2138}
2139
2140/// isScalarLoadToVector - Returns true if the node is a scalar load that
2141/// is promoted to a vector.
2142static inline bool isScalarLoadToVector(SDNode *N) {
2143  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2144    N = N->getOperand(0).Val;
2145    return ISD::isNON_EXTLoad(N);
2146  }
2147  return false;
2148}
2149
2150/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2151/// match movlp{s|d}. The lower half elements should come from lower half of
2152/// V1 (and in order), and the upper half elements should come from the upper
2153/// half of V2 (and in order). And since V1 will become the source of the
2154/// MOVLP, it must be either a vector load or a scalar load to vector.
2155static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2156  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2157    return false;
2158  // Is V2 is a vector load, don't do this transformation. We will try to use
2159  // load folding shufps op.
2160  if (ISD::isNON_EXTLoad(V2))
2161    return false;
2162
2163  unsigned NumElems = Mask->getNumOperands();
2164  if (NumElems != 2 && NumElems != 4)
2165    return false;
2166  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2167    if (!isUndefOrEqual(Mask->getOperand(i), i))
2168      return false;
2169  for (unsigned i = NumElems/2; i != NumElems; ++i)
2170    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2171      return false;
2172  return true;
2173}
2174
2175/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2176/// all the same.
2177static bool isSplatVector(SDNode *N) {
2178  if (N->getOpcode() != ISD::BUILD_VECTOR)
2179    return false;
2180
2181  SDOperand SplatValue = N->getOperand(0);
2182  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2183    if (N->getOperand(i) != SplatValue)
2184      return false;
2185  return true;
2186}
2187
2188/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2189/// to an undef.
2190static bool isUndefShuffle(SDNode *N) {
2191  if (N->getOpcode() != ISD::BUILD_VECTOR)
2192    return false;
2193
2194  SDOperand V1 = N->getOperand(0);
2195  SDOperand V2 = N->getOperand(1);
2196  SDOperand Mask = N->getOperand(2);
2197  unsigned NumElems = Mask.getNumOperands();
2198  for (unsigned i = 0; i != NumElems; ++i) {
2199    SDOperand Arg = Mask.getOperand(i);
2200    if (Arg.getOpcode() != ISD::UNDEF) {
2201      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2202      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2203        return false;
2204      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2205        return false;
2206    }
2207  }
2208  return true;
2209}
2210
2211/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2212/// that point to V2 points to its first element.
2213static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2214  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2215
2216  bool Changed = false;
2217  SmallVector<SDOperand, 8> MaskVec;
2218  unsigned NumElems = Mask.getNumOperands();
2219  for (unsigned i = 0; i != NumElems; ++i) {
2220    SDOperand Arg = Mask.getOperand(i);
2221    if (Arg.getOpcode() != ISD::UNDEF) {
2222      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2223      if (Val > NumElems) {
2224        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2225        Changed = true;
2226      }
2227    }
2228    MaskVec.push_back(Arg);
2229  }
2230
2231  if (Changed)
2232    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2233                       &MaskVec[0], MaskVec.size());
2234  return Mask;
2235}
2236
2237/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2238/// operation of specified width.
2239static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2240  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2241  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2242
2243  SmallVector<SDOperand, 8> MaskVec;
2244  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2245  for (unsigned i = 1; i != NumElems; ++i)
2246    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2247  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2248}
2249
2250/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2251/// of specified width.
2252static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2253  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2254  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2255  SmallVector<SDOperand, 8> MaskVec;
2256  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2257    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2258    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2259  }
2260  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2261}
2262
2263/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2264/// of specified width.
2265static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2266  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2267  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2268  unsigned Half = NumElems/2;
2269  SmallVector<SDOperand, 8> MaskVec;
2270  for (unsigned i = 0; i != Half; ++i) {
2271    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2272    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2273  }
2274  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2275}
2276
2277/// getZeroVector - Returns a vector of specified type with all zero elements.
2278///
2279static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2280  assert(MVT::isVector(VT) && "Expected a vector type");
2281  unsigned NumElems = getVectorNumElements(VT);
2282  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
2283  bool isFP = MVT::isFloatingPoint(EVT);
2284  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2285  SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2286  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2287}
2288
2289/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2290///
2291static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2292  SDOperand V1 = Op.getOperand(0);
2293  SDOperand Mask = Op.getOperand(2);
2294  MVT::ValueType VT = Op.getValueType();
2295  unsigned NumElems = Mask.getNumOperands();
2296  Mask = getUnpacklMask(NumElems, DAG);
2297  while (NumElems != 4) {
2298    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2299    NumElems >>= 1;
2300  }
2301  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2302
2303  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2304  Mask = getZeroVector(MaskVT, DAG);
2305  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2306                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2307  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2308}
2309
2310/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2311/// constant +0.0.
2312static inline bool isZeroNode(SDOperand Elt) {
2313  return ((isa<ConstantSDNode>(Elt) &&
2314           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2315          (isa<ConstantFPSDNode>(Elt) &&
2316           cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
2317}
2318
2319/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2320/// vector and zero or undef vector.
2321static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2322                                             unsigned NumElems, unsigned Idx,
2323                                             bool isZero, SelectionDAG &DAG) {
2324  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2325  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2326  MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
2327  SDOperand Zero = DAG.getConstant(0, EVT);
2328  SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2329  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2330  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2331                               &MaskVec[0], MaskVec.size());
2332  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2333}
2334
2335/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2336///
2337static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2338                                       unsigned NumNonZero, unsigned NumZero,
2339                                       SelectionDAG &DAG, TargetLowering &TLI) {
2340  if (NumNonZero > 8)
2341    return SDOperand();
2342
2343  SDOperand V(0, 0);
2344  bool First = true;
2345  for (unsigned i = 0; i < 16; ++i) {
2346    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2347    if (ThisIsNonZero && First) {
2348      if (NumZero)
2349        V = getZeroVector(MVT::v8i16, DAG);
2350      else
2351        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2352      First = false;
2353    }
2354
2355    if ((i & 1) != 0) {
2356      SDOperand ThisElt(0, 0), LastElt(0, 0);
2357      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2358      if (LastIsNonZero) {
2359        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2360      }
2361      if (ThisIsNonZero) {
2362        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2363        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2364                              ThisElt, DAG.getConstant(8, MVT::i8));
2365        if (LastIsNonZero)
2366          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2367      } else
2368        ThisElt = LastElt;
2369
2370      if (ThisElt.Val)
2371        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2372                        DAG.getConstant(i/2, TLI.getPointerTy()));
2373    }
2374  }
2375
2376  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2377}
2378
2379/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2380///
2381static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2382                                       unsigned NumNonZero, unsigned NumZero,
2383                                       SelectionDAG &DAG, TargetLowering &TLI) {
2384  if (NumNonZero > 4)
2385    return SDOperand();
2386
2387  SDOperand V(0, 0);
2388  bool First = true;
2389  for (unsigned i = 0; i < 8; ++i) {
2390    bool isNonZero = (NonZeros & (1 << i)) != 0;
2391    if (isNonZero) {
2392      if (First) {
2393        if (NumZero)
2394          V = getZeroVector(MVT::v8i16, DAG);
2395        else
2396          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2397        First = false;
2398      }
2399      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2400                      DAG.getConstant(i, TLI.getPointerTy()));
2401    }
2402  }
2403
2404  return V;
2405}
2406
2407SDOperand
2408X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2409  // All zero's are handled with pxor.
2410  if (ISD::isBuildVectorAllZeros(Op.Val))
2411    return Op;
2412
2413  // All one's are handled with pcmpeqd.
2414  if (ISD::isBuildVectorAllOnes(Op.Val))
2415    return Op;
2416
2417  MVT::ValueType VT = Op.getValueType();
2418  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
2419  unsigned EVTBits = MVT::getSizeInBits(EVT);
2420
2421  unsigned NumElems = Op.getNumOperands();
2422  unsigned NumZero  = 0;
2423  unsigned NumNonZero = 0;
2424  unsigned NonZeros = 0;
2425  std::set<SDOperand> Values;
2426  for (unsigned i = 0; i < NumElems; ++i) {
2427    SDOperand Elt = Op.getOperand(i);
2428    if (Elt.getOpcode() != ISD::UNDEF) {
2429      Values.insert(Elt);
2430      if (isZeroNode(Elt))
2431        NumZero++;
2432      else {
2433        NonZeros |= (1 << i);
2434        NumNonZero++;
2435      }
2436    }
2437  }
2438
2439  if (NumNonZero == 0)
2440    // Must be a mix of zero and undef. Return a zero vector.
2441    return getZeroVector(VT, DAG);
2442
2443  // Splat is obviously ok. Let legalizer expand it to a shuffle.
2444  if (Values.size() == 1)
2445    return SDOperand();
2446
2447  // Special case for single non-zero element.
2448  if (NumNonZero == 1) {
2449    unsigned Idx = CountTrailingZeros_32(NonZeros);
2450    SDOperand Item = Op.getOperand(Idx);
2451    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2452    if (Idx == 0)
2453      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2454      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2455                                         NumZero > 0, DAG);
2456
2457    if (EVTBits == 32) {
2458      // Turn it into a shuffle of zero and zero-extended scalar to vector.
2459      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2460                                         DAG);
2461      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
2462      MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
2463      SmallVector<SDOperand, 8> MaskVec;
2464      for (unsigned i = 0; i < NumElems; i++)
2465        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2466      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2467                                   &MaskVec[0], MaskVec.size());
2468      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2469                         DAG.getNode(ISD::UNDEF, VT), Mask);
2470    }
2471  }
2472
2473  // Let legalizer expand 2-wide build_vectors.
2474  if (EVTBits == 64)
2475    return SDOperand();
2476
2477  // If element VT is < 32 bits, convert it to inserts into a zero vector.
2478  if (EVTBits == 8 && NumElems == 16) {
2479    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2480                                        *this);
2481    if (V.Val) return V;
2482  }
2483
2484  if (EVTBits == 16 && NumElems == 8) {
2485    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2486                                        *this);
2487    if (V.Val) return V;
2488  }
2489
2490  // If element VT is == 32 bits, turn it into a number of shuffles.
2491  SmallVector<SDOperand, 8> V;
2492  V.resize(NumElems);
2493  if (NumElems == 4 && NumZero > 0) {
2494    for (unsigned i = 0; i < 4; ++i) {
2495      bool isZero = !(NonZeros & (1 << i));
2496      if (isZero)
2497        V[i] = getZeroVector(VT, DAG);
2498      else
2499        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2500    }
2501
2502    for (unsigned i = 0; i < 2; ++i) {
2503      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2504        default: break;
2505        case 0:
2506          V[i] = V[i*2];  // Must be a zero vector.
2507          break;
2508        case 1:
2509          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2510                             getMOVLMask(NumElems, DAG));
2511          break;
2512        case 2:
2513          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2514                             getMOVLMask(NumElems, DAG));
2515          break;
2516        case 3:
2517          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2518                             getUnpacklMask(NumElems, DAG));
2519          break;
2520      }
2521    }
2522
2523    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2524    // clears the upper bits.
2525    // FIXME: we can do the same for v4f32 case when we know both parts of
2526    // the lower half come from scalar_to_vector (loadf32). We should do
2527    // that in post legalizer dag combiner with target specific hooks.
2528    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2529      return V[0];
2530    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2531    MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
2532    SmallVector<SDOperand, 8> MaskVec;
2533    bool Reverse = (NonZeros & 0x3) == 2;
2534    for (unsigned i = 0; i < 2; ++i)
2535      if (Reverse)
2536        MaskVec.push_back(DAG.getConstant(1-i, EVT));
2537      else
2538        MaskVec.push_back(DAG.getConstant(i, EVT));
2539    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2540    for (unsigned i = 0; i < 2; ++i)
2541      if (Reverse)
2542        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2543      else
2544        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2545    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2546                                     &MaskVec[0], MaskVec.size());
2547    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2548  }
2549
2550  if (Values.size() > 2) {
2551    // Expand into a number of unpckl*.
2552    // e.g. for v4f32
2553    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2554    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2555    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
2556    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2557    for (unsigned i = 0; i < NumElems; ++i)
2558      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2559    NumElems >>= 1;
2560    while (NumElems != 0) {
2561      for (unsigned i = 0; i < NumElems; ++i)
2562        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2563                           UnpckMask);
2564      NumElems >>= 1;
2565    }
2566    return V[0];
2567  }
2568
2569  return SDOperand();
2570}
2571
2572SDOperand
2573X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2574  SDOperand V1 = Op.getOperand(0);
2575  SDOperand V2 = Op.getOperand(1);
2576  SDOperand PermMask = Op.getOperand(2);
2577  MVT::ValueType VT = Op.getValueType();
2578  unsigned NumElems = PermMask.getNumOperands();
2579  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2580  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2581  bool V1IsSplat = false;
2582  bool V2IsSplat = false;
2583
2584  if (isUndefShuffle(Op.Val))
2585    return DAG.getNode(ISD::UNDEF, VT);
2586
2587  if (isSplatMask(PermMask.Val)) {
2588    if (NumElems <= 4) return Op;
2589    // Promote it to a v4i32 splat.
2590    return PromoteSplat(Op, DAG);
2591  }
2592
2593  if (X86::isMOVLMask(PermMask.Val))
2594    return (V1IsUndef) ? V2 : Op;
2595
2596  if (X86::isMOVSHDUPMask(PermMask.Val) ||
2597      X86::isMOVSLDUPMask(PermMask.Val) ||
2598      X86::isMOVHLPSMask(PermMask.Val) ||
2599      X86::isMOVHPMask(PermMask.Val) ||
2600      X86::isMOVLPMask(PermMask.Val))
2601    return Op;
2602
2603  if (ShouldXformToMOVHLPS(PermMask.Val) ||
2604      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2605    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2606
2607  bool Commuted = false;
2608  V1IsSplat = isSplatVector(V1.Val);
2609  V2IsSplat = isSplatVector(V2.Val);
2610  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2611    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2612    std::swap(V1IsSplat, V2IsSplat);
2613    std::swap(V1IsUndef, V2IsUndef);
2614    Commuted = true;
2615  }
2616
2617  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2618    if (V2IsUndef) return V1;
2619    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2620    if (V2IsSplat) {
2621      // V2 is a splat, so the mask may be malformed. That is, it may point
2622      // to any V2 element. The instruction selectior won't like this. Get
2623      // a corrected mask and commute to form a proper MOVS{S|D}.
2624      SDOperand NewMask = getMOVLMask(NumElems, DAG);
2625      if (NewMask.Val != PermMask.Val)
2626        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2627    }
2628    return Op;
2629  }
2630
2631  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2632      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2633      X86::isUNPCKLMask(PermMask.Val) ||
2634      X86::isUNPCKHMask(PermMask.Val))
2635    return Op;
2636
2637  if (V2IsSplat) {
2638    // Normalize mask so all entries that point to V2 points to its first
2639    // element then try to match unpck{h|l} again. If match, return a
2640    // new vector_shuffle with the corrected mask.
2641    SDOperand NewMask = NormalizeMask(PermMask, DAG);
2642    if (NewMask.Val != PermMask.Val) {
2643      if (X86::isUNPCKLMask(PermMask.Val, true)) {
2644        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2645        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2646      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2647        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2648        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2649      }
2650    }
2651  }
2652
2653  // Normalize the node to match x86 shuffle ops if needed
2654  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
2655      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2656
2657  if (Commuted) {
2658    // Commute is back and try unpck* again.
2659    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2660    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2661        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2662        X86::isUNPCKLMask(PermMask.Val) ||
2663        X86::isUNPCKHMask(PermMask.Val))
2664      return Op;
2665  }
2666
2667  // If VT is integer, try PSHUF* first, then SHUFP*.
2668  if (MVT::isInteger(VT)) {
2669    if (X86::isPSHUFDMask(PermMask.Val) ||
2670        X86::isPSHUFHWMask(PermMask.Val) ||
2671        X86::isPSHUFLWMask(PermMask.Val)) {
2672      if (V2.getOpcode() != ISD::UNDEF)
2673        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2674                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2675      return Op;
2676    }
2677
2678    if (X86::isSHUFPMask(PermMask.Val) &&
2679        MVT::getSizeInBits(VT) != 64)    // Don't do this for MMX.
2680      return Op;
2681
2682    // Handle v8i16 shuffle high / low shuffle node pair.
2683    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
2684      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2685      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2686      SmallVector<SDOperand, 8> MaskVec;
2687      for (unsigned i = 0; i != 4; ++i)
2688        MaskVec.push_back(PermMask.getOperand(i));
2689      for (unsigned i = 4; i != 8; ++i)
2690        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2691      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2692                                   &MaskVec[0], MaskVec.size());
2693      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2694      MaskVec.clear();
2695      for (unsigned i = 0; i != 4; ++i)
2696        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2697      for (unsigned i = 4; i != 8; ++i)
2698        MaskVec.push_back(PermMask.getOperand(i));
2699      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
2700      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2701    }
2702  } else {
2703    // Floating point cases in the other order.
2704    if (X86::isSHUFPMask(PermMask.Val))
2705      return Op;
2706    if (X86::isPSHUFDMask(PermMask.Val) ||
2707        X86::isPSHUFHWMask(PermMask.Val) ||
2708        X86::isPSHUFLWMask(PermMask.Val)) {
2709      if (V2.getOpcode() != ISD::UNDEF)
2710        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2711                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2712      return Op;
2713    }
2714  }
2715
2716  if (NumElems == 4 &&
2717      // Don't do this for MMX.
2718      MVT::getSizeInBits(VT) != 64) {
2719    MVT::ValueType MaskVT = PermMask.getValueType();
2720    MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
2721    SmallVector<std::pair<int, int>, 8> Locs;
2722    Locs.reserve(NumElems);
2723    SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2724    SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2725    unsigned NumHi = 0;
2726    unsigned NumLo = 0;
2727    // If no more than two elements come from either vector. This can be
2728    // implemented with two shuffles. First shuffle gather the elements.
2729    // The second shuffle, which takes the first shuffle as both of its
2730    // vector operands, put the elements into the right order.
2731    for (unsigned i = 0; i != NumElems; ++i) {
2732      SDOperand Elt = PermMask.getOperand(i);
2733      if (Elt.getOpcode() == ISD::UNDEF) {
2734        Locs[i] = std::make_pair(-1, -1);
2735      } else {
2736        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
2737        if (Val < NumElems) {
2738          Locs[i] = std::make_pair(0, NumLo);
2739          Mask1[NumLo] = Elt;
2740          NumLo++;
2741        } else {
2742          Locs[i] = std::make_pair(1, NumHi);
2743          if (2+NumHi < NumElems)
2744            Mask1[2+NumHi] = Elt;
2745          NumHi++;
2746        }
2747      }
2748    }
2749    if (NumLo <= 2 && NumHi <= 2) {
2750      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2751                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2752                                   &Mask1[0], Mask1.size()));
2753      for (unsigned i = 0; i != NumElems; ++i) {
2754        if (Locs[i].first == -1)
2755          continue;
2756        else {
2757          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
2758          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
2759          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
2760        }
2761      }
2762
2763      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
2764                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2765                                     &Mask2[0], Mask2.size()));
2766    }
2767
2768    // Break it into (shuffle shuffle_hi, shuffle_lo).
2769    Locs.clear();
2770    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2771    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2772    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
2773    unsigned MaskIdx = 0;
2774    unsigned LoIdx = 0;
2775    unsigned HiIdx = NumElems/2;
2776    for (unsigned i = 0; i != NumElems; ++i) {
2777      if (i == NumElems/2) {
2778        MaskPtr = &HiMask;
2779        MaskIdx = 1;
2780        LoIdx = 0;
2781        HiIdx = NumElems/2;
2782      }
2783      SDOperand Elt = PermMask.getOperand(i);
2784      if (Elt.getOpcode() == ISD::UNDEF) {
2785        Locs[i] = std::make_pair(-1, -1);
2786      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
2787        Locs[i] = std::make_pair(MaskIdx, LoIdx);
2788        (*MaskPtr)[LoIdx] = Elt;
2789        LoIdx++;
2790      } else {
2791        Locs[i] = std::make_pair(MaskIdx, HiIdx);
2792        (*MaskPtr)[HiIdx] = Elt;
2793        HiIdx++;
2794      }
2795    }
2796
2797    SDOperand LoShuffle =
2798      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2799                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2800                              &LoMask[0], LoMask.size()));
2801    SDOperand HiShuffle =
2802      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2803                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2804                              &HiMask[0], HiMask.size()));
2805    SmallVector<SDOperand, 8> MaskOps;
2806    for (unsigned i = 0; i != NumElems; ++i) {
2807      if (Locs[i].first == -1) {
2808        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
2809      } else {
2810        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
2811        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
2812      }
2813    }
2814    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
2815                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2816                                   &MaskOps[0], MaskOps.size()));
2817  }
2818
2819  return SDOperand();
2820}
2821
2822SDOperand
2823X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
2824  if (!isa<ConstantSDNode>(Op.getOperand(1)))
2825    return SDOperand();
2826
2827  MVT::ValueType VT = Op.getValueType();
2828  // TODO: handle v16i8.
2829  if (MVT::getSizeInBits(VT) == 16) {
2830    // Transform it so it match pextrw which produces a 32-bit result.
2831    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
2832    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
2833                                    Op.getOperand(0), Op.getOperand(1));
2834    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
2835                                    DAG.getValueType(VT));
2836    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
2837  } else if (MVT::getSizeInBits(VT) == 32) {
2838    SDOperand Vec = Op.getOperand(0);
2839    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2840    if (Idx == 0)
2841      return Op;
2842    // SHUFPS the element to the lowest double word, then movss.
2843    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2844    SmallVector<SDOperand, 8> IdxVec;
2845    IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorBaseType(MaskVT)));
2846    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
2847    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
2848    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
2849    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2850                                 &IdxVec[0], IdxVec.size());
2851    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
2852                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
2853    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
2854                       DAG.getConstant(0, getPointerTy()));
2855  } else if (MVT::getSizeInBits(VT) == 64) {
2856    SDOperand Vec = Op.getOperand(0);
2857    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2858    if (Idx == 0)
2859      return Op;
2860
2861    // UNPCKHPD the element to the lowest double word, then movsd.
2862    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
2863    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
2864    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2865    SmallVector<SDOperand, 8> IdxVec;
2866    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorBaseType(MaskVT)));
2867    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
2868    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2869                                 &IdxVec[0], IdxVec.size());
2870    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
2871                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
2872    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
2873                       DAG.getConstant(0, getPointerTy()));
2874  }
2875
2876  return SDOperand();
2877}
2878
2879SDOperand
2880X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
2881  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
2882  // as its second argument.
2883  MVT::ValueType VT = Op.getValueType();
2884  MVT::ValueType BaseVT = MVT::getVectorBaseType(VT);
2885  SDOperand N0 = Op.getOperand(0);
2886  SDOperand N1 = Op.getOperand(1);
2887  SDOperand N2 = Op.getOperand(2);
2888  if (MVT::getSizeInBits(BaseVT) == 16) {
2889    if (N1.getValueType() != MVT::i32)
2890      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
2891    if (N2.getValueType() != MVT::i32)
2892      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(), MVT::i32);
2893    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
2894  } else if (MVT::getSizeInBits(BaseVT) == 32) {
2895    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
2896    if (Idx == 0) {
2897      // Use a movss.
2898      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
2899      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2900      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2901      SmallVector<SDOperand, 8> MaskVec;
2902      MaskVec.push_back(DAG.getConstant(4, BaseVT));
2903      for (unsigned i = 1; i <= 3; ++i)
2904        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2905      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
2906                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2907                                     &MaskVec[0], MaskVec.size()));
2908    } else {
2909      // Use two pinsrw instructions to insert a 32 bit value.
2910      Idx <<= 1;
2911      if (MVT::isFloatingPoint(N1.getValueType())) {
2912        if (ISD::isNON_EXTLoad(N1.Val)) {
2913          // Just load directly from f32mem to GR32.
2914          LoadSDNode *LD = cast<LoadSDNode>(N1);
2915          N1 = DAG.getLoad(MVT::i32, LD->getChain(), LD->getBasePtr(),
2916                           LD->getSrcValue(), LD->getSrcValueOffset());
2917        } else {
2918          N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
2919          N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
2920          N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
2921                           DAG.getConstant(0, getPointerTy()));
2922        }
2923      }
2924      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
2925      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
2926                       DAG.getConstant(Idx, getPointerTy()));
2927      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
2928      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
2929                       DAG.getConstant(Idx+1, getPointerTy()));
2930      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
2931    }
2932  }
2933
2934  return SDOperand();
2935}
2936
2937SDOperand
2938X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2939  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
2940  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
2941}
2942
2943// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2944// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
2945// one of the above mentioned nodes. It has to be wrapped because otherwise
2946// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2947// be used to form addressing mode. These wrapped nodes will be selected
2948// into MOV32ri.
2949SDOperand
2950X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
2951  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2952  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
2953                                               getPointerTy(),
2954                                               CP->getAlignment());
2955  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
2956  // With PIC, the address is actually $g + Offset.
2957  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2958      !Subtarget->isPICStyleRIPRel()) {
2959    Result = DAG.getNode(ISD::ADD, getPointerTy(),
2960                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
2961                         Result);
2962  }
2963
2964  return Result;
2965}
2966
2967SDOperand
2968X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
2969  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2970  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
2971  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
2972  // With PIC, the address is actually $g + Offset.
2973  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2974      !Subtarget->isPICStyleRIPRel()) {
2975    Result = DAG.getNode(ISD::ADD, getPointerTy(),
2976                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
2977                         Result);
2978  }
2979
2980  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
2981  // load the value at address GV, not the value of GV itself. This means that
2982  // the GlobalAddress must be in the base or index register of the address, not
2983  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
2984  // The same applies for external symbols during PIC codegen
2985  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
2986    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
2987
2988  return Result;
2989}
2990
2991// Lower ISD::GlobalTLSAddress using the "general dynamic" model
2992static SDOperand
2993LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
2994                              const MVT::ValueType PtrVT) {
2995  SDOperand InFlag;
2996  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
2997                                     DAG.getNode(X86ISD::GlobalBaseReg,
2998                                                 PtrVT), InFlag);
2999  InFlag = Chain.getValue(1);
3000
3001  // emit leal symbol@TLSGD(,%ebx,1), %eax
3002  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3003  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3004                                             GA->getValueType(0),
3005                                             GA->getOffset());
3006  SDOperand Ops[] = { Chain,  TGA, InFlag };
3007  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3008  InFlag = Result.getValue(2);
3009  Chain = Result.getValue(1);
3010
3011  // call ___tls_get_addr. This function receives its argument in
3012  // the register EAX.
3013  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3014  InFlag = Chain.getValue(1);
3015
3016  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3017  SDOperand Ops1[] = { Chain,
3018                      DAG.getTargetExternalSymbol("___tls_get_addr",
3019                                                  PtrVT),
3020                      DAG.getRegister(X86::EAX, PtrVT),
3021                      DAG.getRegister(X86::EBX, PtrVT),
3022                      InFlag };
3023  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3024  InFlag = Chain.getValue(1);
3025
3026  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3027}
3028
3029// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3030// "local exec" model.
3031static SDOperand
3032LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3033                         const MVT::ValueType PtrVT) {
3034  // Get the Thread Pointer
3035  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3036  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3037  // exec)
3038  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3039                                             GA->getValueType(0),
3040                                             GA->getOffset());
3041  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3042
3043  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3044    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3045
3046  // The address of the thread local variable is the add of the thread
3047  // pointer with the offset of the variable.
3048  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3049}
3050
3051SDOperand
3052X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3053  // TODO: implement the "local dynamic" model
3054  // TODO: implement the "initial exec"model for pic executables
3055  assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3056         "TLS not implemented for non-ELF and 64-bit targets");
3057  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3058  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3059  // otherwise use the "Local Exec"TLS Model
3060  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3061    return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3062  else
3063    return LowerToTLSExecModel(GA, DAG, getPointerTy());
3064}
3065
3066SDOperand
3067X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3068  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3069  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3070  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3071  // With PIC, the address is actually $g + Offset.
3072  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3073      !Subtarget->isPICStyleRIPRel()) {
3074    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3075                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3076                         Result);
3077  }
3078
3079  return Result;
3080}
3081
3082SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3083  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3084  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3085  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3086  // With PIC, the address is actually $g + Offset.
3087  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3088      !Subtarget->isPICStyleRIPRel()) {
3089    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3090                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3091                         Result);
3092  }
3093
3094  return Result;
3095}
3096
3097SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3098    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3099           "Not an i64 shift!");
3100    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3101    SDOperand ShOpLo = Op.getOperand(0);
3102    SDOperand ShOpHi = Op.getOperand(1);
3103    SDOperand ShAmt  = Op.getOperand(2);
3104    SDOperand Tmp1 = isSRA ?
3105      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3106      DAG.getConstant(0, MVT::i32);
3107
3108    SDOperand Tmp2, Tmp3;
3109    if (Op.getOpcode() == ISD::SHL_PARTS) {
3110      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3111      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3112    } else {
3113      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3114      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3115    }
3116
3117    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3118    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3119                                    DAG.getConstant(32, MVT::i8));
3120    SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3121    SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3122
3123    SDOperand Hi, Lo;
3124    SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3125
3126    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3127    SmallVector<SDOperand, 4> Ops;
3128    if (Op.getOpcode() == ISD::SHL_PARTS) {
3129      Ops.push_back(Tmp2);
3130      Ops.push_back(Tmp3);
3131      Ops.push_back(CC);
3132      Ops.push_back(InFlag);
3133      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3134      InFlag = Hi.getValue(1);
3135
3136      Ops.clear();
3137      Ops.push_back(Tmp3);
3138      Ops.push_back(Tmp1);
3139      Ops.push_back(CC);
3140      Ops.push_back(InFlag);
3141      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3142    } else {
3143      Ops.push_back(Tmp2);
3144      Ops.push_back(Tmp3);
3145      Ops.push_back(CC);
3146      Ops.push_back(InFlag);
3147      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3148      InFlag = Lo.getValue(1);
3149
3150      Ops.clear();
3151      Ops.push_back(Tmp3);
3152      Ops.push_back(Tmp1);
3153      Ops.push_back(CC);
3154      Ops.push_back(InFlag);
3155      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3156    }
3157
3158    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3159    Ops.clear();
3160    Ops.push_back(Lo);
3161    Ops.push_back(Hi);
3162    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3163}
3164
3165SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3166  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3167         Op.getOperand(0).getValueType() >= MVT::i16 &&
3168         "Unknown SINT_TO_FP to lower!");
3169
3170  SDOperand Result;
3171  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3172  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3173  MachineFunction &MF = DAG.getMachineFunction();
3174  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3175  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3176  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3177                                 StackSlot, NULL, 0);
3178
3179  // Build the FILD
3180  SDVTList Tys;
3181  if (X86ScalarSSE)
3182    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3183  else
3184    Tys = DAG.getVTList(MVT::f64, MVT::Other);
3185  SmallVector<SDOperand, 8> Ops;
3186  Ops.push_back(Chain);
3187  Ops.push_back(StackSlot);
3188  Ops.push_back(DAG.getValueType(SrcVT));
3189  Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3190                       Tys, &Ops[0], Ops.size());
3191
3192  if (X86ScalarSSE) {
3193    Chain = Result.getValue(1);
3194    SDOperand InFlag = Result.getValue(2);
3195
3196    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3197    // shouldn't be necessary except that RFP cannot be live across
3198    // multiple blocks. When stackifier is fixed, they can be uncoupled.
3199    MachineFunction &MF = DAG.getMachineFunction();
3200    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3201    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3202    Tys = DAG.getVTList(MVT::Other);
3203    SmallVector<SDOperand, 8> Ops;
3204    Ops.push_back(Chain);
3205    Ops.push_back(Result);
3206    Ops.push_back(StackSlot);
3207    Ops.push_back(DAG.getValueType(Op.getValueType()));
3208    Ops.push_back(InFlag);
3209    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3210    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3211  }
3212
3213  return Result;
3214}
3215
3216SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3217  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3218         "Unknown FP_TO_SINT to lower!");
3219  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3220  // stack slot.
3221  MachineFunction &MF = DAG.getMachineFunction();
3222  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3223  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3224  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3225
3226  unsigned Opc;
3227  switch (Op.getValueType()) {
3228    default: assert(0 && "Invalid FP_TO_SINT to lower!");
3229    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3230    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3231    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3232  }
3233
3234  SDOperand Chain = DAG.getEntryNode();
3235  SDOperand Value = Op.getOperand(0);
3236  if (X86ScalarSSE) {
3237    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3238    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3239    SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other);
3240    SDOperand Ops[] = {
3241      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3242    };
3243    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3244    Chain = Value.getValue(1);
3245    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3246    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3247  }
3248
3249  // Build the FP_TO_INT*_IN_MEM
3250  SDOperand Ops[] = { Chain, Value, StackSlot };
3251  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3252
3253  // Load the result.
3254  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3255}
3256
3257SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3258  MVT::ValueType VT = Op.getValueType();
3259  const Type *OpNTy =  MVT::getTypeForValueType(VT);
3260  std::vector<Constant*> CV;
3261  if (VT == MVT::f64) {
3262    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63))));
3263    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3264  } else {
3265    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31))));
3266    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3267    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3268    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3269  }
3270  Constant *CS = ConstantStruct::get(CV);
3271  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3272  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
3273  SmallVector<SDOperand, 3> Ops;
3274  Ops.push_back(DAG.getEntryNode());
3275  Ops.push_back(CPIdx);
3276  Ops.push_back(DAG.getSrcValue(NULL));
3277  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3278  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3279}
3280
3281SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3282  MVT::ValueType VT = Op.getValueType();
3283  const Type *OpNTy =  MVT::getTypeForValueType(VT);
3284  std::vector<Constant*> CV;
3285  if (VT == MVT::f64) {
3286    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63)));
3287    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3288  } else {
3289    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31)));
3290    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3291    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3292    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3293  }
3294  Constant *CS = ConstantStruct::get(CV);
3295  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3296  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
3297  SmallVector<SDOperand, 3> Ops;
3298  Ops.push_back(DAG.getEntryNode());
3299  Ops.push_back(CPIdx);
3300  Ops.push_back(DAG.getSrcValue(NULL));
3301  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3302  return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3303}
3304
3305SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3306  SDOperand Op0 = Op.getOperand(0);
3307  SDOperand Op1 = Op.getOperand(1);
3308  MVT::ValueType VT = Op.getValueType();
3309  MVT::ValueType SrcVT = Op1.getValueType();
3310  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
3311
3312  // If second operand is smaller, extend it first.
3313  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3314    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3315    SrcVT = VT;
3316  }
3317
3318  // First get the sign bit of second operand.
3319  std::vector<Constant*> CV;
3320  if (SrcVT == MVT::f64) {
3321    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(1ULL << 63)));
3322    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3323  } else {
3324    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(1U << 31)));
3325    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3326    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3327    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3328  }
3329  Constant *CS = ConstantStruct::get(CV);
3330  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3331  SDVTList Tys = DAG.getVTList(SrcVT, MVT::Other);
3332  SmallVector<SDOperand, 3> Ops;
3333  Ops.push_back(DAG.getEntryNode());
3334  Ops.push_back(CPIdx);
3335  Ops.push_back(DAG.getSrcValue(NULL));
3336  SDOperand Mask1 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3337  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3338
3339  // Shift sign bit right or left if the two operands have different types.
3340  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3341    // Op0 is MVT::f32, Op1 is MVT::f64.
3342    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3343    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3344                          DAG.getConstant(32, MVT::i32));
3345    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3346    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3347                          DAG.getConstant(0, getPointerTy()));
3348  }
3349
3350  // Clear first operand sign bit.
3351  CV.clear();
3352  if (VT == MVT::f64) {
3353    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(~(1ULL << 63))));
3354    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3355  } else {
3356    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(~(1U << 31))));
3357    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3358    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3359    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3360  }
3361  CS = ConstantStruct::get(CV);
3362  CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3363  Tys = DAG.getVTList(VT, MVT::Other);
3364  Ops.clear();
3365  Ops.push_back(DAG.getEntryNode());
3366  Ops.push_back(CPIdx);
3367  Ops.push_back(DAG.getSrcValue(NULL));
3368  SDOperand Mask2 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3369  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3370
3371  // Or the value with the sign bit.
3372  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3373}
3374
3375SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3376                                        SDOperand Chain) {
3377  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3378  SDOperand Cond;
3379  SDOperand Op0 = Op.getOperand(0);
3380  SDOperand Op1 = Op.getOperand(1);
3381  SDOperand CC = Op.getOperand(2);
3382  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3383  const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3384  const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3385  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3386  unsigned X86CC;
3387
3388  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3389                     Op0, Op1, DAG)) {
3390    SDOperand Ops1[] = { Chain, Op0, Op1 };
3391    Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3392    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3393    return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3394  }
3395
3396  assert(isFP && "Illegal integer SetCC!");
3397
3398  SDOperand COps[] = { Chain, Op0, Op1 };
3399  Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3400
3401  switch (SetCCOpcode) {
3402  default: assert(false && "Illegal floating point SetCC!");
3403  case ISD::SETOEQ: {  // !PF & ZF
3404    SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3405    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3406    SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3407                         Tmp1.getValue(1) };
3408    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3409    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3410  }
3411  case ISD::SETUNE: {  // PF | !ZF
3412    SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3413    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3414    SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3415                         Tmp1.getValue(1) };
3416    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3417    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3418  }
3419  }
3420}
3421
3422SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3423  bool addTest = true;
3424  SDOperand Chain = DAG.getEntryNode();
3425  SDOperand Cond  = Op.getOperand(0);
3426  SDOperand CC;
3427  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3428
3429  if (Cond.getOpcode() == ISD::SETCC)
3430    Cond = LowerSETCC(Cond, DAG, Chain);
3431
3432  if (Cond.getOpcode() == X86ISD::SETCC) {
3433    CC = Cond.getOperand(0);
3434
3435    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3436    // (since flag operand cannot be shared). Use it as the condition setting
3437    // operand in place of the X86ISD::SETCC.
3438    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3439    // to use a test instead of duplicating the X86ISD::CMP (for register
3440    // pressure reason)?
3441    SDOperand Cmp = Cond.getOperand(1);
3442    unsigned Opc = Cmp.getOpcode();
3443    bool IllegalFPCMov = !X86ScalarSSE &&
3444      MVT::isFloatingPoint(Op.getValueType()) &&
3445      !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3446    if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3447        !IllegalFPCMov) {
3448      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3449      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3450      addTest = false;
3451    }
3452  }
3453
3454  if (addTest) {
3455    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3456    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3457    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3458  }
3459
3460  VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3461  SmallVector<SDOperand, 4> Ops;
3462  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3463  // condition is true.
3464  Ops.push_back(Op.getOperand(2));
3465  Ops.push_back(Op.getOperand(1));
3466  Ops.push_back(CC);
3467  Ops.push_back(Cond.getValue(1));
3468  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3469}
3470
3471SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3472  bool addTest = true;
3473  SDOperand Chain = Op.getOperand(0);
3474  SDOperand Cond  = Op.getOperand(1);
3475  SDOperand Dest  = Op.getOperand(2);
3476  SDOperand CC;
3477  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3478
3479  if (Cond.getOpcode() == ISD::SETCC)
3480    Cond = LowerSETCC(Cond, DAG, Chain);
3481
3482  if (Cond.getOpcode() == X86ISD::SETCC) {
3483    CC = Cond.getOperand(0);
3484
3485    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3486    // (since flag operand cannot be shared). Use it as the condition setting
3487    // operand in place of the X86ISD::SETCC.
3488    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3489    // to use a test instead of duplicating the X86ISD::CMP (for register
3490    // pressure reason)?
3491    SDOperand Cmp = Cond.getOperand(1);
3492    unsigned Opc = Cmp.getOpcode();
3493    if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3494      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3495      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3496      addTest = false;
3497    }
3498  }
3499
3500  if (addTest) {
3501    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3502    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3503    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3504  }
3505  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3506                     Cond, Op.getOperand(2), CC, Cond.getValue(1));
3507}
3508
3509SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3510  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3511
3512  if (Subtarget->is64Bit())
3513    return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3514  else
3515    switch (CallingConv) {
3516    default:
3517      assert(0 && "Unsupported calling convention");
3518    case CallingConv::Fast:
3519      // TODO: Implement fastcc
3520      // Falls through
3521    case CallingConv::C:
3522    case CallingConv::X86_StdCall:
3523      return LowerCCCCallTo(Op, DAG, CallingConv);
3524    case CallingConv::X86_FastCall:
3525      return LowerFastCCCallTo(Op, DAG, CallingConv);
3526    }
3527}
3528
3529
3530// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3531// Calls to _alloca is needed to probe the stack when allocating more than 4k
3532// bytes in one go. Touching the stack at 4K increments is necessary to ensure
3533// that the guard pages used by the OS virtual memory manager are allocated in
3534// correct sequence.
3535SDOperand X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
3536                                                     SelectionDAG &DAG) {
3537  assert(Subtarget->isTargetCygMing() &&
3538         "This should be used only on Cygwin/Mingw targets");
3539
3540  // Get the inputs.
3541  SDOperand Chain = Op.getOperand(0);
3542  SDOperand Size  = Op.getOperand(1);
3543  // FIXME: Ensure alignment here
3544
3545  TargetLowering::ArgListTy Args;
3546  TargetLowering::ArgListEntry Entry;
3547  MVT::ValueType IntPtr = getPointerTy();
3548  MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
3549  const Type *IntPtrTy = getTargetData()->getIntPtrType();
3550
3551  Entry.Node    = Size;
3552  Entry.Ty      = IntPtrTy;
3553  Entry.isInReg = true; // Should pass in EAX
3554  Args.push_back(Entry);
3555  std::pair<SDOperand, SDOperand> CallResult =
3556    LowerCallTo(Chain, IntPtrTy, false, false, CallingConv::C, false,
3557                DAG.getExternalSymbol("_alloca", IntPtr), Args, DAG);
3558
3559  SDOperand SP = DAG.getCopyFromReg(CallResult.second, X86StackPtr, SPTy);
3560
3561  std::vector<MVT::ValueType> Tys;
3562  Tys.push_back(SPTy);
3563  Tys.push_back(MVT::Other);
3564  SDOperand Ops[2] = { SP, CallResult.second };
3565  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
3566}
3567
3568SDOperand
3569X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
3570  MachineFunction &MF = DAG.getMachineFunction();
3571  const Function* Fn = MF.getFunction();
3572  if (Fn->hasExternalLinkage() &&
3573      Subtarget->isTargetCygMing() &&
3574      Fn->getName() == "main")
3575    MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
3576
3577  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3578  if (Subtarget->is64Bit())
3579    return LowerX86_64CCCArguments(Op, DAG);
3580  else
3581    switch(CC) {
3582    default:
3583      assert(0 && "Unsupported calling convention");
3584    case CallingConv::Fast:
3585      // TODO: implement fastcc.
3586
3587      // Falls through
3588    case CallingConv::C:
3589      return LowerCCCArguments(Op, DAG);
3590    case CallingConv::X86_StdCall:
3591      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
3592      return LowerCCCArguments(Op, DAG, true);
3593    case CallingConv::X86_FastCall:
3594      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
3595      return LowerFastCCArguments(Op, DAG);
3596    }
3597}
3598
3599SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
3600  SDOperand InFlag(0, 0);
3601  SDOperand Chain = Op.getOperand(0);
3602  unsigned Align =
3603    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3604  if (Align == 0) Align = 1;
3605
3606  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3607  // If not DWORD aligned, call memset if size is less than the threshold.
3608  // It knows how to align to the right boundary first.
3609  if ((Align & 3) != 0 ||
3610      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
3611    MVT::ValueType IntPtr = getPointerTy();
3612    const Type *IntPtrTy = getTargetData()->getIntPtrType();
3613    TargetLowering::ArgListTy Args;
3614    TargetLowering::ArgListEntry Entry;
3615    Entry.Node = Op.getOperand(1);
3616    Entry.Ty = IntPtrTy;
3617    Args.push_back(Entry);
3618    // Extend the unsigned i8 argument to be an int value for the call.
3619    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
3620    Entry.Ty = IntPtrTy;
3621    Args.push_back(Entry);
3622    Entry.Node = Op.getOperand(3);
3623    Args.push_back(Entry);
3624    std::pair<SDOperand,SDOperand> CallResult =
3625      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3626                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
3627    return CallResult.second;
3628  }
3629
3630  MVT::ValueType AVT;
3631  SDOperand Count;
3632  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3633  unsigned BytesLeft = 0;
3634  bool TwoRepStos = false;
3635  if (ValC) {
3636    unsigned ValReg;
3637    uint64_t Val = ValC->getValue() & 255;
3638
3639    // If the value is a constant, then we can potentially use larger sets.
3640    switch (Align & 3) {
3641      case 2:   // WORD aligned
3642        AVT = MVT::i16;
3643        ValReg = X86::AX;
3644        Val = (Val << 8) | Val;
3645        break;
3646      case 0:  // DWORD aligned
3647        AVT = MVT::i32;
3648        ValReg = X86::EAX;
3649        Val = (Val << 8)  | Val;
3650        Val = (Val << 16) | Val;
3651        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
3652          AVT = MVT::i64;
3653          ValReg = X86::RAX;
3654          Val = (Val << 32) | Val;
3655        }
3656        break;
3657      default:  // Byte aligned
3658        AVT = MVT::i8;
3659        ValReg = X86::AL;
3660        Count = Op.getOperand(3);
3661        break;
3662    }
3663
3664    if (AVT > MVT::i8) {
3665      if (I) {
3666        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3667        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3668        BytesLeft = I->getValue() % UBytes;
3669      } else {
3670        assert(AVT >= MVT::i32 &&
3671               "Do not use rep;stos if not at least DWORD aligned");
3672        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3673                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3674        TwoRepStos = true;
3675      }
3676    }
3677
3678    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
3679                              InFlag);
3680    InFlag = Chain.getValue(1);
3681  } else {
3682    AVT = MVT::i8;
3683    Count  = Op.getOperand(3);
3684    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
3685    InFlag = Chain.getValue(1);
3686  }
3687
3688  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3689                            Count, InFlag);
3690  InFlag = Chain.getValue(1);
3691  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3692                            Op.getOperand(1), InFlag);
3693  InFlag = Chain.getValue(1);
3694
3695  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3696  SmallVector<SDOperand, 8> Ops;
3697  Ops.push_back(Chain);
3698  Ops.push_back(DAG.getValueType(AVT));
3699  Ops.push_back(InFlag);
3700  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3701
3702  if (TwoRepStos) {
3703    InFlag = Chain.getValue(1);
3704    Count = Op.getOperand(3);
3705    MVT::ValueType CVT = Count.getValueType();
3706    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3707                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3708    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3709                              Left, InFlag);
3710    InFlag = Chain.getValue(1);
3711    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3712    Ops.clear();
3713    Ops.push_back(Chain);
3714    Ops.push_back(DAG.getValueType(MVT::i8));
3715    Ops.push_back(InFlag);
3716    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3717  } else if (BytesLeft) {
3718    // Issue stores for the last 1 - 7 bytes.
3719    SDOperand Value;
3720    unsigned Val = ValC->getValue() & 255;
3721    unsigned Offset = I->getValue() - BytesLeft;
3722    SDOperand DstAddr = Op.getOperand(1);
3723    MVT::ValueType AddrVT = DstAddr.getValueType();
3724    if (BytesLeft >= 4) {
3725      Val = (Val << 8)  | Val;
3726      Val = (Val << 16) | Val;
3727      Value = DAG.getConstant(Val, MVT::i32);
3728      Chain = DAG.getStore(Chain, Value,
3729                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3730                                       DAG.getConstant(Offset, AddrVT)),
3731                           NULL, 0);
3732      BytesLeft -= 4;
3733      Offset += 4;
3734    }
3735    if (BytesLeft >= 2) {
3736      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
3737      Chain = DAG.getStore(Chain, Value,
3738                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3739                                       DAG.getConstant(Offset, AddrVT)),
3740                           NULL, 0);
3741      BytesLeft -= 2;
3742      Offset += 2;
3743    }
3744    if (BytesLeft == 1) {
3745      Value = DAG.getConstant(Val, MVT::i8);
3746      Chain = DAG.getStore(Chain, Value,
3747                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3748                                       DAG.getConstant(Offset, AddrVT)),
3749                           NULL, 0);
3750    }
3751  }
3752
3753  return Chain;
3754}
3755
3756SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
3757  SDOperand Chain = Op.getOperand(0);
3758  unsigned Align =
3759    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3760  if (Align == 0) Align = 1;
3761
3762  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3763  // If not DWORD aligned, call memcpy if size is less than the threshold.
3764  // It knows how to align to the right boundary first.
3765  if ((Align & 3) != 0 ||
3766      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
3767    MVT::ValueType IntPtr = getPointerTy();
3768    TargetLowering::ArgListTy Args;
3769    TargetLowering::ArgListEntry Entry;
3770    Entry.Ty = getTargetData()->getIntPtrType();
3771    Entry.Node = Op.getOperand(1); Args.push_back(Entry);
3772    Entry.Node = Op.getOperand(2); Args.push_back(Entry);
3773    Entry.Node = Op.getOperand(3); Args.push_back(Entry);
3774    std::pair<SDOperand,SDOperand> CallResult =
3775      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3776                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
3777    return CallResult.second;
3778  }
3779
3780  MVT::ValueType AVT;
3781  SDOperand Count;
3782  unsigned BytesLeft = 0;
3783  bool TwoRepMovs = false;
3784  switch (Align & 3) {
3785    case 2:   // WORD aligned
3786      AVT = MVT::i16;
3787      break;
3788    case 0:  // DWORD aligned
3789      AVT = MVT::i32;
3790      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
3791        AVT = MVT::i64;
3792      break;
3793    default:  // Byte aligned
3794      AVT = MVT::i8;
3795      Count = Op.getOperand(3);
3796      break;
3797  }
3798
3799  if (AVT > MVT::i8) {
3800    if (I) {
3801      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3802      Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3803      BytesLeft = I->getValue() % UBytes;
3804    } else {
3805      assert(AVT >= MVT::i32 &&
3806             "Do not use rep;movs if not at least DWORD aligned");
3807      Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3808                          Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3809      TwoRepMovs = true;
3810    }
3811  }
3812
3813  SDOperand InFlag(0, 0);
3814  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3815                            Count, InFlag);
3816  InFlag = Chain.getValue(1);
3817  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3818                            Op.getOperand(1), InFlag);
3819  InFlag = Chain.getValue(1);
3820  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
3821                            Op.getOperand(2), InFlag);
3822  InFlag = Chain.getValue(1);
3823
3824  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3825  SmallVector<SDOperand, 8> Ops;
3826  Ops.push_back(Chain);
3827  Ops.push_back(DAG.getValueType(AVT));
3828  Ops.push_back(InFlag);
3829  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
3830
3831  if (TwoRepMovs) {
3832    InFlag = Chain.getValue(1);
3833    Count = Op.getOperand(3);
3834    MVT::ValueType CVT = Count.getValueType();
3835    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3836                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3837    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3838                              Left, InFlag);
3839    InFlag = Chain.getValue(1);
3840    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3841    Ops.clear();
3842    Ops.push_back(Chain);
3843    Ops.push_back(DAG.getValueType(MVT::i8));
3844    Ops.push_back(InFlag);
3845    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
3846  } else if (BytesLeft) {
3847    // Issue loads and stores for the last 1 - 7 bytes.
3848    unsigned Offset = I->getValue() - BytesLeft;
3849    SDOperand DstAddr = Op.getOperand(1);
3850    MVT::ValueType DstVT = DstAddr.getValueType();
3851    SDOperand SrcAddr = Op.getOperand(2);
3852    MVT::ValueType SrcVT = SrcAddr.getValueType();
3853    SDOperand Value;
3854    if (BytesLeft >= 4) {
3855      Value = DAG.getLoad(MVT::i32, Chain,
3856                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
3857                                      DAG.getConstant(Offset, SrcVT)),
3858                          NULL, 0);
3859      Chain = Value.getValue(1);
3860      Chain = DAG.getStore(Chain, Value,
3861                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
3862                                       DAG.getConstant(Offset, DstVT)),
3863                           NULL, 0);
3864      BytesLeft -= 4;
3865      Offset += 4;
3866    }
3867    if (BytesLeft >= 2) {
3868      Value = DAG.getLoad(MVT::i16, Chain,
3869                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
3870                                      DAG.getConstant(Offset, SrcVT)),
3871                          NULL, 0);
3872      Chain = Value.getValue(1);
3873      Chain = DAG.getStore(Chain, Value,
3874                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
3875                                       DAG.getConstant(Offset, DstVT)),
3876                           NULL, 0);
3877      BytesLeft -= 2;
3878      Offset += 2;
3879    }
3880
3881    if (BytesLeft == 1) {
3882      Value = DAG.getLoad(MVT::i8, Chain,
3883                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
3884                                      DAG.getConstant(Offset, SrcVT)),
3885                          NULL, 0);
3886      Chain = Value.getValue(1);
3887      Chain = DAG.getStore(Chain, Value,
3888                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
3889                                       DAG.getConstant(Offset, DstVT)),
3890                           NULL, 0);
3891    }
3892  }
3893
3894  return Chain;
3895}
3896
3897SDOperand
3898X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
3899  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3900  SDOperand TheOp = Op.getOperand(0);
3901  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
3902  if (Subtarget->is64Bit()) {
3903    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
3904    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
3905                                         MVT::i64, Copy1.getValue(2));
3906    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
3907                                DAG.getConstant(32, MVT::i8));
3908    SDOperand Ops[] = {
3909      DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
3910    };
3911
3912    Tys = DAG.getVTList(MVT::i64, MVT::Other);
3913    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
3914  }
3915
3916  SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
3917  SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
3918                                       MVT::i32, Copy1.getValue(2));
3919  SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
3920  Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
3921  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
3922}
3923
3924SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
3925  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
3926
3927  if (!Subtarget->is64Bit()) {
3928    // vastart just stores the address of the VarArgsFrameIndex slot into the
3929    // memory location argument.
3930    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
3931    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
3932                        SV->getOffset());
3933  }
3934
3935  // __va_list_tag:
3936  //   gp_offset         (0 - 6 * 8)
3937  //   fp_offset         (48 - 48 + 8 * 16)
3938  //   overflow_arg_area (point to parameters coming in memory).
3939  //   reg_save_area
3940  SmallVector<SDOperand, 8> MemOps;
3941  SDOperand FIN = Op.getOperand(1);
3942  // Store gp_offset
3943  SDOperand Store = DAG.getStore(Op.getOperand(0),
3944                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
3945                                 FIN, SV->getValue(), SV->getOffset());
3946  MemOps.push_back(Store);
3947
3948  // Store fp_offset
3949  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
3950                    DAG.getConstant(4, getPointerTy()));
3951  Store = DAG.getStore(Op.getOperand(0),
3952                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
3953                       FIN, SV->getValue(), SV->getOffset());
3954  MemOps.push_back(Store);
3955
3956  // Store ptr to overflow_arg_area
3957  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
3958                    DAG.getConstant(4, getPointerTy()));
3959  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
3960  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
3961                       SV->getOffset());
3962  MemOps.push_back(Store);
3963
3964  // Store ptr to reg_save_area.
3965  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
3966                    DAG.getConstant(8, getPointerTy()));
3967  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
3968  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
3969                       SV->getOffset());
3970  MemOps.push_back(Store);
3971  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
3972}
3973
3974SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
3975  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
3976  SDOperand Chain = Op.getOperand(0);
3977  SDOperand DstPtr = Op.getOperand(1);
3978  SDOperand SrcPtr = Op.getOperand(2);
3979  SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
3980  SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
3981
3982  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
3983                       SrcSV->getValue(), SrcSV->getOffset());
3984  Chain = SrcPtr.getValue(1);
3985  for (unsigned i = 0; i < 3; ++i) {
3986    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
3987                                SrcSV->getValue(), SrcSV->getOffset());
3988    Chain = Val.getValue(1);
3989    Chain = DAG.getStore(Chain, Val, DstPtr,
3990                         DstSV->getValue(), DstSV->getOffset());
3991    if (i == 2)
3992      break;
3993    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
3994                         DAG.getConstant(8, getPointerTy()));
3995    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
3996                         DAG.getConstant(8, getPointerTy()));
3997  }
3998  return Chain;
3999}
4000
4001SDOperand
4002X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4003  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4004  switch (IntNo) {
4005  default: return SDOperand();    // Don't custom lower most intrinsics.
4006    // Comparison intrinsics.
4007  case Intrinsic::x86_sse_comieq_ss:
4008  case Intrinsic::x86_sse_comilt_ss:
4009  case Intrinsic::x86_sse_comile_ss:
4010  case Intrinsic::x86_sse_comigt_ss:
4011  case Intrinsic::x86_sse_comige_ss:
4012  case Intrinsic::x86_sse_comineq_ss:
4013  case Intrinsic::x86_sse_ucomieq_ss:
4014  case Intrinsic::x86_sse_ucomilt_ss:
4015  case Intrinsic::x86_sse_ucomile_ss:
4016  case Intrinsic::x86_sse_ucomigt_ss:
4017  case Intrinsic::x86_sse_ucomige_ss:
4018  case Intrinsic::x86_sse_ucomineq_ss:
4019  case Intrinsic::x86_sse2_comieq_sd:
4020  case Intrinsic::x86_sse2_comilt_sd:
4021  case Intrinsic::x86_sse2_comile_sd:
4022  case Intrinsic::x86_sse2_comigt_sd:
4023  case Intrinsic::x86_sse2_comige_sd:
4024  case Intrinsic::x86_sse2_comineq_sd:
4025  case Intrinsic::x86_sse2_ucomieq_sd:
4026  case Intrinsic::x86_sse2_ucomilt_sd:
4027  case Intrinsic::x86_sse2_ucomile_sd:
4028  case Intrinsic::x86_sse2_ucomigt_sd:
4029  case Intrinsic::x86_sse2_ucomige_sd:
4030  case Intrinsic::x86_sse2_ucomineq_sd: {
4031    unsigned Opc = 0;
4032    ISD::CondCode CC = ISD::SETCC_INVALID;
4033    switch (IntNo) {
4034    default: break;
4035    case Intrinsic::x86_sse_comieq_ss:
4036    case Intrinsic::x86_sse2_comieq_sd:
4037      Opc = X86ISD::COMI;
4038      CC = ISD::SETEQ;
4039      break;
4040    case Intrinsic::x86_sse_comilt_ss:
4041    case Intrinsic::x86_sse2_comilt_sd:
4042      Opc = X86ISD::COMI;
4043      CC = ISD::SETLT;
4044      break;
4045    case Intrinsic::x86_sse_comile_ss:
4046    case Intrinsic::x86_sse2_comile_sd:
4047      Opc = X86ISD::COMI;
4048      CC = ISD::SETLE;
4049      break;
4050    case Intrinsic::x86_sse_comigt_ss:
4051    case Intrinsic::x86_sse2_comigt_sd:
4052      Opc = X86ISD::COMI;
4053      CC = ISD::SETGT;
4054      break;
4055    case Intrinsic::x86_sse_comige_ss:
4056    case Intrinsic::x86_sse2_comige_sd:
4057      Opc = X86ISD::COMI;
4058      CC = ISD::SETGE;
4059      break;
4060    case Intrinsic::x86_sse_comineq_ss:
4061    case Intrinsic::x86_sse2_comineq_sd:
4062      Opc = X86ISD::COMI;
4063      CC = ISD::SETNE;
4064      break;
4065    case Intrinsic::x86_sse_ucomieq_ss:
4066    case Intrinsic::x86_sse2_ucomieq_sd:
4067      Opc = X86ISD::UCOMI;
4068      CC = ISD::SETEQ;
4069      break;
4070    case Intrinsic::x86_sse_ucomilt_ss:
4071    case Intrinsic::x86_sse2_ucomilt_sd:
4072      Opc = X86ISD::UCOMI;
4073      CC = ISD::SETLT;
4074      break;
4075    case Intrinsic::x86_sse_ucomile_ss:
4076    case Intrinsic::x86_sse2_ucomile_sd:
4077      Opc = X86ISD::UCOMI;
4078      CC = ISD::SETLE;
4079      break;
4080    case Intrinsic::x86_sse_ucomigt_ss:
4081    case Intrinsic::x86_sse2_ucomigt_sd:
4082      Opc = X86ISD::UCOMI;
4083      CC = ISD::SETGT;
4084      break;
4085    case Intrinsic::x86_sse_ucomige_ss:
4086    case Intrinsic::x86_sse2_ucomige_sd:
4087      Opc = X86ISD::UCOMI;
4088      CC = ISD::SETGE;
4089      break;
4090    case Intrinsic::x86_sse_ucomineq_ss:
4091    case Intrinsic::x86_sse2_ucomineq_sd:
4092      Opc = X86ISD::UCOMI;
4093      CC = ISD::SETNE;
4094      break;
4095    }
4096
4097    unsigned X86CC;
4098    SDOperand LHS = Op.getOperand(1);
4099    SDOperand RHS = Op.getOperand(2);
4100    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4101
4102    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4103    SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4104    SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4105    VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4106    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4107    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4108    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4109  }
4110  }
4111}
4112
4113SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4114  // Depths > 0 not supported yet!
4115  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4116    return SDOperand();
4117
4118  // Just load the return address
4119  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4120  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4121}
4122
4123SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4124  // Depths > 0 not supported yet!
4125  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4126    return SDOperand();
4127
4128  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4129  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4130                     DAG.getConstant(4, getPointerTy()));
4131}
4132
4133/// LowerOperation - Provide custom lowering hooks for some operations.
4134///
4135SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4136  switch (Op.getOpcode()) {
4137  default: assert(0 && "Should not custom lower this!");
4138  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4139  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4140  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4141  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
4142  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4143  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4144  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4145  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4146  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
4147  case ISD::SHL_PARTS:
4148  case ISD::SRA_PARTS:
4149  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
4150  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4151  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
4152  case ISD::FABS:               return LowerFABS(Op, DAG);
4153  case ISD::FNEG:               return LowerFNEG(Op, DAG);
4154  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
4155  case ISD::SETCC:              return LowerSETCC(Op, DAG, DAG.getEntryNode());
4156  case ISD::SELECT:             return LowerSELECT(Op, DAG);
4157  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
4158  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4159  case ISD::CALL:               return LowerCALL(Op, DAG);
4160  case ISD::RET:                return LowerRET(Op, DAG);
4161  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
4162  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
4163  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
4164  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
4165  case ISD::VASTART:            return LowerVASTART(Op, DAG);
4166  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
4167  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4168  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4169  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4170  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4171  }
4172  return SDOperand();
4173}
4174
4175const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4176  switch (Opcode) {
4177  default: return NULL;
4178  case X86ISD::SHLD:               return "X86ISD::SHLD";
4179  case X86ISD::SHRD:               return "X86ISD::SHRD";
4180  case X86ISD::FAND:               return "X86ISD::FAND";
4181  case X86ISD::FOR:                return "X86ISD::FOR";
4182  case X86ISD::FXOR:               return "X86ISD::FXOR";
4183  case X86ISD::FSRL:               return "X86ISD::FSRL";
4184  case X86ISD::FILD:               return "X86ISD::FILD";
4185  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
4186  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4187  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4188  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4189  case X86ISD::FLD:                return "X86ISD::FLD";
4190  case X86ISD::FST:                return "X86ISD::FST";
4191  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
4192  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
4193  case X86ISD::CALL:               return "X86ISD::CALL";
4194  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
4195  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
4196  case X86ISD::CMP:                return "X86ISD::CMP";
4197  case X86ISD::COMI:               return "X86ISD::COMI";
4198  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
4199  case X86ISD::SETCC:              return "X86ISD::SETCC";
4200  case X86ISD::CMOV:               return "X86ISD::CMOV";
4201  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
4202  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
4203  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
4204  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
4205  case X86ISD::LOAD_PACK:          return "X86ISD::LOAD_PACK";
4206  case X86ISD::LOAD_UA:            return "X86ISD::LOAD_UA";
4207  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
4208  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
4209  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
4210  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
4211  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
4212  case X86ISD::FMAX:               return "X86ISD::FMAX";
4213  case X86ISD::FMIN:               return "X86ISD::FMIN";
4214  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
4215  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
4216  }
4217}
4218
4219// isLegalAddressingMode - Return true if the addressing mode represented
4220// by AM is legal for this target, for a load/store of the specified type.
4221bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
4222                                              const Type *Ty) const {
4223  // X86 supports extremely general addressing modes.
4224
4225  // X86 allows a sign-extended 32-bit immediate field as a displacement.
4226  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
4227    return false;
4228
4229  if (AM.BaseGV) {
4230    // X86-64 only supports addr of globals in small code model.
4231    if (Subtarget->is64Bit() &&
4232        getTargetMachine().getCodeModel() != CodeModel::Small)
4233      return false;
4234
4235    // We can only fold this if we don't need a load either.
4236    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
4237      return false;
4238  }
4239
4240  switch (AM.Scale) {
4241  case 0:
4242  case 1:
4243  case 2:
4244  case 4:
4245  case 8:
4246    // These scales always work.
4247    break;
4248  case 3:
4249  case 5:
4250  case 9:
4251    // These scales are formed with basereg+scalereg.  Only accept if there is
4252    // no basereg yet.
4253    if (AM.HasBaseReg)
4254      return false;
4255    break;
4256  default:  // Other stuff never works.
4257    return false;
4258  }
4259
4260  return true;
4261}
4262
4263
4264/// isShuffleMaskLegal - Targets can use this to indicate that they only
4265/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4266/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4267/// are assumed to be legal.
4268bool
4269X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4270  // Only do shuffles on 128-bit vector types for now.
4271  if (MVT::getSizeInBits(VT) == 64) return false;
4272  return (Mask.Val->getNumOperands() <= 4 ||
4273          isSplatMask(Mask.Val)  ||
4274          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4275          X86::isUNPCKLMask(Mask.Val) ||
4276          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4277          X86::isUNPCKH_v_undef_Mask(Mask.Val) ||
4278          X86::isUNPCKHMask(Mask.Val));
4279}
4280
4281bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4282                                               MVT::ValueType EVT,
4283                                               SelectionDAG &DAG) const {
4284  unsigned NumElts = BVOps.size();
4285  // Only do shuffles on 128-bit vector types for now.
4286  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4287  if (NumElts == 2) return true;
4288  if (NumElts == 4) {
4289    return (isMOVLMask(&BVOps[0], 4)  ||
4290            isCommutedMOVL(&BVOps[0], 4, true) ||
4291            isSHUFPMask(&BVOps[0], 4) ||
4292            isCommutedSHUFP(&BVOps[0], 4));
4293  }
4294  return false;
4295}
4296
4297//===----------------------------------------------------------------------===//
4298//                           X86 Scheduler Hooks
4299//===----------------------------------------------------------------------===//
4300
4301MachineBasicBlock *
4302X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4303                                           MachineBasicBlock *BB) {
4304  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4305  switch (MI->getOpcode()) {
4306  default: assert(false && "Unexpected instr type to insert");
4307  case X86::CMOV_FR32:
4308  case X86::CMOV_FR64:
4309  case X86::CMOV_V4F32:
4310  case X86::CMOV_V2F64:
4311  case X86::CMOV_V2I64: {
4312    // To "insert" a SELECT_CC instruction, we actually have to insert the
4313    // diamond control-flow pattern.  The incoming instruction knows the
4314    // destination vreg to set, the condition code register to branch on, the
4315    // true/false values to select between, and a branch opcode to use.
4316    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4317    ilist<MachineBasicBlock>::iterator It = BB;
4318    ++It;
4319
4320    //  thisMBB:
4321    //  ...
4322    //   TrueVal = ...
4323    //   cmpTY ccX, r1, r2
4324    //   bCC copy1MBB
4325    //   fallthrough --> copy0MBB
4326    MachineBasicBlock *thisMBB = BB;
4327    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4328    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4329    unsigned Opc =
4330      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4331    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4332    MachineFunction *F = BB->getParent();
4333    F->getBasicBlockList().insert(It, copy0MBB);
4334    F->getBasicBlockList().insert(It, sinkMBB);
4335    // Update machine-CFG edges by first adding all successors of the current
4336    // block to the new block which will contain the Phi node for the select.
4337    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4338        e = BB->succ_end(); i != e; ++i)
4339      sinkMBB->addSuccessor(*i);
4340    // Next, remove all successors of the current block, and add the true
4341    // and fallthrough blocks as its successors.
4342    while(!BB->succ_empty())
4343      BB->removeSuccessor(BB->succ_begin());
4344    BB->addSuccessor(copy0MBB);
4345    BB->addSuccessor(sinkMBB);
4346
4347    //  copy0MBB:
4348    //   %FalseValue = ...
4349    //   # fallthrough to sinkMBB
4350    BB = copy0MBB;
4351
4352    // Update machine-CFG edges
4353    BB->addSuccessor(sinkMBB);
4354
4355    //  sinkMBB:
4356    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4357    //  ...
4358    BB = sinkMBB;
4359    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4360      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4361      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4362
4363    delete MI;   // The pseudo instruction is gone now.
4364    return BB;
4365  }
4366
4367  case X86::FP_TO_INT16_IN_MEM:
4368  case X86::FP_TO_INT32_IN_MEM:
4369  case X86::FP_TO_INT64_IN_MEM: {
4370    // Change the floating point control register to use "round towards zero"
4371    // mode when truncating to an integer value.
4372    MachineFunction *F = BB->getParent();
4373    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4374    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4375
4376    // Load the old value of the high byte of the control word...
4377    unsigned OldCW =
4378      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4379    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4380
4381    // Set the high part to be round to zero...
4382    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4383      .addImm(0xC7F);
4384
4385    // Reload the modified control word now...
4386    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4387
4388    // Restore the memory image of control word to original value
4389    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4390      .addReg(OldCW);
4391
4392    // Get the X86 opcode to use.
4393    unsigned Opc;
4394    switch (MI->getOpcode()) {
4395    default: assert(0 && "illegal opcode!");
4396    case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break;
4397    case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break;
4398    case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break;
4399    }
4400
4401    X86AddressMode AM;
4402    MachineOperand &Op = MI->getOperand(0);
4403    if (Op.isRegister()) {
4404      AM.BaseType = X86AddressMode::RegBase;
4405      AM.Base.Reg = Op.getReg();
4406    } else {
4407      AM.BaseType = X86AddressMode::FrameIndexBase;
4408      AM.Base.FrameIndex = Op.getFrameIndex();
4409    }
4410    Op = MI->getOperand(1);
4411    if (Op.isImmediate())
4412      AM.Scale = Op.getImm();
4413    Op = MI->getOperand(2);
4414    if (Op.isImmediate())
4415      AM.IndexReg = Op.getImm();
4416    Op = MI->getOperand(3);
4417    if (Op.isGlobalAddress()) {
4418      AM.GV = Op.getGlobal();
4419    } else {
4420      AM.Disp = Op.getImm();
4421    }
4422    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4423                      .addReg(MI->getOperand(4).getReg());
4424
4425    // Reload the original control word now.
4426    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4427
4428    delete MI;   // The pseudo instruction is gone now.
4429    return BB;
4430  }
4431  }
4432}
4433
4434//===----------------------------------------------------------------------===//
4435//                           X86 Optimization Hooks
4436//===----------------------------------------------------------------------===//
4437
4438void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4439                                                       uint64_t Mask,
4440                                                       uint64_t &KnownZero,
4441                                                       uint64_t &KnownOne,
4442                                                       unsigned Depth) const {
4443  unsigned Opc = Op.getOpcode();
4444  assert((Opc >= ISD::BUILTIN_OP_END ||
4445          Opc == ISD::INTRINSIC_WO_CHAIN ||
4446          Opc == ISD::INTRINSIC_W_CHAIN ||
4447          Opc == ISD::INTRINSIC_VOID) &&
4448         "Should use MaskedValueIsZero if you don't know whether Op"
4449         " is a target node!");
4450
4451  KnownZero = KnownOne = 0;   // Don't know anything.
4452  switch (Opc) {
4453  default: break;
4454  case X86ISD::SETCC:
4455    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4456    break;
4457  }
4458}
4459
4460/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4461/// element of the result of the vector shuffle.
4462static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4463  MVT::ValueType VT = N->getValueType(0);
4464  SDOperand PermMask = N->getOperand(2);
4465  unsigned NumElems = PermMask.getNumOperands();
4466  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4467  i %= NumElems;
4468  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4469    return (i == 0)
4470      ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
4471  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4472    SDOperand Idx = PermMask.getOperand(i);
4473    if (Idx.getOpcode() == ISD::UNDEF)
4474      return DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
4475    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4476  }
4477  return SDOperand();
4478}
4479
4480/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4481/// node is a GlobalAddress + an offset.
4482static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4483  unsigned Opc = N->getOpcode();
4484  if (Opc == X86ISD::Wrapper) {
4485    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4486      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4487      return true;
4488    }
4489  } else if (Opc == ISD::ADD) {
4490    SDOperand N1 = N->getOperand(0);
4491    SDOperand N2 = N->getOperand(1);
4492    if (isGAPlusOffset(N1.Val, GA, Offset)) {
4493      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4494      if (V) {
4495        Offset += V->getSignExtended();
4496        return true;
4497      }
4498    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4499      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4500      if (V) {
4501        Offset += V->getSignExtended();
4502        return true;
4503      }
4504    }
4505  }
4506  return false;
4507}
4508
4509/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4510/// + Dist * Size.
4511static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4512                              MachineFrameInfo *MFI) {
4513  if (N->getOperand(0).Val != Base->getOperand(0).Val)
4514    return false;
4515
4516  SDOperand Loc = N->getOperand(1);
4517  SDOperand BaseLoc = Base->getOperand(1);
4518  if (Loc.getOpcode() == ISD::FrameIndex) {
4519    if (BaseLoc.getOpcode() != ISD::FrameIndex)
4520      return false;
4521    int FI  = dyn_cast<FrameIndexSDNode>(Loc)->getIndex();
4522    int BFI = dyn_cast<FrameIndexSDNode>(BaseLoc)->getIndex();
4523    int FS  = MFI->getObjectSize(FI);
4524    int BFS = MFI->getObjectSize(BFI);
4525    if (FS != BFS || FS != Size) return false;
4526    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4527  } else {
4528    GlobalValue *GV1 = NULL;
4529    GlobalValue *GV2 = NULL;
4530    int64_t Offset1 = 0;
4531    int64_t Offset2 = 0;
4532    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4533    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4534    if (isGA1 && isGA2 && GV1 == GV2)
4535      return Offset1 == (Offset2 + Dist*Size);
4536  }
4537
4538  return false;
4539}
4540
4541static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4542                              const X86Subtarget *Subtarget) {
4543  GlobalValue *GV;
4544  int64_t Offset;
4545  if (isGAPlusOffset(Base, GV, Offset))
4546    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4547  else {
4548    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
4549    int BFI = dyn_cast<FrameIndexSDNode>(Base)->getIndex();
4550    if (BFI < 0)
4551      // Fixed objects do not specify alignment, however the offsets are known.
4552      return ((Subtarget->getStackAlignment() % 16) == 0 &&
4553              (MFI->getObjectOffset(BFI) % 16) == 0);
4554    else
4555      return MFI->getObjectAlignment(BFI) >= 16;
4556  }
4557  return false;
4558}
4559
4560
4561/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
4562/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
4563/// if the load addresses are consecutive, non-overlapping, and in the right
4564/// order.
4565static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
4566                                       const X86Subtarget *Subtarget) {
4567  MachineFunction &MF = DAG.getMachineFunction();
4568  MachineFrameInfo *MFI = MF.getFrameInfo();
4569  MVT::ValueType VT = N->getValueType(0);
4570  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
4571  SDOperand PermMask = N->getOperand(2);
4572  int NumElems = (int)PermMask.getNumOperands();
4573  SDNode *Base = NULL;
4574  for (int i = 0; i < NumElems; ++i) {
4575    SDOperand Idx = PermMask.getOperand(i);
4576    if (Idx.getOpcode() == ISD::UNDEF) {
4577      if (!Base) return SDOperand();
4578    } else {
4579      SDOperand Arg =
4580        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
4581      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
4582        return SDOperand();
4583      if (!Base)
4584        Base = Arg.Val;
4585      else if (!isConsecutiveLoad(Arg.Val, Base,
4586                                  i, MVT::getSizeInBits(EVT)/8,MFI))
4587        return SDOperand();
4588    }
4589  }
4590
4591  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
4592  if (isAlign16) {
4593    LoadSDNode *LD = cast<LoadSDNode>(Base);
4594    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4595                       LD->getSrcValueOffset());
4596  } else {
4597    // Just use movups, it's shorter.
4598    SDVTList Tys = DAG.getVTList(MVT::v4f32, MVT::Other);
4599    SmallVector<SDOperand, 3> Ops;
4600    Ops.push_back(Base->getOperand(0));
4601    Ops.push_back(Base->getOperand(1));
4602    Ops.push_back(Base->getOperand(2));
4603    return DAG.getNode(ISD::BIT_CONVERT, VT,
4604                       DAG.getNode(X86ISD::LOAD_UA, Tys, &Ops[0], Ops.size()));
4605  }
4606}
4607
4608/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
4609static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
4610                                      const X86Subtarget *Subtarget) {
4611  SDOperand Cond = N->getOperand(0);
4612
4613  // If we have SSE[12] support, try to form min/max nodes.
4614  if (Subtarget->hasSSE2() &&
4615      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
4616    if (Cond.getOpcode() == ISD::SETCC) {
4617      // Get the LHS/RHS of the select.
4618      SDOperand LHS = N->getOperand(1);
4619      SDOperand RHS = N->getOperand(2);
4620      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
4621
4622      unsigned Opcode = 0;
4623      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
4624        switch (CC) {
4625        default: break;
4626        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
4627        case ISD::SETULE:
4628        case ISD::SETLE:
4629          if (!UnsafeFPMath) break;
4630          // FALL THROUGH.
4631        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
4632        case ISD::SETLT:
4633          Opcode = X86ISD::FMIN;
4634          break;
4635
4636        case ISD::SETOGT: // (X > Y) ? X : Y -> max
4637        case ISD::SETUGT:
4638        case ISD::SETGT:
4639          if (!UnsafeFPMath) break;
4640          // FALL THROUGH.
4641        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
4642        case ISD::SETGE:
4643          Opcode = X86ISD::FMAX;
4644          break;
4645        }
4646      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
4647        switch (CC) {
4648        default: break;
4649        case ISD::SETOGT: // (X > Y) ? Y : X -> min
4650        case ISD::SETUGT:
4651        case ISD::SETGT:
4652          if (!UnsafeFPMath) break;
4653          // FALL THROUGH.
4654        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
4655        case ISD::SETGE:
4656          Opcode = X86ISD::FMIN;
4657          break;
4658
4659        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
4660        case ISD::SETULE:
4661        case ISD::SETLE:
4662          if (!UnsafeFPMath) break;
4663          // FALL THROUGH.
4664        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
4665        case ISD::SETLT:
4666          Opcode = X86ISD::FMAX;
4667          break;
4668        }
4669      }
4670
4671      if (Opcode)
4672        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
4673    }
4674
4675  }
4676
4677  return SDOperand();
4678}
4679
4680
4681SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
4682                                               DAGCombinerInfo &DCI) const {
4683  SelectionDAG &DAG = DCI.DAG;
4684  switch (N->getOpcode()) {
4685  default: break;
4686  case ISD::VECTOR_SHUFFLE:
4687    return PerformShuffleCombine(N, DAG, Subtarget);
4688  case ISD::SELECT:
4689    return PerformSELECTCombine(N, DAG, Subtarget);
4690  }
4691
4692  return SDOperand();
4693}
4694
4695//===----------------------------------------------------------------------===//
4696//                           X86 Inline Assembly Support
4697//===----------------------------------------------------------------------===//
4698
4699/// getConstraintType - Given a constraint letter, return the type of
4700/// constraint it is for this target.
4701X86TargetLowering::ConstraintType
4702X86TargetLowering::getConstraintType(const std::string &Constraint) const {
4703  if (Constraint.size() == 1) {
4704    switch (Constraint[0]) {
4705    case 'A':
4706    case 'r':
4707    case 'R':
4708    case 'l':
4709    case 'q':
4710    case 'Q':
4711    case 'x':
4712    case 'Y':
4713      return C_RegisterClass;
4714    default:
4715      break;
4716    }
4717  }
4718  return TargetLowering::getConstraintType(Constraint);
4719}
4720
4721/// isOperandValidForConstraint - Return the specified operand (possibly
4722/// modified) if the specified SDOperand is valid for the specified target
4723/// constraint letter, otherwise return null.
4724SDOperand X86TargetLowering::
4725isOperandValidForConstraint(SDOperand Op, char Constraint, SelectionDAG &DAG) {
4726  switch (Constraint) {
4727  default: break;
4728  case 'I':
4729    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4730      if (C->getValue() <= 31)
4731        return DAG.getTargetConstant(C->getValue(), Op.getValueType());
4732    }
4733    return SDOperand(0,0);
4734  case 'N':
4735    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4736      if (C->getValue() <= 255)
4737        return DAG.getTargetConstant(C->getValue(), Op.getValueType());
4738    }
4739    return SDOperand(0,0);
4740  case 'i': {
4741    // Literal immediates are always ok.
4742    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op))
4743      return DAG.getTargetConstant(CST->getValue(), Op.getValueType());
4744
4745    // If we are in non-pic codegen mode, we allow the address of a global (with
4746    // an optional displacement) to be used with 'i'.
4747    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
4748    int64_t Offset = 0;
4749
4750    // Match either (GA) or (GA+C)
4751    if (GA) {
4752      Offset = GA->getOffset();
4753    } else if (Op.getOpcode() == ISD::ADD) {
4754      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
4755      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
4756      if (C && GA) {
4757        Offset = GA->getOffset()+C->getValue();
4758      } else {
4759        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
4760        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
4761        if (C && GA)
4762          Offset = GA->getOffset()+C->getValue();
4763        else
4764          C = 0, GA = 0;
4765      }
4766    }
4767
4768    if (GA) {
4769      // If addressing this global requires a load (e.g. in PIC mode), we can't
4770      // match.
4771      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
4772                                         false))
4773        return SDOperand(0, 0);
4774
4775      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4776                                      Offset);
4777      return Op;
4778    }
4779
4780    // Otherwise, not valid for this mode.
4781    return SDOperand(0, 0);
4782  }
4783  }
4784  return TargetLowering::isOperandValidForConstraint(Op, Constraint, DAG);
4785}
4786
4787std::vector<unsigned> X86TargetLowering::
4788getRegClassForInlineAsmConstraint(const std::string &Constraint,
4789                                  MVT::ValueType VT) const {
4790  if (Constraint.size() == 1) {
4791    // FIXME: not handling fp-stack yet!
4792    switch (Constraint[0]) {      // GCC X86 Constraint Letters
4793    default: break;  // Unknown constraint letter
4794    case 'A':   // EAX/EDX
4795      if (VT == MVT::i32 || VT == MVT::i64)
4796        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
4797      break;
4798    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
4799    case 'Q':   // Q_REGS
4800      if (VT == MVT::i32)
4801        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
4802      else if (VT == MVT::i16)
4803        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
4804      else if (VT == MVT::i8)
4805        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
4806        break;
4807    }
4808  }
4809
4810  return std::vector<unsigned>();
4811}
4812
4813std::pair<unsigned, const TargetRegisterClass*>
4814X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4815                                                MVT::ValueType VT) const {
4816  // First, see if this is a constraint that directly corresponds to an LLVM
4817  // register class.
4818  if (Constraint.size() == 1) {
4819    // GCC Constraint Letters
4820    switch (Constraint[0]) {
4821    default: break;
4822    case 'r':   // GENERAL_REGS
4823    case 'R':   // LEGACY_REGS
4824    case 'l':   // INDEX_REGS
4825      if (VT == MVT::i64 && Subtarget->is64Bit())
4826        return std::make_pair(0U, X86::GR64RegisterClass);
4827      if (VT == MVT::i32)
4828        return std::make_pair(0U, X86::GR32RegisterClass);
4829      else if (VT == MVT::i16)
4830        return std::make_pair(0U, X86::GR16RegisterClass);
4831      else if (VT == MVT::i8)
4832        return std::make_pair(0U, X86::GR8RegisterClass);
4833      break;
4834    case 'y':   // MMX_REGS if MMX allowed.
4835      if (!Subtarget->hasMMX()) break;
4836      return std::make_pair(0U, X86::VR64RegisterClass);
4837      break;
4838    case 'Y':   // SSE_REGS if SSE2 allowed
4839      if (!Subtarget->hasSSE2()) break;
4840      // FALL THROUGH.
4841    case 'x':   // SSE_REGS if SSE1 allowed
4842      if (!Subtarget->hasSSE1()) break;
4843
4844      switch (VT) {
4845      default: break;
4846      // Scalar SSE types.
4847      case MVT::f32:
4848      case MVT::i32:
4849        return std::make_pair(0U, X86::FR32RegisterClass);
4850      case MVT::f64:
4851      case MVT::i64:
4852        return std::make_pair(0U, X86::FR64RegisterClass);
4853      // Vector types.
4854      case MVT::Vector:
4855      case MVT::v16i8:
4856      case MVT::v8i16:
4857      case MVT::v4i32:
4858      case MVT::v2i64:
4859      case MVT::v4f32:
4860      case MVT::v2f64:
4861        return std::make_pair(0U, X86::VR128RegisterClass);
4862      }
4863      break;
4864    }
4865  }
4866
4867  // Use the default implementation in TargetLowering to convert the register
4868  // constraint into a member of a register class.
4869  std::pair<unsigned, const TargetRegisterClass*> Res;
4870  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4871
4872  // Not found as a standard register?
4873  if (Res.second == 0) {
4874    // GCC calls "st(0)" just plain "st".
4875    if (StringsEqualNoCase("{st}", Constraint)) {
4876      Res.first = X86::ST0;
4877      Res.second = X86::RSTRegisterClass;
4878    }
4879
4880    return Res;
4881  }
4882
4883  // Otherwise, check to see if this is a register class of the wrong value
4884  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
4885  // turn into {ax},{dx}.
4886  if (Res.second->hasType(VT))
4887    return Res;   // Correct type already, nothing to do.
4888
4889  // All of the single-register GCC register classes map their values onto
4890  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
4891  // really want an 8-bit or 32-bit register, map to the appropriate register
4892  // class and return the appropriate register.
4893  if (Res.second != X86::GR16RegisterClass)
4894    return Res;
4895
4896  if (VT == MVT::i8) {
4897    unsigned DestReg = 0;
4898    switch (Res.first) {
4899    default: break;
4900    case X86::AX: DestReg = X86::AL; break;
4901    case X86::DX: DestReg = X86::DL; break;
4902    case X86::CX: DestReg = X86::CL; break;
4903    case X86::BX: DestReg = X86::BL; break;
4904    }
4905    if (DestReg) {
4906      Res.first = DestReg;
4907      Res.second = Res.second = X86::GR8RegisterClass;
4908    }
4909  } else if (VT == MVT::i32) {
4910    unsigned DestReg = 0;
4911    switch (Res.first) {
4912    default: break;
4913    case X86::AX: DestReg = X86::EAX; break;
4914    case X86::DX: DestReg = X86::EDX; break;
4915    case X86::CX: DestReg = X86::ECX; break;
4916    case X86::BX: DestReg = X86::EBX; break;
4917    case X86::SI: DestReg = X86::ESI; break;
4918    case X86::DI: DestReg = X86::EDI; break;
4919    case X86::BP: DestReg = X86::EBP; break;
4920    case X86::SP: DestReg = X86::ESP; break;
4921    }
4922    if (DestReg) {
4923      Res.first = DestReg;
4924      Res.second = Res.second = X86::GR32RegisterClass;
4925    }
4926  } else if (VT == MVT::i64) {
4927    unsigned DestReg = 0;
4928    switch (Res.first) {
4929    default: break;
4930    case X86::AX: DestReg = X86::RAX; break;
4931    case X86::DX: DestReg = X86::RDX; break;
4932    case X86::CX: DestReg = X86::RCX; break;
4933    case X86::BX: DestReg = X86::RBX; break;
4934    case X86::SI: DestReg = X86::RSI; break;
4935    case X86::DI: DestReg = X86::RDI; break;
4936    case X86::BP: DestReg = X86::RBP; break;
4937    case X86::SP: DestReg = X86::RSP; break;
4938    }
4939    if (DestReg) {
4940      Res.first = DestReg;
4941      Res.second = Res.second = X86::GR64RegisterClass;
4942    }
4943  }
4944
4945  return Res;
4946}
4947