X86ISelLowering.cpp revision 0b457f0c3a7e21b1fb9ac8b9f8e404e1312b6a60
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the interfaces that X86 uses to lower LLVM code into a 11// selection DAG. 12// 13//===----------------------------------------------------------------------===// 14 15#include "X86.h" 16#include "X86InstrBuilder.h" 17#include "X86ISelLowering.h" 18#include "X86MachineFunctionInfo.h" 19#include "X86TargetMachine.h" 20#include "llvm/CallingConv.h" 21#include "llvm/Constants.h" 22#include "llvm/DerivedTypes.h" 23#include "llvm/GlobalVariable.h" 24#include "llvm/Function.h" 25#include "llvm/Intrinsics.h" 26#include "llvm/ADT/BitVector.h" 27#include "llvm/ADT/VectorExtras.h" 28#include "llvm/CodeGen/CallingConvLower.h" 29#include "llvm/CodeGen/MachineFrameInfo.h" 30#include "llvm/CodeGen/MachineFunction.h" 31#include "llvm/CodeGen/MachineInstrBuilder.h" 32#include "llvm/CodeGen/MachineModuleInfo.h" 33#include "llvm/CodeGen/MachineRegisterInfo.h" 34#include "llvm/CodeGen/PseudoSourceValue.h" 35#include "llvm/CodeGen/SelectionDAG.h" 36#include "llvm/Support/MathExtras.h" 37#include "llvm/Support/Debug.h" 38#include "llvm/Target/TargetOptions.h" 39#include "llvm/ADT/SmallSet.h" 40#include "llvm/ADT/StringExtras.h" 41using namespace llvm; 42 43// Forward declarations. 44static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG); 45 46X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) 47 : TargetLowering(TM) { 48 Subtarget = &TM.getSubtarget<X86Subtarget>(); 49 X86ScalarSSEf64 = Subtarget->hasSSE2(); 50 X86ScalarSSEf32 = Subtarget->hasSSE1(); 51 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP; 52 53 bool Fast = false; 54 55 RegInfo = TM.getRegisterInfo(); 56 TD = getTargetData(); 57 58 // Set up the TargetLowering object. 59 60 // X86 is weird, it always uses i8 for shift amounts and setcc results. 61 setShiftAmountType(MVT::i8); 62 setSetCCResultContents(ZeroOrOneSetCCResult); 63 setSchedulingPreference(SchedulingForRegPressure); 64 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0 65 setStackPointerRegisterToSaveRestore(X86StackPtr); 66 67 if (Subtarget->isTargetDarwin()) { 68 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. 69 setUseUnderscoreSetJmp(false); 70 setUseUnderscoreLongJmp(false); 71 } else if (Subtarget->isTargetMingw()) { 72 // MS runtime is weird: it exports _setjmp, but longjmp! 73 setUseUnderscoreSetJmp(true); 74 setUseUnderscoreLongJmp(false); 75 } else { 76 setUseUnderscoreSetJmp(true); 77 setUseUnderscoreLongJmp(true); 78 } 79 80 // Set up the register classes. 81 addRegisterClass(MVT::i8, X86::GR8RegisterClass); 82 addRegisterClass(MVT::i16, X86::GR16RegisterClass); 83 addRegisterClass(MVT::i32, X86::GR32RegisterClass); 84 if (Subtarget->is64Bit()) 85 addRegisterClass(MVT::i64, X86::GR64RegisterClass); 86 87 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote); 88 89 // We don't accept any truncstore of integer registers. 90 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 91 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 92 setTruncStoreAction(MVT::i64, MVT::i8 , Expand); 93 setTruncStoreAction(MVT::i32, MVT::i16, Expand); 94 setTruncStoreAction(MVT::i32, MVT::i8 , Expand); 95 setTruncStoreAction(MVT::i16, MVT::i8, Expand); 96 97 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this 98 // operation. 99 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); 100 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); 101 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); 102 103 if (Subtarget->is64Bit()) { 104 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand); 105 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); 106 } else { 107 if (X86ScalarSSEf64) 108 // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP. 109 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand); 110 else 111 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); 112 } 113 114 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have 115 // this operation. 116 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); 117 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); 118 // SSE has no i16 to fp conversion, only i32 119 if (X86ScalarSSEf32) { 120 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); 121 // f32 and f64 cases are Legal, f80 case is not 122 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); 123 } else { 124 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); 125 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); 126 } 127 128 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64 129 // are Legal, f80 is custom lowered. 130 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); 131 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); 132 133 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have 134 // this operation. 135 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); 136 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); 137 138 if (X86ScalarSSEf32) { 139 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); 140 // f32 and f64 cases are Legal, f80 case is not 141 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); 142 } else { 143 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); 144 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); 145 } 146 147 // Handle FP_TO_UINT by promoting the destination to a larger signed 148 // conversion. 149 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); 150 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); 151 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); 152 153 if (Subtarget->is64Bit()) { 154 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand); 155 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); 156 } else { 157 if (X86ScalarSSEf32 && !Subtarget->hasSSE3()) 158 // Expand FP_TO_UINT into a select. 159 // FIXME: We would like to use a Custom expander here eventually to do 160 // the optimal thing for SSE vs. the default expansion in the legalizer. 161 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); 162 else 163 // With SSE3 we can use fisttpll to convert to a signed i64. 164 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); 165 } 166 167 // TODO: when we have SSE, these could be more efficient, by using movd/movq. 168 if (!X86ScalarSSEf64) { 169 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand); 170 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand); 171 } 172 173 // Scalar integer divide and remainder are lowered to use operations that 174 // produce two results, to match the available instructions. This exposes 175 // the two-result form to trivial CSE, which is able to combine x/y and x%y 176 // into a single instruction. 177 // 178 // Scalar integer multiply-high is also lowered to use two-result 179 // operations, to match the available instructions. However, plain multiply 180 // (low) operations are left as Legal, as there are single-result 181 // instructions for this in x86. Using the two-result multiply instructions 182 // when both high and low results are needed must be arranged by dagcombine. 183 setOperationAction(ISD::MULHS , MVT::i8 , Expand); 184 setOperationAction(ISD::MULHU , MVT::i8 , Expand); 185 setOperationAction(ISD::SDIV , MVT::i8 , Expand); 186 setOperationAction(ISD::UDIV , MVT::i8 , Expand); 187 setOperationAction(ISD::SREM , MVT::i8 , Expand); 188 setOperationAction(ISD::UREM , MVT::i8 , Expand); 189 setOperationAction(ISD::MULHS , MVT::i16 , Expand); 190 setOperationAction(ISD::MULHU , MVT::i16 , Expand); 191 setOperationAction(ISD::SDIV , MVT::i16 , Expand); 192 setOperationAction(ISD::UDIV , MVT::i16 , Expand); 193 setOperationAction(ISD::SREM , MVT::i16 , Expand); 194 setOperationAction(ISD::UREM , MVT::i16 , Expand); 195 setOperationAction(ISD::MULHS , MVT::i32 , Expand); 196 setOperationAction(ISD::MULHU , MVT::i32 , Expand); 197 setOperationAction(ISD::SDIV , MVT::i32 , Expand); 198 setOperationAction(ISD::UDIV , MVT::i32 , Expand); 199 setOperationAction(ISD::SREM , MVT::i32 , Expand); 200 setOperationAction(ISD::UREM , MVT::i32 , Expand); 201 setOperationAction(ISD::MULHS , MVT::i64 , Expand); 202 setOperationAction(ISD::MULHU , MVT::i64 , Expand); 203 setOperationAction(ISD::SDIV , MVT::i64 , Expand); 204 setOperationAction(ISD::UDIV , MVT::i64 , Expand); 205 setOperationAction(ISD::SREM , MVT::i64 , Expand); 206 setOperationAction(ISD::UREM , MVT::i64 , Expand); 207 208 setOperationAction(ISD::BR_JT , MVT::Other, Expand); 209 setOperationAction(ISD::BRCOND , MVT::Other, Custom); 210 setOperationAction(ISD::BR_CC , MVT::Other, Expand); 211 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand); 212 if (Subtarget->is64Bit()) 213 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); 214 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal); 215 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); 216 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); 217 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); 218 setOperationAction(ISD::FREM , MVT::f32 , Expand); 219 setOperationAction(ISD::FREM , MVT::f64 , Expand); 220 setOperationAction(ISD::FREM , MVT::f80 , Expand); 221 setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom); 222 223 setOperationAction(ISD::CTPOP , MVT::i8 , Expand); 224 setOperationAction(ISD::CTTZ , MVT::i8 , Custom); 225 setOperationAction(ISD::CTLZ , MVT::i8 , Custom); 226 setOperationAction(ISD::CTPOP , MVT::i16 , Expand); 227 setOperationAction(ISD::CTTZ , MVT::i16 , Custom); 228 setOperationAction(ISD::CTLZ , MVT::i16 , Custom); 229 setOperationAction(ISD::CTPOP , MVT::i32 , Expand); 230 setOperationAction(ISD::CTTZ , MVT::i32 , Custom); 231 setOperationAction(ISD::CTLZ , MVT::i32 , Custom); 232 if (Subtarget->is64Bit()) { 233 setOperationAction(ISD::CTPOP , MVT::i64 , Expand); 234 setOperationAction(ISD::CTTZ , MVT::i64 , Custom); 235 setOperationAction(ISD::CTLZ , MVT::i64 , Custom); 236 } 237 238 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); 239 setOperationAction(ISD::BSWAP , MVT::i16 , Expand); 240 241 // These should be promoted to a larger select which is supported. 242 setOperationAction(ISD::SELECT , MVT::i1 , Promote); 243 setOperationAction(ISD::SELECT , MVT::i8 , Promote); 244 // X86 wants to expand cmov itself. 245 setOperationAction(ISD::SELECT , MVT::i16 , Custom); 246 setOperationAction(ISD::SELECT , MVT::i32 , Custom); 247 setOperationAction(ISD::SELECT , MVT::f32 , Custom); 248 setOperationAction(ISD::SELECT , MVT::f64 , Custom); 249 setOperationAction(ISD::SELECT , MVT::f80 , Custom); 250 setOperationAction(ISD::SETCC , MVT::i8 , Custom); 251 setOperationAction(ISD::SETCC , MVT::i16 , Custom); 252 setOperationAction(ISD::SETCC , MVT::i32 , Custom); 253 setOperationAction(ISD::SETCC , MVT::f32 , Custom); 254 setOperationAction(ISD::SETCC , MVT::f64 , Custom); 255 setOperationAction(ISD::SETCC , MVT::f80 , Custom); 256 if (Subtarget->is64Bit()) { 257 setOperationAction(ISD::SELECT , MVT::i64 , Custom); 258 setOperationAction(ISD::SETCC , MVT::i64 , Custom); 259 } 260 // X86 ret instruction may pop stack. 261 setOperationAction(ISD::RET , MVT::Other, Custom); 262 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom); 263 264 // Darwin ABI issue. 265 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); 266 setOperationAction(ISD::JumpTable , MVT::i32 , Custom); 267 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); 268 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom); 269 if (Subtarget->is64Bit()) 270 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 271 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom); 272 if (Subtarget->is64Bit()) { 273 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom); 274 setOperationAction(ISD::JumpTable , MVT::i64 , Custom); 275 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom); 276 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom); 277 } 278 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) 279 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); 280 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); 281 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); 282 if (Subtarget->is64Bit()) { 283 setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom); 284 setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom); 285 setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom); 286 } 287 288 if (Subtarget->hasSSE1()) 289 setOperationAction(ISD::PREFETCH , MVT::Other, Legal); 290 291 if (!Subtarget->hasSSE2()) 292 setOperationAction(ISD::MEMBARRIER , MVT::Other, Expand); 293 294 // Expand certain atomics 295 setOperationAction(ISD::ATOMIC_CMP_SWAP_8 , MVT::i8, Custom); 296 setOperationAction(ISD::ATOMIC_CMP_SWAP_16, MVT::i16, Custom); 297 setOperationAction(ISD::ATOMIC_CMP_SWAP_32, MVT::i32, Custom); 298 setOperationAction(ISD::ATOMIC_CMP_SWAP_64, MVT::i64, Custom); 299 300 setOperationAction(ISD::ATOMIC_LOAD_SUB_8, MVT::i8, Expand); 301 setOperationAction(ISD::ATOMIC_LOAD_SUB_16, MVT::i16, Expand); 302 setOperationAction(ISD::ATOMIC_LOAD_SUB_32, MVT::i32, Expand); 303 setOperationAction(ISD::ATOMIC_LOAD_SUB_64, MVT::i64, Expand); 304 305 // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion. 306 setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand); 307 // FIXME - use subtarget debug flags 308 if (!Subtarget->isTargetDarwin() && 309 !Subtarget->isTargetELF() && 310 !Subtarget->isTargetCygMing()) { 311 setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand); 312 setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); 313 } 314 315 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); 316 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); 317 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); 318 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); 319 if (Subtarget->is64Bit()) { 320 setExceptionPointerRegister(X86::RAX); 321 setExceptionSelectorRegister(X86::RDX); 322 } else { 323 setExceptionPointerRegister(X86::EAX); 324 setExceptionSelectorRegister(X86::EDX); 325 } 326 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); 327 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom); 328 329 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom); 330 331 setOperationAction(ISD::TRAP, MVT::Other, Legal); 332 333 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 334 setOperationAction(ISD::VASTART , MVT::Other, Custom); 335 setOperationAction(ISD::VAEND , MVT::Other, Expand); 336 if (Subtarget->is64Bit()) { 337 setOperationAction(ISD::VAARG , MVT::Other, Custom); 338 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 339 } else { 340 setOperationAction(ISD::VAARG , MVT::Other, Expand); 341 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 342 } 343 344 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 345 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 346 if (Subtarget->is64Bit()) 347 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); 348 if (Subtarget->isTargetCygMing()) 349 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 350 else 351 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 352 353 if (X86ScalarSSEf64) { 354 // f32 and f64 use SSE. 355 // Set up the FP register classes. 356 addRegisterClass(MVT::f32, X86::FR32RegisterClass); 357 addRegisterClass(MVT::f64, X86::FR64RegisterClass); 358 359 // Use ANDPD to simulate FABS. 360 setOperationAction(ISD::FABS , MVT::f64, Custom); 361 setOperationAction(ISD::FABS , MVT::f32, Custom); 362 363 // Use XORP to simulate FNEG. 364 setOperationAction(ISD::FNEG , MVT::f64, Custom); 365 setOperationAction(ISD::FNEG , MVT::f32, Custom); 366 367 // Use ANDPD and ORPD to simulate FCOPYSIGN. 368 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); 369 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 370 371 // We don't support sin/cos/fmod 372 setOperationAction(ISD::FSIN , MVT::f64, Expand); 373 setOperationAction(ISD::FCOS , MVT::f64, Expand); 374 setOperationAction(ISD::FSIN , MVT::f32, Expand); 375 setOperationAction(ISD::FCOS , MVT::f32, Expand); 376 377 // Expand FP immediates into loads from the stack, except for the special 378 // cases we handle. 379 addLegalFPImmediate(APFloat(+0.0)); // xorpd 380 addLegalFPImmediate(APFloat(+0.0f)); // xorps 381 382 // Floating truncations from f80 and extensions to f80 go through memory. 383 // If optimizing, we lie about this though and handle it in 384 // InstructionSelectPreprocess so that dagcombine2 can hack on these. 385 if (Fast) { 386 setConvertAction(MVT::f32, MVT::f80, Expand); 387 setConvertAction(MVT::f64, MVT::f80, Expand); 388 setConvertAction(MVT::f80, MVT::f32, Expand); 389 setConvertAction(MVT::f80, MVT::f64, Expand); 390 } 391 } else if (X86ScalarSSEf32) { 392 // Use SSE for f32, x87 for f64. 393 // Set up the FP register classes. 394 addRegisterClass(MVT::f32, X86::FR32RegisterClass); 395 addRegisterClass(MVT::f64, X86::RFP64RegisterClass); 396 397 // Use ANDPS to simulate FABS. 398 setOperationAction(ISD::FABS , MVT::f32, Custom); 399 400 // Use XORP to simulate FNEG. 401 setOperationAction(ISD::FNEG , MVT::f32, Custom); 402 403 setOperationAction(ISD::UNDEF, MVT::f64, Expand); 404 405 // Use ANDPS and ORPS to simulate FCOPYSIGN. 406 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 407 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 408 409 // We don't support sin/cos/fmod 410 setOperationAction(ISD::FSIN , MVT::f32, Expand); 411 setOperationAction(ISD::FCOS , MVT::f32, Expand); 412 413 // Special cases we handle for FP constants. 414 addLegalFPImmediate(APFloat(+0.0f)); // xorps 415 addLegalFPImmediate(APFloat(+0.0)); // FLD0 416 addLegalFPImmediate(APFloat(+1.0)); // FLD1 417 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS 418 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS 419 420 // SSE <-> X87 conversions go through memory. If optimizing, we lie about 421 // this though and handle it in InstructionSelectPreprocess so that 422 // dagcombine2 can hack on these. 423 if (Fast) { 424 setConvertAction(MVT::f32, MVT::f64, Expand); 425 setConvertAction(MVT::f32, MVT::f80, Expand); 426 setConvertAction(MVT::f80, MVT::f32, Expand); 427 setConvertAction(MVT::f64, MVT::f32, Expand); 428 // And x87->x87 truncations also. 429 setConvertAction(MVT::f80, MVT::f64, Expand); 430 } 431 432 if (!UnsafeFPMath) { 433 setOperationAction(ISD::FSIN , MVT::f64 , Expand); 434 setOperationAction(ISD::FCOS , MVT::f64 , Expand); 435 } 436 } else { 437 // f32 and f64 in x87. 438 // Set up the FP register classes. 439 addRegisterClass(MVT::f64, X86::RFP64RegisterClass); 440 addRegisterClass(MVT::f32, X86::RFP32RegisterClass); 441 442 setOperationAction(ISD::UNDEF, MVT::f64, Expand); 443 setOperationAction(ISD::UNDEF, MVT::f32, Expand); 444 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 445 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 446 447 // Floating truncations go through memory. If optimizing, we lie about 448 // this though and handle it in InstructionSelectPreprocess so that 449 // dagcombine2 can hack on these. 450 if (Fast) { 451 setConvertAction(MVT::f80, MVT::f32, Expand); 452 setConvertAction(MVT::f64, MVT::f32, Expand); 453 setConvertAction(MVT::f80, MVT::f64, Expand); 454 } 455 456 if (!UnsafeFPMath) { 457 setOperationAction(ISD::FSIN , MVT::f64 , Expand); 458 setOperationAction(ISD::FCOS , MVT::f64 , Expand); 459 } 460 addLegalFPImmediate(APFloat(+0.0)); // FLD0 461 addLegalFPImmediate(APFloat(+1.0)); // FLD1 462 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS 463 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS 464 addLegalFPImmediate(APFloat(+0.0f)); // FLD0 465 addLegalFPImmediate(APFloat(+1.0f)); // FLD1 466 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS 467 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS 468 } 469 470 // Long double always uses X87. 471 addRegisterClass(MVT::f80, X86::RFP80RegisterClass); 472 setOperationAction(ISD::UNDEF, MVT::f80, Expand); 473 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); 474 { 475 APFloat TmpFlt(+0.0); 476 TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven); 477 addLegalFPImmediate(TmpFlt); // FLD0 478 TmpFlt.changeSign(); 479 addLegalFPImmediate(TmpFlt); // FLD0/FCHS 480 APFloat TmpFlt2(+1.0); 481 TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven); 482 addLegalFPImmediate(TmpFlt2); // FLD1 483 TmpFlt2.changeSign(); 484 addLegalFPImmediate(TmpFlt2); // FLD1/FCHS 485 } 486 487 if (!UnsafeFPMath) { 488 setOperationAction(ISD::FSIN , MVT::f80 , Expand); 489 setOperationAction(ISD::FCOS , MVT::f80 , Expand); 490 } 491 492 // Always use a library call for pow. 493 setOperationAction(ISD::FPOW , MVT::f32 , Expand); 494 setOperationAction(ISD::FPOW , MVT::f64 , Expand); 495 setOperationAction(ISD::FPOW , MVT::f80 , Expand); 496 497 setOperationAction(ISD::FLOG, MVT::f80, Expand); 498 setOperationAction(ISD::FLOG2, MVT::f80, Expand); 499 setOperationAction(ISD::FLOG10, MVT::f80, Expand); 500 setOperationAction(ISD::FEXP, MVT::f80, Expand); 501 setOperationAction(ISD::FEXP2, MVT::f80, Expand); 502 503 // First set operation action for all vector types to expand. Then we 504 // will selectively turn on ones that can be effectively codegen'd. 505 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 506 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { 507 setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand); 508 setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand); 509 setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand); 510 setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand); 511 setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand); 512 setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand); 513 setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand); 514 setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand); 515 setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand); 516 setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand); 517 setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand); 518 setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand); 519 setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand); 520 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand); 521 setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand); 522 setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand); 523 setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand); 524 setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand); 525 setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand); 526 setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand); 527 setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand); 528 setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand); 529 setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand); 530 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand); 531 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand); 532 setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand); 533 setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand); 534 setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand); 535 setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand); 536 setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand); 537 setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand); 538 setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand); 539 setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand); 540 setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand); 541 setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand); 542 setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand); 543 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand); 544 setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand); 545 setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand); 546 setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand); 547 setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand); 548 setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand); 549 setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand); 550 } 551 552 if (Subtarget->hasMMX()) { 553 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass); 554 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass); 555 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass); 556 addRegisterClass(MVT::v2f32, X86::VR64RegisterClass); 557 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass); 558 559 // FIXME: add MMX packed arithmetics 560 561 setOperationAction(ISD::ADD, MVT::v8i8, Legal); 562 setOperationAction(ISD::ADD, MVT::v4i16, Legal); 563 setOperationAction(ISD::ADD, MVT::v2i32, Legal); 564 setOperationAction(ISD::ADD, MVT::v1i64, Legal); 565 566 setOperationAction(ISD::SUB, MVT::v8i8, Legal); 567 setOperationAction(ISD::SUB, MVT::v4i16, Legal); 568 setOperationAction(ISD::SUB, MVT::v2i32, Legal); 569 setOperationAction(ISD::SUB, MVT::v1i64, Legal); 570 571 setOperationAction(ISD::MULHS, MVT::v4i16, Legal); 572 setOperationAction(ISD::MUL, MVT::v4i16, Legal); 573 574 setOperationAction(ISD::AND, MVT::v8i8, Promote); 575 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64); 576 setOperationAction(ISD::AND, MVT::v4i16, Promote); 577 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64); 578 setOperationAction(ISD::AND, MVT::v2i32, Promote); 579 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64); 580 setOperationAction(ISD::AND, MVT::v1i64, Legal); 581 582 setOperationAction(ISD::OR, MVT::v8i8, Promote); 583 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64); 584 setOperationAction(ISD::OR, MVT::v4i16, Promote); 585 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64); 586 setOperationAction(ISD::OR, MVT::v2i32, Promote); 587 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64); 588 setOperationAction(ISD::OR, MVT::v1i64, Legal); 589 590 setOperationAction(ISD::XOR, MVT::v8i8, Promote); 591 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64); 592 setOperationAction(ISD::XOR, MVT::v4i16, Promote); 593 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64); 594 setOperationAction(ISD::XOR, MVT::v2i32, Promote); 595 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64); 596 setOperationAction(ISD::XOR, MVT::v1i64, Legal); 597 598 setOperationAction(ISD::LOAD, MVT::v8i8, Promote); 599 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64); 600 setOperationAction(ISD::LOAD, MVT::v4i16, Promote); 601 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64); 602 setOperationAction(ISD::LOAD, MVT::v2i32, Promote); 603 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64); 604 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 605 AddPromotedToType (ISD::LOAD, MVT::v2f32, MVT::v1i64); 606 setOperationAction(ISD::LOAD, MVT::v1i64, Legal); 607 608 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom); 609 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); 610 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom); 611 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom); 612 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom); 613 614 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); 615 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); 616 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom); 617 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom); 618 619 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f32, Custom); 620 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom); 621 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom); 622 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom); 623 624 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); 625 } 626 627 if (Subtarget->hasSSE1()) { 628 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass); 629 630 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 631 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 632 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 633 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 634 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 635 setOperationAction(ISD::FNEG, MVT::v4f32, Custom); 636 setOperationAction(ISD::LOAD, MVT::v4f32, Legal); 637 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 638 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); 639 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 640 setOperationAction(ISD::SELECT, MVT::v4f32, Custom); 641 setOperationAction(ISD::VSETCC, MVT::v4f32, Custom); 642 } 643 644 if (Subtarget->hasSSE2()) { 645 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass); 646 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass); 647 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass); 648 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass); 649 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass); 650 651 setOperationAction(ISD::ADD, MVT::v16i8, Legal); 652 setOperationAction(ISD::ADD, MVT::v8i16, Legal); 653 setOperationAction(ISD::ADD, MVT::v4i32, Legal); 654 setOperationAction(ISD::ADD, MVT::v2i64, Legal); 655 setOperationAction(ISD::SUB, MVT::v16i8, Legal); 656 setOperationAction(ISD::SUB, MVT::v8i16, Legal); 657 setOperationAction(ISD::SUB, MVT::v4i32, Legal); 658 setOperationAction(ISD::SUB, MVT::v2i64, Legal); 659 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 660 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 661 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 662 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 663 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 664 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 665 setOperationAction(ISD::FNEG, MVT::v2f64, Custom); 666 667 setOperationAction(ISD::VSETCC, MVT::v2f64, Custom); 668 setOperationAction(ISD::VSETCC, MVT::v16i8, Custom); 669 setOperationAction(ISD::VSETCC, MVT::v8i16, Custom); 670 setOperationAction(ISD::VSETCC, MVT::v4i32, Custom); 671 672 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom); 673 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom); 674 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 675 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 676 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 677 678 // Custom lower build_vector, vector_shuffle, and extract_vector_elt. 679 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) { 680 MVT VT = (MVT::SimpleValueType)i; 681 // Do not attempt to custom lower non-power-of-2 vectors 682 if (!isPowerOf2_32(VT.getVectorNumElements())) 683 continue; 684 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 685 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 686 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 687 } 688 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 689 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 690 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); 691 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); 692 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 693 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 694 if (Subtarget->is64Bit()) { 695 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); 696 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); 697 } 698 699 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. 700 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) { 701 setOperationAction(ISD::AND, (MVT::SimpleValueType)VT, Promote); 702 AddPromotedToType (ISD::AND, (MVT::SimpleValueType)VT, MVT::v2i64); 703 setOperationAction(ISD::OR, (MVT::SimpleValueType)VT, Promote); 704 AddPromotedToType (ISD::OR, (MVT::SimpleValueType)VT, MVT::v2i64); 705 setOperationAction(ISD::XOR, (MVT::SimpleValueType)VT, Promote); 706 AddPromotedToType (ISD::XOR, (MVT::SimpleValueType)VT, MVT::v2i64); 707 setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Promote); 708 AddPromotedToType (ISD::LOAD, (MVT::SimpleValueType)VT, MVT::v2i64); 709 setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote); 710 AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64); 711 } 712 713 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 714 715 // Custom lower v2i64 and v2f64 selects. 716 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 717 setOperationAction(ISD::LOAD, MVT::v2i64, Legal); 718 setOperationAction(ISD::SELECT, MVT::v2f64, Custom); 719 setOperationAction(ISD::SELECT, MVT::v2i64, Custom); 720 721 } 722 723 if (Subtarget->hasSSE41()) { 724 // FIXME: Do we need to handle scalar-to-vector here? 725 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 726 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 727 728 // i8 and i16 vectors are custom , because the source register and source 729 // source memory operand types are not the same width. f32 vectors are 730 // custom since the immediate controlling the insert encodes additional 731 // information. 732 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 733 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 734 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal); 735 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 736 737 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom); 738 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom); 739 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 740 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 741 742 if (Subtarget->is64Bit()) { 743 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); 744 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 745 } 746 } 747 748 if (Subtarget->hasSSE42()) { 749 setOperationAction(ISD::VSETCC, MVT::v2i64, Custom); 750 } 751 752 // We want to custom lower some of our intrinsics. 753 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 754 755 // We have target-specific dag combine patterns for the following nodes: 756 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 757 setTargetDAGCombine(ISD::BUILD_VECTOR); 758 setTargetDAGCombine(ISD::SELECT); 759 setTargetDAGCombine(ISD::STORE); 760 761 computeRegisterProperties(); 762 763 // FIXME: These should be based on subtarget info. Plus, the values should 764 // be smaller when we are in optimizing for size mode. 765 maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores 766 maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores 767 maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores 768 allowUnalignedMemoryAccesses = true; // x86 supports it! 769 setPrefLoopAlignment(16); 770} 771 772 773MVT X86TargetLowering::getSetCCResultType(const SDValue &) const { 774 return MVT::i8; 775} 776 777 778/// getMaxByValAlign - Helper for getByValTypeAlignment to determine 779/// the desired ByVal argument alignment. 780static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) { 781 if (MaxAlign == 16) 782 return; 783 if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) { 784 if (VTy->getBitWidth() == 128) 785 MaxAlign = 16; 786 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 787 unsigned EltAlign = 0; 788 getMaxByValAlign(ATy->getElementType(), EltAlign); 789 if (EltAlign > MaxAlign) 790 MaxAlign = EltAlign; 791 } else if (const StructType *STy = dyn_cast<StructType>(Ty)) { 792 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 793 unsigned EltAlign = 0; 794 getMaxByValAlign(STy->getElementType(i), EltAlign); 795 if (EltAlign > MaxAlign) 796 MaxAlign = EltAlign; 797 if (MaxAlign == 16) 798 break; 799 } 800 } 801 return; 802} 803 804/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 805/// function arguments in the caller parameter area. For X86, aggregates 806/// that contain SSE vectors are placed at 16-byte boundaries while the rest 807/// are at 4-byte boundaries. 808unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const { 809 if (Subtarget->is64Bit()) { 810 // Max of 8 and alignment of type. 811 unsigned TyAlign = TD->getABITypeAlignment(Ty); 812 if (TyAlign > 8) 813 return TyAlign; 814 return 8; 815 } 816 817 unsigned Align = 4; 818 if (Subtarget->hasSSE1()) 819 getMaxByValAlign(Ty, Align); 820 return Align; 821} 822 823/// getOptimalMemOpType - Returns the target specific optimal type for load 824/// and store operations as a result of memset, memcpy, and memmove 825/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for 826/// determining it. 827MVT 828X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align, 829 bool isSrcConst, bool isSrcStr) const { 830 if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16) 831 return MVT::v4i32; 832 if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16) 833 return MVT::v4f32; 834 if (Subtarget->is64Bit() && Size >= 8) 835 return MVT::i64; 836 return MVT::i32; 837} 838 839 840/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC 841/// jumptable. 842SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table, 843 SelectionDAG &DAG) const { 844 if (usesGlobalOffsetTable()) 845 return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy()); 846 if (!Subtarget->isPICStyleRIPRel()) 847 return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()); 848 return Table; 849} 850 851//===----------------------------------------------------------------------===// 852// Return Value Calling Convention Implementation 853//===----------------------------------------------------------------------===// 854 855#include "X86GenCallingConv.inc" 856 857/// LowerRET - Lower an ISD::RET node. 858SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) { 859 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args"); 860 861 SmallVector<CCValAssign, 16> RVLocs; 862 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv(); 863 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 864 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs); 865 CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86); 866 867 // If this is the first return lowered for this function, add the regs to the 868 // liveout set for the function. 869 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 870 for (unsigned i = 0; i != RVLocs.size(); ++i) 871 if (RVLocs[i].isRegLoc()) 872 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 873 } 874 SDValue Chain = Op.getOperand(0); 875 876 // Handle tail call return. 877 Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL); 878 if (Chain.getOpcode() == X86ISD::TAILCALL) { 879 SDValue TailCall = Chain; 880 SDValue TargetAddress = TailCall.getOperand(1); 881 SDValue StackAdjustment = TailCall.getOperand(2); 882 assert(((TargetAddress.getOpcode() == ISD::Register && 883 (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX || 884 cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) || 885 TargetAddress.getOpcode() == ISD::TargetExternalSymbol || 886 TargetAddress.getOpcode() == ISD::TargetGlobalAddress) && 887 "Expecting an global address, external symbol, or register"); 888 assert(StackAdjustment.getOpcode() == ISD::Constant && 889 "Expecting a const value"); 890 891 SmallVector<SDValue,8> Operands; 892 Operands.push_back(Chain.getOperand(0)); 893 Operands.push_back(TargetAddress); 894 Operands.push_back(StackAdjustment); 895 // Copy registers used by the call. Last operand is a flag so it is not 896 // copied. 897 for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) { 898 Operands.push_back(Chain.getOperand(i)); 899 } 900 return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0], 901 Operands.size()); 902 } 903 904 // Regular return. 905 SDValue Flag; 906 907 SmallVector<SDValue, 6> RetOps; 908 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 909 // Operand #1 = Bytes To Pop 910 RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16)); 911 912 // Copy the result values into the output registers. 913 for (unsigned i = 0; i != RVLocs.size(); ++i) { 914 CCValAssign &VA = RVLocs[i]; 915 assert(VA.isRegLoc() && "Can only return in registers!"); 916 SDValue ValToCopy = Op.getOperand(i*2+1); 917 918 // Returns in ST0/ST1 are handled specially: these are pushed as operands to 919 // the RET instruction and handled by the FP Stackifier. 920 if (RVLocs[i].getLocReg() == X86::ST0 || 921 RVLocs[i].getLocReg() == X86::ST1) { 922 // If this is a copy from an xmm register to ST(0), use an FPExtend to 923 // change the value to the FP stack register class. 924 if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) 925 ValToCopy = DAG.getNode(ISD::FP_EXTEND, MVT::f80, ValToCopy); 926 RetOps.push_back(ValToCopy); 927 // Don't emit a copytoreg. 928 continue; 929 } 930 931 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), ValToCopy, Flag); 932 Flag = Chain.getValue(1); 933 } 934 935 // The x86-64 ABI for returning structs by value requires that we copy 936 // the sret argument into %rax for the return. We saved the argument into 937 // a virtual register in the entry block, so now we copy the value out 938 // and into %rax. 939 if (Subtarget->is64Bit() && 940 DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { 941 MachineFunction &MF = DAG.getMachineFunction(); 942 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 943 unsigned Reg = FuncInfo->getSRetReturnReg(); 944 if (!Reg) { 945 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64)); 946 FuncInfo->setSRetReturnReg(Reg); 947 } 948 SDValue Val = DAG.getCopyFromReg(Chain, Reg, getPointerTy()); 949 950 Chain = DAG.getCopyToReg(Chain, X86::RAX, Val, Flag); 951 Flag = Chain.getValue(1); 952 } 953 954 RetOps[0] = Chain; // Update chain. 955 956 // Add the flag if we have it. 957 if (Flag.getNode()) 958 RetOps.push_back(Flag); 959 960 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, &RetOps[0], RetOps.size()); 961} 962 963 964/// LowerCallResult - Lower the result values of an ISD::CALL into the 965/// appropriate copies out of appropriate physical registers. This assumes that 966/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call 967/// being lowered. The returns a SDNode with the same number of values as the 968/// ISD::CALL. 969SDNode *X86TargetLowering:: 970LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall, 971 unsigned CallingConv, SelectionDAG &DAG) { 972 973 // Assign locations to each value returned by this call. 974 SmallVector<CCValAssign, 16> RVLocs; 975 bool isVarArg = TheCall->isVarArg(); 976 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs); 977 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86); 978 979 SmallVector<SDValue, 8> ResultVals; 980 981 // Copy all of the result registers out of their specified physreg. 982 for (unsigned i = 0; i != RVLocs.size(); ++i) { 983 MVT CopyVT = RVLocs[i].getValVT(); 984 985 // If this is a call to a function that returns an fp value on the floating 986 // point stack, but where we prefer to use the value in xmm registers, copy 987 // it out as F80 and use a truncate to move it from fp stack reg to xmm reg. 988 if ((RVLocs[i].getLocReg() == X86::ST0 || 989 RVLocs[i].getLocReg() == X86::ST1) && 990 isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) { 991 CopyVT = MVT::f80; 992 } 993 994 Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(), 995 CopyVT, InFlag).getValue(1); 996 SDValue Val = Chain.getValue(0); 997 InFlag = Chain.getValue(2); 998 999 if (CopyVT != RVLocs[i].getValVT()) { 1000 // Round the F80 the right size, which also moves to the appropriate xmm 1001 // register. 1002 Val = DAG.getNode(ISD::FP_ROUND, RVLocs[i].getValVT(), Val, 1003 // This truncation won't change the value. 1004 DAG.getIntPtrConstant(1)); 1005 } 1006 1007 ResultVals.push_back(Val); 1008 } 1009 1010 // Merge everything together with a MERGE_VALUES node. 1011 ResultVals.push_back(Chain); 1012 return DAG.getMergeValues(TheCall->getVTList(), &ResultVals[0], 1013 ResultVals.size()).getNode(); 1014} 1015 1016 1017//===----------------------------------------------------------------------===// 1018// C & StdCall & Fast Calling Convention implementation 1019//===----------------------------------------------------------------------===// 1020// StdCall calling convention seems to be standard for many Windows' API 1021// routines and around. It differs from C calling convention just a little: 1022// callee should clean up the stack, not caller. Symbols should be also 1023// decorated in some fancy way :) It doesn't support any vector arguments. 1024// For info on fast calling convention see Fast Calling Convention (tail call) 1025// implementation LowerX86_32FastCCCallTo. 1026 1027/// AddLiveIn - This helper function adds the specified physical register to the 1028/// MachineFunction as a live in value. It also creates a corresponding virtual 1029/// register for it. 1030static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg, 1031 const TargetRegisterClass *RC) { 1032 assert(RC->contains(PReg) && "Not the correct regclass!"); 1033 unsigned VReg = MF.getRegInfo().createVirtualRegister(RC); 1034 MF.getRegInfo().addLiveIn(PReg, VReg); 1035 return VReg; 1036} 1037 1038/// CallIsStructReturn - Determines whether a CALL node uses struct return 1039/// semantics. 1040static bool CallIsStructReturn(CallSDNode *TheCall) { 1041 unsigned NumOps = TheCall->getNumArgs(); 1042 if (!NumOps) 1043 return false; 1044 1045 return TheCall->getArgFlags(0).isSRet(); 1046} 1047 1048/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct 1049/// return semantics. 1050static bool ArgsAreStructReturn(SDValue Op) { 1051 unsigned NumArgs = Op.getNode()->getNumValues() - 1; 1052 if (!NumArgs) 1053 return false; 1054 1055 return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet(); 1056} 1057 1058/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires 1059/// the callee to pop its own arguments. Callee pop is necessary to support tail 1060/// calls. 1061bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) { 1062 if (IsVarArg) 1063 return false; 1064 1065 switch (CallingConv) { 1066 default: 1067 return false; 1068 case CallingConv::X86_StdCall: 1069 return !Subtarget->is64Bit(); 1070 case CallingConv::X86_FastCall: 1071 return !Subtarget->is64Bit(); 1072 case CallingConv::Fast: 1073 return PerformTailCallOpt; 1074 } 1075} 1076 1077/// CCAssignFnForNode - Selects the correct CCAssignFn for a the 1078/// given CallingConvention value. 1079CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const { 1080 if (Subtarget->is64Bit()) { 1081 if (Subtarget->isTargetWin64()) 1082 return CC_X86_Win64_C; 1083 else if (CC == CallingConv::Fast && PerformTailCallOpt) 1084 return CC_X86_64_TailCall; 1085 else 1086 return CC_X86_64_C; 1087 } 1088 1089 if (CC == CallingConv::X86_FastCall) 1090 return CC_X86_32_FastCall; 1091 else if (CC == CallingConv::Fast) 1092 return CC_X86_32_FastCC; 1093 else 1094 return CC_X86_32_C; 1095} 1096 1097/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to 1098/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node. 1099NameDecorationStyle 1100X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) { 1101 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1102 if (CC == CallingConv::X86_FastCall) 1103 return FastCall; 1104 else if (CC == CallingConv::X86_StdCall) 1105 return StdCall; 1106 return None; 1107} 1108 1109 1110/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer 1111/// in a register before calling. 1112bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) { 1113 return !IsTailCall && !Is64Bit && 1114 getTargetMachine().getRelocationModel() == Reloc::PIC_ && 1115 Subtarget->isPICStyleGOT(); 1116} 1117 1118/// CallRequiresFnAddressInReg - Check whether the call requires the function 1119/// address to be loaded in a register. 1120bool 1121X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) { 1122 return !Is64Bit && IsTailCall && 1123 getTargetMachine().getRelocationModel() == Reloc::PIC_ && 1124 Subtarget->isPICStyleGOT(); 1125} 1126 1127/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 1128/// by "Src" to address "Dst" with size and alignment information specified by 1129/// the specific parameter attribute. The copy will be passed as a byval 1130/// function parameter. 1131static SDValue 1132CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 1133 ISD::ArgFlagsTy Flags, SelectionDAG &DAG) { 1134 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); 1135 return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(), 1136 /*AlwaysInline=*/true, NULL, 0, NULL, 0); 1137} 1138 1139SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG, 1140 const CCValAssign &VA, 1141 MachineFrameInfo *MFI, 1142 unsigned CC, 1143 SDValue Root, unsigned i) { 1144 // Create the nodes corresponding to a load from this parameter slot. 1145 ISD::ArgFlagsTy Flags = 1146 cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags(); 1147 bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt; 1148 bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); 1149 1150 // FIXME: For now, all byval parameter objects are marked mutable. This can be 1151 // changed with more analysis. 1152 // In case of tail call optimization mark all arguments mutable. Since they 1153 // could be overwritten by lowering of arguments in case of a tail call. 1154 int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8, 1155 VA.getLocMemOffset(), isImmutable); 1156 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); 1157 if (Flags.isByVal()) 1158 return FIN; 1159 return DAG.getLoad(VA.getValVT(), Root, FIN, 1160 PseudoSourceValue::getFixedStack(FI), 0); 1161} 1162 1163SDValue 1164X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) { 1165 MachineFunction &MF = DAG.getMachineFunction(); 1166 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 1167 1168 const Function* Fn = MF.getFunction(); 1169 if (Fn->hasExternalLinkage() && 1170 Subtarget->isTargetCygMing() && 1171 Fn->getName() == "main") 1172 FuncInfo->setForceFramePointer(true); 1173 1174 // Decorate the function name. 1175 FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op)); 1176 1177 MachineFrameInfo *MFI = MF.getFrameInfo(); 1178 SDValue Root = Op.getOperand(0); 1179 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0; 1180 unsigned CC = MF.getFunction()->getCallingConv(); 1181 bool Is64Bit = Subtarget->is64Bit(); 1182 bool IsWin64 = Subtarget->isTargetWin64(); 1183 1184 assert(!(isVarArg && CC == CallingConv::Fast) && 1185 "Var args not supported with calling convention fastcc"); 1186 1187 // Assign locations to all of the incoming arguments. 1188 SmallVector<CCValAssign, 16> ArgLocs; 1189 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); 1190 CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC)); 1191 1192 SmallVector<SDValue, 8> ArgValues; 1193 unsigned LastVal = ~0U; 1194 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1195 CCValAssign &VA = ArgLocs[i]; 1196 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later 1197 // places. 1198 assert(VA.getValNo() != LastVal && 1199 "Don't support value assigned to multiple locs yet"); 1200 LastVal = VA.getValNo(); 1201 1202 if (VA.isRegLoc()) { 1203 MVT RegVT = VA.getLocVT(); 1204 TargetRegisterClass *RC; 1205 if (RegVT == MVT::i32) 1206 RC = X86::GR32RegisterClass; 1207 else if (Is64Bit && RegVT == MVT::i64) 1208 RC = X86::GR64RegisterClass; 1209 else if (RegVT == MVT::f32) 1210 RC = X86::FR32RegisterClass; 1211 else if (RegVT == MVT::f64) 1212 RC = X86::FR64RegisterClass; 1213 else if (RegVT.isVector() && RegVT.getSizeInBits() == 128) 1214 RC = X86::VR128RegisterClass; 1215 else if (RegVT.isVector()) { 1216 assert(RegVT.getSizeInBits() == 64); 1217 if (!Is64Bit) 1218 RC = X86::VR64RegisterClass; // MMX values are passed in MMXs. 1219 else { 1220 // Darwin calling convention passes MMX values in either GPRs or 1221 // XMMs in x86-64. Other targets pass them in memory. 1222 if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) { 1223 RC = X86::VR128RegisterClass; // MMX values are passed in XMMs. 1224 RegVT = MVT::v2i64; 1225 } else { 1226 RC = X86::GR64RegisterClass; // v1i64 values are passed in GPRs. 1227 RegVT = MVT::i64; 1228 } 1229 } 1230 } else { 1231 assert(0 && "Unknown argument type!"); 1232 } 1233 1234 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC); 1235 SDValue ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT); 1236 1237 // If this is an 8 or 16-bit value, it is really passed promoted to 32 1238 // bits. Insert an assert[sz]ext to capture this, then truncate to the 1239 // right size. 1240 if (VA.getLocInfo() == CCValAssign::SExt) 1241 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue, 1242 DAG.getValueType(VA.getValVT())); 1243 else if (VA.getLocInfo() == CCValAssign::ZExt) 1244 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue, 1245 DAG.getValueType(VA.getValVT())); 1246 1247 if (VA.getLocInfo() != CCValAssign::Full) 1248 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue); 1249 1250 // Handle MMX values passed in GPRs. 1251 if (Is64Bit && RegVT != VA.getLocVT()) { 1252 if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass) 1253 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue); 1254 else if (RC == X86::VR128RegisterClass) { 1255 ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i64, ArgValue, 1256 DAG.getConstant(0, MVT::i64)); 1257 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue); 1258 } 1259 } 1260 1261 ArgValues.push_back(ArgValue); 1262 } else { 1263 assert(VA.isMemLoc()); 1264 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i)); 1265 } 1266 } 1267 1268 // The x86-64 ABI for returning structs by value requires that we copy 1269 // the sret argument into %rax for the return. Save the argument into 1270 // a virtual register so that we can access it from the return points. 1271 if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { 1272 MachineFunction &MF = DAG.getMachineFunction(); 1273 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 1274 unsigned Reg = FuncInfo->getSRetReturnReg(); 1275 if (!Reg) { 1276 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64)); 1277 FuncInfo->setSRetReturnReg(Reg); 1278 } 1279 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), Reg, ArgValues[0]); 1280 Root = DAG.getNode(ISD::TokenFactor, MVT::Other, Copy, Root); 1281 } 1282 1283 unsigned StackSize = CCInfo.getNextStackOffset(); 1284 // align stack specially for tail calls 1285 if (PerformTailCallOpt && CC == CallingConv::Fast) 1286 StackSize = GetAlignedArgumentStackSize(StackSize, DAG); 1287 1288 // If the function takes variable number of arguments, make a frame index for 1289 // the start of the first vararg value... for expansion of llvm.va_start. 1290 if (isVarArg) { 1291 if (Is64Bit || CC != CallingConv::X86_FastCall) { 1292 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize); 1293 } 1294 if (Is64Bit) { 1295 unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0; 1296 1297 // FIXME: We should really autogenerate these arrays 1298 static const unsigned GPR64ArgRegsWin64[] = { 1299 X86::RCX, X86::RDX, X86::R8, X86::R9 1300 }; 1301 static const unsigned XMMArgRegsWin64[] = { 1302 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3 1303 }; 1304 static const unsigned GPR64ArgRegs64Bit[] = { 1305 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 1306 }; 1307 static const unsigned XMMArgRegs64Bit[] = { 1308 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 1309 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 1310 }; 1311 const unsigned *GPR64ArgRegs, *XMMArgRegs; 1312 1313 if (IsWin64) { 1314 TotalNumIntRegs = 4; TotalNumXMMRegs = 4; 1315 GPR64ArgRegs = GPR64ArgRegsWin64; 1316 XMMArgRegs = XMMArgRegsWin64; 1317 } else { 1318 TotalNumIntRegs = 6; TotalNumXMMRegs = 8; 1319 GPR64ArgRegs = GPR64ArgRegs64Bit; 1320 XMMArgRegs = XMMArgRegs64Bit; 1321 } 1322 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 1323 TotalNumIntRegs); 1324 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 1325 TotalNumXMMRegs); 1326 1327 // For X86-64, if there are vararg parameters that are passed via 1328 // registers, then we must store them to their spots on the stack so they 1329 // may be loaded by deferencing the result of va_next. 1330 VarArgsGPOffset = NumIntRegs * 8; 1331 VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16; 1332 RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 + 1333 TotalNumXMMRegs * 16, 16); 1334 1335 // Store the integer parameter registers. 1336 SmallVector<SDValue, 8> MemOps; 1337 SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); 1338 SDValue FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN, 1339 DAG.getIntPtrConstant(VarArgsGPOffset)); 1340 for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) { 1341 unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs], 1342 X86::GR64RegisterClass); 1343 SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::i64); 1344 SDValue Store = 1345 DAG.getStore(Val.getValue(1), Val, FIN, 1346 PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0); 1347 MemOps.push_back(Store); 1348 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, 1349 DAG.getIntPtrConstant(8)); 1350 } 1351 1352 // Now store the XMM (fp + vector) parameter registers. 1353 FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN, 1354 DAG.getIntPtrConstant(VarArgsFPOffset)); 1355 for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) { 1356 unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], 1357 X86::VR128RegisterClass); 1358 SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32); 1359 SDValue Store = 1360 DAG.getStore(Val.getValue(1), Val, FIN, 1361 PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0); 1362 MemOps.push_back(Store); 1363 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, 1364 DAG.getIntPtrConstant(16)); 1365 } 1366 if (!MemOps.empty()) 1367 Root = DAG.getNode(ISD::TokenFactor, MVT::Other, 1368 &MemOps[0], MemOps.size()); 1369 } 1370 } 1371 1372 ArgValues.push_back(Root); 1373 1374 // Some CCs need callee pop. 1375 if (IsCalleePop(isVarArg, CC)) { 1376 BytesToPopOnReturn = StackSize; // Callee pops everything. 1377 BytesCallerReserves = 0; 1378 } else { 1379 BytesToPopOnReturn = 0; // Callee pops nothing. 1380 // If this is an sret function, the return should pop the hidden pointer. 1381 if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op)) 1382 BytesToPopOnReturn = 4; 1383 BytesCallerReserves = StackSize; 1384 } 1385 1386 if (!Is64Bit) { 1387 RegSaveFrameIndex = 0xAAAAAAA; // RegSaveFrameIndex is X86-64 only. 1388 if (CC == CallingConv::X86_FastCall) 1389 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs. 1390 } 1391 1392 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn); 1393 1394 // Return the new list of results. 1395 return DAG.getMergeValues(Op.getNode()->getVTList(), &ArgValues[0], 1396 ArgValues.size()).getValue(Op.getResNo()); 1397} 1398 1399SDValue 1400X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG, 1401 const SDValue &StackPtr, 1402 const CCValAssign &VA, 1403 SDValue Chain, 1404 SDValue Arg, ISD::ArgFlagsTy Flags) { 1405 unsigned LocMemOffset = VA.getLocMemOffset(); 1406 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 1407 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); 1408 if (Flags.isByVal()) { 1409 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG); 1410 } 1411 return DAG.getStore(Chain, Arg, PtrOff, 1412 PseudoSourceValue::getStack(), LocMemOffset); 1413} 1414 1415/// EmitTailCallLoadRetAddr - Emit a load of return adress if tail call 1416/// optimization is performed and it is required. 1417SDValue 1418X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG, 1419 SDValue &OutRetAddr, 1420 SDValue Chain, 1421 bool IsTailCall, 1422 bool Is64Bit, 1423 int FPDiff) { 1424 if (!IsTailCall || FPDiff==0) return Chain; 1425 1426 // Adjust the Return address stack slot. 1427 MVT VT = getPointerTy(); 1428 OutRetAddr = getReturnAddressFrameIndex(DAG); 1429 // Load the "old" Return address. 1430 OutRetAddr = DAG.getLoad(VT, Chain,OutRetAddr, NULL, 0); 1431 return SDValue(OutRetAddr.getNode(), 1); 1432} 1433 1434/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call 1435/// optimization is performed and it is required (FPDiff!=0). 1436static SDValue 1437EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF, 1438 SDValue Chain, SDValue RetAddrFrIdx, 1439 bool Is64Bit, int FPDiff) { 1440 // Store the return address to the appropriate stack slot. 1441 if (!FPDiff) return Chain; 1442 // Calculate the new stack slot for the return address. 1443 int SlotSize = Is64Bit ? 8 : 4; 1444 int NewReturnAddrFI = 1445 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize); 1446 MVT VT = Is64Bit ? MVT::i64 : MVT::i32; 1447 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT); 1448 Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx, 1449 PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0); 1450 return Chain; 1451} 1452 1453SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) { 1454 MachineFunction &MF = DAG.getMachineFunction(); 1455 CallSDNode *TheCall = cast<CallSDNode>(Op.getNode()); 1456 SDValue Chain = TheCall->getChain(); 1457 unsigned CC = TheCall->getCallingConv(); 1458 bool isVarArg = TheCall->isVarArg(); 1459 bool IsTailCall = TheCall->isTailCall() && 1460 CC == CallingConv::Fast && PerformTailCallOpt; 1461 SDValue Callee = TheCall->getCallee(); 1462 bool Is64Bit = Subtarget->is64Bit(); 1463 bool IsStructRet = CallIsStructReturn(TheCall); 1464 1465 assert(!(isVarArg && CC == CallingConv::Fast) && 1466 "Var args not supported with calling convention fastcc"); 1467 1468 // Analyze operands of the call, assigning locations to each operand. 1469 SmallVector<CCValAssign, 16> ArgLocs; 1470 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); 1471 CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC)); 1472 1473 // Get a count of how many bytes are to be pushed on the stack. 1474 unsigned NumBytes = CCInfo.getNextStackOffset(); 1475 if (PerformTailCallOpt && CC == CallingConv::Fast) 1476 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); 1477 1478 int FPDiff = 0; 1479 if (IsTailCall) { 1480 // Lower arguments at fp - stackoffset + fpdiff. 1481 unsigned NumBytesCallerPushed = 1482 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn(); 1483 FPDiff = NumBytesCallerPushed - NumBytes; 1484 1485 // Set the delta of movement of the returnaddr stackslot. 1486 // But only set if delta is greater than previous delta. 1487 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta())) 1488 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff); 1489 } 1490 1491 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes)); 1492 1493 SDValue RetAddrFrIdx; 1494 // Load return adress for tail calls. 1495 Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit, 1496 FPDiff); 1497 1498 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 1499 SmallVector<SDValue, 8> MemOpChains; 1500 SDValue StackPtr; 1501 1502 // Walk the register/memloc assignments, inserting copies/loads. In the case 1503 // of tail call optimization arguments are handle later. 1504 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1505 CCValAssign &VA = ArgLocs[i]; 1506 SDValue Arg = TheCall->getArg(i); 1507 ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i); 1508 bool isByVal = Flags.isByVal(); 1509 1510 // Promote the value if needed. 1511 switch (VA.getLocInfo()) { 1512 default: assert(0 && "Unknown loc info!"); 1513 case CCValAssign::Full: break; 1514 case CCValAssign::SExt: 1515 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg); 1516 break; 1517 case CCValAssign::ZExt: 1518 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg); 1519 break; 1520 case CCValAssign::AExt: 1521 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg); 1522 break; 1523 } 1524 1525 if (VA.isRegLoc()) { 1526 if (Is64Bit) { 1527 MVT RegVT = VA.getLocVT(); 1528 if (RegVT.isVector() && RegVT.getSizeInBits() == 64) 1529 switch (VA.getLocReg()) { 1530 default: 1531 break; 1532 case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX: 1533 case X86::R8: { 1534 // Special case: passing MMX values in GPR registers. 1535 Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg); 1536 break; 1537 } 1538 case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3: 1539 case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: { 1540 // Special case: passing MMX values in XMM registers. 1541 Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg); 1542 Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Arg); 1543 Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64, 1544 DAG.getNode(ISD::UNDEF, MVT::v2i64), Arg, 1545 getMOVLMask(2, DAG)); 1546 break; 1547 } 1548 } 1549 } 1550 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 1551 } else { 1552 if (!IsTailCall || (IsTailCall && isByVal)) { 1553 assert(VA.isMemLoc()); 1554 if (StackPtr.getNode() == 0) 1555 StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy()); 1556 1557 MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA, 1558 Chain, Arg, Flags)); 1559 } 1560 } 1561 } 1562 1563 if (!MemOpChains.empty()) 1564 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, 1565 &MemOpChains[0], MemOpChains.size()); 1566 1567 // Build a sequence of copy-to-reg nodes chained together with token chain 1568 // and flag operands which copy the outgoing args into registers. 1569 SDValue InFlag; 1570 // Tail call byval lowering might overwrite argument registers so in case of 1571 // tail call optimization the copies to registers are lowered later. 1572 if (!IsTailCall) 1573 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1574 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, 1575 InFlag); 1576 InFlag = Chain.getValue(1); 1577 } 1578 1579 // ELF / PIC requires GOT in the EBX register before function calls via PLT 1580 // GOT pointer. 1581 if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) { 1582 Chain = DAG.getCopyToReg(Chain, X86::EBX, 1583 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), 1584 InFlag); 1585 InFlag = Chain.getValue(1); 1586 } 1587 // If we are tail calling and generating PIC/GOT style code load the address 1588 // of the callee into ecx. The value in ecx is used as target of the tail 1589 // jump. This is done to circumvent the ebx/callee-saved problem for tail 1590 // calls on PIC/GOT architectures. Normally we would just put the address of 1591 // GOT into ebx and then call target@PLT. But for tail callss ebx would be 1592 // restored (since ebx is callee saved) before jumping to the target@PLT. 1593 if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) { 1594 // Note: The actual moving to ecx is done further down. 1595 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 1596 if (G && !G->getGlobal()->hasHiddenVisibility() && 1597 !G->getGlobal()->hasProtectedVisibility()) 1598 Callee = LowerGlobalAddress(Callee, DAG); 1599 else if (isa<ExternalSymbolSDNode>(Callee)) 1600 Callee = LowerExternalSymbol(Callee,DAG); 1601 } 1602 1603 if (Is64Bit && isVarArg) { 1604 // From AMD64 ABI document: 1605 // For calls that may call functions that use varargs or stdargs 1606 // (prototype-less calls or calls to functions containing ellipsis (...) in 1607 // the declaration) %al is used as hidden argument to specify the number 1608 // of SSE registers used. The contents of %al do not need to match exactly 1609 // the number of registers, but must be an ubound on the number of SSE 1610 // registers used and is in the range 0 - 8 inclusive. 1611 1612 // FIXME: Verify this on Win64 1613 // Count the number of XMM registers allocated. 1614 static const unsigned XMMArgRegs[] = { 1615 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 1616 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 1617 }; 1618 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); 1619 1620 Chain = DAG.getCopyToReg(Chain, X86::AL, 1621 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag); 1622 InFlag = Chain.getValue(1); 1623 } 1624 1625 1626 // For tail calls lower the arguments to the 'real' stack slot. 1627 if (IsTailCall) { 1628 SmallVector<SDValue, 8> MemOpChains2; 1629 SDValue FIN; 1630 int FI = 0; 1631 // Do not flag preceeding copytoreg stuff together with the following stuff. 1632 InFlag = SDValue(); 1633 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1634 CCValAssign &VA = ArgLocs[i]; 1635 if (!VA.isRegLoc()) { 1636 assert(VA.isMemLoc()); 1637 SDValue Arg = TheCall->getArg(i); 1638 ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i); 1639 // Create frame index. 1640 int32_t Offset = VA.getLocMemOffset()+FPDiff; 1641 uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; 1642 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset); 1643 FIN = DAG.getFrameIndex(FI, getPointerTy()); 1644 1645 if (Flags.isByVal()) { 1646 // Copy relative to framepointer. 1647 SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset()); 1648 if (StackPtr.getNode() == 0) 1649 StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy()); 1650 Source = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, Source); 1651 1652 MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain, 1653 Flags, DAG)); 1654 } else { 1655 // Store relative to framepointer. 1656 MemOpChains2.push_back( 1657 DAG.getStore(Chain, Arg, FIN, 1658 PseudoSourceValue::getFixedStack(FI), 0)); 1659 } 1660 } 1661 } 1662 1663 if (!MemOpChains2.empty()) 1664 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, 1665 &MemOpChains2[0], MemOpChains2.size()); 1666 1667 // Copy arguments to their registers. 1668 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1669 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, 1670 InFlag); 1671 InFlag = Chain.getValue(1); 1672 } 1673 InFlag =SDValue(); 1674 1675 // Store the return address to the appropriate stack slot. 1676 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit, 1677 FPDiff); 1678 } 1679 1680 // If the callee is a GlobalAddress node (quite common, every direct call is) 1681 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1682 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1683 // We should use extra load for direct calls to dllimported functions in 1684 // non-JIT mode. 1685 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(), 1686 getTargetMachine(), true)) 1687 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); 1688 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1689 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); 1690 } else if (IsTailCall) { 1691 unsigned Opc = Is64Bit ? X86::R9 : X86::EAX; 1692 1693 Chain = DAG.getCopyToReg(Chain, 1694 DAG.getRegister(Opc, getPointerTy()), 1695 Callee,InFlag); 1696 Callee = DAG.getRegister(Opc, getPointerTy()); 1697 // Add register as live out. 1698 DAG.getMachineFunction().getRegInfo().addLiveOut(Opc); 1699 } 1700 1701 // Returns a chain & a flag for retval copy to use. 1702 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); 1703 SmallVector<SDValue, 8> Ops; 1704 1705 if (IsTailCall) { 1706 Ops.push_back(Chain); 1707 Ops.push_back(DAG.getIntPtrConstant(NumBytes)); 1708 Ops.push_back(DAG.getIntPtrConstant(0)); 1709 if (InFlag.getNode()) 1710 Ops.push_back(InFlag); 1711 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size()); 1712 InFlag = Chain.getValue(1); 1713 1714 // Returns a chain & a flag for retval copy to use. 1715 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); 1716 Ops.clear(); 1717 } 1718 1719 Ops.push_back(Chain); 1720 Ops.push_back(Callee); 1721 1722 if (IsTailCall) 1723 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32)); 1724 1725 // Add argument registers to the end of the list so that they are known live 1726 // into the call. 1727 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1728 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1729 RegsToPass[i].second.getValueType())); 1730 1731 // Add an implicit use GOT pointer in EBX. 1732 if (!IsTailCall && !Is64Bit && 1733 getTargetMachine().getRelocationModel() == Reloc::PIC_ && 1734 Subtarget->isPICStyleGOT()) 1735 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy())); 1736 1737 // Add an implicit use of AL for x86 vararg functions. 1738 if (Is64Bit && isVarArg) 1739 Ops.push_back(DAG.getRegister(X86::AL, MVT::i8)); 1740 1741 if (InFlag.getNode()) 1742 Ops.push_back(InFlag); 1743 1744 if (IsTailCall) { 1745 assert(InFlag.getNode() && 1746 "Flag must be set. Depend on flag being set in LowerRET"); 1747 Chain = DAG.getNode(X86ISD::TAILCALL, 1748 TheCall->getVTList(), &Ops[0], Ops.size()); 1749 1750 return SDValue(Chain.getNode(), Op.getResNo()); 1751 } 1752 1753 Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size()); 1754 InFlag = Chain.getValue(1); 1755 1756 // Create the CALLSEQ_END node. 1757 unsigned NumBytesForCalleeToPush; 1758 if (IsCalleePop(isVarArg, CC)) 1759 NumBytesForCalleeToPush = NumBytes; // Callee pops everything 1760 else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet) 1761 // If this is is a call to a struct-return function, the callee 1762 // pops the hidden struct pointer, so we have to push it back. 1763 // This is common for Darwin/X86, Linux & Mingw32 targets. 1764 NumBytesForCalleeToPush = 4; 1765 else 1766 NumBytesForCalleeToPush = 0; // Callee pops nothing. 1767 1768 // Returns a flag for retval copy to use. 1769 Chain = DAG.getCALLSEQ_END(Chain, 1770 DAG.getIntPtrConstant(NumBytes), 1771 DAG.getIntPtrConstant(NumBytesForCalleeToPush), 1772 InFlag); 1773 InFlag = Chain.getValue(1); 1774 1775 // Handle result values, copying them out of physregs into vregs that we 1776 // return. 1777 return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG), 1778 Op.getResNo()); 1779} 1780 1781 1782//===----------------------------------------------------------------------===// 1783// Fast Calling Convention (tail call) implementation 1784//===----------------------------------------------------------------------===// 1785 1786// Like std call, callee cleans arguments, convention except that ECX is 1787// reserved for storing the tail called function address. Only 2 registers are 1788// free for argument passing (inreg). Tail call optimization is performed 1789// provided: 1790// * tailcallopt is enabled 1791// * caller/callee are fastcc 1792// On X86_64 architecture with GOT-style position independent code only local 1793// (within module) calls are supported at the moment. 1794// To keep the stack aligned according to platform abi the function 1795// GetAlignedArgumentStackSize ensures that argument delta is always multiples 1796// of stack alignment. (Dynamic linkers need this - darwin's dyld for example) 1797// If a tail called function callee has more arguments than the caller the 1798// caller needs to make sure that there is room to move the RETADDR to. This is 1799// achieved by reserving an area the size of the argument delta right after the 1800// original REtADDR, but before the saved framepointer or the spilled registers 1801// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) 1802// stack layout: 1803// arg1 1804// arg2 1805// RETADDR 1806// [ new RETADDR 1807// move area ] 1808// (possible EBP) 1809// ESI 1810// EDI 1811// local1 .. 1812 1813/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned 1814/// for a 16 byte align requirement. 1815unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, 1816 SelectionDAG& DAG) { 1817 MachineFunction &MF = DAG.getMachineFunction(); 1818 const TargetMachine &TM = MF.getTarget(); 1819 const TargetFrameInfo &TFI = *TM.getFrameInfo(); 1820 unsigned StackAlignment = TFI.getStackAlignment(); 1821 uint64_t AlignMask = StackAlignment - 1; 1822 int64_t Offset = StackSize; 1823 uint64_t SlotSize = TD->getPointerSize(); 1824 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { 1825 // Number smaller than 12 so just add the difference. 1826 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); 1827 } else { 1828 // Mask out lower bits, add stackalignment once plus the 12 bytes. 1829 Offset = ((~AlignMask) & Offset) + StackAlignment + 1830 (StackAlignment-SlotSize); 1831 } 1832 return Offset; 1833} 1834 1835/// IsEligibleForTailCallElimination - Check to see whether the next instruction 1836/// following the call is a return. A function is eligible if caller/callee 1837/// calling conventions match, currently only fastcc supports tail calls, and 1838/// the function CALL is immediatly followed by a RET. 1839bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall, 1840 SDValue Ret, 1841 SelectionDAG& DAG) const { 1842 if (!PerformTailCallOpt) 1843 return false; 1844 1845 if (CheckTailCallReturnConstraints(TheCall, Ret)) { 1846 MachineFunction &MF = DAG.getMachineFunction(); 1847 unsigned CallerCC = MF.getFunction()->getCallingConv(); 1848 unsigned CalleeCC= TheCall->getCallingConv(); 1849 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 1850 SDValue Callee = TheCall->getCallee(); 1851 // On x86/32Bit PIC/GOT tail calls are supported. 1852 if (getTargetMachine().getRelocationModel() != Reloc::PIC_ || 1853 !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit()) 1854 return true; 1855 1856 // Can only do local tail calls (in same module, hidden or protected) on 1857 // x86_64 PIC/GOT at the moment. 1858 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1859 return G->getGlobal()->hasHiddenVisibility() 1860 || G->getGlobal()->hasProtectedVisibility(); 1861 } 1862 } 1863 1864 return false; 1865} 1866 1867FastISel * 1868X86TargetLowering::createFastISel(MachineFunction &mf, 1869 MachineModuleInfo *mmo, 1870 DenseMap<const Value *, unsigned> &vm, 1871 DenseMap<const BasicBlock *, 1872 MachineBasicBlock *> &bm, 1873 DenseMap<const AllocaInst *, int> &am) { 1874 1875 return X86::createFastISel(mf, mmo, vm, bm, am); 1876} 1877 1878 1879//===----------------------------------------------------------------------===// 1880// Other Lowering Hooks 1881//===----------------------------------------------------------------------===// 1882 1883 1884SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { 1885 MachineFunction &MF = DAG.getMachineFunction(); 1886 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 1887 int ReturnAddrIndex = FuncInfo->getRAIndex(); 1888 uint64_t SlotSize = TD->getPointerSize(); 1889 1890 if (ReturnAddrIndex == 0) { 1891 // Set up a frame object for the return address. 1892 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize); 1893 FuncInfo->setRAIndex(ReturnAddrIndex); 1894 } 1895 1896 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); 1897} 1898 1899 1900/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86 1901/// specific condition code. It returns a false if it cannot do a direct 1902/// translation. X86CC is the translated CondCode. LHS/RHS are modified as 1903/// needed. 1904static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP, 1905 unsigned &X86CC, SDValue &LHS, SDValue &RHS, 1906 SelectionDAG &DAG) { 1907 X86CC = X86::COND_INVALID; 1908 if (!isFP) { 1909 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 1910 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { 1911 // X > -1 -> X == 0, jump !sign. 1912 RHS = DAG.getConstant(0, RHS.getValueType()); 1913 X86CC = X86::COND_NS; 1914 return true; 1915 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { 1916 // X < 0 -> X == 0, jump on sign. 1917 X86CC = X86::COND_S; 1918 return true; 1919 } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) { 1920 // X < 1 -> X <= 0 1921 RHS = DAG.getConstant(0, RHS.getValueType()); 1922 X86CC = X86::COND_LE; 1923 return true; 1924 } 1925 } 1926 1927 switch (SetCCOpcode) { 1928 default: break; 1929 case ISD::SETEQ: X86CC = X86::COND_E; break; 1930 case ISD::SETGT: X86CC = X86::COND_G; break; 1931 case ISD::SETGE: X86CC = X86::COND_GE; break; 1932 case ISD::SETLT: X86CC = X86::COND_L; break; 1933 case ISD::SETLE: X86CC = X86::COND_LE; break; 1934 case ISD::SETNE: X86CC = X86::COND_NE; break; 1935 case ISD::SETULT: X86CC = X86::COND_B; break; 1936 case ISD::SETUGT: X86CC = X86::COND_A; break; 1937 case ISD::SETULE: X86CC = X86::COND_BE; break; 1938 case ISD::SETUGE: X86CC = X86::COND_AE; break; 1939 } 1940 } else { 1941 // First determine if it requires or is profitable to flip the operands. 1942 bool Flip = false; 1943 switch (SetCCOpcode) { 1944 default: break; 1945 case ISD::SETOLT: 1946 case ISD::SETOLE: 1947 case ISD::SETUGT: 1948 case ISD::SETUGE: 1949 Flip = true; 1950 break; 1951 } 1952 1953 // If LHS is a foldable load, but RHS is not, flip the condition. 1954 if (!Flip && 1955 (ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) && 1956 !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) { 1957 SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode); 1958 Flip = true; 1959 } 1960 if (Flip) 1961 std::swap(LHS, RHS); 1962 1963 // On a floating point condition, the flags are set as follows: 1964 // ZF PF CF op 1965 // 0 | 0 | 0 | X > Y 1966 // 0 | 0 | 1 | X < Y 1967 // 1 | 0 | 0 | X == Y 1968 // 1 | 1 | 1 | unordered 1969 switch (SetCCOpcode) { 1970 default: break; 1971 case ISD::SETUEQ: 1972 case ISD::SETEQ: 1973 X86CC = X86::COND_E; 1974 break; 1975 case ISD::SETOLT: // flipped 1976 case ISD::SETOGT: 1977 case ISD::SETGT: 1978 X86CC = X86::COND_A; 1979 break; 1980 case ISD::SETOLE: // flipped 1981 case ISD::SETOGE: 1982 case ISD::SETGE: 1983 X86CC = X86::COND_AE; 1984 break; 1985 case ISD::SETUGT: // flipped 1986 case ISD::SETULT: 1987 case ISD::SETLT: 1988 X86CC = X86::COND_B; 1989 break; 1990 case ISD::SETUGE: // flipped 1991 case ISD::SETULE: 1992 case ISD::SETLE: 1993 X86CC = X86::COND_BE; 1994 break; 1995 case ISD::SETONE: 1996 case ISD::SETNE: 1997 X86CC = X86::COND_NE; 1998 break; 1999 case ISD::SETUO: 2000 X86CC = X86::COND_P; 2001 break; 2002 case ISD::SETO: 2003 X86CC = X86::COND_NP; 2004 break; 2005 } 2006 } 2007 2008 return X86CC != X86::COND_INVALID; 2009} 2010 2011/// hasFPCMov - is there a floating point cmov for the specific X86 condition 2012/// code. Current x86 isa includes the following FP cmov instructions: 2013/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. 2014static bool hasFPCMov(unsigned X86CC) { 2015 switch (X86CC) { 2016 default: 2017 return false; 2018 case X86::COND_B: 2019 case X86::COND_BE: 2020 case X86::COND_E: 2021 case X86::COND_P: 2022 case X86::COND_A: 2023 case X86::COND_AE: 2024 case X86::COND_NE: 2025 case X86::COND_NP: 2026 return true; 2027 } 2028} 2029 2030/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return 2031/// true if Op is undef or if its value falls within the specified range (L, H]. 2032static bool isUndefOrInRange(SDValue Op, unsigned Low, unsigned Hi) { 2033 if (Op.getOpcode() == ISD::UNDEF) 2034 return true; 2035 2036 unsigned Val = cast<ConstantSDNode>(Op)->getZExtValue(); 2037 return (Val >= Low && Val < Hi); 2038} 2039 2040/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return 2041/// true if Op is undef or if its value equal to the specified value. 2042static bool isUndefOrEqual(SDValue Op, unsigned Val) { 2043 if (Op.getOpcode() == ISD::UNDEF) 2044 return true; 2045 return cast<ConstantSDNode>(Op)->getZExtValue() == Val; 2046} 2047 2048/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand 2049/// specifies a shuffle of elements that is suitable for input to PSHUFD. 2050bool X86::isPSHUFDMask(SDNode *N) { 2051 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2052 2053 if (N->getNumOperands() != 2 && N->getNumOperands() != 4) 2054 return false; 2055 2056 // Check if the value doesn't reference the second vector. 2057 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2058 SDValue Arg = N->getOperand(i); 2059 if (Arg.getOpcode() == ISD::UNDEF) continue; 2060 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2061 if (cast<ConstantSDNode>(Arg)->getZExtValue() >= e) 2062 return false; 2063 } 2064 2065 return true; 2066} 2067 2068/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand 2069/// specifies a shuffle of elements that is suitable for input to PSHUFHW. 2070bool X86::isPSHUFHWMask(SDNode *N) { 2071 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2072 2073 if (N->getNumOperands() != 8) 2074 return false; 2075 2076 // Lower quadword copied in order. 2077 for (unsigned i = 0; i != 4; ++i) { 2078 SDValue Arg = N->getOperand(i); 2079 if (Arg.getOpcode() == ISD::UNDEF) continue; 2080 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2081 if (cast<ConstantSDNode>(Arg)->getZExtValue() != i) 2082 return false; 2083 } 2084 2085 // Upper quadword shuffled. 2086 for (unsigned i = 4; i != 8; ++i) { 2087 SDValue Arg = N->getOperand(i); 2088 if (Arg.getOpcode() == ISD::UNDEF) continue; 2089 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2090 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2091 if (Val < 4 || Val > 7) 2092 return false; 2093 } 2094 2095 return true; 2096} 2097 2098/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand 2099/// specifies a shuffle of elements that is suitable for input to PSHUFLW. 2100bool X86::isPSHUFLWMask(SDNode *N) { 2101 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2102 2103 if (N->getNumOperands() != 8) 2104 return false; 2105 2106 // Upper quadword copied in order. 2107 for (unsigned i = 4; i != 8; ++i) 2108 if (!isUndefOrEqual(N->getOperand(i), i)) 2109 return false; 2110 2111 // Lower quadword shuffled. 2112 for (unsigned i = 0; i != 4; ++i) 2113 if (!isUndefOrInRange(N->getOperand(i), 0, 4)) 2114 return false; 2115 2116 return true; 2117} 2118 2119/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand 2120/// specifies a shuffle of elements that is suitable for input to SHUFP*. 2121static bool isSHUFPMask(SDOperandPtr Elems, unsigned NumElems) { 2122 if (NumElems != 2 && NumElems != 4) return false; 2123 2124 unsigned Half = NumElems / 2; 2125 for (unsigned i = 0; i < Half; ++i) 2126 if (!isUndefOrInRange(Elems[i], 0, NumElems)) 2127 return false; 2128 for (unsigned i = Half; i < NumElems; ++i) 2129 if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2)) 2130 return false; 2131 2132 return true; 2133} 2134 2135bool X86::isSHUFPMask(SDNode *N) { 2136 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2137 return ::isSHUFPMask(N->op_begin(), N->getNumOperands()); 2138} 2139 2140/// isCommutedSHUFP - Returns true if the shuffle mask is exactly 2141/// the reverse of what x86 shuffles want. x86 shuffles requires the lower 2142/// half elements to come from vector 1 (which would equal the dest.) and 2143/// the upper half to come from vector 2. 2144static bool isCommutedSHUFP(SDOperandPtr Ops, unsigned NumOps) { 2145 if (NumOps != 2 && NumOps != 4) return false; 2146 2147 unsigned Half = NumOps / 2; 2148 for (unsigned i = 0; i < Half; ++i) 2149 if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2)) 2150 return false; 2151 for (unsigned i = Half; i < NumOps; ++i) 2152 if (!isUndefOrInRange(Ops[i], 0, NumOps)) 2153 return false; 2154 return true; 2155} 2156 2157static bool isCommutedSHUFP(SDNode *N) { 2158 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2159 return isCommutedSHUFP(N->op_begin(), N->getNumOperands()); 2160} 2161 2162/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand 2163/// specifies a shuffle of elements that is suitable for input to MOVHLPS. 2164bool X86::isMOVHLPSMask(SDNode *N) { 2165 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2166 2167 if (N->getNumOperands() != 4) 2168 return false; 2169 2170 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 2171 return isUndefOrEqual(N->getOperand(0), 6) && 2172 isUndefOrEqual(N->getOperand(1), 7) && 2173 isUndefOrEqual(N->getOperand(2), 2) && 2174 isUndefOrEqual(N->getOperand(3), 3); 2175} 2176 2177/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form 2178/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, 2179/// <2, 3, 2, 3> 2180bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) { 2181 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2182 2183 if (N->getNumOperands() != 4) 2184 return false; 2185 2186 // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3 2187 return isUndefOrEqual(N->getOperand(0), 2) && 2188 isUndefOrEqual(N->getOperand(1), 3) && 2189 isUndefOrEqual(N->getOperand(2), 2) && 2190 isUndefOrEqual(N->getOperand(3), 3); 2191} 2192 2193/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand 2194/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. 2195bool X86::isMOVLPMask(SDNode *N) { 2196 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2197 2198 unsigned NumElems = N->getNumOperands(); 2199 if (NumElems != 2 && NumElems != 4) 2200 return false; 2201 2202 for (unsigned i = 0; i < NumElems/2; ++i) 2203 if (!isUndefOrEqual(N->getOperand(i), i + NumElems)) 2204 return false; 2205 2206 for (unsigned i = NumElems/2; i < NumElems; ++i) 2207 if (!isUndefOrEqual(N->getOperand(i), i)) 2208 return false; 2209 2210 return true; 2211} 2212 2213/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand 2214/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D} 2215/// and MOVLHPS. 2216bool X86::isMOVHPMask(SDNode *N) { 2217 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2218 2219 unsigned NumElems = N->getNumOperands(); 2220 if (NumElems != 2 && NumElems != 4) 2221 return false; 2222 2223 for (unsigned i = 0; i < NumElems/2; ++i) 2224 if (!isUndefOrEqual(N->getOperand(i), i)) 2225 return false; 2226 2227 for (unsigned i = 0; i < NumElems/2; ++i) { 2228 SDValue Arg = N->getOperand(i + NumElems/2); 2229 if (!isUndefOrEqual(Arg, i + NumElems)) 2230 return false; 2231 } 2232 2233 return true; 2234} 2235 2236/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand 2237/// specifies a shuffle of elements that is suitable for input to UNPCKL. 2238bool static isUNPCKLMask(SDOperandPtr Elts, unsigned NumElts, 2239 bool V2IsSplat = false) { 2240 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) 2241 return false; 2242 2243 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) { 2244 SDValue BitI = Elts[i]; 2245 SDValue BitI1 = Elts[i+1]; 2246 if (!isUndefOrEqual(BitI, j)) 2247 return false; 2248 if (V2IsSplat) { 2249 if (isUndefOrEqual(BitI1, NumElts)) 2250 return false; 2251 } else { 2252 if (!isUndefOrEqual(BitI1, j + NumElts)) 2253 return false; 2254 } 2255 } 2256 2257 return true; 2258} 2259 2260bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) { 2261 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2262 return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat); 2263} 2264 2265/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand 2266/// specifies a shuffle of elements that is suitable for input to UNPCKH. 2267bool static isUNPCKHMask(SDOperandPtr Elts, unsigned NumElts, 2268 bool V2IsSplat = false) { 2269 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) 2270 return false; 2271 2272 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) { 2273 SDValue BitI = Elts[i]; 2274 SDValue BitI1 = Elts[i+1]; 2275 if (!isUndefOrEqual(BitI, j + NumElts/2)) 2276 return false; 2277 if (V2IsSplat) { 2278 if (isUndefOrEqual(BitI1, NumElts)) 2279 return false; 2280 } else { 2281 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts)) 2282 return false; 2283 } 2284 } 2285 2286 return true; 2287} 2288 2289bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) { 2290 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2291 return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat); 2292} 2293 2294/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form 2295/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, 2296/// <0, 0, 1, 1> 2297bool X86::isUNPCKL_v_undef_Mask(SDNode *N) { 2298 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2299 2300 unsigned NumElems = N->getNumOperands(); 2301 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) 2302 return false; 2303 2304 for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { 2305 SDValue BitI = N->getOperand(i); 2306 SDValue BitI1 = N->getOperand(i+1); 2307 2308 if (!isUndefOrEqual(BitI, j)) 2309 return false; 2310 if (!isUndefOrEqual(BitI1, j)) 2311 return false; 2312 } 2313 2314 return true; 2315} 2316 2317/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form 2318/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, 2319/// <2, 2, 3, 3> 2320bool X86::isUNPCKH_v_undef_Mask(SDNode *N) { 2321 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2322 2323 unsigned NumElems = N->getNumOperands(); 2324 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) 2325 return false; 2326 2327 for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) { 2328 SDValue BitI = N->getOperand(i); 2329 SDValue BitI1 = N->getOperand(i + 1); 2330 2331 if (!isUndefOrEqual(BitI, j)) 2332 return false; 2333 if (!isUndefOrEqual(BitI1, j)) 2334 return false; 2335 } 2336 2337 return true; 2338} 2339 2340/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand 2341/// specifies a shuffle of elements that is suitable for input to MOVSS, 2342/// MOVSD, and MOVD, i.e. setting the lowest element. 2343static bool isMOVLMask(SDOperandPtr Elts, unsigned NumElts) { 2344 if (NumElts != 2 && NumElts != 4) 2345 return false; 2346 2347 if (!isUndefOrEqual(Elts[0], NumElts)) 2348 return false; 2349 2350 for (unsigned i = 1; i < NumElts; ++i) { 2351 if (!isUndefOrEqual(Elts[i], i)) 2352 return false; 2353 } 2354 2355 return true; 2356} 2357 2358bool X86::isMOVLMask(SDNode *N) { 2359 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2360 return ::isMOVLMask(N->op_begin(), N->getNumOperands()); 2361} 2362 2363/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse 2364/// of what x86 movss want. X86 movs requires the lowest element to be lowest 2365/// element of vector 2 and the other elements to come from vector 1 in order. 2366static bool isCommutedMOVL(SDOperandPtr Ops, unsigned NumOps, 2367 bool V2IsSplat = false, 2368 bool V2IsUndef = false) { 2369 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16) 2370 return false; 2371 2372 if (!isUndefOrEqual(Ops[0], 0)) 2373 return false; 2374 2375 for (unsigned i = 1; i < NumOps; ++i) { 2376 SDValue Arg = Ops[i]; 2377 if (!(isUndefOrEqual(Arg, i+NumOps) || 2378 (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) || 2379 (V2IsSplat && isUndefOrEqual(Arg, NumOps)))) 2380 return false; 2381 } 2382 2383 return true; 2384} 2385 2386static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false, 2387 bool V2IsUndef = false) { 2388 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2389 return isCommutedMOVL(N->op_begin(), N->getNumOperands(), 2390 V2IsSplat, V2IsUndef); 2391} 2392 2393/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand 2394/// specifies a shuffle of elements that is suitable for input to MOVSHDUP. 2395bool X86::isMOVSHDUPMask(SDNode *N) { 2396 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2397 2398 if (N->getNumOperands() != 4) 2399 return false; 2400 2401 // Expect 1, 1, 3, 3 2402 for (unsigned i = 0; i < 2; ++i) { 2403 SDValue Arg = N->getOperand(i); 2404 if (Arg.getOpcode() == ISD::UNDEF) continue; 2405 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2406 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2407 if (Val != 1) return false; 2408 } 2409 2410 bool HasHi = false; 2411 for (unsigned i = 2; i < 4; ++i) { 2412 SDValue Arg = N->getOperand(i); 2413 if (Arg.getOpcode() == ISD::UNDEF) continue; 2414 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2415 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2416 if (Val != 3) return false; 2417 HasHi = true; 2418 } 2419 2420 // Don't use movshdup if it can be done with a shufps. 2421 return HasHi; 2422} 2423 2424/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand 2425/// specifies a shuffle of elements that is suitable for input to MOVSLDUP. 2426bool X86::isMOVSLDUPMask(SDNode *N) { 2427 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2428 2429 if (N->getNumOperands() != 4) 2430 return false; 2431 2432 // Expect 0, 0, 2, 2 2433 for (unsigned i = 0; i < 2; ++i) { 2434 SDValue Arg = N->getOperand(i); 2435 if (Arg.getOpcode() == ISD::UNDEF) continue; 2436 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2437 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2438 if (Val != 0) return false; 2439 } 2440 2441 bool HasHi = false; 2442 for (unsigned i = 2; i < 4; ++i) { 2443 SDValue Arg = N->getOperand(i); 2444 if (Arg.getOpcode() == ISD::UNDEF) continue; 2445 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2446 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2447 if (Val != 2) return false; 2448 HasHi = true; 2449 } 2450 2451 // Don't use movshdup if it can be done with a shufps. 2452 return HasHi; 2453} 2454 2455/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand 2456/// specifies a identity operation on the LHS or RHS. 2457static bool isIdentityMask(SDNode *N, bool RHS = false) { 2458 unsigned NumElems = N->getNumOperands(); 2459 for (unsigned i = 0; i < NumElems; ++i) 2460 if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0))) 2461 return false; 2462 return true; 2463} 2464 2465/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies 2466/// a splat of a single element. 2467static bool isSplatMask(SDNode *N) { 2468 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2469 2470 // This is a splat operation if each element of the permute is the same, and 2471 // if the value doesn't reference the second vector. 2472 unsigned NumElems = N->getNumOperands(); 2473 SDValue ElementBase; 2474 unsigned i = 0; 2475 for (; i != NumElems; ++i) { 2476 SDValue Elt = N->getOperand(i); 2477 if (isa<ConstantSDNode>(Elt)) { 2478 ElementBase = Elt; 2479 break; 2480 } 2481 } 2482 2483 if (!ElementBase.getNode()) 2484 return false; 2485 2486 for (; i != NumElems; ++i) { 2487 SDValue Arg = N->getOperand(i); 2488 if (Arg.getOpcode() == ISD::UNDEF) continue; 2489 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2490 if (Arg != ElementBase) return false; 2491 } 2492 2493 // Make sure it is a splat of the first vector operand. 2494 return cast<ConstantSDNode>(ElementBase)->getZExtValue() < NumElems; 2495} 2496 2497/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies 2498/// a splat of a single element and it's a 2 or 4 element mask. 2499bool X86::isSplatMask(SDNode *N) { 2500 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2501 2502 // We can only splat 64-bit, and 32-bit quantities with a single instruction. 2503 if (N->getNumOperands() != 4 && N->getNumOperands() != 2) 2504 return false; 2505 return ::isSplatMask(N); 2506} 2507 2508/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand 2509/// specifies a splat of zero element. 2510bool X86::isSplatLoMask(SDNode *N) { 2511 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2512 2513 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i) 2514 if (!isUndefOrEqual(N->getOperand(i), 0)) 2515 return false; 2516 return true; 2517} 2518 2519/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand 2520/// specifies a shuffle of elements that is suitable for input to MOVDDUP. 2521bool X86::isMOVDDUPMask(SDNode *N) { 2522 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2523 2524 unsigned e = N->getNumOperands() / 2; 2525 for (unsigned i = 0; i < e; ++i) 2526 if (!isUndefOrEqual(N->getOperand(i), i)) 2527 return false; 2528 for (unsigned i = 0; i < e; ++i) 2529 if (!isUndefOrEqual(N->getOperand(e+i), i)) 2530 return false; 2531 return true; 2532} 2533 2534/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle 2535/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP* 2536/// instructions. 2537unsigned X86::getShuffleSHUFImmediate(SDNode *N) { 2538 unsigned NumOperands = N->getNumOperands(); 2539 unsigned Shift = (NumOperands == 4) ? 2 : 1; 2540 unsigned Mask = 0; 2541 for (unsigned i = 0; i < NumOperands; ++i) { 2542 unsigned Val = 0; 2543 SDValue Arg = N->getOperand(NumOperands-i-1); 2544 if (Arg.getOpcode() != ISD::UNDEF) 2545 Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2546 if (Val >= NumOperands) Val -= NumOperands; 2547 Mask |= Val; 2548 if (i != NumOperands - 1) 2549 Mask <<= Shift; 2550 } 2551 2552 return Mask; 2553} 2554 2555/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle 2556/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW 2557/// instructions. 2558unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) { 2559 unsigned Mask = 0; 2560 // 8 nodes, but we only care about the last 4. 2561 for (unsigned i = 7; i >= 4; --i) { 2562 unsigned Val = 0; 2563 SDValue Arg = N->getOperand(i); 2564 if (Arg.getOpcode() != ISD::UNDEF) 2565 Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2566 Mask |= (Val - 4); 2567 if (i != 4) 2568 Mask <<= 2; 2569 } 2570 2571 return Mask; 2572} 2573 2574/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle 2575/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW 2576/// instructions. 2577unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) { 2578 unsigned Mask = 0; 2579 // 8 nodes, but we only care about the first 4. 2580 for (int i = 3; i >= 0; --i) { 2581 unsigned Val = 0; 2582 SDValue Arg = N->getOperand(i); 2583 if (Arg.getOpcode() != ISD::UNDEF) 2584 Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2585 Mask |= Val; 2586 if (i != 0) 2587 Mask <<= 2; 2588 } 2589 2590 return Mask; 2591} 2592 2593/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand 2594/// specifies a 8 element shuffle that can be broken into a pair of 2595/// PSHUFHW and PSHUFLW. 2596static bool isPSHUFHW_PSHUFLWMask(SDNode *N) { 2597 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2598 2599 if (N->getNumOperands() != 8) 2600 return false; 2601 2602 // Lower quadword shuffled. 2603 for (unsigned i = 0; i != 4; ++i) { 2604 SDValue Arg = N->getOperand(i); 2605 if (Arg.getOpcode() == ISD::UNDEF) continue; 2606 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2607 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2608 if (Val >= 4) 2609 return false; 2610 } 2611 2612 // Upper quadword shuffled. 2613 for (unsigned i = 4; i != 8; ++i) { 2614 SDValue Arg = N->getOperand(i); 2615 if (Arg.getOpcode() == ISD::UNDEF) continue; 2616 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2617 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2618 if (Val < 4 || Val > 7) 2619 return false; 2620 } 2621 2622 return true; 2623} 2624 2625/// CommuteVectorShuffle - Swap vector_shuffle operands as well as 2626/// values in ther permute mask. 2627static SDValue CommuteVectorShuffle(SDValue Op, SDValue &V1, 2628 SDValue &V2, SDValue &Mask, 2629 SelectionDAG &DAG) { 2630 MVT VT = Op.getValueType(); 2631 MVT MaskVT = Mask.getValueType(); 2632 MVT EltVT = MaskVT.getVectorElementType(); 2633 unsigned NumElems = Mask.getNumOperands(); 2634 SmallVector<SDValue, 8> MaskVec; 2635 2636 for (unsigned i = 0; i != NumElems; ++i) { 2637 SDValue Arg = Mask.getOperand(i); 2638 if (Arg.getOpcode() == ISD::UNDEF) { 2639 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 2640 continue; 2641 } 2642 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2643 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2644 if (Val < NumElems) 2645 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT)); 2646 else 2647 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT)); 2648 } 2649 2650 std::swap(V1, V2); 2651 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems); 2652 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); 2653} 2654 2655/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming 2656/// the two vector operands have swapped position. 2657static 2658SDValue CommuteVectorShuffleMask(SDValue Mask, SelectionDAG &DAG) { 2659 MVT MaskVT = Mask.getValueType(); 2660 MVT EltVT = MaskVT.getVectorElementType(); 2661 unsigned NumElems = Mask.getNumOperands(); 2662 SmallVector<SDValue, 8> MaskVec; 2663 for (unsigned i = 0; i != NumElems; ++i) { 2664 SDValue Arg = Mask.getOperand(i); 2665 if (Arg.getOpcode() == ISD::UNDEF) { 2666 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 2667 continue; 2668 } 2669 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2670 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2671 if (Val < NumElems) 2672 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT)); 2673 else 2674 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT)); 2675 } 2676 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems); 2677} 2678 2679 2680/// ShouldXformToMOVHLPS - Return true if the node should be transformed to 2681/// match movhlps. The lower half elements should come from upper half of 2682/// V1 (and in order), and the upper half elements should come from the upper 2683/// half of V2 (and in order). 2684static bool ShouldXformToMOVHLPS(SDNode *Mask) { 2685 unsigned NumElems = Mask->getNumOperands(); 2686 if (NumElems != 4) 2687 return false; 2688 for (unsigned i = 0, e = 2; i != e; ++i) 2689 if (!isUndefOrEqual(Mask->getOperand(i), i+2)) 2690 return false; 2691 for (unsigned i = 2; i != 4; ++i) 2692 if (!isUndefOrEqual(Mask->getOperand(i), i+4)) 2693 return false; 2694 return true; 2695} 2696 2697/// isScalarLoadToVector - Returns true if the node is a scalar load that 2698/// is promoted to a vector. It also returns the LoadSDNode by reference if 2699/// required. 2700static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) { 2701 if (N->getOpcode() != ISD::SCALAR_TO_VECTOR) 2702 return false; 2703 N = N->getOperand(0).getNode(); 2704 if (!ISD::isNON_EXTLoad(N)) 2705 return false; 2706 if (LD) 2707 *LD = cast<LoadSDNode>(N); 2708 return true; 2709} 2710 2711/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to 2712/// match movlp{s|d}. The lower half elements should come from lower half of 2713/// V1 (and in order), and the upper half elements should come from the upper 2714/// half of V2 (and in order). And since V1 will become the source of the 2715/// MOVLP, it must be either a vector load or a scalar load to vector. 2716static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) { 2717 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1)) 2718 return false; 2719 // Is V2 is a vector load, don't do this transformation. We will try to use 2720 // load folding shufps op. 2721 if (ISD::isNON_EXTLoad(V2)) 2722 return false; 2723 2724 unsigned NumElems = Mask->getNumOperands(); 2725 if (NumElems != 2 && NumElems != 4) 2726 return false; 2727 for (unsigned i = 0, e = NumElems/2; i != e; ++i) 2728 if (!isUndefOrEqual(Mask->getOperand(i), i)) 2729 return false; 2730 for (unsigned i = NumElems/2; i != NumElems; ++i) 2731 if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems)) 2732 return false; 2733 return true; 2734} 2735 2736/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are 2737/// all the same. 2738static bool isSplatVector(SDNode *N) { 2739 if (N->getOpcode() != ISD::BUILD_VECTOR) 2740 return false; 2741 2742 SDValue SplatValue = N->getOperand(0); 2743 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 2744 if (N->getOperand(i) != SplatValue) 2745 return false; 2746 return true; 2747} 2748 2749/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved 2750/// to an undef. 2751static bool isUndefShuffle(SDNode *N) { 2752 if (N->getOpcode() != ISD::VECTOR_SHUFFLE) 2753 return false; 2754 2755 SDValue V1 = N->getOperand(0); 2756 SDValue V2 = N->getOperand(1); 2757 SDValue Mask = N->getOperand(2); 2758 unsigned NumElems = Mask.getNumOperands(); 2759 for (unsigned i = 0; i != NumElems; ++i) { 2760 SDValue Arg = Mask.getOperand(i); 2761 if (Arg.getOpcode() != ISD::UNDEF) { 2762 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2763 if (Val < NumElems && V1.getOpcode() != ISD::UNDEF) 2764 return false; 2765 else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF) 2766 return false; 2767 } 2768 } 2769 return true; 2770} 2771 2772/// isZeroNode - Returns true if Elt is a constant zero or a floating point 2773/// constant +0.0. 2774static inline bool isZeroNode(SDValue Elt) { 2775 return ((isa<ConstantSDNode>(Elt) && 2776 cast<ConstantSDNode>(Elt)->getZExtValue() == 0) || 2777 (isa<ConstantFPSDNode>(Elt) && 2778 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero())); 2779} 2780 2781/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved 2782/// to an zero vector. 2783static bool isZeroShuffle(SDNode *N) { 2784 if (N->getOpcode() != ISD::VECTOR_SHUFFLE) 2785 return false; 2786 2787 SDValue V1 = N->getOperand(0); 2788 SDValue V2 = N->getOperand(1); 2789 SDValue Mask = N->getOperand(2); 2790 unsigned NumElems = Mask.getNumOperands(); 2791 for (unsigned i = 0; i != NumElems; ++i) { 2792 SDValue Arg = Mask.getOperand(i); 2793 if (Arg.getOpcode() == ISD::UNDEF) 2794 continue; 2795 2796 unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue(); 2797 if (Idx < NumElems) { 2798 unsigned Opc = V1.getNode()->getOpcode(); 2799 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode())) 2800 continue; 2801 if (Opc != ISD::BUILD_VECTOR || 2802 !isZeroNode(V1.getNode()->getOperand(Idx))) 2803 return false; 2804 } else if (Idx >= NumElems) { 2805 unsigned Opc = V2.getNode()->getOpcode(); 2806 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode())) 2807 continue; 2808 if (Opc != ISD::BUILD_VECTOR || 2809 !isZeroNode(V2.getNode()->getOperand(Idx - NumElems))) 2810 return false; 2811 } 2812 } 2813 return true; 2814} 2815 2816/// getZeroVector - Returns a vector of specified type with all zero elements. 2817/// 2818static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG) { 2819 assert(VT.isVector() && "Expected a vector type"); 2820 2821 // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest 2822 // type. This ensures they get CSE'd. 2823 SDValue Vec; 2824 if (VT.getSizeInBits() == 64) { // MMX 2825 SDValue Cst = DAG.getTargetConstant(0, MVT::i32); 2826 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst); 2827 } else if (HasSSE2) { // SSE2 2828 SDValue Cst = DAG.getTargetConstant(0, MVT::i32); 2829 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst); 2830 } else { // SSE1 2831 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32); 2832 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4f32, Cst, Cst, Cst, Cst); 2833 } 2834 return DAG.getNode(ISD::BIT_CONVERT, VT, Vec); 2835} 2836 2837/// getOnesVector - Returns a vector of specified type with all bits set. 2838/// 2839static SDValue getOnesVector(MVT VT, SelectionDAG &DAG) { 2840 assert(VT.isVector() && "Expected a vector type"); 2841 2842 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest 2843 // type. This ensures they get CSE'd. 2844 SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32); 2845 SDValue Vec; 2846 if (VT.getSizeInBits() == 64) // MMX 2847 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst); 2848 else // SSE 2849 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst); 2850 return DAG.getNode(ISD::BIT_CONVERT, VT, Vec); 2851} 2852 2853 2854/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements 2855/// that point to V2 points to its first element. 2856static SDValue NormalizeMask(SDValue Mask, SelectionDAG &DAG) { 2857 assert(Mask.getOpcode() == ISD::BUILD_VECTOR); 2858 2859 bool Changed = false; 2860 SmallVector<SDValue, 8> MaskVec; 2861 unsigned NumElems = Mask.getNumOperands(); 2862 for (unsigned i = 0; i != NumElems; ++i) { 2863 SDValue Arg = Mask.getOperand(i); 2864 if (Arg.getOpcode() != ISD::UNDEF) { 2865 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2866 if (Val > NumElems) { 2867 Arg = DAG.getConstant(NumElems, Arg.getValueType()); 2868 Changed = true; 2869 } 2870 } 2871 MaskVec.push_back(Arg); 2872 } 2873 2874 if (Changed) 2875 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(), 2876 &MaskVec[0], MaskVec.size()); 2877 return Mask; 2878} 2879 2880/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd 2881/// operation of specified width. 2882static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG) { 2883 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 2884 MVT BaseVT = MaskVT.getVectorElementType(); 2885 2886 SmallVector<SDValue, 8> MaskVec; 2887 MaskVec.push_back(DAG.getConstant(NumElems, BaseVT)); 2888 for (unsigned i = 1; i != NumElems; ++i) 2889 MaskVec.push_back(DAG.getConstant(i, BaseVT)); 2890 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); 2891} 2892 2893/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation 2894/// of specified width. 2895static SDValue getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) { 2896 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 2897 MVT BaseVT = MaskVT.getVectorElementType(); 2898 SmallVector<SDValue, 8> MaskVec; 2899 for (unsigned i = 0, e = NumElems/2; i != e; ++i) { 2900 MaskVec.push_back(DAG.getConstant(i, BaseVT)); 2901 MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT)); 2902 } 2903 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); 2904} 2905 2906/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation 2907/// of specified width. 2908static SDValue getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) { 2909 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 2910 MVT BaseVT = MaskVT.getVectorElementType(); 2911 unsigned Half = NumElems/2; 2912 SmallVector<SDValue, 8> MaskVec; 2913 for (unsigned i = 0; i != Half; ++i) { 2914 MaskVec.push_back(DAG.getConstant(i + Half, BaseVT)); 2915 MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT)); 2916 } 2917 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); 2918} 2919 2920/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps 2921/// element #0 of a vector with the specified index, leaving the rest of the 2922/// elements in place. 2923static SDValue getSwapEltZeroMask(unsigned NumElems, unsigned DestElt, 2924 SelectionDAG &DAG) { 2925 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 2926 MVT BaseVT = MaskVT.getVectorElementType(); 2927 SmallVector<SDValue, 8> MaskVec; 2928 // Element #0 of the result gets the elt we are replacing. 2929 MaskVec.push_back(DAG.getConstant(DestElt, BaseVT)); 2930 for (unsigned i = 1; i != NumElems; ++i) 2931 MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT)); 2932 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); 2933} 2934 2935/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32. 2936static SDValue PromoteSplat(SDValue Op, SelectionDAG &DAG, bool HasSSE2) { 2937 MVT PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32; 2938 MVT VT = Op.getValueType(); 2939 if (PVT == VT) 2940 return Op; 2941 SDValue V1 = Op.getOperand(0); 2942 SDValue Mask = Op.getOperand(2); 2943 unsigned NumElems = Mask.getNumOperands(); 2944 // Special handling of v4f32 -> v4i32. 2945 if (VT != MVT::v4f32) { 2946 Mask = getUnpacklMask(NumElems, DAG); 2947 while (NumElems > 4) { 2948 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask); 2949 NumElems >>= 1; 2950 } 2951 Mask = getZeroVector(MVT::v4i32, true, DAG); 2952 } 2953 2954 V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1); 2955 SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1, 2956 DAG.getNode(ISD::UNDEF, PVT), Mask); 2957 return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle); 2958} 2959 2960/// isVectorLoad - Returns true if the node is a vector load, a scalar 2961/// load that's promoted to vector, or a load bitcasted. 2962static bool isVectorLoad(SDValue Op) { 2963 assert(Op.getValueType().isVector() && "Expected a vector type"); 2964 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR || 2965 Op.getOpcode() == ISD::BIT_CONVERT) { 2966 return isa<LoadSDNode>(Op.getOperand(0)); 2967 } 2968 return isa<LoadSDNode>(Op); 2969} 2970 2971 2972/// CanonicalizeMovddup - Cannonicalize movddup shuffle to v2f64. 2973/// 2974static SDValue CanonicalizeMovddup(SDValue Op, SDValue V1, SDValue Mask, 2975 SelectionDAG &DAG, bool HasSSE3) { 2976 // If we have sse3 and shuffle has more than one use or input is a load, then 2977 // use movddup. Otherwise, use movlhps. 2978 bool UseMovddup = HasSSE3 && (!Op.hasOneUse() || isVectorLoad(V1)); 2979 MVT PVT = UseMovddup ? MVT::v2f64 : MVT::v4f32; 2980 MVT VT = Op.getValueType(); 2981 if (VT == PVT) 2982 return Op; 2983 unsigned NumElems = PVT.getVectorNumElements(); 2984 if (NumElems == 2) { 2985 SDValue Cst = DAG.getTargetConstant(0, MVT::i32); 2986 Mask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst); 2987 } else { 2988 assert(NumElems == 4); 2989 SDValue Cst0 = DAG.getTargetConstant(0, MVT::i32); 2990 SDValue Cst1 = DAG.getTargetConstant(1, MVT::i32); 2991 Mask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst0, Cst1, Cst0, Cst1); 2992 } 2993 2994 V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1); 2995 SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1, 2996 DAG.getNode(ISD::UNDEF, PVT), Mask); 2997 return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle); 2998} 2999 3000/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified 3001/// vector of zero or undef vector. This produces a shuffle where the low 3002/// element of V2 is swizzled into the zero/undef vector, landing at element 3003/// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3). 3004static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx, 3005 bool isZero, bool HasSSE2, 3006 SelectionDAG &DAG) { 3007 MVT VT = V2.getValueType(); 3008 SDValue V1 = isZero 3009 ? getZeroVector(VT, HasSSE2, DAG) : DAG.getNode(ISD::UNDEF, VT); 3010 unsigned NumElems = V2.getValueType().getVectorNumElements(); 3011 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 3012 MVT EVT = MaskVT.getVectorElementType(); 3013 SmallVector<SDValue, 16> MaskVec; 3014 for (unsigned i = 0; i != NumElems; ++i) 3015 if (i == Idx) // If this is the insertion idx, put the low elt of V2 here. 3016 MaskVec.push_back(DAG.getConstant(NumElems, EVT)); 3017 else 3018 MaskVec.push_back(DAG.getConstant(i, EVT)); 3019 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3020 &MaskVec[0], MaskVec.size()); 3021 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); 3022} 3023 3024/// getNumOfConsecutiveZeros - Return the number of elements in a result of 3025/// a shuffle that is zero. 3026static 3027unsigned getNumOfConsecutiveZeros(SDValue Op, SDValue Mask, 3028 unsigned NumElems, bool Low, 3029 SelectionDAG &DAG) { 3030 unsigned NumZeros = 0; 3031 for (unsigned i = 0; i < NumElems; ++i) { 3032 unsigned Index = Low ? i : NumElems-i-1; 3033 SDValue Idx = Mask.getOperand(Index); 3034 if (Idx.getOpcode() == ISD::UNDEF) { 3035 ++NumZeros; 3036 continue; 3037 } 3038 SDValue Elt = DAG.getShuffleScalarElt(Op.getNode(), Index); 3039 if (Elt.getNode() && isZeroNode(Elt)) 3040 ++NumZeros; 3041 else 3042 break; 3043 } 3044 return NumZeros; 3045} 3046 3047/// isVectorShift - Returns true if the shuffle can be implemented as a 3048/// logical left or right shift of a vector. 3049static bool isVectorShift(SDValue Op, SDValue Mask, SelectionDAG &DAG, 3050 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { 3051 unsigned NumElems = Mask.getNumOperands(); 3052 3053 isLeft = true; 3054 unsigned NumZeros= getNumOfConsecutiveZeros(Op, Mask, NumElems, true, DAG); 3055 if (!NumZeros) { 3056 isLeft = false; 3057 NumZeros = getNumOfConsecutiveZeros(Op, Mask, NumElems, false, DAG); 3058 if (!NumZeros) 3059 return false; 3060 } 3061 3062 bool SeenV1 = false; 3063 bool SeenV2 = false; 3064 for (unsigned i = NumZeros; i < NumElems; ++i) { 3065 unsigned Val = isLeft ? (i - NumZeros) : i; 3066 SDValue Idx = Mask.getOperand(isLeft ? i : (i - NumZeros)); 3067 if (Idx.getOpcode() == ISD::UNDEF) 3068 continue; 3069 unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue(); 3070 if (Index < NumElems) 3071 SeenV1 = true; 3072 else { 3073 Index -= NumElems; 3074 SeenV2 = true; 3075 } 3076 if (Index != Val) 3077 return false; 3078 } 3079 if (SeenV1 && SeenV2) 3080 return false; 3081 3082 ShVal = SeenV1 ? Op.getOperand(0) : Op.getOperand(1); 3083 ShAmt = NumZeros; 3084 return true; 3085} 3086 3087 3088/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. 3089/// 3090static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros, 3091 unsigned NumNonZero, unsigned NumZero, 3092 SelectionDAG &DAG, TargetLowering &TLI) { 3093 if (NumNonZero > 8) 3094 return SDValue(); 3095 3096 SDValue V(0, 0); 3097 bool First = true; 3098 for (unsigned i = 0; i < 16; ++i) { 3099 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; 3100 if (ThisIsNonZero && First) { 3101 if (NumZero) 3102 V = getZeroVector(MVT::v8i16, true, DAG); 3103 else 3104 V = DAG.getNode(ISD::UNDEF, MVT::v8i16); 3105 First = false; 3106 } 3107 3108 if ((i & 1) != 0) { 3109 SDValue ThisElt(0, 0), LastElt(0, 0); 3110 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; 3111 if (LastIsNonZero) { 3112 LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1)); 3113 } 3114 if (ThisIsNonZero) { 3115 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i)); 3116 ThisElt = DAG.getNode(ISD::SHL, MVT::i16, 3117 ThisElt, DAG.getConstant(8, MVT::i8)); 3118 if (LastIsNonZero) 3119 ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt); 3120 } else 3121 ThisElt = LastElt; 3122 3123 if (ThisElt.getNode()) 3124 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt, 3125 DAG.getIntPtrConstant(i/2)); 3126 } 3127 } 3128 3129 return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V); 3130} 3131 3132/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16. 3133/// 3134static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros, 3135 unsigned NumNonZero, unsigned NumZero, 3136 SelectionDAG &DAG, TargetLowering &TLI) { 3137 if (NumNonZero > 4) 3138 return SDValue(); 3139 3140 SDValue V(0, 0); 3141 bool First = true; 3142 for (unsigned i = 0; i < 8; ++i) { 3143 bool isNonZero = (NonZeros & (1 << i)) != 0; 3144 if (isNonZero) { 3145 if (First) { 3146 if (NumZero) 3147 V = getZeroVector(MVT::v8i16, true, DAG); 3148 else 3149 V = DAG.getNode(ISD::UNDEF, MVT::v8i16); 3150 First = false; 3151 } 3152 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i), 3153 DAG.getIntPtrConstant(i)); 3154 } 3155 } 3156 3157 return V; 3158} 3159 3160/// getVShift - Return a vector logical shift node. 3161/// 3162static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp, 3163 unsigned NumBits, SelectionDAG &DAG, 3164 const TargetLowering &TLI) { 3165 bool isMMX = VT.getSizeInBits() == 64; 3166 MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64; 3167 unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL; 3168 SrcOp = DAG.getNode(ISD::BIT_CONVERT, ShVT, SrcOp); 3169 return DAG.getNode(ISD::BIT_CONVERT, VT, 3170 DAG.getNode(Opc, ShVT, SrcOp, 3171 DAG.getConstant(NumBits, TLI.getShiftAmountTy()))); 3172} 3173 3174SDValue 3175X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) { 3176 // All zero's are handled with pxor, all one's are handled with pcmpeqd. 3177 if (ISD::isBuildVectorAllZeros(Op.getNode()) 3178 || ISD::isBuildVectorAllOnes(Op.getNode())) { 3179 // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to 3180 // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are 3181 // eliminated on x86-32 hosts. 3182 if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32) 3183 return Op; 3184 3185 if (ISD::isBuildVectorAllOnes(Op.getNode())) 3186 return getOnesVector(Op.getValueType(), DAG); 3187 return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG); 3188 } 3189 3190 MVT VT = Op.getValueType(); 3191 MVT EVT = VT.getVectorElementType(); 3192 unsigned EVTBits = EVT.getSizeInBits(); 3193 3194 unsigned NumElems = Op.getNumOperands(); 3195 unsigned NumZero = 0; 3196 unsigned NumNonZero = 0; 3197 unsigned NonZeros = 0; 3198 bool IsAllConstants = true; 3199 SmallSet<SDValue, 8> Values; 3200 for (unsigned i = 0; i < NumElems; ++i) { 3201 SDValue Elt = Op.getOperand(i); 3202 if (Elt.getOpcode() == ISD::UNDEF) 3203 continue; 3204 Values.insert(Elt); 3205 if (Elt.getOpcode() != ISD::Constant && 3206 Elt.getOpcode() != ISD::ConstantFP) 3207 IsAllConstants = false; 3208 if (isZeroNode(Elt)) 3209 NumZero++; 3210 else { 3211 NonZeros |= (1 << i); 3212 NumNonZero++; 3213 } 3214 } 3215 3216 if (NumNonZero == 0) { 3217 // All undef vector. Return an UNDEF. All zero vectors were handled above. 3218 return DAG.getNode(ISD::UNDEF, VT); 3219 } 3220 3221 // Special case for single non-zero, non-undef, element. 3222 if (NumNonZero == 1 && NumElems <= 4) { 3223 unsigned Idx = CountTrailingZeros_32(NonZeros); 3224 SDValue Item = Op.getOperand(Idx); 3225 3226 // If this is an insertion of an i64 value on x86-32, and if the top bits of 3227 // the value are obviously zero, truncate the value to i32 and do the 3228 // insertion that way. Only do this if the value is non-constant or if the 3229 // value is a constant being inserted into element 0. It is cheaper to do 3230 // a constant pool load than it is to do a movd + shuffle. 3231 if (EVT == MVT::i64 && !Subtarget->is64Bit() && 3232 (!IsAllConstants || Idx == 0)) { 3233 if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) { 3234 // Handle MMX and SSE both. 3235 MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32; 3236 unsigned VecElts = VT == MVT::v2i64 ? 4 : 2; 3237 3238 // Truncate the value (which may itself be a constant) to i32, and 3239 // convert it to a vector with movd (S2V+shuffle to zero extend). 3240 Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item); 3241 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item); 3242 Item = getShuffleVectorZeroOrUndef(Item, 0, true, 3243 Subtarget->hasSSE2(), DAG); 3244 3245 // Now we have our 32-bit value zero extended in the low element of 3246 // a vector. If Idx != 0, swizzle it into place. 3247 if (Idx != 0) { 3248 SDValue Ops[] = { 3249 Item, DAG.getNode(ISD::UNDEF, Item.getValueType()), 3250 getSwapEltZeroMask(VecElts, Idx, DAG) 3251 }; 3252 Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3); 3253 } 3254 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item); 3255 } 3256 } 3257 3258 // If we have a constant or non-constant insertion into the low element of 3259 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into 3260 // the rest of the elements. This will be matched as movd/movq/movss/movsd 3261 // depending on what the source datatype is. Because we can only get here 3262 // when NumElems <= 4, this only needs to handle i32/f32/i64/f64. 3263 if (Idx == 0 && 3264 // Don't do this for i64 values on x86-32. 3265 (EVT != MVT::i64 || Subtarget->is64Bit())) { 3266 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item); 3267 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. 3268 return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, 3269 Subtarget->hasSSE2(), DAG); 3270 } 3271 3272 // Is it a vector logical left shift? 3273 if (NumElems == 2 && Idx == 1 && 3274 isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) { 3275 unsigned NumBits = VT.getSizeInBits(); 3276 return getVShift(true, VT, 3277 DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(1)), 3278 NumBits/2, DAG, *this); 3279 } 3280 3281 if (IsAllConstants) // Otherwise, it's better to do a constpool load. 3282 return SDValue(); 3283 3284 // Otherwise, if this is a vector with i32 or f32 elements, and the element 3285 // is a non-constant being inserted into an element other than the low one, 3286 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka 3287 // movd/movss) to move this into the low element, then shuffle it into 3288 // place. 3289 if (EVTBits == 32) { 3290 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item); 3291 3292 // Turn it into a shuffle of zero and zero-extended scalar to vector. 3293 Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, 3294 Subtarget->hasSSE2(), DAG); 3295 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 3296 MVT MaskEVT = MaskVT.getVectorElementType(); 3297 SmallVector<SDValue, 8> MaskVec; 3298 for (unsigned i = 0; i < NumElems; i++) 3299 MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT)); 3300 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3301 &MaskVec[0], MaskVec.size()); 3302 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item, 3303 DAG.getNode(ISD::UNDEF, VT), Mask); 3304 } 3305 } 3306 3307 // Splat is obviously ok. Let legalizer expand it to a shuffle. 3308 if (Values.size() == 1) 3309 return SDValue(); 3310 3311 // A vector full of immediates; various special cases are already 3312 // handled, so this is best done with a single constant-pool load. 3313 if (IsAllConstants) 3314 return SDValue(); 3315 3316 // Let legalizer expand 2-wide build_vectors. 3317 if (EVTBits == 64) { 3318 if (NumNonZero == 1) { 3319 // One half is zero or undef. 3320 unsigned Idx = CountTrailingZeros_32(NonZeros); 3321 SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, 3322 Op.getOperand(Idx)); 3323 return getShuffleVectorZeroOrUndef(V2, Idx, true, 3324 Subtarget->hasSSE2(), DAG); 3325 } 3326 return SDValue(); 3327 } 3328 3329 // If element VT is < 32 bits, convert it to inserts into a zero vector. 3330 if (EVTBits == 8 && NumElems == 16) { 3331 SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG, 3332 *this); 3333 if (V.getNode()) return V; 3334 } 3335 3336 if (EVTBits == 16 && NumElems == 8) { 3337 SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG, 3338 *this); 3339 if (V.getNode()) return V; 3340 } 3341 3342 // If element VT is == 32 bits, turn it into a number of shuffles. 3343 SmallVector<SDValue, 8> V; 3344 V.resize(NumElems); 3345 if (NumElems == 4 && NumZero > 0) { 3346 for (unsigned i = 0; i < 4; ++i) { 3347 bool isZero = !(NonZeros & (1 << i)); 3348 if (isZero) 3349 V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG); 3350 else 3351 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); 3352 } 3353 3354 for (unsigned i = 0; i < 2; ++i) { 3355 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { 3356 default: break; 3357 case 0: 3358 V[i] = V[i*2]; // Must be a zero vector. 3359 break; 3360 case 1: 3361 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2], 3362 getMOVLMask(NumElems, DAG)); 3363 break; 3364 case 2: 3365 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], 3366 getMOVLMask(NumElems, DAG)); 3367 break; 3368 case 3: 3369 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], 3370 getUnpacklMask(NumElems, DAG)); 3371 break; 3372 } 3373 } 3374 3375 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 3376 MVT EVT = MaskVT.getVectorElementType(); 3377 SmallVector<SDValue, 8> MaskVec; 3378 bool Reverse = (NonZeros & 0x3) == 2; 3379 for (unsigned i = 0; i < 2; ++i) 3380 if (Reverse) 3381 MaskVec.push_back(DAG.getConstant(1-i, EVT)); 3382 else 3383 MaskVec.push_back(DAG.getConstant(i, EVT)); 3384 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2; 3385 for (unsigned i = 0; i < 2; ++i) 3386 if (Reverse) 3387 MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT)); 3388 else 3389 MaskVec.push_back(DAG.getConstant(i+NumElems, EVT)); 3390 SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3391 &MaskVec[0], MaskVec.size()); 3392 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask); 3393 } 3394 3395 if (Values.size() > 2) { 3396 // Expand into a number of unpckl*. 3397 // e.g. for v4f32 3398 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0> 3399 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1> 3400 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0> 3401 SDValue UnpckMask = getUnpacklMask(NumElems, DAG); 3402 for (unsigned i = 0; i < NumElems; ++i) 3403 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); 3404 NumElems >>= 1; 3405 while (NumElems != 0) { 3406 for (unsigned i = 0; i < NumElems; ++i) 3407 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems], 3408 UnpckMask); 3409 NumElems >>= 1; 3410 } 3411 return V[0]; 3412 } 3413 3414 return SDValue(); 3415} 3416 3417static 3418SDValue LowerVECTOR_SHUFFLEv8i16(SDValue V1, SDValue V2, 3419 SDValue PermMask, SelectionDAG &DAG, 3420 TargetLowering &TLI) { 3421 SDValue NewV; 3422 MVT MaskVT = MVT::getIntVectorWithNumElements(8); 3423 MVT MaskEVT = MaskVT.getVectorElementType(); 3424 MVT PtrVT = TLI.getPointerTy(); 3425 SmallVector<SDValue, 8> MaskElts(PermMask.getNode()->op_begin(), 3426 PermMask.getNode()->op_end()); 3427 3428 // First record which half of which vector the low elements come from. 3429 SmallVector<unsigned, 4> LowQuad(4); 3430 for (unsigned i = 0; i < 4; ++i) { 3431 SDValue Elt = MaskElts[i]; 3432 if (Elt.getOpcode() == ISD::UNDEF) 3433 continue; 3434 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue(); 3435 int QuadIdx = EltIdx / 4; 3436 ++LowQuad[QuadIdx]; 3437 } 3438 3439 int BestLowQuad = -1; 3440 unsigned MaxQuad = 1; 3441 for (unsigned i = 0; i < 4; ++i) { 3442 if (LowQuad[i] > MaxQuad) { 3443 BestLowQuad = i; 3444 MaxQuad = LowQuad[i]; 3445 } 3446 } 3447 3448 // Record which half of which vector the high elements come from. 3449 SmallVector<unsigned, 4> HighQuad(4); 3450 for (unsigned i = 4; i < 8; ++i) { 3451 SDValue Elt = MaskElts[i]; 3452 if (Elt.getOpcode() == ISD::UNDEF) 3453 continue; 3454 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue(); 3455 int QuadIdx = EltIdx / 4; 3456 ++HighQuad[QuadIdx]; 3457 } 3458 3459 int BestHighQuad = -1; 3460 MaxQuad = 1; 3461 for (unsigned i = 0; i < 4; ++i) { 3462 if (HighQuad[i] > MaxQuad) { 3463 BestHighQuad = i; 3464 MaxQuad = HighQuad[i]; 3465 } 3466 } 3467 3468 // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it. 3469 if (BestLowQuad != -1 || BestHighQuad != -1) { 3470 // First sort the 4 chunks in order using shufpd. 3471 SmallVector<SDValue, 8> MaskVec; 3472 3473 if (BestLowQuad != -1) 3474 MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32)); 3475 else 3476 MaskVec.push_back(DAG.getConstant(0, MVT::i32)); 3477 3478 if (BestHighQuad != -1) 3479 MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32)); 3480 else 3481 MaskVec.push_back(DAG.getConstant(1, MVT::i32)); 3482 3483 SDValue Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2); 3484 NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64, 3485 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1), 3486 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask); 3487 NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV); 3488 3489 // Now sort high and low parts separately. 3490 BitVector InOrder(8); 3491 if (BestLowQuad != -1) { 3492 // Sort lower half in order using PSHUFLW. 3493 MaskVec.clear(); 3494 bool AnyOutOrder = false; 3495 3496 for (unsigned i = 0; i != 4; ++i) { 3497 SDValue Elt = MaskElts[i]; 3498 if (Elt.getOpcode() == ISD::UNDEF) { 3499 MaskVec.push_back(Elt); 3500 InOrder.set(i); 3501 } else { 3502 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue(); 3503 if (EltIdx != i) 3504 AnyOutOrder = true; 3505 3506 MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT)); 3507 3508 // If this element is in the right place after this shuffle, then 3509 // remember it. 3510 if ((int)(EltIdx / 4) == BestLowQuad) 3511 InOrder.set(i); 3512 } 3513 } 3514 if (AnyOutOrder) { 3515 for (unsigned i = 4; i != 8; ++i) 3516 MaskVec.push_back(DAG.getConstant(i, MaskEVT)); 3517 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8); 3518 NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask); 3519 } 3520 } 3521 3522 if (BestHighQuad != -1) { 3523 // Sort high half in order using PSHUFHW if possible. 3524 MaskVec.clear(); 3525 3526 for (unsigned i = 0; i != 4; ++i) 3527 MaskVec.push_back(DAG.getConstant(i, MaskEVT)); 3528 3529 bool AnyOutOrder = false; 3530 for (unsigned i = 4; i != 8; ++i) { 3531 SDValue Elt = MaskElts[i]; 3532 if (Elt.getOpcode() == ISD::UNDEF) { 3533 MaskVec.push_back(Elt); 3534 InOrder.set(i); 3535 } else { 3536 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue(); 3537 if (EltIdx != i) 3538 AnyOutOrder = true; 3539 3540 MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT)); 3541 3542 // If this element is in the right place after this shuffle, then 3543 // remember it. 3544 if ((int)(EltIdx / 4) == BestHighQuad) 3545 InOrder.set(i); 3546 } 3547 } 3548 3549 if (AnyOutOrder) { 3550 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8); 3551 NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask); 3552 } 3553 } 3554 3555 // The other elements are put in the right place using pextrw and pinsrw. 3556 for (unsigned i = 0; i != 8; ++i) { 3557 if (InOrder[i]) 3558 continue; 3559 SDValue Elt = MaskElts[i]; 3560 if (Elt.getOpcode() == ISD::UNDEF) 3561 continue; 3562 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue(); 3563 SDValue ExtOp = (EltIdx < 8) 3564 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1, 3565 DAG.getConstant(EltIdx, PtrVT)) 3566 : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2, 3567 DAG.getConstant(EltIdx - 8, PtrVT)); 3568 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp, 3569 DAG.getConstant(i, PtrVT)); 3570 } 3571 3572 return NewV; 3573 } 3574 3575 // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use as 3576 // few as possible. First, let's find out how many elements are already in the 3577 // right order. 3578 unsigned V1InOrder = 0; 3579 unsigned V1FromV1 = 0; 3580 unsigned V2InOrder = 0; 3581 unsigned V2FromV2 = 0; 3582 SmallVector<SDValue, 8> V1Elts; 3583 SmallVector<SDValue, 8> V2Elts; 3584 for (unsigned i = 0; i < 8; ++i) { 3585 SDValue Elt = MaskElts[i]; 3586 if (Elt.getOpcode() == ISD::UNDEF) { 3587 V1Elts.push_back(Elt); 3588 V2Elts.push_back(Elt); 3589 ++V1InOrder; 3590 ++V2InOrder; 3591 continue; 3592 } 3593 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue(); 3594 if (EltIdx == i) { 3595 V1Elts.push_back(Elt); 3596 V2Elts.push_back(DAG.getConstant(i+8, MaskEVT)); 3597 ++V1InOrder; 3598 } else if (EltIdx == i+8) { 3599 V1Elts.push_back(Elt); 3600 V2Elts.push_back(DAG.getConstant(i, MaskEVT)); 3601 ++V2InOrder; 3602 } else if (EltIdx < 8) { 3603 V1Elts.push_back(Elt); 3604 ++V1FromV1; 3605 } else { 3606 V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT)); 3607 ++V2FromV2; 3608 } 3609 } 3610 3611 if (V2InOrder > V1InOrder) { 3612 PermMask = CommuteVectorShuffleMask(PermMask, DAG); 3613 std::swap(V1, V2); 3614 std::swap(V1Elts, V2Elts); 3615 std::swap(V1FromV1, V2FromV2); 3616 } 3617 3618 if ((V1FromV1 + V1InOrder) != 8) { 3619 // Some elements are from V2. 3620 if (V1FromV1) { 3621 // If there are elements that are from V1 but out of place, 3622 // then first sort them in place 3623 SmallVector<SDValue, 8> MaskVec; 3624 for (unsigned i = 0; i < 8; ++i) { 3625 SDValue Elt = V1Elts[i]; 3626 if (Elt.getOpcode() == ISD::UNDEF) { 3627 MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); 3628 continue; 3629 } 3630 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue(); 3631 if (EltIdx >= 8) 3632 MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); 3633 else 3634 MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT)); 3635 } 3636 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8); 3637 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask); 3638 } 3639 3640 NewV = V1; 3641 for (unsigned i = 0; i < 8; ++i) { 3642 SDValue Elt = V1Elts[i]; 3643 if (Elt.getOpcode() == ISD::UNDEF) 3644 continue; 3645 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue(); 3646 if (EltIdx < 8) 3647 continue; 3648 SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2, 3649 DAG.getConstant(EltIdx - 8, PtrVT)); 3650 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp, 3651 DAG.getConstant(i, PtrVT)); 3652 } 3653 return NewV; 3654 } else { 3655 // All elements are from V1. 3656 NewV = V1; 3657 for (unsigned i = 0; i < 8; ++i) { 3658 SDValue Elt = V1Elts[i]; 3659 if (Elt.getOpcode() == ISD::UNDEF) 3660 continue; 3661 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue(); 3662 SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1, 3663 DAG.getConstant(EltIdx, PtrVT)); 3664 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp, 3665 DAG.getConstant(i, PtrVT)); 3666 } 3667 return NewV; 3668 } 3669} 3670 3671/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide 3672/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be 3673/// done when every pair / quad of shuffle mask elements point to elements in 3674/// the right sequence. e.g. 3675/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15> 3676static 3677SDValue RewriteAsNarrowerShuffle(SDValue V1, SDValue V2, 3678 MVT VT, 3679 SDValue PermMask, SelectionDAG &DAG, 3680 TargetLowering &TLI) { 3681 unsigned NumElems = PermMask.getNumOperands(); 3682 unsigned NewWidth = (NumElems == 4) ? 2 : 4; 3683 MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth); 3684 MVT MaskEltVT = MaskVT.getVectorElementType(); 3685 MVT NewVT = MaskVT; 3686 switch (VT.getSimpleVT()) { 3687 default: assert(false && "Unexpected!"); 3688 case MVT::v4f32: NewVT = MVT::v2f64; break; 3689 case MVT::v4i32: NewVT = MVT::v2i64; break; 3690 case MVT::v8i16: NewVT = MVT::v4i32; break; 3691 case MVT::v16i8: NewVT = MVT::v4i32; break; 3692 } 3693 3694 if (NewWidth == 2) { 3695 if (VT.isInteger()) 3696 NewVT = MVT::v2i64; 3697 else 3698 NewVT = MVT::v2f64; 3699 } 3700 unsigned Scale = NumElems / NewWidth; 3701 SmallVector<SDValue, 8> MaskVec; 3702 for (unsigned i = 0; i < NumElems; i += Scale) { 3703 unsigned StartIdx = ~0U; 3704 for (unsigned j = 0; j < Scale; ++j) { 3705 SDValue Elt = PermMask.getOperand(i+j); 3706 if (Elt.getOpcode() == ISD::UNDEF) 3707 continue; 3708 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue(); 3709 if (StartIdx == ~0U) 3710 StartIdx = EltIdx - (EltIdx % Scale); 3711 if (EltIdx != StartIdx + j) 3712 return SDValue(); 3713 } 3714 if (StartIdx == ~0U) 3715 MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEltVT)); 3716 else 3717 MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MaskEltVT)); 3718 } 3719 3720 V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1); 3721 V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2); 3722 return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2, 3723 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3724 &MaskVec[0], MaskVec.size())); 3725} 3726 3727/// getVZextMovL - Return a zero-extending vector move low node. 3728/// 3729static SDValue getVZextMovL(MVT VT, MVT OpVT, 3730 SDValue SrcOp, SelectionDAG &DAG, 3731 const X86Subtarget *Subtarget) { 3732 if (VT == MVT::v2f64 || VT == MVT::v4f32) { 3733 LoadSDNode *LD = NULL; 3734 if (!isScalarLoadToVector(SrcOp.getNode(), &LD)) 3735 LD = dyn_cast<LoadSDNode>(SrcOp); 3736 if (!LD) { 3737 // movssrr and movsdrr do not clear top bits. Try to use movd, movq 3738 // instead. 3739 MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32; 3740 if ((EVT != MVT::i64 || Subtarget->is64Bit()) && 3741 SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR && 3742 SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT && 3743 SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) { 3744 // PR2108 3745 OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32; 3746 return DAG.getNode(ISD::BIT_CONVERT, VT, 3747 DAG.getNode(X86ISD::VZEXT_MOVL, OpVT, 3748 DAG.getNode(ISD::SCALAR_TO_VECTOR, OpVT, 3749 SrcOp.getOperand(0) 3750 .getOperand(0)))); 3751 } 3752 } 3753 } 3754 3755 return DAG.getNode(ISD::BIT_CONVERT, VT, 3756 DAG.getNode(X86ISD::VZEXT_MOVL, OpVT, 3757 DAG.getNode(ISD::BIT_CONVERT, OpVT, SrcOp))); 3758} 3759 3760/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of 3761/// shuffles. 3762static SDValue 3763LowerVECTOR_SHUFFLE_4wide(SDValue V1, SDValue V2, 3764 SDValue PermMask, MVT VT, SelectionDAG &DAG) { 3765 MVT MaskVT = PermMask.getValueType(); 3766 MVT MaskEVT = MaskVT.getVectorElementType(); 3767 SmallVector<std::pair<int, int>, 8> Locs; 3768 Locs.resize(4); 3769 SmallVector<SDValue, 8> Mask1(4, DAG.getNode(ISD::UNDEF, MaskEVT)); 3770 unsigned NumHi = 0; 3771 unsigned NumLo = 0; 3772 for (unsigned i = 0; i != 4; ++i) { 3773 SDValue Elt = PermMask.getOperand(i); 3774 if (Elt.getOpcode() == ISD::UNDEF) { 3775 Locs[i] = std::make_pair(-1, -1); 3776 } else { 3777 unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue(); 3778 assert(Val < 8 && "Invalid VECTOR_SHUFFLE index!"); 3779 if (Val < 4) { 3780 Locs[i] = std::make_pair(0, NumLo); 3781 Mask1[NumLo] = Elt; 3782 NumLo++; 3783 } else { 3784 Locs[i] = std::make_pair(1, NumHi); 3785 if (2+NumHi < 4) 3786 Mask1[2+NumHi] = Elt; 3787 NumHi++; 3788 } 3789 } 3790 } 3791 3792 if (NumLo <= 2 && NumHi <= 2) { 3793 // If no more than two elements come from either vector. This can be 3794 // implemented with two shuffles. First shuffle gather the elements. 3795 // The second shuffle, which takes the first shuffle as both of its 3796 // vector operands, put the elements into the right order. 3797 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, 3798 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3799 &Mask1[0], Mask1.size())); 3800 3801 SmallVector<SDValue, 8> Mask2(4, DAG.getNode(ISD::UNDEF, MaskEVT)); 3802 for (unsigned i = 0; i != 4; ++i) { 3803 if (Locs[i].first == -1) 3804 continue; 3805 else { 3806 unsigned Idx = (i < 2) ? 0 : 4; 3807 Idx += Locs[i].first * 2 + Locs[i].second; 3808 Mask2[i] = DAG.getConstant(Idx, MaskEVT); 3809 } 3810 } 3811 3812 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, 3813 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3814 &Mask2[0], Mask2.size())); 3815 } else if (NumLo == 3 || NumHi == 3) { 3816 // Otherwise, we must have three elements from one vector, call it X, and 3817 // one element from the other, call it Y. First, use a shufps to build an 3818 // intermediate vector with the one element from Y and the element from X 3819 // that will be in the same half in the final destination (the indexes don't 3820 // matter). Then, use a shufps to build the final vector, taking the half 3821 // containing the element from Y from the intermediate, and the other half 3822 // from X. 3823 if (NumHi == 3) { 3824 // Normalize it so the 3 elements come from V1. 3825 PermMask = CommuteVectorShuffleMask(PermMask, DAG); 3826 std::swap(V1, V2); 3827 } 3828 3829 // Find the element from V2. 3830 unsigned HiIndex; 3831 for (HiIndex = 0; HiIndex < 3; ++HiIndex) { 3832 SDValue Elt = PermMask.getOperand(HiIndex); 3833 if (Elt.getOpcode() == ISD::UNDEF) 3834 continue; 3835 unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue(); 3836 if (Val >= 4) 3837 break; 3838 } 3839 3840 Mask1[0] = PermMask.getOperand(HiIndex); 3841 Mask1[1] = DAG.getNode(ISD::UNDEF, MaskEVT); 3842 Mask1[2] = PermMask.getOperand(HiIndex^1); 3843 Mask1[3] = DAG.getNode(ISD::UNDEF, MaskEVT); 3844 V2 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, 3845 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4)); 3846 3847 if (HiIndex >= 2) { 3848 Mask1[0] = PermMask.getOperand(0); 3849 Mask1[1] = PermMask.getOperand(1); 3850 Mask1[2] = DAG.getConstant(HiIndex & 1 ? 6 : 4, MaskEVT); 3851 Mask1[3] = DAG.getConstant(HiIndex & 1 ? 4 : 6, MaskEVT); 3852 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, 3853 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4)); 3854 } else { 3855 Mask1[0] = DAG.getConstant(HiIndex & 1 ? 2 : 0, MaskEVT); 3856 Mask1[1] = DAG.getConstant(HiIndex & 1 ? 0 : 2, MaskEVT); 3857 Mask1[2] = PermMask.getOperand(2); 3858 Mask1[3] = PermMask.getOperand(3); 3859 if (Mask1[2].getOpcode() != ISD::UNDEF) 3860 Mask1[2] = 3861 DAG.getConstant(cast<ConstantSDNode>(Mask1[2])->getZExtValue()+4, 3862 MaskEVT); 3863 if (Mask1[3].getOpcode() != ISD::UNDEF) 3864 Mask1[3] = 3865 DAG.getConstant(cast<ConstantSDNode>(Mask1[3])->getZExtValue()+4, 3866 MaskEVT); 3867 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V2, V1, 3868 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4)); 3869 } 3870 } 3871 3872 // Break it into (shuffle shuffle_hi, shuffle_lo). 3873 Locs.clear(); 3874 SmallVector<SDValue,8> LoMask(4, DAG.getNode(ISD::UNDEF, MaskEVT)); 3875 SmallVector<SDValue,8> HiMask(4, DAG.getNode(ISD::UNDEF, MaskEVT)); 3876 SmallVector<SDValue,8> *MaskPtr = &LoMask; 3877 unsigned MaskIdx = 0; 3878 unsigned LoIdx = 0; 3879 unsigned HiIdx = 2; 3880 for (unsigned i = 0; i != 4; ++i) { 3881 if (i == 2) { 3882 MaskPtr = &HiMask; 3883 MaskIdx = 1; 3884 LoIdx = 0; 3885 HiIdx = 2; 3886 } 3887 SDValue Elt = PermMask.getOperand(i); 3888 if (Elt.getOpcode() == ISD::UNDEF) { 3889 Locs[i] = std::make_pair(-1, -1); 3890 } else if (cast<ConstantSDNode>(Elt)->getZExtValue() < 4) { 3891 Locs[i] = std::make_pair(MaskIdx, LoIdx); 3892 (*MaskPtr)[LoIdx] = Elt; 3893 LoIdx++; 3894 } else { 3895 Locs[i] = std::make_pair(MaskIdx, HiIdx); 3896 (*MaskPtr)[HiIdx] = Elt; 3897 HiIdx++; 3898 } 3899 } 3900 3901 SDValue LoShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, 3902 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3903 &LoMask[0], LoMask.size())); 3904 SDValue HiShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, 3905 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3906 &HiMask[0], HiMask.size())); 3907 SmallVector<SDValue, 8> MaskOps; 3908 for (unsigned i = 0; i != 4; ++i) { 3909 if (Locs[i].first == -1) { 3910 MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); 3911 } else { 3912 unsigned Idx = Locs[i].first * 4 + Locs[i].second; 3913 MaskOps.push_back(DAG.getConstant(Idx, MaskEVT)); 3914 } 3915 } 3916 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle, 3917 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3918 &MaskOps[0], MaskOps.size())); 3919} 3920 3921SDValue 3922X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) { 3923 SDValue V1 = Op.getOperand(0); 3924 SDValue V2 = Op.getOperand(1); 3925 SDValue PermMask = Op.getOperand(2); 3926 MVT VT = Op.getValueType(); 3927 unsigned NumElems = PermMask.getNumOperands(); 3928 bool isMMX = VT.getSizeInBits() == 64; 3929 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; 3930 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; 3931 bool V1IsSplat = false; 3932 bool V2IsSplat = false; 3933 3934 if (isUndefShuffle(Op.getNode())) 3935 return DAG.getNode(ISD::UNDEF, VT); 3936 3937 if (isZeroShuffle(Op.getNode())) 3938 return getZeroVector(VT, Subtarget->hasSSE2(), DAG); 3939 3940 if (isIdentityMask(PermMask.getNode())) 3941 return V1; 3942 else if (isIdentityMask(PermMask.getNode(), true)) 3943 return V2; 3944 3945 if (isSplatMask(PermMask.getNode())) { 3946 if (isMMX || NumElems < 4) return Op; 3947 // Promote it to a v4{if}32 splat. 3948 return PromoteSplat(Op, DAG, Subtarget->hasSSE2()); 3949 } 3950 3951 // Canonicalize movddup shuffles. 3952 if (V2IsUndef && Subtarget->hasSSE2() && 3953 X86::isMOVDDUPMask(PermMask.getNode())) 3954 return CanonicalizeMovddup(Op, V1, PermMask, DAG, Subtarget->hasSSE3()); 3955 3956 // If the shuffle can be profitably rewritten as a narrower shuffle, then 3957 // do it! 3958 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 3959 SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this); 3960 if (NewOp.getNode()) 3961 return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG)); 3962 } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) { 3963 // FIXME: Figure out a cleaner way to do this. 3964 // Try to make use of movq to zero out the top part. 3965 if (ISD::isBuildVectorAllZeros(V2.getNode())) { 3966 SDValue NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, 3967 DAG, *this); 3968 if (NewOp.getNode()) { 3969 SDValue NewV1 = NewOp.getOperand(0); 3970 SDValue NewV2 = NewOp.getOperand(1); 3971 SDValue NewMask = NewOp.getOperand(2); 3972 if (isCommutedMOVL(NewMask.getNode(), true, false)) { 3973 NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG); 3974 return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget); 3975 } 3976 } 3977 } else if (ISD::isBuildVectorAllZeros(V1.getNode())) { 3978 SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, 3979 DAG, *this); 3980 if (NewOp.getNode() && X86::isMOVLMask(NewOp.getOperand(2).getNode())) 3981 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1), 3982 DAG, Subtarget); 3983 } 3984 } 3985 3986 // Check if this can be converted into a logical shift. 3987 bool isLeft = false; 3988 unsigned ShAmt = 0; 3989 SDValue ShVal; 3990 bool isShift = isVectorShift(Op, PermMask, DAG, isLeft, ShVal, ShAmt); 3991 if (isShift && ShVal.hasOneUse()) { 3992 // If the shifted value has multiple uses, it may be cheaper to use 3993 // v_set0 + movlhps or movhlps, etc. 3994 MVT EVT = VT.getVectorElementType(); 3995 ShAmt *= EVT.getSizeInBits(); 3996 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this); 3997 } 3998 3999 if (X86::isMOVLMask(PermMask.getNode())) { 4000 if (V1IsUndef) 4001 return V2; 4002 if (ISD::isBuildVectorAllZeros(V1.getNode())) 4003 return getVZextMovL(VT, VT, V2, DAG, Subtarget); 4004 if (!isMMX) 4005 return Op; 4006 } 4007 4008 if (!isMMX && (X86::isMOVSHDUPMask(PermMask.getNode()) || 4009 X86::isMOVSLDUPMask(PermMask.getNode()) || 4010 X86::isMOVHLPSMask(PermMask.getNode()) || 4011 X86::isMOVHPMask(PermMask.getNode()) || 4012 X86::isMOVLPMask(PermMask.getNode()))) 4013 return Op; 4014 4015 if (ShouldXformToMOVHLPS(PermMask.getNode()) || 4016 ShouldXformToMOVLP(V1.getNode(), V2.getNode(), PermMask.getNode())) 4017 return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); 4018 4019 if (isShift) { 4020 // No better options. Use a vshl / vsrl. 4021 MVT EVT = VT.getVectorElementType(); 4022 ShAmt *= EVT.getSizeInBits(); 4023 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this); 4024 } 4025 4026 bool Commuted = false; 4027 // FIXME: This should also accept a bitcast of a splat? Be careful, not 4028 // 1,1,1,1 -> v8i16 though. 4029 V1IsSplat = isSplatVector(V1.getNode()); 4030 V2IsSplat = isSplatVector(V2.getNode()); 4031 4032 // Canonicalize the splat or undef, if present, to be on the RHS. 4033 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) { 4034 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); 4035 std::swap(V1IsSplat, V2IsSplat); 4036 std::swap(V1IsUndef, V2IsUndef); 4037 Commuted = true; 4038 } 4039 4040 // FIXME: Figure out a cleaner way to do this. 4041 if (isCommutedMOVL(PermMask.getNode(), V2IsSplat, V2IsUndef)) { 4042 if (V2IsUndef) return V1; 4043 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); 4044 if (V2IsSplat) { 4045 // V2 is a splat, so the mask may be malformed. That is, it may point 4046 // to any V2 element. The instruction selectior won't like this. Get 4047 // a corrected mask and commute to form a proper MOVS{S|D}. 4048 SDValue NewMask = getMOVLMask(NumElems, DAG); 4049 if (NewMask.getNode() != PermMask.getNode()) 4050 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); 4051 } 4052 return Op; 4053 } 4054 4055 if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) || 4056 X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) || 4057 X86::isUNPCKLMask(PermMask.getNode()) || 4058 X86::isUNPCKHMask(PermMask.getNode())) 4059 return Op; 4060 4061 if (V2IsSplat) { 4062 // Normalize mask so all entries that point to V2 points to its first 4063 // element then try to match unpck{h|l} again. If match, return a 4064 // new vector_shuffle with the corrected mask. 4065 SDValue NewMask = NormalizeMask(PermMask, DAG); 4066 if (NewMask.getNode() != PermMask.getNode()) { 4067 if (X86::isUNPCKLMask(PermMask.getNode(), true)) { 4068 SDValue NewMask = getUnpacklMask(NumElems, DAG); 4069 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); 4070 } else if (X86::isUNPCKHMask(PermMask.getNode(), true)) { 4071 SDValue NewMask = getUnpackhMask(NumElems, DAG); 4072 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); 4073 } 4074 } 4075 } 4076 4077 // Normalize the node to match x86 shuffle ops if needed 4078 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.getNode())) 4079 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); 4080 4081 if (Commuted) { 4082 // Commute is back and try unpck* again. 4083 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); 4084 if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) || 4085 X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) || 4086 X86::isUNPCKLMask(PermMask.getNode()) || 4087 X86::isUNPCKHMask(PermMask.getNode())) 4088 return Op; 4089 } 4090 4091 // Try PSHUF* first, then SHUFP*. 4092 // MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically 4093 // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented. 4094 if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.getNode())) { 4095 if (V2.getOpcode() != ISD::UNDEF) 4096 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, 4097 DAG.getNode(ISD::UNDEF, VT), PermMask); 4098 return Op; 4099 } 4100 4101 if (!isMMX) { 4102 if (Subtarget->hasSSE2() && 4103 (X86::isPSHUFDMask(PermMask.getNode()) || 4104 X86::isPSHUFHWMask(PermMask.getNode()) || 4105 X86::isPSHUFLWMask(PermMask.getNode()))) { 4106 MVT RVT = VT; 4107 if (VT == MVT::v4f32) { 4108 RVT = MVT::v4i32; 4109 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, 4110 DAG.getNode(ISD::BIT_CONVERT, RVT, V1), 4111 DAG.getNode(ISD::UNDEF, RVT), PermMask); 4112 } else if (V2.getOpcode() != ISD::UNDEF) 4113 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, V1, 4114 DAG.getNode(ISD::UNDEF, RVT), PermMask); 4115 if (RVT != VT) 4116 Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op); 4117 return Op; 4118 } 4119 4120 // Binary or unary shufps. 4121 if (X86::isSHUFPMask(PermMask.getNode()) || 4122 (V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.getNode()))) 4123 return Op; 4124 } 4125 4126 // Handle v8i16 specifically since SSE can do byte extraction and insertion. 4127 if (VT == MVT::v8i16) { 4128 SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this); 4129 if (NewOp.getNode()) 4130 return NewOp; 4131 } 4132 4133 // Handle all 4 wide cases with a number of shuffles except for MMX. 4134 if (NumElems == 4 && !isMMX) 4135 return LowerVECTOR_SHUFFLE_4wide(V1, V2, PermMask, VT, DAG); 4136 4137 return SDValue(); 4138} 4139 4140SDValue 4141X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, 4142 SelectionDAG &DAG) { 4143 MVT VT = Op.getValueType(); 4144 if (VT.getSizeInBits() == 8) { 4145 SDValue Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32, 4146 Op.getOperand(0), Op.getOperand(1)); 4147 SDValue Assert = DAG.getNode(ISD::AssertZext, MVT::i32, Extract, 4148 DAG.getValueType(VT)); 4149 return DAG.getNode(ISD::TRUNCATE, VT, Assert); 4150 } else if (VT.getSizeInBits() == 16) { 4151 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32, 4152 Op.getOperand(0), Op.getOperand(1)); 4153 SDValue Assert = DAG.getNode(ISD::AssertZext, MVT::i32, Extract, 4154 DAG.getValueType(VT)); 4155 return DAG.getNode(ISD::TRUNCATE, VT, Assert); 4156 } else if (VT == MVT::f32) { 4157 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy 4158 // the result back to FR32 register. It's only worth matching if the 4159 // result has a single use which is a store or a bitcast to i32. 4160 if (!Op.hasOneUse()) 4161 return SDValue(); 4162 SDNode *User = *Op.getNode()->use_begin(); 4163 if (User->getOpcode() != ISD::STORE && 4164 (User->getOpcode() != ISD::BIT_CONVERT || 4165 User->getValueType(0) != MVT::i32)) 4166 return SDValue(); 4167 SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, 4168 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Op.getOperand(0)), 4169 Op.getOperand(1)); 4170 return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Extract); 4171 } 4172 return SDValue(); 4173} 4174 4175 4176SDValue 4177X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { 4178 if (!isa<ConstantSDNode>(Op.getOperand(1))) 4179 return SDValue(); 4180 4181 if (Subtarget->hasSSE41()) { 4182 SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG); 4183 if (Res.getNode()) 4184 return Res; 4185 } 4186 4187 MVT VT = Op.getValueType(); 4188 // TODO: handle v16i8. 4189 if (VT.getSizeInBits() == 16) { 4190 SDValue Vec = Op.getOperand(0); 4191 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4192 if (Idx == 0) 4193 return DAG.getNode(ISD::TRUNCATE, MVT::i16, 4194 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, 4195 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec), 4196 Op.getOperand(1))); 4197 // Transform it so it match pextrw which produces a 32-bit result. 4198 MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1); 4199 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, EVT, 4200 Op.getOperand(0), Op.getOperand(1)); 4201 SDValue Assert = DAG.getNode(ISD::AssertZext, EVT, Extract, 4202 DAG.getValueType(VT)); 4203 return DAG.getNode(ISD::TRUNCATE, VT, Assert); 4204 } else if (VT.getSizeInBits() == 32) { 4205 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4206 if (Idx == 0) 4207 return Op; 4208 // SHUFPS the element to the lowest double word, then movss. 4209 MVT MaskVT = MVT::getIntVectorWithNumElements(4); 4210 SmallVector<SDValue, 8> IdxVec; 4211 IdxVec. 4212 push_back(DAG.getConstant(Idx, MaskVT.getVectorElementType())); 4213 IdxVec. 4214 push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType())); 4215 IdxVec. 4216 push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType())); 4217 IdxVec. 4218 push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType())); 4219 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4220 &IdxVec[0], IdxVec.size()); 4221 SDValue Vec = Op.getOperand(0); 4222 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), 4223 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask); 4224 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, 4225 DAG.getIntPtrConstant(0)); 4226 } else if (VT.getSizeInBits() == 64) { 4227 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b 4228 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught 4229 // to match extract_elt for f64. 4230 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4231 if (Idx == 0) 4232 return Op; 4233 4234 // UNPCKHPD the element to the lowest double word, then movsd. 4235 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored 4236 // to a f64mem, the whole operation is folded into a single MOVHPDmr. 4237 MVT MaskVT = MVT::getIntVectorWithNumElements(2); 4238 SmallVector<SDValue, 8> IdxVec; 4239 IdxVec.push_back(DAG.getConstant(1, MaskVT.getVectorElementType())); 4240 IdxVec. 4241 push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType())); 4242 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4243 &IdxVec[0], IdxVec.size()); 4244 SDValue Vec = Op.getOperand(0); 4245 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), 4246 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask); 4247 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, 4248 DAG.getIntPtrConstant(0)); 4249 } 4250 4251 return SDValue(); 4252} 4253 4254SDValue 4255X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){ 4256 MVT VT = Op.getValueType(); 4257 MVT EVT = VT.getVectorElementType(); 4258 4259 SDValue N0 = Op.getOperand(0); 4260 SDValue N1 = Op.getOperand(1); 4261 SDValue N2 = Op.getOperand(2); 4262 4263 if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) && 4264 isa<ConstantSDNode>(N2)) { 4265 unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB 4266 : X86ISD::PINSRW; 4267 // Transform it so it match pinsr{b,w} which expects a GR32 as its second 4268 // argument. 4269 if (N1.getValueType() != MVT::i32) 4270 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1); 4271 if (N2.getValueType() != MVT::i32) 4272 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); 4273 return DAG.getNode(Opc, VT, N0, N1, N2); 4274 } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) { 4275 // Bits [7:6] of the constant are the source select. This will always be 4276 // zero here. The DAG Combiner may combine an extract_elt index into these 4277 // bits. For example (insert (extract, 3), 2) could be matched by putting 4278 // the '3' into bits [7:6] of X86ISD::INSERTPS. 4279 // Bits [5:4] of the constant are the destination select. This is the 4280 // value of the incoming immediate. 4281 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may 4282 // combine either bitwise AND or insert of float 0.0 to set these bits. 4283 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4); 4284 return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2); 4285 } 4286 return SDValue(); 4287} 4288 4289SDValue 4290X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { 4291 MVT VT = Op.getValueType(); 4292 MVT EVT = VT.getVectorElementType(); 4293 4294 if (Subtarget->hasSSE41()) 4295 return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG); 4296 4297 if (EVT == MVT::i8) 4298 return SDValue(); 4299 4300 SDValue N0 = Op.getOperand(0); 4301 SDValue N1 = Op.getOperand(1); 4302 SDValue N2 = Op.getOperand(2); 4303 4304 if (EVT.getSizeInBits() == 16) { 4305 // Transform it so it match pinsrw which expects a 16-bit value in a GR32 4306 // as its second argument. 4307 if (N1.getValueType() != MVT::i32) 4308 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1); 4309 if (N2.getValueType() != MVT::i32) 4310 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); 4311 return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2); 4312 } 4313 return SDValue(); 4314} 4315 4316SDValue 4317X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) { 4318 if (Op.getValueType() == MVT::v2f32) 4319 return DAG.getNode(ISD::BIT_CONVERT, MVT::v2f32, 4320 DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i32, 4321 DAG.getNode(ISD::BIT_CONVERT, MVT::i32, 4322 Op.getOperand(0)))); 4323 4324 SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0)); 4325 MVT VT = MVT::v2i32; 4326 switch (Op.getValueType().getSimpleVT()) { 4327 default: break; 4328 case MVT::v16i8: 4329 case MVT::v8i16: 4330 VT = MVT::v4i32; 4331 break; 4332 } 4333 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), 4334 DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt)); 4335} 4336 4337// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as 4338// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is 4339// one of the above mentioned nodes. It has to be wrapped because otherwise 4340// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only 4341// be used to form addressing mode. These wrapped nodes will be selected 4342// into MOV32ri. 4343SDValue 4344X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) { 4345 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 4346 SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), 4347 getPointerTy(), 4348 CP->getAlignment()); 4349 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); 4350 // With PIC, the address is actually $g + Offset. 4351 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && 4352 !Subtarget->isPICStyleRIPRel()) { 4353 Result = DAG.getNode(ISD::ADD, getPointerTy(), 4354 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), 4355 Result); 4356 } 4357 4358 return Result; 4359} 4360 4361SDValue 4362X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, 4363 SelectionDAG &DAG) const { 4364 SDValue Result = DAG.getTargetGlobalAddress(GV, getPointerTy()); 4365 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); 4366 // With PIC, the address is actually $g + Offset. 4367 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && 4368 !Subtarget->isPICStyleRIPRel()) { 4369 Result = DAG.getNode(ISD::ADD, getPointerTy(), 4370 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), 4371 Result); 4372 } 4373 4374 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to 4375 // load the value at address GV, not the value of GV itself. This means that 4376 // the GlobalAddress must be in the base or index register of the address, not 4377 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call 4378 // The same applies for external symbols during PIC codegen 4379 if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false)) 4380 Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, 4381 PseudoSourceValue::getGOT(), 0); 4382 4383 return Result; 4384} 4385 4386SDValue 4387X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) { 4388 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 4389 return LowerGlobalAddress(GV, DAG); 4390} 4391 4392// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit 4393static SDValue 4394LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG, 4395 const MVT PtrVT) { 4396 SDValue InFlag; 4397 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX, 4398 DAG.getNode(X86ISD::GlobalBaseReg, 4399 PtrVT), InFlag); 4400 InFlag = Chain.getValue(1); 4401 4402 // emit leal symbol@TLSGD(,%ebx,1), %eax 4403 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag); 4404 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), 4405 GA->getValueType(0), 4406 GA->getOffset()); 4407 SDValue Ops[] = { Chain, TGA, InFlag }; 4408 SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3); 4409 InFlag = Result.getValue(2); 4410 Chain = Result.getValue(1); 4411 4412 // call ___tls_get_addr. This function receives its argument in 4413 // the register EAX. 4414 Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag); 4415 InFlag = Chain.getValue(1); 4416 4417 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); 4418 SDValue Ops1[] = { Chain, 4419 DAG.getTargetExternalSymbol("___tls_get_addr", 4420 PtrVT), 4421 DAG.getRegister(X86::EAX, PtrVT), 4422 DAG.getRegister(X86::EBX, PtrVT), 4423 InFlag }; 4424 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5); 4425 InFlag = Chain.getValue(1); 4426 4427 return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag); 4428} 4429 4430// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit 4431static SDValue 4432LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG, 4433 const MVT PtrVT) { 4434 SDValue InFlag, Chain; 4435 4436 // emit leaq symbol@TLSGD(%rip), %rdi 4437 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag); 4438 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), 4439 GA->getValueType(0), 4440 GA->getOffset()); 4441 SDValue Ops[] = { DAG.getEntryNode(), TGA}; 4442 SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 2); 4443 Chain = Result.getValue(1); 4444 InFlag = Result.getValue(2); 4445 4446 // call __tls_get_addr. This function receives its argument in 4447 // the register RDI. 4448 Chain = DAG.getCopyToReg(Chain, X86::RDI, Result, InFlag); 4449 InFlag = Chain.getValue(1); 4450 4451 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); 4452 SDValue Ops1[] = { Chain, 4453 DAG.getTargetExternalSymbol("__tls_get_addr", 4454 PtrVT), 4455 DAG.getRegister(X86::RDI, PtrVT), 4456 InFlag }; 4457 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 4); 4458 InFlag = Chain.getValue(1); 4459 4460 return DAG.getCopyFromReg(Chain, X86::RAX, PtrVT, InFlag); 4461} 4462 4463// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or 4464// "local exec" model. 4465static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, 4466 const MVT PtrVT) { 4467 // Get the Thread Pointer 4468 SDValue ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT); 4469 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial 4470 // exec) 4471 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), 4472 GA->getValueType(0), 4473 GA->getOffset()); 4474 SDValue Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA); 4475 4476 if (GA->getGlobal()->isDeclaration()) // initial exec TLS model 4477 Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, 4478 PseudoSourceValue::getGOT(), 0); 4479 4480 // The address of the thread local variable is the add of the thread 4481 // pointer with the offset of the variable. 4482 return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset); 4483} 4484 4485SDValue 4486X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) { 4487 // TODO: implement the "local dynamic" model 4488 // TODO: implement the "initial exec"model for pic executables 4489 assert(Subtarget->isTargetELF() && 4490 "TLS not implemented for non-ELF targets"); 4491 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 4492 // If the relocation model is PIC, use the "General Dynamic" TLS Model, 4493 // otherwise use the "Local Exec"TLS Model 4494 if (Subtarget->is64Bit()) { 4495 return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy()); 4496 } else { 4497 if (getTargetMachine().getRelocationModel() == Reloc::PIC_) 4498 return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy()); 4499 else 4500 return LowerToTLSExecModel(GA, DAG, getPointerTy()); 4501 } 4502} 4503 4504SDValue 4505X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) { 4506 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 4507 SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy()); 4508 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); 4509 // With PIC, the address is actually $g + Offset. 4510 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && 4511 !Subtarget->isPICStyleRIPRel()) { 4512 Result = DAG.getNode(ISD::ADD, getPointerTy(), 4513 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), 4514 Result); 4515 } 4516 4517 return Result; 4518} 4519 4520SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) { 4521 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 4522 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy()); 4523 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); 4524 // With PIC, the address is actually $g + Offset. 4525 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && 4526 !Subtarget->isPICStyleRIPRel()) { 4527 Result = DAG.getNode(ISD::ADD, getPointerTy(), 4528 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), 4529 Result); 4530 } 4531 4532 return Result; 4533} 4534 4535/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and 4536/// take a 2 x i32 value to shift plus a shift amount. 4537SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) { 4538 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 4539 MVT VT = Op.getValueType(); 4540 unsigned VTBits = VT.getSizeInBits(); 4541 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; 4542 SDValue ShOpLo = Op.getOperand(0); 4543 SDValue ShOpHi = Op.getOperand(1); 4544 SDValue ShAmt = Op.getOperand(2); 4545 SDValue Tmp1 = isSRA ? 4546 DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) : 4547 DAG.getConstant(0, VT); 4548 4549 SDValue Tmp2, Tmp3; 4550 if (Op.getOpcode() == ISD::SHL_PARTS) { 4551 Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt); 4552 Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt); 4553 } else { 4554 Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt); 4555 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt); 4556 } 4557 4558 SDValue AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt, 4559 DAG.getConstant(VTBits, MVT::i8)); 4560 SDValue Cond = DAG.getNode(X86ISD::CMP, VT, 4561 AndNode, DAG.getConstant(0, MVT::i8)); 4562 4563 SDValue Hi, Lo; 4564 SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8); 4565 SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond }; 4566 SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond }; 4567 4568 if (Op.getOpcode() == ISD::SHL_PARTS) { 4569 Hi = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4); 4570 Lo = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4); 4571 } else { 4572 Lo = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4); 4573 Hi = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4); 4574 } 4575 4576 SDValue Ops[2] = { Lo, Hi }; 4577 return DAG.getMergeValues(Ops, 2); 4578} 4579 4580SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) { 4581 MVT SrcVT = Op.getOperand(0).getValueType(); 4582 assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 && 4583 "Unknown SINT_TO_FP to lower!"); 4584 4585 // These are really Legal; caller falls through into that case. 4586 if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType())) 4587 return SDValue(); 4588 if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 && 4589 Subtarget->is64Bit()) 4590 return SDValue(); 4591 4592 unsigned Size = SrcVT.getSizeInBits()/8; 4593 MachineFunction &MF = DAG.getMachineFunction(); 4594 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); 4595 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 4596 SDValue Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0), 4597 StackSlot, 4598 PseudoSourceValue::getFixedStack(SSFI), 0); 4599 4600 // Build the FILD 4601 SDVTList Tys; 4602 bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); 4603 if (useSSE) 4604 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag); 4605 else 4606 Tys = DAG.getVTList(Op.getValueType(), MVT::Other); 4607 SmallVector<SDValue, 8> Ops; 4608 Ops.push_back(Chain); 4609 Ops.push_back(StackSlot); 4610 Ops.push_back(DAG.getValueType(SrcVT)); 4611 SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, 4612 Tys, &Ops[0], Ops.size()); 4613 4614 if (useSSE) { 4615 Chain = Result.getValue(1); 4616 SDValue InFlag = Result.getValue(2); 4617 4618 // FIXME: Currently the FST is flagged to the FILD_FLAG. This 4619 // shouldn't be necessary except that RFP cannot be live across 4620 // multiple blocks. When stackifier is fixed, they can be uncoupled. 4621 MachineFunction &MF = DAG.getMachineFunction(); 4622 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); 4623 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 4624 Tys = DAG.getVTList(MVT::Other); 4625 SmallVector<SDValue, 8> Ops; 4626 Ops.push_back(Chain); 4627 Ops.push_back(Result); 4628 Ops.push_back(StackSlot); 4629 Ops.push_back(DAG.getValueType(Op.getValueType())); 4630 Ops.push_back(InFlag); 4631 Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size()); 4632 Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, 4633 PseudoSourceValue::getFixedStack(SSFI), 0); 4634 } 4635 4636 return Result; 4637} 4638 4639std::pair<SDValue,SDValue> X86TargetLowering:: 4640FP_TO_SINTHelper(SDValue Op, SelectionDAG &DAG) { 4641 assert(Op.getValueType().getSimpleVT() <= MVT::i64 && 4642 Op.getValueType().getSimpleVT() >= MVT::i16 && 4643 "Unknown FP_TO_SINT to lower!"); 4644 4645 // These are really Legal. 4646 if (Op.getValueType() == MVT::i32 && 4647 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) 4648 return std::make_pair(SDValue(), SDValue()); 4649 if (Subtarget->is64Bit() && 4650 Op.getValueType() == MVT::i64 && 4651 Op.getOperand(0).getValueType() != MVT::f80) 4652 return std::make_pair(SDValue(), SDValue()); 4653 4654 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary 4655 // stack slot. 4656 MachineFunction &MF = DAG.getMachineFunction(); 4657 unsigned MemSize = Op.getValueType().getSizeInBits()/8; 4658 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); 4659 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 4660 unsigned Opc; 4661 switch (Op.getValueType().getSimpleVT()) { 4662 default: assert(0 && "Invalid FP_TO_SINT to lower!"); 4663 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; 4664 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; 4665 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; 4666 } 4667 4668 SDValue Chain = DAG.getEntryNode(); 4669 SDValue Value = Op.getOperand(0); 4670 if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) { 4671 assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!"); 4672 Chain = DAG.getStore(Chain, Value, StackSlot, 4673 PseudoSourceValue::getFixedStack(SSFI), 0); 4674 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); 4675 SDValue Ops[] = { 4676 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType()) 4677 }; 4678 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3); 4679 Chain = Value.getValue(1); 4680 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); 4681 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 4682 } 4683 4684 // Build the FP_TO_INT*_IN_MEM 4685 SDValue Ops[] = { Chain, Value, StackSlot }; 4686 SDValue FIST = DAG.getNode(Opc, MVT::Other, Ops, 3); 4687 4688 return std::make_pair(FIST, StackSlot); 4689} 4690 4691SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) { 4692 std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(Op, DAG); 4693 SDValue FIST = Vals.first, StackSlot = Vals.second; 4694 if (FIST.getNode() == 0) return SDValue(); 4695 4696 // Load the result. 4697 return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0); 4698} 4699 4700SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) { 4701 std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(SDValue(N, 0), DAG); 4702 SDValue FIST = Vals.first, StackSlot = Vals.second; 4703 if (FIST.getNode() == 0) return 0; 4704 4705 MVT VT = N->getValueType(0); 4706 4707 // Return a load from the stack slot. 4708 SDValue Res = DAG.getLoad(VT, FIST, StackSlot, NULL, 0); 4709 4710 // Use MERGE_VALUES to drop the chain result value and get a node with one 4711 // result. This requires turning off getMergeValues simplification, since 4712 // otherwise it will give us Res back. 4713 return DAG.getMergeValues(&Res, 1, false).getNode(); 4714} 4715 4716SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) { 4717 MVT VT = Op.getValueType(); 4718 MVT EltVT = VT; 4719 if (VT.isVector()) 4720 EltVT = VT.getVectorElementType(); 4721 std::vector<Constant*> CV; 4722 if (EltVT == MVT::f64) { 4723 Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))); 4724 CV.push_back(C); 4725 CV.push_back(C); 4726 } else { 4727 Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))); 4728 CV.push_back(C); 4729 CV.push_back(C); 4730 CV.push_back(C); 4731 CV.push_back(C); 4732 } 4733 Constant *C = ConstantVector::get(CV); 4734 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); 4735 SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 4736 PseudoSourceValue::getConstantPool(), 0, 4737 false, 16); 4738 return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask); 4739} 4740 4741SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) { 4742 MVT VT = Op.getValueType(); 4743 MVT EltVT = VT; 4744 unsigned EltNum = 1; 4745 if (VT.isVector()) { 4746 EltVT = VT.getVectorElementType(); 4747 EltNum = VT.getVectorNumElements(); 4748 } 4749 std::vector<Constant*> CV; 4750 if (EltVT == MVT::f64) { 4751 Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63))); 4752 CV.push_back(C); 4753 CV.push_back(C); 4754 } else { 4755 Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31))); 4756 CV.push_back(C); 4757 CV.push_back(C); 4758 CV.push_back(C); 4759 CV.push_back(C); 4760 } 4761 Constant *C = ConstantVector::get(CV); 4762 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); 4763 SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 4764 PseudoSourceValue::getConstantPool(), 0, 4765 false, 16); 4766 if (VT.isVector()) { 4767 return DAG.getNode(ISD::BIT_CONVERT, VT, 4768 DAG.getNode(ISD::XOR, MVT::v2i64, 4769 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)), 4770 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask))); 4771 } else { 4772 return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask); 4773 } 4774} 4775 4776SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) { 4777 SDValue Op0 = Op.getOperand(0); 4778 SDValue Op1 = Op.getOperand(1); 4779 MVT VT = Op.getValueType(); 4780 MVT SrcVT = Op1.getValueType(); 4781 4782 // If second operand is smaller, extend it first. 4783 if (SrcVT.bitsLT(VT)) { 4784 Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1); 4785 SrcVT = VT; 4786 } 4787 // And if it is bigger, shrink it first. 4788 if (SrcVT.bitsGT(VT)) { 4789 Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1)); 4790 SrcVT = VT; 4791 } 4792 4793 // At this point the operands and the result should have the same 4794 // type, and that won't be f80 since that is not custom lowered. 4795 4796 // First get the sign bit of second operand. 4797 std::vector<Constant*> CV; 4798 if (SrcVT == MVT::f64) { 4799 CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63)))); 4800 CV.push_back(ConstantFP::get(APFloat(APInt(64, 0)))); 4801 } else { 4802 CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31)))); 4803 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0)))); 4804 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0)))); 4805 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0)))); 4806 } 4807 Constant *C = ConstantVector::get(CV); 4808 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); 4809 SDValue Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, 4810 PseudoSourceValue::getConstantPool(), 0, 4811 false, 16); 4812 SDValue SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1); 4813 4814 // Shift sign bit right or left if the two operands have different types. 4815 if (SrcVT.bitsGT(VT)) { 4816 // Op0 is MVT::f32, Op1 is MVT::f64. 4817 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit); 4818 SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit, 4819 DAG.getConstant(32, MVT::i32)); 4820 SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit); 4821 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit, 4822 DAG.getIntPtrConstant(0)); 4823 } 4824 4825 // Clear first operand sign bit. 4826 CV.clear(); 4827 if (VT == MVT::f64) { 4828 CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))))); 4829 CV.push_back(ConstantFP::get(APFloat(APInt(64, 0)))); 4830 } else { 4831 CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31))))); 4832 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0)))); 4833 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0)))); 4834 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0)))); 4835 } 4836 C = ConstantVector::get(CV); 4837 CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); 4838 SDValue Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 4839 PseudoSourceValue::getConstantPool(), 0, 4840 false, 16); 4841 SDValue Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2); 4842 4843 // Or the value with the sign bit. 4844 return DAG.getNode(X86ISD::FOR, VT, Val, SignBit); 4845} 4846 4847SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) { 4848 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); 4849 SDValue Cond; 4850 SDValue Op0 = Op.getOperand(0); 4851 SDValue Op1 = Op.getOperand(1); 4852 SDValue CC = Op.getOperand(2); 4853 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); 4854 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint(); 4855 unsigned X86CC; 4856 4857 if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC, 4858 Op0, Op1, DAG)) { 4859 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1); 4860 return DAG.getNode(X86ISD::SETCC, MVT::i8, 4861 DAG.getConstant(X86CC, MVT::i8), Cond); 4862 } 4863 4864 assert(isFP && "Illegal integer SetCC!"); 4865 4866 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1); 4867 switch (SetCCOpcode) { 4868 default: assert(false && "Illegal floating point SetCC!"); 4869 case ISD::SETOEQ: { // !PF & ZF 4870 SDValue Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8, 4871 DAG.getConstant(X86::COND_NP, MVT::i8), Cond); 4872 SDValue Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, 4873 DAG.getConstant(X86::COND_E, MVT::i8), Cond); 4874 return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2); 4875 } 4876 case ISD::SETUNE: { // PF | !ZF 4877 SDValue Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8, 4878 DAG.getConstant(X86::COND_P, MVT::i8), Cond); 4879 SDValue Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, 4880 DAG.getConstant(X86::COND_NE, MVT::i8), Cond); 4881 return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2); 4882 } 4883 } 4884} 4885 4886SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) { 4887 SDValue Cond; 4888 SDValue Op0 = Op.getOperand(0); 4889 SDValue Op1 = Op.getOperand(1); 4890 SDValue CC = Op.getOperand(2); 4891 MVT VT = Op.getValueType(); 4892 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); 4893 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint(); 4894 4895 if (isFP) { 4896 unsigned SSECC = 8; 4897 MVT VT0 = Op0.getValueType(); 4898 assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64); 4899 unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD; 4900 bool Swap = false; 4901 4902 switch (SetCCOpcode) { 4903 default: break; 4904 case ISD::SETOEQ: 4905 case ISD::SETEQ: SSECC = 0; break; 4906 case ISD::SETOGT: 4907 case ISD::SETGT: Swap = true; // Fallthrough 4908 case ISD::SETLT: 4909 case ISD::SETOLT: SSECC = 1; break; 4910 case ISD::SETOGE: 4911 case ISD::SETGE: Swap = true; // Fallthrough 4912 case ISD::SETLE: 4913 case ISD::SETOLE: SSECC = 2; break; 4914 case ISD::SETUO: SSECC = 3; break; 4915 case ISD::SETUNE: 4916 case ISD::SETNE: SSECC = 4; break; 4917 case ISD::SETULE: Swap = true; 4918 case ISD::SETUGE: SSECC = 5; break; 4919 case ISD::SETULT: Swap = true; 4920 case ISD::SETUGT: SSECC = 6; break; 4921 case ISD::SETO: SSECC = 7; break; 4922 } 4923 if (Swap) 4924 std::swap(Op0, Op1); 4925 4926 // In the two special cases we can't handle, emit two comparisons. 4927 if (SSECC == 8) { 4928 if (SetCCOpcode == ISD::SETUEQ) { 4929 SDValue UNORD, EQ; 4930 UNORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(3, MVT::i8)); 4931 EQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(0, MVT::i8)); 4932 return DAG.getNode(ISD::OR, VT, UNORD, EQ); 4933 } 4934 else if (SetCCOpcode == ISD::SETONE) { 4935 SDValue ORD, NEQ; 4936 ORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(7, MVT::i8)); 4937 NEQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(4, MVT::i8)); 4938 return DAG.getNode(ISD::AND, VT, ORD, NEQ); 4939 } 4940 assert(0 && "Illegal FP comparison"); 4941 } 4942 // Handle all other FP comparisons here. 4943 return DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8)); 4944 } 4945 4946 // We are handling one of the integer comparisons here. Since SSE only has 4947 // GT and EQ comparisons for integer, swapping operands and multiple 4948 // operations may be required for some comparisons. 4949 unsigned Opc = 0, EQOpc = 0, GTOpc = 0; 4950 bool Swap = false, Invert = false, FlipSigns = false; 4951 4952 switch (VT.getSimpleVT()) { 4953 default: break; 4954 case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break; 4955 case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break; 4956 case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break; 4957 case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break; 4958 } 4959 4960 switch (SetCCOpcode) { 4961 default: break; 4962 case ISD::SETNE: Invert = true; 4963 case ISD::SETEQ: Opc = EQOpc; break; 4964 case ISD::SETLT: Swap = true; 4965 case ISD::SETGT: Opc = GTOpc; break; 4966 case ISD::SETGE: Swap = true; 4967 case ISD::SETLE: Opc = GTOpc; Invert = true; break; 4968 case ISD::SETULT: Swap = true; 4969 case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break; 4970 case ISD::SETUGE: Swap = true; 4971 case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break; 4972 } 4973 if (Swap) 4974 std::swap(Op0, Op1); 4975 4976 // Since SSE has no unsigned integer comparisons, we need to flip the sign 4977 // bits of the inputs before performing those operations. 4978 if (FlipSigns) { 4979 MVT EltVT = VT.getVectorElementType(); 4980 SDValue SignBit = DAG.getConstant(EltVT.getIntegerVTSignBit(), EltVT); 4981 std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit); 4982 SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, VT, &SignBits[0], 4983 SignBits.size()); 4984 Op0 = DAG.getNode(ISD::XOR, VT, Op0, SignVec); 4985 Op1 = DAG.getNode(ISD::XOR, VT, Op1, SignVec); 4986 } 4987 4988 SDValue Result = DAG.getNode(Opc, VT, Op0, Op1); 4989 4990 // If the logical-not of the result is required, perform that now. 4991 if (Invert) { 4992 MVT EltVT = VT.getVectorElementType(); 4993 SDValue NegOne = DAG.getConstant(EltVT.getIntegerVTBitMask(), EltVT); 4994 std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOne); 4995 SDValue NegOneV = DAG.getNode(ISD::BUILD_VECTOR, VT, &NegOnes[0], 4996 NegOnes.size()); 4997 Result = DAG.getNode(ISD::XOR, VT, Result, NegOneV); 4998 } 4999 return Result; 5000} 5001 5002SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) { 5003 bool addTest = true; 5004 SDValue Cond = Op.getOperand(0); 5005 SDValue CC; 5006 5007 if (Cond.getOpcode() == ISD::SETCC) 5008 Cond = LowerSETCC(Cond, DAG); 5009 5010 // If condition flag is set by a X86ISD::CMP, then use it as the condition 5011 // setting operand in place of the X86ISD::SETCC. 5012 if (Cond.getOpcode() == X86ISD::SETCC) { 5013 CC = Cond.getOperand(0); 5014 5015 SDValue Cmp = Cond.getOperand(1); 5016 unsigned Opc = Cmp.getOpcode(); 5017 MVT VT = Op.getValueType(); 5018 5019 bool IllegalFPCMov = false; 5020 if (VT.isFloatingPoint() && !VT.isVector() && 5021 !isScalarFPTypeInSSEReg(VT)) // FPStack? 5022 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended()); 5023 5024 if ((Opc == X86ISD::CMP || 5025 Opc == X86ISD::COMI || 5026 Opc == X86ISD::UCOMI) && !IllegalFPCMov) { 5027 Cond = Cmp; 5028 addTest = false; 5029 } 5030 } 5031 5032 if (addTest) { 5033 CC = DAG.getConstant(X86::COND_NE, MVT::i8); 5034 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8)); 5035 } 5036 5037 const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(), 5038 MVT::Flag); 5039 SmallVector<SDValue, 4> Ops; 5040 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if 5041 // condition is true. 5042 Ops.push_back(Op.getOperand(2)); 5043 Ops.push_back(Op.getOperand(1)); 5044 Ops.push_back(CC); 5045 Ops.push_back(Cond); 5046 return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size()); 5047} 5048 5049SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) { 5050 bool addTest = true; 5051 SDValue Chain = Op.getOperand(0); 5052 SDValue Cond = Op.getOperand(1); 5053 SDValue Dest = Op.getOperand(2); 5054 SDValue CC; 5055 5056 if (Cond.getOpcode() == ISD::SETCC) 5057 Cond = LowerSETCC(Cond, DAG); 5058 5059 // If condition flag is set by a X86ISD::CMP, then use it as the condition 5060 // setting operand in place of the X86ISD::SETCC. 5061 if (Cond.getOpcode() == X86ISD::SETCC) { 5062 CC = Cond.getOperand(0); 5063 5064 SDValue Cmp = Cond.getOperand(1); 5065 unsigned Opc = Cmp.getOpcode(); 5066 if (Opc == X86ISD::CMP || 5067 Opc == X86ISD::COMI || 5068 Opc == X86ISD::UCOMI) { 5069 Cond = Cmp; 5070 addTest = false; 5071 } 5072 } 5073 5074 if (addTest) { 5075 CC = DAG.getConstant(X86::COND_NE, MVT::i8); 5076 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8)); 5077 } 5078 return DAG.getNode(X86ISD::BRCOND, Op.getValueType(), 5079 Chain, Op.getOperand(2), CC, Cond); 5080} 5081 5082 5083// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. 5084// Calls to _alloca is needed to probe the stack when allocating more than 4k 5085// bytes in one go. Touching the stack at 4K increments is necessary to ensure 5086// that the guard pages used by the OS virtual memory manager are allocated in 5087// correct sequence. 5088SDValue 5089X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 5090 SelectionDAG &DAG) { 5091 assert(Subtarget->isTargetCygMing() && 5092 "This should be used only on Cygwin/Mingw targets"); 5093 5094 // Get the inputs. 5095 SDValue Chain = Op.getOperand(0); 5096 SDValue Size = Op.getOperand(1); 5097 // FIXME: Ensure alignment here 5098 5099 SDValue Flag; 5100 5101 MVT IntPtr = getPointerTy(); 5102 MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32; 5103 5104 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0)); 5105 5106 Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag); 5107 Flag = Chain.getValue(1); 5108 5109 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); 5110 SDValue Ops[] = { Chain, 5111 DAG.getTargetExternalSymbol("_alloca", IntPtr), 5112 DAG.getRegister(X86::EAX, IntPtr), 5113 DAG.getRegister(X86StackPtr, SPTy), 5114 Flag }; 5115 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 5); 5116 Flag = Chain.getValue(1); 5117 5118 Chain = DAG.getCALLSEQ_END(Chain, 5119 DAG.getIntPtrConstant(0), 5120 DAG.getIntPtrConstant(0), 5121 Flag); 5122 5123 Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1); 5124 5125 SDValue Ops1[2] = { Chain.getValue(0), Chain }; 5126 return DAG.getMergeValues(Ops1, 2); 5127} 5128 5129SDValue 5130X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, 5131 SDValue Chain, 5132 SDValue Dst, SDValue Src, 5133 SDValue Size, unsigned Align, 5134 const Value *DstSV, uint64_t DstSVOff) { 5135 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5136 5137 /// If not DWORD aligned or size is more than the threshold, call the library. 5138 /// The libc version is likely to be faster for these cases. It can use the 5139 /// address value and run time information about the CPU. 5140 if ((Align & 3) != 0 || 5141 !ConstantSize || 5142 ConstantSize->getZExtValue() > 5143 getSubtarget()->getMaxInlineSizeThreshold()) { 5144 SDValue InFlag(0, 0); 5145 5146 // Check to see if there is a specialized entry-point for memory zeroing. 5147 ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src); 5148 if (const char *bzeroEntry = 5149 V && V->isNullValue() ? Subtarget->getBZeroEntry() : 0) { 5150 MVT IntPtr = getPointerTy(); 5151 const Type *IntPtrTy = TD->getIntPtrType(); 5152 TargetLowering::ArgListTy Args; 5153 TargetLowering::ArgListEntry Entry; 5154 Entry.Node = Dst; 5155 Entry.Ty = IntPtrTy; 5156 Args.push_back(Entry); 5157 Entry.Node = Size; 5158 Args.push_back(Entry); 5159 std::pair<SDValue,SDValue> CallResult = 5160 LowerCallTo(Chain, Type::VoidTy, false, false, false, CallingConv::C, 5161 false, DAG.getExternalSymbol(bzeroEntry, IntPtr), 5162 Args, DAG); 5163 return CallResult.second; 5164 } 5165 5166 // Otherwise have the target-independent code call memset. 5167 return SDValue(); 5168 } 5169 5170 uint64_t SizeVal = ConstantSize->getZExtValue(); 5171 SDValue InFlag(0, 0); 5172 MVT AVT; 5173 SDValue Count; 5174 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src); 5175 unsigned BytesLeft = 0; 5176 bool TwoRepStos = false; 5177 if (ValC) { 5178 unsigned ValReg; 5179 uint64_t Val = ValC->getZExtValue() & 255; 5180 5181 // If the value is a constant, then we can potentially use larger sets. 5182 switch (Align & 3) { 5183 case 2: // WORD aligned 5184 AVT = MVT::i16; 5185 ValReg = X86::AX; 5186 Val = (Val << 8) | Val; 5187 break; 5188 case 0: // DWORD aligned 5189 AVT = MVT::i32; 5190 ValReg = X86::EAX; 5191 Val = (Val << 8) | Val; 5192 Val = (Val << 16) | Val; 5193 if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned 5194 AVT = MVT::i64; 5195 ValReg = X86::RAX; 5196 Val = (Val << 32) | Val; 5197 } 5198 break; 5199 default: // Byte aligned 5200 AVT = MVT::i8; 5201 ValReg = X86::AL; 5202 Count = DAG.getIntPtrConstant(SizeVal); 5203 break; 5204 } 5205 5206 if (AVT.bitsGT(MVT::i8)) { 5207 unsigned UBytes = AVT.getSizeInBits() / 8; 5208 Count = DAG.getIntPtrConstant(SizeVal / UBytes); 5209 BytesLeft = SizeVal % UBytes; 5210 } 5211 5212 Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT), 5213 InFlag); 5214 InFlag = Chain.getValue(1); 5215 } else { 5216 AVT = MVT::i8; 5217 Count = DAG.getIntPtrConstant(SizeVal); 5218 Chain = DAG.getCopyToReg(Chain, X86::AL, Src, InFlag); 5219 InFlag = Chain.getValue(1); 5220 } 5221 5222 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX, 5223 Count, InFlag); 5224 InFlag = Chain.getValue(1); 5225 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI, 5226 Dst, InFlag); 5227 InFlag = Chain.getValue(1); 5228 5229 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 5230 SmallVector<SDValue, 8> Ops; 5231 Ops.push_back(Chain); 5232 Ops.push_back(DAG.getValueType(AVT)); 5233 Ops.push_back(InFlag); 5234 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size()); 5235 5236 if (TwoRepStos) { 5237 InFlag = Chain.getValue(1); 5238 Count = Size; 5239 MVT CVT = Count.getValueType(); 5240 SDValue Left = DAG.getNode(ISD::AND, CVT, Count, 5241 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT)); 5242 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX, 5243 Left, InFlag); 5244 InFlag = Chain.getValue(1); 5245 Tys = DAG.getVTList(MVT::Other, MVT::Flag); 5246 Ops.clear(); 5247 Ops.push_back(Chain); 5248 Ops.push_back(DAG.getValueType(MVT::i8)); 5249 Ops.push_back(InFlag); 5250 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size()); 5251 } else if (BytesLeft) { 5252 // Handle the last 1 - 7 bytes. 5253 unsigned Offset = SizeVal - BytesLeft; 5254 MVT AddrVT = Dst.getValueType(); 5255 MVT SizeVT = Size.getValueType(); 5256 5257 Chain = DAG.getMemset(Chain, 5258 DAG.getNode(ISD::ADD, AddrVT, Dst, 5259 DAG.getConstant(Offset, AddrVT)), 5260 Src, 5261 DAG.getConstant(BytesLeft, SizeVT), 5262 Align, DstSV, DstSVOff + Offset); 5263 } 5264 5265 // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain. 5266 return Chain; 5267} 5268 5269SDValue 5270X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, 5271 SDValue Chain, SDValue Dst, SDValue Src, 5272 SDValue Size, unsigned Align, 5273 bool AlwaysInline, 5274 const Value *DstSV, uint64_t DstSVOff, 5275 const Value *SrcSV, uint64_t SrcSVOff) { 5276 // This requires the copy size to be a constant, preferrably 5277 // within a subtarget-specific limit. 5278 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5279 if (!ConstantSize) 5280 return SDValue(); 5281 uint64_t SizeVal = ConstantSize->getZExtValue(); 5282 if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold()) 5283 return SDValue(); 5284 5285 /// If not DWORD aligned, call the library. 5286 if ((Align & 3) != 0) 5287 return SDValue(); 5288 5289 // DWORD aligned 5290 MVT AVT = MVT::i32; 5291 if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) // QWORD aligned 5292 AVT = MVT::i64; 5293 5294 unsigned UBytes = AVT.getSizeInBits() / 8; 5295 unsigned CountVal = SizeVal / UBytes; 5296 SDValue Count = DAG.getIntPtrConstant(CountVal); 5297 unsigned BytesLeft = SizeVal % UBytes; 5298 5299 SDValue InFlag(0, 0); 5300 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX, 5301 Count, InFlag); 5302 InFlag = Chain.getValue(1); 5303 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI, 5304 Dst, InFlag); 5305 InFlag = Chain.getValue(1); 5306 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI, 5307 Src, InFlag); 5308 InFlag = Chain.getValue(1); 5309 5310 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 5311 SmallVector<SDValue, 8> Ops; 5312 Ops.push_back(Chain); 5313 Ops.push_back(DAG.getValueType(AVT)); 5314 Ops.push_back(InFlag); 5315 SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size()); 5316 5317 SmallVector<SDValue, 4> Results; 5318 Results.push_back(RepMovs); 5319 if (BytesLeft) { 5320 // Handle the last 1 - 7 bytes. 5321 unsigned Offset = SizeVal - BytesLeft; 5322 MVT DstVT = Dst.getValueType(); 5323 MVT SrcVT = Src.getValueType(); 5324 MVT SizeVT = Size.getValueType(); 5325 Results.push_back(DAG.getMemcpy(Chain, 5326 DAG.getNode(ISD::ADD, DstVT, Dst, 5327 DAG.getConstant(Offset, DstVT)), 5328 DAG.getNode(ISD::ADD, SrcVT, Src, 5329 DAG.getConstant(Offset, SrcVT)), 5330 DAG.getConstant(BytesLeft, SizeVT), 5331 Align, AlwaysInline, 5332 DstSV, DstSVOff + Offset, 5333 SrcSV, SrcSVOff + Offset)); 5334 } 5335 5336 return DAG.getNode(ISD::TokenFactor, MVT::Other, &Results[0], Results.size()); 5337} 5338 5339/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain 5340SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){ 5341 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 5342 SDValue TheChain = N->getOperand(0); 5343 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1); 5344 if (Subtarget->is64Bit()) { 5345 SDValue rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1)); 5346 SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX, 5347 MVT::i64, rax.getValue(2)); 5348 SDValue Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx, 5349 DAG.getConstant(32, MVT::i8)); 5350 SDValue Ops[] = { 5351 DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1) 5352 }; 5353 5354 return DAG.getMergeValues(Ops, 2).getNode(); 5355 } 5356 5357 SDValue eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1)); 5358 SDValue edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX, 5359 MVT::i32, eax.getValue(2)); 5360 // Use a buildpair to merge the two 32-bit values into a 64-bit one. 5361 SDValue Ops[] = { eax, edx }; 5362 Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2); 5363 5364 // Use a MERGE_VALUES to return the value and chain. 5365 Ops[1] = edx.getValue(1); 5366 return DAG.getMergeValues(Ops, 2).getNode(); 5367} 5368 5369SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) { 5370 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 5371 5372 if (!Subtarget->is64Bit()) { 5373 // vastart just stores the address of the VarArgsFrameIndex slot into the 5374 // memory location argument. 5375 SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); 5376 return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0); 5377 } 5378 5379 // __va_list_tag: 5380 // gp_offset (0 - 6 * 8) 5381 // fp_offset (48 - 48 + 8 * 16) 5382 // overflow_arg_area (point to parameters coming in memory). 5383 // reg_save_area 5384 SmallVector<SDValue, 8> MemOps; 5385 SDValue FIN = Op.getOperand(1); 5386 // Store gp_offset 5387 SDValue Store = DAG.getStore(Op.getOperand(0), 5388 DAG.getConstant(VarArgsGPOffset, MVT::i32), 5389 FIN, SV, 0); 5390 MemOps.push_back(Store); 5391 5392 // Store fp_offset 5393 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4)); 5394 Store = DAG.getStore(Op.getOperand(0), 5395 DAG.getConstant(VarArgsFPOffset, MVT::i32), 5396 FIN, SV, 0); 5397 MemOps.push_back(Store); 5398 5399 // Store ptr to overflow_arg_area 5400 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4)); 5401 SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); 5402 Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0); 5403 MemOps.push_back(Store); 5404 5405 // Store ptr to reg_save_area. 5406 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8)); 5407 SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); 5408 Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0); 5409 MemOps.push_back(Store); 5410 return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size()); 5411} 5412 5413SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) { 5414 // X86-64 va_list is a struct { i32, i32, i8*, i8* }. 5415 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!"); 5416 SDValue Chain = Op.getOperand(0); 5417 SDValue SrcPtr = Op.getOperand(1); 5418 SDValue SrcSV = Op.getOperand(2); 5419 5420 assert(0 && "VAArgInst is not yet implemented for x86-64!"); 5421 abort(); 5422 return SDValue(); 5423} 5424 5425SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) { 5426 // X86-64 va_list is a struct { i32, i32, i8*, i8* }. 5427 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!"); 5428 SDValue Chain = Op.getOperand(0); 5429 SDValue DstPtr = Op.getOperand(1); 5430 SDValue SrcPtr = Op.getOperand(2); 5431 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 5432 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 5433 5434 return DAG.getMemcpy(Chain, DstPtr, SrcPtr, 5435 DAG.getIntPtrConstant(24), 8, false, 5436 DstSV, 0, SrcSV, 0); 5437} 5438 5439SDValue 5440X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) { 5441 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5442 switch (IntNo) { 5443 default: return SDValue(); // Don't custom lower most intrinsics. 5444 // Comparison intrinsics. 5445 case Intrinsic::x86_sse_comieq_ss: 5446 case Intrinsic::x86_sse_comilt_ss: 5447 case Intrinsic::x86_sse_comile_ss: 5448 case Intrinsic::x86_sse_comigt_ss: 5449 case Intrinsic::x86_sse_comige_ss: 5450 case Intrinsic::x86_sse_comineq_ss: 5451 case Intrinsic::x86_sse_ucomieq_ss: 5452 case Intrinsic::x86_sse_ucomilt_ss: 5453 case Intrinsic::x86_sse_ucomile_ss: 5454 case Intrinsic::x86_sse_ucomigt_ss: 5455 case Intrinsic::x86_sse_ucomige_ss: 5456 case Intrinsic::x86_sse_ucomineq_ss: 5457 case Intrinsic::x86_sse2_comieq_sd: 5458 case Intrinsic::x86_sse2_comilt_sd: 5459 case Intrinsic::x86_sse2_comile_sd: 5460 case Intrinsic::x86_sse2_comigt_sd: 5461 case Intrinsic::x86_sse2_comige_sd: 5462 case Intrinsic::x86_sse2_comineq_sd: 5463 case Intrinsic::x86_sse2_ucomieq_sd: 5464 case Intrinsic::x86_sse2_ucomilt_sd: 5465 case Intrinsic::x86_sse2_ucomile_sd: 5466 case Intrinsic::x86_sse2_ucomigt_sd: 5467 case Intrinsic::x86_sse2_ucomige_sd: 5468 case Intrinsic::x86_sse2_ucomineq_sd: { 5469 unsigned Opc = 0; 5470 ISD::CondCode CC = ISD::SETCC_INVALID; 5471 switch (IntNo) { 5472 default: break; 5473 case Intrinsic::x86_sse_comieq_ss: 5474 case Intrinsic::x86_sse2_comieq_sd: 5475 Opc = X86ISD::COMI; 5476 CC = ISD::SETEQ; 5477 break; 5478 case Intrinsic::x86_sse_comilt_ss: 5479 case Intrinsic::x86_sse2_comilt_sd: 5480 Opc = X86ISD::COMI; 5481 CC = ISD::SETLT; 5482 break; 5483 case Intrinsic::x86_sse_comile_ss: 5484 case Intrinsic::x86_sse2_comile_sd: 5485 Opc = X86ISD::COMI; 5486 CC = ISD::SETLE; 5487 break; 5488 case Intrinsic::x86_sse_comigt_ss: 5489 case Intrinsic::x86_sse2_comigt_sd: 5490 Opc = X86ISD::COMI; 5491 CC = ISD::SETGT; 5492 break; 5493 case Intrinsic::x86_sse_comige_ss: 5494 case Intrinsic::x86_sse2_comige_sd: 5495 Opc = X86ISD::COMI; 5496 CC = ISD::SETGE; 5497 break; 5498 case Intrinsic::x86_sse_comineq_ss: 5499 case Intrinsic::x86_sse2_comineq_sd: 5500 Opc = X86ISD::COMI; 5501 CC = ISD::SETNE; 5502 break; 5503 case Intrinsic::x86_sse_ucomieq_ss: 5504 case Intrinsic::x86_sse2_ucomieq_sd: 5505 Opc = X86ISD::UCOMI; 5506 CC = ISD::SETEQ; 5507 break; 5508 case Intrinsic::x86_sse_ucomilt_ss: 5509 case Intrinsic::x86_sse2_ucomilt_sd: 5510 Opc = X86ISD::UCOMI; 5511 CC = ISD::SETLT; 5512 break; 5513 case Intrinsic::x86_sse_ucomile_ss: 5514 case Intrinsic::x86_sse2_ucomile_sd: 5515 Opc = X86ISD::UCOMI; 5516 CC = ISD::SETLE; 5517 break; 5518 case Intrinsic::x86_sse_ucomigt_ss: 5519 case Intrinsic::x86_sse2_ucomigt_sd: 5520 Opc = X86ISD::UCOMI; 5521 CC = ISD::SETGT; 5522 break; 5523 case Intrinsic::x86_sse_ucomige_ss: 5524 case Intrinsic::x86_sse2_ucomige_sd: 5525 Opc = X86ISD::UCOMI; 5526 CC = ISD::SETGE; 5527 break; 5528 case Intrinsic::x86_sse_ucomineq_ss: 5529 case Intrinsic::x86_sse2_ucomineq_sd: 5530 Opc = X86ISD::UCOMI; 5531 CC = ISD::SETNE; 5532 break; 5533 } 5534 5535 unsigned X86CC; 5536 SDValue LHS = Op.getOperand(1); 5537 SDValue RHS = Op.getOperand(2); 5538 translateX86CC(CC, true, X86CC, LHS, RHS, DAG); 5539 5540 SDValue Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS); 5541 SDValue SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8, 5542 DAG.getConstant(X86CC, MVT::i8), Cond); 5543 return DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, SetCC); 5544 } 5545 5546 // Fix vector shift instructions where the last operand is a non-immediate 5547 // i32 value. 5548 case Intrinsic::x86_sse2_pslli_w: 5549 case Intrinsic::x86_sse2_pslli_d: 5550 case Intrinsic::x86_sse2_pslli_q: 5551 case Intrinsic::x86_sse2_psrli_w: 5552 case Intrinsic::x86_sse2_psrli_d: 5553 case Intrinsic::x86_sse2_psrli_q: 5554 case Intrinsic::x86_sse2_psrai_w: 5555 case Intrinsic::x86_sse2_psrai_d: 5556 case Intrinsic::x86_mmx_pslli_w: 5557 case Intrinsic::x86_mmx_pslli_d: 5558 case Intrinsic::x86_mmx_pslli_q: 5559 case Intrinsic::x86_mmx_psrli_w: 5560 case Intrinsic::x86_mmx_psrli_d: 5561 case Intrinsic::x86_mmx_psrli_q: 5562 case Intrinsic::x86_mmx_psrai_w: 5563 case Intrinsic::x86_mmx_psrai_d: { 5564 SDValue ShAmt = Op.getOperand(2); 5565 if (isa<ConstantSDNode>(ShAmt)) 5566 return SDValue(); 5567 5568 unsigned NewIntNo = 0; 5569 MVT ShAmtVT = MVT::v4i32; 5570 switch (IntNo) { 5571 case Intrinsic::x86_sse2_pslli_w: 5572 NewIntNo = Intrinsic::x86_sse2_psll_w; 5573 break; 5574 case Intrinsic::x86_sse2_pslli_d: 5575 NewIntNo = Intrinsic::x86_sse2_psll_d; 5576 break; 5577 case Intrinsic::x86_sse2_pslli_q: 5578 NewIntNo = Intrinsic::x86_sse2_psll_q; 5579 break; 5580 case Intrinsic::x86_sse2_psrli_w: 5581 NewIntNo = Intrinsic::x86_sse2_psrl_w; 5582 break; 5583 case Intrinsic::x86_sse2_psrli_d: 5584 NewIntNo = Intrinsic::x86_sse2_psrl_d; 5585 break; 5586 case Intrinsic::x86_sse2_psrli_q: 5587 NewIntNo = Intrinsic::x86_sse2_psrl_q; 5588 break; 5589 case Intrinsic::x86_sse2_psrai_w: 5590 NewIntNo = Intrinsic::x86_sse2_psra_w; 5591 break; 5592 case Intrinsic::x86_sse2_psrai_d: 5593 NewIntNo = Intrinsic::x86_sse2_psra_d; 5594 break; 5595 default: { 5596 ShAmtVT = MVT::v2i32; 5597 switch (IntNo) { 5598 case Intrinsic::x86_mmx_pslli_w: 5599 NewIntNo = Intrinsic::x86_mmx_psll_w; 5600 break; 5601 case Intrinsic::x86_mmx_pslli_d: 5602 NewIntNo = Intrinsic::x86_mmx_psll_d; 5603 break; 5604 case Intrinsic::x86_mmx_pslli_q: 5605 NewIntNo = Intrinsic::x86_mmx_psll_q; 5606 break; 5607 case Intrinsic::x86_mmx_psrli_w: 5608 NewIntNo = Intrinsic::x86_mmx_psrl_w; 5609 break; 5610 case Intrinsic::x86_mmx_psrli_d: 5611 NewIntNo = Intrinsic::x86_mmx_psrl_d; 5612 break; 5613 case Intrinsic::x86_mmx_psrli_q: 5614 NewIntNo = Intrinsic::x86_mmx_psrl_q; 5615 break; 5616 case Intrinsic::x86_mmx_psrai_w: 5617 NewIntNo = Intrinsic::x86_mmx_psra_w; 5618 break; 5619 case Intrinsic::x86_mmx_psrai_d: 5620 NewIntNo = Intrinsic::x86_mmx_psra_d; 5621 break; 5622 default: abort(); // Can't reach here. 5623 } 5624 break; 5625 } 5626 } 5627 MVT VT = Op.getValueType(); 5628 ShAmt = DAG.getNode(ISD::BIT_CONVERT, VT, 5629 DAG.getNode(ISD::SCALAR_TO_VECTOR, ShAmtVT, ShAmt)); 5630 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT, 5631 DAG.getConstant(NewIntNo, MVT::i32), 5632 Op.getOperand(1), ShAmt); 5633 } 5634 } 5635} 5636 5637SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) { 5638 // Depths > 0 not supported yet! 5639 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 5640 return SDValue(); 5641 5642 // Just load the return address 5643 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); 5644 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0); 5645} 5646 5647SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) { 5648 // Depths > 0 not supported yet! 5649 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 5650 return SDValue(); 5651 5652 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); 5653 return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI, 5654 DAG.getIntPtrConstant(TD->getPointerSize())); 5655} 5656 5657SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op, 5658 SelectionDAG &DAG) { 5659 return DAG.getIntPtrConstant(2*TD->getPointerSize()); 5660} 5661 5662SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) 5663{ 5664 MachineFunction &MF = DAG.getMachineFunction(); 5665 SDValue Chain = Op.getOperand(0); 5666 SDValue Offset = Op.getOperand(1); 5667 SDValue Handler = Op.getOperand(2); 5668 5669 SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP, 5670 getPointerTy()); 5671 unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX); 5672 5673 SDValue StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame, 5674 DAG.getIntPtrConstant(-TD->getPointerSize())); 5675 StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset); 5676 Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0); 5677 Chain = DAG.getCopyToReg(Chain, StoreAddrReg, StoreAddr); 5678 MF.getRegInfo().addLiveOut(StoreAddrReg); 5679 5680 return DAG.getNode(X86ISD::EH_RETURN, 5681 MVT::Other, 5682 Chain, DAG.getRegister(StoreAddrReg, getPointerTy())); 5683} 5684 5685SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op, 5686 SelectionDAG &DAG) { 5687 SDValue Root = Op.getOperand(0); 5688 SDValue Trmp = Op.getOperand(1); // trampoline 5689 SDValue FPtr = Op.getOperand(2); // nested function 5690 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 5691 5692 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 5693 5694 const X86InstrInfo *TII = 5695 ((X86TargetMachine&)getTargetMachine()).getInstrInfo(); 5696 5697 if (Subtarget->is64Bit()) { 5698 SDValue OutChains[6]; 5699 5700 // Large code-model. 5701 5702 const unsigned char JMP64r = TII->getBaseOpcodeFor(X86::JMP64r); 5703 const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri); 5704 5705 const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10); 5706 const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11); 5707 5708 const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix 5709 5710 // Load the pointer to the nested function into R11. 5711 unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 5712 SDValue Addr = Trmp; 5713 OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr, 5714 TrmpAddr, 0); 5715 5716 Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64)); 5717 OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2); 5718 5719 // Load the 'nest' parameter value into R10. 5720 // R10 is specified in X86CallingConv.td 5721 OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 5722 Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64)); 5723 OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr, 5724 TrmpAddr, 10); 5725 5726 Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64)); 5727 OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2); 5728 5729 // Jump to the nested function. 5730 OpCode = (JMP64r << 8) | REX_WB; // jmpq *... 5731 Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64)); 5732 OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr, 5733 TrmpAddr, 20); 5734 5735 unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 5736 Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64)); 5737 OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr, 5738 TrmpAddr, 22); 5739 5740 SDValue Ops[] = 5741 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) }; 5742 return DAG.getMergeValues(Ops, 2); 5743 } else { 5744 const Function *Func = 5745 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue()); 5746 unsigned CC = Func->getCallingConv(); 5747 unsigned NestReg; 5748 5749 switch (CC) { 5750 default: 5751 assert(0 && "Unsupported calling convention"); 5752 case CallingConv::C: 5753 case CallingConv::X86_StdCall: { 5754 // Pass 'nest' parameter in ECX. 5755 // Must be kept in sync with X86CallingConv.td 5756 NestReg = X86::ECX; 5757 5758 // Check that ECX wasn't needed by an 'inreg' parameter. 5759 const FunctionType *FTy = Func->getFunctionType(); 5760 const PAListPtr &Attrs = Func->getParamAttrs(); 5761 5762 if (!Attrs.isEmpty() && !Func->isVarArg()) { 5763 unsigned InRegCount = 0; 5764 unsigned Idx = 1; 5765 5766 for (FunctionType::param_iterator I = FTy->param_begin(), 5767 E = FTy->param_end(); I != E; ++I, ++Idx) 5768 if (Attrs.paramHasAttr(Idx, ParamAttr::InReg)) 5769 // FIXME: should only count parameters that are lowered to integers. 5770 InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32; 5771 5772 if (InRegCount > 2) { 5773 cerr << "Nest register in use - reduce number of inreg parameters!\n"; 5774 abort(); 5775 } 5776 } 5777 break; 5778 } 5779 case CallingConv::X86_FastCall: 5780 case CallingConv::Fast: 5781 // Pass 'nest' parameter in EAX. 5782 // Must be kept in sync with X86CallingConv.td 5783 NestReg = X86::EAX; 5784 break; 5785 } 5786 5787 SDValue OutChains[4]; 5788 SDValue Addr, Disp; 5789 5790 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32)); 5791 Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr); 5792 5793 const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri); 5794 const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg); 5795 OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8), 5796 Trmp, TrmpAddr, 0); 5797 5798 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32)); 5799 OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1); 5800 5801 const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP); 5802 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32)); 5803 OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr, 5804 TrmpAddr, 5, false, 1); 5805 5806 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32)); 5807 OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1); 5808 5809 SDValue Ops[] = 5810 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) }; 5811 return DAG.getMergeValues(Ops, 2); 5812 } 5813} 5814 5815SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) { 5816 /* 5817 The rounding mode is in bits 11:10 of FPSR, and has the following 5818 settings: 5819 00 Round to nearest 5820 01 Round to -inf 5821 10 Round to +inf 5822 11 Round to 0 5823 5824 FLT_ROUNDS, on the other hand, expects the following: 5825 -1 Undefined 5826 0 Round to 0 5827 1 Round to nearest 5828 2 Round to +inf 5829 3 Round to -inf 5830 5831 To perform the conversion, we do: 5832 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) 5833 */ 5834 5835 MachineFunction &MF = DAG.getMachineFunction(); 5836 const TargetMachine &TM = MF.getTarget(); 5837 const TargetFrameInfo &TFI = *TM.getFrameInfo(); 5838 unsigned StackAlignment = TFI.getStackAlignment(); 5839 MVT VT = Op.getValueType(); 5840 5841 // Save FP Control Word to stack slot 5842 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment); 5843 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 5844 5845 SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other, 5846 DAG.getEntryNode(), StackSlot); 5847 5848 // Load FP Control Word from stack slot 5849 SDValue CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0); 5850 5851 // Transform as necessary 5852 SDValue CWD1 = 5853 DAG.getNode(ISD::SRL, MVT::i16, 5854 DAG.getNode(ISD::AND, MVT::i16, 5855 CWD, DAG.getConstant(0x800, MVT::i16)), 5856 DAG.getConstant(11, MVT::i8)); 5857 SDValue CWD2 = 5858 DAG.getNode(ISD::SRL, MVT::i16, 5859 DAG.getNode(ISD::AND, MVT::i16, 5860 CWD, DAG.getConstant(0x400, MVT::i16)), 5861 DAG.getConstant(9, MVT::i8)); 5862 5863 SDValue RetVal = 5864 DAG.getNode(ISD::AND, MVT::i16, 5865 DAG.getNode(ISD::ADD, MVT::i16, 5866 DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2), 5867 DAG.getConstant(1, MVT::i16)), 5868 DAG.getConstant(3, MVT::i16)); 5869 5870 5871 return DAG.getNode((VT.getSizeInBits() < 16 ? 5872 ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal); 5873} 5874 5875SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) { 5876 MVT VT = Op.getValueType(); 5877 MVT OpVT = VT; 5878 unsigned NumBits = VT.getSizeInBits(); 5879 5880 Op = Op.getOperand(0); 5881 if (VT == MVT::i8) { 5882 // Zero extend to i32 since there is not an i8 bsr. 5883 OpVT = MVT::i32; 5884 Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op); 5885 } 5886 5887 // Issue a bsr (scan bits in reverse) which also sets EFLAGS. 5888 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); 5889 Op = DAG.getNode(X86ISD::BSR, VTs, Op); 5890 5891 // If src is zero (i.e. bsr sets ZF), returns NumBits. 5892 SmallVector<SDValue, 4> Ops; 5893 Ops.push_back(Op); 5894 Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT)); 5895 Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8)); 5896 Ops.push_back(Op.getValue(1)); 5897 Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4); 5898 5899 // Finally xor with NumBits-1. 5900 Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); 5901 5902 if (VT == MVT::i8) 5903 Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op); 5904 return Op; 5905} 5906 5907SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) { 5908 MVT VT = Op.getValueType(); 5909 MVT OpVT = VT; 5910 unsigned NumBits = VT.getSizeInBits(); 5911 5912 Op = Op.getOperand(0); 5913 if (VT == MVT::i8) { 5914 OpVT = MVT::i32; 5915 Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op); 5916 } 5917 5918 // Issue a bsf (scan bits forward) which also sets EFLAGS. 5919 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); 5920 Op = DAG.getNode(X86ISD::BSF, VTs, Op); 5921 5922 // If src is zero (i.e. bsf sets ZF), returns NumBits. 5923 SmallVector<SDValue, 4> Ops; 5924 Ops.push_back(Op); 5925 Ops.push_back(DAG.getConstant(NumBits, OpVT)); 5926 Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8)); 5927 Ops.push_back(Op.getValue(1)); 5928 Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4); 5929 5930 if (VT == MVT::i8) 5931 Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op); 5932 return Op; 5933} 5934 5935SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) { 5936 MVT T = Op.getValueType(); 5937 unsigned Reg = 0; 5938 unsigned size = 0; 5939 switch(T.getSimpleVT()) { 5940 default: 5941 assert(false && "Invalid value type!"); 5942 case MVT::i8: Reg = X86::AL; size = 1; break; 5943 case MVT::i16: Reg = X86::AX; size = 2; break; 5944 case MVT::i32: Reg = X86::EAX; size = 4; break; 5945 case MVT::i64: 5946 if (Subtarget->is64Bit()) { 5947 Reg = X86::RAX; size = 8; 5948 } else //Should go away when LowerType stuff lands 5949 return SDValue(ExpandATOMIC_CMP_SWAP(Op.getNode(), DAG), 0); 5950 break; 5951 }; 5952 SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg, 5953 Op.getOperand(2), SDValue()); 5954 SDValue Ops[] = { cpIn.getValue(0), 5955 Op.getOperand(1), 5956 Op.getOperand(3), 5957 DAG.getTargetConstant(size, MVT::i8), 5958 cpIn.getValue(1) }; 5959 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 5960 SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5); 5961 SDValue cpOut = 5962 DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1)); 5963 return cpOut; 5964} 5965 5966SDNode* X86TargetLowering::ExpandATOMIC_CMP_SWAP(SDNode* Op, 5967 SelectionDAG &DAG) { 5968 MVT T = Op->getValueType(0); 5969 assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap"); 5970 SDValue cpInL, cpInH; 5971 cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2), 5972 DAG.getConstant(0, MVT::i32)); 5973 cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2), 5974 DAG.getConstant(1, MVT::i32)); 5975 cpInL = DAG.getCopyToReg(Op->getOperand(0), X86::EAX, 5976 cpInL, SDValue()); 5977 cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX, 5978 cpInH, cpInL.getValue(1)); 5979 SDValue swapInL, swapInH; 5980 swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3), 5981 DAG.getConstant(0, MVT::i32)); 5982 swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3), 5983 DAG.getConstant(1, MVT::i32)); 5984 swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX, 5985 swapInL, cpInH.getValue(1)); 5986 swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX, 5987 swapInH, swapInL.getValue(1)); 5988 SDValue Ops[] = { swapInH.getValue(0), 5989 Op->getOperand(1), 5990 swapInH.getValue(1) }; 5991 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 5992 SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3); 5993 SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32, 5994 Result.getValue(1)); 5995 SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32, 5996 cpOutL.getValue(2)); 5997 SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; 5998 SDValue ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2); 5999 SDValue Vals[2] = { ResultVal, cpOutH.getValue(1) }; 6000 return DAG.getMergeValues(Vals, 2).getNode(); 6001} 6002 6003SDNode* X86TargetLowering::ExpandATOMIC_LOAD_SUB(SDNode* Op, 6004 SelectionDAG &DAG) { 6005 MVT T = Op->getValueType(0); 6006 SDValue negOp = DAG.getNode(ISD::SUB, T, 6007 DAG.getConstant(0, T), Op->getOperand(2)); 6008 return DAG.getAtomic((T==MVT::i8 ? ISD::ATOMIC_LOAD_ADD_8: 6009 T==MVT::i16 ? ISD::ATOMIC_LOAD_ADD_16: 6010 T==MVT::i32 ? ISD::ATOMIC_LOAD_ADD_32: 6011 T==MVT::i64 ? ISD::ATOMIC_LOAD_ADD_64: 0), 6012 Op->getOperand(0), Op->getOperand(1), negOp, 6013 cast<AtomicSDNode>(Op)->getSrcValue(), 6014 cast<AtomicSDNode>(Op)->getAlignment()).getNode(); 6015} 6016 6017/// LowerOperation - Provide custom lowering hooks for some operations. 6018/// 6019SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { 6020 switch (Op.getOpcode()) { 6021 default: assert(0 && "Should not custom lower this!"); 6022 case ISD::ATOMIC_CMP_SWAP_8: return LowerCMP_SWAP(Op,DAG); 6023 case ISD::ATOMIC_CMP_SWAP_16: return LowerCMP_SWAP(Op,DAG); 6024 case ISD::ATOMIC_CMP_SWAP_32: return LowerCMP_SWAP(Op,DAG); 6025 case ISD::ATOMIC_CMP_SWAP_64: return LowerCMP_SWAP(Op,DAG); 6026 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 6027 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 6028 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 6029 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 6030 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 6031 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 6032 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 6033 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 6034 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); 6035 case ISD::SHL_PARTS: 6036 case ISD::SRA_PARTS: 6037 case ISD::SRL_PARTS: return LowerShift(Op, DAG); 6038 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 6039 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 6040 case ISD::FABS: return LowerFABS(Op, DAG); 6041 case ISD::FNEG: return LowerFNEG(Op, DAG); 6042 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); 6043 case ISD::SETCC: return LowerSETCC(Op, DAG); 6044 case ISD::VSETCC: return LowerVSETCC(Op, DAG); 6045 case ISD::SELECT: return LowerSELECT(Op, DAG); 6046 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 6047 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 6048 case ISD::CALL: return LowerCALL(Op, DAG); 6049 case ISD::RET: return LowerRET(Op, DAG); 6050 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG); 6051 case ISD::VASTART: return LowerVASTART(Op, DAG); 6052 case ISD::VAARG: return LowerVAARG(Op, DAG); 6053 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 6054 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 6055 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 6056 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 6057 case ISD::FRAME_TO_ARGS_OFFSET: 6058 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); 6059 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 6060 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); 6061 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG); 6062 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 6063 case ISD::CTLZ: return LowerCTLZ(Op, DAG); 6064 case ISD::CTTZ: return LowerCTTZ(Op, DAG); 6065 6066 // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands. 6067 case ISD::READCYCLECOUNTER: 6068 return SDValue(ExpandREADCYCLECOUNTER(Op.getNode(), DAG), 0); 6069 } 6070} 6071 6072/// ReplaceNodeResults - Replace a node with an illegal result type 6073/// with a new node built out of custom code. 6074SDNode *X86TargetLowering::ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) { 6075 switch (N->getOpcode()) { 6076 default: assert(0 && "Should not custom lower this!"); 6077 case ISD::FP_TO_SINT: return ExpandFP_TO_SINT(N, DAG); 6078 case ISD::READCYCLECOUNTER: return ExpandREADCYCLECOUNTER(N, DAG); 6079 case ISD::ATOMIC_CMP_SWAP_64: return ExpandATOMIC_CMP_SWAP(N, DAG); 6080 case ISD::ATOMIC_LOAD_SUB_8: return ExpandATOMIC_LOAD_SUB(N,DAG); 6081 case ISD::ATOMIC_LOAD_SUB_16: return ExpandATOMIC_LOAD_SUB(N,DAG); 6082 case ISD::ATOMIC_LOAD_SUB_32: return ExpandATOMIC_LOAD_SUB(N,DAG); 6083 case ISD::ATOMIC_LOAD_SUB_64: return ExpandATOMIC_LOAD_SUB(N,DAG); 6084 } 6085} 6086 6087const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { 6088 switch (Opcode) { 6089 default: return NULL; 6090 case X86ISD::BSF: return "X86ISD::BSF"; 6091 case X86ISD::BSR: return "X86ISD::BSR"; 6092 case X86ISD::SHLD: return "X86ISD::SHLD"; 6093 case X86ISD::SHRD: return "X86ISD::SHRD"; 6094 case X86ISD::FAND: return "X86ISD::FAND"; 6095 case X86ISD::FOR: return "X86ISD::FOR"; 6096 case X86ISD::FXOR: return "X86ISD::FXOR"; 6097 case X86ISD::FSRL: return "X86ISD::FSRL"; 6098 case X86ISD::FILD: return "X86ISD::FILD"; 6099 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; 6100 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; 6101 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; 6102 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; 6103 case X86ISD::FLD: return "X86ISD::FLD"; 6104 case X86ISD::FST: return "X86ISD::FST"; 6105 case X86ISD::CALL: return "X86ISD::CALL"; 6106 case X86ISD::TAILCALL: return "X86ISD::TAILCALL"; 6107 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; 6108 case X86ISD::CMP: return "X86ISD::CMP"; 6109 case X86ISD::COMI: return "X86ISD::COMI"; 6110 case X86ISD::UCOMI: return "X86ISD::UCOMI"; 6111 case X86ISD::SETCC: return "X86ISD::SETCC"; 6112 case X86ISD::CMOV: return "X86ISD::CMOV"; 6113 case X86ISD::BRCOND: return "X86ISD::BRCOND"; 6114 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; 6115 case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; 6116 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; 6117 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; 6118 case X86ISD::Wrapper: return "X86ISD::Wrapper"; 6119 case X86ISD::PEXTRB: return "X86ISD::PEXTRB"; 6120 case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; 6121 case X86ISD::INSERTPS: return "X86ISD::INSERTPS"; 6122 case X86ISD::PINSRB: return "X86ISD::PINSRB"; 6123 case X86ISD::PINSRW: return "X86ISD::PINSRW"; 6124 case X86ISD::FMAX: return "X86ISD::FMAX"; 6125 case X86ISD::FMIN: return "X86ISD::FMIN"; 6126 case X86ISD::FRSQRT: return "X86ISD::FRSQRT"; 6127 case X86ISD::FRCP: return "X86ISD::FRCP"; 6128 case X86ISD::TLSADDR: return "X86ISD::TLSADDR"; 6129 case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER"; 6130 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN"; 6131 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN"; 6132 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m"; 6133 case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG"; 6134 case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG"; 6135 case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL"; 6136 case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD"; 6137 case X86ISD::VSHL: return "X86ISD::VSHL"; 6138 case X86ISD::VSRL: return "X86ISD::VSRL"; 6139 case X86ISD::CMPPD: return "X86ISD::CMPPD"; 6140 case X86ISD::CMPPS: return "X86ISD::CMPPS"; 6141 case X86ISD::PCMPEQB: return "X86ISD::PCMPEQB"; 6142 case X86ISD::PCMPEQW: return "X86ISD::PCMPEQW"; 6143 case X86ISD::PCMPEQD: return "X86ISD::PCMPEQD"; 6144 case X86ISD::PCMPEQQ: return "X86ISD::PCMPEQQ"; 6145 case X86ISD::PCMPGTB: return "X86ISD::PCMPGTB"; 6146 case X86ISD::PCMPGTW: return "X86ISD::PCMPGTW"; 6147 case X86ISD::PCMPGTD: return "X86ISD::PCMPGTD"; 6148 case X86ISD::PCMPGTQ: return "X86ISD::PCMPGTQ"; 6149 } 6150} 6151 6152// isLegalAddressingMode - Return true if the addressing mode represented 6153// by AM is legal for this target, for a load/store of the specified type. 6154bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, 6155 const Type *Ty) const { 6156 // X86 supports extremely general addressing modes. 6157 6158 // X86 allows a sign-extended 32-bit immediate field as a displacement. 6159 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1) 6160 return false; 6161 6162 if (AM.BaseGV) { 6163 // We can only fold this if we don't need an extra load. 6164 if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false)) 6165 return false; 6166 6167 // X86-64 only supports addr of globals in small code model. 6168 if (Subtarget->is64Bit()) { 6169 if (getTargetMachine().getCodeModel() != CodeModel::Small) 6170 return false; 6171 // If lower 4G is not available, then we must use rip-relative addressing. 6172 if (AM.BaseOffs || AM.Scale > 1) 6173 return false; 6174 } 6175 } 6176 6177 switch (AM.Scale) { 6178 case 0: 6179 case 1: 6180 case 2: 6181 case 4: 6182 case 8: 6183 // These scales always work. 6184 break; 6185 case 3: 6186 case 5: 6187 case 9: 6188 // These scales are formed with basereg+scalereg. Only accept if there is 6189 // no basereg yet. 6190 if (AM.HasBaseReg) 6191 return false; 6192 break; 6193 default: // Other stuff never works. 6194 return false; 6195 } 6196 6197 return true; 6198} 6199 6200 6201bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const { 6202 if (!Ty1->isInteger() || !Ty2->isInteger()) 6203 return false; 6204 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 6205 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 6206 if (NumBits1 <= NumBits2) 6207 return false; 6208 return Subtarget->is64Bit() || NumBits1 < 64; 6209} 6210 6211bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const { 6212 if (!VT1.isInteger() || !VT2.isInteger()) 6213 return false; 6214 unsigned NumBits1 = VT1.getSizeInBits(); 6215 unsigned NumBits2 = VT2.getSizeInBits(); 6216 if (NumBits1 <= NumBits2) 6217 return false; 6218 return Subtarget->is64Bit() || NumBits1 < 64; 6219} 6220 6221/// isShuffleMaskLegal - Targets can use this to indicate that they only 6222/// support *some* VECTOR_SHUFFLE operations, those with specific masks. 6223/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values 6224/// are assumed to be legal. 6225bool 6226X86TargetLowering::isShuffleMaskLegal(SDValue Mask, MVT VT) const { 6227 // Only do shuffles on 128-bit vector types for now. 6228 if (VT.getSizeInBits() == 64) return false; 6229 return (Mask.getNode()->getNumOperands() <= 4 || 6230 isIdentityMask(Mask.getNode()) || 6231 isIdentityMask(Mask.getNode(), true) || 6232 isSplatMask(Mask.getNode()) || 6233 isPSHUFHW_PSHUFLWMask(Mask.getNode()) || 6234 X86::isUNPCKLMask(Mask.getNode()) || 6235 X86::isUNPCKHMask(Mask.getNode()) || 6236 X86::isUNPCKL_v_undef_Mask(Mask.getNode()) || 6237 X86::isUNPCKH_v_undef_Mask(Mask.getNode())); 6238} 6239 6240bool 6241X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDValue> &BVOps, 6242 MVT EVT, SelectionDAG &DAG) const { 6243 unsigned NumElts = BVOps.size(); 6244 // Only do shuffles on 128-bit vector types for now. 6245 if (EVT.getSizeInBits() * NumElts == 64) return false; 6246 if (NumElts == 2) return true; 6247 if (NumElts == 4) { 6248 return (isMOVLMask(&BVOps[0], 4) || 6249 isCommutedMOVL(&BVOps[0], 4, true) || 6250 isSHUFPMask(&BVOps[0], 4) || 6251 isCommutedSHUFP(&BVOps[0], 4)); 6252 } 6253 return false; 6254} 6255 6256//===----------------------------------------------------------------------===// 6257// X86 Scheduler Hooks 6258//===----------------------------------------------------------------------===// 6259 6260// private utility function 6261MachineBasicBlock * 6262X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr, 6263 MachineBasicBlock *MBB, 6264 unsigned regOpc, 6265 unsigned immOpc, 6266 unsigned LoadOpc, 6267 unsigned CXchgOpc, 6268 unsigned copyOpc, 6269 unsigned notOpc, 6270 unsigned EAXreg, 6271 TargetRegisterClass *RC, 6272 bool invSrc) { 6273 // For the atomic bitwise operator, we generate 6274 // thisMBB: 6275 // newMBB: 6276 // ld t1 = [bitinstr.addr] 6277 // op t2 = t1, [bitinstr.val] 6278 // mov EAX = t1 6279 // lcs dest = [bitinstr.addr], t2 [EAX is implicit] 6280 // bz newMBB 6281 // fallthrough -->nextMBB 6282 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 6283 const BasicBlock *LLVM_BB = MBB->getBasicBlock(); 6284 MachineFunction::iterator MBBIter = MBB; 6285 ++MBBIter; 6286 6287 /// First build the CFG 6288 MachineFunction *F = MBB->getParent(); 6289 MachineBasicBlock *thisMBB = MBB; 6290 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); 6291 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); 6292 F->insert(MBBIter, newMBB); 6293 F->insert(MBBIter, nextMBB); 6294 6295 // Move all successors to thisMBB to nextMBB 6296 nextMBB->transferSuccessors(thisMBB); 6297 6298 // Update thisMBB to fall through to newMBB 6299 thisMBB->addSuccessor(newMBB); 6300 6301 // newMBB jumps to itself and fall through to nextMBB 6302 newMBB->addSuccessor(nextMBB); 6303 newMBB->addSuccessor(newMBB); 6304 6305 // Insert instructions into newMBB based on incoming instruction 6306 assert(bInstr->getNumOperands() < 8 && "unexpected number of operands"); 6307 MachineOperand& destOper = bInstr->getOperand(0); 6308 MachineOperand* argOpers[6]; 6309 int numArgs = bInstr->getNumOperands() - 1; 6310 for (int i=0; i < numArgs; ++i) 6311 argOpers[i] = &bInstr->getOperand(i+1); 6312 6313 // x86 address has 4 operands: base, index, scale, and displacement 6314 int lastAddrIndx = 3; // [0,3] 6315 int valArgIndx = 4; 6316 6317 unsigned t1 = F->getRegInfo().createVirtualRegister(RC); 6318 MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(LoadOpc), t1); 6319 for (int i=0; i <= lastAddrIndx; ++i) 6320 (*MIB).addOperand(*argOpers[i]); 6321 6322 unsigned tt = F->getRegInfo().createVirtualRegister(RC); 6323 if (invSrc) { 6324 MIB = BuildMI(newMBB, TII->get(notOpc), tt).addReg(t1); 6325 } 6326 else 6327 tt = t1; 6328 6329 unsigned t2 = F->getRegInfo().createVirtualRegister(RC); 6330 assert((argOpers[valArgIndx]->isRegister() || 6331 argOpers[valArgIndx]->isImmediate()) && 6332 "invalid operand"); 6333 if (argOpers[valArgIndx]->isRegister()) 6334 MIB = BuildMI(newMBB, TII->get(regOpc), t2); 6335 else 6336 MIB = BuildMI(newMBB, TII->get(immOpc), t2); 6337 MIB.addReg(tt); 6338 (*MIB).addOperand(*argOpers[valArgIndx]); 6339 6340 MIB = BuildMI(newMBB, TII->get(copyOpc), EAXreg); 6341 MIB.addReg(t1); 6342 6343 MIB = BuildMI(newMBB, TII->get(CXchgOpc)); 6344 for (int i=0; i <= lastAddrIndx; ++i) 6345 (*MIB).addOperand(*argOpers[i]); 6346 MIB.addReg(t2); 6347 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand"); 6348 (*MIB).addMemOperand(*F, *bInstr->memoperands_begin()); 6349 6350 MIB = BuildMI(newMBB, TII->get(copyOpc), destOper.getReg()); 6351 MIB.addReg(EAXreg); 6352 6353 // insert branch 6354 BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB); 6355 6356 F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now. 6357 return nextMBB; 6358} 6359 6360// private utility function 6361MachineBasicBlock * 6362X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr, 6363 MachineBasicBlock *MBB, 6364 unsigned cmovOpc) { 6365 // For the atomic min/max operator, we generate 6366 // thisMBB: 6367 // newMBB: 6368 // ld t1 = [min/max.addr] 6369 // mov t2 = [min/max.val] 6370 // cmp t1, t2 6371 // cmov[cond] t2 = t1 6372 // mov EAX = t1 6373 // lcs dest = [bitinstr.addr], t2 [EAX is implicit] 6374 // bz newMBB 6375 // fallthrough -->nextMBB 6376 // 6377 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 6378 const BasicBlock *LLVM_BB = MBB->getBasicBlock(); 6379 MachineFunction::iterator MBBIter = MBB; 6380 ++MBBIter; 6381 6382 /// First build the CFG 6383 MachineFunction *F = MBB->getParent(); 6384 MachineBasicBlock *thisMBB = MBB; 6385 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); 6386 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); 6387 F->insert(MBBIter, newMBB); 6388 F->insert(MBBIter, nextMBB); 6389 6390 // Move all successors to thisMBB to nextMBB 6391 nextMBB->transferSuccessors(thisMBB); 6392 6393 // Update thisMBB to fall through to newMBB 6394 thisMBB->addSuccessor(newMBB); 6395 6396 // newMBB jumps to newMBB and fall through to nextMBB 6397 newMBB->addSuccessor(nextMBB); 6398 newMBB->addSuccessor(newMBB); 6399 6400 // Insert instructions into newMBB based on incoming instruction 6401 assert(mInstr->getNumOperands() < 8 && "unexpected number of operands"); 6402 MachineOperand& destOper = mInstr->getOperand(0); 6403 MachineOperand* argOpers[6]; 6404 int numArgs = mInstr->getNumOperands() - 1; 6405 for (int i=0; i < numArgs; ++i) 6406 argOpers[i] = &mInstr->getOperand(i+1); 6407 6408 // x86 address has 4 operands: base, index, scale, and displacement 6409 int lastAddrIndx = 3; // [0,3] 6410 int valArgIndx = 4; 6411 6412 unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); 6413 MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1); 6414 for (int i=0; i <= lastAddrIndx; ++i) 6415 (*MIB).addOperand(*argOpers[i]); 6416 6417 // We only support register and immediate values 6418 assert((argOpers[valArgIndx]->isRegister() || 6419 argOpers[valArgIndx]->isImmediate()) && 6420 "invalid operand"); 6421 6422 unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); 6423 if (argOpers[valArgIndx]->isRegister()) 6424 MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2); 6425 else 6426 MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2); 6427 (*MIB).addOperand(*argOpers[valArgIndx]); 6428 6429 MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX); 6430 MIB.addReg(t1); 6431 6432 MIB = BuildMI(newMBB, TII->get(X86::CMP32rr)); 6433 MIB.addReg(t1); 6434 MIB.addReg(t2); 6435 6436 // Generate movc 6437 unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); 6438 MIB = BuildMI(newMBB, TII->get(cmovOpc),t3); 6439 MIB.addReg(t2); 6440 MIB.addReg(t1); 6441 6442 // Cmp and exchange if none has modified the memory location 6443 MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32)); 6444 for (int i=0; i <= lastAddrIndx; ++i) 6445 (*MIB).addOperand(*argOpers[i]); 6446 MIB.addReg(t3); 6447 assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand"); 6448 (*MIB).addMemOperand(*F, *mInstr->memoperands_begin()); 6449 6450 MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg()); 6451 MIB.addReg(X86::EAX); 6452 6453 // insert branch 6454 BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB); 6455 6456 F->DeleteMachineInstr(mInstr); // The pseudo instruction is gone now. 6457 return nextMBB; 6458} 6459 6460 6461MachineBasicBlock * 6462X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 6463 MachineBasicBlock *BB) { 6464 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 6465 switch (MI->getOpcode()) { 6466 default: assert(false && "Unexpected instr type to insert"); 6467 case X86::CMOV_FR32: 6468 case X86::CMOV_FR64: 6469 case X86::CMOV_V4F32: 6470 case X86::CMOV_V2F64: 6471 case X86::CMOV_V2I64: { 6472 // To "insert" a SELECT_CC instruction, we actually have to insert the 6473 // diamond control-flow pattern. The incoming instruction knows the 6474 // destination vreg to set, the condition code register to branch on, the 6475 // true/false values to select between, and a branch opcode to use. 6476 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6477 MachineFunction::iterator It = BB; 6478 ++It; 6479 6480 // thisMBB: 6481 // ... 6482 // TrueVal = ... 6483 // cmpTY ccX, r1, r2 6484 // bCC copy1MBB 6485 // fallthrough --> copy0MBB 6486 MachineBasicBlock *thisMBB = BB; 6487 MachineFunction *F = BB->getParent(); 6488 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 6489 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 6490 unsigned Opc = 6491 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); 6492 BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB); 6493 F->insert(It, copy0MBB); 6494 F->insert(It, sinkMBB); 6495 // Update machine-CFG edges by transferring all successors of the current 6496 // block to the new block which will contain the Phi node for the select. 6497 sinkMBB->transferSuccessors(BB); 6498 6499 // Add the true and fallthrough blocks as its successors. 6500 BB->addSuccessor(copy0MBB); 6501 BB->addSuccessor(sinkMBB); 6502 6503 // copy0MBB: 6504 // %FalseValue = ... 6505 // # fallthrough to sinkMBB 6506 BB = copy0MBB; 6507 6508 // Update machine-CFG edges 6509 BB->addSuccessor(sinkMBB); 6510 6511 // sinkMBB: 6512 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 6513 // ... 6514 BB = sinkMBB; 6515 BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg()) 6516 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) 6517 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 6518 6519 F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. 6520 return BB; 6521 } 6522 6523 case X86::FP32_TO_INT16_IN_MEM: 6524 case X86::FP32_TO_INT32_IN_MEM: 6525 case X86::FP32_TO_INT64_IN_MEM: 6526 case X86::FP64_TO_INT16_IN_MEM: 6527 case X86::FP64_TO_INT32_IN_MEM: 6528 case X86::FP64_TO_INT64_IN_MEM: 6529 case X86::FP80_TO_INT16_IN_MEM: 6530 case X86::FP80_TO_INT32_IN_MEM: 6531 case X86::FP80_TO_INT64_IN_MEM: { 6532 // Change the floating point control register to use "round towards zero" 6533 // mode when truncating to an integer value. 6534 MachineFunction *F = BB->getParent(); 6535 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); 6536 addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx); 6537 6538 // Load the old value of the high byte of the control word... 6539 unsigned OldCW = 6540 F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass); 6541 addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx); 6542 6543 // Set the high part to be round to zero... 6544 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx) 6545 .addImm(0xC7F); 6546 6547 // Reload the modified control word now... 6548 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx); 6549 6550 // Restore the memory image of control word to original value 6551 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx) 6552 .addReg(OldCW); 6553 6554 // Get the X86 opcode to use. 6555 unsigned Opc; 6556 switch (MI->getOpcode()) { 6557 default: assert(0 && "illegal opcode!"); 6558 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; 6559 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; 6560 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; 6561 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; 6562 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; 6563 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; 6564 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; 6565 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; 6566 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; 6567 } 6568 6569 X86AddressMode AM; 6570 MachineOperand &Op = MI->getOperand(0); 6571 if (Op.isRegister()) { 6572 AM.BaseType = X86AddressMode::RegBase; 6573 AM.Base.Reg = Op.getReg(); 6574 } else { 6575 AM.BaseType = X86AddressMode::FrameIndexBase; 6576 AM.Base.FrameIndex = Op.getIndex(); 6577 } 6578 Op = MI->getOperand(1); 6579 if (Op.isImmediate()) 6580 AM.Scale = Op.getImm(); 6581 Op = MI->getOperand(2); 6582 if (Op.isImmediate()) 6583 AM.IndexReg = Op.getImm(); 6584 Op = MI->getOperand(3); 6585 if (Op.isGlobalAddress()) { 6586 AM.GV = Op.getGlobal(); 6587 } else { 6588 AM.Disp = Op.getImm(); 6589 } 6590 addFullAddress(BuildMI(BB, TII->get(Opc)), AM) 6591 .addReg(MI->getOperand(4).getReg()); 6592 6593 // Reload the original control word now. 6594 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx); 6595 6596 F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. 6597 return BB; 6598 } 6599 case X86::ATOMAND32: 6600 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr, 6601 X86::AND32ri, X86::MOV32rm, 6602 X86::LCMPXCHG32, X86::MOV32rr, 6603 X86::NOT32r, X86::EAX, 6604 X86::GR32RegisterClass); 6605 case X86::ATOMOR32: 6606 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr, 6607 X86::OR32ri, X86::MOV32rm, 6608 X86::LCMPXCHG32, X86::MOV32rr, 6609 X86::NOT32r, X86::EAX, 6610 X86::GR32RegisterClass); 6611 case X86::ATOMXOR32: 6612 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr, 6613 X86::XOR32ri, X86::MOV32rm, 6614 X86::LCMPXCHG32, X86::MOV32rr, 6615 X86::NOT32r, X86::EAX, 6616 X86::GR32RegisterClass); 6617 case X86::ATOMNAND32: 6618 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr, 6619 X86::AND32ri, X86::MOV32rm, 6620 X86::LCMPXCHG32, X86::MOV32rr, 6621 X86::NOT32r, X86::EAX, 6622 X86::GR32RegisterClass, true); 6623 case X86::ATOMMIN32: 6624 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr); 6625 case X86::ATOMMAX32: 6626 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr); 6627 case X86::ATOMUMIN32: 6628 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr); 6629 case X86::ATOMUMAX32: 6630 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr); 6631 6632 case X86::ATOMAND16: 6633 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr, 6634 X86::AND16ri, X86::MOV16rm, 6635 X86::LCMPXCHG16, X86::MOV16rr, 6636 X86::NOT16r, X86::AX, 6637 X86::GR16RegisterClass); 6638 case X86::ATOMOR16: 6639 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr, 6640 X86::OR16ri, X86::MOV16rm, 6641 X86::LCMPXCHG16, X86::MOV16rr, 6642 X86::NOT16r, X86::AX, 6643 X86::GR16RegisterClass); 6644 case X86::ATOMXOR16: 6645 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr, 6646 X86::XOR16ri, X86::MOV16rm, 6647 X86::LCMPXCHG16, X86::MOV16rr, 6648 X86::NOT16r, X86::AX, 6649 X86::GR16RegisterClass); 6650 case X86::ATOMNAND16: 6651 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr, 6652 X86::AND16ri, X86::MOV16rm, 6653 X86::LCMPXCHG16, X86::MOV16rr, 6654 X86::NOT16r, X86::AX, 6655 X86::GR16RegisterClass, true); 6656 case X86::ATOMMIN16: 6657 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr); 6658 case X86::ATOMMAX16: 6659 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr); 6660 case X86::ATOMUMIN16: 6661 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr); 6662 case X86::ATOMUMAX16: 6663 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr); 6664 6665 case X86::ATOMAND8: 6666 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr, 6667 X86::AND8ri, X86::MOV8rm, 6668 X86::LCMPXCHG8, X86::MOV8rr, 6669 X86::NOT8r, X86::AL, 6670 X86::GR8RegisterClass); 6671 case X86::ATOMOR8: 6672 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr, 6673 X86::OR8ri, X86::MOV8rm, 6674 X86::LCMPXCHG8, X86::MOV8rr, 6675 X86::NOT8r, X86::AL, 6676 X86::GR8RegisterClass); 6677 case X86::ATOMXOR8: 6678 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr, 6679 X86::XOR8ri, X86::MOV8rm, 6680 X86::LCMPXCHG8, X86::MOV8rr, 6681 X86::NOT8r, X86::AL, 6682 X86::GR8RegisterClass); 6683 case X86::ATOMNAND8: 6684 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr, 6685 X86::AND8ri, X86::MOV8rm, 6686 X86::LCMPXCHG8, X86::MOV8rr, 6687 X86::NOT8r, X86::AL, 6688 X86::GR8RegisterClass, true); 6689 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way. 6690 case X86::ATOMAND64: 6691 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr, 6692 X86::AND64ri32, X86::MOV64rm, 6693 X86::LCMPXCHG64, X86::MOV64rr, 6694 X86::NOT64r, X86::RAX, 6695 X86::GR64RegisterClass); 6696 case X86::ATOMOR64: 6697 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr, 6698 X86::OR64ri32, X86::MOV64rm, 6699 X86::LCMPXCHG64, X86::MOV64rr, 6700 X86::NOT64r, X86::RAX, 6701 X86::GR64RegisterClass); 6702 case X86::ATOMXOR64: 6703 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr, 6704 X86::XOR64ri32, X86::MOV64rm, 6705 X86::LCMPXCHG64, X86::MOV64rr, 6706 X86::NOT64r, X86::RAX, 6707 X86::GR64RegisterClass); 6708 case X86::ATOMNAND64: 6709 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr, 6710 X86::AND64ri32, X86::MOV64rm, 6711 X86::LCMPXCHG64, X86::MOV64rr, 6712 X86::NOT64r, X86::RAX, 6713 X86::GR64RegisterClass, true); 6714 case X86::ATOMMIN64: 6715 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr); 6716 case X86::ATOMMAX64: 6717 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr); 6718 case X86::ATOMUMIN64: 6719 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr); 6720 case X86::ATOMUMAX64: 6721 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr); 6722 } 6723} 6724 6725//===----------------------------------------------------------------------===// 6726// X86 Optimization Hooks 6727//===----------------------------------------------------------------------===// 6728 6729void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 6730 const APInt &Mask, 6731 APInt &KnownZero, 6732 APInt &KnownOne, 6733 const SelectionDAG &DAG, 6734 unsigned Depth) const { 6735 unsigned Opc = Op.getOpcode(); 6736 assert((Opc >= ISD::BUILTIN_OP_END || 6737 Opc == ISD::INTRINSIC_WO_CHAIN || 6738 Opc == ISD::INTRINSIC_W_CHAIN || 6739 Opc == ISD::INTRINSIC_VOID) && 6740 "Should use MaskedValueIsZero if you don't know whether Op" 6741 " is a target node!"); 6742 6743 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything. 6744 switch (Opc) { 6745 default: break; 6746 case X86ISD::SETCC: 6747 KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(), 6748 Mask.getBitWidth() - 1); 6749 break; 6750 } 6751} 6752 6753/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the 6754/// node is a GlobalAddress + offset. 6755bool X86TargetLowering::isGAPlusOffset(SDNode *N, 6756 GlobalValue* &GA, int64_t &Offset) const{ 6757 if (N->getOpcode() == X86ISD::Wrapper) { 6758 if (isa<GlobalAddressSDNode>(N->getOperand(0))) { 6759 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal(); 6760 return true; 6761 } 6762 } 6763 return TargetLowering::isGAPlusOffset(N, GA, Offset); 6764} 6765 6766static bool isBaseAlignmentOfN(unsigned N, SDNode *Base, 6767 const TargetLowering &TLI) { 6768 GlobalValue *GV; 6769 int64_t Offset = 0; 6770 if (TLI.isGAPlusOffset(Base, GV, Offset)) 6771 return (GV->getAlignment() >= N && (Offset % N) == 0); 6772 // DAG combine handles the stack object case. 6773 return false; 6774} 6775 6776static bool EltsFromConsecutiveLoads(SDNode *N, SDValue PermMask, 6777 unsigned NumElems, MVT EVT, 6778 SDNode *&Base, 6779 SelectionDAG &DAG, MachineFrameInfo *MFI, 6780 const TargetLowering &TLI) { 6781 Base = NULL; 6782 for (unsigned i = 0; i < NumElems; ++i) { 6783 SDValue Idx = PermMask.getOperand(i); 6784 if (Idx.getOpcode() == ISD::UNDEF) { 6785 if (!Base) 6786 return false; 6787 continue; 6788 } 6789 6790 SDValue Elt = DAG.getShuffleScalarElt(N, i); 6791 if (!Elt.getNode() || 6792 (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode()))) 6793 return false; 6794 if (!Base) { 6795 Base = Elt.getNode(); 6796 if (Base->getOpcode() == ISD::UNDEF) 6797 return false; 6798 continue; 6799 } 6800 if (Elt.getOpcode() == ISD::UNDEF) 6801 continue; 6802 6803 if (!TLI.isConsecutiveLoad(Elt.getNode(), Base, 6804 EVT.getSizeInBits()/8, i, MFI)) 6805 return false; 6806 } 6807 return true; 6808} 6809 6810/// PerformShuffleCombine - Combine a vector_shuffle that is equal to 6811/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load 6812/// if the load addresses are consecutive, non-overlapping, and in the right 6813/// order. 6814static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, 6815 const TargetLowering &TLI) { 6816 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 6817 MVT VT = N->getValueType(0); 6818 MVT EVT = VT.getVectorElementType(); 6819 SDValue PermMask = N->getOperand(2); 6820 unsigned NumElems = PermMask.getNumOperands(); 6821 SDNode *Base = NULL; 6822 if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base, 6823 DAG, MFI, TLI)) 6824 return SDValue(); 6825 6826 LoadSDNode *LD = cast<LoadSDNode>(Base); 6827 if (isBaseAlignmentOfN(16, Base->getOperand(1).getNode(), TLI)) 6828 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(), 6829 LD->getSrcValueOffset(), LD->isVolatile()); 6830 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(), 6831 LD->getSrcValueOffset(), LD->isVolatile(), 6832 LD->getAlignment()); 6833} 6834 6835/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd. 6836static SDValue PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG, 6837 const X86Subtarget *Subtarget, 6838 const TargetLowering &TLI) { 6839 unsigned NumOps = N->getNumOperands(); 6840 6841 // Ignore single operand BUILD_VECTOR. 6842 if (NumOps == 1) 6843 return SDValue(); 6844 6845 MVT VT = N->getValueType(0); 6846 MVT EVT = VT.getVectorElementType(); 6847 if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit()) 6848 // We are looking for load i64 and zero extend. We want to transform 6849 // it before legalizer has a chance to expand it. Also look for i64 6850 // BUILD_PAIR bit casted to f64. 6851 return SDValue(); 6852 // This must be an insertion into a zero vector. 6853 SDValue HighElt = N->getOperand(1); 6854 if (!isZeroNode(HighElt)) 6855 return SDValue(); 6856 6857 // Value must be a load. 6858 SDNode *Base = N->getOperand(0).getNode(); 6859 if (!isa<LoadSDNode>(Base)) { 6860 if (Base->getOpcode() != ISD::BIT_CONVERT) 6861 return SDValue(); 6862 Base = Base->getOperand(0).getNode(); 6863 if (!isa<LoadSDNode>(Base)) 6864 return SDValue(); 6865 } 6866 6867 // Transform it into VZEXT_LOAD addr. 6868 LoadSDNode *LD = cast<LoadSDNode>(Base); 6869 6870 // Load must not be an extload. 6871 if (LD->getExtensionType() != ISD::NON_EXTLOAD) 6872 return SDValue(); 6873 6874 SDVTList Tys = DAG.getVTList(VT, MVT::Other); 6875 SDValue Ops[] = { LD->getChain(), LD->getBasePtr() }; 6876 SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, Tys, Ops, 2); 6877 DAG.ReplaceAllUsesOfValueWith(SDValue(Base, 1), ResNode.getValue(1)); 6878 return ResNode; 6879} 6880 6881/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes. 6882static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, 6883 const X86Subtarget *Subtarget) { 6884 SDValue Cond = N->getOperand(0); 6885 6886 // If we have SSE[12] support, try to form min/max nodes. 6887 if (Subtarget->hasSSE2() && 6888 (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) { 6889 if (Cond.getOpcode() == ISD::SETCC) { 6890 // Get the LHS/RHS of the select. 6891 SDValue LHS = N->getOperand(1); 6892 SDValue RHS = N->getOperand(2); 6893 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 6894 6895 unsigned Opcode = 0; 6896 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) { 6897 switch (CC) { 6898 default: break; 6899 case ISD::SETOLE: // (X <= Y) ? X : Y -> min 6900 case ISD::SETULE: 6901 case ISD::SETLE: 6902 if (!UnsafeFPMath) break; 6903 // FALL THROUGH. 6904 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min 6905 case ISD::SETLT: 6906 Opcode = X86ISD::FMIN; 6907 break; 6908 6909 case ISD::SETOGT: // (X > Y) ? X : Y -> max 6910 case ISD::SETUGT: 6911 case ISD::SETGT: 6912 if (!UnsafeFPMath) break; 6913 // FALL THROUGH. 6914 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max 6915 case ISD::SETGE: 6916 Opcode = X86ISD::FMAX; 6917 break; 6918 } 6919 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) { 6920 switch (CC) { 6921 default: break; 6922 case ISD::SETOGT: // (X > Y) ? Y : X -> min 6923 case ISD::SETUGT: 6924 case ISD::SETGT: 6925 if (!UnsafeFPMath) break; 6926 // FALL THROUGH. 6927 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min 6928 case ISD::SETGE: 6929 Opcode = X86ISD::FMIN; 6930 break; 6931 6932 case ISD::SETOLE: // (X <= Y) ? Y : X -> max 6933 case ISD::SETULE: 6934 case ISD::SETLE: 6935 if (!UnsafeFPMath) break; 6936 // FALL THROUGH. 6937 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max 6938 case ISD::SETLT: 6939 Opcode = X86ISD::FMAX; 6940 break; 6941 } 6942 } 6943 6944 if (Opcode) 6945 return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS); 6946 } 6947 6948 } 6949 6950 return SDValue(); 6951} 6952 6953/// PerformSTORECombine - Do target-specific dag combines on STORE nodes. 6954static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, 6955 const X86Subtarget *Subtarget) { 6956 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering 6957 // the FP state in cases where an emms may be missing. 6958 // A preferable solution to the general problem is to figure out the right 6959 // places to insert EMMS. This qualifies as a quick hack. 6960 StoreSDNode *St = cast<StoreSDNode>(N); 6961 if (St->getValue().getValueType().isVector() && 6962 St->getValue().getValueType().getSizeInBits() == 64 && 6963 isa<LoadSDNode>(St->getValue()) && 6964 !cast<LoadSDNode>(St->getValue())->isVolatile() && 6965 St->getChain().hasOneUse() && !St->isVolatile()) { 6966 SDNode* LdVal = St->getValue().getNode(); 6967 LoadSDNode *Ld = 0; 6968 int TokenFactorIndex = -1; 6969 SmallVector<SDValue, 8> Ops; 6970 SDNode* ChainVal = St->getChain().getNode(); 6971 // Must be a store of a load. We currently handle two cases: the load 6972 // is a direct child, and it's under an intervening TokenFactor. It is 6973 // possible to dig deeper under nested TokenFactors. 6974 if (ChainVal == LdVal) 6975 Ld = cast<LoadSDNode>(St->getChain()); 6976 else if (St->getValue().hasOneUse() && 6977 ChainVal->getOpcode() == ISD::TokenFactor) { 6978 for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) { 6979 if (ChainVal->getOperand(i).getNode() == LdVal) { 6980 TokenFactorIndex = i; 6981 Ld = cast<LoadSDNode>(St->getValue()); 6982 } else 6983 Ops.push_back(ChainVal->getOperand(i)); 6984 } 6985 } 6986 if (Ld) { 6987 // If we are a 64-bit capable x86, lower to a single movq load/store pair. 6988 if (Subtarget->is64Bit()) { 6989 SDValue NewLd = DAG.getLoad(MVT::i64, Ld->getChain(), 6990 Ld->getBasePtr(), Ld->getSrcValue(), 6991 Ld->getSrcValueOffset(), Ld->isVolatile(), 6992 Ld->getAlignment()); 6993 SDValue NewChain = NewLd.getValue(1); 6994 if (TokenFactorIndex != -1) { 6995 Ops.push_back(NewChain); 6996 NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], 6997 Ops.size()); 6998 } 6999 return DAG.getStore(NewChain, NewLd, St->getBasePtr(), 7000 St->getSrcValue(), St->getSrcValueOffset(), 7001 St->isVolatile(), St->getAlignment()); 7002 } 7003 7004 // Otherwise, lower to two 32-bit copies. 7005 SDValue LoAddr = Ld->getBasePtr(); 7006 SDValue HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr, 7007 DAG.getConstant(4, MVT::i32)); 7008 7009 SDValue LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr, 7010 Ld->getSrcValue(), Ld->getSrcValueOffset(), 7011 Ld->isVolatile(), Ld->getAlignment()); 7012 SDValue HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr, 7013 Ld->getSrcValue(), Ld->getSrcValueOffset()+4, 7014 Ld->isVolatile(), 7015 MinAlign(Ld->getAlignment(), 4)); 7016 7017 SDValue NewChain = LoLd.getValue(1); 7018 if (TokenFactorIndex != -1) { 7019 Ops.push_back(LoLd); 7020 Ops.push_back(HiLd); 7021 NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], 7022 Ops.size()); 7023 } 7024 7025 LoAddr = St->getBasePtr(); 7026 HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr, 7027 DAG.getConstant(4, MVT::i32)); 7028 7029 SDValue LoSt = DAG.getStore(NewChain, LoLd, LoAddr, 7030 St->getSrcValue(), St->getSrcValueOffset(), 7031 St->isVolatile(), St->getAlignment()); 7032 SDValue HiSt = DAG.getStore(NewChain, HiLd, HiAddr, 7033 St->getSrcValue(), 7034 St->getSrcValueOffset() + 4, 7035 St->isVolatile(), 7036 MinAlign(St->getAlignment(), 4)); 7037 return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt); 7038 } 7039 } 7040 return SDValue(); 7041} 7042 7043/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and 7044/// X86ISD::FXOR nodes. 7045static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) { 7046 assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); 7047 // F[X]OR(0.0, x) -> x 7048 // F[X]OR(x, 0.0) -> x 7049 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 7050 if (C->getValueAPF().isPosZero()) 7051 return N->getOperand(1); 7052 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) 7053 if (C->getValueAPF().isPosZero()) 7054 return N->getOperand(0); 7055 return SDValue(); 7056} 7057 7058/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes. 7059static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) { 7060 // FAND(0.0, x) -> 0.0 7061 // FAND(x, 0.0) -> 0.0 7062 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 7063 if (C->getValueAPF().isPosZero()) 7064 return N->getOperand(0); 7065 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) 7066 if (C->getValueAPF().isPosZero()) 7067 return N->getOperand(1); 7068 return SDValue(); 7069} 7070 7071 7072SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, 7073 DAGCombinerInfo &DCI) const { 7074 SelectionDAG &DAG = DCI.DAG; 7075 switch (N->getOpcode()) { 7076 default: break; 7077 case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this); 7078 case ISD::BUILD_VECTOR: 7079 return PerformBuildVectorCombine(N, DAG, Subtarget, *this); 7080 case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget); 7081 case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget); 7082 case X86ISD::FXOR: 7083 case X86ISD::FOR: return PerformFORCombine(N, DAG); 7084 case X86ISD::FAND: return PerformFANDCombine(N, DAG); 7085 } 7086 7087 return SDValue(); 7088} 7089 7090//===----------------------------------------------------------------------===// 7091// X86 Inline Assembly Support 7092//===----------------------------------------------------------------------===// 7093 7094/// getConstraintType - Given a constraint letter, return the type of 7095/// constraint it is for this target. 7096X86TargetLowering::ConstraintType 7097X86TargetLowering::getConstraintType(const std::string &Constraint) const { 7098 if (Constraint.size() == 1) { 7099 switch (Constraint[0]) { 7100 case 'A': 7101 case 'f': 7102 case 'r': 7103 case 'R': 7104 case 'l': 7105 case 'q': 7106 case 'Q': 7107 case 'x': 7108 case 'y': 7109 case 'Y': 7110 return C_RegisterClass; 7111 default: 7112 break; 7113 } 7114 } 7115 return TargetLowering::getConstraintType(Constraint); 7116} 7117 7118/// LowerXConstraint - try to replace an X constraint, which matches anything, 7119/// with another that has more specific requirements based on the type of the 7120/// corresponding operand. 7121const char *X86TargetLowering:: 7122LowerXConstraint(MVT ConstraintVT) const { 7123 // FP X constraints get lowered to SSE1/2 registers if available, otherwise 7124 // 'f' like normal targets. 7125 if (ConstraintVT.isFloatingPoint()) { 7126 if (Subtarget->hasSSE2()) 7127 return "Y"; 7128 if (Subtarget->hasSSE1()) 7129 return "x"; 7130 } 7131 7132 return TargetLowering::LowerXConstraint(ConstraintVT); 7133} 7134 7135/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 7136/// vector. If it is invalid, don't add anything to Ops. 7137void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 7138 char Constraint, 7139 bool hasMemory, 7140 std::vector<SDValue>&Ops, 7141 SelectionDAG &DAG) const { 7142 SDValue Result(0, 0); 7143 7144 switch (Constraint) { 7145 default: break; 7146 case 'I': 7147 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 7148 if (C->getZExtValue() <= 31) { 7149 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); 7150 break; 7151 } 7152 } 7153 return; 7154 case 'J': 7155 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 7156 if (C->getZExtValue() <= 63) { 7157 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); 7158 break; 7159 } 7160 } 7161 return; 7162 case 'N': 7163 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 7164 if (C->getZExtValue() <= 255) { 7165 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); 7166 break; 7167 } 7168 } 7169 return; 7170 case 'i': { 7171 // Literal immediates are always ok. 7172 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) { 7173 Result = DAG.getTargetConstant(CST->getZExtValue(), Op.getValueType()); 7174 break; 7175 } 7176 7177 // If we are in non-pic codegen mode, we allow the address of a global (with 7178 // an optional displacement) to be used with 'i'. 7179 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 7180 int64_t Offset = 0; 7181 7182 // Match either (GA) or (GA+C) 7183 if (GA) { 7184 Offset = GA->getOffset(); 7185 } else if (Op.getOpcode() == ISD::ADD) { 7186 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7187 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 7188 if (C && GA) { 7189 Offset = GA->getOffset()+C->getZExtValue(); 7190 } else { 7191 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7192 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 7193 if (C && GA) 7194 Offset = GA->getOffset()+C->getZExtValue(); 7195 else 7196 C = 0, GA = 0; 7197 } 7198 } 7199 7200 if (GA) { 7201 if (hasMemory) 7202 Op = LowerGlobalAddress(GA->getGlobal(), DAG); 7203 else 7204 Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0), 7205 Offset); 7206 Result = Op; 7207 break; 7208 } 7209 7210 // Otherwise, not valid for this mode. 7211 return; 7212 } 7213 } 7214 7215 if (Result.getNode()) { 7216 Ops.push_back(Result); 7217 return; 7218 } 7219 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory, 7220 Ops, DAG); 7221} 7222 7223std::vector<unsigned> X86TargetLowering:: 7224getRegClassForInlineAsmConstraint(const std::string &Constraint, 7225 MVT VT) const { 7226 if (Constraint.size() == 1) { 7227 // FIXME: not handling fp-stack yet! 7228 switch (Constraint[0]) { // GCC X86 Constraint Letters 7229 default: break; // Unknown constraint letter 7230 case 'A': // EAX/EDX 7231 if (VT == MVT::i32 || VT == MVT::i64) 7232 return make_vector<unsigned>(X86::EAX, X86::EDX, 0); 7233 break; 7234 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode) 7235 case 'Q': // Q_REGS 7236 if (VT == MVT::i32) 7237 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0); 7238 else if (VT == MVT::i16) 7239 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0); 7240 else if (VT == MVT::i8) 7241 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0); 7242 else if (VT == MVT::i64) 7243 return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0); 7244 break; 7245 } 7246 } 7247 7248 return std::vector<unsigned>(); 7249} 7250 7251std::pair<unsigned, const TargetRegisterClass*> 7252X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, 7253 MVT VT) const { 7254 // First, see if this is a constraint that directly corresponds to an LLVM 7255 // register class. 7256 if (Constraint.size() == 1) { 7257 // GCC Constraint Letters 7258 switch (Constraint[0]) { 7259 default: break; 7260 case 'r': // GENERAL_REGS 7261 case 'R': // LEGACY_REGS 7262 case 'l': // INDEX_REGS 7263 if (VT == MVT::i64 && Subtarget->is64Bit()) 7264 return std::make_pair(0U, X86::GR64RegisterClass); 7265 if (VT == MVT::i32) 7266 return std::make_pair(0U, X86::GR32RegisterClass); 7267 else if (VT == MVT::i16) 7268 return std::make_pair(0U, X86::GR16RegisterClass); 7269 else if (VT == MVT::i8) 7270 return std::make_pair(0U, X86::GR8RegisterClass); 7271 break; 7272 case 'f': // FP Stack registers. 7273 // If SSE is enabled for this VT, use f80 to ensure the isel moves the 7274 // value to the correct fpstack register class. 7275 if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT)) 7276 return std::make_pair(0U, X86::RFP32RegisterClass); 7277 if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT)) 7278 return std::make_pair(0U, X86::RFP64RegisterClass); 7279 return std::make_pair(0U, X86::RFP80RegisterClass); 7280 case 'y': // MMX_REGS if MMX allowed. 7281 if (!Subtarget->hasMMX()) break; 7282 return std::make_pair(0U, X86::VR64RegisterClass); 7283 break; 7284 case 'Y': // SSE_REGS if SSE2 allowed 7285 if (!Subtarget->hasSSE2()) break; 7286 // FALL THROUGH. 7287 case 'x': // SSE_REGS if SSE1 allowed 7288 if (!Subtarget->hasSSE1()) break; 7289 7290 switch (VT.getSimpleVT()) { 7291 default: break; 7292 // Scalar SSE types. 7293 case MVT::f32: 7294 case MVT::i32: 7295 return std::make_pair(0U, X86::FR32RegisterClass); 7296 case MVT::f64: 7297 case MVT::i64: 7298 return std::make_pair(0U, X86::FR64RegisterClass); 7299 // Vector types. 7300 case MVT::v16i8: 7301 case MVT::v8i16: 7302 case MVT::v4i32: 7303 case MVT::v2i64: 7304 case MVT::v4f32: 7305 case MVT::v2f64: 7306 return std::make_pair(0U, X86::VR128RegisterClass); 7307 } 7308 break; 7309 } 7310 } 7311 7312 // Use the default implementation in TargetLowering to convert the register 7313 // constraint into a member of a register class. 7314 std::pair<unsigned, const TargetRegisterClass*> Res; 7315 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 7316 7317 // Not found as a standard register? 7318 if (Res.second == 0) { 7319 // GCC calls "st(0)" just plain "st". 7320 if (StringsEqualNoCase("{st}", Constraint)) { 7321 Res.first = X86::ST0; 7322 Res.second = X86::RFP80RegisterClass; 7323 } 7324 7325 return Res; 7326 } 7327 7328 // Otherwise, check to see if this is a register class of the wrong value 7329 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to 7330 // turn into {ax},{dx}. 7331 if (Res.second->hasType(VT)) 7332 return Res; // Correct type already, nothing to do. 7333 7334 // All of the single-register GCC register classes map their values onto 7335 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we 7336 // really want an 8-bit or 32-bit register, map to the appropriate register 7337 // class and return the appropriate register. 7338 if (Res.second == X86::GR16RegisterClass) { 7339 if (VT == MVT::i8) { 7340 unsigned DestReg = 0; 7341 switch (Res.first) { 7342 default: break; 7343 case X86::AX: DestReg = X86::AL; break; 7344 case X86::DX: DestReg = X86::DL; break; 7345 case X86::CX: DestReg = X86::CL; break; 7346 case X86::BX: DestReg = X86::BL; break; 7347 } 7348 if (DestReg) { 7349 Res.first = DestReg; 7350 Res.second = Res.second = X86::GR8RegisterClass; 7351 } 7352 } else if (VT == MVT::i32) { 7353 unsigned DestReg = 0; 7354 switch (Res.first) { 7355 default: break; 7356 case X86::AX: DestReg = X86::EAX; break; 7357 case X86::DX: DestReg = X86::EDX; break; 7358 case X86::CX: DestReg = X86::ECX; break; 7359 case X86::BX: DestReg = X86::EBX; break; 7360 case X86::SI: DestReg = X86::ESI; break; 7361 case X86::DI: DestReg = X86::EDI; break; 7362 case X86::BP: DestReg = X86::EBP; break; 7363 case X86::SP: DestReg = X86::ESP; break; 7364 } 7365 if (DestReg) { 7366 Res.first = DestReg; 7367 Res.second = Res.second = X86::GR32RegisterClass; 7368 } 7369 } else if (VT == MVT::i64) { 7370 unsigned DestReg = 0; 7371 switch (Res.first) { 7372 default: break; 7373 case X86::AX: DestReg = X86::RAX; break; 7374 case X86::DX: DestReg = X86::RDX; break; 7375 case X86::CX: DestReg = X86::RCX; break; 7376 case X86::BX: DestReg = X86::RBX; break; 7377 case X86::SI: DestReg = X86::RSI; break; 7378 case X86::DI: DestReg = X86::RDI; break; 7379 case X86::BP: DestReg = X86::RBP; break; 7380 case X86::SP: DestReg = X86::RSP; break; 7381 } 7382 if (DestReg) { 7383 Res.first = DestReg; 7384 Res.second = Res.second = X86::GR64RegisterClass; 7385 } 7386 } 7387 } else if (Res.second == X86::FR32RegisterClass || 7388 Res.second == X86::FR64RegisterClass || 7389 Res.second == X86::VR128RegisterClass) { 7390 // Handle references to XMM physical registers that got mapped into the 7391 // wrong class. This can happen with constraints like {xmm0} where the 7392 // target independent register mapper will just pick the first match it can 7393 // find, ignoring the required type. 7394 if (VT == MVT::f32) 7395 Res.second = X86::FR32RegisterClass; 7396 else if (VT == MVT::f64) 7397 Res.second = X86::FR64RegisterClass; 7398 else if (X86::VR128RegisterClass->hasType(VT)) 7399 Res.second = X86::VR128RegisterClass; 7400 } 7401 7402 return Res; 7403} 7404