X86ISelLowering.cpp revision 0bb41608e94adfe9884bc188457c4f6ae47ea43c
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the interfaces that X86 uses to lower LLVM code into a 11// selection DAG. 12// 13//===----------------------------------------------------------------------===// 14 15#include "X86.h" 16#include "X86InstrBuilder.h" 17#include "X86ISelLowering.h" 18#include "X86MachineFunctionInfo.h" 19#include "X86TargetMachine.h" 20#include "llvm/CallingConv.h" 21#include "llvm/Constants.h" 22#include "llvm/DerivedTypes.h" 23#include "llvm/GlobalVariable.h" 24#include "llvm/Function.h" 25#include "llvm/Intrinsics.h" 26#include "llvm/ADT/BitVector.h" 27#include "llvm/ADT/VectorExtras.h" 28#include "llvm/CodeGen/CallingConvLower.h" 29#include "llvm/CodeGen/MachineFrameInfo.h" 30#include "llvm/CodeGen/MachineFunction.h" 31#include "llvm/CodeGen/MachineInstrBuilder.h" 32#include "llvm/CodeGen/MachineModuleInfo.h" 33#include "llvm/CodeGen/MachineRegisterInfo.h" 34#include "llvm/CodeGen/PseudoSourceValue.h" 35#include "llvm/CodeGen/SelectionDAG.h" 36#include "llvm/Support/MathExtras.h" 37#include "llvm/Support/Debug.h" 38#include "llvm/Target/TargetOptions.h" 39#include "llvm/ADT/SmallSet.h" 40#include "llvm/ADT/StringExtras.h" 41using namespace llvm; 42 43// Forward declarations. 44static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG); 45 46X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) 47 : TargetLowering(TM) { 48 Subtarget = &TM.getSubtarget<X86Subtarget>(); 49 X86ScalarSSEf64 = Subtarget->hasSSE2(); 50 X86ScalarSSEf32 = Subtarget->hasSSE1(); 51 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP; 52 53 bool Fast = false; 54 55 RegInfo = TM.getRegisterInfo(); 56 TD = getTargetData(); 57 58 // Set up the TargetLowering object. 59 60 // X86 is weird, it always uses i8 for shift amounts and setcc results. 61 setShiftAmountType(MVT::i8); 62 setSetCCResultContents(ZeroOrOneSetCCResult); 63 setSchedulingPreference(SchedulingForRegPressure); 64 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0 65 setStackPointerRegisterToSaveRestore(X86StackPtr); 66 67 if (Subtarget->isTargetDarwin()) { 68 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. 69 setUseUnderscoreSetJmp(false); 70 setUseUnderscoreLongJmp(false); 71 } else if (Subtarget->isTargetMingw()) { 72 // MS runtime is weird: it exports _setjmp, but longjmp! 73 setUseUnderscoreSetJmp(true); 74 setUseUnderscoreLongJmp(false); 75 } else { 76 setUseUnderscoreSetJmp(true); 77 setUseUnderscoreLongJmp(true); 78 } 79 80 // Set up the register classes. 81 addRegisterClass(MVT::i8, X86::GR8RegisterClass); 82 addRegisterClass(MVT::i16, X86::GR16RegisterClass); 83 addRegisterClass(MVT::i32, X86::GR32RegisterClass); 84 if (Subtarget->is64Bit()) 85 addRegisterClass(MVT::i64, X86::GR64RegisterClass); 86 87 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote); 88 89 // We don't accept any truncstore of integer registers. 90 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 91 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 92 setTruncStoreAction(MVT::i64, MVT::i8 , Expand); 93 setTruncStoreAction(MVT::i32, MVT::i16, Expand); 94 setTruncStoreAction(MVT::i32, MVT::i8 , Expand); 95 setTruncStoreAction(MVT::i16, MVT::i8, Expand); 96 97 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this 98 // operation. 99 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); 100 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); 101 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); 102 103 if (Subtarget->is64Bit()) { 104 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand); 105 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); 106 } else { 107 if (X86ScalarSSEf64) 108 // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP. 109 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand); 110 else 111 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); 112 } 113 114 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have 115 // this operation. 116 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); 117 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); 118 // SSE has no i16 to fp conversion, only i32 119 if (X86ScalarSSEf32) { 120 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); 121 // f32 and f64 cases are Legal, f80 case is not 122 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); 123 } else { 124 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); 125 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); 126 } 127 128 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64 129 // are Legal, f80 is custom lowered. 130 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); 131 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); 132 133 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have 134 // this operation. 135 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); 136 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); 137 138 if (X86ScalarSSEf32) { 139 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); 140 // f32 and f64 cases are Legal, f80 case is not 141 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); 142 } else { 143 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); 144 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); 145 } 146 147 // Handle FP_TO_UINT by promoting the destination to a larger signed 148 // conversion. 149 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); 150 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); 151 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); 152 153 if (Subtarget->is64Bit()) { 154 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand); 155 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); 156 } else { 157 if (X86ScalarSSEf32 && !Subtarget->hasSSE3()) 158 // Expand FP_TO_UINT into a select. 159 // FIXME: We would like to use a Custom expander here eventually to do 160 // the optimal thing for SSE vs. the default expansion in the legalizer. 161 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); 162 else 163 // With SSE3 we can use fisttpll to convert to a signed i64. 164 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); 165 } 166 167 // TODO: when we have SSE, these could be more efficient, by using movd/movq. 168 if (!X86ScalarSSEf64) { 169 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand); 170 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand); 171 } 172 173 // Scalar integer divide and remainder are lowered to use operations that 174 // produce two results, to match the available instructions. This exposes 175 // the two-result form to trivial CSE, which is able to combine x/y and x%y 176 // into a single instruction. 177 // 178 // Scalar integer multiply-high is also lowered to use two-result 179 // operations, to match the available instructions. However, plain multiply 180 // (low) operations are left as Legal, as there are single-result 181 // instructions for this in x86. Using the two-result multiply instructions 182 // when both high and low results are needed must be arranged by dagcombine. 183 setOperationAction(ISD::MULHS , MVT::i8 , Expand); 184 setOperationAction(ISD::MULHU , MVT::i8 , Expand); 185 setOperationAction(ISD::SDIV , MVT::i8 , Expand); 186 setOperationAction(ISD::UDIV , MVT::i8 , Expand); 187 setOperationAction(ISD::SREM , MVT::i8 , Expand); 188 setOperationAction(ISD::UREM , MVT::i8 , Expand); 189 setOperationAction(ISD::MULHS , MVT::i16 , Expand); 190 setOperationAction(ISD::MULHU , MVT::i16 , Expand); 191 setOperationAction(ISD::SDIV , MVT::i16 , Expand); 192 setOperationAction(ISD::UDIV , MVT::i16 , Expand); 193 setOperationAction(ISD::SREM , MVT::i16 , Expand); 194 setOperationAction(ISD::UREM , MVT::i16 , Expand); 195 setOperationAction(ISD::MULHS , MVT::i32 , Expand); 196 setOperationAction(ISD::MULHU , MVT::i32 , Expand); 197 setOperationAction(ISD::SDIV , MVT::i32 , Expand); 198 setOperationAction(ISD::UDIV , MVT::i32 , Expand); 199 setOperationAction(ISD::SREM , MVT::i32 , Expand); 200 setOperationAction(ISD::UREM , MVT::i32 , Expand); 201 setOperationAction(ISD::MULHS , MVT::i64 , Expand); 202 setOperationAction(ISD::MULHU , MVT::i64 , Expand); 203 setOperationAction(ISD::SDIV , MVT::i64 , Expand); 204 setOperationAction(ISD::UDIV , MVT::i64 , Expand); 205 setOperationAction(ISD::SREM , MVT::i64 , Expand); 206 setOperationAction(ISD::UREM , MVT::i64 , Expand); 207 208 setOperationAction(ISD::BR_JT , MVT::Other, Expand); 209 setOperationAction(ISD::BRCOND , MVT::Other, Custom); 210 setOperationAction(ISD::BR_CC , MVT::Other, Expand); 211 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand); 212 if (Subtarget->is64Bit()) 213 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); 214 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal); 215 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); 216 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); 217 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); 218 setOperationAction(ISD::FREM , MVT::f32 , Expand); 219 setOperationAction(ISD::FREM , MVT::f64 , Expand); 220 setOperationAction(ISD::FREM , MVT::f80 , Expand); 221 setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom); 222 223 setOperationAction(ISD::CTPOP , MVT::i8 , Expand); 224 setOperationAction(ISD::CTTZ , MVT::i8 , Custom); 225 setOperationAction(ISD::CTLZ , MVT::i8 , Custom); 226 setOperationAction(ISD::CTPOP , MVT::i16 , Expand); 227 setOperationAction(ISD::CTTZ , MVT::i16 , Custom); 228 setOperationAction(ISD::CTLZ , MVT::i16 , Custom); 229 setOperationAction(ISD::CTPOP , MVT::i32 , Expand); 230 setOperationAction(ISD::CTTZ , MVT::i32 , Custom); 231 setOperationAction(ISD::CTLZ , MVT::i32 , Custom); 232 if (Subtarget->is64Bit()) { 233 setOperationAction(ISD::CTPOP , MVT::i64 , Expand); 234 setOperationAction(ISD::CTTZ , MVT::i64 , Custom); 235 setOperationAction(ISD::CTLZ , MVT::i64 , Custom); 236 } 237 238 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); 239 setOperationAction(ISD::BSWAP , MVT::i16 , Expand); 240 241 // These should be promoted to a larger select which is supported. 242 setOperationAction(ISD::SELECT , MVT::i1 , Promote); 243 setOperationAction(ISD::SELECT , MVT::i8 , Promote); 244 // X86 wants to expand cmov itself. 245 setOperationAction(ISD::SELECT , MVT::i16 , Custom); 246 setOperationAction(ISD::SELECT , MVT::i32 , Custom); 247 setOperationAction(ISD::SELECT , MVT::f32 , Custom); 248 setOperationAction(ISD::SELECT , MVT::f64 , Custom); 249 setOperationAction(ISD::SELECT , MVT::f80 , Custom); 250 setOperationAction(ISD::SETCC , MVT::i8 , Custom); 251 setOperationAction(ISD::SETCC , MVT::i16 , Custom); 252 setOperationAction(ISD::SETCC , MVT::i32 , Custom); 253 setOperationAction(ISD::SETCC , MVT::f32 , Custom); 254 setOperationAction(ISD::SETCC , MVT::f64 , Custom); 255 setOperationAction(ISD::SETCC , MVT::f80 , Custom); 256 if (Subtarget->is64Bit()) { 257 setOperationAction(ISD::SELECT , MVT::i64 , Custom); 258 setOperationAction(ISD::SETCC , MVT::i64 , Custom); 259 } 260 // X86 ret instruction may pop stack. 261 setOperationAction(ISD::RET , MVT::Other, Custom); 262 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom); 263 264 // Darwin ABI issue. 265 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); 266 setOperationAction(ISD::JumpTable , MVT::i32 , Custom); 267 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); 268 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom); 269 if (Subtarget->is64Bit()) 270 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 271 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom); 272 if (Subtarget->is64Bit()) { 273 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom); 274 setOperationAction(ISD::JumpTable , MVT::i64 , Custom); 275 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom); 276 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom); 277 } 278 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) 279 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); 280 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); 281 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); 282 if (Subtarget->is64Bit()) { 283 setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom); 284 setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom); 285 setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom); 286 } 287 288 if (Subtarget->hasSSE1()) 289 setOperationAction(ISD::PREFETCH , MVT::Other, Legal); 290 291 if (!Subtarget->hasSSE2()) 292 setOperationAction(ISD::MEMBARRIER , MVT::Other, Expand); 293 294 // Expand certain atomics 295 setOperationAction(ISD::ATOMIC_CMP_SWAP_8 , MVT::i8, Custom); 296 setOperationAction(ISD::ATOMIC_CMP_SWAP_16, MVT::i16, Custom); 297 setOperationAction(ISD::ATOMIC_CMP_SWAP_32, MVT::i32, Custom); 298 setOperationAction(ISD::ATOMIC_CMP_SWAP_64, MVT::i64, Custom); 299 300 setOperationAction(ISD::ATOMIC_LOAD_SUB_8, MVT::i8, Expand); 301 setOperationAction(ISD::ATOMIC_LOAD_SUB_16, MVT::i16, Expand); 302 setOperationAction(ISD::ATOMIC_LOAD_SUB_32, MVT::i32, Expand); 303 setOperationAction(ISD::ATOMIC_LOAD_SUB_64, MVT::i64, Expand); 304 305 // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion. 306 setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand); 307 // FIXME - use subtarget debug flags 308 if (!Subtarget->isTargetDarwin() && 309 !Subtarget->isTargetELF() && 310 !Subtarget->isTargetCygMing()) { 311 setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand); 312 setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); 313 } 314 315 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); 316 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); 317 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); 318 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); 319 if (Subtarget->is64Bit()) { 320 setExceptionPointerRegister(X86::RAX); 321 setExceptionSelectorRegister(X86::RDX); 322 } else { 323 setExceptionPointerRegister(X86::EAX); 324 setExceptionSelectorRegister(X86::EDX); 325 } 326 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); 327 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom); 328 329 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom); 330 331 setOperationAction(ISD::TRAP, MVT::Other, Legal); 332 333 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 334 setOperationAction(ISD::VASTART , MVT::Other, Custom); 335 setOperationAction(ISD::VAEND , MVT::Other, Expand); 336 if (Subtarget->is64Bit()) { 337 setOperationAction(ISD::VAARG , MVT::Other, Custom); 338 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 339 } else { 340 setOperationAction(ISD::VAARG , MVT::Other, Expand); 341 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 342 } 343 344 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 345 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 346 if (Subtarget->is64Bit()) 347 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); 348 if (Subtarget->isTargetCygMing()) 349 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 350 else 351 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 352 353 if (X86ScalarSSEf64) { 354 // f32 and f64 use SSE. 355 // Set up the FP register classes. 356 addRegisterClass(MVT::f32, X86::FR32RegisterClass); 357 addRegisterClass(MVT::f64, X86::FR64RegisterClass); 358 359 // Use ANDPD to simulate FABS. 360 setOperationAction(ISD::FABS , MVT::f64, Custom); 361 setOperationAction(ISD::FABS , MVT::f32, Custom); 362 363 // Use XORP to simulate FNEG. 364 setOperationAction(ISD::FNEG , MVT::f64, Custom); 365 setOperationAction(ISD::FNEG , MVT::f32, Custom); 366 367 // Use ANDPD and ORPD to simulate FCOPYSIGN. 368 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); 369 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 370 371 // We don't support sin/cos/fmod 372 setOperationAction(ISD::FSIN , MVT::f64, Expand); 373 setOperationAction(ISD::FCOS , MVT::f64, Expand); 374 setOperationAction(ISD::FSIN , MVT::f32, Expand); 375 setOperationAction(ISD::FCOS , MVT::f32, Expand); 376 377 // Expand FP immediates into loads from the stack, except for the special 378 // cases we handle. 379 addLegalFPImmediate(APFloat(+0.0)); // xorpd 380 addLegalFPImmediate(APFloat(+0.0f)); // xorps 381 382 // Floating truncations from f80 and extensions to f80 go through memory. 383 // If optimizing, we lie about this though and handle it in 384 // InstructionSelectPreprocess so that dagcombine2 can hack on these. 385 if (Fast) { 386 setConvertAction(MVT::f32, MVT::f80, Expand); 387 setConvertAction(MVT::f64, MVT::f80, Expand); 388 setConvertAction(MVT::f80, MVT::f32, Expand); 389 setConvertAction(MVT::f80, MVT::f64, Expand); 390 } 391 } else if (X86ScalarSSEf32) { 392 // Use SSE for f32, x87 for f64. 393 // Set up the FP register classes. 394 addRegisterClass(MVT::f32, X86::FR32RegisterClass); 395 addRegisterClass(MVT::f64, X86::RFP64RegisterClass); 396 397 // Use ANDPS to simulate FABS. 398 setOperationAction(ISD::FABS , MVT::f32, Custom); 399 400 // Use XORP to simulate FNEG. 401 setOperationAction(ISD::FNEG , MVT::f32, Custom); 402 403 setOperationAction(ISD::UNDEF, MVT::f64, Expand); 404 405 // Use ANDPS and ORPS to simulate FCOPYSIGN. 406 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 407 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 408 409 // We don't support sin/cos/fmod 410 setOperationAction(ISD::FSIN , MVT::f32, Expand); 411 setOperationAction(ISD::FCOS , MVT::f32, Expand); 412 413 // Special cases we handle for FP constants. 414 addLegalFPImmediate(APFloat(+0.0f)); // xorps 415 addLegalFPImmediate(APFloat(+0.0)); // FLD0 416 addLegalFPImmediate(APFloat(+1.0)); // FLD1 417 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS 418 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS 419 420 // SSE <-> X87 conversions go through memory. If optimizing, we lie about 421 // this though and handle it in InstructionSelectPreprocess so that 422 // dagcombine2 can hack on these. 423 if (Fast) { 424 setConvertAction(MVT::f32, MVT::f64, Expand); 425 setConvertAction(MVT::f32, MVT::f80, Expand); 426 setConvertAction(MVT::f80, MVT::f32, Expand); 427 setConvertAction(MVT::f64, MVT::f32, Expand); 428 // And x87->x87 truncations also. 429 setConvertAction(MVT::f80, MVT::f64, Expand); 430 } 431 432 if (!UnsafeFPMath) { 433 setOperationAction(ISD::FSIN , MVT::f64 , Expand); 434 setOperationAction(ISD::FCOS , MVT::f64 , Expand); 435 } 436 } else { 437 // f32 and f64 in x87. 438 // Set up the FP register classes. 439 addRegisterClass(MVT::f64, X86::RFP64RegisterClass); 440 addRegisterClass(MVT::f32, X86::RFP32RegisterClass); 441 442 setOperationAction(ISD::UNDEF, MVT::f64, Expand); 443 setOperationAction(ISD::UNDEF, MVT::f32, Expand); 444 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 445 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 446 447 // Floating truncations go through memory. If optimizing, we lie about 448 // this though and handle it in InstructionSelectPreprocess so that 449 // dagcombine2 can hack on these. 450 if (Fast) { 451 setConvertAction(MVT::f80, MVT::f32, Expand); 452 setConvertAction(MVT::f64, MVT::f32, Expand); 453 setConvertAction(MVT::f80, MVT::f64, Expand); 454 } 455 456 if (!UnsafeFPMath) { 457 setOperationAction(ISD::FSIN , MVT::f64 , Expand); 458 setOperationAction(ISD::FCOS , MVT::f64 , Expand); 459 } 460 addLegalFPImmediate(APFloat(+0.0)); // FLD0 461 addLegalFPImmediate(APFloat(+1.0)); // FLD1 462 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS 463 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS 464 addLegalFPImmediate(APFloat(+0.0f)); // FLD0 465 addLegalFPImmediate(APFloat(+1.0f)); // FLD1 466 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS 467 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS 468 } 469 470 // Long double always uses X87. 471 addRegisterClass(MVT::f80, X86::RFP80RegisterClass); 472 setOperationAction(ISD::UNDEF, MVT::f80, Expand); 473 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); 474 { 475 APFloat TmpFlt(+0.0); 476 TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven); 477 addLegalFPImmediate(TmpFlt); // FLD0 478 TmpFlt.changeSign(); 479 addLegalFPImmediate(TmpFlt); // FLD0/FCHS 480 APFloat TmpFlt2(+1.0); 481 TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven); 482 addLegalFPImmediate(TmpFlt2); // FLD1 483 TmpFlt2.changeSign(); 484 addLegalFPImmediate(TmpFlt2); // FLD1/FCHS 485 } 486 487 if (!UnsafeFPMath) { 488 setOperationAction(ISD::FSIN , MVT::f80 , Expand); 489 setOperationAction(ISD::FCOS , MVT::f80 , Expand); 490 } 491 492 // Always use a library call for pow. 493 setOperationAction(ISD::FPOW , MVT::f32 , Expand); 494 setOperationAction(ISD::FPOW , MVT::f64 , Expand); 495 setOperationAction(ISD::FPOW , MVT::f80 , Expand); 496 497 setOperationAction(ISD::FLOG, MVT::f80, Expand); 498 setOperationAction(ISD::FLOG2, MVT::f80, Expand); 499 setOperationAction(ISD::FLOG10, MVT::f80, Expand); 500 setOperationAction(ISD::FEXP, MVT::f80, Expand); 501 setOperationAction(ISD::FEXP2, MVT::f80, Expand); 502 503 // First set operation action for all vector types to expand. Then we 504 // will selectively turn on ones that can be effectively codegen'd. 505 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 506 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { 507 setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand); 508 setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand); 509 setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand); 510 setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand); 511 setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand); 512 setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand); 513 setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand); 514 setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand); 515 setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand); 516 setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand); 517 setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand); 518 setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand); 519 setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand); 520 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand); 521 setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand); 522 setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand); 523 setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand); 524 setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand); 525 setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand); 526 setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand); 527 setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand); 528 setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand); 529 setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand); 530 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand); 531 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand); 532 setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand); 533 setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand); 534 setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand); 535 setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand); 536 setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand); 537 setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand); 538 setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand); 539 setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand); 540 setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand); 541 setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand); 542 setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand); 543 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand); 544 setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand); 545 setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand); 546 setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand); 547 setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand); 548 setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand); 549 setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand); 550 } 551 552 if (Subtarget->hasMMX()) { 553 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass); 554 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass); 555 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass); 556 addRegisterClass(MVT::v2f32, X86::VR64RegisterClass); 557 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass); 558 559 // FIXME: add MMX packed arithmetics 560 561 setOperationAction(ISD::ADD, MVT::v8i8, Legal); 562 setOperationAction(ISD::ADD, MVT::v4i16, Legal); 563 setOperationAction(ISD::ADD, MVT::v2i32, Legal); 564 setOperationAction(ISD::ADD, MVT::v1i64, Legal); 565 566 setOperationAction(ISD::SUB, MVT::v8i8, Legal); 567 setOperationAction(ISD::SUB, MVT::v4i16, Legal); 568 setOperationAction(ISD::SUB, MVT::v2i32, Legal); 569 setOperationAction(ISD::SUB, MVT::v1i64, Legal); 570 571 setOperationAction(ISD::MULHS, MVT::v4i16, Legal); 572 setOperationAction(ISD::MUL, MVT::v4i16, Legal); 573 574 setOperationAction(ISD::AND, MVT::v8i8, Promote); 575 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64); 576 setOperationAction(ISD::AND, MVT::v4i16, Promote); 577 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64); 578 setOperationAction(ISD::AND, MVT::v2i32, Promote); 579 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64); 580 setOperationAction(ISD::AND, MVT::v1i64, Legal); 581 582 setOperationAction(ISD::OR, MVT::v8i8, Promote); 583 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64); 584 setOperationAction(ISD::OR, MVT::v4i16, Promote); 585 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64); 586 setOperationAction(ISD::OR, MVT::v2i32, Promote); 587 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64); 588 setOperationAction(ISD::OR, MVT::v1i64, Legal); 589 590 setOperationAction(ISD::XOR, MVT::v8i8, Promote); 591 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64); 592 setOperationAction(ISD::XOR, MVT::v4i16, Promote); 593 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64); 594 setOperationAction(ISD::XOR, MVT::v2i32, Promote); 595 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64); 596 setOperationAction(ISD::XOR, MVT::v1i64, Legal); 597 598 setOperationAction(ISD::LOAD, MVT::v8i8, Promote); 599 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64); 600 setOperationAction(ISD::LOAD, MVT::v4i16, Promote); 601 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64); 602 setOperationAction(ISD::LOAD, MVT::v2i32, Promote); 603 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64); 604 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 605 AddPromotedToType (ISD::LOAD, MVT::v2f32, MVT::v1i64); 606 setOperationAction(ISD::LOAD, MVT::v1i64, Legal); 607 608 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom); 609 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); 610 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom); 611 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom); 612 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom); 613 614 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); 615 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); 616 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom); 617 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom); 618 619 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f32, Custom); 620 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom); 621 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom); 622 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom); 623 624 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); 625 } 626 627 if (Subtarget->hasSSE1()) { 628 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass); 629 630 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 631 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 632 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 633 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 634 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 635 setOperationAction(ISD::FNEG, MVT::v4f32, Custom); 636 setOperationAction(ISD::LOAD, MVT::v4f32, Legal); 637 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 638 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); 639 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 640 setOperationAction(ISD::SELECT, MVT::v4f32, Custom); 641 setOperationAction(ISD::VSETCC, MVT::v4f32, Custom); 642 } 643 644 if (Subtarget->hasSSE2()) { 645 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass); 646 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass); 647 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass); 648 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass); 649 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass); 650 651 setOperationAction(ISD::ADD, MVT::v16i8, Legal); 652 setOperationAction(ISD::ADD, MVT::v8i16, Legal); 653 setOperationAction(ISD::ADD, MVT::v4i32, Legal); 654 setOperationAction(ISD::ADD, MVT::v2i64, Legal); 655 setOperationAction(ISD::SUB, MVT::v16i8, Legal); 656 setOperationAction(ISD::SUB, MVT::v8i16, Legal); 657 setOperationAction(ISD::SUB, MVT::v4i32, Legal); 658 setOperationAction(ISD::SUB, MVT::v2i64, Legal); 659 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 660 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 661 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 662 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 663 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 664 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 665 setOperationAction(ISD::FNEG, MVT::v2f64, Custom); 666 667 setOperationAction(ISD::VSETCC, MVT::v2f64, Custom); 668 setOperationAction(ISD::VSETCC, MVT::v16i8, Custom); 669 setOperationAction(ISD::VSETCC, MVT::v8i16, Custom); 670 setOperationAction(ISD::VSETCC, MVT::v4i32, Custom); 671 672 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom); 673 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom); 674 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 675 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 676 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 677 678 // Custom lower build_vector, vector_shuffle, and extract_vector_elt. 679 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) { 680 MVT VT = (MVT::SimpleValueType)i; 681 // Do not attempt to custom lower non-power-of-2 vectors 682 if (!isPowerOf2_32(VT.getVectorNumElements())) 683 continue; 684 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 685 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 686 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 687 } 688 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 689 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 690 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); 691 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); 692 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 693 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 694 if (Subtarget->is64Bit()) { 695 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); 696 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); 697 } 698 699 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. 700 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) { 701 setOperationAction(ISD::AND, (MVT::SimpleValueType)VT, Promote); 702 AddPromotedToType (ISD::AND, (MVT::SimpleValueType)VT, MVT::v2i64); 703 setOperationAction(ISD::OR, (MVT::SimpleValueType)VT, Promote); 704 AddPromotedToType (ISD::OR, (MVT::SimpleValueType)VT, MVT::v2i64); 705 setOperationAction(ISD::XOR, (MVT::SimpleValueType)VT, Promote); 706 AddPromotedToType (ISD::XOR, (MVT::SimpleValueType)VT, MVT::v2i64); 707 setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Promote); 708 AddPromotedToType (ISD::LOAD, (MVT::SimpleValueType)VT, MVT::v2i64); 709 setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote); 710 AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64); 711 } 712 713 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 714 715 // Custom lower v2i64 and v2f64 selects. 716 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 717 setOperationAction(ISD::LOAD, MVT::v2i64, Legal); 718 setOperationAction(ISD::SELECT, MVT::v2f64, Custom); 719 setOperationAction(ISD::SELECT, MVT::v2i64, Custom); 720 721 } 722 723 if (Subtarget->hasSSE41()) { 724 // FIXME: Do we need to handle scalar-to-vector here? 725 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 726 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 727 728 // i8 and i16 vectors are custom , because the source register and source 729 // source memory operand types are not the same width. f32 vectors are 730 // custom since the immediate controlling the insert encodes additional 731 // information. 732 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 733 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 734 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal); 735 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 736 737 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom); 738 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom); 739 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 740 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 741 742 if (Subtarget->is64Bit()) { 743 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); 744 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 745 } 746 } 747 748 if (Subtarget->hasSSE42()) { 749 setOperationAction(ISD::VSETCC, MVT::v2i64, Custom); 750 } 751 752 // We want to custom lower some of our intrinsics. 753 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 754 755 // We have target-specific dag combine patterns for the following nodes: 756 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 757 setTargetDAGCombine(ISD::BUILD_VECTOR); 758 setTargetDAGCombine(ISD::SELECT); 759 setTargetDAGCombine(ISD::STORE); 760 761 computeRegisterProperties(); 762 763 // FIXME: These should be based on subtarget info. Plus, the values should 764 // be smaller when we are in optimizing for size mode. 765 maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores 766 maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores 767 maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores 768 allowUnalignedMemoryAccesses = true; // x86 supports it! 769 setPrefLoopAlignment(16); 770} 771 772 773MVT X86TargetLowering::getSetCCResultType(const SDValue &) const { 774 return MVT::i8; 775} 776 777 778/// getMaxByValAlign - Helper for getByValTypeAlignment to determine 779/// the desired ByVal argument alignment. 780static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) { 781 if (MaxAlign == 16) 782 return; 783 if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) { 784 if (VTy->getBitWidth() == 128) 785 MaxAlign = 16; 786 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 787 unsigned EltAlign = 0; 788 getMaxByValAlign(ATy->getElementType(), EltAlign); 789 if (EltAlign > MaxAlign) 790 MaxAlign = EltAlign; 791 } else if (const StructType *STy = dyn_cast<StructType>(Ty)) { 792 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 793 unsigned EltAlign = 0; 794 getMaxByValAlign(STy->getElementType(i), EltAlign); 795 if (EltAlign > MaxAlign) 796 MaxAlign = EltAlign; 797 if (MaxAlign == 16) 798 break; 799 } 800 } 801 return; 802} 803 804/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 805/// function arguments in the caller parameter area. For X86, aggregates 806/// that contain SSE vectors are placed at 16-byte boundaries while the rest 807/// are at 4-byte boundaries. 808unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const { 809 if (Subtarget->is64Bit()) { 810 // Max of 8 and alignment of type. 811 unsigned TyAlign = TD->getABITypeAlignment(Ty); 812 if (TyAlign > 8) 813 return TyAlign; 814 return 8; 815 } 816 817 unsigned Align = 4; 818 if (Subtarget->hasSSE1()) 819 getMaxByValAlign(Ty, Align); 820 return Align; 821} 822 823/// getOptimalMemOpType - Returns the target specific optimal type for load 824/// and store operations as a result of memset, memcpy, and memmove 825/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for 826/// determining it. 827MVT 828X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align, 829 bool isSrcConst, bool isSrcStr) const { 830 if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16) 831 return MVT::v4i32; 832 if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16) 833 return MVT::v4f32; 834 if (Subtarget->is64Bit() && Size >= 8) 835 return MVT::i64; 836 return MVT::i32; 837} 838 839 840/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC 841/// jumptable. 842SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table, 843 SelectionDAG &DAG) const { 844 if (usesGlobalOffsetTable()) 845 return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy()); 846 if (!Subtarget->isPICStyleRIPRel()) 847 return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()); 848 return Table; 849} 850 851//===----------------------------------------------------------------------===// 852// Return Value Calling Convention Implementation 853//===----------------------------------------------------------------------===// 854 855#include "X86GenCallingConv.inc" 856 857/// LowerRET - Lower an ISD::RET node. 858SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) { 859 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args"); 860 861 SmallVector<CCValAssign, 16> RVLocs; 862 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv(); 863 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 864 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs); 865 CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86); 866 867 // If this is the first return lowered for this function, add the regs to the 868 // liveout set for the function. 869 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 870 for (unsigned i = 0; i != RVLocs.size(); ++i) 871 if (RVLocs[i].isRegLoc()) 872 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 873 } 874 SDValue Chain = Op.getOperand(0); 875 876 // Handle tail call return. 877 Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL); 878 if (Chain.getOpcode() == X86ISD::TAILCALL) { 879 SDValue TailCall = Chain; 880 SDValue TargetAddress = TailCall.getOperand(1); 881 SDValue StackAdjustment = TailCall.getOperand(2); 882 assert(((TargetAddress.getOpcode() == ISD::Register && 883 (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX || 884 cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) || 885 TargetAddress.getOpcode() == ISD::TargetExternalSymbol || 886 TargetAddress.getOpcode() == ISD::TargetGlobalAddress) && 887 "Expecting an global address, external symbol, or register"); 888 assert(StackAdjustment.getOpcode() == ISD::Constant && 889 "Expecting a const value"); 890 891 SmallVector<SDValue,8> Operands; 892 Operands.push_back(Chain.getOperand(0)); 893 Operands.push_back(TargetAddress); 894 Operands.push_back(StackAdjustment); 895 // Copy registers used by the call. Last operand is a flag so it is not 896 // copied. 897 for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) { 898 Operands.push_back(Chain.getOperand(i)); 899 } 900 return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0], 901 Operands.size()); 902 } 903 904 // Regular return. 905 SDValue Flag; 906 907 SmallVector<SDValue, 6> RetOps; 908 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 909 // Operand #1 = Bytes To Pop 910 RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16)); 911 912 // Copy the result values into the output registers. 913 for (unsigned i = 0; i != RVLocs.size(); ++i) { 914 CCValAssign &VA = RVLocs[i]; 915 assert(VA.isRegLoc() && "Can only return in registers!"); 916 SDValue ValToCopy = Op.getOperand(i*2+1); 917 918 // Returns in ST0/ST1 are handled specially: these are pushed as operands to 919 // the RET instruction and handled by the FP Stackifier. 920 if (RVLocs[i].getLocReg() == X86::ST0 || 921 RVLocs[i].getLocReg() == X86::ST1) { 922 // If this is a copy from an xmm register to ST(0), use an FPExtend to 923 // change the value to the FP stack register class. 924 if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) 925 ValToCopy = DAG.getNode(ISD::FP_EXTEND, MVT::f80, ValToCopy); 926 RetOps.push_back(ValToCopy); 927 // Don't emit a copytoreg. 928 continue; 929 } 930 931 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), ValToCopy, Flag); 932 Flag = Chain.getValue(1); 933 } 934 935 // The x86-64 ABI for returning structs by value requires that we copy 936 // the sret argument into %rax for the return. We saved the argument into 937 // a virtual register in the entry block, so now we copy the value out 938 // and into %rax. 939 if (Subtarget->is64Bit() && 940 DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { 941 MachineFunction &MF = DAG.getMachineFunction(); 942 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 943 unsigned Reg = FuncInfo->getSRetReturnReg(); 944 if (!Reg) { 945 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64)); 946 FuncInfo->setSRetReturnReg(Reg); 947 } 948 SDValue Val = DAG.getCopyFromReg(Chain, Reg, getPointerTy()); 949 950 Chain = DAG.getCopyToReg(Chain, X86::RAX, Val, Flag); 951 Flag = Chain.getValue(1); 952 } 953 954 RetOps[0] = Chain; // Update chain. 955 956 // Add the flag if we have it. 957 if (Flag.getNode()) 958 RetOps.push_back(Flag); 959 960 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, &RetOps[0], RetOps.size()); 961} 962 963 964/// LowerCallResult - Lower the result values of an ISD::CALL into the 965/// appropriate copies out of appropriate physical registers. This assumes that 966/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call 967/// being lowered. The returns a SDNode with the same number of values as the 968/// ISD::CALL. 969SDNode *X86TargetLowering:: 970LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall, 971 unsigned CallingConv, SelectionDAG &DAG) { 972 973 // Assign locations to each value returned by this call. 974 SmallVector<CCValAssign, 16> RVLocs; 975 bool isVarArg = TheCall->isVarArg(); 976 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs); 977 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86); 978 979 SmallVector<SDValue, 8> ResultVals; 980 981 // Copy all of the result registers out of their specified physreg. 982 for (unsigned i = 0; i != RVLocs.size(); ++i) { 983 MVT CopyVT = RVLocs[i].getValVT(); 984 985 // If this is a call to a function that returns an fp value on the floating 986 // point stack, but where we prefer to use the value in xmm registers, copy 987 // it out as F80 and use a truncate to move it from fp stack reg to xmm reg. 988 if ((RVLocs[i].getLocReg() == X86::ST0 || 989 RVLocs[i].getLocReg() == X86::ST1) && 990 isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) { 991 CopyVT = MVT::f80; 992 } 993 994 Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(), 995 CopyVT, InFlag).getValue(1); 996 SDValue Val = Chain.getValue(0); 997 InFlag = Chain.getValue(2); 998 999 if (CopyVT != RVLocs[i].getValVT()) { 1000 // Round the F80 the right size, which also moves to the appropriate xmm 1001 // register. 1002 Val = DAG.getNode(ISD::FP_ROUND, RVLocs[i].getValVT(), Val, 1003 // This truncation won't change the value. 1004 DAG.getIntPtrConstant(1)); 1005 } 1006 1007 ResultVals.push_back(Val); 1008 } 1009 1010 // Merge everything together with a MERGE_VALUES node. 1011 ResultVals.push_back(Chain); 1012 return DAG.getMergeValues(TheCall->getVTList(), &ResultVals[0], 1013 ResultVals.size()).getNode(); 1014} 1015 1016 1017//===----------------------------------------------------------------------===// 1018// C & StdCall & Fast Calling Convention implementation 1019//===----------------------------------------------------------------------===// 1020// StdCall calling convention seems to be standard for many Windows' API 1021// routines and around. It differs from C calling convention just a little: 1022// callee should clean up the stack, not caller. Symbols should be also 1023// decorated in some fancy way :) It doesn't support any vector arguments. 1024// For info on fast calling convention see Fast Calling Convention (tail call) 1025// implementation LowerX86_32FastCCCallTo. 1026 1027/// AddLiveIn - This helper function adds the specified physical register to the 1028/// MachineFunction as a live in value. It also creates a corresponding virtual 1029/// register for it. 1030static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg, 1031 const TargetRegisterClass *RC) { 1032 assert(RC->contains(PReg) && "Not the correct regclass!"); 1033 unsigned VReg = MF.getRegInfo().createVirtualRegister(RC); 1034 MF.getRegInfo().addLiveIn(PReg, VReg); 1035 return VReg; 1036} 1037 1038/// CallIsStructReturn - Determines whether a CALL node uses struct return 1039/// semantics. 1040static bool CallIsStructReturn(CallSDNode *TheCall) { 1041 unsigned NumOps = TheCall->getNumArgs(); 1042 if (!NumOps) 1043 return false; 1044 1045 return TheCall->getArgFlags(0).isSRet(); 1046} 1047 1048/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct 1049/// return semantics. 1050static bool ArgsAreStructReturn(SDValue Op) { 1051 unsigned NumArgs = Op.getNode()->getNumValues() - 1; 1052 if (!NumArgs) 1053 return false; 1054 1055 return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet(); 1056} 1057 1058/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires 1059/// the callee to pop its own arguments. Callee pop is necessary to support tail 1060/// calls. 1061bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) { 1062 if (IsVarArg) 1063 return false; 1064 1065 switch (CallingConv) { 1066 default: 1067 return false; 1068 case CallingConv::X86_StdCall: 1069 return !Subtarget->is64Bit(); 1070 case CallingConv::X86_FastCall: 1071 return !Subtarget->is64Bit(); 1072 case CallingConv::Fast: 1073 return PerformTailCallOpt; 1074 } 1075} 1076 1077/// CCAssignFnForNode - Selects the correct CCAssignFn for a the 1078/// given CallingConvention value. 1079CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const { 1080 if (Subtarget->is64Bit()) { 1081 if (Subtarget->isTargetWin64()) 1082 return CC_X86_Win64_C; 1083 else if (CC == CallingConv::Fast && PerformTailCallOpt) 1084 return CC_X86_64_TailCall; 1085 else 1086 return CC_X86_64_C; 1087 } 1088 1089 if (CC == CallingConv::X86_FastCall) 1090 return CC_X86_32_FastCall; 1091 else if (CC == CallingConv::Fast) 1092 return CC_X86_32_FastCC; 1093 else 1094 return CC_X86_32_C; 1095} 1096 1097/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to 1098/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node. 1099NameDecorationStyle 1100X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) { 1101 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1102 if (CC == CallingConv::X86_FastCall) 1103 return FastCall; 1104 else if (CC == CallingConv::X86_StdCall) 1105 return StdCall; 1106 return None; 1107} 1108 1109 1110/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer 1111/// in a register before calling. 1112bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) { 1113 return !IsTailCall && !Is64Bit && 1114 getTargetMachine().getRelocationModel() == Reloc::PIC_ && 1115 Subtarget->isPICStyleGOT(); 1116} 1117 1118/// CallRequiresFnAddressInReg - Check whether the call requires the function 1119/// address to be loaded in a register. 1120bool 1121X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) { 1122 return !Is64Bit && IsTailCall && 1123 getTargetMachine().getRelocationModel() == Reloc::PIC_ && 1124 Subtarget->isPICStyleGOT(); 1125} 1126 1127/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 1128/// by "Src" to address "Dst" with size and alignment information specified by 1129/// the specific parameter attribute. The copy will be passed as a byval 1130/// function parameter. 1131static SDValue 1132CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 1133 ISD::ArgFlagsTy Flags, SelectionDAG &DAG) { 1134 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); 1135 return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(), 1136 /*AlwaysInline=*/true, NULL, 0, NULL, 0); 1137} 1138 1139SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG, 1140 const CCValAssign &VA, 1141 MachineFrameInfo *MFI, 1142 unsigned CC, 1143 SDValue Root, unsigned i) { 1144 // Create the nodes corresponding to a load from this parameter slot. 1145 ISD::ArgFlagsTy Flags = 1146 cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags(); 1147 bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt; 1148 bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); 1149 1150 // FIXME: For now, all byval parameter objects are marked mutable. This can be 1151 // changed with more analysis. 1152 // In case of tail call optimization mark all arguments mutable. Since they 1153 // could be overwritten by lowering of arguments in case of a tail call. 1154 int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8, 1155 VA.getLocMemOffset(), isImmutable); 1156 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); 1157 if (Flags.isByVal()) 1158 return FIN; 1159 return DAG.getLoad(VA.getValVT(), Root, FIN, 1160 PseudoSourceValue::getFixedStack(FI), 0); 1161} 1162 1163SDValue 1164X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) { 1165 MachineFunction &MF = DAG.getMachineFunction(); 1166 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 1167 1168 const Function* Fn = MF.getFunction(); 1169 if (Fn->hasExternalLinkage() && 1170 Subtarget->isTargetCygMing() && 1171 Fn->getName() == "main") 1172 FuncInfo->setForceFramePointer(true); 1173 1174 // Decorate the function name. 1175 FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op)); 1176 1177 MachineFrameInfo *MFI = MF.getFrameInfo(); 1178 SDValue Root = Op.getOperand(0); 1179 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0; 1180 unsigned CC = MF.getFunction()->getCallingConv(); 1181 bool Is64Bit = Subtarget->is64Bit(); 1182 bool IsWin64 = Subtarget->isTargetWin64(); 1183 1184 assert(!(isVarArg && CC == CallingConv::Fast) && 1185 "Var args not supported with calling convention fastcc"); 1186 1187 // Assign locations to all of the incoming arguments. 1188 SmallVector<CCValAssign, 16> ArgLocs; 1189 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); 1190 CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC)); 1191 1192 SmallVector<SDValue, 8> ArgValues; 1193 unsigned LastVal = ~0U; 1194 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1195 CCValAssign &VA = ArgLocs[i]; 1196 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later 1197 // places. 1198 assert(VA.getValNo() != LastVal && 1199 "Don't support value assigned to multiple locs yet"); 1200 LastVal = VA.getValNo(); 1201 1202 if (VA.isRegLoc()) { 1203 MVT RegVT = VA.getLocVT(); 1204 TargetRegisterClass *RC; 1205 if (RegVT == MVT::i32) 1206 RC = X86::GR32RegisterClass; 1207 else if (Is64Bit && RegVT == MVT::i64) 1208 RC = X86::GR64RegisterClass; 1209 else if (RegVT == MVT::f32) 1210 RC = X86::FR32RegisterClass; 1211 else if (RegVT == MVT::f64) 1212 RC = X86::FR64RegisterClass; 1213 else if (RegVT.isVector() && RegVT.getSizeInBits() == 128) 1214 RC = X86::VR128RegisterClass; 1215 else if (RegVT.isVector()) { 1216 assert(RegVT.getSizeInBits() == 64); 1217 if (!Is64Bit) 1218 RC = X86::VR64RegisterClass; // MMX values are passed in MMXs. 1219 else { 1220 // Darwin calling convention passes MMX values in either GPRs or 1221 // XMMs in x86-64. Other targets pass them in memory. 1222 if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) { 1223 RC = X86::VR128RegisterClass; // MMX values are passed in XMMs. 1224 RegVT = MVT::v2i64; 1225 } else { 1226 RC = X86::GR64RegisterClass; // v1i64 values are passed in GPRs. 1227 RegVT = MVT::i64; 1228 } 1229 } 1230 } else { 1231 assert(0 && "Unknown argument type!"); 1232 } 1233 1234 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC); 1235 SDValue ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT); 1236 1237 // If this is an 8 or 16-bit value, it is really passed promoted to 32 1238 // bits. Insert an assert[sz]ext to capture this, then truncate to the 1239 // right size. 1240 if (VA.getLocInfo() == CCValAssign::SExt) 1241 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue, 1242 DAG.getValueType(VA.getValVT())); 1243 else if (VA.getLocInfo() == CCValAssign::ZExt) 1244 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue, 1245 DAG.getValueType(VA.getValVT())); 1246 1247 if (VA.getLocInfo() != CCValAssign::Full) 1248 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue); 1249 1250 // Handle MMX values passed in GPRs. 1251 if (Is64Bit && RegVT != VA.getLocVT()) { 1252 if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass) 1253 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue); 1254 else if (RC == X86::VR128RegisterClass) { 1255 ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i64, ArgValue, 1256 DAG.getConstant(0, MVT::i64)); 1257 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue); 1258 } 1259 } 1260 1261 ArgValues.push_back(ArgValue); 1262 } else { 1263 assert(VA.isMemLoc()); 1264 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i)); 1265 } 1266 } 1267 1268 // The x86-64 ABI for returning structs by value requires that we copy 1269 // the sret argument into %rax for the return. Save the argument into 1270 // a virtual register so that we can access it from the return points. 1271 if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { 1272 MachineFunction &MF = DAG.getMachineFunction(); 1273 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 1274 unsigned Reg = FuncInfo->getSRetReturnReg(); 1275 if (!Reg) { 1276 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64)); 1277 FuncInfo->setSRetReturnReg(Reg); 1278 } 1279 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), Reg, ArgValues[0]); 1280 Root = DAG.getNode(ISD::TokenFactor, MVT::Other, Copy, Root); 1281 } 1282 1283 unsigned StackSize = CCInfo.getNextStackOffset(); 1284 // align stack specially for tail calls 1285 if (PerformTailCallOpt && CC == CallingConv::Fast) 1286 StackSize = GetAlignedArgumentStackSize(StackSize, DAG); 1287 1288 // If the function takes variable number of arguments, make a frame index for 1289 // the start of the first vararg value... for expansion of llvm.va_start. 1290 if (isVarArg) { 1291 if (Is64Bit || CC != CallingConv::X86_FastCall) { 1292 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize); 1293 } 1294 if (Is64Bit) { 1295 unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0; 1296 1297 // FIXME: We should really autogenerate these arrays 1298 static const unsigned GPR64ArgRegsWin64[] = { 1299 X86::RCX, X86::RDX, X86::R8, X86::R9 1300 }; 1301 static const unsigned XMMArgRegsWin64[] = { 1302 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3 1303 }; 1304 static const unsigned GPR64ArgRegs64Bit[] = { 1305 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 1306 }; 1307 static const unsigned XMMArgRegs64Bit[] = { 1308 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 1309 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 1310 }; 1311 const unsigned *GPR64ArgRegs, *XMMArgRegs; 1312 1313 if (IsWin64) { 1314 TotalNumIntRegs = 4; TotalNumXMMRegs = 4; 1315 GPR64ArgRegs = GPR64ArgRegsWin64; 1316 XMMArgRegs = XMMArgRegsWin64; 1317 } else { 1318 TotalNumIntRegs = 6; TotalNumXMMRegs = 8; 1319 GPR64ArgRegs = GPR64ArgRegs64Bit; 1320 XMMArgRegs = XMMArgRegs64Bit; 1321 } 1322 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 1323 TotalNumIntRegs); 1324 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 1325 TotalNumXMMRegs); 1326 1327 // For X86-64, if there are vararg parameters that are passed via 1328 // registers, then we must store them to their spots on the stack so they 1329 // may be loaded by deferencing the result of va_next. 1330 VarArgsGPOffset = NumIntRegs * 8; 1331 VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16; 1332 RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 + 1333 TotalNumXMMRegs * 16, 16); 1334 1335 // Store the integer parameter registers. 1336 SmallVector<SDValue, 8> MemOps; 1337 SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); 1338 SDValue FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN, 1339 DAG.getIntPtrConstant(VarArgsGPOffset)); 1340 for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) { 1341 unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs], 1342 X86::GR64RegisterClass); 1343 SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::i64); 1344 SDValue Store = 1345 DAG.getStore(Val.getValue(1), Val, FIN, 1346 PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0); 1347 MemOps.push_back(Store); 1348 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, 1349 DAG.getIntPtrConstant(8)); 1350 } 1351 1352 // Now store the XMM (fp + vector) parameter registers. 1353 FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN, 1354 DAG.getIntPtrConstant(VarArgsFPOffset)); 1355 for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) { 1356 unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], 1357 X86::VR128RegisterClass); 1358 SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32); 1359 SDValue Store = 1360 DAG.getStore(Val.getValue(1), Val, FIN, 1361 PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0); 1362 MemOps.push_back(Store); 1363 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, 1364 DAG.getIntPtrConstant(16)); 1365 } 1366 if (!MemOps.empty()) 1367 Root = DAG.getNode(ISD::TokenFactor, MVT::Other, 1368 &MemOps[0], MemOps.size()); 1369 } 1370 } 1371 1372 ArgValues.push_back(Root); 1373 1374 // Some CCs need callee pop. 1375 if (IsCalleePop(isVarArg, CC)) { 1376 BytesToPopOnReturn = StackSize; // Callee pops everything. 1377 BytesCallerReserves = 0; 1378 } else { 1379 BytesToPopOnReturn = 0; // Callee pops nothing. 1380 // If this is an sret function, the return should pop the hidden pointer. 1381 if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op)) 1382 BytesToPopOnReturn = 4; 1383 BytesCallerReserves = StackSize; 1384 } 1385 1386 if (!Is64Bit) { 1387 RegSaveFrameIndex = 0xAAAAAAA; // RegSaveFrameIndex is X86-64 only. 1388 if (CC == CallingConv::X86_FastCall) 1389 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs. 1390 } 1391 1392 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn); 1393 1394 // Return the new list of results. 1395 return DAG.getMergeValues(Op.getNode()->getVTList(), &ArgValues[0], 1396 ArgValues.size()).getValue(Op.getResNo()); 1397} 1398 1399SDValue 1400X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG, 1401 const SDValue &StackPtr, 1402 const CCValAssign &VA, 1403 SDValue Chain, 1404 SDValue Arg, ISD::ArgFlagsTy Flags) { 1405 unsigned LocMemOffset = VA.getLocMemOffset(); 1406 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 1407 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); 1408 if (Flags.isByVal()) { 1409 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG); 1410 } 1411 return DAG.getStore(Chain, Arg, PtrOff, 1412 PseudoSourceValue::getStack(), LocMemOffset); 1413} 1414 1415/// EmitTailCallLoadRetAddr - Emit a load of return adress if tail call 1416/// optimization is performed and it is required. 1417SDValue 1418X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG, 1419 SDValue &OutRetAddr, 1420 SDValue Chain, 1421 bool IsTailCall, 1422 bool Is64Bit, 1423 int FPDiff) { 1424 if (!IsTailCall || FPDiff==0) return Chain; 1425 1426 // Adjust the Return address stack slot. 1427 MVT VT = getPointerTy(); 1428 OutRetAddr = getReturnAddressFrameIndex(DAG); 1429 // Load the "old" Return address. 1430 OutRetAddr = DAG.getLoad(VT, Chain,OutRetAddr, NULL, 0); 1431 return SDValue(OutRetAddr.getNode(), 1); 1432} 1433 1434/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call 1435/// optimization is performed and it is required (FPDiff!=0). 1436static SDValue 1437EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF, 1438 SDValue Chain, SDValue RetAddrFrIdx, 1439 bool Is64Bit, int FPDiff) { 1440 // Store the return address to the appropriate stack slot. 1441 if (!FPDiff) return Chain; 1442 // Calculate the new stack slot for the return address. 1443 int SlotSize = Is64Bit ? 8 : 4; 1444 int NewReturnAddrFI = 1445 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize); 1446 MVT VT = Is64Bit ? MVT::i64 : MVT::i32; 1447 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT); 1448 Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx, 1449 PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0); 1450 return Chain; 1451} 1452 1453SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) { 1454 MachineFunction &MF = DAG.getMachineFunction(); 1455 CallSDNode *TheCall = cast<CallSDNode>(Op.getNode()); 1456 SDValue Chain = TheCall->getChain(); 1457 unsigned CC = TheCall->getCallingConv(); 1458 bool isVarArg = TheCall->isVarArg(); 1459 bool IsTailCall = TheCall->isTailCall() && 1460 CC == CallingConv::Fast && PerformTailCallOpt; 1461 SDValue Callee = TheCall->getCallee(); 1462 bool Is64Bit = Subtarget->is64Bit(); 1463 bool IsStructRet = CallIsStructReturn(TheCall); 1464 1465 assert(!(isVarArg && CC == CallingConv::Fast) && 1466 "Var args not supported with calling convention fastcc"); 1467 1468 // Analyze operands of the call, assigning locations to each operand. 1469 SmallVector<CCValAssign, 16> ArgLocs; 1470 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); 1471 CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC)); 1472 1473 // Get a count of how many bytes are to be pushed on the stack. 1474 unsigned NumBytes = CCInfo.getNextStackOffset(); 1475 if (PerformTailCallOpt && CC == CallingConv::Fast) 1476 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); 1477 1478 int FPDiff = 0; 1479 if (IsTailCall) { 1480 // Lower arguments at fp - stackoffset + fpdiff. 1481 unsigned NumBytesCallerPushed = 1482 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn(); 1483 FPDiff = NumBytesCallerPushed - NumBytes; 1484 1485 // Set the delta of movement of the returnaddr stackslot. 1486 // But only set if delta is greater than previous delta. 1487 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta())) 1488 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff); 1489 } 1490 1491 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes)); 1492 1493 SDValue RetAddrFrIdx; 1494 // Load return adress for tail calls. 1495 Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit, 1496 FPDiff); 1497 1498 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 1499 SmallVector<SDValue, 8> MemOpChains; 1500 SDValue StackPtr; 1501 1502 // Walk the register/memloc assignments, inserting copies/loads. In the case 1503 // of tail call optimization arguments are handle later. 1504 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1505 CCValAssign &VA = ArgLocs[i]; 1506 SDValue Arg = TheCall->getArg(i); 1507 ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i); 1508 bool isByVal = Flags.isByVal(); 1509 1510 // Promote the value if needed. 1511 switch (VA.getLocInfo()) { 1512 default: assert(0 && "Unknown loc info!"); 1513 case CCValAssign::Full: break; 1514 case CCValAssign::SExt: 1515 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg); 1516 break; 1517 case CCValAssign::ZExt: 1518 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg); 1519 break; 1520 case CCValAssign::AExt: 1521 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg); 1522 break; 1523 } 1524 1525 if (VA.isRegLoc()) { 1526 if (Is64Bit) { 1527 MVT RegVT = VA.getLocVT(); 1528 if (RegVT.isVector() && RegVT.getSizeInBits() == 64) 1529 switch (VA.getLocReg()) { 1530 default: 1531 break; 1532 case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX: 1533 case X86::R8: { 1534 // Special case: passing MMX values in GPR registers. 1535 Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg); 1536 break; 1537 } 1538 case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3: 1539 case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: { 1540 // Special case: passing MMX values in XMM registers. 1541 Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg); 1542 Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Arg); 1543 Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64, 1544 DAG.getNode(ISD::UNDEF, MVT::v2i64), Arg, 1545 getMOVLMask(2, DAG)); 1546 break; 1547 } 1548 } 1549 } 1550 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 1551 } else { 1552 if (!IsTailCall || (IsTailCall && isByVal)) { 1553 assert(VA.isMemLoc()); 1554 if (StackPtr.getNode() == 0) 1555 StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy()); 1556 1557 MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA, 1558 Chain, Arg, Flags)); 1559 } 1560 } 1561 } 1562 1563 if (!MemOpChains.empty()) 1564 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, 1565 &MemOpChains[0], MemOpChains.size()); 1566 1567 // Build a sequence of copy-to-reg nodes chained together with token chain 1568 // and flag operands which copy the outgoing args into registers. 1569 SDValue InFlag; 1570 // Tail call byval lowering might overwrite argument registers so in case of 1571 // tail call optimization the copies to registers are lowered later. 1572 if (!IsTailCall) 1573 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1574 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, 1575 InFlag); 1576 InFlag = Chain.getValue(1); 1577 } 1578 1579 // ELF / PIC requires GOT in the EBX register before function calls via PLT 1580 // GOT pointer. 1581 if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) { 1582 Chain = DAG.getCopyToReg(Chain, X86::EBX, 1583 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), 1584 InFlag); 1585 InFlag = Chain.getValue(1); 1586 } 1587 // If we are tail calling and generating PIC/GOT style code load the address 1588 // of the callee into ecx. The value in ecx is used as target of the tail 1589 // jump. This is done to circumvent the ebx/callee-saved problem for tail 1590 // calls on PIC/GOT architectures. Normally we would just put the address of 1591 // GOT into ebx and then call target@PLT. But for tail callss ebx would be 1592 // restored (since ebx is callee saved) before jumping to the target@PLT. 1593 if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) { 1594 // Note: The actual moving to ecx is done further down. 1595 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 1596 if (G && !G->getGlobal()->hasHiddenVisibility() && 1597 !G->getGlobal()->hasProtectedVisibility()) 1598 Callee = LowerGlobalAddress(Callee, DAG); 1599 else if (isa<ExternalSymbolSDNode>(Callee)) 1600 Callee = LowerExternalSymbol(Callee,DAG); 1601 } 1602 1603 if (Is64Bit && isVarArg) { 1604 // From AMD64 ABI document: 1605 // For calls that may call functions that use varargs or stdargs 1606 // (prototype-less calls or calls to functions containing ellipsis (...) in 1607 // the declaration) %al is used as hidden argument to specify the number 1608 // of SSE registers used. The contents of %al do not need to match exactly 1609 // the number of registers, but must be an ubound on the number of SSE 1610 // registers used and is in the range 0 - 8 inclusive. 1611 1612 // FIXME: Verify this on Win64 1613 // Count the number of XMM registers allocated. 1614 static const unsigned XMMArgRegs[] = { 1615 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 1616 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 1617 }; 1618 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); 1619 1620 Chain = DAG.getCopyToReg(Chain, X86::AL, 1621 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag); 1622 InFlag = Chain.getValue(1); 1623 } 1624 1625 1626 // For tail calls lower the arguments to the 'real' stack slot. 1627 if (IsTailCall) { 1628 SmallVector<SDValue, 8> MemOpChains2; 1629 SDValue FIN; 1630 int FI = 0; 1631 // Do not flag preceeding copytoreg stuff together with the following stuff. 1632 InFlag = SDValue(); 1633 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1634 CCValAssign &VA = ArgLocs[i]; 1635 if (!VA.isRegLoc()) { 1636 assert(VA.isMemLoc()); 1637 SDValue Arg = TheCall->getArg(i); 1638 ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i); 1639 // Create frame index. 1640 int32_t Offset = VA.getLocMemOffset()+FPDiff; 1641 uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; 1642 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset); 1643 FIN = DAG.getFrameIndex(FI, getPointerTy()); 1644 1645 if (Flags.isByVal()) { 1646 // Copy relative to framepointer. 1647 SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset()); 1648 if (StackPtr.getNode() == 0) 1649 StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy()); 1650 Source = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, Source); 1651 1652 MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain, 1653 Flags, DAG)); 1654 } else { 1655 // Store relative to framepointer. 1656 MemOpChains2.push_back( 1657 DAG.getStore(Chain, Arg, FIN, 1658 PseudoSourceValue::getFixedStack(FI), 0)); 1659 } 1660 } 1661 } 1662 1663 if (!MemOpChains2.empty()) 1664 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, 1665 &MemOpChains2[0], MemOpChains2.size()); 1666 1667 // Copy arguments to their registers. 1668 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1669 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, 1670 InFlag); 1671 InFlag = Chain.getValue(1); 1672 } 1673 InFlag =SDValue(); 1674 1675 // Store the return address to the appropriate stack slot. 1676 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit, 1677 FPDiff); 1678 } 1679 1680 // If the callee is a GlobalAddress node (quite common, every direct call is) 1681 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1682 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1683 // We should use extra load for direct calls to dllimported functions in 1684 // non-JIT mode. 1685 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(), 1686 getTargetMachine(), true)) 1687 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); 1688 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1689 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); 1690 } else if (IsTailCall) { 1691 unsigned Opc = Is64Bit ? X86::R9 : X86::EAX; 1692 1693 Chain = DAG.getCopyToReg(Chain, 1694 DAG.getRegister(Opc, getPointerTy()), 1695 Callee,InFlag); 1696 Callee = DAG.getRegister(Opc, getPointerTy()); 1697 // Add register as live out. 1698 DAG.getMachineFunction().getRegInfo().addLiveOut(Opc); 1699 } 1700 1701 // Returns a chain & a flag for retval copy to use. 1702 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); 1703 SmallVector<SDValue, 8> Ops; 1704 1705 if (IsTailCall) { 1706 Ops.push_back(Chain); 1707 Ops.push_back(DAG.getIntPtrConstant(NumBytes)); 1708 Ops.push_back(DAG.getIntPtrConstant(0)); 1709 if (InFlag.getNode()) 1710 Ops.push_back(InFlag); 1711 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size()); 1712 InFlag = Chain.getValue(1); 1713 1714 // Returns a chain & a flag for retval copy to use. 1715 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); 1716 Ops.clear(); 1717 } 1718 1719 Ops.push_back(Chain); 1720 Ops.push_back(Callee); 1721 1722 if (IsTailCall) 1723 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32)); 1724 1725 // Add argument registers to the end of the list so that they are known live 1726 // into the call. 1727 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1728 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1729 RegsToPass[i].second.getValueType())); 1730 1731 // Add an implicit use GOT pointer in EBX. 1732 if (!IsTailCall && !Is64Bit && 1733 getTargetMachine().getRelocationModel() == Reloc::PIC_ && 1734 Subtarget->isPICStyleGOT()) 1735 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy())); 1736 1737 // Add an implicit use of AL for x86 vararg functions. 1738 if (Is64Bit && isVarArg) 1739 Ops.push_back(DAG.getRegister(X86::AL, MVT::i8)); 1740 1741 if (InFlag.getNode()) 1742 Ops.push_back(InFlag); 1743 1744 if (IsTailCall) { 1745 assert(InFlag.getNode() && 1746 "Flag must be set. Depend on flag being set in LowerRET"); 1747 Chain = DAG.getNode(X86ISD::TAILCALL, 1748 TheCall->getVTList(), &Ops[0], Ops.size()); 1749 1750 return SDValue(Chain.getNode(), Op.getResNo()); 1751 } 1752 1753 Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size()); 1754 InFlag = Chain.getValue(1); 1755 1756 // Create the CALLSEQ_END node. 1757 unsigned NumBytesForCalleeToPush; 1758 if (IsCalleePop(isVarArg, CC)) 1759 NumBytesForCalleeToPush = NumBytes; // Callee pops everything 1760 else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet) 1761 // If this is is a call to a struct-return function, the callee 1762 // pops the hidden struct pointer, so we have to push it back. 1763 // This is common for Darwin/X86, Linux & Mingw32 targets. 1764 NumBytesForCalleeToPush = 4; 1765 else 1766 NumBytesForCalleeToPush = 0; // Callee pops nothing. 1767 1768 // Returns a flag for retval copy to use. 1769 Chain = DAG.getCALLSEQ_END(Chain, 1770 DAG.getIntPtrConstant(NumBytes), 1771 DAG.getIntPtrConstant(NumBytesForCalleeToPush), 1772 InFlag); 1773 InFlag = Chain.getValue(1); 1774 1775 // Handle result values, copying them out of physregs into vregs that we 1776 // return. 1777 return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG), 1778 Op.getResNo()); 1779} 1780 1781 1782//===----------------------------------------------------------------------===// 1783// Fast Calling Convention (tail call) implementation 1784//===----------------------------------------------------------------------===// 1785 1786// Like std call, callee cleans arguments, convention except that ECX is 1787// reserved for storing the tail called function address. Only 2 registers are 1788// free for argument passing (inreg). Tail call optimization is performed 1789// provided: 1790// * tailcallopt is enabled 1791// * caller/callee are fastcc 1792// On X86_64 architecture with GOT-style position independent code only local 1793// (within module) calls are supported at the moment. 1794// To keep the stack aligned according to platform abi the function 1795// GetAlignedArgumentStackSize ensures that argument delta is always multiples 1796// of stack alignment. (Dynamic linkers need this - darwin's dyld for example) 1797// If a tail called function callee has more arguments than the caller the 1798// caller needs to make sure that there is room to move the RETADDR to. This is 1799// achieved by reserving an area the size of the argument delta right after the 1800// original REtADDR, but before the saved framepointer or the spilled registers 1801// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) 1802// stack layout: 1803// arg1 1804// arg2 1805// RETADDR 1806// [ new RETADDR 1807// move area ] 1808// (possible EBP) 1809// ESI 1810// EDI 1811// local1 .. 1812 1813/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned 1814/// for a 16 byte align requirement. 1815unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, 1816 SelectionDAG& DAG) { 1817 MachineFunction &MF = DAG.getMachineFunction(); 1818 const TargetMachine &TM = MF.getTarget(); 1819 const TargetFrameInfo &TFI = *TM.getFrameInfo(); 1820 unsigned StackAlignment = TFI.getStackAlignment(); 1821 uint64_t AlignMask = StackAlignment - 1; 1822 int64_t Offset = StackSize; 1823 uint64_t SlotSize = TD->getPointerSize(); 1824 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { 1825 // Number smaller than 12 so just add the difference. 1826 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); 1827 } else { 1828 // Mask out lower bits, add stackalignment once plus the 12 bytes. 1829 Offset = ((~AlignMask) & Offset) + StackAlignment + 1830 (StackAlignment-SlotSize); 1831 } 1832 return Offset; 1833} 1834 1835/// IsEligibleForTailCallElimination - Check to see whether the next instruction 1836/// following the call is a return. A function is eligible if caller/callee 1837/// calling conventions match, currently only fastcc supports tail calls, and 1838/// the function CALL is immediatly followed by a RET. 1839bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall, 1840 SDValue Ret, 1841 SelectionDAG& DAG) const { 1842 if (!PerformTailCallOpt) 1843 return false; 1844 1845 if (CheckTailCallReturnConstraints(TheCall, Ret)) { 1846 MachineFunction &MF = DAG.getMachineFunction(); 1847 unsigned CallerCC = MF.getFunction()->getCallingConv(); 1848 unsigned CalleeCC= TheCall->getCallingConv(); 1849 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 1850 SDValue Callee = TheCall->getCallee(); 1851 // On x86/32Bit PIC/GOT tail calls are supported. 1852 if (getTargetMachine().getRelocationModel() != Reloc::PIC_ || 1853 !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit()) 1854 return true; 1855 1856 // Can only do local tail calls (in same module, hidden or protected) on 1857 // x86_64 PIC/GOT at the moment. 1858 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1859 return G->getGlobal()->hasHiddenVisibility() 1860 || G->getGlobal()->hasProtectedVisibility(); 1861 } 1862 } 1863 1864 return false; 1865} 1866 1867FastISel * 1868X86TargetLowering::createFastISel(MachineFunction &mf, 1869 DenseMap<const Value *, unsigned> &vm, 1870 DenseMap<const BasicBlock *, 1871 MachineBasicBlock *> &bm, 1872 DenseMap<const AllocaInst *, int> &am) { 1873 1874 return X86::createFastISel(mf, vm, bm, am); 1875} 1876 1877 1878//===----------------------------------------------------------------------===// 1879// Other Lowering Hooks 1880//===----------------------------------------------------------------------===// 1881 1882 1883SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { 1884 MachineFunction &MF = DAG.getMachineFunction(); 1885 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 1886 int ReturnAddrIndex = FuncInfo->getRAIndex(); 1887 uint64_t SlotSize = TD->getPointerSize(); 1888 1889 if (ReturnAddrIndex == 0) { 1890 // Set up a frame object for the return address. 1891 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize); 1892 FuncInfo->setRAIndex(ReturnAddrIndex); 1893 } 1894 1895 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); 1896} 1897 1898 1899/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86 1900/// specific condition code. It returns a false if it cannot do a direct 1901/// translation. X86CC is the translated CondCode. LHS/RHS are modified as 1902/// needed. 1903static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP, 1904 unsigned &X86CC, SDValue &LHS, SDValue &RHS, 1905 SelectionDAG &DAG) { 1906 X86CC = X86::COND_INVALID; 1907 if (!isFP) { 1908 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 1909 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { 1910 // X > -1 -> X == 0, jump !sign. 1911 RHS = DAG.getConstant(0, RHS.getValueType()); 1912 X86CC = X86::COND_NS; 1913 return true; 1914 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { 1915 // X < 0 -> X == 0, jump on sign. 1916 X86CC = X86::COND_S; 1917 return true; 1918 } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) { 1919 // X < 1 -> X <= 0 1920 RHS = DAG.getConstant(0, RHS.getValueType()); 1921 X86CC = X86::COND_LE; 1922 return true; 1923 } 1924 } 1925 1926 switch (SetCCOpcode) { 1927 default: break; 1928 case ISD::SETEQ: X86CC = X86::COND_E; break; 1929 case ISD::SETGT: X86CC = X86::COND_G; break; 1930 case ISD::SETGE: X86CC = X86::COND_GE; break; 1931 case ISD::SETLT: X86CC = X86::COND_L; break; 1932 case ISD::SETLE: X86CC = X86::COND_LE; break; 1933 case ISD::SETNE: X86CC = X86::COND_NE; break; 1934 case ISD::SETULT: X86CC = X86::COND_B; break; 1935 case ISD::SETUGT: X86CC = X86::COND_A; break; 1936 case ISD::SETULE: X86CC = X86::COND_BE; break; 1937 case ISD::SETUGE: X86CC = X86::COND_AE; break; 1938 } 1939 } else { 1940 // First determine if it requires or is profitable to flip the operands. 1941 bool Flip = false; 1942 switch (SetCCOpcode) { 1943 default: break; 1944 case ISD::SETOLT: 1945 case ISD::SETOLE: 1946 case ISD::SETUGT: 1947 case ISD::SETUGE: 1948 Flip = true; 1949 break; 1950 } 1951 1952 // If LHS is a foldable load, but RHS is not, flip the condition. 1953 if (!Flip && 1954 (ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) && 1955 !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) { 1956 SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode); 1957 Flip = true; 1958 } 1959 if (Flip) 1960 std::swap(LHS, RHS); 1961 1962 // On a floating point condition, the flags are set as follows: 1963 // ZF PF CF op 1964 // 0 | 0 | 0 | X > Y 1965 // 0 | 0 | 1 | X < Y 1966 // 1 | 0 | 0 | X == Y 1967 // 1 | 1 | 1 | unordered 1968 switch (SetCCOpcode) { 1969 default: break; 1970 case ISD::SETUEQ: 1971 case ISD::SETEQ: 1972 X86CC = X86::COND_E; 1973 break; 1974 case ISD::SETOLT: // flipped 1975 case ISD::SETOGT: 1976 case ISD::SETGT: 1977 X86CC = X86::COND_A; 1978 break; 1979 case ISD::SETOLE: // flipped 1980 case ISD::SETOGE: 1981 case ISD::SETGE: 1982 X86CC = X86::COND_AE; 1983 break; 1984 case ISD::SETUGT: // flipped 1985 case ISD::SETULT: 1986 case ISD::SETLT: 1987 X86CC = X86::COND_B; 1988 break; 1989 case ISD::SETUGE: // flipped 1990 case ISD::SETULE: 1991 case ISD::SETLE: 1992 X86CC = X86::COND_BE; 1993 break; 1994 case ISD::SETONE: 1995 case ISD::SETNE: 1996 X86CC = X86::COND_NE; 1997 break; 1998 case ISD::SETUO: 1999 X86CC = X86::COND_P; 2000 break; 2001 case ISD::SETO: 2002 X86CC = X86::COND_NP; 2003 break; 2004 } 2005 } 2006 2007 return X86CC != X86::COND_INVALID; 2008} 2009 2010/// hasFPCMov - is there a floating point cmov for the specific X86 condition 2011/// code. Current x86 isa includes the following FP cmov instructions: 2012/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. 2013static bool hasFPCMov(unsigned X86CC) { 2014 switch (X86CC) { 2015 default: 2016 return false; 2017 case X86::COND_B: 2018 case X86::COND_BE: 2019 case X86::COND_E: 2020 case X86::COND_P: 2021 case X86::COND_A: 2022 case X86::COND_AE: 2023 case X86::COND_NE: 2024 case X86::COND_NP: 2025 return true; 2026 } 2027} 2028 2029/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return 2030/// true if Op is undef or if its value falls within the specified range (L, H]. 2031static bool isUndefOrInRange(SDValue Op, unsigned Low, unsigned Hi) { 2032 if (Op.getOpcode() == ISD::UNDEF) 2033 return true; 2034 2035 unsigned Val = cast<ConstantSDNode>(Op)->getZExtValue(); 2036 return (Val >= Low && Val < Hi); 2037} 2038 2039/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return 2040/// true if Op is undef or if its value equal to the specified value. 2041static bool isUndefOrEqual(SDValue Op, unsigned Val) { 2042 if (Op.getOpcode() == ISD::UNDEF) 2043 return true; 2044 return cast<ConstantSDNode>(Op)->getZExtValue() == Val; 2045} 2046 2047/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand 2048/// specifies a shuffle of elements that is suitable for input to PSHUFD. 2049bool X86::isPSHUFDMask(SDNode *N) { 2050 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2051 2052 if (N->getNumOperands() != 2 && N->getNumOperands() != 4) 2053 return false; 2054 2055 // Check if the value doesn't reference the second vector. 2056 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2057 SDValue Arg = N->getOperand(i); 2058 if (Arg.getOpcode() == ISD::UNDEF) continue; 2059 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2060 if (cast<ConstantSDNode>(Arg)->getZExtValue() >= e) 2061 return false; 2062 } 2063 2064 return true; 2065} 2066 2067/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand 2068/// specifies a shuffle of elements that is suitable for input to PSHUFHW. 2069bool X86::isPSHUFHWMask(SDNode *N) { 2070 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2071 2072 if (N->getNumOperands() != 8) 2073 return false; 2074 2075 // Lower quadword copied in order. 2076 for (unsigned i = 0; i != 4; ++i) { 2077 SDValue Arg = N->getOperand(i); 2078 if (Arg.getOpcode() == ISD::UNDEF) continue; 2079 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2080 if (cast<ConstantSDNode>(Arg)->getZExtValue() != i) 2081 return false; 2082 } 2083 2084 // Upper quadword shuffled. 2085 for (unsigned i = 4; i != 8; ++i) { 2086 SDValue Arg = N->getOperand(i); 2087 if (Arg.getOpcode() == ISD::UNDEF) continue; 2088 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2089 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2090 if (Val < 4 || Val > 7) 2091 return false; 2092 } 2093 2094 return true; 2095} 2096 2097/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand 2098/// specifies a shuffle of elements that is suitable for input to PSHUFLW. 2099bool X86::isPSHUFLWMask(SDNode *N) { 2100 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2101 2102 if (N->getNumOperands() != 8) 2103 return false; 2104 2105 // Upper quadword copied in order. 2106 for (unsigned i = 4; i != 8; ++i) 2107 if (!isUndefOrEqual(N->getOperand(i), i)) 2108 return false; 2109 2110 // Lower quadword shuffled. 2111 for (unsigned i = 0; i != 4; ++i) 2112 if (!isUndefOrInRange(N->getOperand(i), 0, 4)) 2113 return false; 2114 2115 return true; 2116} 2117 2118/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand 2119/// specifies a shuffle of elements that is suitable for input to SHUFP*. 2120static bool isSHUFPMask(SDOperandPtr Elems, unsigned NumElems) { 2121 if (NumElems != 2 && NumElems != 4) return false; 2122 2123 unsigned Half = NumElems / 2; 2124 for (unsigned i = 0; i < Half; ++i) 2125 if (!isUndefOrInRange(Elems[i], 0, NumElems)) 2126 return false; 2127 for (unsigned i = Half; i < NumElems; ++i) 2128 if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2)) 2129 return false; 2130 2131 return true; 2132} 2133 2134bool X86::isSHUFPMask(SDNode *N) { 2135 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2136 return ::isSHUFPMask(N->op_begin(), N->getNumOperands()); 2137} 2138 2139/// isCommutedSHUFP - Returns true if the shuffle mask is exactly 2140/// the reverse of what x86 shuffles want. x86 shuffles requires the lower 2141/// half elements to come from vector 1 (which would equal the dest.) and 2142/// the upper half to come from vector 2. 2143static bool isCommutedSHUFP(SDOperandPtr Ops, unsigned NumOps) { 2144 if (NumOps != 2 && NumOps != 4) return false; 2145 2146 unsigned Half = NumOps / 2; 2147 for (unsigned i = 0; i < Half; ++i) 2148 if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2)) 2149 return false; 2150 for (unsigned i = Half; i < NumOps; ++i) 2151 if (!isUndefOrInRange(Ops[i], 0, NumOps)) 2152 return false; 2153 return true; 2154} 2155 2156static bool isCommutedSHUFP(SDNode *N) { 2157 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2158 return isCommutedSHUFP(N->op_begin(), N->getNumOperands()); 2159} 2160 2161/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand 2162/// specifies a shuffle of elements that is suitable for input to MOVHLPS. 2163bool X86::isMOVHLPSMask(SDNode *N) { 2164 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2165 2166 if (N->getNumOperands() != 4) 2167 return false; 2168 2169 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 2170 return isUndefOrEqual(N->getOperand(0), 6) && 2171 isUndefOrEqual(N->getOperand(1), 7) && 2172 isUndefOrEqual(N->getOperand(2), 2) && 2173 isUndefOrEqual(N->getOperand(3), 3); 2174} 2175 2176/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form 2177/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, 2178/// <2, 3, 2, 3> 2179bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) { 2180 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2181 2182 if (N->getNumOperands() != 4) 2183 return false; 2184 2185 // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3 2186 return isUndefOrEqual(N->getOperand(0), 2) && 2187 isUndefOrEqual(N->getOperand(1), 3) && 2188 isUndefOrEqual(N->getOperand(2), 2) && 2189 isUndefOrEqual(N->getOperand(3), 3); 2190} 2191 2192/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand 2193/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. 2194bool X86::isMOVLPMask(SDNode *N) { 2195 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2196 2197 unsigned NumElems = N->getNumOperands(); 2198 if (NumElems != 2 && NumElems != 4) 2199 return false; 2200 2201 for (unsigned i = 0; i < NumElems/2; ++i) 2202 if (!isUndefOrEqual(N->getOperand(i), i + NumElems)) 2203 return false; 2204 2205 for (unsigned i = NumElems/2; i < NumElems; ++i) 2206 if (!isUndefOrEqual(N->getOperand(i), i)) 2207 return false; 2208 2209 return true; 2210} 2211 2212/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand 2213/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D} 2214/// and MOVLHPS. 2215bool X86::isMOVHPMask(SDNode *N) { 2216 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2217 2218 unsigned NumElems = N->getNumOperands(); 2219 if (NumElems != 2 && NumElems != 4) 2220 return false; 2221 2222 for (unsigned i = 0; i < NumElems/2; ++i) 2223 if (!isUndefOrEqual(N->getOperand(i), i)) 2224 return false; 2225 2226 for (unsigned i = 0; i < NumElems/2; ++i) { 2227 SDValue Arg = N->getOperand(i + NumElems/2); 2228 if (!isUndefOrEqual(Arg, i + NumElems)) 2229 return false; 2230 } 2231 2232 return true; 2233} 2234 2235/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand 2236/// specifies a shuffle of elements that is suitable for input to UNPCKL. 2237bool static isUNPCKLMask(SDOperandPtr Elts, unsigned NumElts, 2238 bool V2IsSplat = false) { 2239 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) 2240 return false; 2241 2242 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) { 2243 SDValue BitI = Elts[i]; 2244 SDValue BitI1 = Elts[i+1]; 2245 if (!isUndefOrEqual(BitI, j)) 2246 return false; 2247 if (V2IsSplat) { 2248 if (isUndefOrEqual(BitI1, NumElts)) 2249 return false; 2250 } else { 2251 if (!isUndefOrEqual(BitI1, j + NumElts)) 2252 return false; 2253 } 2254 } 2255 2256 return true; 2257} 2258 2259bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) { 2260 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2261 return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat); 2262} 2263 2264/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand 2265/// specifies a shuffle of elements that is suitable for input to UNPCKH. 2266bool static isUNPCKHMask(SDOperandPtr Elts, unsigned NumElts, 2267 bool V2IsSplat = false) { 2268 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) 2269 return false; 2270 2271 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) { 2272 SDValue BitI = Elts[i]; 2273 SDValue BitI1 = Elts[i+1]; 2274 if (!isUndefOrEqual(BitI, j + NumElts/2)) 2275 return false; 2276 if (V2IsSplat) { 2277 if (isUndefOrEqual(BitI1, NumElts)) 2278 return false; 2279 } else { 2280 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts)) 2281 return false; 2282 } 2283 } 2284 2285 return true; 2286} 2287 2288bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) { 2289 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2290 return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat); 2291} 2292 2293/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form 2294/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, 2295/// <0, 0, 1, 1> 2296bool X86::isUNPCKL_v_undef_Mask(SDNode *N) { 2297 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2298 2299 unsigned NumElems = N->getNumOperands(); 2300 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) 2301 return false; 2302 2303 for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { 2304 SDValue BitI = N->getOperand(i); 2305 SDValue BitI1 = N->getOperand(i+1); 2306 2307 if (!isUndefOrEqual(BitI, j)) 2308 return false; 2309 if (!isUndefOrEqual(BitI1, j)) 2310 return false; 2311 } 2312 2313 return true; 2314} 2315 2316/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form 2317/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, 2318/// <2, 2, 3, 3> 2319bool X86::isUNPCKH_v_undef_Mask(SDNode *N) { 2320 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2321 2322 unsigned NumElems = N->getNumOperands(); 2323 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) 2324 return false; 2325 2326 for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) { 2327 SDValue BitI = N->getOperand(i); 2328 SDValue BitI1 = N->getOperand(i + 1); 2329 2330 if (!isUndefOrEqual(BitI, j)) 2331 return false; 2332 if (!isUndefOrEqual(BitI1, j)) 2333 return false; 2334 } 2335 2336 return true; 2337} 2338 2339/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand 2340/// specifies a shuffle of elements that is suitable for input to MOVSS, 2341/// MOVSD, and MOVD, i.e. setting the lowest element. 2342static bool isMOVLMask(SDOperandPtr Elts, unsigned NumElts) { 2343 if (NumElts != 2 && NumElts != 4) 2344 return false; 2345 2346 if (!isUndefOrEqual(Elts[0], NumElts)) 2347 return false; 2348 2349 for (unsigned i = 1; i < NumElts; ++i) { 2350 if (!isUndefOrEqual(Elts[i], i)) 2351 return false; 2352 } 2353 2354 return true; 2355} 2356 2357bool X86::isMOVLMask(SDNode *N) { 2358 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2359 return ::isMOVLMask(N->op_begin(), N->getNumOperands()); 2360} 2361 2362/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse 2363/// of what x86 movss want. X86 movs requires the lowest element to be lowest 2364/// element of vector 2 and the other elements to come from vector 1 in order. 2365static bool isCommutedMOVL(SDOperandPtr Ops, unsigned NumOps, 2366 bool V2IsSplat = false, 2367 bool V2IsUndef = false) { 2368 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16) 2369 return false; 2370 2371 if (!isUndefOrEqual(Ops[0], 0)) 2372 return false; 2373 2374 for (unsigned i = 1; i < NumOps; ++i) { 2375 SDValue Arg = Ops[i]; 2376 if (!(isUndefOrEqual(Arg, i+NumOps) || 2377 (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) || 2378 (V2IsSplat && isUndefOrEqual(Arg, NumOps)))) 2379 return false; 2380 } 2381 2382 return true; 2383} 2384 2385static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false, 2386 bool V2IsUndef = false) { 2387 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2388 return isCommutedMOVL(N->op_begin(), N->getNumOperands(), 2389 V2IsSplat, V2IsUndef); 2390} 2391 2392/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand 2393/// specifies a shuffle of elements that is suitable for input to MOVSHDUP. 2394bool X86::isMOVSHDUPMask(SDNode *N) { 2395 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2396 2397 if (N->getNumOperands() != 4) 2398 return false; 2399 2400 // Expect 1, 1, 3, 3 2401 for (unsigned i = 0; i < 2; ++i) { 2402 SDValue Arg = N->getOperand(i); 2403 if (Arg.getOpcode() == ISD::UNDEF) continue; 2404 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2405 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2406 if (Val != 1) return false; 2407 } 2408 2409 bool HasHi = false; 2410 for (unsigned i = 2; i < 4; ++i) { 2411 SDValue Arg = N->getOperand(i); 2412 if (Arg.getOpcode() == ISD::UNDEF) continue; 2413 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2414 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2415 if (Val != 3) return false; 2416 HasHi = true; 2417 } 2418 2419 // Don't use movshdup if it can be done with a shufps. 2420 return HasHi; 2421} 2422 2423/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand 2424/// specifies a shuffle of elements that is suitable for input to MOVSLDUP. 2425bool X86::isMOVSLDUPMask(SDNode *N) { 2426 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2427 2428 if (N->getNumOperands() != 4) 2429 return false; 2430 2431 // Expect 0, 0, 2, 2 2432 for (unsigned i = 0; i < 2; ++i) { 2433 SDValue Arg = N->getOperand(i); 2434 if (Arg.getOpcode() == ISD::UNDEF) continue; 2435 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2436 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2437 if (Val != 0) return false; 2438 } 2439 2440 bool HasHi = false; 2441 for (unsigned i = 2; i < 4; ++i) { 2442 SDValue Arg = N->getOperand(i); 2443 if (Arg.getOpcode() == ISD::UNDEF) continue; 2444 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2445 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2446 if (Val != 2) return false; 2447 HasHi = true; 2448 } 2449 2450 // Don't use movshdup if it can be done with a shufps. 2451 return HasHi; 2452} 2453 2454/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand 2455/// specifies a identity operation on the LHS or RHS. 2456static bool isIdentityMask(SDNode *N, bool RHS = false) { 2457 unsigned NumElems = N->getNumOperands(); 2458 for (unsigned i = 0; i < NumElems; ++i) 2459 if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0))) 2460 return false; 2461 return true; 2462} 2463 2464/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies 2465/// a splat of a single element. 2466static bool isSplatMask(SDNode *N) { 2467 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2468 2469 // This is a splat operation if each element of the permute is the same, and 2470 // if the value doesn't reference the second vector. 2471 unsigned NumElems = N->getNumOperands(); 2472 SDValue ElementBase; 2473 unsigned i = 0; 2474 for (; i != NumElems; ++i) { 2475 SDValue Elt = N->getOperand(i); 2476 if (isa<ConstantSDNode>(Elt)) { 2477 ElementBase = Elt; 2478 break; 2479 } 2480 } 2481 2482 if (!ElementBase.getNode()) 2483 return false; 2484 2485 for (; i != NumElems; ++i) { 2486 SDValue Arg = N->getOperand(i); 2487 if (Arg.getOpcode() == ISD::UNDEF) continue; 2488 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2489 if (Arg != ElementBase) return false; 2490 } 2491 2492 // Make sure it is a splat of the first vector operand. 2493 return cast<ConstantSDNode>(ElementBase)->getZExtValue() < NumElems; 2494} 2495 2496/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies 2497/// a splat of a single element and it's a 2 or 4 element mask. 2498bool X86::isSplatMask(SDNode *N) { 2499 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2500 2501 // We can only splat 64-bit, and 32-bit quantities with a single instruction. 2502 if (N->getNumOperands() != 4 && N->getNumOperands() != 2) 2503 return false; 2504 return ::isSplatMask(N); 2505} 2506 2507/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand 2508/// specifies a splat of zero element. 2509bool X86::isSplatLoMask(SDNode *N) { 2510 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2511 2512 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i) 2513 if (!isUndefOrEqual(N->getOperand(i), 0)) 2514 return false; 2515 return true; 2516} 2517 2518/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle 2519/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP* 2520/// instructions. 2521unsigned X86::getShuffleSHUFImmediate(SDNode *N) { 2522 unsigned NumOperands = N->getNumOperands(); 2523 unsigned Shift = (NumOperands == 4) ? 2 : 1; 2524 unsigned Mask = 0; 2525 for (unsigned i = 0; i < NumOperands; ++i) { 2526 unsigned Val = 0; 2527 SDValue Arg = N->getOperand(NumOperands-i-1); 2528 if (Arg.getOpcode() != ISD::UNDEF) 2529 Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2530 if (Val >= NumOperands) Val -= NumOperands; 2531 Mask |= Val; 2532 if (i != NumOperands - 1) 2533 Mask <<= Shift; 2534 } 2535 2536 return Mask; 2537} 2538 2539/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle 2540/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW 2541/// instructions. 2542unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) { 2543 unsigned Mask = 0; 2544 // 8 nodes, but we only care about the last 4. 2545 for (unsigned i = 7; i >= 4; --i) { 2546 unsigned Val = 0; 2547 SDValue Arg = N->getOperand(i); 2548 if (Arg.getOpcode() != ISD::UNDEF) 2549 Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2550 Mask |= (Val - 4); 2551 if (i != 4) 2552 Mask <<= 2; 2553 } 2554 2555 return Mask; 2556} 2557 2558/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle 2559/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW 2560/// instructions. 2561unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) { 2562 unsigned Mask = 0; 2563 // 8 nodes, but we only care about the first 4. 2564 for (int i = 3; i >= 0; --i) { 2565 unsigned Val = 0; 2566 SDValue Arg = N->getOperand(i); 2567 if (Arg.getOpcode() != ISD::UNDEF) 2568 Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2569 Mask |= Val; 2570 if (i != 0) 2571 Mask <<= 2; 2572 } 2573 2574 return Mask; 2575} 2576 2577/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand 2578/// specifies a 8 element shuffle that can be broken into a pair of 2579/// PSHUFHW and PSHUFLW. 2580static bool isPSHUFHW_PSHUFLWMask(SDNode *N) { 2581 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2582 2583 if (N->getNumOperands() != 8) 2584 return false; 2585 2586 // Lower quadword shuffled. 2587 for (unsigned i = 0; i != 4; ++i) { 2588 SDValue Arg = N->getOperand(i); 2589 if (Arg.getOpcode() == ISD::UNDEF) continue; 2590 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2591 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2592 if (Val >= 4) 2593 return false; 2594 } 2595 2596 // Upper quadword shuffled. 2597 for (unsigned i = 4; i != 8; ++i) { 2598 SDValue Arg = N->getOperand(i); 2599 if (Arg.getOpcode() == ISD::UNDEF) continue; 2600 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2601 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2602 if (Val < 4 || Val > 7) 2603 return false; 2604 } 2605 2606 return true; 2607} 2608 2609/// CommuteVectorShuffle - Swap vector_shuffle operands as well as 2610/// values in ther permute mask. 2611static SDValue CommuteVectorShuffle(SDValue Op, SDValue &V1, 2612 SDValue &V2, SDValue &Mask, 2613 SelectionDAG &DAG) { 2614 MVT VT = Op.getValueType(); 2615 MVT MaskVT = Mask.getValueType(); 2616 MVT EltVT = MaskVT.getVectorElementType(); 2617 unsigned NumElems = Mask.getNumOperands(); 2618 SmallVector<SDValue, 8> MaskVec; 2619 2620 for (unsigned i = 0; i != NumElems; ++i) { 2621 SDValue Arg = Mask.getOperand(i); 2622 if (Arg.getOpcode() == ISD::UNDEF) { 2623 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 2624 continue; 2625 } 2626 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2627 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2628 if (Val < NumElems) 2629 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT)); 2630 else 2631 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT)); 2632 } 2633 2634 std::swap(V1, V2); 2635 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems); 2636 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); 2637} 2638 2639/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming 2640/// the two vector operands have swapped position. 2641static 2642SDValue CommuteVectorShuffleMask(SDValue Mask, SelectionDAG &DAG) { 2643 MVT MaskVT = Mask.getValueType(); 2644 MVT EltVT = MaskVT.getVectorElementType(); 2645 unsigned NumElems = Mask.getNumOperands(); 2646 SmallVector<SDValue, 8> MaskVec; 2647 for (unsigned i = 0; i != NumElems; ++i) { 2648 SDValue Arg = Mask.getOperand(i); 2649 if (Arg.getOpcode() == ISD::UNDEF) { 2650 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 2651 continue; 2652 } 2653 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2654 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2655 if (Val < NumElems) 2656 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT)); 2657 else 2658 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT)); 2659 } 2660 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems); 2661} 2662 2663 2664/// ShouldXformToMOVHLPS - Return true if the node should be transformed to 2665/// match movhlps. The lower half elements should come from upper half of 2666/// V1 (and in order), and the upper half elements should come from the upper 2667/// half of V2 (and in order). 2668static bool ShouldXformToMOVHLPS(SDNode *Mask) { 2669 unsigned NumElems = Mask->getNumOperands(); 2670 if (NumElems != 4) 2671 return false; 2672 for (unsigned i = 0, e = 2; i != e; ++i) 2673 if (!isUndefOrEqual(Mask->getOperand(i), i+2)) 2674 return false; 2675 for (unsigned i = 2; i != 4; ++i) 2676 if (!isUndefOrEqual(Mask->getOperand(i), i+4)) 2677 return false; 2678 return true; 2679} 2680 2681/// isScalarLoadToVector - Returns true if the node is a scalar load that 2682/// is promoted to a vector. It also returns the LoadSDNode by reference if 2683/// required. 2684static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) { 2685 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) { 2686 N = N->getOperand(0).getNode(); 2687 if (ISD::isNON_EXTLoad(N)) { 2688 if (LD) 2689 *LD = cast<LoadSDNode>(N); 2690 return true; 2691 } 2692 } 2693 return false; 2694} 2695 2696/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to 2697/// match movlp{s|d}. The lower half elements should come from lower half of 2698/// V1 (and in order), and the upper half elements should come from the upper 2699/// half of V2 (and in order). And since V1 will become the source of the 2700/// MOVLP, it must be either a vector load or a scalar load to vector. 2701static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) { 2702 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1)) 2703 return false; 2704 // Is V2 is a vector load, don't do this transformation. We will try to use 2705 // load folding shufps op. 2706 if (ISD::isNON_EXTLoad(V2)) 2707 return false; 2708 2709 unsigned NumElems = Mask->getNumOperands(); 2710 if (NumElems != 2 && NumElems != 4) 2711 return false; 2712 for (unsigned i = 0, e = NumElems/2; i != e; ++i) 2713 if (!isUndefOrEqual(Mask->getOperand(i), i)) 2714 return false; 2715 for (unsigned i = NumElems/2; i != NumElems; ++i) 2716 if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems)) 2717 return false; 2718 return true; 2719} 2720 2721/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are 2722/// all the same. 2723static bool isSplatVector(SDNode *N) { 2724 if (N->getOpcode() != ISD::BUILD_VECTOR) 2725 return false; 2726 2727 SDValue SplatValue = N->getOperand(0); 2728 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 2729 if (N->getOperand(i) != SplatValue) 2730 return false; 2731 return true; 2732} 2733 2734/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved 2735/// to an undef. 2736static bool isUndefShuffle(SDNode *N) { 2737 if (N->getOpcode() != ISD::VECTOR_SHUFFLE) 2738 return false; 2739 2740 SDValue V1 = N->getOperand(0); 2741 SDValue V2 = N->getOperand(1); 2742 SDValue Mask = N->getOperand(2); 2743 unsigned NumElems = Mask.getNumOperands(); 2744 for (unsigned i = 0; i != NumElems; ++i) { 2745 SDValue Arg = Mask.getOperand(i); 2746 if (Arg.getOpcode() != ISD::UNDEF) { 2747 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2748 if (Val < NumElems && V1.getOpcode() != ISD::UNDEF) 2749 return false; 2750 else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF) 2751 return false; 2752 } 2753 } 2754 return true; 2755} 2756 2757/// isZeroNode - Returns true if Elt is a constant zero or a floating point 2758/// constant +0.0. 2759static inline bool isZeroNode(SDValue Elt) { 2760 return ((isa<ConstantSDNode>(Elt) && 2761 cast<ConstantSDNode>(Elt)->getZExtValue() == 0) || 2762 (isa<ConstantFPSDNode>(Elt) && 2763 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero())); 2764} 2765 2766/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved 2767/// to an zero vector. 2768static bool isZeroShuffle(SDNode *N) { 2769 if (N->getOpcode() != ISD::VECTOR_SHUFFLE) 2770 return false; 2771 2772 SDValue V1 = N->getOperand(0); 2773 SDValue V2 = N->getOperand(1); 2774 SDValue Mask = N->getOperand(2); 2775 unsigned NumElems = Mask.getNumOperands(); 2776 for (unsigned i = 0; i != NumElems; ++i) { 2777 SDValue Arg = Mask.getOperand(i); 2778 if (Arg.getOpcode() == ISD::UNDEF) 2779 continue; 2780 2781 unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue(); 2782 if (Idx < NumElems) { 2783 unsigned Opc = V1.getNode()->getOpcode(); 2784 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode())) 2785 continue; 2786 if (Opc != ISD::BUILD_VECTOR || 2787 !isZeroNode(V1.getNode()->getOperand(Idx))) 2788 return false; 2789 } else if (Idx >= NumElems) { 2790 unsigned Opc = V2.getNode()->getOpcode(); 2791 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode())) 2792 continue; 2793 if (Opc != ISD::BUILD_VECTOR || 2794 !isZeroNode(V2.getNode()->getOperand(Idx - NumElems))) 2795 return false; 2796 } 2797 } 2798 return true; 2799} 2800 2801/// getZeroVector - Returns a vector of specified type with all zero elements. 2802/// 2803static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG) { 2804 assert(VT.isVector() && "Expected a vector type"); 2805 2806 // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest 2807 // type. This ensures they get CSE'd. 2808 SDValue Vec; 2809 if (VT.getSizeInBits() == 64) { // MMX 2810 SDValue Cst = DAG.getTargetConstant(0, MVT::i32); 2811 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst); 2812 } else if (HasSSE2) { // SSE2 2813 SDValue Cst = DAG.getTargetConstant(0, MVT::i32); 2814 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst); 2815 } else { // SSE1 2816 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32); 2817 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4f32, Cst, Cst, Cst, Cst); 2818 } 2819 return DAG.getNode(ISD::BIT_CONVERT, VT, Vec); 2820} 2821 2822/// getOnesVector - Returns a vector of specified type with all bits set. 2823/// 2824static SDValue getOnesVector(MVT VT, SelectionDAG &DAG) { 2825 assert(VT.isVector() && "Expected a vector type"); 2826 2827 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest 2828 // type. This ensures they get CSE'd. 2829 SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32); 2830 SDValue Vec; 2831 if (VT.getSizeInBits() == 64) // MMX 2832 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst); 2833 else // SSE 2834 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst); 2835 return DAG.getNode(ISD::BIT_CONVERT, VT, Vec); 2836} 2837 2838 2839/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements 2840/// that point to V2 points to its first element. 2841static SDValue NormalizeMask(SDValue Mask, SelectionDAG &DAG) { 2842 assert(Mask.getOpcode() == ISD::BUILD_VECTOR); 2843 2844 bool Changed = false; 2845 SmallVector<SDValue, 8> MaskVec; 2846 unsigned NumElems = Mask.getNumOperands(); 2847 for (unsigned i = 0; i != NumElems; ++i) { 2848 SDValue Arg = Mask.getOperand(i); 2849 if (Arg.getOpcode() != ISD::UNDEF) { 2850 unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue(); 2851 if (Val > NumElems) { 2852 Arg = DAG.getConstant(NumElems, Arg.getValueType()); 2853 Changed = true; 2854 } 2855 } 2856 MaskVec.push_back(Arg); 2857 } 2858 2859 if (Changed) 2860 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(), 2861 &MaskVec[0], MaskVec.size()); 2862 return Mask; 2863} 2864 2865/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd 2866/// operation of specified width. 2867static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG) { 2868 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 2869 MVT BaseVT = MaskVT.getVectorElementType(); 2870 2871 SmallVector<SDValue, 8> MaskVec; 2872 MaskVec.push_back(DAG.getConstant(NumElems, BaseVT)); 2873 for (unsigned i = 1; i != NumElems; ++i) 2874 MaskVec.push_back(DAG.getConstant(i, BaseVT)); 2875 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); 2876} 2877 2878/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation 2879/// of specified width. 2880static SDValue getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) { 2881 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 2882 MVT BaseVT = MaskVT.getVectorElementType(); 2883 SmallVector<SDValue, 8> MaskVec; 2884 for (unsigned i = 0, e = NumElems/2; i != e; ++i) { 2885 MaskVec.push_back(DAG.getConstant(i, BaseVT)); 2886 MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT)); 2887 } 2888 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); 2889} 2890 2891/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation 2892/// of specified width. 2893static SDValue getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) { 2894 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 2895 MVT BaseVT = MaskVT.getVectorElementType(); 2896 unsigned Half = NumElems/2; 2897 SmallVector<SDValue, 8> MaskVec; 2898 for (unsigned i = 0; i != Half; ++i) { 2899 MaskVec.push_back(DAG.getConstant(i + Half, BaseVT)); 2900 MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT)); 2901 } 2902 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); 2903} 2904 2905/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps 2906/// element #0 of a vector with the specified index, leaving the rest of the 2907/// elements in place. 2908static SDValue getSwapEltZeroMask(unsigned NumElems, unsigned DestElt, 2909 SelectionDAG &DAG) { 2910 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 2911 MVT BaseVT = MaskVT.getVectorElementType(); 2912 SmallVector<SDValue, 8> MaskVec; 2913 // Element #0 of the result gets the elt we are replacing. 2914 MaskVec.push_back(DAG.getConstant(DestElt, BaseVT)); 2915 for (unsigned i = 1; i != NumElems; ++i) 2916 MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT)); 2917 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); 2918} 2919 2920/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32. 2921static SDValue PromoteSplat(SDValue Op, SelectionDAG &DAG, bool HasSSE2) { 2922 MVT PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32; 2923 MVT VT = Op.getValueType(); 2924 if (PVT == VT) 2925 return Op; 2926 SDValue V1 = Op.getOperand(0); 2927 SDValue Mask = Op.getOperand(2); 2928 unsigned NumElems = Mask.getNumOperands(); 2929 // Special handling of v4f32 -> v4i32. 2930 if (VT != MVT::v4f32) { 2931 Mask = getUnpacklMask(NumElems, DAG); 2932 while (NumElems > 4) { 2933 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask); 2934 NumElems >>= 1; 2935 } 2936 Mask = getZeroVector(MVT::v4i32, true, DAG); 2937 } 2938 2939 V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1); 2940 SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1, 2941 DAG.getNode(ISD::UNDEF, PVT), Mask); 2942 return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle); 2943} 2944 2945/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified 2946/// vector of zero or undef vector. This produces a shuffle where the low 2947/// element of V2 is swizzled into the zero/undef vector, landing at element 2948/// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3). 2949static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx, 2950 bool isZero, bool HasSSE2, 2951 SelectionDAG &DAG) { 2952 MVT VT = V2.getValueType(); 2953 SDValue V1 = isZero 2954 ? getZeroVector(VT, HasSSE2, DAG) : DAG.getNode(ISD::UNDEF, VT); 2955 unsigned NumElems = V2.getValueType().getVectorNumElements(); 2956 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 2957 MVT EVT = MaskVT.getVectorElementType(); 2958 SmallVector<SDValue, 16> MaskVec; 2959 for (unsigned i = 0; i != NumElems; ++i) 2960 if (i == Idx) // If this is the insertion idx, put the low elt of V2 here. 2961 MaskVec.push_back(DAG.getConstant(NumElems, EVT)); 2962 else 2963 MaskVec.push_back(DAG.getConstant(i, EVT)); 2964 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 2965 &MaskVec[0], MaskVec.size()); 2966 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); 2967} 2968 2969/// getNumOfConsecutiveZeros - Return the number of elements in a result of 2970/// a shuffle that is zero. 2971static 2972unsigned getNumOfConsecutiveZeros(SDValue Op, SDValue Mask, 2973 unsigned NumElems, bool Low, 2974 SelectionDAG &DAG) { 2975 unsigned NumZeros = 0; 2976 for (unsigned i = 0; i < NumElems; ++i) { 2977 unsigned Index = Low ? i : NumElems-i-1; 2978 SDValue Idx = Mask.getOperand(Index); 2979 if (Idx.getOpcode() == ISD::UNDEF) { 2980 ++NumZeros; 2981 continue; 2982 } 2983 SDValue Elt = DAG.getShuffleScalarElt(Op.getNode(), Index); 2984 if (Elt.getNode() && isZeroNode(Elt)) 2985 ++NumZeros; 2986 else 2987 break; 2988 } 2989 return NumZeros; 2990} 2991 2992/// isVectorShift - Returns true if the shuffle can be implemented as a 2993/// logical left or right shift of a vector. 2994static bool isVectorShift(SDValue Op, SDValue Mask, SelectionDAG &DAG, 2995 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { 2996 unsigned NumElems = Mask.getNumOperands(); 2997 2998 isLeft = true; 2999 unsigned NumZeros= getNumOfConsecutiveZeros(Op, Mask, NumElems, true, DAG); 3000 if (!NumZeros) { 3001 isLeft = false; 3002 NumZeros = getNumOfConsecutiveZeros(Op, Mask, NumElems, false, DAG); 3003 if (!NumZeros) 3004 return false; 3005 } 3006 3007 bool SeenV1 = false; 3008 bool SeenV2 = false; 3009 for (unsigned i = NumZeros; i < NumElems; ++i) { 3010 unsigned Val = isLeft ? (i - NumZeros) : i; 3011 SDValue Idx = Mask.getOperand(isLeft ? i : (i - NumZeros)); 3012 if (Idx.getOpcode() == ISD::UNDEF) 3013 continue; 3014 unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue(); 3015 if (Index < NumElems) 3016 SeenV1 = true; 3017 else { 3018 Index -= NumElems; 3019 SeenV2 = true; 3020 } 3021 if (Index != Val) 3022 return false; 3023 } 3024 if (SeenV1 && SeenV2) 3025 return false; 3026 3027 ShVal = SeenV1 ? Op.getOperand(0) : Op.getOperand(1); 3028 ShAmt = NumZeros; 3029 return true; 3030} 3031 3032 3033/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. 3034/// 3035static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros, 3036 unsigned NumNonZero, unsigned NumZero, 3037 SelectionDAG &DAG, TargetLowering &TLI) { 3038 if (NumNonZero > 8) 3039 return SDValue(); 3040 3041 SDValue V(0, 0); 3042 bool First = true; 3043 for (unsigned i = 0; i < 16; ++i) { 3044 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; 3045 if (ThisIsNonZero && First) { 3046 if (NumZero) 3047 V = getZeroVector(MVT::v8i16, true, DAG); 3048 else 3049 V = DAG.getNode(ISD::UNDEF, MVT::v8i16); 3050 First = false; 3051 } 3052 3053 if ((i & 1) != 0) { 3054 SDValue ThisElt(0, 0), LastElt(0, 0); 3055 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; 3056 if (LastIsNonZero) { 3057 LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1)); 3058 } 3059 if (ThisIsNonZero) { 3060 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i)); 3061 ThisElt = DAG.getNode(ISD::SHL, MVT::i16, 3062 ThisElt, DAG.getConstant(8, MVT::i8)); 3063 if (LastIsNonZero) 3064 ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt); 3065 } else 3066 ThisElt = LastElt; 3067 3068 if (ThisElt.getNode()) 3069 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt, 3070 DAG.getIntPtrConstant(i/2)); 3071 } 3072 } 3073 3074 return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V); 3075} 3076 3077/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16. 3078/// 3079static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros, 3080 unsigned NumNonZero, unsigned NumZero, 3081 SelectionDAG &DAG, TargetLowering &TLI) { 3082 if (NumNonZero > 4) 3083 return SDValue(); 3084 3085 SDValue V(0, 0); 3086 bool First = true; 3087 for (unsigned i = 0; i < 8; ++i) { 3088 bool isNonZero = (NonZeros & (1 << i)) != 0; 3089 if (isNonZero) { 3090 if (First) { 3091 if (NumZero) 3092 V = getZeroVector(MVT::v8i16, true, DAG); 3093 else 3094 V = DAG.getNode(ISD::UNDEF, MVT::v8i16); 3095 First = false; 3096 } 3097 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i), 3098 DAG.getIntPtrConstant(i)); 3099 } 3100 } 3101 3102 return V; 3103} 3104 3105/// getVShift - Return a vector logical shift node. 3106/// 3107static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp, 3108 unsigned NumBits, SelectionDAG &DAG, 3109 const TargetLowering &TLI) { 3110 bool isMMX = VT.getSizeInBits() == 64; 3111 MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64; 3112 unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL; 3113 SrcOp = DAG.getNode(ISD::BIT_CONVERT, ShVT, SrcOp); 3114 return DAG.getNode(ISD::BIT_CONVERT, VT, 3115 DAG.getNode(Opc, ShVT, SrcOp, 3116 DAG.getConstant(NumBits, TLI.getShiftAmountTy()))); 3117} 3118 3119SDValue 3120X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) { 3121 // All zero's are handled with pxor, all one's are handled with pcmpeqd. 3122 if (ISD::isBuildVectorAllZeros(Op.getNode()) 3123 || ISD::isBuildVectorAllOnes(Op.getNode())) { 3124 // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to 3125 // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are 3126 // eliminated on x86-32 hosts. 3127 if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32) 3128 return Op; 3129 3130 if (ISD::isBuildVectorAllOnes(Op.getNode())) 3131 return getOnesVector(Op.getValueType(), DAG); 3132 return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG); 3133 } 3134 3135 MVT VT = Op.getValueType(); 3136 MVT EVT = VT.getVectorElementType(); 3137 unsigned EVTBits = EVT.getSizeInBits(); 3138 3139 unsigned NumElems = Op.getNumOperands(); 3140 unsigned NumZero = 0; 3141 unsigned NumNonZero = 0; 3142 unsigned NonZeros = 0; 3143 bool IsAllConstants = true; 3144 SmallSet<SDValue, 8> Values; 3145 for (unsigned i = 0; i < NumElems; ++i) { 3146 SDValue Elt = Op.getOperand(i); 3147 if (Elt.getOpcode() == ISD::UNDEF) 3148 continue; 3149 Values.insert(Elt); 3150 if (Elt.getOpcode() != ISD::Constant && 3151 Elt.getOpcode() != ISD::ConstantFP) 3152 IsAllConstants = false; 3153 if (isZeroNode(Elt)) 3154 NumZero++; 3155 else { 3156 NonZeros |= (1 << i); 3157 NumNonZero++; 3158 } 3159 } 3160 3161 if (NumNonZero == 0) { 3162 // All undef vector. Return an UNDEF. All zero vectors were handled above. 3163 return DAG.getNode(ISD::UNDEF, VT); 3164 } 3165 3166 // Special case for single non-zero, non-undef, element. 3167 if (NumNonZero == 1 && NumElems <= 4) { 3168 unsigned Idx = CountTrailingZeros_32(NonZeros); 3169 SDValue Item = Op.getOperand(Idx); 3170 3171 // If this is an insertion of an i64 value on x86-32, and if the top bits of 3172 // the value are obviously zero, truncate the value to i32 and do the 3173 // insertion that way. Only do this if the value is non-constant or if the 3174 // value is a constant being inserted into element 0. It is cheaper to do 3175 // a constant pool load than it is to do a movd + shuffle. 3176 if (EVT == MVT::i64 && !Subtarget->is64Bit() && 3177 (!IsAllConstants || Idx == 0)) { 3178 if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) { 3179 // Handle MMX and SSE both. 3180 MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32; 3181 unsigned VecElts = VT == MVT::v2i64 ? 4 : 2; 3182 3183 // Truncate the value (which may itself be a constant) to i32, and 3184 // convert it to a vector with movd (S2V+shuffle to zero extend). 3185 Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item); 3186 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item); 3187 Item = getShuffleVectorZeroOrUndef(Item, 0, true, 3188 Subtarget->hasSSE2(), DAG); 3189 3190 // Now we have our 32-bit value zero extended in the low element of 3191 // a vector. If Idx != 0, swizzle it into place. 3192 if (Idx != 0) { 3193 SDValue Ops[] = { 3194 Item, DAG.getNode(ISD::UNDEF, Item.getValueType()), 3195 getSwapEltZeroMask(VecElts, Idx, DAG) 3196 }; 3197 Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3); 3198 } 3199 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item); 3200 } 3201 } 3202 3203 // If we have a constant or non-constant insertion into the low element of 3204 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into 3205 // the rest of the elements. This will be matched as movd/movq/movss/movsd 3206 // depending on what the source datatype is. Because we can only get here 3207 // when NumElems <= 4, this only needs to handle i32/f32/i64/f64. 3208 if (Idx == 0 && 3209 // Don't do this for i64 values on x86-32. 3210 (EVT != MVT::i64 || Subtarget->is64Bit())) { 3211 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item); 3212 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. 3213 return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, 3214 Subtarget->hasSSE2(), DAG); 3215 } 3216 3217 // Is it a vector logical left shift? 3218 if (NumElems == 2 && Idx == 1 && 3219 isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) { 3220 unsigned NumBits = VT.getSizeInBits(); 3221 return getVShift(true, VT, 3222 DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(1)), 3223 NumBits/2, DAG, *this); 3224 } 3225 3226 if (IsAllConstants) // Otherwise, it's better to do a constpool load. 3227 return SDValue(); 3228 3229 // Otherwise, if this is a vector with i32 or f32 elements, and the element 3230 // is a non-constant being inserted into an element other than the low one, 3231 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka 3232 // movd/movss) to move this into the low element, then shuffle it into 3233 // place. 3234 if (EVTBits == 32) { 3235 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item); 3236 3237 // Turn it into a shuffle of zero and zero-extended scalar to vector. 3238 Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, 3239 Subtarget->hasSSE2(), DAG); 3240 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 3241 MVT MaskEVT = MaskVT.getVectorElementType(); 3242 SmallVector<SDValue, 8> MaskVec; 3243 for (unsigned i = 0; i < NumElems; i++) 3244 MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT)); 3245 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3246 &MaskVec[0], MaskVec.size()); 3247 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item, 3248 DAG.getNode(ISD::UNDEF, VT), Mask); 3249 } 3250 } 3251 3252 // Splat is obviously ok. Let legalizer expand it to a shuffle. 3253 if (Values.size() == 1) 3254 return SDValue(); 3255 3256 // A vector full of immediates; various special cases are already 3257 // handled, so this is best done with a single constant-pool load. 3258 if (IsAllConstants) 3259 return SDValue(); 3260 3261 // Let legalizer expand 2-wide build_vectors. 3262 if (EVTBits == 64) { 3263 if (NumNonZero == 1) { 3264 // One half is zero or undef. 3265 unsigned Idx = CountTrailingZeros_32(NonZeros); 3266 SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, 3267 Op.getOperand(Idx)); 3268 return getShuffleVectorZeroOrUndef(V2, Idx, true, 3269 Subtarget->hasSSE2(), DAG); 3270 } 3271 return SDValue(); 3272 } 3273 3274 // If element VT is < 32 bits, convert it to inserts into a zero vector. 3275 if (EVTBits == 8 && NumElems == 16) { 3276 SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG, 3277 *this); 3278 if (V.getNode()) return V; 3279 } 3280 3281 if (EVTBits == 16 && NumElems == 8) { 3282 SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG, 3283 *this); 3284 if (V.getNode()) return V; 3285 } 3286 3287 // If element VT is == 32 bits, turn it into a number of shuffles. 3288 SmallVector<SDValue, 8> V; 3289 V.resize(NumElems); 3290 if (NumElems == 4 && NumZero > 0) { 3291 for (unsigned i = 0; i < 4; ++i) { 3292 bool isZero = !(NonZeros & (1 << i)); 3293 if (isZero) 3294 V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG); 3295 else 3296 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); 3297 } 3298 3299 for (unsigned i = 0; i < 2; ++i) { 3300 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { 3301 default: break; 3302 case 0: 3303 V[i] = V[i*2]; // Must be a zero vector. 3304 break; 3305 case 1: 3306 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2], 3307 getMOVLMask(NumElems, DAG)); 3308 break; 3309 case 2: 3310 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], 3311 getMOVLMask(NumElems, DAG)); 3312 break; 3313 case 3: 3314 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], 3315 getUnpacklMask(NumElems, DAG)); 3316 break; 3317 } 3318 } 3319 3320 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 3321 MVT EVT = MaskVT.getVectorElementType(); 3322 SmallVector<SDValue, 8> MaskVec; 3323 bool Reverse = (NonZeros & 0x3) == 2; 3324 for (unsigned i = 0; i < 2; ++i) 3325 if (Reverse) 3326 MaskVec.push_back(DAG.getConstant(1-i, EVT)); 3327 else 3328 MaskVec.push_back(DAG.getConstant(i, EVT)); 3329 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2; 3330 for (unsigned i = 0; i < 2; ++i) 3331 if (Reverse) 3332 MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT)); 3333 else 3334 MaskVec.push_back(DAG.getConstant(i+NumElems, EVT)); 3335 SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3336 &MaskVec[0], MaskVec.size()); 3337 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask); 3338 } 3339 3340 if (Values.size() > 2) { 3341 // Expand into a number of unpckl*. 3342 // e.g. for v4f32 3343 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0> 3344 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1> 3345 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0> 3346 SDValue UnpckMask = getUnpacklMask(NumElems, DAG); 3347 for (unsigned i = 0; i < NumElems; ++i) 3348 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); 3349 NumElems >>= 1; 3350 while (NumElems != 0) { 3351 for (unsigned i = 0; i < NumElems; ++i) 3352 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems], 3353 UnpckMask); 3354 NumElems >>= 1; 3355 } 3356 return V[0]; 3357 } 3358 3359 return SDValue(); 3360} 3361 3362static 3363SDValue LowerVECTOR_SHUFFLEv8i16(SDValue V1, SDValue V2, 3364 SDValue PermMask, SelectionDAG &DAG, 3365 TargetLowering &TLI) { 3366 SDValue NewV; 3367 MVT MaskVT = MVT::getIntVectorWithNumElements(8); 3368 MVT MaskEVT = MaskVT.getVectorElementType(); 3369 MVT PtrVT = TLI.getPointerTy(); 3370 SmallVector<SDValue, 8> MaskElts(PermMask.getNode()->op_begin(), 3371 PermMask.getNode()->op_end()); 3372 3373 // First record which half of which vector the low elements come from. 3374 SmallVector<unsigned, 4> LowQuad(4); 3375 for (unsigned i = 0; i < 4; ++i) { 3376 SDValue Elt = MaskElts[i]; 3377 if (Elt.getOpcode() == ISD::UNDEF) 3378 continue; 3379 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue(); 3380 int QuadIdx = EltIdx / 4; 3381 ++LowQuad[QuadIdx]; 3382 } 3383 3384 int BestLowQuad = -1; 3385 unsigned MaxQuad = 1; 3386 for (unsigned i = 0; i < 4; ++i) { 3387 if (LowQuad[i] > MaxQuad) { 3388 BestLowQuad = i; 3389 MaxQuad = LowQuad[i]; 3390 } 3391 } 3392 3393 // Record which half of which vector the high elements come from. 3394 SmallVector<unsigned, 4> HighQuad(4); 3395 for (unsigned i = 4; i < 8; ++i) { 3396 SDValue Elt = MaskElts[i]; 3397 if (Elt.getOpcode() == ISD::UNDEF) 3398 continue; 3399 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue(); 3400 int QuadIdx = EltIdx / 4; 3401 ++HighQuad[QuadIdx]; 3402 } 3403 3404 int BestHighQuad = -1; 3405 MaxQuad = 1; 3406 for (unsigned i = 0; i < 4; ++i) { 3407 if (HighQuad[i] > MaxQuad) { 3408 BestHighQuad = i; 3409 MaxQuad = HighQuad[i]; 3410 } 3411 } 3412 3413 // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it. 3414 if (BestLowQuad != -1 || BestHighQuad != -1) { 3415 // First sort the 4 chunks in order using shufpd. 3416 SmallVector<SDValue, 8> MaskVec; 3417 3418 if (BestLowQuad != -1) 3419 MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32)); 3420 else 3421 MaskVec.push_back(DAG.getConstant(0, MVT::i32)); 3422 3423 if (BestHighQuad != -1) 3424 MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32)); 3425 else 3426 MaskVec.push_back(DAG.getConstant(1, MVT::i32)); 3427 3428 SDValue Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2); 3429 NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64, 3430 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1), 3431 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask); 3432 NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV); 3433 3434 // Now sort high and low parts separately. 3435 BitVector InOrder(8); 3436 if (BestLowQuad != -1) { 3437 // Sort lower half in order using PSHUFLW. 3438 MaskVec.clear(); 3439 bool AnyOutOrder = false; 3440 3441 for (unsigned i = 0; i != 4; ++i) { 3442 SDValue Elt = MaskElts[i]; 3443 if (Elt.getOpcode() == ISD::UNDEF) { 3444 MaskVec.push_back(Elt); 3445 InOrder.set(i); 3446 } else { 3447 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue(); 3448 if (EltIdx != i) 3449 AnyOutOrder = true; 3450 3451 MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT)); 3452 3453 // If this element is in the right place after this shuffle, then 3454 // remember it. 3455 if ((int)(EltIdx / 4) == BestLowQuad) 3456 InOrder.set(i); 3457 } 3458 } 3459 if (AnyOutOrder) { 3460 for (unsigned i = 4; i != 8; ++i) 3461 MaskVec.push_back(DAG.getConstant(i, MaskEVT)); 3462 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8); 3463 NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask); 3464 } 3465 } 3466 3467 if (BestHighQuad != -1) { 3468 // Sort high half in order using PSHUFHW if possible. 3469 MaskVec.clear(); 3470 3471 for (unsigned i = 0; i != 4; ++i) 3472 MaskVec.push_back(DAG.getConstant(i, MaskEVT)); 3473 3474 bool AnyOutOrder = false; 3475 for (unsigned i = 4; i != 8; ++i) { 3476 SDValue Elt = MaskElts[i]; 3477 if (Elt.getOpcode() == ISD::UNDEF) { 3478 MaskVec.push_back(Elt); 3479 InOrder.set(i); 3480 } else { 3481 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue(); 3482 if (EltIdx != i) 3483 AnyOutOrder = true; 3484 3485 MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT)); 3486 3487 // If this element is in the right place after this shuffle, then 3488 // remember it. 3489 if ((int)(EltIdx / 4) == BestHighQuad) 3490 InOrder.set(i); 3491 } 3492 } 3493 3494 if (AnyOutOrder) { 3495 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8); 3496 NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask); 3497 } 3498 } 3499 3500 // The other elements are put in the right place using pextrw and pinsrw. 3501 for (unsigned i = 0; i != 8; ++i) { 3502 if (InOrder[i]) 3503 continue; 3504 SDValue Elt = MaskElts[i]; 3505 if (Elt.getOpcode() == ISD::UNDEF) 3506 continue; 3507 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue(); 3508 SDValue ExtOp = (EltIdx < 8) 3509 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1, 3510 DAG.getConstant(EltIdx, PtrVT)) 3511 : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2, 3512 DAG.getConstant(EltIdx - 8, PtrVT)); 3513 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp, 3514 DAG.getConstant(i, PtrVT)); 3515 } 3516 3517 return NewV; 3518 } 3519 3520 // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use as 3521 // few as possible. First, let's find out how many elements are already in the 3522 // right order. 3523 unsigned V1InOrder = 0; 3524 unsigned V1FromV1 = 0; 3525 unsigned V2InOrder = 0; 3526 unsigned V2FromV2 = 0; 3527 SmallVector<SDValue, 8> V1Elts; 3528 SmallVector<SDValue, 8> V2Elts; 3529 for (unsigned i = 0; i < 8; ++i) { 3530 SDValue Elt = MaskElts[i]; 3531 if (Elt.getOpcode() == ISD::UNDEF) { 3532 V1Elts.push_back(Elt); 3533 V2Elts.push_back(Elt); 3534 ++V1InOrder; 3535 ++V2InOrder; 3536 continue; 3537 } 3538 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue(); 3539 if (EltIdx == i) { 3540 V1Elts.push_back(Elt); 3541 V2Elts.push_back(DAG.getConstant(i+8, MaskEVT)); 3542 ++V1InOrder; 3543 } else if (EltIdx == i+8) { 3544 V1Elts.push_back(Elt); 3545 V2Elts.push_back(DAG.getConstant(i, MaskEVT)); 3546 ++V2InOrder; 3547 } else if (EltIdx < 8) { 3548 V1Elts.push_back(Elt); 3549 ++V1FromV1; 3550 } else { 3551 V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT)); 3552 ++V2FromV2; 3553 } 3554 } 3555 3556 if (V2InOrder > V1InOrder) { 3557 PermMask = CommuteVectorShuffleMask(PermMask, DAG); 3558 std::swap(V1, V2); 3559 std::swap(V1Elts, V2Elts); 3560 std::swap(V1FromV1, V2FromV2); 3561 } 3562 3563 if ((V1FromV1 + V1InOrder) != 8) { 3564 // Some elements are from V2. 3565 if (V1FromV1) { 3566 // If there are elements that are from V1 but out of place, 3567 // then first sort them in place 3568 SmallVector<SDValue, 8> MaskVec; 3569 for (unsigned i = 0; i < 8; ++i) { 3570 SDValue Elt = V1Elts[i]; 3571 if (Elt.getOpcode() == ISD::UNDEF) { 3572 MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); 3573 continue; 3574 } 3575 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue(); 3576 if (EltIdx >= 8) 3577 MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); 3578 else 3579 MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT)); 3580 } 3581 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8); 3582 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask); 3583 } 3584 3585 NewV = V1; 3586 for (unsigned i = 0; i < 8; ++i) { 3587 SDValue Elt = V1Elts[i]; 3588 if (Elt.getOpcode() == ISD::UNDEF) 3589 continue; 3590 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue(); 3591 if (EltIdx < 8) 3592 continue; 3593 SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2, 3594 DAG.getConstant(EltIdx - 8, PtrVT)); 3595 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp, 3596 DAG.getConstant(i, PtrVT)); 3597 } 3598 return NewV; 3599 } else { 3600 // All elements are from V1. 3601 NewV = V1; 3602 for (unsigned i = 0; i < 8; ++i) { 3603 SDValue Elt = V1Elts[i]; 3604 if (Elt.getOpcode() == ISD::UNDEF) 3605 continue; 3606 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue(); 3607 SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1, 3608 DAG.getConstant(EltIdx, PtrVT)); 3609 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp, 3610 DAG.getConstant(i, PtrVT)); 3611 } 3612 return NewV; 3613 } 3614} 3615 3616/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide 3617/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be 3618/// done when every pair / quad of shuffle mask elements point to elements in 3619/// the right sequence. e.g. 3620/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15> 3621static 3622SDValue RewriteAsNarrowerShuffle(SDValue V1, SDValue V2, 3623 MVT VT, 3624 SDValue PermMask, SelectionDAG &DAG, 3625 TargetLowering &TLI) { 3626 unsigned NumElems = PermMask.getNumOperands(); 3627 unsigned NewWidth = (NumElems == 4) ? 2 : 4; 3628 MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth); 3629 MVT MaskEltVT = MaskVT.getVectorElementType(); 3630 MVT NewVT = MaskVT; 3631 switch (VT.getSimpleVT()) { 3632 default: assert(false && "Unexpected!"); 3633 case MVT::v4f32: NewVT = MVT::v2f64; break; 3634 case MVT::v4i32: NewVT = MVT::v2i64; break; 3635 case MVT::v8i16: NewVT = MVT::v4i32; break; 3636 case MVT::v16i8: NewVT = MVT::v4i32; break; 3637 } 3638 3639 if (NewWidth == 2) { 3640 if (VT.isInteger()) 3641 NewVT = MVT::v2i64; 3642 else 3643 NewVT = MVT::v2f64; 3644 } 3645 unsigned Scale = NumElems / NewWidth; 3646 SmallVector<SDValue, 8> MaskVec; 3647 for (unsigned i = 0; i < NumElems; i += Scale) { 3648 unsigned StartIdx = ~0U; 3649 for (unsigned j = 0; j < Scale; ++j) { 3650 SDValue Elt = PermMask.getOperand(i+j); 3651 if (Elt.getOpcode() == ISD::UNDEF) 3652 continue; 3653 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue(); 3654 if (StartIdx == ~0U) 3655 StartIdx = EltIdx - (EltIdx % Scale); 3656 if (EltIdx != StartIdx + j) 3657 return SDValue(); 3658 } 3659 if (StartIdx == ~0U) 3660 MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEltVT)); 3661 else 3662 MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MaskEltVT)); 3663 } 3664 3665 V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1); 3666 V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2); 3667 return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2, 3668 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3669 &MaskVec[0], MaskVec.size())); 3670} 3671 3672/// getVZextMovL - Return a zero-extending vector move low node. 3673/// 3674static SDValue getVZextMovL(MVT VT, MVT OpVT, 3675 SDValue SrcOp, SelectionDAG &DAG, 3676 const X86Subtarget *Subtarget) { 3677 if (VT == MVT::v2f64 || VT == MVT::v4f32) { 3678 LoadSDNode *LD = NULL; 3679 if (!isScalarLoadToVector(SrcOp.getNode(), &LD)) 3680 LD = dyn_cast<LoadSDNode>(SrcOp); 3681 if (!LD) { 3682 // movssrr and movsdrr do not clear top bits. Try to use movd, movq 3683 // instead. 3684 MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32; 3685 if ((EVT != MVT::i64 || Subtarget->is64Bit()) && 3686 SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR && 3687 SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT && 3688 SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) { 3689 // PR2108 3690 OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32; 3691 return DAG.getNode(ISD::BIT_CONVERT, VT, 3692 DAG.getNode(X86ISD::VZEXT_MOVL, OpVT, 3693 DAG.getNode(ISD::SCALAR_TO_VECTOR, OpVT, 3694 SrcOp.getOperand(0) 3695 .getOperand(0)))); 3696 } 3697 } 3698 } 3699 3700 return DAG.getNode(ISD::BIT_CONVERT, VT, 3701 DAG.getNode(X86ISD::VZEXT_MOVL, OpVT, 3702 DAG.getNode(ISD::BIT_CONVERT, OpVT, SrcOp))); 3703} 3704 3705/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of 3706/// shuffles. 3707static SDValue 3708LowerVECTOR_SHUFFLE_4wide(SDValue V1, SDValue V2, 3709 SDValue PermMask, MVT VT, SelectionDAG &DAG) { 3710 MVT MaskVT = PermMask.getValueType(); 3711 MVT MaskEVT = MaskVT.getVectorElementType(); 3712 SmallVector<std::pair<int, int>, 8> Locs; 3713 Locs.resize(4); 3714 SmallVector<SDValue, 8> Mask1(4, DAG.getNode(ISD::UNDEF, MaskEVT)); 3715 unsigned NumHi = 0; 3716 unsigned NumLo = 0; 3717 for (unsigned i = 0; i != 4; ++i) { 3718 SDValue Elt = PermMask.getOperand(i); 3719 if (Elt.getOpcode() == ISD::UNDEF) { 3720 Locs[i] = std::make_pair(-1, -1); 3721 } else { 3722 unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue(); 3723 assert(Val < 8 && "Invalid VECTOR_SHUFFLE index!"); 3724 if (Val < 4) { 3725 Locs[i] = std::make_pair(0, NumLo); 3726 Mask1[NumLo] = Elt; 3727 NumLo++; 3728 } else { 3729 Locs[i] = std::make_pair(1, NumHi); 3730 if (2+NumHi < 4) 3731 Mask1[2+NumHi] = Elt; 3732 NumHi++; 3733 } 3734 } 3735 } 3736 3737 if (NumLo <= 2 && NumHi <= 2) { 3738 // If no more than two elements come from either vector. This can be 3739 // implemented with two shuffles. First shuffle gather the elements. 3740 // The second shuffle, which takes the first shuffle as both of its 3741 // vector operands, put the elements into the right order. 3742 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, 3743 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3744 &Mask1[0], Mask1.size())); 3745 3746 SmallVector<SDValue, 8> Mask2(4, DAG.getNode(ISD::UNDEF, MaskEVT)); 3747 for (unsigned i = 0; i != 4; ++i) { 3748 if (Locs[i].first == -1) 3749 continue; 3750 else { 3751 unsigned Idx = (i < 2) ? 0 : 4; 3752 Idx += Locs[i].first * 2 + Locs[i].second; 3753 Mask2[i] = DAG.getConstant(Idx, MaskEVT); 3754 } 3755 } 3756 3757 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, 3758 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3759 &Mask2[0], Mask2.size())); 3760 } else if (NumLo == 3 || NumHi == 3) { 3761 // Otherwise, we must have three elements from one vector, call it X, and 3762 // one element from the other, call it Y. First, use a shufps to build an 3763 // intermediate vector with the one element from Y and the element from X 3764 // that will be in the same half in the final destination (the indexes don't 3765 // matter). Then, use a shufps to build the final vector, taking the half 3766 // containing the element from Y from the intermediate, and the other half 3767 // from X. 3768 if (NumHi == 3) { 3769 // Normalize it so the 3 elements come from V1. 3770 PermMask = CommuteVectorShuffleMask(PermMask, DAG); 3771 std::swap(V1, V2); 3772 } 3773 3774 // Find the element from V2. 3775 unsigned HiIndex; 3776 for (HiIndex = 0; HiIndex < 3; ++HiIndex) { 3777 SDValue Elt = PermMask.getOperand(HiIndex); 3778 if (Elt.getOpcode() == ISD::UNDEF) 3779 continue; 3780 unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue(); 3781 if (Val >= 4) 3782 break; 3783 } 3784 3785 Mask1[0] = PermMask.getOperand(HiIndex); 3786 Mask1[1] = DAG.getNode(ISD::UNDEF, MaskEVT); 3787 Mask1[2] = PermMask.getOperand(HiIndex^1); 3788 Mask1[3] = DAG.getNode(ISD::UNDEF, MaskEVT); 3789 V2 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, 3790 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4)); 3791 3792 if (HiIndex >= 2) { 3793 Mask1[0] = PermMask.getOperand(0); 3794 Mask1[1] = PermMask.getOperand(1); 3795 Mask1[2] = DAG.getConstant(HiIndex & 1 ? 6 : 4, MaskEVT); 3796 Mask1[3] = DAG.getConstant(HiIndex & 1 ? 4 : 6, MaskEVT); 3797 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, 3798 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4)); 3799 } else { 3800 Mask1[0] = DAG.getConstant(HiIndex & 1 ? 2 : 0, MaskEVT); 3801 Mask1[1] = DAG.getConstant(HiIndex & 1 ? 0 : 2, MaskEVT); 3802 Mask1[2] = PermMask.getOperand(2); 3803 Mask1[3] = PermMask.getOperand(3); 3804 if (Mask1[2].getOpcode() != ISD::UNDEF) 3805 Mask1[2] = 3806 DAG.getConstant(cast<ConstantSDNode>(Mask1[2])->getZExtValue()+4, 3807 MaskEVT); 3808 if (Mask1[3].getOpcode() != ISD::UNDEF) 3809 Mask1[3] = 3810 DAG.getConstant(cast<ConstantSDNode>(Mask1[3])->getZExtValue()+4, 3811 MaskEVT); 3812 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V2, V1, 3813 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4)); 3814 } 3815 } 3816 3817 // Break it into (shuffle shuffle_hi, shuffle_lo). 3818 Locs.clear(); 3819 SmallVector<SDValue,8> LoMask(4, DAG.getNode(ISD::UNDEF, MaskEVT)); 3820 SmallVector<SDValue,8> HiMask(4, DAG.getNode(ISD::UNDEF, MaskEVT)); 3821 SmallVector<SDValue,8> *MaskPtr = &LoMask; 3822 unsigned MaskIdx = 0; 3823 unsigned LoIdx = 0; 3824 unsigned HiIdx = 2; 3825 for (unsigned i = 0; i != 4; ++i) { 3826 if (i == 2) { 3827 MaskPtr = &HiMask; 3828 MaskIdx = 1; 3829 LoIdx = 0; 3830 HiIdx = 2; 3831 } 3832 SDValue Elt = PermMask.getOperand(i); 3833 if (Elt.getOpcode() == ISD::UNDEF) { 3834 Locs[i] = std::make_pair(-1, -1); 3835 } else if (cast<ConstantSDNode>(Elt)->getZExtValue() < 4) { 3836 Locs[i] = std::make_pair(MaskIdx, LoIdx); 3837 (*MaskPtr)[LoIdx] = Elt; 3838 LoIdx++; 3839 } else { 3840 Locs[i] = std::make_pair(MaskIdx, HiIdx); 3841 (*MaskPtr)[HiIdx] = Elt; 3842 HiIdx++; 3843 } 3844 } 3845 3846 SDValue LoShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, 3847 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3848 &LoMask[0], LoMask.size())); 3849 SDValue HiShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, 3850 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3851 &HiMask[0], HiMask.size())); 3852 SmallVector<SDValue, 8> MaskOps; 3853 for (unsigned i = 0; i != 4; ++i) { 3854 if (Locs[i].first == -1) { 3855 MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); 3856 } else { 3857 unsigned Idx = Locs[i].first * 4 + Locs[i].second; 3858 MaskOps.push_back(DAG.getConstant(Idx, MaskEVT)); 3859 } 3860 } 3861 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle, 3862 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3863 &MaskOps[0], MaskOps.size())); 3864} 3865 3866SDValue 3867X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) { 3868 SDValue V1 = Op.getOperand(0); 3869 SDValue V2 = Op.getOperand(1); 3870 SDValue PermMask = Op.getOperand(2); 3871 MVT VT = Op.getValueType(); 3872 unsigned NumElems = PermMask.getNumOperands(); 3873 bool isMMX = VT.getSizeInBits() == 64; 3874 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; 3875 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; 3876 bool V1IsSplat = false; 3877 bool V2IsSplat = false; 3878 3879 if (isUndefShuffle(Op.getNode())) 3880 return DAG.getNode(ISD::UNDEF, VT); 3881 3882 if (isZeroShuffle(Op.getNode())) 3883 return getZeroVector(VT, Subtarget->hasSSE2(), DAG); 3884 3885 if (isIdentityMask(PermMask.getNode())) 3886 return V1; 3887 else if (isIdentityMask(PermMask.getNode(), true)) 3888 return V2; 3889 3890 if (isSplatMask(PermMask.getNode())) { 3891 if (isMMX || NumElems < 4) return Op; 3892 // Promote it to a v4{if}32 splat. 3893 return PromoteSplat(Op, DAG, Subtarget->hasSSE2()); 3894 } 3895 3896 // If the shuffle can be profitably rewritten as a narrower shuffle, then 3897 // do it! 3898 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 3899 SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this); 3900 if (NewOp.getNode()) 3901 return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG)); 3902 } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) { 3903 // FIXME: Figure out a cleaner way to do this. 3904 // Try to make use of movq to zero out the top part. 3905 if (ISD::isBuildVectorAllZeros(V2.getNode())) { 3906 SDValue NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, 3907 DAG, *this); 3908 if (NewOp.getNode()) { 3909 SDValue NewV1 = NewOp.getOperand(0); 3910 SDValue NewV2 = NewOp.getOperand(1); 3911 SDValue NewMask = NewOp.getOperand(2); 3912 if (isCommutedMOVL(NewMask.getNode(), true, false)) { 3913 NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG); 3914 return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget); 3915 } 3916 } 3917 } else if (ISD::isBuildVectorAllZeros(V1.getNode())) { 3918 SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, 3919 DAG, *this); 3920 if (NewOp.getNode() && X86::isMOVLMask(NewOp.getOperand(2).getNode())) 3921 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1), 3922 DAG, Subtarget); 3923 } 3924 } 3925 3926 // Check if this can be converted into a logical shift. 3927 bool isLeft = false; 3928 unsigned ShAmt = 0; 3929 SDValue ShVal; 3930 bool isShift = isVectorShift(Op, PermMask, DAG, isLeft, ShVal, ShAmt); 3931 if (isShift && ShVal.hasOneUse()) { 3932 // If the shifted value has multiple uses, it may be cheaper to use 3933 // v_set0 + movlhps or movhlps, etc. 3934 MVT EVT = VT.getVectorElementType(); 3935 ShAmt *= EVT.getSizeInBits(); 3936 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this); 3937 } 3938 3939 if (X86::isMOVLMask(PermMask.getNode())) { 3940 if (V1IsUndef) 3941 return V2; 3942 if (ISD::isBuildVectorAllZeros(V1.getNode())) 3943 return getVZextMovL(VT, VT, V2, DAG, Subtarget); 3944 if (!isMMX) 3945 return Op; 3946 } 3947 3948 if (!isMMX && (X86::isMOVSHDUPMask(PermMask.getNode()) || 3949 X86::isMOVSLDUPMask(PermMask.getNode()) || 3950 X86::isMOVHLPSMask(PermMask.getNode()) || 3951 X86::isMOVHPMask(PermMask.getNode()) || 3952 X86::isMOVLPMask(PermMask.getNode()))) 3953 return Op; 3954 3955 if (ShouldXformToMOVHLPS(PermMask.getNode()) || 3956 ShouldXformToMOVLP(V1.getNode(), V2.getNode(), PermMask.getNode())) 3957 return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); 3958 3959 if (isShift) { 3960 // No better options. Use a vshl / vsrl. 3961 MVT EVT = VT.getVectorElementType(); 3962 ShAmt *= EVT.getSizeInBits(); 3963 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this); 3964 } 3965 3966 bool Commuted = false; 3967 // FIXME: This should also accept a bitcast of a splat? Be careful, not 3968 // 1,1,1,1 -> v8i16 though. 3969 V1IsSplat = isSplatVector(V1.getNode()); 3970 V2IsSplat = isSplatVector(V2.getNode()); 3971 3972 // Canonicalize the splat or undef, if present, to be on the RHS. 3973 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) { 3974 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); 3975 std::swap(V1IsSplat, V2IsSplat); 3976 std::swap(V1IsUndef, V2IsUndef); 3977 Commuted = true; 3978 } 3979 3980 // FIXME: Figure out a cleaner way to do this. 3981 if (isCommutedMOVL(PermMask.getNode(), V2IsSplat, V2IsUndef)) { 3982 if (V2IsUndef) return V1; 3983 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); 3984 if (V2IsSplat) { 3985 // V2 is a splat, so the mask may be malformed. That is, it may point 3986 // to any V2 element. The instruction selectior won't like this. Get 3987 // a corrected mask and commute to form a proper MOVS{S|D}. 3988 SDValue NewMask = getMOVLMask(NumElems, DAG); 3989 if (NewMask.getNode() != PermMask.getNode()) 3990 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); 3991 } 3992 return Op; 3993 } 3994 3995 if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) || 3996 X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) || 3997 X86::isUNPCKLMask(PermMask.getNode()) || 3998 X86::isUNPCKHMask(PermMask.getNode())) 3999 return Op; 4000 4001 if (V2IsSplat) { 4002 // Normalize mask so all entries that point to V2 points to its first 4003 // element then try to match unpck{h|l} again. If match, return a 4004 // new vector_shuffle with the corrected mask. 4005 SDValue NewMask = NormalizeMask(PermMask, DAG); 4006 if (NewMask.getNode() != PermMask.getNode()) { 4007 if (X86::isUNPCKLMask(PermMask.getNode(), true)) { 4008 SDValue NewMask = getUnpacklMask(NumElems, DAG); 4009 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); 4010 } else if (X86::isUNPCKHMask(PermMask.getNode(), true)) { 4011 SDValue NewMask = getUnpackhMask(NumElems, DAG); 4012 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); 4013 } 4014 } 4015 } 4016 4017 // Normalize the node to match x86 shuffle ops if needed 4018 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.getNode())) 4019 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); 4020 4021 if (Commuted) { 4022 // Commute is back and try unpck* again. 4023 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); 4024 if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) || 4025 X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) || 4026 X86::isUNPCKLMask(PermMask.getNode()) || 4027 X86::isUNPCKHMask(PermMask.getNode())) 4028 return Op; 4029 } 4030 4031 // Try PSHUF* first, then SHUFP*. 4032 // MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically 4033 // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented. 4034 if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.getNode())) { 4035 if (V2.getOpcode() != ISD::UNDEF) 4036 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, 4037 DAG.getNode(ISD::UNDEF, VT), PermMask); 4038 return Op; 4039 } 4040 4041 if (!isMMX) { 4042 if (Subtarget->hasSSE2() && 4043 (X86::isPSHUFDMask(PermMask.getNode()) || 4044 X86::isPSHUFHWMask(PermMask.getNode()) || 4045 X86::isPSHUFLWMask(PermMask.getNode()))) { 4046 MVT RVT = VT; 4047 if (VT == MVT::v4f32) { 4048 RVT = MVT::v4i32; 4049 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, 4050 DAG.getNode(ISD::BIT_CONVERT, RVT, V1), 4051 DAG.getNode(ISD::UNDEF, RVT), PermMask); 4052 } else if (V2.getOpcode() != ISD::UNDEF) 4053 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, V1, 4054 DAG.getNode(ISD::UNDEF, RVT), PermMask); 4055 if (RVT != VT) 4056 Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op); 4057 return Op; 4058 } 4059 4060 // Binary or unary shufps. 4061 if (X86::isSHUFPMask(PermMask.getNode()) || 4062 (V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.getNode()))) 4063 return Op; 4064 } 4065 4066 // Handle v8i16 specifically since SSE can do byte extraction and insertion. 4067 if (VT == MVT::v8i16) { 4068 SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this); 4069 if (NewOp.getNode()) 4070 return NewOp; 4071 } 4072 4073 // Handle all 4 wide cases with a number of shuffles except for MMX. 4074 if (NumElems == 4 && !isMMX) 4075 return LowerVECTOR_SHUFFLE_4wide(V1, V2, PermMask, VT, DAG); 4076 4077 return SDValue(); 4078} 4079 4080SDValue 4081X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, 4082 SelectionDAG &DAG) { 4083 MVT VT = Op.getValueType(); 4084 if (VT.getSizeInBits() == 8) { 4085 SDValue Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32, 4086 Op.getOperand(0), Op.getOperand(1)); 4087 SDValue Assert = DAG.getNode(ISD::AssertZext, MVT::i32, Extract, 4088 DAG.getValueType(VT)); 4089 return DAG.getNode(ISD::TRUNCATE, VT, Assert); 4090 } else if (VT.getSizeInBits() == 16) { 4091 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32, 4092 Op.getOperand(0), Op.getOperand(1)); 4093 SDValue Assert = DAG.getNode(ISD::AssertZext, MVT::i32, Extract, 4094 DAG.getValueType(VT)); 4095 return DAG.getNode(ISD::TRUNCATE, VT, Assert); 4096 } else if (VT == MVT::f32) { 4097 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy 4098 // the result back to FR32 register. It's only worth matching if the 4099 // result has a single use which is a store or a bitcast to i32. 4100 if (!Op.hasOneUse()) 4101 return SDValue(); 4102 SDNode *User = *Op.getNode()->use_begin(); 4103 if (User->getOpcode() != ISD::STORE && 4104 (User->getOpcode() != ISD::BIT_CONVERT || 4105 User->getValueType(0) != MVT::i32)) 4106 return SDValue(); 4107 SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, 4108 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Op.getOperand(0)), 4109 Op.getOperand(1)); 4110 return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Extract); 4111 } 4112 return SDValue(); 4113} 4114 4115 4116SDValue 4117X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { 4118 if (!isa<ConstantSDNode>(Op.getOperand(1))) 4119 return SDValue(); 4120 4121 if (Subtarget->hasSSE41()) { 4122 SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG); 4123 if (Res.getNode()) 4124 return Res; 4125 } 4126 4127 MVT VT = Op.getValueType(); 4128 // TODO: handle v16i8. 4129 if (VT.getSizeInBits() == 16) { 4130 SDValue Vec = Op.getOperand(0); 4131 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4132 if (Idx == 0) 4133 return DAG.getNode(ISD::TRUNCATE, MVT::i16, 4134 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, 4135 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec), 4136 Op.getOperand(1))); 4137 // Transform it so it match pextrw which produces a 32-bit result. 4138 MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1); 4139 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, EVT, 4140 Op.getOperand(0), Op.getOperand(1)); 4141 SDValue Assert = DAG.getNode(ISD::AssertZext, EVT, Extract, 4142 DAG.getValueType(VT)); 4143 return DAG.getNode(ISD::TRUNCATE, VT, Assert); 4144 } else if (VT.getSizeInBits() == 32) { 4145 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4146 if (Idx == 0) 4147 return Op; 4148 // SHUFPS the element to the lowest double word, then movss. 4149 MVT MaskVT = MVT::getIntVectorWithNumElements(4); 4150 SmallVector<SDValue, 8> IdxVec; 4151 IdxVec. 4152 push_back(DAG.getConstant(Idx, MaskVT.getVectorElementType())); 4153 IdxVec. 4154 push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType())); 4155 IdxVec. 4156 push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType())); 4157 IdxVec. 4158 push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType())); 4159 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4160 &IdxVec[0], IdxVec.size()); 4161 SDValue Vec = Op.getOperand(0); 4162 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), 4163 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask); 4164 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, 4165 DAG.getIntPtrConstant(0)); 4166 } else if (VT.getSizeInBits() == 64) { 4167 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b 4168 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught 4169 // to match extract_elt for f64. 4170 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4171 if (Idx == 0) 4172 return Op; 4173 4174 // UNPCKHPD the element to the lowest double word, then movsd. 4175 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored 4176 // to a f64mem, the whole operation is folded into a single MOVHPDmr. 4177 MVT MaskVT = MVT::getIntVectorWithNumElements(2); 4178 SmallVector<SDValue, 8> IdxVec; 4179 IdxVec.push_back(DAG.getConstant(1, MaskVT.getVectorElementType())); 4180 IdxVec. 4181 push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType())); 4182 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4183 &IdxVec[0], IdxVec.size()); 4184 SDValue Vec = Op.getOperand(0); 4185 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), 4186 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask); 4187 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, 4188 DAG.getIntPtrConstant(0)); 4189 } 4190 4191 return SDValue(); 4192} 4193 4194SDValue 4195X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){ 4196 MVT VT = Op.getValueType(); 4197 MVT EVT = VT.getVectorElementType(); 4198 4199 SDValue N0 = Op.getOperand(0); 4200 SDValue N1 = Op.getOperand(1); 4201 SDValue N2 = Op.getOperand(2); 4202 4203 if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) && 4204 isa<ConstantSDNode>(N2)) { 4205 unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB 4206 : X86ISD::PINSRW; 4207 // Transform it so it match pinsr{b,w} which expects a GR32 as its second 4208 // argument. 4209 if (N1.getValueType() != MVT::i32) 4210 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1); 4211 if (N2.getValueType() != MVT::i32) 4212 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); 4213 return DAG.getNode(Opc, VT, N0, N1, N2); 4214 } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) { 4215 // Bits [7:6] of the constant are the source select. This will always be 4216 // zero here. The DAG Combiner may combine an extract_elt index into these 4217 // bits. For example (insert (extract, 3), 2) could be matched by putting 4218 // the '3' into bits [7:6] of X86ISD::INSERTPS. 4219 // Bits [5:4] of the constant are the destination select. This is the 4220 // value of the incoming immediate. 4221 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may 4222 // combine either bitwise AND or insert of float 0.0 to set these bits. 4223 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4); 4224 return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2); 4225 } 4226 return SDValue(); 4227} 4228 4229SDValue 4230X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { 4231 MVT VT = Op.getValueType(); 4232 MVT EVT = VT.getVectorElementType(); 4233 4234 if (Subtarget->hasSSE41()) 4235 return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG); 4236 4237 if (EVT == MVT::i8) 4238 return SDValue(); 4239 4240 SDValue N0 = Op.getOperand(0); 4241 SDValue N1 = Op.getOperand(1); 4242 SDValue N2 = Op.getOperand(2); 4243 4244 if (EVT.getSizeInBits() == 16) { 4245 // Transform it so it match pinsrw which expects a 16-bit value in a GR32 4246 // as its second argument. 4247 if (N1.getValueType() != MVT::i32) 4248 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1); 4249 if (N2.getValueType() != MVT::i32) 4250 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); 4251 return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2); 4252 } 4253 return SDValue(); 4254} 4255 4256SDValue 4257X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) { 4258 if (Op.getValueType() == MVT::v2f32) 4259 return DAG.getNode(ISD::BIT_CONVERT, MVT::v2f32, 4260 DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i32, 4261 DAG.getNode(ISD::BIT_CONVERT, MVT::i32, 4262 Op.getOperand(0)))); 4263 4264 SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0)); 4265 MVT VT = MVT::v2i32; 4266 switch (Op.getValueType().getSimpleVT()) { 4267 default: break; 4268 case MVT::v16i8: 4269 case MVT::v8i16: 4270 VT = MVT::v4i32; 4271 break; 4272 } 4273 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), 4274 DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt)); 4275} 4276 4277// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as 4278// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is 4279// one of the above mentioned nodes. It has to be wrapped because otherwise 4280// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only 4281// be used to form addressing mode. These wrapped nodes will be selected 4282// into MOV32ri. 4283SDValue 4284X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) { 4285 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 4286 SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), 4287 getPointerTy(), 4288 CP->getAlignment()); 4289 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); 4290 // With PIC, the address is actually $g + Offset. 4291 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && 4292 !Subtarget->isPICStyleRIPRel()) { 4293 Result = DAG.getNode(ISD::ADD, getPointerTy(), 4294 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), 4295 Result); 4296 } 4297 4298 return Result; 4299} 4300 4301SDValue 4302X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) { 4303 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 4304 SDValue Result = DAG.getTargetGlobalAddress(GV, getPointerTy()); 4305 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); 4306 // With PIC, the address is actually $g + Offset. 4307 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && 4308 !Subtarget->isPICStyleRIPRel()) { 4309 Result = DAG.getNode(ISD::ADD, getPointerTy(), 4310 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), 4311 Result); 4312 } 4313 4314 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to 4315 // load the value at address GV, not the value of GV itself. This means that 4316 // the GlobalAddress must be in the base or index register of the address, not 4317 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call 4318 // The same applies for external symbols during PIC codegen 4319 if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false)) 4320 Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, 4321 PseudoSourceValue::getGOT(), 0); 4322 4323 return Result; 4324} 4325 4326// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit 4327static SDValue 4328LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG, 4329 const MVT PtrVT) { 4330 SDValue InFlag; 4331 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX, 4332 DAG.getNode(X86ISD::GlobalBaseReg, 4333 PtrVT), InFlag); 4334 InFlag = Chain.getValue(1); 4335 4336 // emit leal symbol@TLSGD(,%ebx,1), %eax 4337 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag); 4338 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), 4339 GA->getValueType(0), 4340 GA->getOffset()); 4341 SDValue Ops[] = { Chain, TGA, InFlag }; 4342 SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3); 4343 InFlag = Result.getValue(2); 4344 Chain = Result.getValue(1); 4345 4346 // call ___tls_get_addr. This function receives its argument in 4347 // the register EAX. 4348 Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag); 4349 InFlag = Chain.getValue(1); 4350 4351 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); 4352 SDValue Ops1[] = { Chain, 4353 DAG.getTargetExternalSymbol("___tls_get_addr", 4354 PtrVT), 4355 DAG.getRegister(X86::EAX, PtrVT), 4356 DAG.getRegister(X86::EBX, PtrVT), 4357 InFlag }; 4358 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5); 4359 InFlag = Chain.getValue(1); 4360 4361 return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag); 4362} 4363 4364// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit 4365static SDValue 4366LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG, 4367 const MVT PtrVT) { 4368 SDValue InFlag, Chain; 4369 4370 // emit leaq symbol@TLSGD(%rip), %rdi 4371 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag); 4372 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), 4373 GA->getValueType(0), 4374 GA->getOffset()); 4375 SDValue Ops[] = { DAG.getEntryNode(), TGA}; 4376 SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 2); 4377 Chain = Result.getValue(1); 4378 InFlag = Result.getValue(2); 4379 4380 // call __tls_get_addr. This function receives its argument in 4381 // the register RDI. 4382 Chain = DAG.getCopyToReg(Chain, X86::RDI, Result, InFlag); 4383 InFlag = Chain.getValue(1); 4384 4385 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); 4386 SDValue Ops1[] = { Chain, 4387 DAG.getTargetExternalSymbol("__tls_get_addr", 4388 PtrVT), 4389 DAG.getRegister(X86::RDI, PtrVT), 4390 InFlag }; 4391 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 4); 4392 InFlag = Chain.getValue(1); 4393 4394 return DAG.getCopyFromReg(Chain, X86::RAX, PtrVT, InFlag); 4395} 4396 4397// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or 4398// "local exec" model. 4399static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, 4400 const MVT PtrVT) { 4401 // Get the Thread Pointer 4402 SDValue ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT); 4403 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial 4404 // exec) 4405 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), 4406 GA->getValueType(0), 4407 GA->getOffset()); 4408 SDValue Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA); 4409 4410 if (GA->getGlobal()->isDeclaration()) // initial exec TLS model 4411 Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, 4412 PseudoSourceValue::getGOT(), 0); 4413 4414 // The address of the thread local variable is the add of the thread 4415 // pointer with the offset of the variable. 4416 return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset); 4417} 4418 4419SDValue 4420X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) { 4421 // TODO: implement the "local dynamic" model 4422 // TODO: implement the "initial exec"model for pic executables 4423 assert(Subtarget->isTargetELF() && 4424 "TLS not implemented for non-ELF targets"); 4425 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 4426 // If the relocation model is PIC, use the "General Dynamic" TLS Model, 4427 // otherwise use the "Local Exec"TLS Model 4428 if (Subtarget->is64Bit()) { 4429 return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy()); 4430 } else { 4431 if (getTargetMachine().getRelocationModel() == Reloc::PIC_) 4432 return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy()); 4433 else 4434 return LowerToTLSExecModel(GA, DAG, getPointerTy()); 4435 } 4436} 4437 4438SDValue 4439X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) { 4440 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 4441 SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy()); 4442 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); 4443 // With PIC, the address is actually $g + Offset. 4444 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && 4445 !Subtarget->isPICStyleRIPRel()) { 4446 Result = DAG.getNode(ISD::ADD, getPointerTy(), 4447 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), 4448 Result); 4449 } 4450 4451 return Result; 4452} 4453 4454SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) { 4455 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 4456 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy()); 4457 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); 4458 // With PIC, the address is actually $g + Offset. 4459 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && 4460 !Subtarget->isPICStyleRIPRel()) { 4461 Result = DAG.getNode(ISD::ADD, getPointerTy(), 4462 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), 4463 Result); 4464 } 4465 4466 return Result; 4467} 4468 4469/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and 4470/// take a 2 x i32 value to shift plus a shift amount. 4471SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) { 4472 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 4473 MVT VT = Op.getValueType(); 4474 unsigned VTBits = VT.getSizeInBits(); 4475 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; 4476 SDValue ShOpLo = Op.getOperand(0); 4477 SDValue ShOpHi = Op.getOperand(1); 4478 SDValue ShAmt = Op.getOperand(2); 4479 SDValue Tmp1 = isSRA ? 4480 DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) : 4481 DAG.getConstant(0, VT); 4482 4483 SDValue Tmp2, Tmp3; 4484 if (Op.getOpcode() == ISD::SHL_PARTS) { 4485 Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt); 4486 Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt); 4487 } else { 4488 Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt); 4489 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt); 4490 } 4491 4492 SDValue AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt, 4493 DAG.getConstant(VTBits, MVT::i8)); 4494 SDValue Cond = DAG.getNode(X86ISD::CMP, VT, 4495 AndNode, DAG.getConstant(0, MVT::i8)); 4496 4497 SDValue Hi, Lo; 4498 SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8); 4499 SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond }; 4500 SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond }; 4501 4502 if (Op.getOpcode() == ISD::SHL_PARTS) { 4503 Hi = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4); 4504 Lo = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4); 4505 } else { 4506 Lo = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4); 4507 Hi = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4); 4508 } 4509 4510 SDValue Ops[2] = { Lo, Hi }; 4511 return DAG.getMergeValues(Ops, 2); 4512} 4513 4514SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) { 4515 MVT SrcVT = Op.getOperand(0).getValueType(); 4516 assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 && 4517 "Unknown SINT_TO_FP to lower!"); 4518 4519 // These are really Legal; caller falls through into that case. 4520 if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType())) 4521 return SDValue(); 4522 if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 && 4523 Subtarget->is64Bit()) 4524 return SDValue(); 4525 4526 unsigned Size = SrcVT.getSizeInBits()/8; 4527 MachineFunction &MF = DAG.getMachineFunction(); 4528 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); 4529 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 4530 SDValue Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0), 4531 StackSlot, 4532 PseudoSourceValue::getFixedStack(SSFI), 0); 4533 4534 // Build the FILD 4535 SDVTList Tys; 4536 bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); 4537 if (useSSE) 4538 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag); 4539 else 4540 Tys = DAG.getVTList(Op.getValueType(), MVT::Other); 4541 SmallVector<SDValue, 8> Ops; 4542 Ops.push_back(Chain); 4543 Ops.push_back(StackSlot); 4544 Ops.push_back(DAG.getValueType(SrcVT)); 4545 SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, 4546 Tys, &Ops[0], Ops.size()); 4547 4548 if (useSSE) { 4549 Chain = Result.getValue(1); 4550 SDValue InFlag = Result.getValue(2); 4551 4552 // FIXME: Currently the FST is flagged to the FILD_FLAG. This 4553 // shouldn't be necessary except that RFP cannot be live across 4554 // multiple blocks. When stackifier is fixed, they can be uncoupled. 4555 MachineFunction &MF = DAG.getMachineFunction(); 4556 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); 4557 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 4558 Tys = DAG.getVTList(MVT::Other); 4559 SmallVector<SDValue, 8> Ops; 4560 Ops.push_back(Chain); 4561 Ops.push_back(Result); 4562 Ops.push_back(StackSlot); 4563 Ops.push_back(DAG.getValueType(Op.getValueType())); 4564 Ops.push_back(InFlag); 4565 Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size()); 4566 Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, 4567 PseudoSourceValue::getFixedStack(SSFI), 0); 4568 } 4569 4570 return Result; 4571} 4572 4573std::pair<SDValue,SDValue> X86TargetLowering:: 4574FP_TO_SINTHelper(SDValue Op, SelectionDAG &DAG) { 4575 assert(Op.getValueType().getSimpleVT() <= MVT::i64 && 4576 Op.getValueType().getSimpleVT() >= MVT::i16 && 4577 "Unknown FP_TO_SINT to lower!"); 4578 4579 // These are really Legal. 4580 if (Op.getValueType() == MVT::i32 && 4581 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) 4582 return std::make_pair(SDValue(), SDValue()); 4583 if (Subtarget->is64Bit() && 4584 Op.getValueType() == MVT::i64 && 4585 Op.getOperand(0).getValueType() != MVT::f80) 4586 return std::make_pair(SDValue(), SDValue()); 4587 4588 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary 4589 // stack slot. 4590 MachineFunction &MF = DAG.getMachineFunction(); 4591 unsigned MemSize = Op.getValueType().getSizeInBits()/8; 4592 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); 4593 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 4594 unsigned Opc; 4595 switch (Op.getValueType().getSimpleVT()) { 4596 default: assert(0 && "Invalid FP_TO_SINT to lower!"); 4597 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; 4598 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; 4599 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; 4600 } 4601 4602 SDValue Chain = DAG.getEntryNode(); 4603 SDValue Value = Op.getOperand(0); 4604 if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) { 4605 assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!"); 4606 Chain = DAG.getStore(Chain, Value, StackSlot, 4607 PseudoSourceValue::getFixedStack(SSFI), 0); 4608 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); 4609 SDValue Ops[] = { 4610 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType()) 4611 }; 4612 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3); 4613 Chain = Value.getValue(1); 4614 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); 4615 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 4616 } 4617 4618 // Build the FP_TO_INT*_IN_MEM 4619 SDValue Ops[] = { Chain, Value, StackSlot }; 4620 SDValue FIST = DAG.getNode(Opc, MVT::Other, Ops, 3); 4621 4622 return std::make_pair(FIST, StackSlot); 4623} 4624 4625SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) { 4626 std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(Op, DAG); 4627 SDValue FIST = Vals.first, StackSlot = Vals.second; 4628 if (FIST.getNode() == 0) return SDValue(); 4629 4630 // Load the result. 4631 return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0); 4632} 4633 4634SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) { 4635 std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(SDValue(N, 0), DAG); 4636 SDValue FIST = Vals.first, StackSlot = Vals.second; 4637 if (FIST.getNode() == 0) return 0; 4638 4639 MVT VT = N->getValueType(0); 4640 4641 // Return a load from the stack slot. 4642 SDValue Res = DAG.getLoad(VT, FIST, StackSlot, NULL, 0); 4643 4644 // Use MERGE_VALUES to drop the chain result value and get a node with one 4645 // result. This requires turning off getMergeValues simplification, since 4646 // otherwise it will give us Res back. 4647 return DAG.getMergeValues(&Res, 1, false).getNode(); 4648} 4649 4650SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) { 4651 MVT VT = Op.getValueType(); 4652 MVT EltVT = VT; 4653 if (VT.isVector()) 4654 EltVT = VT.getVectorElementType(); 4655 std::vector<Constant*> CV; 4656 if (EltVT == MVT::f64) { 4657 Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))); 4658 CV.push_back(C); 4659 CV.push_back(C); 4660 } else { 4661 Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))); 4662 CV.push_back(C); 4663 CV.push_back(C); 4664 CV.push_back(C); 4665 CV.push_back(C); 4666 } 4667 Constant *C = ConstantVector::get(CV); 4668 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); 4669 SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 4670 PseudoSourceValue::getConstantPool(), 0, 4671 false, 16); 4672 return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask); 4673} 4674 4675SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) { 4676 MVT VT = Op.getValueType(); 4677 MVT EltVT = VT; 4678 unsigned EltNum = 1; 4679 if (VT.isVector()) { 4680 EltVT = VT.getVectorElementType(); 4681 EltNum = VT.getVectorNumElements(); 4682 } 4683 std::vector<Constant*> CV; 4684 if (EltVT == MVT::f64) { 4685 Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63))); 4686 CV.push_back(C); 4687 CV.push_back(C); 4688 } else { 4689 Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31))); 4690 CV.push_back(C); 4691 CV.push_back(C); 4692 CV.push_back(C); 4693 CV.push_back(C); 4694 } 4695 Constant *C = ConstantVector::get(CV); 4696 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); 4697 SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 4698 PseudoSourceValue::getConstantPool(), 0, 4699 false, 16); 4700 if (VT.isVector()) { 4701 return DAG.getNode(ISD::BIT_CONVERT, VT, 4702 DAG.getNode(ISD::XOR, MVT::v2i64, 4703 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)), 4704 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask))); 4705 } else { 4706 return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask); 4707 } 4708} 4709 4710SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) { 4711 SDValue Op0 = Op.getOperand(0); 4712 SDValue Op1 = Op.getOperand(1); 4713 MVT VT = Op.getValueType(); 4714 MVT SrcVT = Op1.getValueType(); 4715 4716 // If second operand is smaller, extend it first. 4717 if (SrcVT.bitsLT(VT)) { 4718 Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1); 4719 SrcVT = VT; 4720 } 4721 // And if it is bigger, shrink it first. 4722 if (SrcVT.bitsGT(VT)) { 4723 Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1)); 4724 SrcVT = VT; 4725 } 4726 4727 // At this point the operands and the result should have the same 4728 // type, and that won't be f80 since that is not custom lowered. 4729 4730 // First get the sign bit of second operand. 4731 std::vector<Constant*> CV; 4732 if (SrcVT == MVT::f64) { 4733 CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63)))); 4734 CV.push_back(ConstantFP::get(APFloat(APInt(64, 0)))); 4735 } else { 4736 CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31)))); 4737 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0)))); 4738 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0)))); 4739 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0)))); 4740 } 4741 Constant *C = ConstantVector::get(CV); 4742 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); 4743 SDValue Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, 4744 PseudoSourceValue::getConstantPool(), 0, 4745 false, 16); 4746 SDValue SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1); 4747 4748 // Shift sign bit right or left if the two operands have different types. 4749 if (SrcVT.bitsGT(VT)) { 4750 // Op0 is MVT::f32, Op1 is MVT::f64. 4751 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit); 4752 SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit, 4753 DAG.getConstant(32, MVT::i32)); 4754 SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit); 4755 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit, 4756 DAG.getIntPtrConstant(0)); 4757 } 4758 4759 // Clear first operand sign bit. 4760 CV.clear(); 4761 if (VT == MVT::f64) { 4762 CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))))); 4763 CV.push_back(ConstantFP::get(APFloat(APInt(64, 0)))); 4764 } else { 4765 CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31))))); 4766 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0)))); 4767 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0)))); 4768 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0)))); 4769 } 4770 C = ConstantVector::get(CV); 4771 CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); 4772 SDValue Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 4773 PseudoSourceValue::getConstantPool(), 0, 4774 false, 16); 4775 SDValue Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2); 4776 4777 // Or the value with the sign bit. 4778 return DAG.getNode(X86ISD::FOR, VT, Val, SignBit); 4779} 4780 4781SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) { 4782 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); 4783 SDValue Cond; 4784 SDValue Op0 = Op.getOperand(0); 4785 SDValue Op1 = Op.getOperand(1); 4786 SDValue CC = Op.getOperand(2); 4787 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); 4788 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint(); 4789 unsigned X86CC; 4790 4791 if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC, 4792 Op0, Op1, DAG)) { 4793 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1); 4794 return DAG.getNode(X86ISD::SETCC, MVT::i8, 4795 DAG.getConstant(X86CC, MVT::i8), Cond); 4796 } 4797 4798 assert(isFP && "Illegal integer SetCC!"); 4799 4800 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1); 4801 switch (SetCCOpcode) { 4802 default: assert(false && "Illegal floating point SetCC!"); 4803 case ISD::SETOEQ: { // !PF & ZF 4804 SDValue Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8, 4805 DAG.getConstant(X86::COND_NP, MVT::i8), Cond); 4806 SDValue Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, 4807 DAG.getConstant(X86::COND_E, MVT::i8), Cond); 4808 return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2); 4809 } 4810 case ISD::SETUNE: { // PF | !ZF 4811 SDValue Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8, 4812 DAG.getConstant(X86::COND_P, MVT::i8), Cond); 4813 SDValue Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, 4814 DAG.getConstant(X86::COND_NE, MVT::i8), Cond); 4815 return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2); 4816 } 4817 } 4818} 4819 4820SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) { 4821 SDValue Cond; 4822 SDValue Op0 = Op.getOperand(0); 4823 SDValue Op1 = Op.getOperand(1); 4824 SDValue CC = Op.getOperand(2); 4825 MVT VT = Op.getValueType(); 4826 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); 4827 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint(); 4828 4829 if (isFP) { 4830 unsigned SSECC = 8; 4831 MVT VT0 = Op0.getValueType(); 4832 assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64); 4833 unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD; 4834 bool Swap = false; 4835 4836 switch (SetCCOpcode) { 4837 default: break; 4838 case ISD::SETOEQ: 4839 case ISD::SETEQ: SSECC = 0; break; 4840 case ISD::SETOGT: 4841 case ISD::SETGT: Swap = true; // Fallthrough 4842 case ISD::SETLT: 4843 case ISD::SETOLT: SSECC = 1; break; 4844 case ISD::SETOGE: 4845 case ISD::SETGE: Swap = true; // Fallthrough 4846 case ISD::SETLE: 4847 case ISD::SETOLE: SSECC = 2; break; 4848 case ISD::SETUO: SSECC = 3; break; 4849 case ISD::SETUNE: 4850 case ISD::SETNE: SSECC = 4; break; 4851 case ISD::SETULE: Swap = true; 4852 case ISD::SETUGE: SSECC = 5; break; 4853 case ISD::SETULT: Swap = true; 4854 case ISD::SETUGT: SSECC = 6; break; 4855 case ISD::SETO: SSECC = 7; break; 4856 } 4857 if (Swap) 4858 std::swap(Op0, Op1); 4859 4860 // In the two special cases we can't handle, emit two comparisons. 4861 if (SSECC == 8) { 4862 if (SetCCOpcode == ISD::SETUEQ) { 4863 SDValue UNORD, EQ; 4864 UNORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(3, MVT::i8)); 4865 EQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(0, MVT::i8)); 4866 return DAG.getNode(ISD::OR, VT, UNORD, EQ); 4867 } 4868 else if (SetCCOpcode == ISD::SETONE) { 4869 SDValue ORD, NEQ; 4870 ORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(7, MVT::i8)); 4871 NEQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(4, MVT::i8)); 4872 return DAG.getNode(ISD::AND, VT, ORD, NEQ); 4873 } 4874 assert(0 && "Illegal FP comparison"); 4875 } 4876 // Handle all other FP comparisons here. 4877 return DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8)); 4878 } 4879 4880 // We are handling one of the integer comparisons here. Since SSE only has 4881 // GT and EQ comparisons for integer, swapping operands and multiple 4882 // operations may be required for some comparisons. 4883 unsigned Opc = 0, EQOpc = 0, GTOpc = 0; 4884 bool Swap = false, Invert = false, FlipSigns = false; 4885 4886 switch (VT.getSimpleVT()) { 4887 default: break; 4888 case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break; 4889 case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break; 4890 case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break; 4891 case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break; 4892 } 4893 4894 switch (SetCCOpcode) { 4895 default: break; 4896 case ISD::SETNE: Invert = true; 4897 case ISD::SETEQ: Opc = EQOpc; break; 4898 case ISD::SETLT: Swap = true; 4899 case ISD::SETGT: Opc = GTOpc; break; 4900 case ISD::SETGE: Swap = true; 4901 case ISD::SETLE: Opc = GTOpc; Invert = true; break; 4902 case ISD::SETULT: Swap = true; 4903 case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break; 4904 case ISD::SETUGE: Swap = true; 4905 case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break; 4906 } 4907 if (Swap) 4908 std::swap(Op0, Op1); 4909 4910 // Since SSE has no unsigned integer comparisons, we need to flip the sign 4911 // bits of the inputs before performing those operations. 4912 if (FlipSigns) { 4913 MVT EltVT = VT.getVectorElementType(); 4914 SDValue SignBit = DAG.getConstant(EltVT.getIntegerVTSignBit(), EltVT); 4915 std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit); 4916 SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, VT, &SignBits[0], 4917 SignBits.size()); 4918 Op0 = DAG.getNode(ISD::XOR, VT, Op0, SignVec); 4919 Op1 = DAG.getNode(ISD::XOR, VT, Op1, SignVec); 4920 } 4921 4922 SDValue Result = DAG.getNode(Opc, VT, Op0, Op1); 4923 4924 // If the logical-not of the result is required, perform that now. 4925 if (Invert) { 4926 MVT EltVT = VT.getVectorElementType(); 4927 SDValue NegOne = DAG.getConstant(EltVT.getIntegerVTBitMask(), EltVT); 4928 std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOne); 4929 SDValue NegOneV = DAG.getNode(ISD::BUILD_VECTOR, VT, &NegOnes[0], 4930 NegOnes.size()); 4931 Result = DAG.getNode(ISD::XOR, VT, Result, NegOneV); 4932 } 4933 return Result; 4934} 4935 4936SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) { 4937 bool addTest = true; 4938 SDValue Cond = Op.getOperand(0); 4939 SDValue CC; 4940 4941 if (Cond.getOpcode() == ISD::SETCC) 4942 Cond = LowerSETCC(Cond, DAG); 4943 4944 // If condition flag is set by a X86ISD::CMP, then use it as the condition 4945 // setting operand in place of the X86ISD::SETCC. 4946 if (Cond.getOpcode() == X86ISD::SETCC) { 4947 CC = Cond.getOperand(0); 4948 4949 SDValue Cmp = Cond.getOperand(1); 4950 unsigned Opc = Cmp.getOpcode(); 4951 MVT VT = Op.getValueType(); 4952 4953 bool IllegalFPCMov = false; 4954 if (VT.isFloatingPoint() && !VT.isVector() && 4955 !isScalarFPTypeInSSEReg(VT)) // FPStack? 4956 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended()); 4957 4958 if ((Opc == X86ISD::CMP || 4959 Opc == X86ISD::COMI || 4960 Opc == X86ISD::UCOMI) && !IllegalFPCMov) { 4961 Cond = Cmp; 4962 addTest = false; 4963 } 4964 } 4965 4966 if (addTest) { 4967 CC = DAG.getConstant(X86::COND_NE, MVT::i8); 4968 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8)); 4969 } 4970 4971 const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(), 4972 MVT::Flag); 4973 SmallVector<SDValue, 4> Ops; 4974 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if 4975 // condition is true. 4976 Ops.push_back(Op.getOperand(2)); 4977 Ops.push_back(Op.getOperand(1)); 4978 Ops.push_back(CC); 4979 Ops.push_back(Cond); 4980 return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size()); 4981} 4982 4983SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) { 4984 bool addTest = true; 4985 SDValue Chain = Op.getOperand(0); 4986 SDValue Cond = Op.getOperand(1); 4987 SDValue Dest = Op.getOperand(2); 4988 SDValue CC; 4989 4990 if (Cond.getOpcode() == ISD::SETCC) 4991 Cond = LowerSETCC(Cond, DAG); 4992 4993 // If condition flag is set by a X86ISD::CMP, then use it as the condition 4994 // setting operand in place of the X86ISD::SETCC. 4995 if (Cond.getOpcode() == X86ISD::SETCC) { 4996 CC = Cond.getOperand(0); 4997 4998 SDValue Cmp = Cond.getOperand(1); 4999 unsigned Opc = Cmp.getOpcode(); 5000 if (Opc == X86ISD::CMP || 5001 Opc == X86ISD::COMI || 5002 Opc == X86ISD::UCOMI) { 5003 Cond = Cmp; 5004 addTest = false; 5005 } 5006 } 5007 5008 if (addTest) { 5009 CC = DAG.getConstant(X86::COND_NE, MVT::i8); 5010 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8)); 5011 } 5012 return DAG.getNode(X86ISD::BRCOND, Op.getValueType(), 5013 Chain, Op.getOperand(2), CC, Cond); 5014} 5015 5016 5017// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. 5018// Calls to _alloca is needed to probe the stack when allocating more than 4k 5019// bytes in one go. Touching the stack at 4K increments is necessary to ensure 5020// that the guard pages used by the OS virtual memory manager are allocated in 5021// correct sequence. 5022SDValue 5023X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 5024 SelectionDAG &DAG) { 5025 assert(Subtarget->isTargetCygMing() && 5026 "This should be used only on Cygwin/Mingw targets"); 5027 5028 // Get the inputs. 5029 SDValue Chain = Op.getOperand(0); 5030 SDValue Size = Op.getOperand(1); 5031 // FIXME: Ensure alignment here 5032 5033 SDValue Flag; 5034 5035 MVT IntPtr = getPointerTy(); 5036 MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32; 5037 5038 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0)); 5039 5040 Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag); 5041 Flag = Chain.getValue(1); 5042 5043 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); 5044 SDValue Ops[] = { Chain, 5045 DAG.getTargetExternalSymbol("_alloca", IntPtr), 5046 DAG.getRegister(X86::EAX, IntPtr), 5047 DAG.getRegister(X86StackPtr, SPTy), 5048 Flag }; 5049 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 5); 5050 Flag = Chain.getValue(1); 5051 5052 Chain = DAG.getCALLSEQ_END(Chain, 5053 DAG.getIntPtrConstant(0), 5054 DAG.getIntPtrConstant(0), 5055 Flag); 5056 5057 Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1); 5058 5059 SDValue Ops1[2] = { Chain.getValue(0), Chain }; 5060 return DAG.getMergeValues(Ops1, 2); 5061} 5062 5063SDValue 5064X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, 5065 SDValue Chain, 5066 SDValue Dst, SDValue Src, 5067 SDValue Size, unsigned Align, 5068 const Value *DstSV, uint64_t DstSVOff) { 5069 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5070 5071 /// If not DWORD aligned or size is more than the threshold, call the library. 5072 /// The libc version is likely to be faster for these cases. It can use the 5073 /// address value and run time information about the CPU. 5074 if ((Align & 3) != 0 || 5075 !ConstantSize || 5076 ConstantSize->getZExtValue() > 5077 getSubtarget()->getMaxInlineSizeThreshold()) { 5078 SDValue InFlag(0, 0); 5079 5080 // Check to see if there is a specialized entry-point for memory zeroing. 5081 ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src); 5082 if (const char *bzeroEntry = 5083 V && V->isNullValue() ? Subtarget->getBZeroEntry() : 0) { 5084 MVT IntPtr = getPointerTy(); 5085 const Type *IntPtrTy = TD->getIntPtrType(); 5086 TargetLowering::ArgListTy Args; 5087 TargetLowering::ArgListEntry Entry; 5088 Entry.Node = Dst; 5089 Entry.Ty = IntPtrTy; 5090 Args.push_back(Entry); 5091 Entry.Node = Size; 5092 Args.push_back(Entry); 5093 std::pair<SDValue,SDValue> CallResult = 5094 LowerCallTo(Chain, Type::VoidTy, false, false, false, CallingConv::C, 5095 false, DAG.getExternalSymbol(bzeroEntry, IntPtr), 5096 Args, DAG); 5097 return CallResult.second; 5098 } 5099 5100 // Otherwise have the target-independent code call memset. 5101 return SDValue(); 5102 } 5103 5104 uint64_t SizeVal = ConstantSize->getZExtValue(); 5105 SDValue InFlag(0, 0); 5106 MVT AVT; 5107 SDValue Count; 5108 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src); 5109 unsigned BytesLeft = 0; 5110 bool TwoRepStos = false; 5111 if (ValC) { 5112 unsigned ValReg; 5113 uint64_t Val = ValC->getZExtValue() & 255; 5114 5115 // If the value is a constant, then we can potentially use larger sets. 5116 switch (Align & 3) { 5117 case 2: // WORD aligned 5118 AVT = MVT::i16; 5119 ValReg = X86::AX; 5120 Val = (Val << 8) | Val; 5121 break; 5122 case 0: // DWORD aligned 5123 AVT = MVT::i32; 5124 ValReg = X86::EAX; 5125 Val = (Val << 8) | Val; 5126 Val = (Val << 16) | Val; 5127 if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned 5128 AVT = MVT::i64; 5129 ValReg = X86::RAX; 5130 Val = (Val << 32) | Val; 5131 } 5132 break; 5133 default: // Byte aligned 5134 AVT = MVT::i8; 5135 ValReg = X86::AL; 5136 Count = DAG.getIntPtrConstant(SizeVal); 5137 break; 5138 } 5139 5140 if (AVT.bitsGT(MVT::i8)) { 5141 unsigned UBytes = AVT.getSizeInBits() / 8; 5142 Count = DAG.getIntPtrConstant(SizeVal / UBytes); 5143 BytesLeft = SizeVal % UBytes; 5144 } 5145 5146 Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT), 5147 InFlag); 5148 InFlag = Chain.getValue(1); 5149 } else { 5150 AVT = MVT::i8; 5151 Count = DAG.getIntPtrConstant(SizeVal); 5152 Chain = DAG.getCopyToReg(Chain, X86::AL, Src, InFlag); 5153 InFlag = Chain.getValue(1); 5154 } 5155 5156 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX, 5157 Count, InFlag); 5158 InFlag = Chain.getValue(1); 5159 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI, 5160 Dst, InFlag); 5161 InFlag = Chain.getValue(1); 5162 5163 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 5164 SmallVector<SDValue, 8> Ops; 5165 Ops.push_back(Chain); 5166 Ops.push_back(DAG.getValueType(AVT)); 5167 Ops.push_back(InFlag); 5168 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size()); 5169 5170 if (TwoRepStos) { 5171 InFlag = Chain.getValue(1); 5172 Count = Size; 5173 MVT CVT = Count.getValueType(); 5174 SDValue Left = DAG.getNode(ISD::AND, CVT, Count, 5175 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT)); 5176 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX, 5177 Left, InFlag); 5178 InFlag = Chain.getValue(1); 5179 Tys = DAG.getVTList(MVT::Other, MVT::Flag); 5180 Ops.clear(); 5181 Ops.push_back(Chain); 5182 Ops.push_back(DAG.getValueType(MVT::i8)); 5183 Ops.push_back(InFlag); 5184 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size()); 5185 } else if (BytesLeft) { 5186 // Handle the last 1 - 7 bytes. 5187 unsigned Offset = SizeVal - BytesLeft; 5188 MVT AddrVT = Dst.getValueType(); 5189 MVT SizeVT = Size.getValueType(); 5190 5191 Chain = DAG.getMemset(Chain, 5192 DAG.getNode(ISD::ADD, AddrVT, Dst, 5193 DAG.getConstant(Offset, AddrVT)), 5194 Src, 5195 DAG.getConstant(BytesLeft, SizeVT), 5196 Align, DstSV, DstSVOff + Offset); 5197 } 5198 5199 // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain. 5200 return Chain; 5201} 5202 5203SDValue 5204X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, 5205 SDValue Chain, SDValue Dst, SDValue Src, 5206 SDValue Size, unsigned Align, 5207 bool AlwaysInline, 5208 const Value *DstSV, uint64_t DstSVOff, 5209 const Value *SrcSV, uint64_t SrcSVOff) { 5210 // This requires the copy size to be a constant, preferrably 5211 // within a subtarget-specific limit. 5212 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5213 if (!ConstantSize) 5214 return SDValue(); 5215 uint64_t SizeVal = ConstantSize->getZExtValue(); 5216 if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold()) 5217 return SDValue(); 5218 5219 /// If not DWORD aligned, call the library. 5220 if ((Align & 3) != 0) 5221 return SDValue(); 5222 5223 // DWORD aligned 5224 MVT AVT = MVT::i32; 5225 if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) // QWORD aligned 5226 AVT = MVT::i64; 5227 5228 unsigned UBytes = AVT.getSizeInBits() / 8; 5229 unsigned CountVal = SizeVal / UBytes; 5230 SDValue Count = DAG.getIntPtrConstant(CountVal); 5231 unsigned BytesLeft = SizeVal % UBytes; 5232 5233 SDValue InFlag(0, 0); 5234 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX, 5235 Count, InFlag); 5236 InFlag = Chain.getValue(1); 5237 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI, 5238 Dst, InFlag); 5239 InFlag = Chain.getValue(1); 5240 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI, 5241 Src, InFlag); 5242 InFlag = Chain.getValue(1); 5243 5244 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 5245 SmallVector<SDValue, 8> Ops; 5246 Ops.push_back(Chain); 5247 Ops.push_back(DAG.getValueType(AVT)); 5248 Ops.push_back(InFlag); 5249 SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size()); 5250 5251 SmallVector<SDValue, 4> Results; 5252 Results.push_back(RepMovs); 5253 if (BytesLeft) { 5254 // Handle the last 1 - 7 bytes. 5255 unsigned Offset = SizeVal - BytesLeft; 5256 MVT DstVT = Dst.getValueType(); 5257 MVT SrcVT = Src.getValueType(); 5258 MVT SizeVT = Size.getValueType(); 5259 Results.push_back(DAG.getMemcpy(Chain, 5260 DAG.getNode(ISD::ADD, DstVT, Dst, 5261 DAG.getConstant(Offset, DstVT)), 5262 DAG.getNode(ISD::ADD, SrcVT, Src, 5263 DAG.getConstant(Offset, SrcVT)), 5264 DAG.getConstant(BytesLeft, SizeVT), 5265 Align, AlwaysInline, 5266 DstSV, DstSVOff + Offset, 5267 SrcSV, SrcSVOff + Offset)); 5268 } 5269 5270 return DAG.getNode(ISD::TokenFactor, MVT::Other, &Results[0], Results.size()); 5271} 5272 5273/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain 5274SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){ 5275 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 5276 SDValue TheChain = N->getOperand(0); 5277 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1); 5278 if (Subtarget->is64Bit()) { 5279 SDValue rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1)); 5280 SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX, 5281 MVT::i64, rax.getValue(2)); 5282 SDValue Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx, 5283 DAG.getConstant(32, MVT::i8)); 5284 SDValue Ops[] = { 5285 DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1) 5286 }; 5287 5288 return DAG.getMergeValues(Ops, 2).getNode(); 5289 } 5290 5291 SDValue eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1)); 5292 SDValue edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX, 5293 MVT::i32, eax.getValue(2)); 5294 // Use a buildpair to merge the two 32-bit values into a 64-bit one. 5295 SDValue Ops[] = { eax, edx }; 5296 Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2); 5297 5298 // Use a MERGE_VALUES to return the value and chain. 5299 Ops[1] = edx.getValue(1); 5300 return DAG.getMergeValues(Ops, 2).getNode(); 5301} 5302 5303SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) { 5304 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 5305 5306 if (!Subtarget->is64Bit()) { 5307 // vastart just stores the address of the VarArgsFrameIndex slot into the 5308 // memory location argument. 5309 SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); 5310 return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0); 5311 } 5312 5313 // __va_list_tag: 5314 // gp_offset (0 - 6 * 8) 5315 // fp_offset (48 - 48 + 8 * 16) 5316 // overflow_arg_area (point to parameters coming in memory). 5317 // reg_save_area 5318 SmallVector<SDValue, 8> MemOps; 5319 SDValue FIN = Op.getOperand(1); 5320 // Store gp_offset 5321 SDValue Store = DAG.getStore(Op.getOperand(0), 5322 DAG.getConstant(VarArgsGPOffset, MVT::i32), 5323 FIN, SV, 0); 5324 MemOps.push_back(Store); 5325 5326 // Store fp_offset 5327 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4)); 5328 Store = DAG.getStore(Op.getOperand(0), 5329 DAG.getConstant(VarArgsFPOffset, MVT::i32), 5330 FIN, SV, 0); 5331 MemOps.push_back(Store); 5332 5333 // Store ptr to overflow_arg_area 5334 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4)); 5335 SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); 5336 Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0); 5337 MemOps.push_back(Store); 5338 5339 // Store ptr to reg_save_area. 5340 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8)); 5341 SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); 5342 Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0); 5343 MemOps.push_back(Store); 5344 return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size()); 5345} 5346 5347SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) { 5348 // X86-64 va_list is a struct { i32, i32, i8*, i8* }. 5349 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!"); 5350 SDValue Chain = Op.getOperand(0); 5351 SDValue SrcPtr = Op.getOperand(1); 5352 SDValue SrcSV = Op.getOperand(2); 5353 5354 assert(0 && "VAArgInst is not yet implemented for x86-64!"); 5355 abort(); 5356 return SDValue(); 5357} 5358 5359SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) { 5360 // X86-64 va_list is a struct { i32, i32, i8*, i8* }. 5361 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!"); 5362 SDValue Chain = Op.getOperand(0); 5363 SDValue DstPtr = Op.getOperand(1); 5364 SDValue SrcPtr = Op.getOperand(2); 5365 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 5366 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 5367 5368 return DAG.getMemcpy(Chain, DstPtr, SrcPtr, 5369 DAG.getIntPtrConstant(24), 8, false, 5370 DstSV, 0, SrcSV, 0); 5371} 5372 5373SDValue 5374X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) { 5375 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5376 switch (IntNo) { 5377 default: return SDValue(); // Don't custom lower most intrinsics. 5378 // Comparison intrinsics. 5379 case Intrinsic::x86_sse_comieq_ss: 5380 case Intrinsic::x86_sse_comilt_ss: 5381 case Intrinsic::x86_sse_comile_ss: 5382 case Intrinsic::x86_sse_comigt_ss: 5383 case Intrinsic::x86_sse_comige_ss: 5384 case Intrinsic::x86_sse_comineq_ss: 5385 case Intrinsic::x86_sse_ucomieq_ss: 5386 case Intrinsic::x86_sse_ucomilt_ss: 5387 case Intrinsic::x86_sse_ucomile_ss: 5388 case Intrinsic::x86_sse_ucomigt_ss: 5389 case Intrinsic::x86_sse_ucomige_ss: 5390 case Intrinsic::x86_sse_ucomineq_ss: 5391 case Intrinsic::x86_sse2_comieq_sd: 5392 case Intrinsic::x86_sse2_comilt_sd: 5393 case Intrinsic::x86_sse2_comile_sd: 5394 case Intrinsic::x86_sse2_comigt_sd: 5395 case Intrinsic::x86_sse2_comige_sd: 5396 case Intrinsic::x86_sse2_comineq_sd: 5397 case Intrinsic::x86_sse2_ucomieq_sd: 5398 case Intrinsic::x86_sse2_ucomilt_sd: 5399 case Intrinsic::x86_sse2_ucomile_sd: 5400 case Intrinsic::x86_sse2_ucomigt_sd: 5401 case Intrinsic::x86_sse2_ucomige_sd: 5402 case Intrinsic::x86_sse2_ucomineq_sd: { 5403 unsigned Opc = 0; 5404 ISD::CondCode CC = ISD::SETCC_INVALID; 5405 switch (IntNo) { 5406 default: break; 5407 case Intrinsic::x86_sse_comieq_ss: 5408 case Intrinsic::x86_sse2_comieq_sd: 5409 Opc = X86ISD::COMI; 5410 CC = ISD::SETEQ; 5411 break; 5412 case Intrinsic::x86_sse_comilt_ss: 5413 case Intrinsic::x86_sse2_comilt_sd: 5414 Opc = X86ISD::COMI; 5415 CC = ISD::SETLT; 5416 break; 5417 case Intrinsic::x86_sse_comile_ss: 5418 case Intrinsic::x86_sse2_comile_sd: 5419 Opc = X86ISD::COMI; 5420 CC = ISD::SETLE; 5421 break; 5422 case Intrinsic::x86_sse_comigt_ss: 5423 case Intrinsic::x86_sse2_comigt_sd: 5424 Opc = X86ISD::COMI; 5425 CC = ISD::SETGT; 5426 break; 5427 case Intrinsic::x86_sse_comige_ss: 5428 case Intrinsic::x86_sse2_comige_sd: 5429 Opc = X86ISD::COMI; 5430 CC = ISD::SETGE; 5431 break; 5432 case Intrinsic::x86_sse_comineq_ss: 5433 case Intrinsic::x86_sse2_comineq_sd: 5434 Opc = X86ISD::COMI; 5435 CC = ISD::SETNE; 5436 break; 5437 case Intrinsic::x86_sse_ucomieq_ss: 5438 case Intrinsic::x86_sse2_ucomieq_sd: 5439 Opc = X86ISD::UCOMI; 5440 CC = ISD::SETEQ; 5441 break; 5442 case Intrinsic::x86_sse_ucomilt_ss: 5443 case Intrinsic::x86_sse2_ucomilt_sd: 5444 Opc = X86ISD::UCOMI; 5445 CC = ISD::SETLT; 5446 break; 5447 case Intrinsic::x86_sse_ucomile_ss: 5448 case Intrinsic::x86_sse2_ucomile_sd: 5449 Opc = X86ISD::UCOMI; 5450 CC = ISD::SETLE; 5451 break; 5452 case Intrinsic::x86_sse_ucomigt_ss: 5453 case Intrinsic::x86_sse2_ucomigt_sd: 5454 Opc = X86ISD::UCOMI; 5455 CC = ISD::SETGT; 5456 break; 5457 case Intrinsic::x86_sse_ucomige_ss: 5458 case Intrinsic::x86_sse2_ucomige_sd: 5459 Opc = X86ISD::UCOMI; 5460 CC = ISD::SETGE; 5461 break; 5462 case Intrinsic::x86_sse_ucomineq_ss: 5463 case Intrinsic::x86_sse2_ucomineq_sd: 5464 Opc = X86ISD::UCOMI; 5465 CC = ISD::SETNE; 5466 break; 5467 } 5468 5469 unsigned X86CC; 5470 SDValue LHS = Op.getOperand(1); 5471 SDValue RHS = Op.getOperand(2); 5472 translateX86CC(CC, true, X86CC, LHS, RHS, DAG); 5473 5474 SDValue Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS); 5475 SDValue SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8, 5476 DAG.getConstant(X86CC, MVT::i8), Cond); 5477 return DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, SetCC); 5478 } 5479 5480 // Fix vector shift instructions where the last operand is a non-immediate 5481 // i32 value. 5482 case Intrinsic::x86_sse2_pslli_w: 5483 case Intrinsic::x86_sse2_pslli_d: 5484 case Intrinsic::x86_sse2_pslli_q: 5485 case Intrinsic::x86_sse2_psrli_w: 5486 case Intrinsic::x86_sse2_psrli_d: 5487 case Intrinsic::x86_sse2_psrli_q: 5488 case Intrinsic::x86_sse2_psrai_w: 5489 case Intrinsic::x86_sse2_psrai_d: 5490 case Intrinsic::x86_mmx_pslli_w: 5491 case Intrinsic::x86_mmx_pslli_d: 5492 case Intrinsic::x86_mmx_pslli_q: 5493 case Intrinsic::x86_mmx_psrli_w: 5494 case Intrinsic::x86_mmx_psrli_d: 5495 case Intrinsic::x86_mmx_psrli_q: 5496 case Intrinsic::x86_mmx_psrai_w: 5497 case Intrinsic::x86_mmx_psrai_d: { 5498 SDValue ShAmt = Op.getOperand(2); 5499 if (isa<ConstantSDNode>(ShAmt)) 5500 return SDValue(); 5501 5502 unsigned NewIntNo = 0; 5503 MVT ShAmtVT = MVT::v4i32; 5504 switch (IntNo) { 5505 case Intrinsic::x86_sse2_pslli_w: 5506 NewIntNo = Intrinsic::x86_sse2_psll_w; 5507 break; 5508 case Intrinsic::x86_sse2_pslli_d: 5509 NewIntNo = Intrinsic::x86_sse2_psll_d; 5510 break; 5511 case Intrinsic::x86_sse2_pslli_q: 5512 NewIntNo = Intrinsic::x86_sse2_psll_q; 5513 break; 5514 case Intrinsic::x86_sse2_psrli_w: 5515 NewIntNo = Intrinsic::x86_sse2_psrl_w; 5516 break; 5517 case Intrinsic::x86_sse2_psrli_d: 5518 NewIntNo = Intrinsic::x86_sse2_psrl_d; 5519 break; 5520 case Intrinsic::x86_sse2_psrli_q: 5521 NewIntNo = Intrinsic::x86_sse2_psrl_q; 5522 break; 5523 case Intrinsic::x86_sse2_psrai_w: 5524 NewIntNo = Intrinsic::x86_sse2_psra_w; 5525 break; 5526 case Intrinsic::x86_sse2_psrai_d: 5527 NewIntNo = Intrinsic::x86_sse2_psra_d; 5528 break; 5529 default: { 5530 ShAmtVT = MVT::v2i32; 5531 switch (IntNo) { 5532 case Intrinsic::x86_mmx_pslli_w: 5533 NewIntNo = Intrinsic::x86_mmx_psll_w; 5534 break; 5535 case Intrinsic::x86_mmx_pslli_d: 5536 NewIntNo = Intrinsic::x86_mmx_psll_d; 5537 break; 5538 case Intrinsic::x86_mmx_pslli_q: 5539 NewIntNo = Intrinsic::x86_mmx_psll_q; 5540 break; 5541 case Intrinsic::x86_mmx_psrli_w: 5542 NewIntNo = Intrinsic::x86_mmx_psrl_w; 5543 break; 5544 case Intrinsic::x86_mmx_psrli_d: 5545 NewIntNo = Intrinsic::x86_mmx_psrl_d; 5546 break; 5547 case Intrinsic::x86_mmx_psrli_q: 5548 NewIntNo = Intrinsic::x86_mmx_psrl_q; 5549 break; 5550 case Intrinsic::x86_mmx_psrai_w: 5551 NewIntNo = Intrinsic::x86_mmx_psra_w; 5552 break; 5553 case Intrinsic::x86_mmx_psrai_d: 5554 NewIntNo = Intrinsic::x86_mmx_psra_d; 5555 break; 5556 default: abort(); // Can't reach here. 5557 } 5558 break; 5559 } 5560 } 5561 MVT VT = Op.getValueType(); 5562 ShAmt = DAG.getNode(ISD::BIT_CONVERT, VT, 5563 DAG.getNode(ISD::SCALAR_TO_VECTOR, ShAmtVT, ShAmt)); 5564 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT, 5565 DAG.getConstant(NewIntNo, MVT::i32), 5566 Op.getOperand(1), ShAmt); 5567 } 5568 } 5569} 5570 5571SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) { 5572 // Depths > 0 not supported yet! 5573 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 5574 return SDValue(); 5575 5576 // Just load the return address 5577 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); 5578 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0); 5579} 5580 5581SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) { 5582 // Depths > 0 not supported yet! 5583 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 5584 return SDValue(); 5585 5586 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); 5587 return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI, 5588 DAG.getIntPtrConstant(TD->getPointerSize())); 5589} 5590 5591SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op, 5592 SelectionDAG &DAG) { 5593 return DAG.getIntPtrConstant(2*TD->getPointerSize()); 5594} 5595 5596SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) 5597{ 5598 MachineFunction &MF = DAG.getMachineFunction(); 5599 SDValue Chain = Op.getOperand(0); 5600 SDValue Offset = Op.getOperand(1); 5601 SDValue Handler = Op.getOperand(2); 5602 5603 SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP, 5604 getPointerTy()); 5605 unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX); 5606 5607 SDValue StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame, 5608 DAG.getIntPtrConstant(-TD->getPointerSize())); 5609 StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset); 5610 Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0); 5611 Chain = DAG.getCopyToReg(Chain, StoreAddrReg, StoreAddr); 5612 MF.getRegInfo().addLiveOut(StoreAddrReg); 5613 5614 return DAG.getNode(X86ISD::EH_RETURN, 5615 MVT::Other, 5616 Chain, DAG.getRegister(StoreAddrReg, getPointerTy())); 5617} 5618 5619SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op, 5620 SelectionDAG &DAG) { 5621 SDValue Root = Op.getOperand(0); 5622 SDValue Trmp = Op.getOperand(1); // trampoline 5623 SDValue FPtr = Op.getOperand(2); // nested function 5624 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 5625 5626 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 5627 5628 const X86InstrInfo *TII = 5629 ((X86TargetMachine&)getTargetMachine()).getInstrInfo(); 5630 5631 if (Subtarget->is64Bit()) { 5632 SDValue OutChains[6]; 5633 5634 // Large code-model. 5635 5636 const unsigned char JMP64r = TII->getBaseOpcodeFor(X86::JMP64r); 5637 const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri); 5638 5639 const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10); 5640 const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11); 5641 5642 const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix 5643 5644 // Load the pointer to the nested function into R11. 5645 unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 5646 SDValue Addr = Trmp; 5647 OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr, 5648 TrmpAddr, 0); 5649 5650 Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64)); 5651 OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2); 5652 5653 // Load the 'nest' parameter value into R10. 5654 // R10 is specified in X86CallingConv.td 5655 OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 5656 Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64)); 5657 OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr, 5658 TrmpAddr, 10); 5659 5660 Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64)); 5661 OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2); 5662 5663 // Jump to the nested function. 5664 OpCode = (JMP64r << 8) | REX_WB; // jmpq *... 5665 Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64)); 5666 OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr, 5667 TrmpAddr, 20); 5668 5669 unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 5670 Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64)); 5671 OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr, 5672 TrmpAddr, 22); 5673 5674 SDValue Ops[] = 5675 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) }; 5676 return DAG.getMergeValues(Ops, 2); 5677 } else { 5678 const Function *Func = 5679 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue()); 5680 unsigned CC = Func->getCallingConv(); 5681 unsigned NestReg; 5682 5683 switch (CC) { 5684 default: 5685 assert(0 && "Unsupported calling convention"); 5686 case CallingConv::C: 5687 case CallingConv::X86_StdCall: { 5688 // Pass 'nest' parameter in ECX. 5689 // Must be kept in sync with X86CallingConv.td 5690 NestReg = X86::ECX; 5691 5692 // Check that ECX wasn't needed by an 'inreg' parameter. 5693 const FunctionType *FTy = Func->getFunctionType(); 5694 const PAListPtr &Attrs = Func->getParamAttrs(); 5695 5696 if (!Attrs.isEmpty() && !Func->isVarArg()) { 5697 unsigned InRegCount = 0; 5698 unsigned Idx = 1; 5699 5700 for (FunctionType::param_iterator I = FTy->param_begin(), 5701 E = FTy->param_end(); I != E; ++I, ++Idx) 5702 if (Attrs.paramHasAttr(Idx, ParamAttr::InReg)) 5703 // FIXME: should only count parameters that are lowered to integers. 5704 InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32; 5705 5706 if (InRegCount > 2) { 5707 cerr << "Nest register in use - reduce number of inreg parameters!\n"; 5708 abort(); 5709 } 5710 } 5711 break; 5712 } 5713 case CallingConv::X86_FastCall: 5714 case CallingConv::Fast: 5715 // Pass 'nest' parameter in EAX. 5716 // Must be kept in sync with X86CallingConv.td 5717 NestReg = X86::EAX; 5718 break; 5719 } 5720 5721 SDValue OutChains[4]; 5722 SDValue Addr, Disp; 5723 5724 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32)); 5725 Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr); 5726 5727 const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri); 5728 const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg); 5729 OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8), 5730 Trmp, TrmpAddr, 0); 5731 5732 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32)); 5733 OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1); 5734 5735 const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP); 5736 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32)); 5737 OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr, 5738 TrmpAddr, 5, false, 1); 5739 5740 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32)); 5741 OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1); 5742 5743 SDValue Ops[] = 5744 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) }; 5745 return DAG.getMergeValues(Ops, 2); 5746 } 5747} 5748 5749SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) { 5750 /* 5751 The rounding mode is in bits 11:10 of FPSR, and has the following 5752 settings: 5753 00 Round to nearest 5754 01 Round to -inf 5755 10 Round to +inf 5756 11 Round to 0 5757 5758 FLT_ROUNDS, on the other hand, expects the following: 5759 -1 Undefined 5760 0 Round to 0 5761 1 Round to nearest 5762 2 Round to +inf 5763 3 Round to -inf 5764 5765 To perform the conversion, we do: 5766 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) 5767 */ 5768 5769 MachineFunction &MF = DAG.getMachineFunction(); 5770 const TargetMachine &TM = MF.getTarget(); 5771 const TargetFrameInfo &TFI = *TM.getFrameInfo(); 5772 unsigned StackAlignment = TFI.getStackAlignment(); 5773 MVT VT = Op.getValueType(); 5774 5775 // Save FP Control Word to stack slot 5776 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment); 5777 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 5778 5779 SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other, 5780 DAG.getEntryNode(), StackSlot); 5781 5782 // Load FP Control Word from stack slot 5783 SDValue CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0); 5784 5785 // Transform as necessary 5786 SDValue CWD1 = 5787 DAG.getNode(ISD::SRL, MVT::i16, 5788 DAG.getNode(ISD::AND, MVT::i16, 5789 CWD, DAG.getConstant(0x800, MVT::i16)), 5790 DAG.getConstant(11, MVT::i8)); 5791 SDValue CWD2 = 5792 DAG.getNode(ISD::SRL, MVT::i16, 5793 DAG.getNode(ISD::AND, MVT::i16, 5794 CWD, DAG.getConstant(0x400, MVT::i16)), 5795 DAG.getConstant(9, MVT::i8)); 5796 5797 SDValue RetVal = 5798 DAG.getNode(ISD::AND, MVT::i16, 5799 DAG.getNode(ISD::ADD, MVT::i16, 5800 DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2), 5801 DAG.getConstant(1, MVT::i16)), 5802 DAG.getConstant(3, MVT::i16)); 5803 5804 5805 return DAG.getNode((VT.getSizeInBits() < 16 ? 5806 ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal); 5807} 5808 5809SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) { 5810 MVT VT = Op.getValueType(); 5811 MVT OpVT = VT; 5812 unsigned NumBits = VT.getSizeInBits(); 5813 5814 Op = Op.getOperand(0); 5815 if (VT == MVT::i8) { 5816 // Zero extend to i32 since there is not an i8 bsr. 5817 OpVT = MVT::i32; 5818 Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op); 5819 } 5820 5821 // Issue a bsr (scan bits in reverse) which also sets EFLAGS. 5822 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); 5823 Op = DAG.getNode(X86ISD::BSR, VTs, Op); 5824 5825 // If src is zero (i.e. bsr sets ZF), returns NumBits. 5826 SmallVector<SDValue, 4> Ops; 5827 Ops.push_back(Op); 5828 Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT)); 5829 Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8)); 5830 Ops.push_back(Op.getValue(1)); 5831 Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4); 5832 5833 // Finally xor with NumBits-1. 5834 Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); 5835 5836 if (VT == MVT::i8) 5837 Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op); 5838 return Op; 5839} 5840 5841SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) { 5842 MVT VT = Op.getValueType(); 5843 MVT OpVT = VT; 5844 unsigned NumBits = VT.getSizeInBits(); 5845 5846 Op = Op.getOperand(0); 5847 if (VT == MVT::i8) { 5848 OpVT = MVT::i32; 5849 Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op); 5850 } 5851 5852 // Issue a bsf (scan bits forward) which also sets EFLAGS. 5853 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); 5854 Op = DAG.getNode(X86ISD::BSF, VTs, Op); 5855 5856 // If src is zero (i.e. bsf sets ZF), returns NumBits. 5857 SmallVector<SDValue, 4> Ops; 5858 Ops.push_back(Op); 5859 Ops.push_back(DAG.getConstant(NumBits, OpVT)); 5860 Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8)); 5861 Ops.push_back(Op.getValue(1)); 5862 Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4); 5863 5864 if (VT == MVT::i8) 5865 Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op); 5866 return Op; 5867} 5868 5869SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) { 5870 MVT T = Op.getValueType(); 5871 unsigned Reg = 0; 5872 unsigned size = 0; 5873 switch(T.getSimpleVT()) { 5874 default: 5875 assert(false && "Invalid value type!"); 5876 case MVT::i8: Reg = X86::AL; size = 1; break; 5877 case MVT::i16: Reg = X86::AX; size = 2; break; 5878 case MVT::i32: Reg = X86::EAX; size = 4; break; 5879 case MVT::i64: 5880 if (Subtarget->is64Bit()) { 5881 Reg = X86::RAX; size = 8; 5882 } else //Should go away when LowerType stuff lands 5883 return SDValue(ExpandATOMIC_CMP_SWAP(Op.getNode(), DAG), 0); 5884 break; 5885 }; 5886 SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg, 5887 Op.getOperand(2), SDValue()); 5888 SDValue Ops[] = { cpIn.getValue(0), 5889 Op.getOperand(1), 5890 Op.getOperand(3), 5891 DAG.getTargetConstant(size, MVT::i8), 5892 cpIn.getValue(1) }; 5893 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 5894 SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5); 5895 SDValue cpOut = 5896 DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1)); 5897 return cpOut; 5898} 5899 5900SDNode* X86TargetLowering::ExpandATOMIC_CMP_SWAP(SDNode* Op, 5901 SelectionDAG &DAG) { 5902 MVT T = Op->getValueType(0); 5903 assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap"); 5904 SDValue cpInL, cpInH; 5905 cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2), 5906 DAG.getConstant(0, MVT::i32)); 5907 cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2), 5908 DAG.getConstant(1, MVT::i32)); 5909 cpInL = DAG.getCopyToReg(Op->getOperand(0), X86::EAX, 5910 cpInL, SDValue()); 5911 cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX, 5912 cpInH, cpInL.getValue(1)); 5913 SDValue swapInL, swapInH; 5914 swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3), 5915 DAG.getConstant(0, MVT::i32)); 5916 swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3), 5917 DAG.getConstant(1, MVT::i32)); 5918 swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX, 5919 swapInL, cpInH.getValue(1)); 5920 swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX, 5921 swapInH, swapInL.getValue(1)); 5922 SDValue Ops[] = { swapInH.getValue(0), 5923 Op->getOperand(1), 5924 swapInH.getValue(1)}; 5925 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 5926 SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3); 5927 SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32, 5928 Result.getValue(1)); 5929 SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32, 5930 cpOutL.getValue(2)); 5931 SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; 5932 SDValue ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2); 5933 SDValue Vals[2] = { ResultVal, cpOutH.getValue(1) }; 5934 return DAG.getMergeValues(Vals, 2).getNode(); 5935} 5936 5937SDNode* X86TargetLowering::ExpandATOMIC_LOAD_SUB(SDNode* Op, 5938 SelectionDAG &DAG) { 5939 MVT T = Op->getValueType(0); 5940 SDValue negOp = DAG.getNode(ISD::SUB, T, 5941 DAG.getConstant(0, T), Op->getOperand(2)); 5942 return DAG.getAtomic((T==MVT::i8 ? ISD::ATOMIC_LOAD_ADD_8: 5943 T==MVT::i16 ? ISD::ATOMIC_LOAD_ADD_16: 5944 T==MVT::i32 ? ISD::ATOMIC_LOAD_ADD_32: 5945 T==MVT::i64 ? ISD::ATOMIC_LOAD_ADD_64: 0), 5946 Op->getOperand(0), Op->getOperand(1), negOp, 5947 cast<AtomicSDNode>(Op)->getSrcValue(), 5948 cast<AtomicSDNode>(Op)->getAlignment()).getNode(); 5949} 5950 5951/// LowerOperation - Provide custom lowering hooks for some operations. 5952/// 5953SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { 5954 switch (Op.getOpcode()) { 5955 default: assert(0 && "Should not custom lower this!"); 5956 case ISD::ATOMIC_CMP_SWAP_8: return LowerCMP_SWAP(Op,DAG); 5957 case ISD::ATOMIC_CMP_SWAP_16: return LowerCMP_SWAP(Op,DAG); 5958 case ISD::ATOMIC_CMP_SWAP_32: return LowerCMP_SWAP(Op,DAG); 5959 case ISD::ATOMIC_CMP_SWAP_64: return LowerCMP_SWAP(Op,DAG); 5960 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 5961 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 5962 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 5963 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 5964 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 5965 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 5966 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 5967 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 5968 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); 5969 case ISD::SHL_PARTS: 5970 case ISD::SRA_PARTS: 5971 case ISD::SRL_PARTS: return LowerShift(Op, DAG); 5972 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 5973 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 5974 case ISD::FABS: return LowerFABS(Op, DAG); 5975 case ISD::FNEG: return LowerFNEG(Op, DAG); 5976 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); 5977 case ISD::SETCC: return LowerSETCC(Op, DAG); 5978 case ISD::VSETCC: return LowerVSETCC(Op, DAG); 5979 case ISD::SELECT: return LowerSELECT(Op, DAG); 5980 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 5981 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 5982 case ISD::CALL: return LowerCALL(Op, DAG); 5983 case ISD::RET: return LowerRET(Op, DAG); 5984 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG); 5985 case ISD::VASTART: return LowerVASTART(Op, DAG); 5986 case ISD::VAARG: return LowerVAARG(Op, DAG); 5987 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 5988 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 5989 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 5990 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 5991 case ISD::FRAME_TO_ARGS_OFFSET: 5992 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); 5993 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 5994 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); 5995 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG); 5996 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 5997 case ISD::CTLZ: return LowerCTLZ(Op, DAG); 5998 case ISD::CTTZ: return LowerCTTZ(Op, DAG); 5999 6000 // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands. 6001 case ISD::READCYCLECOUNTER: 6002 return SDValue(ExpandREADCYCLECOUNTER(Op.getNode(), DAG), 0); 6003 } 6004} 6005 6006/// ReplaceNodeResults - Replace a node with an illegal result type 6007/// with a new node built out of custom code. 6008SDNode *X86TargetLowering::ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) { 6009 switch (N->getOpcode()) { 6010 default: assert(0 && "Should not custom lower this!"); 6011 case ISD::FP_TO_SINT: return ExpandFP_TO_SINT(N, DAG); 6012 case ISD::READCYCLECOUNTER: return ExpandREADCYCLECOUNTER(N, DAG); 6013 case ISD::ATOMIC_CMP_SWAP_64: return ExpandATOMIC_CMP_SWAP(N, DAG); 6014 case ISD::ATOMIC_LOAD_SUB_8: return ExpandATOMIC_LOAD_SUB(N,DAG); 6015 case ISD::ATOMIC_LOAD_SUB_16: return ExpandATOMIC_LOAD_SUB(N,DAG); 6016 case ISD::ATOMIC_LOAD_SUB_32: return ExpandATOMIC_LOAD_SUB(N,DAG); 6017 case ISD::ATOMIC_LOAD_SUB_64: return ExpandATOMIC_LOAD_SUB(N,DAG); 6018 } 6019} 6020 6021const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { 6022 switch (Opcode) { 6023 default: return NULL; 6024 case X86ISD::BSF: return "X86ISD::BSF"; 6025 case X86ISD::BSR: return "X86ISD::BSR"; 6026 case X86ISD::SHLD: return "X86ISD::SHLD"; 6027 case X86ISD::SHRD: return "X86ISD::SHRD"; 6028 case X86ISD::FAND: return "X86ISD::FAND"; 6029 case X86ISD::FOR: return "X86ISD::FOR"; 6030 case X86ISD::FXOR: return "X86ISD::FXOR"; 6031 case X86ISD::FSRL: return "X86ISD::FSRL"; 6032 case X86ISD::FILD: return "X86ISD::FILD"; 6033 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; 6034 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; 6035 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; 6036 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; 6037 case X86ISD::FLD: return "X86ISD::FLD"; 6038 case X86ISD::FST: return "X86ISD::FST"; 6039 case X86ISD::CALL: return "X86ISD::CALL"; 6040 case X86ISD::TAILCALL: return "X86ISD::TAILCALL"; 6041 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; 6042 case X86ISD::CMP: return "X86ISD::CMP"; 6043 case X86ISD::COMI: return "X86ISD::COMI"; 6044 case X86ISD::UCOMI: return "X86ISD::UCOMI"; 6045 case X86ISD::SETCC: return "X86ISD::SETCC"; 6046 case X86ISD::CMOV: return "X86ISD::CMOV"; 6047 case X86ISD::BRCOND: return "X86ISD::BRCOND"; 6048 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; 6049 case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; 6050 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; 6051 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; 6052 case X86ISD::Wrapper: return "X86ISD::Wrapper"; 6053 case X86ISD::PEXTRB: return "X86ISD::PEXTRB"; 6054 case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; 6055 case X86ISD::INSERTPS: return "X86ISD::INSERTPS"; 6056 case X86ISD::PINSRB: return "X86ISD::PINSRB"; 6057 case X86ISD::PINSRW: return "X86ISD::PINSRW"; 6058 case X86ISD::FMAX: return "X86ISD::FMAX"; 6059 case X86ISD::FMIN: return "X86ISD::FMIN"; 6060 case X86ISD::FRSQRT: return "X86ISD::FRSQRT"; 6061 case X86ISD::FRCP: return "X86ISD::FRCP"; 6062 case X86ISD::TLSADDR: return "X86ISD::TLSADDR"; 6063 case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER"; 6064 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN"; 6065 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN"; 6066 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m"; 6067 case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG"; 6068 case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG"; 6069 case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL"; 6070 case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD"; 6071 case X86ISD::VSHL: return "X86ISD::VSHL"; 6072 case X86ISD::VSRL: return "X86ISD::VSRL"; 6073 case X86ISD::CMPPD: return "X86ISD::CMPPD"; 6074 case X86ISD::CMPPS: return "X86ISD::CMPPS"; 6075 case X86ISD::PCMPEQB: return "X86ISD::PCMPEQB"; 6076 case X86ISD::PCMPEQW: return "X86ISD::PCMPEQW"; 6077 case X86ISD::PCMPEQD: return "X86ISD::PCMPEQD"; 6078 case X86ISD::PCMPEQQ: return "X86ISD::PCMPEQQ"; 6079 case X86ISD::PCMPGTB: return "X86ISD::PCMPGTB"; 6080 case X86ISD::PCMPGTW: return "X86ISD::PCMPGTW"; 6081 case X86ISD::PCMPGTD: return "X86ISD::PCMPGTD"; 6082 case X86ISD::PCMPGTQ: return "X86ISD::PCMPGTQ"; 6083 } 6084} 6085 6086// isLegalAddressingMode - Return true if the addressing mode represented 6087// by AM is legal for this target, for a load/store of the specified type. 6088bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, 6089 const Type *Ty) const { 6090 // X86 supports extremely general addressing modes. 6091 6092 // X86 allows a sign-extended 32-bit immediate field as a displacement. 6093 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1) 6094 return false; 6095 6096 if (AM.BaseGV) { 6097 // We can only fold this if we don't need an extra load. 6098 if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false)) 6099 return false; 6100 6101 // X86-64 only supports addr of globals in small code model. 6102 if (Subtarget->is64Bit()) { 6103 if (getTargetMachine().getCodeModel() != CodeModel::Small) 6104 return false; 6105 // If lower 4G is not available, then we must use rip-relative addressing. 6106 if (AM.BaseOffs || AM.Scale > 1) 6107 return false; 6108 } 6109 } 6110 6111 switch (AM.Scale) { 6112 case 0: 6113 case 1: 6114 case 2: 6115 case 4: 6116 case 8: 6117 // These scales always work. 6118 break; 6119 case 3: 6120 case 5: 6121 case 9: 6122 // These scales are formed with basereg+scalereg. Only accept if there is 6123 // no basereg yet. 6124 if (AM.HasBaseReg) 6125 return false; 6126 break; 6127 default: // Other stuff never works. 6128 return false; 6129 } 6130 6131 return true; 6132} 6133 6134 6135bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const { 6136 if (!Ty1->isInteger() || !Ty2->isInteger()) 6137 return false; 6138 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 6139 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 6140 if (NumBits1 <= NumBits2) 6141 return false; 6142 return Subtarget->is64Bit() || NumBits1 < 64; 6143} 6144 6145bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const { 6146 if (!VT1.isInteger() || !VT2.isInteger()) 6147 return false; 6148 unsigned NumBits1 = VT1.getSizeInBits(); 6149 unsigned NumBits2 = VT2.getSizeInBits(); 6150 if (NumBits1 <= NumBits2) 6151 return false; 6152 return Subtarget->is64Bit() || NumBits1 < 64; 6153} 6154 6155/// isShuffleMaskLegal - Targets can use this to indicate that they only 6156/// support *some* VECTOR_SHUFFLE operations, those with specific masks. 6157/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values 6158/// are assumed to be legal. 6159bool 6160X86TargetLowering::isShuffleMaskLegal(SDValue Mask, MVT VT) const { 6161 // Only do shuffles on 128-bit vector types for now. 6162 if (VT.getSizeInBits() == 64) return false; 6163 return (Mask.getNode()->getNumOperands() <= 4 || 6164 isIdentityMask(Mask.getNode()) || 6165 isIdentityMask(Mask.getNode(), true) || 6166 isSplatMask(Mask.getNode()) || 6167 isPSHUFHW_PSHUFLWMask(Mask.getNode()) || 6168 X86::isUNPCKLMask(Mask.getNode()) || 6169 X86::isUNPCKHMask(Mask.getNode()) || 6170 X86::isUNPCKL_v_undef_Mask(Mask.getNode()) || 6171 X86::isUNPCKH_v_undef_Mask(Mask.getNode())); 6172} 6173 6174bool 6175X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDValue> &BVOps, 6176 MVT EVT, SelectionDAG &DAG) const { 6177 unsigned NumElts = BVOps.size(); 6178 // Only do shuffles on 128-bit vector types for now. 6179 if (EVT.getSizeInBits() * NumElts == 64) return false; 6180 if (NumElts == 2) return true; 6181 if (NumElts == 4) { 6182 return (isMOVLMask(&BVOps[0], 4) || 6183 isCommutedMOVL(&BVOps[0], 4, true) || 6184 isSHUFPMask(&BVOps[0], 4) || 6185 isCommutedSHUFP(&BVOps[0], 4)); 6186 } 6187 return false; 6188} 6189 6190//===----------------------------------------------------------------------===// 6191// X86 Scheduler Hooks 6192//===----------------------------------------------------------------------===// 6193 6194// private utility function 6195MachineBasicBlock * 6196X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr, 6197 MachineBasicBlock *MBB, 6198 unsigned regOpc, 6199 unsigned immOpc, 6200 unsigned LoadOpc, 6201 unsigned CXchgOpc, 6202 unsigned copyOpc, 6203 unsigned notOpc, 6204 unsigned EAXreg, 6205 TargetRegisterClass *RC, 6206 bool invSrc) { 6207 // For the atomic bitwise operator, we generate 6208 // thisMBB: 6209 // newMBB: 6210 // ld t1 = [bitinstr.addr] 6211 // op t2 = t1, [bitinstr.val] 6212 // mov EAX = t1 6213 // lcs dest = [bitinstr.addr], t2 [EAX is implicit] 6214 // bz newMBB 6215 // fallthrough -->nextMBB 6216 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 6217 const BasicBlock *LLVM_BB = MBB->getBasicBlock(); 6218 MachineFunction::iterator MBBIter = MBB; 6219 ++MBBIter; 6220 6221 /// First build the CFG 6222 MachineFunction *F = MBB->getParent(); 6223 MachineBasicBlock *thisMBB = MBB; 6224 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); 6225 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); 6226 F->insert(MBBIter, newMBB); 6227 F->insert(MBBIter, nextMBB); 6228 6229 // Move all successors to thisMBB to nextMBB 6230 nextMBB->transferSuccessors(thisMBB); 6231 6232 // Update thisMBB to fall through to newMBB 6233 thisMBB->addSuccessor(newMBB); 6234 6235 // newMBB jumps to itself and fall through to nextMBB 6236 newMBB->addSuccessor(nextMBB); 6237 newMBB->addSuccessor(newMBB); 6238 6239 // Insert instructions into newMBB based on incoming instruction 6240 assert(bInstr->getNumOperands() < 8 && "unexpected number of operands"); 6241 MachineOperand& destOper = bInstr->getOperand(0); 6242 MachineOperand* argOpers[6]; 6243 int numArgs = bInstr->getNumOperands() - 1; 6244 for (int i=0; i < numArgs; ++i) 6245 argOpers[i] = &bInstr->getOperand(i+1); 6246 6247 // x86 address has 4 operands: base, index, scale, and displacement 6248 int lastAddrIndx = 3; // [0,3] 6249 int valArgIndx = 4; 6250 6251 unsigned t1 = F->getRegInfo().createVirtualRegister(RC); 6252 MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(LoadOpc), t1); 6253 for (int i=0; i <= lastAddrIndx; ++i) 6254 (*MIB).addOperand(*argOpers[i]); 6255 6256 unsigned tt = F->getRegInfo().createVirtualRegister(RC); 6257 if (invSrc) { 6258 MIB = BuildMI(newMBB, TII->get(notOpc), tt).addReg(t1); 6259 } 6260 else 6261 tt = t1; 6262 6263 unsigned t2 = F->getRegInfo().createVirtualRegister(RC); 6264 assert((argOpers[valArgIndx]->isRegister() || 6265 argOpers[valArgIndx]->isImmediate()) && 6266 "invalid operand"); 6267 if (argOpers[valArgIndx]->isRegister()) 6268 MIB = BuildMI(newMBB, TII->get(regOpc), t2); 6269 else 6270 MIB = BuildMI(newMBB, TII->get(immOpc), t2); 6271 MIB.addReg(tt); 6272 (*MIB).addOperand(*argOpers[valArgIndx]); 6273 6274 MIB = BuildMI(newMBB, TII->get(copyOpc), EAXreg); 6275 MIB.addReg(t1); 6276 6277 MIB = BuildMI(newMBB, TII->get(CXchgOpc)); 6278 for (int i=0; i <= lastAddrIndx; ++i) 6279 (*MIB).addOperand(*argOpers[i]); 6280 MIB.addReg(t2); 6281 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand"); 6282 (*MIB).addMemOperand(*F, *bInstr->memoperands_begin()); 6283 6284 MIB = BuildMI(newMBB, TII->get(copyOpc), destOper.getReg()); 6285 MIB.addReg(EAXreg); 6286 6287 // insert branch 6288 BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB); 6289 6290 F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now. 6291 return nextMBB; 6292} 6293 6294// private utility function 6295MachineBasicBlock * 6296X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr, 6297 MachineBasicBlock *MBB, 6298 unsigned cmovOpc) { 6299 // For the atomic min/max operator, we generate 6300 // thisMBB: 6301 // newMBB: 6302 // ld t1 = [min/max.addr] 6303 // mov t2 = [min/max.val] 6304 // cmp t1, t2 6305 // cmov[cond] t2 = t1 6306 // mov EAX = t1 6307 // lcs dest = [bitinstr.addr], t2 [EAX is implicit] 6308 // bz newMBB 6309 // fallthrough -->nextMBB 6310 // 6311 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 6312 const BasicBlock *LLVM_BB = MBB->getBasicBlock(); 6313 MachineFunction::iterator MBBIter = MBB; 6314 ++MBBIter; 6315 6316 /// First build the CFG 6317 MachineFunction *F = MBB->getParent(); 6318 MachineBasicBlock *thisMBB = MBB; 6319 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); 6320 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); 6321 F->insert(MBBIter, newMBB); 6322 F->insert(MBBIter, nextMBB); 6323 6324 // Move all successors to thisMBB to nextMBB 6325 nextMBB->transferSuccessors(thisMBB); 6326 6327 // Update thisMBB to fall through to newMBB 6328 thisMBB->addSuccessor(newMBB); 6329 6330 // newMBB jumps to newMBB and fall through to nextMBB 6331 newMBB->addSuccessor(nextMBB); 6332 newMBB->addSuccessor(newMBB); 6333 6334 // Insert instructions into newMBB based on incoming instruction 6335 assert(mInstr->getNumOperands() < 8 && "unexpected number of operands"); 6336 MachineOperand& destOper = mInstr->getOperand(0); 6337 MachineOperand* argOpers[6]; 6338 int numArgs = mInstr->getNumOperands() - 1; 6339 for (int i=0; i < numArgs; ++i) 6340 argOpers[i] = &mInstr->getOperand(i+1); 6341 6342 // x86 address has 4 operands: base, index, scale, and displacement 6343 int lastAddrIndx = 3; // [0,3] 6344 int valArgIndx = 4; 6345 6346 unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); 6347 MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1); 6348 for (int i=0; i <= lastAddrIndx; ++i) 6349 (*MIB).addOperand(*argOpers[i]); 6350 6351 // We only support register and immediate values 6352 assert((argOpers[valArgIndx]->isRegister() || 6353 argOpers[valArgIndx]->isImmediate()) && 6354 "invalid operand"); 6355 6356 unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); 6357 if (argOpers[valArgIndx]->isRegister()) 6358 MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2); 6359 else 6360 MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2); 6361 (*MIB).addOperand(*argOpers[valArgIndx]); 6362 6363 MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX); 6364 MIB.addReg(t1); 6365 6366 MIB = BuildMI(newMBB, TII->get(X86::CMP32rr)); 6367 MIB.addReg(t1); 6368 MIB.addReg(t2); 6369 6370 // Generate movc 6371 unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); 6372 MIB = BuildMI(newMBB, TII->get(cmovOpc),t3); 6373 MIB.addReg(t2); 6374 MIB.addReg(t1); 6375 6376 // Cmp and exchange if none has modified the memory location 6377 MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32)); 6378 for (int i=0; i <= lastAddrIndx; ++i) 6379 (*MIB).addOperand(*argOpers[i]); 6380 MIB.addReg(t3); 6381 assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand"); 6382 (*MIB).addMemOperand(*F, *mInstr->memoperands_begin()); 6383 6384 MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg()); 6385 MIB.addReg(X86::EAX); 6386 6387 // insert branch 6388 BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB); 6389 6390 F->DeleteMachineInstr(mInstr); // The pseudo instruction is gone now. 6391 return nextMBB; 6392} 6393 6394 6395MachineBasicBlock * 6396X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 6397 MachineBasicBlock *BB) { 6398 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 6399 switch (MI->getOpcode()) { 6400 default: assert(false && "Unexpected instr type to insert"); 6401 case X86::CMOV_FR32: 6402 case X86::CMOV_FR64: 6403 case X86::CMOV_V4F32: 6404 case X86::CMOV_V2F64: 6405 case X86::CMOV_V2I64: { 6406 // To "insert" a SELECT_CC instruction, we actually have to insert the 6407 // diamond control-flow pattern. The incoming instruction knows the 6408 // destination vreg to set, the condition code register to branch on, the 6409 // true/false values to select between, and a branch opcode to use. 6410 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6411 MachineFunction::iterator It = BB; 6412 ++It; 6413 6414 // thisMBB: 6415 // ... 6416 // TrueVal = ... 6417 // cmpTY ccX, r1, r2 6418 // bCC copy1MBB 6419 // fallthrough --> copy0MBB 6420 MachineBasicBlock *thisMBB = BB; 6421 MachineFunction *F = BB->getParent(); 6422 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 6423 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 6424 unsigned Opc = 6425 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); 6426 BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB); 6427 F->insert(It, copy0MBB); 6428 F->insert(It, sinkMBB); 6429 // Update machine-CFG edges by transferring all successors of the current 6430 // block to the new block which will contain the Phi node for the select. 6431 sinkMBB->transferSuccessors(BB); 6432 6433 // Add the true and fallthrough blocks as its successors. 6434 BB->addSuccessor(copy0MBB); 6435 BB->addSuccessor(sinkMBB); 6436 6437 // copy0MBB: 6438 // %FalseValue = ... 6439 // # fallthrough to sinkMBB 6440 BB = copy0MBB; 6441 6442 // Update machine-CFG edges 6443 BB->addSuccessor(sinkMBB); 6444 6445 // sinkMBB: 6446 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 6447 // ... 6448 BB = sinkMBB; 6449 BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg()) 6450 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) 6451 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 6452 6453 F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. 6454 return BB; 6455 } 6456 6457 case X86::FP32_TO_INT16_IN_MEM: 6458 case X86::FP32_TO_INT32_IN_MEM: 6459 case X86::FP32_TO_INT64_IN_MEM: 6460 case X86::FP64_TO_INT16_IN_MEM: 6461 case X86::FP64_TO_INT32_IN_MEM: 6462 case X86::FP64_TO_INT64_IN_MEM: 6463 case X86::FP80_TO_INT16_IN_MEM: 6464 case X86::FP80_TO_INT32_IN_MEM: 6465 case X86::FP80_TO_INT64_IN_MEM: { 6466 // Change the floating point control register to use "round towards zero" 6467 // mode when truncating to an integer value. 6468 MachineFunction *F = BB->getParent(); 6469 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); 6470 addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx); 6471 6472 // Load the old value of the high byte of the control word... 6473 unsigned OldCW = 6474 F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass); 6475 addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx); 6476 6477 // Set the high part to be round to zero... 6478 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx) 6479 .addImm(0xC7F); 6480 6481 // Reload the modified control word now... 6482 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx); 6483 6484 // Restore the memory image of control word to original value 6485 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx) 6486 .addReg(OldCW); 6487 6488 // Get the X86 opcode to use. 6489 unsigned Opc; 6490 switch (MI->getOpcode()) { 6491 default: assert(0 && "illegal opcode!"); 6492 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; 6493 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; 6494 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; 6495 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; 6496 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; 6497 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; 6498 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; 6499 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; 6500 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; 6501 } 6502 6503 X86AddressMode AM; 6504 MachineOperand &Op = MI->getOperand(0); 6505 if (Op.isRegister()) { 6506 AM.BaseType = X86AddressMode::RegBase; 6507 AM.Base.Reg = Op.getReg(); 6508 } else { 6509 AM.BaseType = X86AddressMode::FrameIndexBase; 6510 AM.Base.FrameIndex = Op.getIndex(); 6511 } 6512 Op = MI->getOperand(1); 6513 if (Op.isImmediate()) 6514 AM.Scale = Op.getImm(); 6515 Op = MI->getOperand(2); 6516 if (Op.isImmediate()) 6517 AM.IndexReg = Op.getImm(); 6518 Op = MI->getOperand(3); 6519 if (Op.isGlobalAddress()) { 6520 AM.GV = Op.getGlobal(); 6521 } else { 6522 AM.Disp = Op.getImm(); 6523 } 6524 addFullAddress(BuildMI(BB, TII->get(Opc)), AM) 6525 .addReg(MI->getOperand(4).getReg()); 6526 6527 // Reload the original control word now. 6528 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx); 6529 6530 F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. 6531 return BB; 6532 } 6533 case X86::ATOMAND32: 6534 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr, 6535 X86::AND32ri, X86::MOV32rm, 6536 X86::LCMPXCHG32, X86::MOV32rr, 6537 X86::NOT32r, X86::EAX, 6538 X86::GR32RegisterClass); 6539 case X86::ATOMOR32: 6540 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr, 6541 X86::OR32ri, X86::MOV32rm, 6542 X86::LCMPXCHG32, X86::MOV32rr, 6543 X86::NOT32r, X86::EAX, 6544 X86::GR32RegisterClass); 6545 case X86::ATOMXOR32: 6546 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr, 6547 X86::XOR32ri, X86::MOV32rm, 6548 X86::LCMPXCHG32, X86::MOV32rr, 6549 X86::NOT32r, X86::EAX, 6550 X86::GR32RegisterClass); 6551 case X86::ATOMNAND32: 6552 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr, 6553 X86::AND32ri, X86::MOV32rm, 6554 X86::LCMPXCHG32, X86::MOV32rr, 6555 X86::NOT32r, X86::EAX, 6556 X86::GR32RegisterClass, true); 6557 case X86::ATOMMIN32: 6558 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr); 6559 case X86::ATOMMAX32: 6560 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr); 6561 case X86::ATOMUMIN32: 6562 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr); 6563 case X86::ATOMUMAX32: 6564 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr); 6565 6566 case X86::ATOMAND16: 6567 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr, 6568 X86::AND16ri, X86::MOV16rm, 6569 X86::LCMPXCHG16, X86::MOV16rr, 6570 X86::NOT16r, X86::AX, 6571 X86::GR16RegisterClass); 6572 case X86::ATOMOR16: 6573 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr, 6574 X86::OR16ri, X86::MOV16rm, 6575 X86::LCMPXCHG16, X86::MOV16rr, 6576 X86::NOT16r, X86::AX, 6577 X86::GR16RegisterClass); 6578 case X86::ATOMXOR16: 6579 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr, 6580 X86::XOR16ri, X86::MOV16rm, 6581 X86::LCMPXCHG16, X86::MOV16rr, 6582 X86::NOT16r, X86::AX, 6583 X86::GR16RegisterClass); 6584 case X86::ATOMNAND16: 6585 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr, 6586 X86::AND16ri, X86::MOV16rm, 6587 X86::LCMPXCHG16, X86::MOV16rr, 6588 X86::NOT16r, X86::AX, 6589 X86::GR16RegisterClass, true); 6590 case X86::ATOMMIN16: 6591 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr); 6592 case X86::ATOMMAX16: 6593 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr); 6594 case X86::ATOMUMIN16: 6595 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr); 6596 case X86::ATOMUMAX16: 6597 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr); 6598 6599 case X86::ATOMAND8: 6600 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr, 6601 X86::AND8ri, X86::MOV8rm, 6602 X86::LCMPXCHG8, X86::MOV8rr, 6603 X86::NOT8r, X86::AL, 6604 X86::GR8RegisterClass); 6605 case X86::ATOMOR8: 6606 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr, 6607 X86::OR8ri, X86::MOV8rm, 6608 X86::LCMPXCHG8, X86::MOV8rr, 6609 X86::NOT8r, X86::AL, 6610 X86::GR8RegisterClass); 6611 case X86::ATOMXOR8: 6612 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr, 6613 X86::XOR8ri, X86::MOV8rm, 6614 X86::LCMPXCHG8, X86::MOV8rr, 6615 X86::NOT8r, X86::AL, 6616 X86::GR8RegisterClass); 6617 case X86::ATOMNAND8: 6618 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr, 6619 X86::AND8ri, X86::MOV8rm, 6620 X86::LCMPXCHG8, X86::MOV8rr, 6621 X86::NOT8r, X86::AL, 6622 X86::GR8RegisterClass, true); 6623 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way. 6624 case X86::ATOMAND64: 6625 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr, 6626 X86::AND64ri32, X86::MOV64rm, 6627 X86::LCMPXCHG64, X86::MOV64rr, 6628 X86::NOT64r, X86::RAX, 6629 X86::GR64RegisterClass); 6630 case X86::ATOMOR64: 6631 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr, 6632 X86::OR64ri32, X86::MOV64rm, 6633 X86::LCMPXCHG64, X86::MOV64rr, 6634 X86::NOT64r, X86::RAX, 6635 X86::GR64RegisterClass); 6636 case X86::ATOMXOR64: 6637 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr, 6638 X86::XOR64ri32, X86::MOV64rm, 6639 X86::LCMPXCHG64, X86::MOV64rr, 6640 X86::NOT64r, X86::RAX, 6641 X86::GR64RegisterClass); 6642 case X86::ATOMNAND64: 6643 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr, 6644 X86::AND64ri32, X86::MOV64rm, 6645 X86::LCMPXCHG64, X86::MOV64rr, 6646 X86::NOT64r, X86::RAX, 6647 X86::GR64RegisterClass, true); 6648 case X86::ATOMMIN64: 6649 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr); 6650 case X86::ATOMMAX64: 6651 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr); 6652 case X86::ATOMUMIN64: 6653 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr); 6654 case X86::ATOMUMAX64: 6655 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr); 6656 } 6657} 6658 6659//===----------------------------------------------------------------------===// 6660// X86 Optimization Hooks 6661//===----------------------------------------------------------------------===// 6662 6663void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 6664 const APInt &Mask, 6665 APInt &KnownZero, 6666 APInt &KnownOne, 6667 const SelectionDAG &DAG, 6668 unsigned Depth) const { 6669 unsigned Opc = Op.getOpcode(); 6670 assert((Opc >= ISD::BUILTIN_OP_END || 6671 Opc == ISD::INTRINSIC_WO_CHAIN || 6672 Opc == ISD::INTRINSIC_W_CHAIN || 6673 Opc == ISD::INTRINSIC_VOID) && 6674 "Should use MaskedValueIsZero if you don't know whether Op" 6675 " is a target node!"); 6676 6677 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything. 6678 switch (Opc) { 6679 default: break; 6680 case X86ISD::SETCC: 6681 KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(), 6682 Mask.getBitWidth() - 1); 6683 break; 6684 } 6685} 6686 6687/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the 6688/// node is a GlobalAddress + offset. 6689bool X86TargetLowering::isGAPlusOffset(SDNode *N, 6690 GlobalValue* &GA, int64_t &Offset) const{ 6691 if (N->getOpcode() == X86ISD::Wrapper) { 6692 if (isa<GlobalAddressSDNode>(N->getOperand(0))) { 6693 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal(); 6694 return true; 6695 } 6696 } 6697 return TargetLowering::isGAPlusOffset(N, GA, Offset); 6698} 6699 6700static bool isBaseAlignmentOfN(unsigned N, SDNode *Base, 6701 const TargetLowering &TLI) { 6702 GlobalValue *GV; 6703 int64_t Offset = 0; 6704 if (TLI.isGAPlusOffset(Base, GV, Offset)) 6705 return (GV->getAlignment() >= N && (Offset % N) == 0); 6706 // DAG combine handles the stack object case. 6707 return false; 6708} 6709 6710static bool EltsFromConsecutiveLoads(SDNode *N, SDValue PermMask, 6711 unsigned NumElems, MVT EVT, 6712 SDNode *&Base, 6713 SelectionDAG &DAG, MachineFrameInfo *MFI, 6714 const TargetLowering &TLI) { 6715 Base = NULL; 6716 for (unsigned i = 0; i < NumElems; ++i) { 6717 SDValue Idx = PermMask.getOperand(i); 6718 if (Idx.getOpcode() == ISD::UNDEF) { 6719 if (!Base) 6720 return false; 6721 continue; 6722 } 6723 6724 SDValue Elt = DAG.getShuffleScalarElt(N, i); 6725 if (!Elt.getNode() || 6726 (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode()))) 6727 return false; 6728 if (!Base) { 6729 Base = Elt.getNode(); 6730 if (Base->getOpcode() == ISD::UNDEF) 6731 return false; 6732 continue; 6733 } 6734 if (Elt.getOpcode() == ISD::UNDEF) 6735 continue; 6736 6737 if (!TLI.isConsecutiveLoad(Elt.getNode(), Base, 6738 EVT.getSizeInBits()/8, i, MFI)) 6739 return false; 6740 } 6741 return true; 6742} 6743 6744/// PerformShuffleCombine - Combine a vector_shuffle that is equal to 6745/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load 6746/// if the load addresses are consecutive, non-overlapping, and in the right 6747/// order. 6748static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, 6749 const TargetLowering &TLI) { 6750 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 6751 MVT VT = N->getValueType(0); 6752 MVT EVT = VT.getVectorElementType(); 6753 SDValue PermMask = N->getOperand(2); 6754 unsigned NumElems = PermMask.getNumOperands(); 6755 SDNode *Base = NULL; 6756 if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base, 6757 DAG, MFI, TLI)) 6758 return SDValue(); 6759 6760 LoadSDNode *LD = cast<LoadSDNode>(Base); 6761 if (isBaseAlignmentOfN(16, Base->getOperand(1).getNode(), TLI)) 6762 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(), 6763 LD->getSrcValueOffset(), LD->isVolatile()); 6764 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(), 6765 LD->getSrcValueOffset(), LD->isVolatile(), 6766 LD->getAlignment()); 6767} 6768 6769/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd. 6770static SDValue PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG, 6771 const X86Subtarget *Subtarget, 6772 const TargetLowering &TLI) { 6773 unsigned NumOps = N->getNumOperands(); 6774 6775 // Ignore single operand BUILD_VECTOR. 6776 if (NumOps == 1) 6777 return SDValue(); 6778 6779 MVT VT = N->getValueType(0); 6780 MVT EVT = VT.getVectorElementType(); 6781 if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit()) 6782 // We are looking for load i64 and zero extend. We want to transform 6783 // it before legalizer has a chance to expand it. Also look for i64 6784 // BUILD_PAIR bit casted to f64. 6785 return SDValue(); 6786 // This must be an insertion into a zero vector. 6787 SDValue HighElt = N->getOperand(1); 6788 if (!isZeroNode(HighElt)) 6789 return SDValue(); 6790 6791 // Value must be a load. 6792 SDNode *Base = N->getOperand(0).getNode(); 6793 if (!isa<LoadSDNode>(Base)) { 6794 if (Base->getOpcode() != ISD::BIT_CONVERT) 6795 return SDValue(); 6796 Base = Base->getOperand(0).getNode(); 6797 if (!isa<LoadSDNode>(Base)) 6798 return SDValue(); 6799 } 6800 6801 // Transform it into VZEXT_LOAD addr. 6802 LoadSDNode *LD = cast<LoadSDNode>(Base); 6803 6804 // Load must not be an extload. 6805 if (LD->getExtensionType() != ISD::NON_EXTLOAD) 6806 return SDValue(); 6807 6808 return DAG.getNode(X86ISD::VZEXT_LOAD, VT, LD->getChain(), LD->getBasePtr()); 6809} 6810 6811/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes. 6812static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, 6813 const X86Subtarget *Subtarget) { 6814 SDValue Cond = N->getOperand(0); 6815 6816 // If we have SSE[12] support, try to form min/max nodes. 6817 if (Subtarget->hasSSE2() && 6818 (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) { 6819 if (Cond.getOpcode() == ISD::SETCC) { 6820 // Get the LHS/RHS of the select. 6821 SDValue LHS = N->getOperand(1); 6822 SDValue RHS = N->getOperand(2); 6823 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 6824 6825 unsigned Opcode = 0; 6826 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) { 6827 switch (CC) { 6828 default: break; 6829 case ISD::SETOLE: // (X <= Y) ? X : Y -> min 6830 case ISD::SETULE: 6831 case ISD::SETLE: 6832 if (!UnsafeFPMath) break; 6833 // FALL THROUGH. 6834 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min 6835 case ISD::SETLT: 6836 Opcode = X86ISD::FMIN; 6837 break; 6838 6839 case ISD::SETOGT: // (X > Y) ? X : Y -> max 6840 case ISD::SETUGT: 6841 case ISD::SETGT: 6842 if (!UnsafeFPMath) break; 6843 // FALL THROUGH. 6844 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max 6845 case ISD::SETGE: 6846 Opcode = X86ISD::FMAX; 6847 break; 6848 } 6849 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) { 6850 switch (CC) { 6851 default: break; 6852 case ISD::SETOGT: // (X > Y) ? Y : X -> min 6853 case ISD::SETUGT: 6854 case ISD::SETGT: 6855 if (!UnsafeFPMath) break; 6856 // FALL THROUGH. 6857 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min 6858 case ISD::SETGE: 6859 Opcode = X86ISD::FMIN; 6860 break; 6861 6862 case ISD::SETOLE: // (X <= Y) ? Y : X -> max 6863 case ISD::SETULE: 6864 case ISD::SETLE: 6865 if (!UnsafeFPMath) break; 6866 // FALL THROUGH. 6867 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max 6868 case ISD::SETLT: 6869 Opcode = X86ISD::FMAX; 6870 break; 6871 } 6872 } 6873 6874 if (Opcode) 6875 return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS); 6876 } 6877 6878 } 6879 6880 return SDValue(); 6881} 6882 6883/// PerformSTORECombine - Do target-specific dag combines on STORE nodes. 6884static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, 6885 const X86Subtarget *Subtarget) { 6886 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering 6887 // the FP state in cases where an emms may be missing. 6888 // A preferable solution to the general problem is to figure out the right 6889 // places to insert EMMS. This qualifies as a quick hack. 6890 StoreSDNode *St = cast<StoreSDNode>(N); 6891 if (St->getValue().getValueType().isVector() && 6892 St->getValue().getValueType().getSizeInBits() == 64 && 6893 isa<LoadSDNode>(St->getValue()) && 6894 !cast<LoadSDNode>(St->getValue())->isVolatile() && 6895 St->getChain().hasOneUse() && !St->isVolatile()) { 6896 SDNode* LdVal = St->getValue().getNode(); 6897 LoadSDNode *Ld = 0; 6898 int TokenFactorIndex = -1; 6899 SmallVector<SDValue, 8> Ops; 6900 SDNode* ChainVal = St->getChain().getNode(); 6901 // Must be a store of a load. We currently handle two cases: the load 6902 // is a direct child, and it's under an intervening TokenFactor. It is 6903 // possible to dig deeper under nested TokenFactors. 6904 if (ChainVal == LdVal) 6905 Ld = cast<LoadSDNode>(St->getChain()); 6906 else if (St->getValue().hasOneUse() && 6907 ChainVal->getOpcode() == ISD::TokenFactor) { 6908 for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) { 6909 if (ChainVal->getOperand(i).getNode() == LdVal) { 6910 TokenFactorIndex = i; 6911 Ld = cast<LoadSDNode>(St->getValue()); 6912 } else 6913 Ops.push_back(ChainVal->getOperand(i)); 6914 } 6915 } 6916 if (Ld) { 6917 // If we are a 64-bit capable x86, lower to a single movq load/store pair. 6918 if (Subtarget->is64Bit()) { 6919 SDValue NewLd = DAG.getLoad(MVT::i64, Ld->getChain(), 6920 Ld->getBasePtr(), Ld->getSrcValue(), 6921 Ld->getSrcValueOffset(), Ld->isVolatile(), 6922 Ld->getAlignment()); 6923 SDValue NewChain = NewLd.getValue(1); 6924 if (TokenFactorIndex != -1) { 6925 Ops.push_back(NewChain); 6926 NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], 6927 Ops.size()); 6928 } 6929 return DAG.getStore(NewChain, NewLd, St->getBasePtr(), 6930 St->getSrcValue(), St->getSrcValueOffset(), 6931 St->isVolatile(), St->getAlignment()); 6932 } 6933 6934 // Otherwise, lower to two 32-bit copies. 6935 SDValue LoAddr = Ld->getBasePtr(); 6936 SDValue HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr, 6937 DAG.getConstant(4, MVT::i32)); 6938 6939 SDValue LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr, 6940 Ld->getSrcValue(), Ld->getSrcValueOffset(), 6941 Ld->isVolatile(), Ld->getAlignment()); 6942 SDValue HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr, 6943 Ld->getSrcValue(), Ld->getSrcValueOffset()+4, 6944 Ld->isVolatile(), 6945 MinAlign(Ld->getAlignment(), 4)); 6946 6947 SDValue NewChain = LoLd.getValue(1); 6948 if (TokenFactorIndex != -1) { 6949 Ops.push_back(LoLd); 6950 Ops.push_back(HiLd); 6951 NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], 6952 Ops.size()); 6953 } 6954 6955 LoAddr = St->getBasePtr(); 6956 HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr, 6957 DAG.getConstant(4, MVT::i32)); 6958 6959 SDValue LoSt = DAG.getStore(NewChain, LoLd, LoAddr, 6960 St->getSrcValue(), St->getSrcValueOffset(), 6961 St->isVolatile(), St->getAlignment()); 6962 SDValue HiSt = DAG.getStore(NewChain, HiLd, HiAddr, 6963 St->getSrcValue(), 6964 St->getSrcValueOffset() + 4, 6965 St->isVolatile(), 6966 MinAlign(St->getAlignment(), 4)); 6967 return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt); 6968 } 6969 } 6970 return SDValue(); 6971} 6972 6973/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and 6974/// X86ISD::FXOR nodes. 6975static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) { 6976 assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); 6977 // F[X]OR(0.0, x) -> x 6978 // F[X]OR(x, 0.0) -> x 6979 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 6980 if (C->getValueAPF().isPosZero()) 6981 return N->getOperand(1); 6982 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) 6983 if (C->getValueAPF().isPosZero()) 6984 return N->getOperand(0); 6985 return SDValue(); 6986} 6987 6988/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes. 6989static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) { 6990 // FAND(0.0, x) -> 0.0 6991 // FAND(x, 0.0) -> 0.0 6992 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 6993 if (C->getValueAPF().isPosZero()) 6994 return N->getOperand(0); 6995 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) 6996 if (C->getValueAPF().isPosZero()) 6997 return N->getOperand(1); 6998 return SDValue(); 6999} 7000 7001 7002SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, 7003 DAGCombinerInfo &DCI) const { 7004 SelectionDAG &DAG = DCI.DAG; 7005 switch (N->getOpcode()) { 7006 default: break; 7007 case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this); 7008 case ISD::BUILD_VECTOR: 7009 return PerformBuildVectorCombine(N, DAG, Subtarget, *this); 7010 case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget); 7011 case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget); 7012 case X86ISD::FXOR: 7013 case X86ISD::FOR: return PerformFORCombine(N, DAG); 7014 case X86ISD::FAND: return PerformFANDCombine(N, DAG); 7015 } 7016 7017 return SDValue(); 7018} 7019 7020//===----------------------------------------------------------------------===// 7021// X86 Inline Assembly Support 7022//===----------------------------------------------------------------------===// 7023 7024/// getConstraintType - Given a constraint letter, return the type of 7025/// constraint it is for this target. 7026X86TargetLowering::ConstraintType 7027X86TargetLowering::getConstraintType(const std::string &Constraint) const { 7028 if (Constraint.size() == 1) { 7029 switch (Constraint[0]) { 7030 case 'A': 7031 case 'f': 7032 case 'r': 7033 case 'R': 7034 case 'l': 7035 case 'q': 7036 case 'Q': 7037 case 'x': 7038 case 'y': 7039 case 'Y': 7040 return C_RegisterClass; 7041 default: 7042 break; 7043 } 7044 } 7045 return TargetLowering::getConstraintType(Constraint); 7046} 7047 7048/// LowerXConstraint - try to replace an X constraint, which matches anything, 7049/// with another that has more specific requirements based on the type of the 7050/// corresponding operand. 7051const char *X86TargetLowering:: 7052LowerXConstraint(MVT ConstraintVT) const { 7053 // FP X constraints get lowered to SSE1/2 registers if available, otherwise 7054 // 'f' like normal targets. 7055 if (ConstraintVT.isFloatingPoint()) { 7056 if (Subtarget->hasSSE2()) 7057 return "Y"; 7058 if (Subtarget->hasSSE1()) 7059 return "x"; 7060 } 7061 7062 return TargetLowering::LowerXConstraint(ConstraintVT); 7063} 7064 7065/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 7066/// vector. If it is invalid, don't add anything to Ops. 7067void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 7068 char Constraint, 7069 std::vector<SDValue>&Ops, 7070 SelectionDAG &DAG) const { 7071 SDValue Result(0, 0); 7072 7073 switch (Constraint) { 7074 default: break; 7075 case 'I': 7076 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 7077 if (C->getZExtValue() <= 31) { 7078 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); 7079 break; 7080 } 7081 } 7082 return; 7083 case 'N': 7084 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 7085 if (C->getZExtValue() <= 255) { 7086 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); 7087 break; 7088 } 7089 } 7090 return; 7091 case 'i': { 7092 // Literal immediates are always ok. 7093 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) { 7094 Result = DAG.getTargetConstant(CST->getZExtValue(), Op.getValueType()); 7095 break; 7096 } 7097 7098 // If we are in non-pic codegen mode, we allow the address of a global (with 7099 // an optional displacement) to be used with 'i'. 7100 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 7101 int64_t Offset = 0; 7102 7103 // Match either (GA) or (GA+C) 7104 if (GA) { 7105 Offset = GA->getOffset(); 7106 } else if (Op.getOpcode() == ISD::ADD) { 7107 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7108 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 7109 if (C && GA) { 7110 Offset = GA->getOffset()+C->getZExtValue(); 7111 } else { 7112 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7113 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 7114 if (C && GA) 7115 Offset = GA->getOffset()+C->getZExtValue(); 7116 else 7117 C = 0, GA = 0; 7118 } 7119 } 7120 7121 if (GA) { 7122 // If addressing this global requires a load (e.g. in PIC mode), we can't 7123 // match. 7124 if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(), 7125 false)) 7126 return; 7127 7128 Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0), 7129 Offset); 7130 Result = Op; 7131 break; 7132 } 7133 7134 // Otherwise, not valid for this mode. 7135 return; 7136 } 7137 } 7138 7139 if (Result.getNode()) { 7140 Ops.push_back(Result); 7141 return; 7142 } 7143 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 7144} 7145 7146std::vector<unsigned> X86TargetLowering:: 7147getRegClassForInlineAsmConstraint(const std::string &Constraint, 7148 MVT VT) const { 7149 if (Constraint.size() == 1) { 7150 // FIXME: not handling fp-stack yet! 7151 switch (Constraint[0]) { // GCC X86 Constraint Letters 7152 default: break; // Unknown constraint letter 7153 case 'A': // EAX/EDX 7154 if (VT == MVT::i32 || VT == MVT::i64) 7155 return make_vector<unsigned>(X86::EAX, X86::EDX, 0); 7156 break; 7157 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode) 7158 case 'Q': // Q_REGS 7159 if (VT == MVT::i32) 7160 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0); 7161 else if (VT == MVT::i16) 7162 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0); 7163 else if (VT == MVT::i8) 7164 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0); 7165 else if (VT == MVT::i64) 7166 return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0); 7167 break; 7168 } 7169 } 7170 7171 return std::vector<unsigned>(); 7172} 7173 7174std::pair<unsigned, const TargetRegisterClass*> 7175X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, 7176 MVT VT) const { 7177 // First, see if this is a constraint that directly corresponds to an LLVM 7178 // register class. 7179 if (Constraint.size() == 1) { 7180 // GCC Constraint Letters 7181 switch (Constraint[0]) { 7182 default: break; 7183 case 'r': // GENERAL_REGS 7184 case 'R': // LEGACY_REGS 7185 case 'l': // INDEX_REGS 7186 if (VT == MVT::i64 && Subtarget->is64Bit()) 7187 return std::make_pair(0U, X86::GR64RegisterClass); 7188 if (VT == MVT::i32) 7189 return std::make_pair(0U, X86::GR32RegisterClass); 7190 else if (VT == MVT::i16) 7191 return std::make_pair(0U, X86::GR16RegisterClass); 7192 else if (VT == MVT::i8) 7193 return std::make_pair(0U, X86::GR8RegisterClass); 7194 break; 7195 case 'f': // FP Stack registers. 7196 // If SSE is enabled for this VT, use f80 to ensure the isel moves the 7197 // value to the correct fpstack register class. 7198 if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT)) 7199 return std::make_pair(0U, X86::RFP32RegisterClass); 7200 if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT)) 7201 return std::make_pair(0U, X86::RFP64RegisterClass); 7202 return std::make_pair(0U, X86::RFP80RegisterClass); 7203 case 'y': // MMX_REGS if MMX allowed. 7204 if (!Subtarget->hasMMX()) break; 7205 return std::make_pair(0U, X86::VR64RegisterClass); 7206 break; 7207 case 'Y': // SSE_REGS if SSE2 allowed 7208 if (!Subtarget->hasSSE2()) break; 7209 // FALL THROUGH. 7210 case 'x': // SSE_REGS if SSE1 allowed 7211 if (!Subtarget->hasSSE1()) break; 7212 7213 switch (VT.getSimpleVT()) { 7214 default: break; 7215 // Scalar SSE types. 7216 case MVT::f32: 7217 case MVT::i32: 7218 return std::make_pair(0U, X86::FR32RegisterClass); 7219 case MVT::f64: 7220 case MVT::i64: 7221 return std::make_pair(0U, X86::FR64RegisterClass); 7222 // Vector types. 7223 case MVT::v16i8: 7224 case MVT::v8i16: 7225 case MVT::v4i32: 7226 case MVT::v2i64: 7227 case MVT::v4f32: 7228 case MVT::v2f64: 7229 return std::make_pair(0U, X86::VR128RegisterClass); 7230 } 7231 break; 7232 } 7233 } 7234 7235 // Use the default implementation in TargetLowering to convert the register 7236 // constraint into a member of a register class. 7237 std::pair<unsigned, const TargetRegisterClass*> Res; 7238 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 7239 7240 // Not found as a standard register? 7241 if (Res.second == 0) { 7242 // GCC calls "st(0)" just plain "st". 7243 if (StringsEqualNoCase("{st}", Constraint)) { 7244 Res.first = X86::ST0; 7245 Res.second = X86::RFP80RegisterClass; 7246 } 7247 7248 return Res; 7249 } 7250 7251 // Otherwise, check to see if this is a register class of the wrong value 7252 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to 7253 // turn into {ax},{dx}. 7254 if (Res.second->hasType(VT)) 7255 return Res; // Correct type already, nothing to do. 7256 7257 // All of the single-register GCC register classes map their values onto 7258 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we 7259 // really want an 8-bit or 32-bit register, map to the appropriate register 7260 // class and return the appropriate register. 7261 if (Res.second == X86::GR16RegisterClass) { 7262 if (VT == MVT::i8) { 7263 unsigned DestReg = 0; 7264 switch (Res.first) { 7265 default: break; 7266 case X86::AX: DestReg = X86::AL; break; 7267 case X86::DX: DestReg = X86::DL; break; 7268 case X86::CX: DestReg = X86::CL; break; 7269 case X86::BX: DestReg = X86::BL; break; 7270 } 7271 if (DestReg) { 7272 Res.first = DestReg; 7273 Res.second = Res.second = X86::GR8RegisterClass; 7274 } 7275 } else if (VT == MVT::i32) { 7276 unsigned DestReg = 0; 7277 switch (Res.first) { 7278 default: break; 7279 case X86::AX: DestReg = X86::EAX; break; 7280 case X86::DX: DestReg = X86::EDX; break; 7281 case X86::CX: DestReg = X86::ECX; break; 7282 case X86::BX: DestReg = X86::EBX; break; 7283 case X86::SI: DestReg = X86::ESI; break; 7284 case X86::DI: DestReg = X86::EDI; break; 7285 case X86::BP: DestReg = X86::EBP; break; 7286 case X86::SP: DestReg = X86::ESP; break; 7287 } 7288 if (DestReg) { 7289 Res.first = DestReg; 7290 Res.second = Res.second = X86::GR32RegisterClass; 7291 } 7292 } else if (VT == MVT::i64) { 7293 unsigned DestReg = 0; 7294 switch (Res.first) { 7295 default: break; 7296 case X86::AX: DestReg = X86::RAX; break; 7297 case X86::DX: DestReg = X86::RDX; break; 7298 case X86::CX: DestReg = X86::RCX; break; 7299 case X86::BX: DestReg = X86::RBX; break; 7300 case X86::SI: DestReg = X86::RSI; break; 7301 case X86::DI: DestReg = X86::RDI; break; 7302 case X86::BP: DestReg = X86::RBP; break; 7303 case X86::SP: DestReg = X86::RSP; break; 7304 } 7305 if (DestReg) { 7306 Res.first = DestReg; 7307 Res.second = Res.second = X86::GR64RegisterClass; 7308 } 7309 } 7310 } else if (Res.second == X86::FR32RegisterClass || 7311 Res.second == X86::FR64RegisterClass || 7312 Res.second == X86::VR128RegisterClass) { 7313 // Handle references to XMM physical registers that got mapped into the 7314 // wrong class. This can happen with constraints like {xmm0} where the 7315 // target independent register mapper will just pick the first match it can 7316 // find, ignoring the required type. 7317 if (VT == MVT::f32) 7318 Res.second = X86::FR32RegisterClass; 7319 else if (VT == MVT::f64) 7320 Res.second = X86::FR64RegisterClass; 7321 else if (X86::VR128RegisterClass->hasType(VT)) 7322 Res.second = X86::VR128RegisterClass; 7323 } 7324 7325 return Res; 7326} 7327