X86ISelLowering.cpp revision 0d1340b181cd1defddfe7afb51a17124ad61ea1e
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86ShuffleDecode.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/PseudoSourceValue.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/Dwarf.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53using namespace llvm;
54using namespace dwarf;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57
58static cl::opt<bool>
59DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
60
61// Forward declarations.
62static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
63                       SDValue V2);
64
65static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
66
67  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
68
69  if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
70    if (is64Bit) return new X8664_MachoTargetObjectFile();
71    return new TargetLoweringObjectFileMachO();
72  } else if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
73    if (is64Bit) return new X8664_ELFTargetObjectFile(TM);
74    return new X8632_ELFTargetObjectFile(TM);
75  } else if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) {
76    return new TargetLoweringObjectFileCOFF();
77  }
78  llvm_unreachable("unknown subtarget type");
79}
80
81X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
82  : TargetLowering(TM, createTLOF(TM)) {
83  Subtarget = &TM.getSubtarget<X86Subtarget>();
84  X86ScalarSSEf64 = Subtarget->hasSSE2();
85  X86ScalarSSEf32 = Subtarget->hasSSE1();
86  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
87
88  RegInfo = TM.getRegisterInfo();
89  TD = getTargetData();
90
91  // Set up the TargetLowering object.
92
93  // X86 is weird, it always uses i8 for shift amounts and setcc results.
94  setShiftAmountType(MVT::i8);
95  setBooleanContents(ZeroOrOneBooleanContent);
96  setSchedulingPreference(Sched::RegPressure);
97  setStackPointerRegisterToSaveRestore(X86StackPtr);
98
99  if (Subtarget->isTargetDarwin()) {
100    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
101    setUseUnderscoreSetJmp(false);
102    setUseUnderscoreLongJmp(false);
103  } else if (Subtarget->isTargetMingw()) {
104    // MS runtime is weird: it exports _setjmp, but longjmp!
105    setUseUnderscoreSetJmp(true);
106    setUseUnderscoreLongJmp(false);
107  } else {
108    setUseUnderscoreSetJmp(true);
109    setUseUnderscoreLongJmp(true);
110  }
111
112  // Set up the register classes.
113  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
114  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
115  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
116  if (Subtarget->is64Bit())
117    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
118
119  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
120
121  // We don't accept any truncstore of integer registers.
122  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
123  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
124  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
125  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
126  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
127  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
128
129  // SETOEQ and SETUNE require checking two conditions.
130  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
131  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
132  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
133  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
134  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
135  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
136
137  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
138  // operation.
139  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
140  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
141  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
142
143  if (Subtarget->is64Bit()) {
144    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
145    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
146  } else if (!UseSoftFloat) {
147    // We have an algorithm for SSE2->double, and we turn this into a
148    // 64-bit FILD followed by conditional FADD for other targets.
149    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
150    // We have an algorithm for SSE2, and we turn this into a 64-bit
151    // FILD for other targets.
152    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
153  }
154
155  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
156  // this operation.
157  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
158  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
159
160  if (!UseSoftFloat) {
161    // SSE has no i16 to fp conversion, only i32
162    if (X86ScalarSSEf32) {
163      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
164      // f32 and f64 cases are Legal, f80 case is not
165      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
166    } else {
167      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
168      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
169    }
170  } else {
171    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
172    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
173  }
174
175  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
176  // are Legal, f80 is custom lowered.
177  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
178  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
179
180  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
181  // this operation.
182  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
183  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
184
185  if (X86ScalarSSEf32) {
186    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
187    // f32 and f64 cases are Legal, f80 case is not
188    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
189  } else {
190    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
191    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
192  }
193
194  // Handle FP_TO_UINT by promoting the destination to a larger signed
195  // conversion.
196  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
197  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
198  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
199
200  if (Subtarget->is64Bit()) {
201    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
202    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
203  } else if (!UseSoftFloat) {
204    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
205      // Expand FP_TO_UINT into a select.
206      // FIXME: We would like to use a Custom expander here eventually to do
207      // the optimal thing for SSE vs. the default expansion in the legalizer.
208      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
209    else
210      // With SSE3 we can use fisttpll to convert to a signed i64; without
211      // SSE, we're stuck with a fistpll.
212      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
213  }
214
215  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
216  if (!X86ScalarSSEf64) {
217    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
218    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
219    if (Subtarget->is64Bit()) {
220      setOperationAction(ISD::BIT_CONVERT    , MVT::f64  , Expand);
221      // Without SSE, i64->f64 goes through memory; i64->MMX is Legal.
222      if (Subtarget->hasMMX() && !DisableMMX)
223        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Custom);
224      else
225        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Expand);
226    }
227  }
228
229  // Scalar integer divide and remainder are lowered to use operations that
230  // produce two results, to match the available instructions. This exposes
231  // the two-result form to trivial CSE, which is able to combine x/y and x%y
232  // into a single instruction.
233  //
234  // Scalar integer multiply-high is also lowered to use two-result
235  // operations, to match the available instructions. However, plain multiply
236  // (low) operations are left as Legal, as there are single-result
237  // instructions for this in x86. Using the two-result multiply instructions
238  // when both high and low results are needed must be arranged by dagcombine.
239  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
240  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
241  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
242  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
243  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
244  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
245  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
246  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
247  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
248  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
249  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
250  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
251  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
252  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
253  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
254  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
255  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
256  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
257  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
258  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
259  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
260  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
261  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
262  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
263
264  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
265  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
266  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
267  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
268  if (Subtarget->is64Bit())
269    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
270  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
271  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
272  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
273  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
274  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
275  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
276  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
277  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
278
279  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
280  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
281  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
282  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
283  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
284  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
285  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
286  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
287  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
288  if (Subtarget->is64Bit()) {
289    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
290    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
291    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
292  }
293
294  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
295  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
296
297  // These should be promoted to a larger select which is supported.
298  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
299  // X86 wants to expand cmov itself.
300  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
301  setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
302  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
303  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
304  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
305  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
306  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
307  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
308  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
309  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
310  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
311  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
312  if (Subtarget->is64Bit()) {
313    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
314    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
315  }
316  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
317
318  // Darwin ABI issue.
319  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
320  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
321  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
322  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
323  if (Subtarget->is64Bit())
324    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
325  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
326  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
327  if (Subtarget->is64Bit()) {
328    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
329    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
330    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
331    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
332    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
333  }
334  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
335  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
336  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
337  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
338  if (Subtarget->is64Bit()) {
339    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
340    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
341    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
342  }
343
344  if (Subtarget->hasSSE1())
345    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
346
347  // We may not have a libcall for MEMBARRIER so we should lower this.
348  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
349
350  // On X86 and X86-64, atomic operations are lowered to locked instructions.
351  // Locked instructions, in turn, have implicit fence semantics (all memory
352  // operations are flushed before issuing the locked instruction, and they
353  // are not buffered), so we can fold away the common pattern of
354  // fence-atomic-fence.
355  setShouldFoldAtomicFences(true);
356
357  // Expand certain atomics
358  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
359  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
360  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
361  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
362
363  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
364  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
365  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
366  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
367
368  if (!Subtarget->is64Bit()) {
369    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
371    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
372    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
373    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
374    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
375    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
376  }
377
378  // FIXME - use subtarget debug flags
379  if (!Subtarget->isTargetDarwin() &&
380      !Subtarget->isTargetELF() &&
381      !Subtarget->isTargetCygMing()) {
382    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
383  }
384
385  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
386  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
387  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
388  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
389  if (Subtarget->is64Bit()) {
390    setExceptionPointerRegister(X86::RAX);
391    setExceptionSelectorRegister(X86::RDX);
392  } else {
393    setExceptionPointerRegister(X86::EAX);
394    setExceptionSelectorRegister(X86::EDX);
395  }
396  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
397  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
398
399  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
400
401  setOperationAction(ISD::TRAP, MVT::Other, Legal);
402
403  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
404  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
405  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
406  if (Subtarget->is64Bit()) {
407    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
408    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
409  } else {
410    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
411    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
412  }
413
414  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
415  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
416  if (Subtarget->is64Bit())
417    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
418  if (Subtarget->isTargetCygMing())
419    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
420  else
421    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
422
423  if (!UseSoftFloat && X86ScalarSSEf64) {
424    // f32 and f64 use SSE.
425    // Set up the FP register classes.
426    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
427    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
428
429    // Use ANDPD to simulate FABS.
430    setOperationAction(ISD::FABS , MVT::f64, Custom);
431    setOperationAction(ISD::FABS , MVT::f32, Custom);
432
433    // Use XORP to simulate FNEG.
434    setOperationAction(ISD::FNEG , MVT::f64, Custom);
435    setOperationAction(ISD::FNEG , MVT::f32, Custom);
436
437    // Use ANDPD and ORPD to simulate FCOPYSIGN.
438    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
439    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
440
441    // We don't support sin/cos/fmod
442    setOperationAction(ISD::FSIN , MVT::f64, Expand);
443    setOperationAction(ISD::FCOS , MVT::f64, Expand);
444    setOperationAction(ISD::FSIN , MVT::f32, Expand);
445    setOperationAction(ISD::FCOS , MVT::f32, Expand);
446
447    // Expand FP immediates into loads from the stack, except for the special
448    // cases we handle.
449    addLegalFPImmediate(APFloat(+0.0)); // xorpd
450    addLegalFPImmediate(APFloat(+0.0f)); // xorps
451  } else if (!UseSoftFloat && X86ScalarSSEf32) {
452    // Use SSE for f32, x87 for f64.
453    // Set up the FP register classes.
454    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
455    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
456
457    // Use ANDPS to simulate FABS.
458    setOperationAction(ISD::FABS , MVT::f32, Custom);
459
460    // Use XORP to simulate FNEG.
461    setOperationAction(ISD::FNEG , MVT::f32, Custom);
462
463    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
464
465    // Use ANDPS and ORPS to simulate FCOPYSIGN.
466    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
467    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
468
469    // We don't support sin/cos/fmod
470    setOperationAction(ISD::FSIN , MVT::f32, Expand);
471    setOperationAction(ISD::FCOS , MVT::f32, Expand);
472
473    // Special cases we handle for FP constants.
474    addLegalFPImmediate(APFloat(+0.0f)); // xorps
475    addLegalFPImmediate(APFloat(+0.0)); // FLD0
476    addLegalFPImmediate(APFloat(+1.0)); // FLD1
477    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
478    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
479
480    if (!UnsafeFPMath) {
481      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
482      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
483    }
484  } else if (!UseSoftFloat) {
485    // f32 and f64 in x87.
486    // Set up the FP register classes.
487    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
488    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
489
490    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
491    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
492    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
493    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
494
495    if (!UnsafeFPMath) {
496      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
497      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
498    }
499    addLegalFPImmediate(APFloat(+0.0)); // FLD0
500    addLegalFPImmediate(APFloat(+1.0)); // FLD1
501    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
502    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
503    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
504    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
505    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
506    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
507  }
508
509  // Long double always uses X87.
510  if (!UseSoftFloat) {
511    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
512    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
513    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
514    {
515      bool ignored;
516      APFloat TmpFlt(+0.0);
517      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
518                     &ignored);
519      addLegalFPImmediate(TmpFlt);  // FLD0
520      TmpFlt.changeSign();
521      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
522      APFloat TmpFlt2(+1.0);
523      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
524                      &ignored);
525      addLegalFPImmediate(TmpFlt2);  // FLD1
526      TmpFlt2.changeSign();
527      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
528    }
529
530    if (!UnsafeFPMath) {
531      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
532      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
533    }
534  }
535
536  // Always use a library call for pow.
537  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
538  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
539  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
540
541  setOperationAction(ISD::FLOG, MVT::f80, Expand);
542  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
543  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
544  setOperationAction(ISD::FEXP, MVT::f80, Expand);
545  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
546
547  // First set operation action for all vector types to either promote
548  // (for widening) or expand (for scalarization). Then we will selectively
549  // turn on ones that can be effectively codegen'd.
550  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
551       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
552    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
567    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
568    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
601    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
604    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
605    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
606         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
607      setTruncStoreAction((MVT::SimpleValueType)VT,
608                          (MVT::SimpleValueType)InnerVT, Expand);
609    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
610    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
611    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
612  }
613
614  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
615  // with -msoft-float, disable use of MMX as well.
616  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
617    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass, false);
618
619    // FIXME: Remove the rest of this stuff.
620    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass, false);
621    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass, false);
622    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass, false);
623
624    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass, false);
625
626    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
627    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
628    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
629    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
630
631    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
632    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
633    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
634    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
635
636    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
637    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
638
639    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
640    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
641    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
642    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
643    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
644    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
645    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
646
647    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
648    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
649    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
650    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
651    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
652    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
653    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
654
655    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
656    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
657    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
658    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
659    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
660    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
661    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
662
663    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
664    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
665    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
666    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
667    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
668    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
669    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
670
671    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
672    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
673    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
674    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
675
676    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
677    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
678    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
679    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
680
681    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
682    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
683    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
684
685    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
686
687    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
688    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
689    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
690    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
691    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
692    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
693    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
694
695    if (!X86ScalarSSEf64 && Subtarget->is64Bit()) {
696      setOperationAction(ISD::BIT_CONVERT,        MVT::v8i8,  Custom);
697      setOperationAction(ISD::BIT_CONVERT,        MVT::v4i16, Custom);
698      setOperationAction(ISD::BIT_CONVERT,        MVT::v2i32, Custom);
699      setOperationAction(ISD::BIT_CONVERT,        MVT::v1i64, Custom);
700    }
701  }
702
703  if (!UseSoftFloat && Subtarget->hasSSE1()) {
704    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
705
706    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
707    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
708    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
709    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
710    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
711    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
712    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
713    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
714    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
715    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
716    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
717    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
718  }
719
720  if (!UseSoftFloat && Subtarget->hasSSE2()) {
721    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
722
723    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
724    // registers cannot be used even for integer operations.
725    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
726    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
727    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
728    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
729
730    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
731    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
732    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
733    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
734    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
735    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
736    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
737    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
738    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
739    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
740    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
741    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
742    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
743    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
744    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
745    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
746
747    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
748    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
749    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
750    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
751
752    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
753    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
754    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
755    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
756    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
757
758    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
759    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
760    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
761    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
762    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
763
764    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
765    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
766      EVT VT = (MVT::SimpleValueType)i;
767      // Do not attempt to custom lower non-power-of-2 vectors
768      if (!isPowerOf2_32(VT.getVectorNumElements()))
769        continue;
770      // Do not attempt to custom lower non-128-bit vectors
771      if (!VT.is128BitVector())
772        continue;
773      setOperationAction(ISD::BUILD_VECTOR,
774                         VT.getSimpleVT().SimpleTy, Custom);
775      setOperationAction(ISD::VECTOR_SHUFFLE,
776                         VT.getSimpleVT().SimpleTy, Custom);
777      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
778                         VT.getSimpleVT().SimpleTy, Custom);
779    }
780
781    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
782    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
783    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
784    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
785    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
786    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
787
788    if (Subtarget->is64Bit()) {
789      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
790      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
791    }
792
793    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
794    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
795      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
796      EVT VT = SVT;
797
798      // Do not attempt to promote non-128-bit vectors
799      if (!VT.is128BitVector())
800        continue;
801
802      setOperationAction(ISD::AND,    SVT, Promote);
803      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
804      setOperationAction(ISD::OR,     SVT, Promote);
805      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
806      setOperationAction(ISD::XOR,    SVT, Promote);
807      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
808      setOperationAction(ISD::LOAD,   SVT, Promote);
809      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
810      setOperationAction(ISD::SELECT, SVT, Promote);
811      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
812    }
813
814    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
815
816    // Custom lower v2i64 and v2f64 selects.
817    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
818    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
819    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
820    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
821
822    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
823    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
824    if (!DisableMMX && Subtarget->hasMMX()) {
825      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
826      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
827    }
828  }
829
830  if (Subtarget->hasSSE41()) {
831    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
832    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
833    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
834    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
835    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
836    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
837    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
838    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
839    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
840    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
841
842    // FIXME: Do we need to handle scalar-to-vector here?
843    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
844
845    // Can turn SHL into an integer multiply.
846    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
847    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
848
849    // i8 and i16 vectors are custom , because the source register and source
850    // source memory operand types are not the same width.  f32 vectors are
851    // custom since the immediate controlling the insert encodes additional
852    // information.
853    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
854    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
855    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
856    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
857
858    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
859    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
860    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
861    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
862
863    if (Subtarget->is64Bit()) {
864      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
865      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
866    }
867  }
868
869  if (Subtarget->hasSSE42()) {
870    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
871  }
872
873  if (!UseSoftFloat && Subtarget->hasAVX()) {
874    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
875    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
876    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
877    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
878    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
879
880    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
881    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
882    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
883    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
884    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
885    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
886    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
887    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
888    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
889    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
890    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
891    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
892    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
893    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
894    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
895
896    // Operations to consider commented out -v16i16 v32i8
897    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
898    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
899    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
900    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
901    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
902    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
903    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
904    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
905    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
906    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
907    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
908    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
909    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
910    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
911
912    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
913    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
914    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
915    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
916
917    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
918    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
919    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
920    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
921    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
922
923    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
924    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
925    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
926    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
927    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
928    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
929
930#if 0
931    // Not sure we want to do this since there are no 256-bit integer
932    // operations in AVX
933
934    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
935    // This includes 256-bit vectors
936    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
937      EVT VT = (MVT::SimpleValueType)i;
938
939      // Do not attempt to custom lower non-power-of-2 vectors
940      if (!isPowerOf2_32(VT.getVectorNumElements()))
941        continue;
942
943      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
944      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
945      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
946    }
947
948    if (Subtarget->is64Bit()) {
949      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
950      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
951    }
952#endif
953
954#if 0
955    // Not sure we want to do this since there are no 256-bit integer
956    // operations in AVX
957
958    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
959    // Including 256-bit vectors
960    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
961      EVT VT = (MVT::SimpleValueType)i;
962
963      if (!VT.is256BitVector()) {
964        continue;
965      }
966      setOperationAction(ISD::AND,    VT, Promote);
967      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
968      setOperationAction(ISD::OR,     VT, Promote);
969      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
970      setOperationAction(ISD::XOR,    VT, Promote);
971      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
972      setOperationAction(ISD::LOAD,   VT, Promote);
973      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
974      setOperationAction(ISD::SELECT, VT, Promote);
975      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
976    }
977
978    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
979#endif
980  }
981
982  // We want to custom lower some of our intrinsics.
983  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
984
985  // Add/Sub/Mul with overflow operations are custom lowered.
986  setOperationAction(ISD::SADDO, MVT::i32, Custom);
987  setOperationAction(ISD::UADDO, MVT::i32, Custom);
988  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
989  setOperationAction(ISD::USUBO, MVT::i32, Custom);
990  setOperationAction(ISD::SMULO, MVT::i32, Custom);
991
992  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
993  // handle type legalization for these operations here.
994  //
995  // FIXME: We really should do custom legalization for addition and
996  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
997  // than generic legalization for 64-bit multiplication-with-overflow, though.
998  if (Subtarget->is64Bit()) {
999    setOperationAction(ISD::SADDO, MVT::i64, Custom);
1000    setOperationAction(ISD::UADDO, MVT::i64, Custom);
1001    setOperationAction(ISD::SSUBO, MVT::i64, Custom);
1002    setOperationAction(ISD::USUBO, MVT::i64, Custom);
1003    setOperationAction(ISD::SMULO, MVT::i64, Custom);
1004  }
1005
1006  if (!Subtarget->is64Bit()) {
1007    // These libcalls are not available in 32-bit.
1008    setLibcallName(RTLIB::SHL_I128, 0);
1009    setLibcallName(RTLIB::SRL_I128, 0);
1010    setLibcallName(RTLIB::SRA_I128, 0);
1011  }
1012
1013  // We have target-specific dag combine patterns for the following nodes:
1014  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1015  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1016  setTargetDAGCombine(ISD::BUILD_VECTOR);
1017  setTargetDAGCombine(ISD::SELECT);
1018  setTargetDAGCombine(ISD::SHL);
1019  setTargetDAGCombine(ISD::SRA);
1020  setTargetDAGCombine(ISD::SRL);
1021  setTargetDAGCombine(ISD::OR);
1022  setTargetDAGCombine(ISD::STORE);
1023  setTargetDAGCombine(ISD::ZERO_EXTEND);
1024  if (Subtarget->is64Bit())
1025    setTargetDAGCombine(ISD::MUL);
1026
1027  computeRegisterProperties();
1028
1029  // FIXME: These should be based on subtarget info. Plus, the values should
1030  // be smaller when we are in optimizing for size mode.
1031  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1032  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1033  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1034  setPrefLoopAlignment(16);
1035  benefitFromCodePlacementOpt = true;
1036}
1037
1038
1039MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1040  return MVT::i8;
1041}
1042
1043
1044/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1045/// the desired ByVal argument alignment.
1046static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1047  if (MaxAlign == 16)
1048    return;
1049  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1050    if (VTy->getBitWidth() == 128)
1051      MaxAlign = 16;
1052  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1053    unsigned EltAlign = 0;
1054    getMaxByValAlign(ATy->getElementType(), EltAlign);
1055    if (EltAlign > MaxAlign)
1056      MaxAlign = EltAlign;
1057  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1058    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1059      unsigned EltAlign = 0;
1060      getMaxByValAlign(STy->getElementType(i), EltAlign);
1061      if (EltAlign > MaxAlign)
1062        MaxAlign = EltAlign;
1063      if (MaxAlign == 16)
1064        break;
1065    }
1066  }
1067  return;
1068}
1069
1070/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1071/// function arguments in the caller parameter area. For X86, aggregates
1072/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1073/// are at 4-byte boundaries.
1074unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1075  if (Subtarget->is64Bit()) {
1076    // Max of 8 and alignment of type.
1077    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1078    if (TyAlign > 8)
1079      return TyAlign;
1080    return 8;
1081  }
1082
1083  unsigned Align = 4;
1084  if (Subtarget->hasSSE1())
1085    getMaxByValAlign(Ty, Align);
1086  return Align;
1087}
1088
1089/// getOptimalMemOpType - Returns the target specific optimal type for load
1090/// and store operations as a result of memset, memcpy, and memmove
1091/// lowering. If DstAlign is zero that means it's safe to destination
1092/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1093/// means there isn't a need to check it against alignment requirement,
1094/// probably because the source does not need to be loaded. If
1095/// 'NonScalarIntSafe' is true, that means it's safe to return a
1096/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1097/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1098/// constant so it does not need to be loaded.
1099/// It returns EVT::Other if the type should be determined using generic
1100/// target-independent logic.
1101EVT
1102X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1103                                       unsigned DstAlign, unsigned SrcAlign,
1104                                       bool NonScalarIntSafe,
1105                                       bool MemcpyStrSrc,
1106                                       MachineFunction &MF) const {
1107  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1108  // linux.  This is because the stack realignment code can't handle certain
1109  // cases like PR2962.  This should be removed when PR2962 is fixed.
1110  const Function *F = MF.getFunction();
1111  if (NonScalarIntSafe &&
1112      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1113    if (Size >= 16 &&
1114        (Subtarget->isUnalignedMemAccessFast() ||
1115         ((DstAlign == 0 || DstAlign >= 16) &&
1116          (SrcAlign == 0 || SrcAlign >= 16))) &&
1117        Subtarget->getStackAlignment() >= 16) {
1118      if (Subtarget->hasSSE2())
1119        return MVT::v4i32;
1120      if (Subtarget->hasSSE1())
1121        return MVT::v4f32;
1122    } else if (!MemcpyStrSrc && Size >= 8 &&
1123               !Subtarget->is64Bit() &&
1124               Subtarget->getStackAlignment() >= 8 &&
1125               Subtarget->hasSSE2()) {
1126      // Do not use f64 to lower memcpy if source is string constant. It's
1127      // better to use i32 to avoid the loads.
1128      return MVT::f64;
1129    }
1130  }
1131  if (Subtarget->is64Bit() && Size >= 8)
1132    return MVT::i64;
1133  return MVT::i32;
1134}
1135
1136/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1137/// current function.  The returned value is a member of the
1138/// MachineJumpTableInfo::JTEntryKind enum.
1139unsigned X86TargetLowering::getJumpTableEncoding() const {
1140  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1141  // symbol.
1142  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1143      Subtarget->isPICStyleGOT())
1144    return MachineJumpTableInfo::EK_Custom32;
1145
1146  // Otherwise, use the normal jump table encoding heuristics.
1147  return TargetLowering::getJumpTableEncoding();
1148}
1149
1150/// getPICBaseSymbol - Return the X86-32 PIC base.
1151MCSymbol *
1152X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1153                                    MCContext &Ctx) const {
1154  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1155  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1156                               Twine(MF->getFunctionNumber())+"$pb");
1157}
1158
1159
1160const MCExpr *
1161X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1162                                             const MachineBasicBlock *MBB,
1163                                             unsigned uid,MCContext &Ctx) const{
1164  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1165         Subtarget->isPICStyleGOT());
1166  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1167  // entries.
1168  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1169                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1170}
1171
1172/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1173/// jumptable.
1174SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1175                                                    SelectionDAG &DAG) const {
1176  if (!Subtarget->is64Bit())
1177    // This doesn't have DebugLoc associated with it, but is not really the
1178    // same as a Register.
1179    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1180  return Table;
1181}
1182
1183/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1184/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1185/// MCExpr.
1186const MCExpr *X86TargetLowering::
1187getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1188                             MCContext &Ctx) const {
1189  // X86-64 uses RIP relative addressing based on the jump table label.
1190  if (Subtarget->isPICStyleRIPRel())
1191    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1192
1193  // Otherwise, the reference is relative to the PIC base.
1194  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1195}
1196
1197/// getFunctionAlignment - Return the Log2 alignment of this function.
1198unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1199  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1200}
1201
1202std::pair<const TargetRegisterClass*, uint8_t>
1203X86TargetLowering::findRepresentativeClass(EVT VT) const{
1204  const TargetRegisterClass *RRC = 0;
1205  uint8_t Cost = 1;
1206  switch (VT.getSimpleVT().SimpleTy) {
1207  default:
1208    return TargetLowering::findRepresentativeClass(VT);
1209  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1210    RRC = (Subtarget->is64Bit()
1211           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1212    break;
1213  case MVT::v8i8: case MVT::v4i16:
1214  case MVT::v2i32: case MVT::v1i64:
1215    RRC = X86::VR64RegisterClass;
1216    break;
1217  case MVT::f32: case MVT::f64:
1218  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1219  case MVT::v4f32: case MVT::v2f64:
1220  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1221  case MVT::v4f64:
1222    RRC = X86::VR128RegisterClass;
1223    break;
1224  }
1225  return std::make_pair(RRC, Cost);
1226}
1227
1228unsigned
1229X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1230                                       MachineFunction &MF) const {
1231  unsigned FPDiff = RegInfo->hasFP(MF) ? 1 : 0;
1232  switch (RC->getID()) {
1233  default:
1234    return 0;
1235  case X86::GR32RegClassID:
1236    return 4 - FPDiff;
1237  case X86::GR64RegClassID:
1238    return 8 - FPDiff;
1239  case X86::VR128RegClassID:
1240    return Subtarget->is64Bit() ? 10 : 4;
1241  case X86::VR64RegClassID:
1242    return 4;
1243  }
1244}
1245
1246bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1247                                               unsigned &Offset) const {
1248  if (!Subtarget->isTargetLinux())
1249    return false;
1250
1251  if (Subtarget->is64Bit()) {
1252    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1253    Offset = 0x28;
1254    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1255      AddressSpace = 256;
1256    else
1257      AddressSpace = 257;
1258  } else {
1259    // %gs:0x14 on i386
1260    Offset = 0x14;
1261    AddressSpace = 256;
1262  }
1263  return true;
1264}
1265
1266
1267//===----------------------------------------------------------------------===//
1268//               Return Value Calling Convention Implementation
1269//===----------------------------------------------------------------------===//
1270
1271#include "X86GenCallingConv.inc"
1272
1273bool
1274X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1275                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1276                        LLVMContext &Context) const {
1277  SmallVector<CCValAssign, 16> RVLocs;
1278  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1279                 RVLocs, Context);
1280  return CCInfo.CheckReturn(Outs, RetCC_X86);
1281}
1282
1283SDValue
1284X86TargetLowering::LowerReturn(SDValue Chain,
1285                               CallingConv::ID CallConv, bool isVarArg,
1286                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1287                               const SmallVectorImpl<SDValue> &OutVals,
1288                               DebugLoc dl, SelectionDAG &DAG) const {
1289  MachineFunction &MF = DAG.getMachineFunction();
1290  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1291
1292  SmallVector<CCValAssign, 16> RVLocs;
1293  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1294                 RVLocs, *DAG.getContext());
1295  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1296
1297  // Add the regs to the liveout set for the function.
1298  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1299  for (unsigned i = 0; i != RVLocs.size(); ++i)
1300    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1301      MRI.addLiveOut(RVLocs[i].getLocReg());
1302
1303  SDValue Flag;
1304
1305  SmallVector<SDValue, 6> RetOps;
1306  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1307  // Operand #1 = Bytes To Pop
1308  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1309                   MVT::i16));
1310
1311  // Copy the result values into the output registers.
1312  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1313    CCValAssign &VA = RVLocs[i];
1314    assert(VA.isRegLoc() && "Can only return in registers!");
1315    SDValue ValToCopy = OutVals[i];
1316    EVT ValVT = ValToCopy.getValueType();
1317
1318    // If this is x86-64, and we disabled SSE, we can't return FP values
1319    if ((ValVT == MVT::f32 || ValVT == MVT::f64) &&
1320        (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1321      report_fatal_error("SSE register return with SSE disabled");
1322    }
1323    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1324    // llvm-gcc has never done it right and no one has noticed, so this
1325    // should be OK for now.
1326    if (ValVT == MVT::f64 &&
1327        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1328      report_fatal_error("SSE2 register return with SSE2 disabled");
1329
1330    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1331    // the RET instruction and handled by the FP Stackifier.
1332    if (VA.getLocReg() == X86::ST0 ||
1333        VA.getLocReg() == X86::ST1) {
1334      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1335      // change the value to the FP stack register class.
1336      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1337        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1338      RetOps.push_back(ValToCopy);
1339      // Don't emit a copytoreg.
1340      continue;
1341    }
1342
1343    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1344    // which is returned in RAX / RDX.
1345    if (Subtarget->is64Bit()) {
1346      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1347        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1348        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1349          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1350                                  ValToCopy);
1351
1352          // If we don't have SSE2 available, convert to v4f32 so the generated
1353          // register is legal.
1354          if (!Subtarget->hasSSE2())
1355            ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32,ValToCopy);
1356        }
1357      }
1358    }
1359
1360    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1361    Flag = Chain.getValue(1);
1362  }
1363
1364  // The x86-64 ABI for returning structs by value requires that we copy
1365  // the sret argument into %rax for the return. We saved the argument into
1366  // a virtual register in the entry block, so now we copy the value out
1367  // and into %rax.
1368  if (Subtarget->is64Bit() &&
1369      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1370    MachineFunction &MF = DAG.getMachineFunction();
1371    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1372    unsigned Reg = FuncInfo->getSRetReturnReg();
1373    assert(Reg &&
1374           "SRetReturnReg should have been set in LowerFormalArguments().");
1375    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1376
1377    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1378    Flag = Chain.getValue(1);
1379
1380    // RAX now acts like a return value.
1381    MRI.addLiveOut(X86::RAX);
1382  }
1383
1384  RetOps[0] = Chain;  // Update chain.
1385
1386  // Add the flag if we have it.
1387  if (Flag.getNode())
1388    RetOps.push_back(Flag);
1389
1390  return DAG.getNode(X86ISD::RET_FLAG, dl,
1391                     MVT::Other, &RetOps[0], RetOps.size());
1392}
1393
1394/// LowerCallResult - Lower the result values of a call into the
1395/// appropriate copies out of appropriate physical registers.
1396///
1397SDValue
1398X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1399                                   CallingConv::ID CallConv, bool isVarArg,
1400                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1401                                   DebugLoc dl, SelectionDAG &DAG,
1402                                   SmallVectorImpl<SDValue> &InVals) const {
1403
1404  // Assign locations to each value returned by this call.
1405  SmallVector<CCValAssign, 16> RVLocs;
1406  bool Is64Bit = Subtarget->is64Bit();
1407  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1408                 RVLocs, *DAG.getContext());
1409  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1410
1411  // Copy all of the result registers out of their specified physreg.
1412  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1413    CCValAssign &VA = RVLocs[i];
1414    EVT CopyVT = VA.getValVT();
1415
1416    // If this is x86-64, and we disabled SSE, we can't return FP values
1417    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1418        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1419      report_fatal_error("SSE register return with SSE disabled");
1420    }
1421
1422    SDValue Val;
1423
1424    // If this is a call to a function that returns an fp value on the floating
1425    // point stack, we must guarantee the the value is popped from the stack, so
1426    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1427    // if the return value is not used. We use the FpGET_ST0 instructions
1428    // instead.
1429    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1430      // If we prefer to use the value in xmm registers, copy it out as f80 and
1431      // use a truncate to move it from fp stack reg to xmm reg.
1432      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1433      bool isST0 = VA.getLocReg() == X86::ST0;
1434      unsigned Opc = 0;
1435      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1436      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1437      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1438      SDValue Ops[] = { Chain, InFlag };
1439      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag,
1440                                         Ops, 2), 1);
1441      Val = Chain.getValue(0);
1442
1443      // Round the f80 to the right size, which also moves it to the appropriate
1444      // xmm register.
1445      if (CopyVT != VA.getValVT())
1446        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1447                          // This truncation won't change the value.
1448                          DAG.getIntPtrConstant(1));
1449    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1450      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1451      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1452        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1453                                   MVT::v2i64, InFlag).getValue(1);
1454        Val = Chain.getValue(0);
1455        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1456                          Val, DAG.getConstant(0, MVT::i64));
1457      } else {
1458        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1459                                   MVT::i64, InFlag).getValue(1);
1460        Val = Chain.getValue(0);
1461      }
1462      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1463    } else {
1464      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1465                                 CopyVT, InFlag).getValue(1);
1466      Val = Chain.getValue(0);
1467    }
1468    InFlag = Chain.getValue(2);
1469    InVals.push_back(Val);
1470  }
1471
1472  return Chain;
1473}
1474
1475
1476//===----------------------------------------------------------------------===//
1477//                C & StdCall & Fast Calling Convention implementation
1478//===----------------------------------------------------------------------===//
1479//  StdCall calling convention seems to be standard for many Windows' API
1480//  routines and around. It differs from C calling convention just a little:
1481//  callee should clean up the stack, not caller. Symbols should be also
1482//  decorated in some fancy way :) It doesn't support any vector arguments.
1483//  For info on fast calling convention see Fast Calling Convention (tail call)
1484//  implementation LowerX86_32FastCCCallTo.
1485
1486/// CallIsStructReturn - Determines whether a call uses struct return
1487/// semantics.
1488static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1489  if (Outs.empty())
1490    return false;
1491
1492  return Outs[0].Flags.isSRet();
1493}
1494
1495/// ArgsAreStructReturn - Determines whether a function uses struct
1496/// return semantics.
1497static bool
1498ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1499  if (Ins.empty())
1500    return false;
1501
1502  return Ins[0].Flags.isSRet();
1503}
1504
1505/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1506/// given CallingConvention value.
1507CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1508  if (Subtarget->is64Bit()) {
1509    if (CC == CallingConv::GHC)
1510      return CC_X86_64_GHC;
1511    else if (Subtarget->isTargetWin64())
1512      return CC_X86_Win64_C;
1513    else
1514      return CC_X86_64_C;
1515  }
1516
1517  if (CC == CallingConv::X86_FastCall)
1518    return CC_X86_32_FastCall;
1519  else if (CC == CallingConv::X86_ThisCall)
1520    return CC_X86_32_ThisCall;
1521  else if (CC == CallingConv::Fast)
1522    return CC_X86_32_FastCC;
1523  else if (CC == CallingConv::GHC)
1524    return CC_X86_32_GHC;
1525  else
1526    return CC_X86_32_C;
1527}
1528
1529/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1530/// by "Src" to address "Dst" with size and alignment information specified by
1531/// the specific parameter attribute. The copy will be passed as a byval
1532/// function parameter.
1533static SDValue
1534CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1535                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1536                          DebugLoc dl) {
1537  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1538  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1539                       /*isVolatile*/false, /*AlwaysInline=*/true,
1540                       NULL, 0, NULL, 0);
1541}
1542
1543/// IsTailCallConvention - Return true if the calling convention is one that
1544/// supports tail call optimization.
1545static bool IsTailCallConvention(CallingConv::ID CC) {
1546  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1547}
1548
1549/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1550/// a tailcall target by changing its ABI.
1551static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1552  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1553}
1554
1555SDValue
1556X86TargetLowering::LowerMemArgument(SDValue Chain,
1557                                    CallingConv::ID CallConv,
1558                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1559                                    DebugLoc dl, SelectionDAG &DAG,
1560                                    const CCValAssign &VA,
1561                                    MachineFrameInfo *MFI,
1562                                    unsigned i) const {
1563  // Create the nodes corresponding to a load from this parameter slot.
1564  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1565  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1566  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1567  EVT ValVT;
1568
1569  // If value is passed by pointer we have address passed instead of the value
1570  // itself.
1571  if (VA.getLocInfo() == CCValAssign::Indirect)
1572    ValVT = VA.getLocVT();
1573  else
1574    ValVT = VA.getValVT();
1575
1576  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1577  // changed with more analysis.
1578  // In case of tail call optimization mark all arguments mutable. Since they
1579  // could be overwritten by lowering of arguments in case of a tail call.
1580  if (Flags.isByVal()) {
1581    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1582                                    VA.getLocMemOffset(), isImmutable);
1583    return DAG.getFrameIndex(FI, getPointerTy());
1584  } else {
1585    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1586                                    VA.getLocMemOffset(), isImmutable);
1587    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1588    return DAG.getLoad(ValVT, dl, Chain, FIN,
1589                       PseudoSourceValue::getFixedStack(FI), 0,
1590                       false, false, 0);
1591  }
1592}
1593
1594SDValue
1595X86TargetLowering::LowerFormalArguments(SDValue Chain,
1596                                        CallingConv::ID CallConv,
1597                                        bool isVarArg,
1598                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1599                                        DebugLoc dl,
1600                                        SelectionDAG &DAG,
1601                                        SmallVectorImpl<SDValue> &InVals)
1602                                          const {
1603  MachineFunction &MF = DAG.getMachineFunction();
1604  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1605
1606  const Function* Fn = MF.getFunction();
1607  if (Fn->hasExternalLinkage() &&
1608      Subtarget->isTargetCygMing() &&
1609      Fn->getName() == "main")
1610    FuncInfo->setForceFramePointer(true);
1611
1612  MachineFrameInfo *MFI = MF.getFrameInfo();
1613  bool Is64Bit = Subtarget->is64Bit();
1614  bool IsWin64 = Subtarget->isTargetWin64();
1615
1616  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1617         "Var args not supported with calling convention fastcc or ghc");
1618
1619  // Assign locations to all of the incoming arguments.
1620  SmallVector<CCValAssign, 16> ArgLocs;
1621  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1622                 ArgLocs, *DAG.getContext());
1623  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1624
1625  unsigned LastVal = ~0U;
1626  SDValue ArgValue;
1627  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1628    CCValAssign &VA = ArgLocs[i];
1629    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1630    // places.
1631    assert(VA.getValNo() != LastVal &&
1632           "Don't support value assigned to multiple locs yet");
1633    LastVal = VA.getValNo();
1634
1635    if (VA.isRegLoc()) {
1636      EVT RegVT = VA.getLocVT();
1637      TargetRegisterClass *RC = NULL;
1638      if (RegVT == MVT::i32)
1639        RC = X86::GR32RegisterClass;
1640      else if (Is64Bit && RegVT == MVT::i64)
1641        RC = X86::GR64RegisterClass;
1642      else if (RegVT == MVT::f32)
1643        RC = X86::FR32RegisterClass;
1644      else if (RegVT == MVT::f64)
1645        RC = X86::FR64RegisterClass;
1646      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1647        RC = X86::VR256RegisterClass;
1648      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1649        RC = X86::VR128RegisterClass;
1650      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1651        RC = X86::VR64RegisterClass;
1652      else
1653        llvm_unreachable("Unknown argument type!");
1654
1655      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1656      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1657
1658      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1659      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1660      // right size.
1661      if (VA.getLocInfo() == CCValAssign::SExt)
1662        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1663                               DAG.getValueType(VA.getValVT()));
1664      else if (VA.getLocInfo() == CCValAssign::ZExt)
1665        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1666                               DAG.getValueType(VA.getValVT()));
1667      else if (VA.getLocInfo() == CCValAssign::BCvt)
1668        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1669
1670      if (VA.isExtInLoc()) {
1671        // Handle MMX values passed in XMM regs.
1672        if (RegVT.isVector()) {
1673          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1674                                 ArgValue, DAG.getConstant(0, MVT::i64));
1675          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1676        } else
1677          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1678      }
1679    } else {
1680      assert(VA.isMemLoc());
1681      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1682    }
1683
1684    // If value is passed via pointer - do a load.
1685    if (VA.getLocInfo() == CCValAssign::Indirect)
1686      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1687                             false, false, 0);
1688
1689    InVals.push_back(ArgValue);
1690  }
1691
1692  // The x86-64 ABI for returning structs by value requires that we copy
1693  // the sret argument into %rax for the return. Save the argument into
1694  // a virtual register so that we can access it from the return points.
1695  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1696    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1697    unsigned Reg = FuncInfo->getSRetReturnReg();
1698    if (!Reg) {
1699      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1700      FuncInfo->setSRetReturnReg(Reg);
1701    }
1702    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1703    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1704  }
1705
1706  unsigned StackSize = CCInfo.getNextStackOffset();
1707  // Align stack specially for tail calls.
1708  if (FuncIsMadeTailCallSafe(CallConv))
1709    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1710
1711  // If the function takes variable number of arguments, make a frame index for
1712  // the start of the first vararg value... for expansion of llvm.va_start.
1713  if (isVarArg) {
1714    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1715                    CallConv != CallingConv::X86_ThisCall)) {
1716      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1717    }
1718    if (Is64Bit) {
1719      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1720
1721      // FIXME: We should really autogenerate these arrays
1722      static const unsigned GPR64ArgRegsWin64[] = {
1723        X86::RCX, X86::RDX, X86::R8,  X86::R9
1724      };
1725      static const unsigned XMMArgRegsWin64[] = {
1726        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1727      };
1728      static const unsigned GPR64ArgRegs64Bit[] = {
1729        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1730      };
1731      static const unsigned XMMArgRegs64Bit[] = {
1732        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1733        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1734      };
1735      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1736
1737      if (IsWin64) {
1738        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1739        GPR64ArgRegs = GPR64ArgRegsWin64;
1740        XMMArgRegs = XMMArgRegsWin64;
1741      } else {
1742        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1743        GPR64ArgRegs = GPR64ArgRegs64Bit;
1744        XMMArgRegs = XMMArgRegs64Bit;
1745      }
1746      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1747                                                       TotalNumIntRegs);
1748      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1749                                                       TotalNumXMMRegs);
1750
1751      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1752      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1753             "SSE register cannot be used when SSE is disabled!");
1754      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1755             "SSE register cannot be used when SSE is disabled!");
1756      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1757        // Kernel mode asks for SSE to be disabled, so don't push them
1758        // on the stack.
1759        TotalNumXMMRegs = 0;
1760
1761      // For X86-64, if there are vararg parameters that are passed via
1762      // registers, then we must store them to their spots on the stack so they
1763      // may be loaded by deferencing the result of va_next.
1764      FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1765      FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1766      FuncInfo->setRegSaveFrameIndex(
1767        MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1768                               false));
1769
1770      // Store the integer parameter registers.
1771      SmallVector<SDValue, 8> MemOps;
1772      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1773                                        getPointerTy());
1774      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1775      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1776        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1777                                  DAG.getIntPtrConstant(Offset));
1778        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1779                                     X86::GR64RegisterClass);
1780        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1781        SDValue Store =
1782          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1783                       PseudoSourceValue::getFixedStack(
1784                         FuncInfo->getRegSaveFrameIndex()),
1785                       Offset, false, false, 0);
1786        MemOps.push_back(Store);
1787        Offset += 8;
1788      }
1789
1790      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1791        // Now store the XMM (fp + vector) parameter registers.
1792        SmallVector<SDValue, 11> SaveXMMOps;
1793        SaveXMMOps.push_back(Chain);
1794
1795        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1796        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1797        SaveXMMOps.push_back(ALVal);
1798
1799        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1800                               FuncInfo->getRegSaveFrameIndex()));
1801        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1802                               FuncInfo->getVarArgsFPOffset()));
1803
1804        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1805          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1806                                       X86::VR128RegisterClass);
1807          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1808          SaveXMMOps.push_back(Val);
1809        }
1810        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1811                                     MVT::Other,
1812                                     &SaveXMMOps[0], SaveXMMOps.size()));
1813      }
1814
1815      if (!MemOps.empty())
1816        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1817                            &MemOps[0], MemOps.size());
1818    }
1819  }
1820
1821  // Some CCs need callee pop.
1822  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1823    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1824  } else {
1825    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1826    // If this is an sret function, the return should pop the hidden pointer.
1827    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1828      FuncInfo->setBytesToPopOnReturn(4);
1829  }
1830
1831  if (!Is64Bit) {
1832    // RegSaveFrameIndex is X86-64 only.
1833    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1834    if (CallConv == CallingConv::X86_FastCall ||
1835        CallConv == CallingConv::X86_ThisCall)
1836      // fastcc functions can't have varargs.
1837      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1838  }
1839
1840  return Chain;
1841}
1842
1843SDValue
1844X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1845                                    SDValue StackPtr, SDValue Arg,
1846                                    DebugLoc dl, SelectionDAG &DAG,
1847                                    const CCValAssign &VA,
1848                                    ISD::ArgFlagsTy Flags) const {
1849  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1850  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1851  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1852  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1853  if (Flags.isByVal()) {
1854    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1855  }
1856  return DAG.getStore(Chain, dl, Arg, PtrOff,
1857                      PseudoSourceValue::getStack(), LocMemOffset,
1858                      false, false, 0);
1859}
1860
1861/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1862/// optimization is performed and it is required.
1863SDValue
1864X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1865                                           SDValue &OutRetAddr, SDValue Chain,
1866                                           bool IsTailCall, bool Is64Bit,
1867                                           int FPDiff, DebugLoc dl) const {
1868  // Adjust the Return address stack slot.
1869  EVT VT = getPointerTy();
1870  OutRetAddr = getReturnAddressFrameIndex(DAG);
1871
1872  // Load the "old" Return address.
1873  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1874  return SDValue(OutRetAddr.getNode(), 1);
1875}
1876
1877/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1878/// optimization is performed and it is required (FPDiff!=0).
1879static SDValue
1880EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1881                         SDValue Chain, SDValue RetAddrFrIdx,
1882                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1883  // Store the return address to the appropriate stack slot.
1884  if (!FPDiff) return Chain;
1885  // Calculate the new stack slot for the return address.
1886  int SlotSize = Is64Bit ? 8 : 4;
1887  int NewReturnAddrFI =
1888    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1889  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1890  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1891  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1892                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1893                       false, false, 0);
1894  return Chain;
1895}
1896
1897SDValue
1898X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1899                             CallingConv::ID CallConv, bool isVarArg,
1900                             bool &isTailCall,
1901                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1902                             const SmallVectorImpl<SDValue> &OutVals,
1903                             const SmallVectorImpl<ISD::InputArg> &Ins,
1904                             DebugLoc dl, SelectionDAG &DAG,
1905                             SmallVectorImpl<SDValue> &InVals) const {
1906  MachineFunction &MF = DAG.getMachineFunction();
1907  bool Is64Bit        = Subtarget->is64Bit();
1908  bool IsStructRet    = CallIsStructReturn(Outs);
1909  bool IsSibcall      = false;
1910
1911  if (isTailCall) {
1912    // Check if it's really possible to do a tail call.
1913    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1914                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1915                                                   Outs, OutVals, Ins, DAG);
1916
1917    // Sibcalls are automatically detected tailcalls which do not require
1918    // ABI changes.
1919    if (!GuaranteedTailCallOpt && isTailCall)
1920      IsSibcall = true;
1921
1922    if (isTailCall)
1923      ++NumTailCalls;
1924  }
1925
1926  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1927         "Var args not supported with calling convention fastcc or ghc");
1928
1929  // Analyze operands of the call, assigning locations to each operand.
1930  SmallVector<CCValAssign, 16> ArgLocs;
1931  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1932                 ArgLocs, *DAG.getContext());
1933  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1934
1935  // Get a count of how many bytes are to be pushed on the stack.
1936  unsigned NumBytes = CCInfo.getNextStackOffset();
1937  if (IsSibcall)
1938    // This is a sibcall. The memory operands are available in caller's
1939    // own caller's stack.
1940    NumBytes = 0;
1941  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1942    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1943
1944  int FPDiff = 0;
1945  if (isTailCall && !IsSibcall) {
1946    // Lower arguments at fp - stackoffset + fpdiff.
1947    unsigned NumBytesCallerPushed =
1948      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1949    FPDiff = NumBytesCallerPushed - NumBytes;
1950
1951    // Set the delta of movement of the returnaddr stackslot.
1952    // But only set if delta is greater than previous delta.
1953    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1954      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1955  }
1956
1957  if (!IsSibcall)
1958    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1959
1960  SDValue RetAddrFrIdx;
1961  // Load return adress for tail calls.
1962  if (isTailCall && FPDiff)
1963    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1964                                    Is64Bit, FPDiff, dl);
1965
1966  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1967  SmallVector<SDValue, 8> MemOpChains;
1968  SDValue StackPtr;
1969
1970  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1971  // of tail call optimization arguments are handle later.
1972  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1973    CCValAssign &VA = ArgLocs[i];
1974    EVT RegVT = VA.getLocVT();
1975    SDValue Arg = OutVals[i];
1976    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1977    bool isByVal = Flags.isByVal();
1978
1979    // Promote the value if needed.
1980    switch (VA.getLocInfo()) {
1981    default: llvm_unreachable("Unknown loc info!");
1982    case CCValAssign::Full: break;
1983    case CCValAssign::SExt:
1984      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1985      break;
1986    case CCValAssign::ZExt:
1987      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1988      break;
1989    case CCValAssign::AExt:
1990      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1991        // Special case: passing MMX values in XMM registers.
1992        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1993        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1994        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1995      } else
1996        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1997      break;
1998    case CCValAssign::BCvt:
1999      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
2000      break;
2001    case CCValAssign::Indirect: {
2002      // Store the argument.
2003      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2004      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2005      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2006                           PseudoSourceValue::getFixedStack(FI), 0,
2007                           false, false, 0);
2008      Arg = SpillSlot;
2009      break;
2010    }
2011    }
2012
2013    if (VA.isRegLoc()) {
2014      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2015      if (isVarArg && Subtarget->isTargetWin64()) {
2016        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2017        // shadow reg if callee is a varargs function.
2018        unsigned ShadowReg = 0;
2019        switch (VA.getLocReg()) {
2020        case X86::XMM0: ShadowReg = X86::RCX; break;
2021        case X86::XMM1: ShadowReg = X86::RDX; break;
2022        case X86::XMM2: ShadowReg = X86::R8; break;
2023        case X86::XMM3: ShadowReg = X86::R9; break;
2024        }
2025        if (ShadowReg)
2026          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2027      }
2028    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2029      assert(VA.isMemLoc());
2030      if (StackPtr.getNode() == 0)
2031        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2032      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2033                                             dl, DAG, VA, Flags));
2034    }
2035  }
2036
2037  if (!MemOpChains.empty())
2038    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2039                        &MemOpChains[0], MemOpChains.size());
2040
2041  // Build a sequence of copy-to-reg nodes chained together with token chain
2042  // and flag operands which copy the outgoing args into registers.
2043  SDValue InFlag;
2044  // Tail call byval lowering might overwrite argument registers so in case of
2045  // tail call optimization the copies to registers are lowered later.
2046  if (!isTailCall)
2047    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2048      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2049                               RegsToPass[i].second, InFlag);
2050      InFlag = Chain.getValue(1);
2051    }
2052
2053  if (Subtarget->isPICStyleGOT()) {
2054    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2055    // GOT pointer.
2056    if (!isTailCall) {
2057      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2058                               DAG.getNode(X86ISD::GlobalBaseReg,
2059                                           DebugLoc(), getPointerTy()),
2060                               InFlag);
2061      InFlag = Chain.getValue(1);
2062    } else {
2063      // If we are tail calling and generating PIC/GOT style code load the
2064      // address of the callee into ECX. The value in ecx is used as target of
2065      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2066      // for tail calls on PIC/GOT architectures. Normally we would just put the
2067      // address of GOT into ebx and then call target@PLT. But for tail calls
2068      // ebx would be restored (since ebx is callee saved) before jumping to the
2069      // target@PLT.
2070
2071      // Note: The actual moving to ECX is done further down.
2072      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2073      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2074          !G->getGlobal()->hasProtectedVisibility())
2075        Callee = LowerGlobalAddress(Callee, DAG);
2076      else if (isa<ExternalSymbolSDNode>(Callee))
2077        Callee = LowerExternalSymbol(Callee, DAG);
2078    }
2079  }
2080
2081  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2082    // From AMD64 ABI document:
2083    // For calls that may call functions that use varargs or stdargs
2084    // (prototype-less calls or calls to functions containing ellipsis (...) in
2085    // the declaration) %al is used as hidden argument to specify the number
2086    // of SSE registers used. The contents of %al do not need to match exactly
2087    // the number of registers, but must be an ubound on the number of SSE
2088    // registers used and is in the range 0 - 8 inclusive.
2089
2090    // Count the number of XMM registers allocated.
2091    static const unsigned XMMArgRegs[] = {
2092      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2093      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2094    };
2095    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2096    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2097           && "SSE registers cannot be used when SSE is disabled");
2098
2099    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2100                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2101    InFlag = Chain.getValue(1);
2102  }
2103
2104
2105  // For tail calls lower the arguments to the 'real' stack slot.
2106  if (isTailCall) {
2107    // Force all the incoming stack arguments to be loaded from the stack
2108    // before any new outgoing arguments are stored to the stack, because the
2109    // outgoing stack slots may alias the incoming argument stack slots, and
2110    // the alias isn't otherwise explicit. This is slightly more conservative
2111    // than necessary, because it means that each store effectively depends
2112    // on every argument instead of just those arguments it would clobber.
2113    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2114
2115    SmallVector<SDValue, 8> MemOpChains2;
2116    SDValue FIN;
2117    int FI = 0;
2118    // Do not flag preceeding copytoreg stuff together with the following stuff.
2119    InFlag = SDValue();
2120    if (GuaranteedTailCallOpt) {
2121      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2122        CCValAssign &VA = ArgLocs[i];
2123        if (VA.isRegLoc())
2124          continue;
2125        assert(VA.isMemLoc());
2126        SDValue Arg = OutVals[i];
2127        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2128        // Create frame index.
2129        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2130        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2131        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2132        FIN = DAG.getFrameIndex(FI, getPointerTy());
2133
2134        if (Flags.isByVal()) {
2135          // Copy relative to framepointer.
2136          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2137          if (StackPtr.getNode() == 0)
2138            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2139                                          getPointerTy());
2140          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2141
2142          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2143                                                           ArgChain,
2144                                                           Flags, DAG, dl));
2145        } else {
2146          // Store relative to framepointer.
2147          MemOpChains2.push_back(
2148            DAG.getStore(ArgChain, dl, Arg, FIN,
2149                         PseudoSourceValue::getFixedStack(FI), 0,
2150                         false, false, 0));
2151        }
2152      }
2153    }
2154
2155    if (!MemOpChains2.empty())
2156      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2157                          &MemOpChains2[0], MemOpChains2.size());
2158
2159    // Copy arguments to their registers.
2160    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2161      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2162                               RegsToPass[i].second, InFlag);
2163      InFlag = Chain.getValue(1);
2164    }
2165    InFlag =SDValue();
2166
2167    // Store the return address to the appropriate stack slot.
2168    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2169                                     FPDiff, dl);
2170  }
2171
2172  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2173    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2174    // In the 64-bit large code model, we have to make all calls
2175    // through a register, since the call instruction's 32-bit
2176    // pc-relative offset may not be large enough to hold the whole
2177    // address.
2178  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2179    // If the callee is a GlobalAddress node (quite common, every direct call
2180    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2181    // it.
2182
2183    // We should use extra load for direct calls to dllimported functions in
2184    // non-JIT mode.
2185    const GlobalValue *GV = G->getGlobal();
2186    if (!GV->hasDLLImportLinkage()) {
2187      unsigned char OpFlags = 0;
2188
2189      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2190      // external symbols most go through the PLT in PIC mode.  If the symbol
2191      // has hidden or protected visibility, or if it is static or local, then
2192      // we don't need to use the PLT - we can directly call it.
2193      if (Subtarget->isTargetELF() &&
2194          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2195          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2196        OpFlags = X86II::MO_PLT;
2197      } else if (Subtarget->isPICStyleStubAny() &&
2198               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2199               Subtarget->getDarwinVers() < 9) {
2200        // PC-relative references to external symbols should go through $stub,
2201        // unless we're building with the leopard linker or later, which
2202        // automatically synthesizes these stubs.
2203        OpFlags = X86II::MO_DARWIN_STUB;
2204      }
2205
2206      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2207                                          G->getOffset(), OpFlags);
2208    }
2209  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2210    unsigned char OpFlags = 0;
2211
2212    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2213    // symbols should go through the PLT.
2214    if (Subtarget->isTargetELF() &&
2215        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2216      OpFlags = X86II::MO_PLT;
2217    } else if (Subtarget->isPICStyleStubAny() &&
2218             Subtarget->getDarwinVers() < 9) {
2219      // PC-relative references to external symbols should go through $stub,
2220      // unless we're building with the leopard linker or later, which
2221      // automatically synthesizes these stubs.
2222      OpFlags = X86II::MO_DARWIN_STUB;
2223    }
2224
2225    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2226                                         OpFlags);
2227  }
2228
2229  // Returns a chain & a flag for retval copy to use.
2230  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2231  SmallVector<SDValue, 8> Ops;
2232
2233  if (!IsSibcall && isTailCall) {
2234    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2235                           DAG.getIntPtrConstant(0, true), InFlag);
2236    InFlag = Chain.getValue(1);
2237  }
2238
2239  Ops.push_back(Chain);
2240  Ops.push_back(Callee);
2241
2242  if (isTailCall)
2243    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2244
2245  // Add argument registers to the end of the list so that they are known live
2246  // into the call.
2247  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2248    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2249                                  RegsToPass[i].second.getValueType()));
2250
2251  // Add an implicit use GOT pointer in EBX.
2252  if (!isTailCall && Subtarget->isPICStyleGOT())
2253    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2254
2255  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2256  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64())
2257    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2258
2259  if (InFlag.getNode())
2260    Ops.push_back(InFlag);
2261
2262  if (isTailCall) {
2263    // We used to do:
2264    //// If this is the first return lowered for this function, add the regs
2265    //// to the liveout set for the function.
2266    // This isn't right, although it's probably harmless on x86; liveouts
2267    // should be computed from returns not tail calls.  Consider a void
2268    // function making a tail call to a function returning int.
2269    return DAG.getNode(X86ISD::TC_RETURN, dl,
2270                       NodeTys, &Ops[0], Ops.size());
2271  }
2272
2273  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2274  InFlag = Chain.getValue(1);
2275
2276  // Create the CALLSEQ_END node.
2277  unsigned NumBytesForCalleeToPush;
2278  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2279    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2280  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2281    // If this is a call to a struct-return function, the callee
2282    // pops the hidden struct pointer, so we have to push it back.
2283    // This is common for Darwin/X86, Linux & Mingw32 targets.
2284    NumBytesForCalleeToPush = 4;
2285  else
2286    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2287
2288  // Returns a flag for retval copy to use.
2289  if (!IsSibcall) {
2290    Chain = DAG.getCALLSEQ_END(Chain,
2291                               DAG.getIntPtrConstant(NumBytes, true),
2292                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2293                                                     true),
2294                               InFlag);
2295    InFlag = Chain.getValue(1);
2296  }
2297
2298  // Handle result values, copying them out of physregs into vregs that we
2299  // return.
2300  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2301                         Ins, dl, DAG, InVals);
2302}
2303
2304
2305//===----------------------------------------------------------------------===//
2306//                Fast Calling Convention (tail call) implementation
2307//===----------------------------------------------------------------------===//
2308
2309//  Like std call, callee cleans arguments, convention except that ECX is
2310//  reserved for storing the tail called function address. Only 2 registers are
2311//  free for argument passing (inreg). Tail call optimization is performed
2312//  provided:
2313//                * tailcallopt is enabled
2314//                * caller/callee are fastcc
2315//  On X86_64 architecture with GOT-style position independent code only local
2316//  (within module) calls are supported at the moment.
2317//  To keep the stack aligned according to platform abi the function
2318//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2319//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2320//  If a tail called function callee has more arguments than the caller the
2321//  caller needs to make sure that there is room to move the RETADDR to. This is
2322//  achieved by reserving an area the size of the argument delta right after the
2323//  original REtADDR, but before the saved framepointer or the spilled registers
2324//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2325//  stack layout:
2326//    arg1
2327//    arg2
2328//    RETADDR
2329//    [ new RETADDR
2330//      move area ]
2331//    (possible EBP)
2332//    ESI
2333//    EDI
2334//    local1 ..
2335
2336/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2337/// for a 16 byte align requirement.
2338unsigned
2339X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2340                                               SelectionDAG& DAG) const {
2341  MachineFunction &MF = DAG.getMachineFunction();
2342  const TargetMachine &TM = MF.getTarget();
2343  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2344  unsigned StackAlignment = TFI.getStackAlignment();
2345  uint64_t AlignMask = StackAlignment - 1;
2346  int64_t Offset = StackSize;
2347  uint64_t SlotSize = TD->getPointerSize();
2348  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2349    // Number smaller than 12 so just add the difference.
2350    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2351  } else {
2352    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2353    Offset = ((~AlignMask) & Offset) + StackAlignment +
2354      (StackAlignment-SlotSize);
2355  }
2356  return Offset;
2357}
2358
2359/// MatchingStackOffset - Return true if the given stack call argument is
2360/// already available in the same position (relatively) of the caller's
2361/// incoming argument stack.
2362static
2363bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2364                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2365                         const X86InstrInfo *TII) {
2366  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2367  int FI = INT_MAX;
2368  if (Arg.getOpcode() == ISD::CopyFromReg) {
2369    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2370    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2371      return false;
2372    MachineInstr *Def = MRI->getVRegDef(VR);
2373    if (!Def)
2374      return false;
2375    if (!Flags.isByVal()) {
2376      if (!TII->isLoadFromStackSlot(Def, FI))
2377        return false;
2378    } else {
2379      unsigned Opcode = Def->getOpcode();
2380      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2381          Def->getOperand(1).isFI()) {
2382        FI = Def->getOperand(1).getIndex();
2383        Bytes = Flags.getByValSize();
2384      } else
2385        return false;
2386    }
2387  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2388    if (Flags.isByVal())
2389      // ByVal argument is passed in as a pointer but it's now being
2390      // dereferenced. e.g.
2391      // define @foo(%struct.X* %A) {
2392      //   tail call @bar(%struct.X* byval %A)
2393      // }
2394      return false;
2395    SDValue Ptr = Ld->getBasePtr();
2396    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2397    if (!FINode)
2398      return false;
2399    FI = FINode->getIndex();
2400  } else
2401    return false;
2402
2403  assert(FI != INT_MAX);
2404  if (!MFI->isFixedObjectIndex(FI))
2405    return false;
2406  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2407}
2408
2409/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2410/// for tail call optimization. Targets which want to do tail call
2411/// optimization should implement this function.
2412bool
2413X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2414                                                     CallingConv::ID CalleeCC,
2415                                                     bool isVarArg,
2416                                                     bool isCalleeStructRet,
2417                                                     bool isCallerStructRet,
2418                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2419                                    const SmallVectorImpl<SDValue> &OutVals,
2420                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2421                                                     SelectionDAG& DAG) const {
2422  if (!IsTailCallConvention(CalleeCC) &&
2423      CalleeCC != CallingConv::C)
2424    return false;
2425
2426  // If -tailcallopt is specified, make fastcc functions tail-callable.
2427  const MachineFunction &MF = DAG.getMachineFunction();
2428  const Function *CallerF = DAG.getMachineFunction().getFunction();
2429  CallingConv::ID CallerCC = CallerF->getCallingConv();
2430  bool CCMatch = CallerCC == CalleeCC;
2431
2432  if (GuaranteedTailCallOpt) {
2433    if (IsTailCallConvention(CalleeCC) && CCMatch)
2434      return true;
2435    return false;
2436  }
2437
2438  // Look for obvious safe cases to perform tail call optimization that do not
2439  // require ABI changes. This is what gcc calls sibcall.
2440
2441  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2442  // emit a special epilogue.
2443  if (RegInfo->needsStackRealignment(MF))
2444    return false;
2445
2446  // Do not sibcall optimize vararg calls unless the call site is not passing
2447  // any arguments.
2448  if (isVarArg && !Outs.empty())
2449    return false;
2450
2451  // Also avoid sibcall optimization if either caller or callee uses struct
2452  // return semantics.
2453  if (isCalleeStructRet || isCallerStructRet)
2454    return false;
2455
2456  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2457  // Therefore if it's not used by the call it is not safe to optimize this into
2458  // a sibcall.
2459  bool Unused = false;
2460  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2461    if (!Ins[i].Used) {
2462      Unused = true;
2463      break;
2464    }
2465  }
2466  if (Unused) {
2467    SmallVector<CCValAssign, 16> RVLocs;
2468    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2469                   RVLocs, *DAG.getContext());
2470    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2471    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2472      CCValAssign &VA = RVLocs[i];
2473      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2474        return false;
2475    }
2476  }
2477
2478  // If the calling conventions do not match, then we'd better make sure the
2479  // results are returned in the same way as what the caller expects.
2480  if (!CCMatch) {
2481    SmallVector<CCValAssign, 16> RVLocs1;
2482    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2483                    RVLocs1, *DAG.getContext());
2484    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2485
2486    SmallVector<CCValAssign, 16> RVLocs2;
2487    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2488                    RVLocs2, *DAG.getContext());
2489    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2490
2491    if (RVLocs1.size() != RVLocs2.size())
2492      return false;
2493    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2494      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2495        return false;
2496      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2497        return false;
2498      if (RVLocs1[i].isRegLoc()) {
2499        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2500          return false;
2501      } else {
2502        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2503          return false;
2504      }
2505    }
2506  }
2507
2508  // If the callee takes no arguments then go on to check the results of the
2509  // call.
2510  if (!Outs.empty()) {
2511    // Check if stack adjustment is needed. For now, do not do this if any
2512    // argument is passed on the stack.
2513    SmallVector<CCValAssign, 16> ArgLocs;
2514    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2515                   ArgLocs, *DAG.getContext());
2516    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2517    if (CCInfo.getNextStackOffset()) {
2518      MachineFunction &MF = DAG.getMachineFunction();
2519      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2520        return false;
2521      if (Subtarget->isTargetWin64())
2522        // Win64 ABI has additional complications.
2523        return false;
2524
2525      // Check if the arguments are already laid out in the right way as
2526      // the caller's fixed stack objects.
2527      MachineFrameInfo *MFI = MF.getFrameInfo();
2528      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2529      const X86InstrInfo *TII =
2530        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2531      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2532        CCValAssign &VA = ArgLocs[i];
2533        SDValue Arg = OutVals[i];
2534        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2535        if (VA.getLocInfo() == CCValAssign::Indirect)
2536          return false;
2537        if (!VA.isRegLoc()) {
2538          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2539                                   MFI, MRI, TII))
2540            return false;
2541        }
2542      }
2543    }
2544
2545    // If the tailcall address may be in a register, then make sure it's
2546    // possible to register allocate for it. In 32-bit, the call address can
2547    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2548    // callee-saved registers are restored. These happen to be the same
2549    // registers used to pass 'inreg' arguments so watch out for those.
2550    if (!Subtarget->is64Bit() &&
2551        !isa<GlobalAddressSDNode>(Callee) &&
2552        !isa<ExternalSymbolSDNode>(Callee)) {
2553      unsigned NumInRegs = 0;
2554      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2555        CCValAssign &VA = ArgLocs[i];
2556        if (!VA.isRegLoc())
2557          continue;
2558        unsigned Reg = VA.getLocReg();
2559        switch (Reg) {
2560        default: break;
2561        case X86::EAX: case X86::EDX: case X86::ECX:
2562          if (++NumInRegs == 3)
2563            return false;
2564          break;
2565        }
2566      }
2567    }
2568  }
2569
2570  return true;
2571}
2572
2573FastISel *
2574X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2575  return X86::createFastISel(funcInfo);
2576}
2577
2578
2579//===----------------------------------------------------------------------===//
2580//                           Other Lowering Hooks
2581//===----------------------------------------------------------------------===//
2582
2583static bool MayFoldLoad(SDValue Op) {
2584  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2585}
2586
2587static bool MayFoldIntoStore(SDValue Op) {
2588  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2589}
2590
2591static bool isTargetShuffle(unsigned Opcode) {
2592  switch(Opcode) {
2593  default: return false;
2594  case X86ISD::PSHUFD:
2595  case X86ISD::PSHUFHW:
2596  case X86ISD::PSHUFLW:
2597  case X86ISD::SHUFPD:
2598  case X86ISD::PALIGN:
2599  case X86ISD::SHUFPS:
2600  case X86ISD::MOVLHPS:
2601  case X86ISD::MOVLHPD:
2602  case X86ISD::MOVHLPS:
2603  case X86ISD::MOVLPS:
2604  case X86ISD::MOVLPD:
2605  case X86ISD::MOVSHDUP:
2606  case X86ISD::MOVSLDUP:
2607  case X86ISD::MOVSS:
2608  case X86ISD::MOVSD:
2609  case X86ISD::UNPCKLPS:
2610  case X86ISD::UNPCKLPD:
2611  case X86ISD::PUNPCKLWD:
2612  case X86ISD::PUNPCKLBW:
2613  case X86ISD::PUNPCKLDQ:
2614  case X86ISD::PUNPCKLQDQ:
2615  case X86ISD::UNPCKHPS:
2616  case X86ISD::UNPCKHPD:
2617  case X86ISD::PUNPCKHWD:
2618  case X86ISD::PUNPCKHBW:
2619  case X86ISD::PUNPCKHDQ:
2620  case X86ISD::PUNPCKHQDQ:
2621    return true;
2622  }
2623  return false;
2624}
2625
2626static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2627                                               SDValue V1, SelectionDAG &DAG) {
2628  switch(Opc) {
2629  default: llvm_unreachable("Unknown x86 shuffle node");
2630  case X86ISD::MOVSHDUP:
2631  case X86ISD::MOVSLDUP:
2632    return DAG.getNode(Opc, dl, VT, V1);
2633  }
2634
2635  return SDValue();
2636}
2637
2638static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2639                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2640  switch(Opc) {
2641  default: llvm_unreachable("Unknown x86 shuffle node");
2642  case X86ISD::PSHUFD:
2643  case X86ISD::PSHUFHW:
2644  case X86ISD::PSHUFLW:
2645    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2646  }
2647
2648  return SDValue();
2649}
2650
2651static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2652               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2653  switch(Opc) {
2654  default: llvm_unreachable("Unknown x86 shuffle node");
2655  case X86ISD::PALIGN:
2656  case X86ISD::SHUFPD:
2657  case X86ISD::SHUFPS:
2658    return DAG.getNode(Opc, dl, VT, V1, V2,
2659                       DAG.getConstant(TargetMask, MVT::i8));
2660  }
2661  return SDValue();
2662}
2663
2664static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2665                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2666  switch(Opc) {
2667  default: llvm_unreachable("Unknown x86 shuffle node");
2668  case X86ISD::MOVLHPS:
2669  case X86ISD::MOVLHPD:
2670  case X86ISD::MOVHLPS:
2671  case X86ISD::MOVLPS:
2672  case X86ISD::MOVLPD:
2673  case X86ISD::MOVSS:
2674  case X86ISD::MOVSD:
2675  case X86ISD::UNPCKLPS:
2676  case X86ISD::UNPCKLPD:
2677  case X86ISD::PUNPCKLWD:
2678  case X86ISD::PUNPCKLBW:
2679  case X86ISD::PUNPCKLDQ:
2680  case X86ISD::PUNPCKLQDQ:
2681  case X86ISD::UNPCKHPS:
2682  case X86ISD::UNPCKHPD:
2683  case X86ISD::PUNPCKHWD:
2684  case X86ISD::PUNPCKHBW:
2685  case X86ISD::PUNPCKHDQ:
2686  case X86ISD::PUNPCKHQDQ:
2687    return DAG.getNode(Opc, dl, VT, V1, V2);
2688  }
2689  return SDValue();
2690}
2691
2692SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2693  MachineFunction &MF = DAG.getMachineFunction();
2694  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2695  int ReturnAddrIndex = FuncInfo->getRAIndex();
2696
2697  if (ReturnAddrIndex == 0) {
2698    // Set up a frame object for the return address.
2699    uint64_t SlotSize = TD->getPointerSize();
2700    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2701                                                           false);
2702    FuncInfo->setRAIndex(ReturnAddrIndex);
2703  }
2704
2705  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2706}
2707
2708
2709bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2710                                       bool hasSymbolicDisplacement) {
2711  // Offset should fit into 32 bit immediate field.
2712  if (!isInt<32>(Offset))
2713    return false;
2714
2715  // If we don't have a symbolic displacement - we don't have any extra
2716  // restrictions.
2717  if (!hasSymbolicDisplacement)
2718    return true;
2719
2720  // FIXME: Some tweaks might be needed for medium code model.
2721  if (M != CodeModel::Small && M != CodeModel::Kernel)
2722    return false;
2723
2724  // For small code model we assume that latest object is 16MB before end of 31
2725  // bits boundary. We may also accept pretty large negative constants knowing
2726  // that all objects are in the positive half of address space.
2727  if (M == CodeModel::Small && Offset < 16*1024*1024)
2728    return true;
2729
2730  // For kernel code model we know that all object resist in the negative half
2731  // of 32bits address space. We may not accept negative offsets, since they may
2732  // be just off and we may accept pretty large positive ones.
2733  if (M == CodeModel::Kernel && Offset > 0)
2734    return true;
2735
2736  return false;
2737}
2738
2739/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2740/// specific condition code, returning the condition code and the LHS/RHS of the
2741/// comparison to make.
2742static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2743                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2744  if (!isFP) {
2745    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2746      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2747        // X > -1   -> X == 0, jump !sign.
2748        RHS = DAG.getConstant(0, RHS.getValueType());
2749        return X86::COND_NS;
2750      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2751        // X < 0   -> X == 0, jump on sign.
2752        return X86::COND_S;
2753      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2754        // X < 1   -> X <= 0
2755        RHS = DAG.getConstant(0, RHS.getValueType());
2756        return X86::COND_LE;
2757      }
2758    }
2759
2760    switch (SetCCOpcode) {
2761    default: llvm_unreachable("Invalid integer condition!");
2762    case ISD::SETEQ:  return X86::COND_E;
2763    case ISD::SETGT:  return X86::COND_G;
2764    case ISD::SETGE:  return X86::COND_GE;
2765    case ISD::SETLT:  return X86::COND_L;
2766    case ISD::SETLE:  return X86::COND_LE;
2767    case ISD::SETNE:  return X86::COND_NE;
2768    case ISD::SETULT: return X86::COND_B;
2769    case ISD::SETUGT: return X86::COND_A;
2770    case ISD::SETULE: return X86::COND_BE;
2771    case ISD::SETUGE: return X86::COND_AE;
2772    }
2773  }
2774
2775  // First determine if it is required or is profitable to flip the operands.
2776
2777  // If LHS is a foldable load, but RHS is not, flip the condition.
2778  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2779      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2780    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2781    std::swap(LHS, RHS);
2782  }
2783
2784  switch (SetCCOpcode) {
2785  default: break;
2786  case ISD::SETOLT:
2787  case ISD::SETOLE:
2788  case ISD::SETUGT:
2789  case ISD::SETUGE:
2790    std::swap(LHS, RHS);
2791    break;
2792  }
2793
2794  // On a floating point condition, the flags are set as follows:
2795  // ZF  PF  CF   op
2796  //  0 | 0 | 0 | X > Y
2797  //  0 | 0 | 1 | X < Y
2798  //  1 | 0 | 0 | X == Y
2799  //  1 | 1 | 1 | unordered
2800  switch (SetCCOpcode) {
2801  default: llvm_unreachable("Condcode should be pre-legalized away");
2802  case ISD::SETUEQ:
2803  case ISD::SETEQ:   return X86::COND_E;
2804  case ISD::SETOLT:              // flipped
2805  case ISD::SETOGT:
2806  case ISD::SETGT:   return X86::COND_A;
2807  case ISD::SETOLE:              // flipped
2808  case ISD::SETOGE:
2809  case ISD::SETGE:   return X86::COND_AE;
2810  case ISD::SETUGT:              // flipped
2811  case ISD::SETULT:
2812  case ISD::SETLT:   return X86::COND_B;
2813  case ISD::SETUGE:              // flipped
2814  case ISD::SETULE:
2815  case ISD::SETLE:   return X86::COND_BE;
2816  case ISD::SETONE:
2817  case ISD::SETNE:   return X86::COND_NE;
2818  case ISD::SETUO:   return X86::COND_P;
2819  case ISD::SETO:    return X86::COND_NP;
2820  case ISD::SETOEQ:
2821  case ISD::SETUNE:  return X86::COND_INVALID;
2822  }
2823}
2824
2825/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2826/// code. Current x86 isa includes the following FP cmov instructions:
2827/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2828static bool hasFPCMov(unsigned X86CC) {
2829  switch (X86CC) {
2830  default:
2831    return false;
2832  case X86::COND_B:
2833  case X86::COND_BE:
2834  case X86::COND_E:
2835  case X86::COND_P:
2836  case X86::COND_A:
2837  case X86::COND_AE:
2838  case X86::COND_NE:
2839  case X86::COND_NP:
2840    return true;
2841  }
2842}
2843
2844/// isFPImmLegal - Returns true if the target can instruction select the
2845/// specified FP immediate natively. If false, the legalizer will
2846/// materialize the FP immediate as a load from a constant pool.
2847bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2848  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2849    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2850      return true;
2851  }
2852  return false;
2853}
2854
2855/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2856/// the specified range (L, H].
2857static bool isUndefOrInRange(int Val, int Low, int Hi) {
2858  return (Val < 0) || (Val >= Low && Val < Hi);
2859}
2860
2861/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2862/// specified value.
2863static bool isUndefOrEqual(int Val, int CmpVal) {
2864  if (Val < 0 || Val == CmpVal)
2865    return true;
2866  return false;
2867}
2868
2869/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2870/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2871/// the second operand.
2872static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2873  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2874    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2875  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2876    return (Mask[0] < 2 && Mask[1] < 2);
2877  return false;
2878}
2879
2880bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2881  SmallVector<int, 8> M;
2882  N->getMask(M);
2883  return ::isPSHUFDMask(M, N->getValueType(0));
2884}
2885
2886/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2887/// is suitable for input to PSHUFHW.
2888static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2889  if (VT != MVT::v8i16)
2890    return false;
2891
2892  // Lower quadword copied in order or undef.
2893  for (int i = 0; i != 4; ++i)
2894    if (Mask[i] >= 0 && Mask[i] != i)
2895      return false;
2896
2897  // Upper quadword shuffled.
2898  for (int i = 4; i != 8; ++i)
2899    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2900      return false;
2901
2902  return true;
2903}
2904
2905bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2906  SmallVector<int, 8> M;
2907  N->getMask(M);
2908  return ::isPSHUFHWMask(M, N->getValueType(0));
2909}
2910
2911/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2912/// is suitable for input to PSHUFLW.
2913static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2914  if (VT != MVT::v8i16)
2915    return false;
2916
2917  // Upper quadword copied in order.
2918  for (int i = 4; i != 8; ++i)
2919    if (Mask[i] >= 0 && Mask[i] != i)
2920      return false;
2921
2922  // Lower quadword shuffled.
2923  for (int i = 0; i != 4; ++i)
2924    if (Mask[i] >= 4)
2925      return false;
2926
2927  return true;
2928}
2929
2930bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2931  SmallVector<int, 8> M;
2932  N->getMask(M);
2933  return ::isPSHUFLWMask(M, N->getValueType(0));
2934}
2935
2936/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2937/// is suitable for input to PALIGNR.
2938static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2939                          bool hasSSSE3) {
2940  int i, e = VT.getVectorNumElements();
2941
2942  // Do not handle v2i64 / v2f64 shuffles with palignr.
2943  if (e < 4 || !hasSSSE3)
2944    return false;
2945
2946  for (i = 0; i != e; ++i)
2947    if (Mask[i] >= 0)
2948      break;
2949
2950  // All undef, not a palignr.
2951  if (i == e)
2952    return false;
2953
2954  // Determine if it's ok to perform a palignr with only the LHS, since we
2955  // don't have access to the actual shuffle elements to see if RHS is undef.
2956  bool Unary = Mask[i] < (int)e;
2957  bool NeedsUnary = false;
2958
2959  int s = Mask[i] - i;
2960
2961  // Check the rest of the elements to see if they are consecutive.
2962  for (++i; i != e; ++i) {
2963    int m = Mask[i];
2964    if (m < 0)
2965      continue;
2966
2967    Unary = Unary && (m < (int)e);
2968    NeedsUnary = NeedsUnary || (m < s);
2969
2970    if (NeedsUnary && !Unary)
2971      return false;
2972    if (Unary && m != ((s+i) & (e-1)))
2973      return false;
2974    if (!Unary && m != (s+i))
2975      return false;
2976  }
2977  return true;
2978}
2979
2980bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2981  SmallVector<int, 8> M;
2982  N->getMask(M);
2983  return ::isPALIGNRMask(M, N->getValueType(0), true);
2984}
2985
2986/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2987/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2988static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2989  int NumElems = VT.getVectorNumElements();
2990  if (NumElems != 2 && NumElems != 4)
2991    return false;
2992
2993  int Half = NumElems / 2;
2994  for (int i = 0; i < Half; ++i)
2995    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2996      return false;
2997  for (int i = Half; i < NumElems; ++i)
2998    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2999      return false;
3000
3001  return true;
3002}
3003
3004bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3005  SmallVector<int, 8> M;
3006  N->getMask(M);
3007  return ::isSHUFPMask(M, N->getValueType(0));
3008}
3009
3010/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3011/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3012/// half elements to come from vector 1 (which would equal the dest.) and
3013/// the upper half to come from vector 2.
3014static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3015  int NumElems = VT.getVectorNumElements();
3016
3017  if (NumElems != 2 && NumElems != 4)
3018    return false;
3019
3020  int Half = NumElems / 2;
3021  for (int i = 0; i < Half; ++i)
3022    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3023      return false;
3024  for (int i = Half; i < NumElems; ++i)
3025    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3026      return false;
3027  return true;
3028}
3029
3030static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3031  SmallVector<int, 8> M;
3032  N->getMask(M);
3033  return isCommutedSHUFPMask(M, N->getValueType(0));
3034}
3035
3036/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3037/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3038bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3039  if (N->getValueType(0).getVectorNumElements() != 4)
3040    return false;
3041
3042  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3043  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3044         isUndefOrEqual(N->getMaskElt(1), 7) &&
3045         isUndefOrEqual(N->getMaskElt(2), 2) &&
3046         isUndefOrEqual(N->getMaskElt(3), 3);
3047}
3048
3049/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3050/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3051/// <2, 3, 2, 3>
3052bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3053  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3054
3055  if (NumElems != 4)
3056    return false;
3057
3058  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3059  isUndefOrEqual(N->getMaskElt(1), 3) &&
3060  isUndefOrEqual(N->getMaskElt(2), 2) &&
3061  isUndefOrEqual(N->getMaskElt(3), 3);
3062}
3063
3064/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3065/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3066bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3067  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3068
3069  if (NumElems != 2 && NumElems != 4)
3070    return false;
3071
3072  for (unsigned i = 0; i < NumElems/2; ++i)
3073    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3074      return false;
3075
3076  for (unsigned i = NumElems/2; i < NumElems; ++i)
3077    if (!isUndefOrEqual(N->getMaskElt(i), i))
3078      return false;
3079
3080  return true;
3081}
3082
3083/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3084/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3085bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3086  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3087
3088  if (NumElems != 2 && NumElems != 4)
3089    return false;
3090
3091  for (unsigned i = 0; i < NumElems/2; ++i)
3092    if (!isUndefOrEqual(N->getMaskElt(i), i))
3093      return false;
3094
3095  for (unsigned i = 0; i < NumElems/2; ++i)
3096    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3097      return false;
3098
3099  return true;
3100}
3101
3102/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3103/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3104static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3105                         bool V2IsSplat = false) {
3106  int NumElts = VT.getVectorNumElements();
3107  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3108    return false;
3109
3110  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3111    int BitI  = Mask[i];
3112    int BitI1 = Mask[i+1];
3113    if (!isUndefOrEqual(BitI, j))
3114      return false;
3115    if (V2IsSplat) {
3116      if (!isUndefOrEqual(BitI1, NumElts))
3117        return false;
3118    } else {
3119      if (!isUndefOrEqual(BitI1, j + NumElts))
3120        return false;
3121    }
3122  }
3123  return true;
3124}
3125
3126bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3127  SmallVector<int, 8> M;
3128  N->getMask(M);
3129  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3130}
3131
3132/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3133/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3134static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3135                         bool V2IsSplat = false) {
3136  int NumElts = VT.getVectorNumElements();
3137  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3138    return false;
3139
3140  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3141    int BitI  = Mask[i];
3142    int BitI1 = Mask[i+1];
3143    if (!isUndefOrEqual(BitI, j + NumElts/2))
3144      return false;
3145    if (V2IsSplat) {
3146      if (isUndefOrEqual(BitI1, NumElts))
3147        return false;
3148    } else {
3149      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3150        return false;
3151    }
3152  }
3153  return true;
3154}
3155
3156bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3157  SmallVector<int, 8> M;
3158  N->getMask(M);
3159  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3160}
3161
3162/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3163/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3164/// <0, 0, 1, 1>
3165static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3166  int NumElems = VT.getVectorNumElements();
3167  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3168    return false;
3169
3170  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3171    int BitI  = Mask[i];
3172    int BitI1 = Mask[i+1];
3173    if (!isUndefOrEqual(BitI, j))
3174      return false;
3175    if (!isUndefOrEqual(BitI1, j))
3176      return false;
3177  }
3178  return true;
3179}
3180
3181bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3182  SmallVector<int, 8> M;
3183  N->getMask(M);
3184  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3185}
3186
3187/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3188/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3189/// <2, 2, 3, 3>
3190static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3191  int NumElems = VT.getVectorNumElements();
3192  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3193    return false;
3194
3195  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3196    int BitI  = Mask[i];
3197    int BitI1 = Mask[i+1];
3198    if (!isUndefOrEqual(BitI, j))
3199      return false;
3200    if (!isUndefOrEqual(BitI1, j))
3201      return false;
3202  }
3203  return true;
3204}
3205
3206bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3207  SmallVector<int, 8> M;
3208  N->getMask(M);
3209  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3210}
3211
3212/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3213/// specifies a shuffle of elements that is suitable for input to MOVSS,
3214/// MOVSD, and MOVD, i.e. setting the lowest element.
3215static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3216  if (VT.getVectorElementType().getSizeInBits() < 32)
3217    return false;
3218
3219  int NumElts = VT.getVectorNumElements();
3220
3221  if (!isUndefOrEqual(Mask[0], NumElts))
3222    return false;
3223
3224  for (int i = 1; i < NumElts; ++i)
3225    if (!isUndefOrEqual(Mask[i], i))
3226      return false;
3227
3228  return true;
3229}
3230
3231bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3232  SmallVector<int, 8> M;
3233  N->getMask(M);
3234  return ::isMOVLMask(M, N->getValueType(0));
3235}
3236
3237/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3238/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3239/// element of vector 2 and the other elements to come from vector 1 in order.
3240static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3241                               bool V2IsSplat = false, bool V2IsUndef = false) {
3242  int NumOps = VT.getVectorNumElements();
3243  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3244    return false;
3245
3246  if (!isUndefOrEqual(Mask[0], 0))
3247    return false;
3248
3249  for (int i = 1; i < NumOps; ++i)
3250    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3251          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3252          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3253      return false;
3254
3255  return true;
3256}
3257
3258static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3259                           bool V2IsUndef = false) {
3260  SmallVector<int, 8> M;
3261  N->getMask(M);
3262  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3263}
3264
3265/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3266/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3267bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3268  if (N->getValueType(0).getVectorNumElements() != 4)
3269    return false;
3270
3271  // Expect 1, 1, 3, 3
3272  for (unsigned i = 0; i < 2; ++i) {
3273    int Elt = N->getMaskElt(i);
3274    if (Elt >= 0 && Elt != 1)
3275      return false;
3276  }
3277
3278  bool HasHi = false;
3279  for (unsigned i = 2; i < 4; ++i) {
3280    int Elt = N->getMaskElt(i);
3281    if (Elt >= 0 && Elt != 3)
3282      return false;
3283    if (Elt == 3)
3284      HasHi = true;
3285  }
3286  // Don't use movshdup if it can be done with a shufps.
3287  // FIXME: verify that matching u, u, 3, 3 is what we want.
3288  return HasHi;
3289}
3290
3291/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3292/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3293bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3294  if (N->getValueType(0).getVectorNumElements() != 4)
3295    return false;
3296
3297  // Expect 0, 0, 2, 2
3298  for (unsigned i = 0; i < 2; ++i)
3299    if (N->getMaskElt(i) > 0)
3300      return false;
3301
3302  bool HasHi = false;
3303  for (unsigned i = 2; i < 4; ++i) {
3304    int Elt = N->getMaskElt(i);
3305    if (Elt >= 0 && Elt != 2)
3306      return false;
3307    if (Elt == 2)
3308      HasHi = true;
3309  }
3310  // Don't use movsldup if it can be done with a shufps.
3311  return HasHi;
3312}
3313
3314/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3315/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3316bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3317  int e = N->getValueType(0).getVectorNumElements() / 2;
3318
3319  for (int i = 0; i < e; ++i)
3320    if (!isUndefOrEqual(N->getMaskElt(i), i))
3321      return false;
3322  for (int i = 0; i < e; ++i)
3323    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3324      return false;
3325  return true;
3326}
3327
3328/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3329/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3330unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3331  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3332  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3333
3334  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3335  unsigned Mask = 0;
3336  for (int i = 0; i < NumOperands; ++i) {
3337    int Val = SVOp->getMaskElt(NumOperands-i-1);
3338    if (Val < 0) Val = 0;
3339    if (Val >= NumOperands) Val -= NumOperands;
3340    Mask |= Val;
3341    if (i != NumOperands - 1)
3342      Mask <<= Shift;
3343  }
3344  return Mask;
3345}
3346
3347/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3348/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3349unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3350  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3351  unsigned Mask = 0;
3352  // 8 nodes, but we only care about the last 4.
3353  for (unsigned i = 7; i >= 4; --i) {
3354    int Val = SVOp->getMaskElt(i);
3355    if (Val >= 0)
3356      Mask |= (Val - 4);
3357    if (i != 4)
3358      Mask <<= 2;
3359  }
3360  return Mask;
3361}
3362
3363/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3364/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3365unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3366  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3367  unsigned Mask = 0;
3368  // 8 nodes, but we only care about the first 4.
3369  for (int i = 3; i >= 0; --i) {
3370    int Val = SVOp->getMaskElt(i);
3371    if (Val >= 0)
3372      Mask |= Val;
3373    if (i != 0)
3374      Mask <<= 2;
3375  }
3376  return Mask;
3377}
3378
3379/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3380/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3381unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3382  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3383  EVT VVT = N->getValueType(0);
3384  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3385  int Val = 0;
3386
3387  unsigned i, e;
3388  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3389    Val = SVOp->getMaskElt(i);
3390    if (Val >= 0)
3391      break;
3392  }
3393  return (Val - i) * EltSize;
3394}
3395
3396/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3397/// constant +0.0.
3398bool X86::isZeroNode(SDValue Elt) {
3399  return ((isa<ConstantSDNode>(Elt) &&
3400           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3401          (isa<ConstantFPSDNode>(Elt) &&
3402           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3403}
3404
3405/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3406/// their permute mask.
3407static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3408                                    SelectionDAG &DAG) {
3409  EVT VT = SVOp->getValueType(0);
3410  unsigned NumElems = VT.getVectorNumElements();
3411  SmallVector<int, 8> MaskVec;
3412
3413  for (unsigned i = 0; i != NumElems; ++i) {
3414    int idx = SVOp->getMaskElt(i);
3415    if (idx < 0)
3416      MaskVec.push_back(idx);
3417    else if (idx < (int)NumElems)
3418      MaskVec.push_back(idx + NumElems);
3419    else
3420      MaskVec.push_back(idx - NumElems);
3421  }
3422  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3423                              SVOp->getOperand(0), &MaskVec[0]);
3424}
3425
3426/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3427/// the two vector operands have swapped position.
3428static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3429  unsigned NumElems = VT.getVectorNumElements();
3430  for (unsigned i = 0; i != NumElems; ++i) {
3431    int idx = Mask[i];
3432    if (idx < 0)
3433      continue;
3434    else if (idx < (int)NumElems)
3435      Mask[i] = idx + NumElems;
3436    else
3437      Mask[i] = idx - NumElems;
3438  }
3439}
3440
3441/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3442/// match movhlps. The lower half elements should come from upper half of
3443/// V1 (and in order), and the upper half elements should come from the upper
3444/// half of V2 (and in order).
3445static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3446  if (Op->getValueType(0).getVectorNumElements() != 4)
3447    return false;
3448  for (unsigned i = 0, e = 2; i != e; ++i)
3449    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3450      return false;
3451  for (unsigned i = 2; i != 4; ++i)
3452    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3453      return false;
3454  return true;
3455}
3456
3457/// isScalarLoadToVector - Returns true if the node is a scalar load that
3458/// is promoted to a vector. It also returns the LoadSDNode by reference if
3459/// required.
3460static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3461  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3462    return false;
3463  N = N->getOperand(0).getNode();
3464  if (!ISD::isNON_EXTLoad(N))
3465    return false;
3466  if (LD)
3467    *LD = cast<LoadSDNode>(N);
3468  return true;
3469}
3470
3471/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3472/// match movlp{s|d}. The lower half elements should come from lower half of
3473/// V1 (and in order), and the upper half elements should come from the upper
3474/// half of V2 (and in order). And since V1 will become the source of the
3475/// MOVLP, it must be either a vector load or a scalar load to vector.
3476static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3477                               ShuffleVectorSDNode *Op) {
3478  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3479    return false;
3480  // Is V2 is a vector load, don't do this transformation. We will try to use
3481  // load folding shufps op.
3482  if (ISD::isNON_EXTLoad(V2))
3483    return false;
3484
3485  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3486
3487  if (NumElems != 2 && NumElems != 4)
3488    return false;
3489  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3490    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3491      return false;
3492  for (unsigned i = NumElems/2; i != NumElems; ++i)
3493    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3494      return false;
3495  return true;
3496}
3497
3498/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3499/// all the same.
3500static bool isSplatVector(SDNode *N) {
3501  if (N->getOpcode() != ISD::BUILD_VECTOR)
3502    return false;
3503
3504  SDValue SplatValue = N->getOperand(0);
3505  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3506    if (N->getOperand(i) != SplatValue)
3507      return false;
3508  return true;
3509}
3510
3511/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3512/// to an zero vector.
3513/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3514static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3515  SDValue V1 = N->getOperand(0);
3516  SDValue V2 = N->getOperand(1);
3517  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3518  for (unsigned i = 0; i != NumElems; ++i) {
3519    int Idx = N->getMaskElt(i);
3520    if (Idx >= (int)NumElems) {
3521      unsigned Opc = V2.getOpcode();
3522      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3523        continue;
3524      if (Opc != ISD::BUILD_VECTOR ||
3525          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3526        return false;
3527    } else if (Idx >= 0) {
3528      unsigned Opc = V1.getOpcode();
3529      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3530        continue;
3531      if (Opc != ISD::BUILD_VECTOR ||
3532          !X86::isZeroNode(V1.getOperand(Idx)))
3533        return false;
3534    }
3535  }
3536  return true;
3537}
3538
3539/// getZeroVector - Returns a vector of specified type with all zero elements.
3540///
3541static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3542                             DebugLoc dl) {
3543  assert(VT.isVector() && "Expected a vector type");
3544
3545  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted
3546  // to their dest type. This ensures they get CSE'd.
3547  SDValue Vec;
3548  if (VT.getSizeInBits() == 64) { // MMX
3549    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3550    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3551  } else if (VT.getSizeInBits() == 128) {
3552    if (HasSSE2) {  // SSE2
3553      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3554      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3555    } else { // SSE1
3556      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3557      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3558    }
3559  } else if (VT.getSizeInBits() == 256) { // AVX
3560    // 256-bit logic and arithmetic instructions in AVX are
3561    // all floating-point, no support for integer ops. Default
3562    // to emitting fp zeroed vectors then.
3563    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3564    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3565    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3566  }
3567  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3568}
3569
3570/// getOnesVector - Returns a vector of specified type with all bits set.
3571///
3572static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3573  assert(VT.isVector() && "Expected a vector type");
3574
3575  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3576  // type.  This ensures they get CSE'd.
3577  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3578  SDValue Vec;
3579  if (VT.getSizeInBits() == 64) // MMX
3580    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3581  else // SSE
3582    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3583  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3584}
3585
3586
3587/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3588/// that point to V2 points to its first element.
3589static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3590  EVT VT = SVOp->getValueType(0);
3591  unsigned NumElems = VT.getVectorNumElements();
3592
3593  bool Changed = false;
3594  SmallVector<int, 8> MaskVec;
3595  SVOp->getMask(MaskVec);
3596
3597  for (unsigned i = 0; i != NumElems; ++i) {
3598    if (MaskVec[i] > (int)NumElems) {
3599      MaskVec[i] = NumElems;
3600      Changed = true;
3601    }
3602  }
3603  if (Changed)
3604    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3605                                SVOp->getOperand(1), &MaskVec[0]);
3606  return SDValue(SVOp, 0);
3607}
3608
3609/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3610/// operation of specified width.
3611static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3612                       SDValue V2) {
3613  unsigned NumElems = VT.getVectorNumElements();
3614  SmallVector<int, 8> Mask;
3615  Mask.push_back(NumElems);
3616  for (unsigned i = 1; i != NumElems; ++i)
3617    Mask.push_back(i);
3618  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3619}
3620
3621/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3622static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3623                          SDValue V2) {
3624  unsigned NumElems = VT.getVectorNumElements();
3625  SmallVector<int, 8> Mask;
3626  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3627    Mask.push_back(i);
3628    Mask.push_back(i + NumElems);
3629  }
3630  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3631}
3632
3633/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3634static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3635                          SDValue V2) {
3636  unsigned NumElems = VT.getVectorNumElements();
3637  unsigned Half = NumElems/2;
3638  SmallVector<int, 8> Mask;
3639  for (unsigned i = 0; i != Half; ++i) {
3640    Mask.push_back(i + Half);
3641    Mask.push_back(i + NumElems + Half);
3642  }
3643  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3644}
3645
3646/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3647static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3648  if (SV->getValueType(0).getVectorNumElements() <= 4)
3649    return SDValue(SV, 0);
3650
3651  EVT PVT = MVT::v4f32;
3652  EVT VT = SV->getValueType(0);
3653  DebugLoc dl = SV->getDebugLoc();
3654  SDValue V1 = SV->getOperand(0);
3655  int NumElems = VT.getVectorNumElements();
3656  int EltNo = SV->getSplatIndex();
3657
3658  // unpack elements to the correct location
3659  while (NumElems > 4) {
3660    if (EltNo < NumElems/2) {
3661      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3662    } else {
3663      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3664      EltNo -= NumElems/2;
3665    }
3666    NumElems >>= 1;
3667  }
3668
3669  // Perform the splat.
3670  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3671  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3672  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3673  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3674}
3675
3676/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3677/// vector of zero or undef vector.  This produces a shuffle where the low
3678/// element of V2 is swizzled into the zero/undef vector, landing at element
3679/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3680static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3681                                             bool isZero, bool HasSSE2,
3682                                             SelectionDAG &DAG) {
3683  EVT VT = V2.getValueType();
3684  SDValue V1 = isZero
3685    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3686  unsigned NumElems = VT.getVectorNumElements();
3687  SmallVector<int, 16> MaskVec;
3688  for (unsigned i = 0; i != NumElems; ++i)
3689    // If this is the insertion idx, put the low elt of V2 here.
3690    MaskVec.push_back(i == Idx ? NumElems : i);
3691  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3692}
3693
3694/// getShuffleScalarElt - Returns the scalar element that will make up the ith
3695/// element of the result of the vector shuffle.
3696SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
3697                            unsigned Depth) {
3698  if (Depth == 6)
3699    return SDValue();  // Limit search depth.
3700
3701  SDValue V = SDValue(N, 0);
3702  EVT VT = V.getValueType();
3703  unsigned Opcode = V.getOpcode();
3704
3705  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3706  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3707    Index = SV->getMaskElt(Index);
3708
3709    if (Index < 0)
3710      return DAG.getUNDEF(VT.getVectorElementType());
3711
3712    int NumElems = VT.getVectorNumElements();
3713    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3714    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
3715  }
3716
3717  // Recurse into target specific vector shuffles to find scalars.
3718  if (isTargetShuffle(Opcode)) {
3719    int NumElems = VT.getVectorNumElements();
3720    SmallVector<unsigned, 16> ShuffleMask;
3721    SDValue ImmN;
3722
3723    switch(Opcode) {
3724    case X86ISD::SHUFPS:
3725    case X86ISD::SHUFPD:
3726      ImmN = N->getOperand(N->getNumOperands()-1);
3727      DecodeSHUFPSMask(NumElems,
3728                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
3729                       ShuffleMask);
3730      break;
3731    case X86ISD::PUNPCKHBW:
3732    case X86ISD::PUNPCKHWD:
3733    case X86ISD::PUNPCKHDQ:
3734    case X86ISD::PUNPCKHQDQ:
3735      DecodePUNPCKHMask(NumElems, ShuffleMask);
3736      break;
3737    case X86ISD::UNPCKHPS:
3738    case X86ISD::UNPCKHPD:
3739      DecodeUNPCKHPMask(NumElems, ShuffleMask);
3740      break;
3741    case X86ISD::PUNPCKLBW:
3742    case X86ISD::PUNPCKLWD:
3743    case X86ISD::PUNPCKLDQ:
3744    case X86ISD::PUNPCKLQDQ:
3745      DecodePUNPCKLMask(NumElems, ShuffleMask);
3746      break;
3747    case X86ISD::UNPCKLPS:
3748    case X86ISD::UNPCKLPD:
3749      DecodeUNPCKLPMask(NumElems, ShuffleMask);
3750      break;
3751    case X86ISD::MOVHLPS:
3752      DecodeMOVHLPSMask(NumElems, ShuffleMask);
3753      break;
3754    case X86ISD::MOVLHPS:
3755      DecodeMOVLHPSMask(NumElems, ShuffleMask);
3756      break;
3757    case X86ISD::PSHUFD:
3758      ImmN = N->getOperand(N->getNumOperands()-1);
3759      DecodePSHUFMask(NumElems,
3760                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
3761                      ShuffleMask);
3762      break;
3763    case X86ISD::PSHUFHW:
3764      ImmN = N->getOperand(N->getNumOperands()-1);
3765      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3766                        ShuffleMask);
3767      break;
3768    case X86ISD::PSHUFLW:
3769      ImmN = N->getOperand(N->getNumOperands()-1);
3770      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3771                        ShuffleMask);
3772      break;
3773    case X86ISD::MOVSS:
3774    case X86ISD::MOVSD: {
3775      // The index 0 always comes from the first element of the second source,
3776      // this is why MOVSS and MOVSD are used in the first place. The other
3777      // elements come from the other positions of the first source vector.
3778      unsigned OpNum = (Index == 0) ? 1 : 0;
3779      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
3780                                 Depth+1);
3781    }
3782    default:
3783      assert("not implemented for target shuffle node");
3784      return SDValue();
3785    }
3786
3787    Index = ShuffleMask[Index];
3788    if (Index < 0)
3789      return DAG.getUNDEF(VT.getVectorElementType());
3790
3791    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
3792    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
3793                               Depth+1);
3794  }
3795
3796  // Actual nodes that may contain scalar elements
3797  if (Opcode == ISD::BIT_CONVERT) {
3798    V = V.getOperand(0);
3799    EVT SrcVT = V.getValueType();
3800    unsigned NumElems = VT.getVectorNumElements();
3801
3802    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
3803      return SDValue();
3804  }
3805
3806  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
3807    return (Index == 0) ? V.getOperand(0)
3808                          : DAG.getUNDEF(VT.getVectorElementType());
3809
3810  if (V.getOpcode() == ISD::BUILD_VECTOR)
3811    return V.getOperand(Index);
3812
3813  return SDValue();
3814}
3815
3816/// getNumOfConsecutiveZeros - Return the number of elements of a vector
3817/// shuffle operation which come from a consecutively from a zero. The
3818/// search can start in two diferent directions, from left or right.
3819static
3820unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
3821                                  bool ZerosFromLeft, SelectionDAG &DAG) {
3822  int i = 0;
3823
3824  while (i < NumElems) {
3825    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
3826    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
3827    if (!(Elt.getNode() &&
3828         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
3829      break;
3830    ++i;
3831  }
3832
3833  return i;
3834}
3835
3836/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
3837/// MaskE correspond consecutively to elements from one of the vector operands,
3838/// starting from its index OpIdx. Also tell OpNum which source vector operand.
3839static
3840bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
3841                              int OpIdx, int NumElems, unsigned &OpNum) {
3842  bool SeenV1 = false;
3843  bool SeenV2 = false;
3844
3845  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
3846    int Idx = SVOp->getMaskElt(i);
3847    // Ignore undef indicies
3848    if (Idx < 0)
3849      continue;
3850
3851    if (Idx < NumElems)
3852      SeenV1 = true;
3853    else
3854      SeenV2 = true;
3855
3856    // Only accept consecutive elements from the same vector
3857    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
3858      return false;
3859  }
3860
3861  OpNum = SeenV1 ? 0 : 1;
3862  return true;
3863}
3864
3865/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
3866/// logical left shift of a vector.
3867static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3868                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3869  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3870  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3871              false /* check zeros from right */, DAG);
3872  unsigned OpSrc;
3873
3874  if (!NumZeros)
3875    return false;
3876
3877  // Considering the elements in the mask that are not consecutive zeros,
3878  // check if they consecutively come from only one of the source vectors.
3879  //
3880  //               V1 = {X, A, B, C}     0
3881  //                         \  \  \    /
3882  //   vector_shuffle V1, V2 <1, 2, 3, X>
3883  //
3884  if (!isShuffleMaskConsecutive(SVOp,
3885            0,                   // Mask Start Index
3886            NumElems-NumZeros-1, // Mask End Index
3887            NumZeros,            // Where to start looking in the src vector
3888            NumElems,            // Number of elements in vector
3889            OpSrc))              // Which source operand ?
3890    return false;
3891
3892  isLeft = false;
3893  ShAmt = NumZeros;
3894  ShVal = SVOp->getOperand(OpSrc);
3895  return true;
3896}
3897
3898/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
3899/// logical left shift of a vector.
3900static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3901                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3902  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3903  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3904              true /* check zeros from left */, DAG);
3905  unsigned OpSrc;
3906
3907  if (!NumZeros)
3908    return false;
3909
3910  // Considering the elements in the mask that are not consecutive zeros,
3911  // check if they consecutively come from only one of the source vectors.
3912  //
3913  //                           0    { A, B, X, X } = V2
3914  //                          / \    /  /
3915  //   vector_shuffle V1, V2 <X, X, 4, 5>
3916  //
3917  if (!isShuffleMaskConsecutive(SVOp,
3918            NumZeros,     // Mask Start Index
3919            NumElems-1,   // Mask End Index
3920            0,            // Where to start looking in the src vector
3921            NumElems,     // Number of elements in vector
3922            OpSrc))       // Which source operand ?
3923    return false;
3924
3925  isLeft = true;
3926  ShAmt = NumZeros;
3927  ShVal = SVOp->getOperand(OpSrc);
3928  return true;
3929}
3930
3931/// isVectorShift - Returns true if the shuffle can be implemented as a
3932/// logical left or right shift of a vector.
3933static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3934                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3935  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
3936      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
3937    return true;
3938
3939  return false;
3940}
3941
3942/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3943///
3944static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3945                                       unsigned NumNonZero, unsigned NumZero,
3946                                       SelectionDAG &DAG,
3947                                       const TargetLowering &TLI) {
3948  if (NumNonZero > 8)
3949    return SDValue();
3950
3951  DebugLoc dl = Op.getDebugLoc();
3952  SDValue V(0, 0);
3953  bool First = true;
3954  for (unsigned i = 0; i < 16; ++i) {
3955    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3956    if (ThisIsNonZero && First) {
3957      if (NumZero)
3958        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3959      else
3960        V = DAG.getUNDEF(MVT::v8i16);
3961      First = false;
3962    }
3963
3964    if ((i & 1) != 0) {
3965      SDValue ThisElt(0, 0), LastElt(0, 0);
3966      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3967      if (LastIsNonZero) {
3968        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3969                              MVT::i16, Op.getOperand(i-1));
3970      }
3971      if (ThisIsNonZero) {
3972        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3973        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3974                              ThisElt, DAG.getConstant(8, MVT::i8));
3975        if (LastIsNonZero)
3976          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3977      } else
3978        ThisElt = LastElt;
3979
3980      if (ThisElt.getNode())
3981        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3982                        DAG.getIntPtrConstant(i/2));
3983    }
3984  }
3985
3986  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3987}
3988
3989/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3990///
3991static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3992                                     unsigned NumNonZero, unsigned NumZero,
3993                                     SelectionDAG &DAG,
3994                                     const TargetLowering &TLI) {
3995  if (NumNonZero > 4)
3996    return SDValue();
3997
3998  DebugLoc dl = Op.getDebugLoc();
3999  SDValue V(0, 0);
4000  bool First = true;
4001  for (unsigned i = 0; i < 8; ++i) {
4002    bool isNonZero = (NonZeros & (1 << i)) != 0;
4003    if (isNonZero) {
4004      if (First) {
4005        if (NumZero)
4006          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4007        else
4008          V = DAG.getUNDEF(MVT::v8i16);
4009        First = false;
4010      }
4011      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4012                      MVT::v8i16, V, Op.getOperand(i),
4013                      DAG.getIntPtrConstant(i));
4014    }
4015  }
4016
4017  return V;
4018}
4019
4020/// getVShift - Return a vector logical shift node.
4021///
4022static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4023                         unsigned NumBits, SelectionDAG &DAG,
4024                         const TargetLowering &TLI, DebugLoc dl) {
4025  bool isMMX = VT.getSizeInBits() == 64;
4026  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
4027  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4028  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
4029  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4030                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4031                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
4032}
4033
4034SDValue
4035X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4036                                          SelectionDAG &DAG) const {
4037
4038  // Check if the scalar load can be widened into a vector load. And if
4039  // the address is "base + cst" see if the cst can be "absorbed" into
4040  // the shuffle mask.
4041  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4042    SDValue Ptr = LD->getBasePtr();
4043    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4044      return SDValue();
4045    EVT PVT = LD->getValueType(0);
4046    if (PVT != MVT::i32 && PVT != MVT::f32)
4047      return SDValue();
4048
4049    int FI = -1;
4050    int64_t Offset = 0;
4051    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4052      FI = FINode->getIndex();
4053      Offset = 0;
4054    } else if (Ptr.getOpcode() == ISD::ADD &&
4055               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
4056               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4057      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4058      Offset = Ptr.getConstantOperandVal(1);
4059      Ptr = Ptr.getOperand(0);
4060    } else {
4061      return SDValue();
4062    }
4063
4064    SDValue Chain = LD->getChain();
4065    // Make sure the stack object alignment is at least 16.
4066    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4067    if (DAG.InferPtrAlignment(Ptr) < 16) {
4068      if (MFI->isFixedObjectIndex(FI)) {
4069        // Can't change the alignment. FIXME: It's possible to compute
4070        // the exact stack offset and reference FI + adjust offset instead.
4071        // If someone *really* cares about this. That's the way to implement it.
4072        return SDValue();
4073      } else {
4074        MFI->setObjectAlignment(FI, 16);
4075      }
4076    }
4077
4078    // (Offset % 16) must be multiple of 4. Then address is then
4079    // Ptr + (Offset & ~15).
4080    if (Offset < 0)
4081      return SDValue();
4082    if ((Offset % 16) & 3)
4083      return SDValue();
4084    int64_t StartOffset = Offset & ~15;
4085    if (StartOffset)
4086      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4087                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4088
4089    int EltNo = (Offset - StartOffset) >> 2;
4090    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4091    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4092    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
4093                             false, false, 0);
4094    // Canonicalize it to a v4i32 shuffle.
4095    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
4096    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4097                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4098                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
4099  }
4100
4101  return SDValue();
4102}
4103
4104/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4105/// vector of type 'VT', see if the elements can be replaced by a single large
4106/// load which has the same value as a build_vector whose operands are 'elts'.
4107///
4108/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4109///
4110/// FIXME: we'd also like to handle the case where the last elements are zero
4111/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4112/// There's even a handy isZeroNode for that purpose.
4113static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4114                                        DebugLoc &dl, SelectionDAG &DAG) {
4115  EVT EltVT = VT.getVectorElementType();
4116  unsigned NumElems = Elts.size();
4117
4118  LoadSDNode *LDBase = NULL;
4119  unsigned LastLoadedElt = -1U;
4120
4121  // For each element in the initializer, see if we've found a load or an undef.
4122  // If we don't find an initial load element, or later load elements are
4123  // non-consecutive, bail out.
4124  for (unsigned i = 0; i < NumElems; ++i) {
4125    SDValue Elt = Elts[i];
4126
4127    if (!Elt.getNode() ||
4128        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4129      return SDValue();
4130    if (!LDBase) {
4131      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4132        return SDValue();
4133      LDBase = cast<LoadSDNode>(Elt.getNode());
4134      LastLoadedElt = i;
4135      continue;
4136    }
4137    if (Elt.getOpcode() == ISD::UNDEF)
4138      continue;
4139
4140    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4141    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4142      return SDValue();
4143    LastLoadedElt = i;
4144  }
4145
4146  // If we have found an entire vector of loads and undefs, then return a large
4147  // load of the entire vector width starting at the base pointer.  If we found
4148  // consecutive loads for the low half, generate a vzext_load node.
4149  if (LastLoadedElt == NumElems - 1) {
4150    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4151      return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
4152                         LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
4153                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4154    return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
4155                       LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
4156                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4157                       LDBase->getAlignment());
4158  } else if (NumElems == 4 && LastLoadedElt == 1) {
4159    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4160    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4161    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
4162    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
4163  }
4164  return SDValue();
4165}
4166
4167SDValue
4168X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4169  DebugLoc dl = Op.getDebugLoc();
4170  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4171  // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4172  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4173  // is present, so AllOnes is ignored.
4174  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4175      (Op.getValueType().getSizeInBits() != 256 &&
4176       ISD::isBuildVectorAllOnes(Op.getNode()))) {
4177    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
4178    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4179    // eliminated on x86-32 hosts.
4180    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
4181      return Op;
4182
4183    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4184      return getOnesVector(Op.getValueType(), DAG, dl);
4185    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4186  }
4187
4188  EVT VT = Op.getValueType();
4189  EVT ExtVT = VT.getVectorElementType();
4190  unsigned EVTBits = ExtVT.getSizeInBits();
4191
4192  unsigned NumElems = Op.getNumOperands();
4193  unsigned NumZero  = 0;
4194  unsigned NumNonZero = 0;
4195  unsigned NonZeros = 0;
4196  bool IsAllConstants = true;
4197  SmallSet<SDValue, 8> Values;
4198  for (unsigned i = 0; i < NumElems; ++i) {
4199    SDValue Elt = Op.getOperand(i);
4200    if (Elt.getOpcode() == ISD::UNDEF)
4201      continue;
4202    Values.insert(Elt);
4203    if (Elt.getOpcode() != ISD::Constant &&
4204        Elt.getOpcode() != ISD::ConstantFP)
4205      IsAllConstants = false;
4206    if (X86::isZeroNode(Elt))
4207      NumZero++;
4208    else {
4209      NonZeros |= (1 << i);
4210      NumNonZero++;
4211    }
4212  }
4213
4214  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4215  if (NumNonZero == 0)
4216    return DAG.getUNDEF(VT);
4217
4218  // Special case for single non-zero, non-undef, element.
4219  if (NumNonZero == 1) {
4220    unsigned Idx = CountTrailingZeros_32(NonZeros);
4221    SDValue Item = Op.getOperand(Idx);
4222
4223    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4224    // the value are obviously zero, truncate the value to i32 and do the
4225    // insertion that way.  Only do this if the value is non-constant or if the
4226    // value is a constant being inserted into element 0.  It is cheaper to do
4227    // a constant pool load than it is to do a movd + shuffle.
4228    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4229        (!IsAllConstants || Idx == 0)) {
4230      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4231        // Handle MMX and SSE both.
4232        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
4233        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
4234
4235        // Truncate the value (which may itself be a constant) to i32, and
4236        // convert it to a vector with movd (S2V+shuffle to zero extend).
4237        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4238        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4239        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4240                                           Subtarget->hasSSE2(), DAG);
4241
4242        // Now we have our 32-bit value zero extended in the low element of
4243        // a vector.  If Idx != 0, swizzle it into place.
4244        if (Idx != 0) {
4245          SmallVector<int, 4> Mask;
4246          Mask.push_back(Idx);
4247          for (unsigned i = 1; i != VecElts; ++i)
4248            Mask.push_back(i);
4249          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4250                                      DAG.getUNDEF(Item.getValueType()),
4251                                      &Mask[0]);
4252        }
4253        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
4254      }
4255    }
4256
4257    // If we have a constant or non-constant insertion into the low element of
4258    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4259    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4260    // depending on what the source datatype is.
4261    if (Idx == 0) {
4262      if (NumZero == 0) {
4263        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4264      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4265          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4266        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4267        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4268        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4269                                           DAG);
4270      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4271        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4272        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
4273        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4274        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4275                                           Subtarget->hasSSE2(), DAG);
4276        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
4277      }
4278    }
4279
4280    // Is it a vector logical left shift?
4281    if (NumElems == 2 && Idx == 1 &&
4282        X86::isZeroNode(Op.getOperand(0)) &&
4283        !X86::isZeroNode(Op.getOperand(1))) {
4284      unsigned NumBits = VT.getSizeInBits();
4285      return getVShift(true, VT,
4286                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4287                                   VT, Op.getOperand(1)),
4288                       NumBits/2, DAG, *this, dl);
4289    }
4290
4291    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4292      return SDValue();
4293
4294    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4295    // is a non-constant being inserted into an element other than the low one,
4296    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4297    // movd/movss) to move this into the low element, then shuffle it into
4298    // place.
4299    if (EVTBits == 32) {
4300      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4301
4302      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4303      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4304                                         Subtarget->hasSSE2(), DAG);
4305      SmallVector<int, 8> MaskVec;
4306      for (unsigned i = 0; i < NumElems; i++)
4307        MaskVec.push_back(i == Idx ? 0 : 1);
4308      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4309    }
4310  }
4311
4312  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4313  if (Values.size() == 1) {
4314    if (EVTBits == 32) {
4315      // Instead of a shuffle like this:
4316      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4317      // Check if it's possible to issue this instead.
4318      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4319      unsigned Idx = CountTrailingZeros_32(NonZeros);
4320      SDValue Item = Op.getOperand(Idx);
4321      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4322        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4323    }
4324    return SDValue();
4325  }
4326
4327  // A vector full of immediates; various special cases are already
4328  // handled, so this is best done with a single constant-pool load.
4329  if (IsAllConstants)
4330    return SDValue();
4331
4332  // Let legalizer expand 2-wide build_vectors.
4333  if (EVTBits == 64) {
4334    if (NumNonZero == 1) {
4335      // One half is zero or undef.
4336      unsigned Idx = CountTrailingZeros_32(NonZeros);
4337      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4338                                 Op.getOperand(Idx));
4339      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4340                                         Subtarget->hasSSE2(), DAG);
4341    }
4342    return SDValue();
4343  }
4344
4345  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4346  if (EVTBits == 8 && NumElems == 16) {
4347    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4348                                        *this);
4349    if (V.getNode()) return V;
4350  }
4351
4352  if (EVTBits == 16 && NumElems == 8) {
4353    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4354                                      *this);
4355    if (V.getNode()) return V;
4356  }
4357
4358  // If element VT is == 32 bits, turn it into a number of shuffles.
4359  SmallVector<SDValue, 8> V;
4360  V.resize(NumElems);
4361  if (NumElems == 4 && NumZero > 0) {
4362    for (unsigned i = 0; i < 4; ++i) {
4363      bool isZero = !(NonZeros & (1 << i));
4364      if (isZero)
4365        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4366      else
4367        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4368    }
4369
4370    for (unsigned i = 0; i < 2; ++i) {
4371      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4372        default: break;
4373        case 0:
4374          V[i] = V[i*2];  // Must be a zero vector.
4375          break;
4376        case 1:
4377          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4378          break;
4379        case 2:
4380          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4381          break;
4382        case 3:
4383          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4384          break;
4385      }
4386    }
4387
4388    SmallVector<int, 8> MaskVec;
4389    bool Reverse = (NonZeros & 0x3) == 2;
4390    for (unsigned i = 0; i < 2; ++i)
4391      MaskVec.push_back(Reverse ? 1-i : i);
4392    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4393    for (unsigned i = 0; i < 2; ++i)
4394      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4395    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4396  }
4397
4398  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4399    // Check for a build vector of consecutive loads.
4400    for (unsigned i = 0; i < NumElems; ++i)
4401      V[i] = Op.getOperand(i);
4402
4403    // Check for elements which are consecutive loads.
4404    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4405    if (LD.getNode())
4406      return LD;
4407
4408    // For SSE 4.1, use insertps to put the high elements into the low element.
4409    if (getSubtarget()->hasSSE41()) {
4410      SDValue Result;
4411      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4412        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4413      else
4414        Result = DAG.getUNDEF(VT);
4415
4416      for (unsigned i = 1; i < NumElems; ++i) {
4417        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4418        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4419                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4420      }
4421      return Result;
4422    }
4423
4424    // Otherwise, expand into a number of unpckl*, start by extending each of
4425    // our (non-undef) elements to the full vector width with the element in the
4426    // bottom slot of the vector (which generates no code for SSE).
4427    for (unsigned i = 0; i < NumElems; ++i) {
4428      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4429        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4430      else
4431        V[i] = DAG.getUNDEF(VT);
4432    }
4433
4434    // Next, we iteratively mix elements, e.g. for v4f32:
4435    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4436    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4437    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4438    unsigned EltStride = NumElems >> 1;
4439    while (EltStride != 0) {
4440      for (unsigned i = 0; i < EltStride; ++i) {
4441        // If V[i+EltStride] is undef and this is the first round of mixing,
4442        // then it is safe to just drop this shuffle: V[i] is already in the
4443        // right place, the one element (since it's the first round) being
4444        // inserted as undef can be dropped.  This isn't safe for successive
4445        // rounds because they will permute elements within both vectors.
4446        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4447            EltStride == NumElems/2)
4448          continue;
4449
4450        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4451      }
4452      EltStride >>= 1;
4453    }
4454    return V[0];
4455  }
4456  return SDValue();
4457}
4458
4459SDValue
4460X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4461  // We support concatenate two MMX registers and place them in a MMX
4462  // register.  This is better than doing a stack convert.
4463  DebugLoc dl = Op.getDebugLoc();
4464  EVT ResVT = Op.getValueType();
4465  assert(Op.getNumOperands() == 2);
4466  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4467         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4468  int Mask[2];
4469  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
4470  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4471  InVec = Op.getOperand(1);
4472  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4473    unsigned NumElts = ResVT.getVectorNumElements();
4474    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4475    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4476                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4477  } else {
4478    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
4479    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4480    Mask[0] = 0; Mask[1] = 2;
4481    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4482  }
4483  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4484}
4485
4486// v8i16 shuffles - Prefer shuffles in the following order:
4487// 1. [all]   pshuflw, pshufhw, optional move
4488// 2. [ssse3] 1 x pshufb
4489// 3. [ssse3] 2 x pshufb + 1 x por
4490// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4491SDValue
4492X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4493                                            SelectionDAG &DAG) const {
4494  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4495  SDValue V1 = SVOp->getOperand(0);
4496  SDValue V2 = SVOp->getOperand(1);
4497  DebugLoc dl = SVOp->getDebugLoc();
4498  SmallVector<int, 8> MaskVals;
4499
4500  // Determine if more than 1 of the words in each of the low and high quadwords
4501  // of the result come from the same quadword of one of the two inputs.  Undef
4502  // mask values count as coming from any quadword, for better codegen.
4503  SmallVector<unsigned, 4> LoQuad(4);
4504  SmallVector<unsigned, 4> HiQuad(4);
4505  BitVector InputQuads(4);
4506  for (unsigned i = 0; i < 8; ++i) {
4507    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4508    int EltIdx = SVOp->getMaskElt(i);
4509    MaskVals.push_back(EltIdx);
4510    if (EltIdx < 0) {
4511      ++Quad[0];
4512      ++Quad[1];
4513      ++Quad[2];
4514      ++Quad[3];
4515      continue;
4516    }
4517    ++Quad[EltIdx / 4];
4518    InputQuads.set(EltIdx / 4);
4519  }
4520
4521  int BestLoQuad = -1;
4522  unsigned MaxQuad = 1;
4523  for (unsigned i = 0; i < 4; ++i) {
4524    if (LoQuad[i] > MaxQuad) {
4525      BestLoQuad = i;
4526      MaxQuad = LoQuad[i];
4527    }
4528  }
4529
4530  int BestHiQuad = -1;
4531  MaxQuad = 1;
4532  for (unsigned i = 0; i < 4; ++i) {
4533    if (HiQuad[i] > MaxQuad) {
4534      BestHiQuad = i;
4535      MaxQuad = HiQuad[i];
4536    }
4537  }
4538
4539  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4540  // of the two input vectors, shuffle them into one input vector so only a
4541  // single pshufb instruction is necessary. If There are more than 2 input
4542  // quads, disable the next transformation since it does not help SSSE3.
4543  bool V1Used = InputQuads[0] || InputQuads[1];
4544  bool V2Used = InputQuads[2] || InputQuads[3];
4545  if (Subtarget->hasSSSE3()) {
4546    if (InputQuads.count() == 2 && V1Used && V2Used) {
4547      BestLoQuad = InputQuads.find_first();
4548      BestHiQuad = InputQuads.find_next(BestLoQuad);
4549    }
4550    if (InputQuads.count() > 2) {
4551      BestLoQuad = -1;
4552      BestHiQuad = -1;
4553    }
4554  }
4555
4556  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4557  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4558  // words from all 4 input quadwords.
4559  SDValue NewV;
4560  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4561    SmallVector<int, 8> MaskV;
4562    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4563    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4564    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4565                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4566                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4567    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4568
4569    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4570    // source words for the shuffle, to aid later transformations.
4571    bool AllWordsInNewV = true;
4572    bool InOrder[2] = { true, true };
4573    for (unsigned i = 0; i != 8; ++i) {
4574      int idx = MaskVals[i];
4575      if (idx != (int)i)
4576        InOrder[i/4] = false;
4577      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4578        continue;
4579      AllWordsInNewV = false;
4580      break;
4581    }
4582
4583    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4584    if (AllWordsInNewV) {
4585      for (int i = 0; i != 8; ++i) {
4586        int idx = MaskVals[i];
4587        if (idx < 0)
4588          continue;
4589        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4590        if ((idx != i) && idx < 4)
4591          pshufhw = false;
4592        if ((idx != i) && idx > 3)
4593          pshuflw = false;
4594      }
4595      V1 = NewV;
4596      V2Used = false;
4597      BestLoQuad = 0;
4598      BestHiQuad = 1;
4599    }
4600
4601    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4602    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4603    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4604      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4605      unsigned TargetMask = 0;
4606      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4607                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4608      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4609                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4610      V1 = NewV.getOperand(0);
4611      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4612    }
4613  }
4614
4615  // If we have SSSE3, and all words of the result are from 1 input vector,
4616  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4617  // is present, fall back to case 4.
4618  if (Subtarget->hasSSSE3()) {
4619    SmallVector<SDValue,16> pshufbMask;
4620
4621    // If we have elements from both input vectors, set the high bit of the
4622    // shuffle mask element to zero out elements that come from V2 in the V1
4623    // mask, and elements that come from V1 in the V2 mask, so that the two
4624    // results can be OR'd together.
4625    bool TwoInputs = V1Used && V2Used;
4626    for (unsigned i = 0; i != 8; ++i) {
4627      int EltIdx = MaskVals[i] * 2;
4628      if (TwoInputs && (EltIdx >= 16)) {
4629        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4630        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4631        continue;
4632      }
4633      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4634      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4635    }
4636    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4637    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4638                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4639                                 MVT::v16i8, &pshufbMask[0], 16));
4640    if (!TwoInputs)
4641      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4642
4643    // Calculate the shuffle mask for the second input, shuffle it, and
4644    // OR it with the first shuffled input.
4645    pshufbMask.clear();
4646    for (unsigned i = 0; i != 8; ++i) {
4647      int EltIdx = MaskVals[i] * 2;
4648      if (EltIdx < 16) {
4649        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4650        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4651        continue;
4652      }
4653      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4654      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4655    }
4656    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4657    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4658                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4659                                 MVT::v16i8, &pshufbMask[0], 16));
4660    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4661    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4662  }
4663
4664  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4665  // and update MaskVals with new element order.
4666  BitVector InOrder(8);
4667  if (BestLoQuad >= 0) {
4668    SmallVector<int, 8> MaskV;
4669    for (int i = 0; i != 4; ++i) {
4670      int idx = MaskVals[i];
4671      if (idx < 0) {
4672        MaskV.push_back(-1);
4673        InOrder.set(i);
4674      } else if ((idx / 4) == BestLoQuad) {
4675        MaskV.push_back(idx & 3);
4676        InOrder.set(i);
4677      } else {
4678        MaskV.push_back(-1);
4679      }
4680    }
4681    for (unsigned i = 4; i != 8; ++i)
4682      MaskV.push_back(i);
4683    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4684                                &MaskV[0]);
4685
4686    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4687      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4688                               NewV.getOperand(0),
4689                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4690                               DAG);
4691  }
4692
4693  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4694  // and update MaskVals with the new element order.
4695  if (BestHiQuad >= 0) {
4696    SmallVector<int, 8> MaskV;
4697    for (unsigned i = 0; i != 4; ++i)
4698      MaskV.push_back(i);
4699    for (unsigned i = 4; i != 8; ++i) {
4700      int idx = MaskVals[i];
4701      if (idx < 0) {
4702        MaskV.push_back(-1);
4703        InOrder.set(i);
4704      } else if ((idx / 4) == BestHiQuad) {
4705        MaskV.push_back((idx & 3) + 4);
4706        InOrder.set(i);
4707      } else {
4708        MaskV.push_back(-1);
4709      }
4710    }
4711    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4712                                &MaskV[0]);
4713
4714    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4715      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4716                              NewV.getOperand(0),
4717                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4718                              DAG);
4719  }
4720
4721  // In case BestHi & BestLo were both -1, which means each quadword has a word
4722  // from each of the four input quadwords, calculate the InOrder bitvector now
4723  // before falling through to the insert/extract cleanup.
4724  if (BestLoQuad == -1 && BestHiQuad == -1) {
4725    NewV = V1;
4726    for (int i = 0; i != 8; ++i)
4727      if (MaskVals[i] < 0 || MaskVals[i] == i)
4728        InOrder.set(i);
4729  }
4730
4731  // The other elements are put in the right place using pextrw and pinsrw.
4732  for (unsigned i = 0; i != 8; ++i) {
4733    if (InOrder[i])
4734      continue;
4735    int EltIdx = MaskVals[i];
4736    if (EltIdx < 0)
4737      continue;
4738    SDValue ExtOp = (EltIdx < 8)
4739    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4740                  DAG.getIntPtrConstant(EltIdx))
4741    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4742                  DAG.getIntPtrConstant(EltIdx - 8));
4743    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4744                       DAG.getIntPtrConstant(i));
4745  }
4746  return NewV;
4747}
4748
4749// v16i8 shuffles - Prefer shuffles in the following order:
4750// 1. [ssse3] 1 x pshufb
4751// 2. [ssse3] 2 x pshufb + 1 x por
4752// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4753static
4754SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4755                                 SelectionDAG &DAG,
4756                                 const X86TargetLowering &TLI) {
4757  SDValue V1 = SVOp->getOperand(0);
4758  SDValue V2 = SVOp->getOperand(1);
4759  DebugLoc dl = SVOp->getDebugLoc();
4760  SmallVector<int, 16> MaskVals;
4761  SVOp->getMask(MaskVals);
4762
4763  // If we have SSSE3, case 1 is generated when all result bytes come from
4764  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4765  // present, fall back to case 3.
4766  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4767  bool V1Only = true;
4768  bool V2Only = true;
4769  for (unsigned i = 0; i < 16; ++i) {
4770    int EltIdx = MaskVals[i];
4771    if (EltIdx < 0)
4772      continue;
4773    if (EltIdx < 16)
4774      V2Only = false;
4775    else
4776      V1Only = false;
4777  }
4778
4779  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4780  if (TLI.getSubtarget()->hasSSSE3()) {
4781    SmallVector<SDValue,16> pshufbMask;
4782
4783    // If all result elements are from one input vector, then only translate
4784    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4785    //
4786    // Otherwise, we have elements from both input vectors, and must zero out
4787    // elements that come from V2 in the first mask, and V1 in the second mask
4788    // so that we can OR them together.
4789    bool TwoInputs = !(V1Only || V2Only);
4790    for (unsigned i = 0; i != 16; ++i) {
4791      int EltIdx = MaskVals[i];
4792      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4793        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4794        continue;
4795      }
4796      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4797    }
4798    // If all the elements are from V2, assign it to V1 and return after
4799    // building the first pshufb.
4800    if (V2Only)
4801      V1 = V2;
4802    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4803                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4804                                 MVT::v16i8, &pshufbMask[0], 16));
4805    if (!TwoInputs)
4806      return V1;
4807
4808    // Calculate the shuffle mask for the second input, shuffle it, and
4809    // OR it with the first shuffled input.
4810    pshufbMask.clear();
4811    for (unsigned i = 0; i != 16; ++i) {
4812      int EltIdx = MaskVals[i];
4813      if (EltIdx < 16) {
4814        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4815        continue;
4816      }
4817      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4818    }
4819    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4820                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4821                                 MVT::v16i8, &pshufbMask[0], 16));
4822    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4823  }
4824
4825  // No SSSE3 - Calculate in place words and then fix all out of place words
4826  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4827  // the 16 different words that comprise the two doublequadword input vectors.
4828  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4829  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4830  SDValue NewV = V2Only ? V2 : V1;
4831  for (int i = 0; i != 8; ++i) {
4832    int Elt0 = MaskVals[i*2];
4833    int Elt1 = MaskVals[i*2+1];
4834
4835    // This word of the result is all undef, skip it.
4836    if (Elt0 < 0 && Elt1 < 0)
4837      continue;
4838
4839    // This word of the result is already in the correct place, skip it.
4840    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4841      continue;
4842    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4843      continue;
4844
4845    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4846    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4847    SDValue InsElt;
4848
4849    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4850    // using a single extract together, load it and store it.
4851    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4852      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4853                           DAG.getIntPtrConstant(Elt1 / 2));
4854      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4855                        DAG.getIntPtrConstant(i));
4856      continue;
4857    }
4858
4859    // If Elt1 is defined, extract it from the appropriate source.  If the
4860    // source byte is not also odd, shift the extracted word left 8 bits
4861    // otherwise clear the bottom 8 bits if we need to do an or.
4862    if (Elt1 >= 0) {
4863      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4864                           DAG.getIntPtrConstant(Elt1 / 2));
4865      if ((Elt1 & 1) == 0)
4866        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4867                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4868      else if (Elt0 >= 0)
4869        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4870                             DAG.getConstant(0xFF00, MVT::i16));
4871    }
4872    // If Elt0 is defined, extract it from the appropriate source.  If the
4873    // source byte is not also even, shift the extracted word right 8 bits. If
4874    // Elt1 was also defined, OR the extracted values together before
4875    // inserting them in the result.
4876    if (Elt0 >= 0) {
4877      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4878                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4879      if ((Elt0 & 1) != 0)
4880        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4881                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4882      else if (Elt1 >= 0)
4883        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4884                             DAG.getConstant(0x00FF, MVT::i16));
4885      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4886                         : InsElt0;
4887    }
4888    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4889                       DAG.getIntPtrConstant(i));
4890  }
4891  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4892}
4893
4894/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4895/// ones, or rewriting v4i32 / v2i32 as 2 wide ones if possible. This can be
4896/// done when every pair / quad of shuffle mask elements point to elements in
4897/// the right sequence. e.g.
4898/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4899static
4900SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4901                                 SelectionDAG &DAG,
4902                                 const TargetLowering &TLI, DebugLoc dl) {
4903  EVT VT = SVOp->getValueType(0);
4904  SDValue V1 = SVOp->getOperand(0);
4905  SDValue V2 = SVOp->getOperand(1);
4906  unsigned NumElems = VT.getVectorNumElements();
4907  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4908  EVT MaskVT = (NewWidth == 4) ? MVT::v4i16 : MVT::v2i32;
4909  EVT NewVT = MaskVT;
4910  switch (VT.getSimpleVT().SimpleTy) {
4911  default: assert(false && "Unexpected!");
4912  case MVT::v4f32: NewVT = MVT::v2f64; break;
4913  case MVT::v4i32: NewVT = MVT::v2i64; break;
4914  case MVT::v8i16: NewVT = MVT::v4i32; break;
4915  case MVT::v16i8: NewVT = MVT::v4i32; break;
4916  }
4917
4918  if (NewWidth == 2) {
4919    if (VT.isInteger())
4920      NewVT = MVT::v2i64;
4921    else
4922      NewVT = MVT::v2f64;
4923  }
4924  int Scale = NumElems / NewWidth;
4925  SmallVector<int, 8> MaskVec;
4926  for (unsigned i = 0; i < NumElems; i += Scale) {
4927    int StartIdx = -1;
4928    for (int j = 0; j < Scale; ++j) {
4929      int EltIdx = SVOp->getMaskElt(i+j);
4930      if (EltIdx < 0)
4931        continue;
4932      if (StartIdx == -1)
4933        StartIdx = EltIdx - (EltIdx % Scale);
4934      if (EltIdx != StartIdx + j)
4935        return SDValue();
4936    }
4937    if (StartIdx == -1)
4938      MaskVec.push_back(-1);
4939    else
4940      MaskVec.push_back(StartIdx / Scale);
4941  }
4942
4943  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4944  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4945  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4946}
4947
4948/// getVZextMovL - Return a zero-extending vector move low node.
4949///
4950static SDValue getVZextMovL(EVT VT, EVT OpVT,
4951                            SDValue SrcOp, SelectionDAG &DAG,
4952                            const X86Subtarget *Subtarget, DebugLoc dl) {
4953  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4954    LoadSDNode *LD = NULL;
4955    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4956      LD = dyn_cast<LoadSDNode>(SrcOp);
4957    if (!LD) {
4958      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4959      // instead.
4960      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4961      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4962          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4963          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4964          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4965        // PR2108
4966        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4967        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4968                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4969                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4970                                                   OpVT,
4971                                                   SrcOp.getOperand(0)
4972                                                          .getOperand(0))));
4973      }
4974    }
4975  }
4976
4977  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4978                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4979                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4980                                             OpVT, SrcOp)));
4981}
4982
4983/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4984/// shuffles.
4985static SDValue
4986LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4987  SDValue V1 = SVOp->getOperand(0);
4988  SDValue V2 = SVOp->getOperand(1);
4989  DebugLoc dl = SVOp->getDebugLoc();
4990  EVT VT = SVOp->getValueType(0);
4991
4992  SmallVector<std::pair<int, int>, 8> Locs;
4993  Locs.resize(4);
4994  SmallVector<int, 8> Mask1(4U, -1);
4995  SmallVector<int, 8> PermMask;
4996  SVOp->getMask(PermMask);
4997
4998  unsigned NumHi = 0;
4999  unsigned NumLo = 0;
5000  for (unsigned i = 0; i != 4; ++i) {
5001    int Idx = PermMask[i];
5002    if (Idx < 0) {
5003      Locs[i] = std::make_pair(-1, -1);
5004    } else {
5005      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5006      if (Idx < 4) {
5007        Locs[i] = std::make_pair(0, NumLo);
5008        Mask1[NumLo] = Idx;
5009        NumLo++;
5010      } else {
5011        Locs[i] = std::make_pair(1, NumHi);
5012        if (2+NumHi < 4)
5013          Mask1[2+NumHi] = Idx;
5014        NumHi++;
5015      }
5016    }
5017  }
5018
5019  if (NumLo <= 2 && NumHi <= 2) {
5020    // If no more than two elements come from either vector. This can be
5021    // implemented with two shuffles. First shuffle gather the elements.
5022    // The second shuffle, which takes the first shuffle as both of its
5023    // vector operands, put the elements into the right order.
5024    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5025
5026    SmallVector<int, 8> Mask2(4U, -1);
5027
5028    for (unsigned i = 0; i != 4; ++i) {
5029      if (Locs[i].first == -1)
5030        continue;
5031      else {
5032        unsigned Idx = (i < 2) ? 0 : 4;
5033        Idx += Locs[i].first * 2 + Locs[i].second;
5034        Mask2[i] = Idx;
5035      }
5036    }
5037
5038    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5039  } else if (NumLo == 3 || NumHi == 3) {
5040    // Otherwise, we must have three elements from one vector, call it X, and
5041    // one element from the other, call it Y.  First, use a shufps to build an
5042    // intermediate vector with the one element from Y and the element from X
5043    // that will be in the same half in the final destination (the indexes don't
5044    // matter). Then, use a shufps to build the final vector, taking the half
5045    // containing the element from Y from the intermediate, and the other half
5046    // from X.
5047    if (NumHi == 3) {
5048      // Normalize it so the 3 elements come from V1.
5049      CommuteVectorShuffleMask(PermMask, VT);
5050      std::swap(V1, V2);
5051    }
5052
5053    // Find the element from V2.
5054    unsigned HiIndex;
5055    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5056      int Val = PermMask[HiIndex];
5057      if (Val < 0)
5058        continue;
5059      if (Val >= 4)
5060        break;
5061    }
5062
5063    Mask1[0] = PermMask[HiIndex];
5064    Mask1[1] = -1;
5065    Mask1[2] = PermMask[HiIndex^1];
5066    Mask1[3] = -1;
5067    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5068
5069    if (HiIndex >= 2) {
5070      Mask1[0] = PermMask[0];
5071      Mask1[1] = PermMask[1];
5072      Mask1[2] = HiIndex & 1 ? 6 : 4;
5073      Mask1[3] = HiIndex & 1 ? 4 : 6;
5074      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5075    } else {
5076      Mask1[0] = HiIndex & 1 ? 2 : 0;
5077      Mask1[1] = HiIndex & 1 ? 0 : 2;
5078      Mask1[2] = PermMask[2];
5079      Mask1[3] = PermMask[3];
5080      if (Mask1[2] >= 0)
5081        Mask1[2] += 4;
5082      if (Mask1[3] >= 0)
5083        Mask1[3] += 4;
5084      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5085    }
5086  }
5087
5088  // Break it into (shuffle shuffle_hi, shuffle_lo).
5089  Locs.clear();
5090  SmallVector<int,8> LoMask(4U, -1);
5091  SmallVector<int,8> HiMask(4U, -1);
5092
5093  SmallVector<int,8> *MaskPtr = &LoMask;
5094  unsigned MaskIdx = 0;
5095  unsigned LoIdx = 0;
5096  unsigned HiIdx = 2;
5097  for (unsigned i = 0; i != 4; ++i) {
5098    if (i == 2) {
5099      MaskPtr = &HiMask;
5100      MaskIdx = 1;
5101      LoIdx = 0;
5102      HiIdx = 2;
5103    }
5104    int Idx = PermMask[i];
5105    if (Idx < 0) {
5106      Locs[i] = std::make_pair(-1, -1);
5107    } else if (Idx < 4) {
5108      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5109      (*MaskPtr)[LoIdx] = Idx;
5110      LoIdx++;
5111    } else {
5112      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5113      (*MaskPtr)[HiIdx] = Idx;
5114      HiIdx++;
5115    }
5116  }
5117
5118  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5119  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5120  SmallVector<int, 8> MaskOps;
5121  for (unsigned i = 0; i != 4; ++i) {
5122    if (Locs[i].first == -1) {
5123      MaskOps.push_back(-1);
5124    } else {
5125      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5126      MaskOps.push_back(Idx);
5127    }
5128  }
5129  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5130}
5131
5132static bool MayFoldVectorLoad(SDValue V) {
5133  if (V.hasOneUse() && V.getOpcode() == ISD::BIT_CONVERT)
5134    V = V.getOperand(0);
5135  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5136    V = V.getOperand(0);
5137  if (MayFoldLoad(V))
5138    return true;
5139  return false;
5140}
5141
5142static
5143SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5144                        bool HasSSE2) {
5145  SDValue V1 = Op.getOperand(0);
5146  SDValue V2 = Op.getOperand(1);
5147  EVT VT = Op.getValueType();
5148
5149  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5150
5151  if (HasSSE2 && VT == MVT::v2f64)
5152    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5153
5154  // v4f32 or v4i32
5155  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5156}
5157
5158static
5159SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5160  SDValue V1 = Op.getOperand(0);
5161  SDValue V2 = Op.getOperand(1);
5162  EVT VT = Op.getValueType();
5163
5164  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5165         "unsupported shuffle type");
5166
5167  if (V2.getOpcode() == ISD::UNDEF)
5168    V2 = V1;
5169
5170  // v4i32 or v4f32
5171  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5172}
5173
5174static
5175SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5176  SDValue V1 = Op.getOperand(0);
5177  SDValue V2 = Op.getOperand(1);
5178  EVT VT = Op.getValueType();
5179  unsigned NumElems = VT.getVectorNumElements();
5180
5181  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5182  // operand of these instructions is only memory, so check if there's a
5183  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5184  // same masks.
5185  bool CanFoldLoad = false;
5186
5187  // Trivial case, when V2 comes from a load.
5188  if (MayFoldVectorLoad(V2))
5189    CanFoldLoad = true;
5190
5191  // When V1 is a load, it can be folded later into a store in isel, example:
5192  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5193  //    turns into:
5194  //  (MOVLPSmr addr:$src1, VR128:$src2)
5195  // So, recognize this potential and also use MOVLPS or MOVLPD
5196  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5197    CanFoldLoad = true;
5198
5199  if (CanFoldLoad) {
5200    if (HasSSE2 && NumElems == 2)
5201      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5202
5203    if (NumElems == 4)
5204      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5205  }
5206
5207  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5208  // movl and movlp will both match v2i64, but v2i64 is never matched by
5209  // movl earlier because we make it strict to avoid messing with the movlp load
5210  // folding logic (see the code above getMOVLP call). Match it here then,
5211  // this is horrible, but will stay like this until we move all shuffle
5212  // matching to x86 specific nodes. Note that for the 1st condition all
5213  // types are matched with movsd.
5214  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5215    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5216  else if (HasSSE2)
5217    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5218
5219
5220  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5221
5222  // Invert the operand order and use SHUFPS to match it.
5223  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5224                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5225}
5226
5227static inline unsigned getUNPCKLOpcode(EVT VT) {
5228  switch(VT.getSimpleVT().SimpleTy) {
5229  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5230  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5231  case MVT::v4f32: return X86ISD::UNPCKLPS;
5232  case MVT::v2f64: return X86ISD::UNPCKLPD;
5233  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5234  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5235  default:
5236    llvm_unreachable("Unknow type for unpckl");
5237  }
5238  return 0;
5239}
5240
5241static inline unsigned getUNPCKHOpcode(EVT VT) {
5242  switch(VT.getSimpleVT().SimpleTy) {
5243  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5244  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5245  case MVT::v4f32: return X86ISD::UNPCKHPS;
5246  case MVT::v2f64: return X86ISD::UNPCKHPD;
5247  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5248  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5249  default:
5250    llvm_unreachable("Unknow type for unpckh");
5251  }
5252  return 0;
5253}
5254
5255SDValue
5256X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5257  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5258  SDValue V1 = Op.getOperand(0);
5259  SDValue V2 = Op.getOperand(1);
5260  EVT VT = Op.getValueType();
5261  DebugLoc dl = Op.getDebugLoc();
5262  unsigned NumElems = VT.getVectorNumElements();
5263  bool isMMX = VT.getSizeInBits() == 64;
5264  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5265  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5266  bool V1IsSplat = false;
5267  bool V2IsSplat = false;
5268  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5269  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5270  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5271  MachineFunction &MF = DAG.getMachineFunction();
5272  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5273
5274  // FIXME: this is somehow handled during isel by MMX pattern fragments. Remove
5275  // the check or come up with another solution when all MMX move to intrinsics,
5276  // but don't allow this to be considered legal, we don't want vector_shuffle
5277  // operations to be matched during isel anymore.
5278  if (isMMX && SVOp->isSplat())
5279    return Op;
5280
5281  if (isZeroShuffle(SVOp))
5282    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5283
5284  // Promote splats to v4f32.
5285  if (SVOp->isSplat())
5286    return PromoteSplat(SVOp, DAG);
5287
5288  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5289  // do it!
5290  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5291    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
5292    if (NewOp.getNode())
5293      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5294                         LowerVECTOR_SHUFFLE(NewOp, DAG));
5295  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5296    // FIXME: Figure out a cleaner way to do this.
5297    // Try to make use of movq to zero out the top part.
5298    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5299      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
5300      if (NewOp.getNode()) {
5301        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5302          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5303                              DAG, Subtarget, dl);
5304      }
5305    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5306      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
5307      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5308        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5309                            DAG, Subtarget, dl);
5310    }
5311  }
5312
5313  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5314  // unpckh_undef). Only use pshufd if speed is more important than size.
5315  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5316    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5317      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5318  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5319    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5320      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5321
5322  if (X86::isPSHUFDMask(SVOp)) {
5323    // The actual implementation will match the mask in the if above and then
5324    // during isel it can match several different instructions, not only pshufd
5325    // as its name says, sad but true, emulate the behavior for now...
5326    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5327        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5328
5329    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5330
5331    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5332      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5333
5334    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5335      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5336                                  TargetMask, DAG);
5337
5338    if (VT == MVT::v4f32)
5339      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5340                                  TargetMask, DAG);
5341  }
5342
5343  // Check if this can be converted into a logical shift.
5344  bool isLeft = false;
5345  unsigned ShAmt = 0;
5346  SDValue ShVal;
5347  bool isShift = getSubtarget()->hasSSE2() &&
5348    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5349  if (isShift && ShVal.hasOneUse()) {
5350    // If the shifted value has multiple uses, it may be cheaper to use
5351    // v_set0 + movlhps or movhlps, etc.
5352    EVT EltVT = VT.getVectorElementType();
5353    ShAmt *= EltVT.getSizeInBits();
5354    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5355  }
5356
5357  if (X86::isMOVLMask(SVOp)) {
5358    if (V1IsUndef)
5359      return V2;
5360    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5361      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5362    if (!isMMX && !X86::isMOVLPMask(SVOp)) {
5363      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5364        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5365
5366      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5367        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5368    }
5369  }
5370
5371  // FIXME: fold these into legal mask.
5372  if (!isMMX) {
5373    if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5374      return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5375
5376    if (X86::isMOVHLPSMask(SVOp))
5377      return getMOVHighToLow(Op, dl, DAG);
5378
5379    if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5380      return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5381
5382    if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5383      return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5384
5385    if (X86::isMOVLPMask(SVOp))
5386      return getMOVLP(Op, dl, DAG, HasSSE2);
5387  }
5388
5389  if (ShouldXformToMOVHLPS(SVOp) ||
5390      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5391    return CommuteVectorShuffle(SVOp, DAG);
5392
5393  if (isShift) {
5394    // No better options. Use a vshl / vsrl.
5395    EVT EltVT = VT.getVectorElementType();
5396    ShAmt *= EltVT.getSizeInBits();
5397    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5398  }
5399
5400  bool Commuted = false;
5401  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
5402  // 1,1,1,1 -> v8i16 though.
5403  V1IsSplat = isSplatVector(V1.getNode());
5404  V2IsSplat = isSplatVector(V2.getNode());
5405
5406  // Canonicalize the splat or undef, if present, to be on the RHS.
5407  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5408    Op = CommuteVectorShuffle(SVOp, DAG);
5409    SVOp = cast<ShuffleVectorSDNode>(Op);
5410    V1 = SVOp->getOperand(0);
5411    V2 = SVOp->getOperand(1);
5412    std::swap(V1IsSplat, V2IsSplat);
5413    std::swap(V1IsUndef, V2IsUndef);
5414    Commuted = true;
5415  }
5416
5417  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5418    // Shuffling low element of v1 into undef, just return v1.
5419    if (V2IsUndef)
5420      return V1;
5421    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5422    // the instruction selector will not match, so get a canonical MOVL with
5423    // swapped operands to undo the commute.
5424    return getMOVL(DAG, dl, VT, V2, V1);
5425  }
5426
5427  if (X86::isUNPCKLMask(SVOp))
5428    return (isMMX) ?
5429      Op : getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
5430
5431  if (X86::isUNPCKHMask(SVOp))
5432    return (isMMX) ?
5433      Op : getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
5434
5435  if (V2IsSplat) {
5436    // Normalize mask so all entries that point to V2 points to its first
5437    // element then try to match unpck{h|l} again. If match, return a
5438    // new vector_shuffle with the corrected mask.
5439    SDValue NewMask = NormalizeMask(SVOp, DAG);
5440    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5441    if (NSVOp != SVOp) {
5442      if (X86::isUNPCKLMask(NSVOp, true)) {
5443        return NewMask;
5444      } else if (X86::isUNPCKHMask(NSVOp, true)) {
5445        return NewMask;
5446      }
5447    }
5448  }
5449
5450  if (Commuted) {
5451    // Commute is back and try unpck* again.
5452    // FIXME: this seems wrong.
5453    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5454    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5455
5456    if (X86::isUNPCKLMask(NewSVOp))
5457      return (isMMX) ?
5458        NewOp : getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
5459
5460    if (X86::isUNPCKHMask(NewSVOp))
5461      return (isMMX) ?
5462        NewOp : getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
5463  }
5464
5465  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
5466
5467  // Normalize the node to match x86 shuffle ops if needed
5468  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5469    return CommuteVectorShuffle(SVOp, DAG);
5470
5471  // The checks below are all present in isShuffleMaskLegal, but they are
5472  // inlined here right now to enable us to directly emit target specific
5473  // nodes, and remove one by one until they don't return Op anymore.
5474  SmallVector<int, 16> M;
5475  SVOp->getMask(M);
5476
5477  if (isPALIGNRMask(M, VT, HasSSSE3))
5478    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
5479                                X86::getShufflePALIGNRImmediate(SVOp),
5480                                DAG);
5481
5482  // Only a few shuffle masks are handled for 64-bit vectors (MMX), and
5483  // 64-bit vectors which made to this point can't be handled, they are
5484  // expanded.
5485  if (isMMX)
5486    return SDValue();
5487
5488  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
5489      SVOp->getSplatIndex() == 0 && V2IsUndef) {
5490    if (VT == MVT::v2f64)
5491      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
5492    if (VT == MVT::v2i64)
5493      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
5494  }
5495
5496  if (isPSHUFHWMask(M, VT))
5497    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
5498                                X86::getShufflePSHUFHWImmediate(SVOp),
5499                                DAG);
5500
5501  if (isPSHUFLWMask(M, VT))
5502    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
5503                                X86::getShufflePSHUFLWImmediate(SVOp),
5504                                DAG);
5505
5506  if (isSHUFPMask(M, VT)) {
5507    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5508    if (VT == MVT::v4f32 || VT == MVT::v4i32)
5509      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
5510                                  TargetMask, DAG);
5511    if (VT == MVT::v2f64 || VT == MVT::v2i64)
5512      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
5513                                  TargetMask, DAG);
5514  }
5515
5516  if (X86::isUNPCKL_v_undef_Mask(SVOp))
5517    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5518      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5519  if (X86::isUNPCKH_v_undef_Mask(SVOp))
5520    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5521      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5522
5523  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5524  if (VT == MVT::v8i16) {
5525    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5526    if (NewOp.getNode())
5527      return NewOp;
5528  }
5529
5530  if (VT == MVT::v16i8) {
5531    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5532    if (NewOp.getNode())
5533      return NewOp;
5534  }
5535
5536  // Handle all 4 wide cases with a number of shuffles except for MMX.
5537  if (NumElems == 4 && !isMMX)
5538    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5539
5540  return SDValue();
5541}
5542
5543SDValue
5544X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5545                                                SelectionDAG &DAG) const {
5546  EVT VT = Op.getValueType();
5547  DebugLoc dl = Op.getDebugLoc();
5548  if (VT.getSizeInBits() == 8) {
5549    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5550                                    Op.getOperand(0), Op.getOperand(1));
5551    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5552                                    DAG.getValueType(VT));
5553    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5554  } else if (VT.getSizeInBits() == 16) {
5555    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5556    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5557    if (Idx == 0)
5558      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5559                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5560                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5561                                                 MVT::v4i32,
5562                                                 Op.getOperand(0)),
5563                                     Op.getOperand(1)));
5564    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5565                                    Op.getOperand(0), Op.getOperand(1));
5566    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5567                                    DAG.getValueType(VT));
5568    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5569  } else if (VT == MVT::f32) {
5570    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5571    // the result back to FR32 register. It's only worth matching if the
5572    // result has a single use which is a store or a bitcast to i32.  And in
5573    // the case of a store, it's not worth it if the index is a constant 0,
5574    // because a MOVSSmr can be used instead, which is smaller and faster.
5575    if (!Op.hasOneUse())
5576      return SDValue();
5577    SDNode *User = *Op.getNode()->use_begin();
5578    if ((User->getOpcode() != ISD::STORE ||
5579         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5580          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5581        (User->getOpcode() != ISD::BIT_CONVERT ||
5582         User->getValueType(0) != MVT::i32))
5583      return SDValue();
5584    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5585                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
5586                                              Op.getOperand(0)),
5587                                              Op.getOperand(1));
5588    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
5589  } else if (VT == MVT::i32) {
5590    // ExtractPS works with constant index.
5591    if (isa<ConstantSDNode>(Op.getOperand(1)))
5592      return Op;
5593  }
5594  return SDValue();
5595}
5596
5597
5598SDValue
5599X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5600                                           SelectionDAG &DAG) const {
5601  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5602    return SDValue();
5603
5604  if (Subtarget->hasSSE41()) {
5605    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5606    if (Res.getNode())
5607      return Res;
5608  }
5609
5610  EVT VT = Op.getValueType();
5611  DebugLoc dl = Op.getDebugLoc();
5612  // TODO: handle v16i8.
5613  if (VT.getSizeInBits() == 16) {
5614    SDValue Vec = Op.getOperand(0);
5615    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5616    if (Idx == 0)
5617      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5618                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5619                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5620                                                 MVT::v4i32, Vec),
5621                                     Op.getOperand(1)));
5622    // Transform it so it match pextrw which produces a 32-bit result.
5623    EVT EltVT = MVT::i32;
5624    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5625                                    Op.getOperand(0), Op.getOperand(1));
5626    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5627                                    DAG.getValueType(VT));
5628    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5629  } else if (VT.getSizeInBits() == 32) {
5630    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5631    if (Idx == 0)
5632      return Op;
5633
5634    // SHUFPS the element to the lowest double word, then movss.
5635    int Mask[4] = { Idx, -1, -1, -1 };
5636    EVT VVT = Op.getOperand(0).getValueType();
5637    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5638                                       DAG.getUNDEF(VVT), Mask);
5639    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5640                       DAG.getIntPtrConstant(0));
5641  } else if (VT.getSizeInBits() == 64) {
5642    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5643    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5644    //        to match extract_elt for f64.
5645    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5646    if (Idx == 0)
5647      return Op;
5648
5649    // UNPCKHPD the element to the lowest double word, then movsd.
5650    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5651    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5652    int Mask[2] = { 1, -1 };
5653    EVT VVT = Op.getOperand(0).getValueType();
5654    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5655                                       DAG.getUNDEF(VVT), Mask);
5656    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5657                       DAG.getIntPtrConstant(0));
5658  }
5659
5660  return SDValue();
5661}
5662
5663SDValue
5664X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5665                                               SelectionDAG &DAG) const {
5666  EVT VT = Op.getValueType();
5667  EVT EltVT = VT.getVectorElementType();
5668  DebugLoc dl = Op.getDebugLoc();
5669
5670  SDValue N0 = Op.getOperand(0);
5671  SDValue N1 = Op.getOperand(1);
5672  SDValue N2 = Op.getOperand(2);
5673
5674  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5675      isa<ConstantSDNode>(N2)) {
5676    unsigned Opc;
5677    if (VT == MVT::v8i16)
5678      Opc = X86ISD::PINSRW;
5679    else if (VT == MVT::v4i16)
5680      Opc = X86ISD::MMX_PINSRW;
5681    else if (VT == MVT::v16i8)
5682      Opc = X86ISD::PINSRB;
5683    else
5684      Opc = X86ISD::PINSRB;
5685
5686    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5687    // argument.
5688    if (N1.getValueType() != MVT::i32)
5689      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5690    if (N2.getValueType() != MVT::i32)
5691      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5692    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5693  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5694    // Bits [7:6] of the constant are the source select.  This will always be
5695    //  zero here.  The DAG Combiner may combine an extract_elt index into these
5696    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
5697    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
5698    // Bits [5:4] of the constant are the destination select.  This is the
5699    //  value of the incoming immediate.
5700    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
5701    //   combine either bitwise AND or insert of float 0.0 to set these bits.
5702    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5703    // Create this as a scalar to vector..
5704    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5705    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5706  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5707    // PINSR* works with constant index.
5708    return Op;
5709  }
5710  return SDValue();
5711}
5712
5713SDValue
5714X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5715  EVT VT = Op.getValueType();
5716  EVT EltVT = VT.getVectorElementType();
5717
5718  if (Subtarget->hasSSE41())
5719    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5720
5721  if (EltVT == MVT::i8)
5722    return SDValue();
5723
5724  DebugLoc dl = Op.getDebugLoc();
5725  SDValue N0 = Op.getOperand(0);
5726  SDValue N1 = Op.getOperand(1);
5727  SDValue N2 = Op.getOperand(2);
5728
5729  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5730    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5731    // as its second argument.
5732    if (N1.getValueType() != MVT::i32)
5733      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5734    if (N2.getValueType() != MVT::i32)
5735      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5736    return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
5737                       dl, VT, N0, N1, N2);
5738  }
5739  return SDValue();
5740}
5741
5742SDValue
5743X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5744  DebugLoc dl = Op.getDebugLoc();
5745
5746  if (Op.getValueType() == MVT::v1i64 &&
5747      Op.getOperand(0).getValueType() == MVT::i64)
5748    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5749
5750  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5751  EVT VT = MVT::v2i32;
5752  switch (Op.getValueType().getSimpleVT().SimpleTy) {
5753  default: break;
5754  case MVT::v16i8:
5755  case MVT::v8i16:
5756    VT = MVT::v4i32;
5757    break;
5758  }
5759  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5760                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
5761}
5762
5763// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5764// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5765// one of the above mentioned nodes. It has to be wrapped because otherwise
5766// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5767// be used to form addressing mode. These wrapped nodes will be selected
5768// into MOV32ri.
5769SDValue
5770X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5771  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5772
5773  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5774  // global base reg.
5775  unsigned char OpFlag = 0;
5776  unsigned WrapperKind = X86ISD::Wrapper;
5777  CodeModel::Model M = getTargetMachine().getCodeModel();
5778
5779  if (Subtarget->isPICStyleRIPRel() &&
5780      (M == CodeModel::Small || M == CodeModel::Kernel))
5781    WrapperKind = X86ISD::WrapperRIP;
5782  else if (Subtarget->isPICStyleGOT())
5783    OpFlag = X86II::MO_GOTOFF;
5784  else if (Subtarget->isPICStyleStubPIC())
5785    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5786
5787  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5788                                             CP->getAlignment(),
5789                                             CP->getOffset(), OpFlag);
5790  DebugLoc DL = CP->getDebugLoc();
5791  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5792  // With PIC, the address is actually $g + Offset.
5793  if (OpFlag) {
5794    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5795                         DAG.getNode(X86ISD::GlobalBaseReg,
5796                                     DebugLoc(), getPointerTy()),
5797                         Result);
5798  }
5799
5800  return Result;
5801}
5802
5803SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5804  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5805
5806  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5807  // global base reg.
5808  unsigned char OpFlag = 0;
5809  unsigned WrapperKind = X86ISD::Wrapper;
5810  CodeModel::Model M = getTargetMachine().getCodeModel();
5811
5812  if (Subtarget->isPICStyleRIPRel() &&
5813      (M == CodeModel::Small || M == CodeModel::Kernel))
5814    WrapperKind = X86ISD::WrapperRIP;
5815  else if (Subtarget->isPICStyleGOT())
5816    OpFlag = X86II::MO_GOTOFF;
5817  else if (Subtarget->isPICStyleStubPIC())
5818    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5819
5820  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5821                                          OpFlag);
5822  DebugLoc DL = JT->getDebugLoc();
5823  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5824
5825  // With PIC, the address is actually $g + Offset.
5826  if (OpFlag) {
5827    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5828                         DAG.getNode(X86ISD::GlobalBaseReg,
5829                                     DebugLoc(), getPointerTy()),
5830                         Result);
5831  }
5832
5833  return Result;
5834}
5835
5836SDValue
5837X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5838  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5839
5840  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5841  // global base reg.
5842  unsigned char OpFlag = 0;
5843  unsigned WrapperKind = X86ISD::Wrapper;
5844  CodeModel::Model M = getTargetMachine().getCodeModel();
5845
5846  if (Subtarget->isPICStyleRIPRel() &&
5847      (M == CodeModel::Small || M == CodeModel::Kernel))
5848    WrapperKind = X86ISD::WrapperRIP;
5849  else if (Subtarget->isPICStyleGOT())
5850    OpFlag = X86II::MO_GOTOFF;
5851  else if (Subtarget->isPICStyleStubPIC())
5852    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5853
5854  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5855
5856  DebugLoc DL = Op.getDebugLoc();
5857  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5858
5859
5860  // With PIC, the address is actually $g + Offset.
5861  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5862      !Subtarget->is64Bit()) {
5863    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5864                         DAG.getNode(X86ISD::GlobalBaseReg,
5865                                     DebugLoc(), getPointerTy()),
5866                         Result);
5867  }
5868
5869  return Result;
5870}
5871
5872SDValue
5873X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5874  // Create the TargetBlockAddressAddress node.
5875  unsigned char OpFlags =
5876    Subtarget->ClassifyBlockAddressReference();
5877  CodeModel::Model M = getTargetMachine().getCodeModel();
5878  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5879  DebugLoc dl = Op.getDebugLoc();
5880  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5881                                       /*isTarget=*/true, OpFlags);
5882
5883  if (Subtarget->isPICStyleRIPRel() &&
5884      (M == CodeModel::Small || M == CodeModel::Kernel))
5885    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5886  else
5887    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5888
5889  // With PIC, the address is actually $g + Offset.
5890  if (isGlobalRelativeToPICBase(OpFlags)) {
5891    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5892                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5893                         Result);
5894  }
5895
5896  return Result;
5897}
5898
5899SDValue
5900X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5901                                      int64_t Offset,
5902                                      SelectionDAG &DAG) const {
5903  // Create the TargetGlobalAddress node, folding in the constant
5904  // offset if it is legal.
5905  unsigned char OpFlags =
5906    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5907  CodeModel::Model M = getTargetMachine().getCodeModel();
5908  SDValue Result;
5909  if (OpFlags == X86II::MO_NO_FLAG &&
5910      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5911    // A direct static reference to a global.
5912    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
5913    Offset = 0;
5914  } else {
5915    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
5916  }
5917
5918  if (Subtarget->isPICStyleRIPRel() &&
5919      (M == CodeModel::Small || M == CodeModel::Kernel))
5920    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5921  else
5922    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5923
5924  // With PIC, the address is actually $g + Offset.
5925  if (isGlobalRelativeToPICBase(OpFlags)) {
5926    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5927                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5928                         Result);
5929  }
5930
5931  // For globals that require a load from a stub to get the address, emit the
5932  // load.
5933  if (isGlobalStubReference(OpFlags))
5934    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5935                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5936
5937  // If there was a non-zero offset that we didn't fold, create an explicit
5938  // addition for it.
5939  if (Offset != 0)
5940    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5941                         DAG.getConstant(Offset, getPointerTy()));
5942
5943  return Result;
5944}
5945
5946SDValue
5947X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
5948  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5949  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5950  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5951}
5952
5953static SDValue
5954GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5955           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5956           unsigned char OperandFlags) {
5957  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5958  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5959  DebugLoc dl = GA->getDebugLoc();
5960  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5961                                           GA->getValueType(0),
5962                                           GA->getOffset(),
5963                                           OperandFlags);
5964  if (InFlag) {
5965    SDValue Ops[] = { Chain,  TGA, *InFlag };
5966    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5967  } else {
5968    SDValue Ops[]  = { Chain, TGA };
5969    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5970  }
5971
5972  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5973  MFI->setAdjustsStack(true);
5974
5975  SDValue Flag = Chain.getValue(1);
5976  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5977}
5978
5979// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5980static SDValue
5981LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5982                                const EVT PtrVT) {
5983  SDValue InFlag;
5984  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5985  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5986                                     DAG.getNode(X86ISD::GlobalBaseReg,
5987                                                 DebugLoc(), PtrVT), InFlag);
5988  InFlag = Chain.getValue(1);
5989
5990  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5991}
5992
5993// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5994static SDValue
5995LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5996                                const EVT PtrVT) {
5997  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5998                    X86::RAX, X86II::MO_TLSGD);
5999}
6000
6001// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6002// "local exec" model.
6003static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6004                                   const EVT PtrVT, TLSModel::Model model,
6005                                   bool is64Bit) {
6006  DebugLoc dl = GA->getDebugLoc();
6007  // Get the Thread Pointer
6008  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
6009                             DebugLoc(), PtrVT,
6010                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
6011                                             MVT::i32));
6012
6013  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
6014                                      NULL, 0, false, false, 0);
6015
6016  unsigned char OperandFlags = 0;
6017  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6018  // initialexec.
6019  unsigned WrapperKind = X86ISD::Wrapper;
6020  if (model == TLSModel::LocalExec) {
6021    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6022  } else if (is64Bit) {
6023    assert(model == TLSModel::InitialExec);
6024    OperandFlags = X86II::MO_GOTTPOFF;
6025    WrapperKind = X86ISD::WrapperRIP;
6026  } else {
6027    assert(model == TLSModel::InitialExec);
6028    OperandFlags = X86II::MO_INDNTPOFF;
6029  }
6030
6031  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6032  // exec)
6033  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6034                                           GA->getValueType(0),
6035                                           GA->getOffset(), OperandFlags);
6036  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6037
6038  if (model == TLSModel::InitialExec)
6039    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6040                         PseudoSourceValue::getGOT(), 0, false, false, 0);
6041
6042  // The address of the thread local variable is the add of the thread
6043  // pointer with the offset of the variable.
6044  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6045}
6046
6047SDValue
6048X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6049
6050  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6051  const GlobalValue *GV = GA->getGlobal();
6052
6053  if (Subtarget->isTargetELF()) {
6054    // TODO: implement the "local dynamic" model
6055    // TODO: implement the "initial exec"model for pic executables
6056
6057    // If GV is an alias then use the aliasee for determining
6058    // thread-localness.
6059    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6060      GV = GA->resolveAliasedGlobal(false);
6061
6062    TLSModel::Model model
6063      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6064
6065    switch (model) {
6066      case TLSModel::GeneralDynamic:
6067      case TLSModel::LocalDynamic: // not implemented
6068        if (Subtarget->is64Bit())
6069          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6070        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6071
6072      case TLSModel::InitialExec:
6073      case TLSModel::LocalExec:
6074        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6075                                   Subtarget->is64Bit());
6076    }
6077  } else if (Subtarget->isTargetDarwin()) {
6078    // Darwin only has one model of TLS.  Lower to that.
6079    unsigned char OpFlag = 0;
6080    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6081                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6082
6083    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6084    // global base reg.
6085    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6086                  !Subtarget->is64Bit();
6087    if (PIC32)
6088      OpFlag = X86II::MO_TLVP_PIC_BASE;
6089    else
6090      OpFlag = X86II::MO_TLVP;
6091    DebugLoc DL = Op.getDebugLoc();
6092    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6093                                                getPointerTy(),
6094                                                GA->getOffset(), OpFlag);
6095    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6096
6097    // With PIC32, the address is actually $g + Offset.
6098    if (PIC32)
6099      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6100                           DAG.getNode(X86ISD::GlobalBaseReg,
6101                                       DebugLoc(), getPointerTy()),
6102                           Offset);
6103
6104    // Lowering the machine isd will make sure everything is in the right
6105    // location.
6106    SDValue Args[] = { Offset };
6107    SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1);
6108
6109    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6110    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6111    MFI->setAdjustsStack(true);
6112
6113    // And our return value (tls address) is in the standard call return value
6114    // location.
6115    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6116    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6117  }
6118
6119  assert(false &&
6120         "TLS not implemented for this target.");
6121
6122  llvm_unreachable("Unreachable");
6123  return SDValue();
6124}
6125
6126
6127/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
6128/// take a 2 x i32 value to shift plus a shift amount.
6129SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
6130  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6131  EVT VT = Op.getValueType();
6132  unsigned VTBits = VT.getSizeInBits();
6133  DebugLoc dl = Op.getDebugLoc();
6134  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6135  SDValue ShOpLo = Op.getOperand(0);
6136  SDValue ShOpHi = Op.getOperand(1);
6137  SDValue ShAmt  = Op.getOperand(2);
6138  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6139                                     DAG.getConstant(VTBits - 1, MVT::i8))
6140                       : DAG.getConstant(0, VT);
6141
6142  SDValue Tmp2, Tmp3;
6143  if (Op.getOpcode() == ISD::SHL_PARTS) {
6144    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6145    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6146  } else {
6147    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6148    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6149  }
6150
6151  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6152                                DAG.getConstant(VTBits, MVT::i8));
6153  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6154                             AndNode, DAG.getConstant(0, MVT::i8));
6155
6156  SDValue Hi, Lo;
6157  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6158  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6159  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6160
6161  if (Op.getOpcode() == ISD::SHL_PARTS) {
6162    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6163    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6164  } else {
6165    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6166    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6167  }
6168
6169  SDValue Ops[2] = { Lo, Hi };
6170  return DAG.getMergeValues(Ops, 2, dl);
6171}
6172
6173SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6174                                           SelectionDAG &DAG) const {
6175  EVT SrcVT = Op.getOperand(0).getValueType();
6176
6177  if (SrcVT.isVector()) {
6178    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
6179      return Op;
6180    }
6181    return SDValue();
6182  }
6183
6184  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6185         "Unknown SINT_TO_FP to lower!");
6186
6187  // These are really Legal; return the operand so the caller accepts it as
6188  // Legal.
6189  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6190    return Op;
6191  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6192      Subtarget->is64Bit()) {
6193    return Op;
6194  }
6195
6196  DebugLoc dl = Op.getDebugLoc();
6197  unsigned Size = SrcVT.getSizeInBits()/8;
6198  MachineFunction &MF = DAG.getMachineFunction();
6199  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6200  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6201  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6202                               StackSlot,
6203                               PseudoSourceValue::getFixedStack(SSFI), 0,
6204                               false, false, 0);
6205  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6206}
6207
6208SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6209                                     SDValue StackSlot,
6210                                     SelectionDAG &DAG) const {
6211  // Build the FILD
6212  DebugLoc dl = Op.getDebugLoc();
6213  SDVTList Tys;
6214  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6215  if (useSSE)
6216    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
6217  else
6218    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6219  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6220  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
6221                               Tys, Ops, array_lengthof(Ops));
6222
6223  if (useSSE) {
6224    Chain = Result.getValue(1);
6225    SDValue InFlag = Result.getValue(2);
6226
6227    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6228    // shouldn't be necessary except that RFP cannot be live across
6229    // multiple blocks. When stackifier is fixed, they can be uncoupled.
6230    MachineFunction &MF = DAG.getMachineFunction();
6231    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
6232    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6233    Tys = DAG.getVTList(MVT::Other);
6234    SDValue Ops[] = {
6235      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6236    };
6237    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
6238    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
6239                         PseudoSourceValue::getFixedStack(SSFI), 0,
6240                         false, false, 0);
6241  }
6242
6243  return Result;
6244}
6245
6246// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6247SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6248                                               SelectionDAG &DAG) const {
6249  // This algorithm is not obvious. Here it is in C code, more or less:
6250  /*
6251    double uint64_to_double( uint32_t hi, uint32_t lo ) {
6252      static const __m128i exp = { 0x4330000045300000ULL, 0 };
6253      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6254
6255      // Copy ints to xmm registers.
6256      __m128i xh = _mm_cvtsi32_si128( hi );
6257      __m128i xl = _mm_cvtsi32_si128( lo );
6258
6259      // Combine into low half of a single xmm register.
6260      __m128i x = _mm_unpacklo_epi32( xh, xl );
6261      __m128d d;
6262      double sd;
6263
6264      // Merge in appropriate exponents to give the integer bits the right
6265      // magnitude.
6266      x = _mm_unpacklo_epi32( x, exp );
6267
6268      // Subtract away the biases to deal with the IEEE-754 double precision
6269      // implicit 1.
6270      d = _mm_sub_pd( (__m128d) x, bias );
6271
6272      // All conversions up to here are exact. The correctly rounded result is
6273      // calculated using the current rounding mode using the following
6274      // horizontal add.
6275      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6276      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
6277                                // store doesn't really need to be here (except
6278                                // maybe to zero the other double)
6279      return sd;
6280    }
6281  */
6282
6283  DebugLoc dl = Op.getDebugLoc();
6284  LLVMContext *Context = DAG.getContext();
6285
6286  // Build some magic constants.
6287  std::vector<Constant*> CV0;
6288  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6289  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6290  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6291  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6292  Constant *C0 = ConstantVector::get(CV0);
6293  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6294
6295  std::vector<Constant*> CV1;
6296  CV1.push_back(
6297    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6298  CV1.push_back(
6299    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6300  Constant *C1 = ConstantVector::get(CV1);
6301  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6302
6303  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6304                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6305                                        Op.getOperand(0),
6306                                        DAG.getIntPtrConstant(1)));
6307  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6308                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6309                                        Op.getOperand(0),
6310                                        DAG.getIntPtrConstant(0)));
6311  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6312  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6313                              PseudoSourceValue::getConstantPool(), 0,
6314                              false, false, 16);
6315  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6316  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
6317  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6318                              PseudoSourceValue::getConstantPool(), 0,
6319                              false, false, 16);
6320  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6321
6322  // Add the halves; easiest way is to swap them into another reg first.
6323  int ShufMask[2] = { 1, -1 };
6324  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6325                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
6326  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6327  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6328                     DAG.getIntPtrConstant(0));
6329}
6330
6331// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6332SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6333                                               SelectionDAG &DAG) const {
6334  DebugLoc dl = Op.getDebugLoc();
6335  // FP constant to bias correct the final result.
6336  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6337                                   MVT::f64);
6338
6339  // Load the 32-bit value into an XMM register.
6340  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6341                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6342                                         Op.getOperand(0),
6343                                         DAG.getIntPtrConstant(0)));
6344
6345  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6346                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
6347                     DAG.getIntPtrConstant(0));
6348
6349  // Or the load with the bias.
6350  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6351                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6352                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6353                                                   MVT::v2f64, Load)),
6354                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6355                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6356                                                   MVT::v2f64, Bias)));
6357  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6358                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
6359                   DAG.getIntPtrConstant(0));
6360
6361  // Subtract the bias.
6362  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6363
6364  // Handle final rounding.
6365  EVT DestVT = Op.getValueType();
6366
6367  if (DestVT.bitsLT(MVT::f64)) {
6368    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6369                       DAG.getIntPtrConstant(0));
6370  } else if (DestVT.bitsGT(MVT::f64)) {
6371    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6372  }
6373
6374  // Handle final rounding.
6375  return Sub;
6376}
6377
6378SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6379                                           SelectionDAG &DAG) const {
6380  SDValue N0 = Op.getOperand(0);
6381  DebugLoc dl = Op.getDebugLoc();
6382
6383  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6384  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6385  // the optimization here.
6386  if (DAG.SignBitIsZero(N0))
6387    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6388
6389  EVT SrcVT = N0.getValueType();
6390  EVT DstVT = Op.getValueType();
6391  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6392    return LowerUINT_TO_FP_i64(Op, DAG);
6393  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6394    return LowerUINT_TO_FP_i32(Op, DAG);
6395
6396  // Make a 64-bit buffer, and use it to build an FILD.
6397  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6398  if (SrcVT == MVT::i32) {
6399    SDValue WordOff = DAG.getConstant(4, getPointerTy());
6400    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6401                                     getPointerTy(), StackSlot, WordOff);
6402    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6403                                  StackSlot, NULL, 0, false, false, 0);
6404    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6405                                  OffsetSlot, NULL, 0, false, false, 0);
6406    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6407    return Fild;
6408  }
6409
6410  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6411  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6412                                StackSlot, NULL, 0, false, false, 0);
6413  // For i64 source, we need to add the appropriate power of 2 if the input
6414  // was negative.  This is the same as the optimization in
6415  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6416  // we must be careful to do the computation in x87 extended precision, not
6417  // in SSE. (The generic code can't know it's OK to do this, or how to.)
6418  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6419  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6420  SDValue Fild = DAG.getNode(X86ISD::FILD, dl, Tys, Ops, 3);
6421
6422  APInt FF(32, 0x5F800000ULL);
6423
6424  // Check whether the sign bit is set.
6425  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6426                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6427                                 ISD::SETLT);
6428
6429  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6430  SDValue FudgePtr = DAG.getConstantPool(
6431                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6432                                         getPointerTy());
6433
6434  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6435  SDValue Zero = DAG.getIntPtrConstant(0);
6436  SDValue Four = DAG.getIntPtrConstant(4);
6437  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6438                               Zero, Four);
6439  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6440
6441  // Load the value out, extending it from f32 to f80.
6442  // FIXME: Avoid the extend by constructing the right constant pool?
6443  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
6444                                 FudgePtr, PseudoSourceValue::getConstantPool(),
6445                                 0, MVT::f32, false, false, 4);
6446  // Extend everything to 80 bits to force it to be done on x87.
6447  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6448  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6449}
6450
6451std::pair<SDValue,SDValue> X86TargetLowering::
6452FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6453  DebugLoc dl = Op.getDebugLoc();
6454
6455  EVT DstTy = Op.getValueType();
6456
6457  if (!IsSigned) {
6458    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
6459    DstTy = MVT::i64;
6460  }
6461
6462  assert(DstTy.getSimpleVT() <= MVT::i64 &&
6463         DstTy.getSimpleVT() >= MVT::i16 &&
6464         "Unknown FP_TO_SINT to lower!");
6465
6466  // These are really Legal.
6467  if (DstTy == MVT::i32 &&
6468      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6469    return std::make_pair(SDValue(), SDValue());
6470  if (Subtarget->is64Bit() &&
6471      DstTy == MVT::i64 &&
6472      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6473    return std::make_pair(SDValue(), SDValue());
6474
6475  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
6476  // stack slot.
6477  MachineFunction &MF = DAG.getMachineFunction();
6478  unsigned MemSize = DstTy.getSizeInBits()/8;
6479  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6480  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6481
6482  unsigned Opc;
6483  switch (DstTy.getSimpleVT().SimpleTy) {
6484  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
6485  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
6486  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
6487  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
6488  }
6489
6490  SDValue Chain = DAG.getEntryNode();
6491  SDValue Value = Op.getOperand(0);
6492  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
6493    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
6494    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
6495                         PseudoSourceValue::getFixedStack(SSFI), 0,
6496                         false, false, 0);
6497    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
6498    SDValue Ops[] = {
6499      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
6500    };
6501    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
6502    Chain = Value.getValue(1);
6503    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6504    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6505  }
6506
6507  // Build the FP_TO_INT*_IN_MEM
6508  SDValue Ops[] = { Chain, Value, StackSlot };
6509  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
6510
6511  return std::make_pair(FIST, StackSlot);
6512}
6513
6514SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
6515                                           SelectionDAG &DAG) const {
6516  if (Op.getValueType().isVector()) {
6517    if (Op.getValueType() == MVT::v2i32 &&
6518        Op.getOperand(0).getValueType() == MVT::v2f64) {
6519      return Op;
6520    }
6521    return SDValue();
6522  }
6523
6524  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
6525  SDValue FIST = Vals.first, StackSlot = Vals.second;
6526  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
6527  if (FIST.getNode() == 0) return Op;
6528
6529  // Load the result.
6530  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6531                     FIST, StackSlot, NULL, 0, false, false, 0);
6532}
6533
6534SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
6535                                           SelectionDAG &DAG) const {
6536  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
6537  SDValue FIST = Vals.first, StackSlot = Vals.second;
6538  assert(FIST.getNode() && "Unexpected failure");
6539
6540  // Load the result.
6541  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6542                     FIST, StackSlot, NULL, 0, false, false, 0);
6543}
6544
6545SDValue X86TargetLowering::LowerFABS(SDValue Op,
6546                                     SelectionDAG &DAG) const {
6547  LLVMContext *Context = DAG.getContext();
6548  DebugLoc dl = Op.getDebugLoc();
6549  EVT VT = Op.getValueType();
6550  EVT EltVT = VT;
6551  if (VT.isVector())
6552    EltVT = VT.getVectorElementType();
6553  std::vector<Constant*> CV;
6554  if (EltVT == MVT::f64) {
6555    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
6556    CV.push_back(C);
6557    CV.push_back(C);
6558  } else {
6559    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
6560    CV.push_back(C);
6561    CV.push_back(C);
6562    CV.push_back(C);
6563    CV.push_back(C);
6564  }
6565  Constant *C = ConstantVector::get(CV);
6566  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6567  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6568                             PseudoSourceValue::getConstantPool(), 0,
6569                             false, false, 16);
6570  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
6571}
6572
6573SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
6574  LLVMContext *Context = DAG.getContext();
6575  DebugLoc dl = Op.getDebugLoc();
6576  EVT VT = Op.getValueType();
6577  EVT EltVT = VT;
6578  if (VT.isVector())
6579    EltVT = VT.getVectorElementType();
6580  std::vector<Constant*> CV;
6581  if (EltVT == MVT::f64) {
6582    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
6583    CV.push_back(C);
6584    CV.push_back(C);
6585  } else {
6586    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
6587    CV.push_back(C);
6588    CV.push_back(C);
6589    CV.push_back(C);
6590    CV.push_back(C);
6591  }
6592  Constant *C = ConstantVector::get(CV);
6593  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6594  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6595                             PseudoSourceValue::getConstantPool(), 0,
6596                             false, false, 16);
6597  if (VT.isVector()) {
6598    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6599                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
6600                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6601                                Op.getOperand(0)),
6602                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
6603  } else {
6604    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
6605  }
6606}
6607
6608SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6609  LLVMContext *Context = DAG.getContext();
6610  SDValue Op0 = Op.getOperand(0);
6611  SDValue Op1 = Op.getOperand(1);
6612  DebugLoc dl = Op.getDebugLoc();
6613  EVT VT = Op.getValueType();
6614  EVT SrcVT = Op1.getValueType();
6615
6616  // If second operand is smaller, extend it first.
6617  if (SrcVT.bitsLT(VT)) {
6618    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
6619    SrcVT = VT;
6620  }
6621  // And if it is bigger, shrink it first.
6622  if (SrcVT.bitsGT(VT)) {
6623    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
6624    SrcVT = VT;
6625  }
6626
6627  // At this point the operands and the result should have the same
6628  // type, and that won't be f80 since that is not custom lowered.
6629
6630  // First get the sign bit of second operand.
6631  std::vector<Constant*> CV;
6632  if (SrcVT == MVT::f64) {
6633    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
6634    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6635  } else {
6636    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
6637    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6638    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6639    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6640  }
6641  Constant *C = ConstantVector::get(CV);
6642  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6643  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6644                              PseudoSourceValue::getConstantPool(), 0,
6645                              false, false, 16);
6646  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6647
6648  // Shift sign bit right or left if the two operands have different types.
6649  if (SrcVT.bitsGT(VT)) {
6650    // Op0 is MVT::f32, Op1 is MVT::f64.
6651    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6652    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6653                          DAG.getConstant(32, MVT::i32));
6654    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
6655    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6656                          DAG.getIntPtrConstant(0));
6657  }
6658
6659  // Clear first operand sign bit.
6660  CV.clear();
6661  if (VT == MVT::f64) {
6662    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6663    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6664  } else {
6665    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6666    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6667    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6668    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6669  }
6670  C = ConstantVector::get(CV);
6671  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6672  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6673                              PseudoSourceValue::getConstantPool(), 0,
6674                              false, false, 16);
6675  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6676
6677  // Or the value with the sign bit.
6678  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6679}
6680
6681/// Emit nodes that will be selected as "test Op0,Op0", or something
6682/// equivalent.
6683SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6684                                    SelectionDAG &DAG) const {
6685  DebugLoc dl = Op.getDebugLoc();
6686
6687  // CF and OF aren't always set the way we want. Determine which
6688  // of these we need.
6689  bool NeedCF = false;
6690  bool NeedOF = false;
6691  switch (X86CC) {
6692  default: break;
6693  case X86::COND_A: case X86::COND_AE:
6694  case X86::COND_B: case X86::COND_BE:
6695    NeedCF = true;
6696    break;
6697  case X86::COND_G: case X86::COND_GE:
6698  case X86::COND_L: case X86::COND_LE:
6699  case X86::COND_O: case X86::COND_NO:
6700    NeedOF = true;
6701    break;
6702  }
6703
6704  // See if we can use the EFLAGS value from the operand instead of
6705  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6706  // we prove that the arithmetic won't overflow, we can't use OF or CF.
6707  if (Op.getResNo() != 0 || NeedOF || NeedCF)
6708    // Emit a CMP with 0, which is the TEST pattern.
6709    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6710                       DAG.getConstant(0, Op.getValueType()));
6711
6712  unsigned Opcode = 0;
6713  unsigned NumOperands = 0;
6714  switch (Op.getNode()->getOpcode()) {
6715  case ISD::ADD:
6716    // Due to an isel shortcoming, be conservative if this add is likely to be
6717    // selected as part of a load-modify-store instruction. When the root node
6718    // in a match is a store, isel doesn't know how to remap non-chain non-flag
6719    // uses of other nodes in the match, such as the ADD in this case. This
6720    // leads to the ADD being left around and reselected, with the result being
6721    // two adds in the output.  Alas, even if none our users are stores, that
6722    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
6723    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
6724    // climbing the DAG back to the root, and it doesn't seem to be worth the
6725    // effort.
6726    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6727           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6728      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6729        goto default_case;
6730
6731    if (ConstantSDNode *C =
6732        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6733      // An add of one will be selected as an INC.
6734      if (C->getAPIntValue() == 1) {
6735        Opcode = X86ISD::INC;
6736        NumOperands = 1;
6737        break;
6738      }
6739
6740      // An add of negative one (subtract of one) will be selected as a DEC.
6741      if (C->getAPIntValue().isAllOnesValue()) {
6742        Opcode = X86ISD::DEC;
6743        NumOperands = 1;
6744        break;
6745      }
6746    }
6747
6748    // Otherwise use a regular EFLAGS-setting add.
6749    Opcode = X86ISD::ADD;
6750    NumOperands = 2;
6751    break;
6752  case ISD::AND: {
6753    // If the primary and result isn't used, don't bother using X86ISD::AND,
6754    // because a TEST instruction will be better.
6755    bool NonFlagUse = false;
6756    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6757           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6758      SDNode *User = *UI;
6759      unsigned UOpNo = UI.getOperandNo();
6760      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6761        // Look pass truncate.
6762        UOpNo = User->use_begin().getOperandNo();
6763        User = *User->use_begin();
6764      }
6765
6766      if (User->getOpcode() != ISD::BRCOND &&
6767          User->getOpcode() != ISD::SETCC &&
6768          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6769        NonFlagUse = true;
6770        break;
6771      }
6772    }
6773
6774    if (!NonFlagUse)
6775      break;
6776  }
6777    // FALL THROUGH
6778  case ISD::SUB:
6779  case ISD::OR:
6780  case ISD::XOR:
6781    // Due to the ISEL shortcoming noted above, be conservative if this op is
6782    // likely to be selected as part of a load-modify-store instruction.
6783    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6784           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6785      if (UI->getOpcode() == ISD::STORE)
6786        goto default_case;
6787
6788    // Otherwise use a regular EFLAGS-setting instruction.
6789    switch (Op.getNode()->getOpcode()) {
6790    default: llvm_unreachable("unexpected operator!");
6791    case ISD::SUB: Opcode = X86ISD::SUB; break;
6792    case ISD::OR:  Opcode = X86ISD::OR;  break;
6793    case ISD::XOR: Opcode = X86ISD::XOR; break;
6794    case ISD::AND: Opcode = X86ISD::AND; break;
6795    }
6796
6797    NumOperands = 2;
6798    break;
6799  case X86ISD::ADD:
6800  case X86ISD::SUB:
6801  case X86ISD::INC:
6802  case X86ISD::DEC:
6803  case X86ISD::OR:
6804  case X86ISD::XOR:
6805  case X86ISD::AND:
6806    return SDValue(Op.getNode(), 1);
6807  default:
6808  default_case:
6809    break;
6810  }
6811
6812  if (Opcode == 0)
6813    // Emit a CMP with 0, which is the TEST pattern.
6814    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6815                       DAG.getConstant(0, Op.getValueType()));
6816
6817  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6818  SmallVector<SDValue, 4> Ops;
6819  for (unsigned i = 0; i != NumOperands; ++i)
6820    Ops.push_back(Op.getOperand(i));
6821
6822  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6823  DAG.ReplaceAllUsesWith(Op, New);
6824  return SDValue(New.getNode(), 1);
6825}
6826
6827/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6828/// equivalent.
6829SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6830                                   SelectionDAG &DAG) const {
6831  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6832    if (C->getAPIntValue() == 0)
6833      return EmitTest(Op0, X86CC, DAG);
6834
6835  DebugLoc dl = Op0.getDebugLoc();
6836  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6837}
6838
6839/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6840/// if it's possible.
6841SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6842                                     DebugLoc dl, SelectionDAG &DAG) const {
6843  SDValue Op0 = And.getOperand(0);
6844  SDValue Op1 = And.getOperand(1);
6845  if (Op0.getOpcode() == ISD::TRUNCATE)
6846    Op0 = Op0.getOperand(0);
6847  if (Op1.getOpcode() == ISD::TRUNCATE)
6848    Op1 = Op1.getOperand(0);
6849
6850  SDValue LHS, RHS;
6851  if (Op1.getOpcode() == ISD::SHL)
6852    std::swap(Op0, Op1);
6853  if (Op0.getOpcode() == ISD::SHL) {
6854    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6855      if (And00C->getZExtValue() == 1) {
6856        // If we looked past a truncate, check that it's only truncating away
6857        // known zeros.
6858        unsigned BitWidth = Op0.getValueSizeInBits();
6859        unsigned AndBitWidth = And.getValueSizeInBits();
6860        if (BitWidth > AndBitWidth) {
6861          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6862          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6863          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6864            return SDValue();
6865        }
6866        LHS = Op1;
6867        RHS = Op0.getOperand(1);
6868      }
6869  } else if (Op1.getOpcode() == ISD::Constant) {
6870    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6871    SDValue AndLHS = Op0;
6872    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6873      LHS = AndLHS.getOperand(0);
6874      RHS = AndLHS.getOperand(1);
6875    }
6876  }
6877
6878  if (LHS.getNode()) {
6879    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
6880    // instruction.  Since the shift amount is in-range-or-undefined, we know
6881    // that doing a bittest on the i32 value is ok.  We extend to i32 because
6882    // the encoding for the i16 version is larger than the i32 version.
6883    // Also promote i16 to i32 for performance / code size reason.
6884    if (LHS.getValueType() == MVT::i8 ||
6885        LHS.getValueType() == MVT::i16)
6886      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6887
6888    // If the operand types disagree, extend the shift amount to match.  Since
6889    // BT ignores high bits (like shifts) we can use anyextend.
6890    if (LHS.getValueType() != RHS.getValueType())
6891      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6892
6893    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6894    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6895    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6896                       DAG.getConstant(Cond, MVT::i8), BT);
6897  }
6898
6899  return SDValue();
6900}
6901
6902SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
6903  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6904  SDValue Op0 = Op.getOperand(0);
6905  SDValue Op1 = Op.getOperand(1);
6906  DebugLoc dl = Op.getDebugLoc();
6907  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6908
6909  // Optimize to BT if possible.
6910  // Lower (X & (1 << N)) == 0 to BT(X, N).
6911  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
6912  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
6913  if (Op0.getOpcode() == ISD::AND &&
6914      Op0.hasOneUse() &&
6915      Op1.getOpcode() == ISD::Constant &&
6916      cast<ConstantSDNode>(Op1)->isNullValue() &&
6917      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6918    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
6919    if (NewSetCC.getNode())
6920      return NewSetCC;
6921  }
6922
6923  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
6924  if (Op0.getOpcode() == X86ISD::SETCC &&
6925      Op1.getOpcode() == ISD::Constant &&
6926      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
6927       cast<ConstantSDNode>(Op1)->isNullValue()) &&
6928      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6929    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
6930    bool Invert = (CC == ISD::SETNE) ^
6931      cast<ConstantSDNode>(Op1)->isNullValue();
6932    if (Invert)
6933      CCode = X86::GetOppositeBranchCondition(CCode);
6934    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6935                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
6936  }
6937
6938  bool isFP = Op1.getValueType().isFloatingPoint();
6939  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
6940  if (X86CC == X86::COND_INVALID)
6941    return SDValue();
6942
6943  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
6944
6945  // Use sbb x, x to materialize carry bit into a GPR.
6946  if (X86CC == X86::COND_B)
6947    return DAG.getNode(ISD::AND, dl, MVT::i8,
6948                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
6949                                   DAG.getConstant(X86CC, MVT::i8), Cond),
6950                       DAG.getConstant(1, MVT::i8));
6951
6952  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6953                     DAG.getConstant(X86CC, MVT::i8), Cond);
6954}
6955
6956SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
6957  SDValue Cond;
6958  SDValue Op0 = Op.getOperand(0);
6959  SDValue Op1 = Op.getOperand(1);
6960  SDValue CC = Op.getOperand(2);
6961  EVT VT = Op.getValueType();
6962  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6963  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6964  DebugLoc dl = Op.getDebugLoc();
6965
6966  if (isFP) {
6967    unsigned SSECC = 8;
6968    EVT VT0 = Op0.getValueType();
6969    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
6970    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
6971    bool Swap = false;
6972
6973    switch (SetCCOpcode) {
6974    default: break;
6975    case ISD::SETOEQ:
6976    case ISD::SETEQ:  SSECC = 0; break;
6977    case ISD::SETOGT:
6978    case ISD::SETGT: Swap = true; // Fallthrough
6979    case ISD::SETLT:
6980    case ISD::SETOLT: SSECC = 1; break;
6981    case ISD::SETOGE:
6982    case ISD::SETGE: Swap = true; // Fallthrough
6983    case ISD::SETLE:
6984    case ISD::SETOLE: SSECC = 2; break;
6985    case ISD::SETUO:  SSECC = 3; break;
6986    case ISD::SETUNE:
6987    case ISD::SETNE:  SSECC = 4; break;
6988    case ISD::SETULE: Swap = true;
6989    case ISD::SETUGE: SSECC = 5; break;
6990    case ISD::SETULT: Swap = true;
6991    case ISD::SETUGT: SSECC = 6; break;
6992    case ISD::SETO:   SSECC = 7; break;
6993    }
6994    if (Swap)
6995      std::swap(Op0, Op1);
6996
6997    // In the two special cases we can't handle, emit two comparisons.
6998    if (SSECC == 8) {
6999      if (SetCCOpcode == ISD::SETUEQ) {
7000        SDValue UNORD, EQ;
7001        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7002        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7003        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7004      }
7005      else if (SetCCOpcode == ISD::SETONE) {
7006        SDValue ORD, NEQ;
7007        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7008        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7009        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7010      }
7011      llvm_unreachable("Illegal FP comparison");
7012    }
7013    // Handle all other FP comparisons here.
7014    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7015  }
7016
7017  // We are handling one of the integer comparisons here.  Since SSE only has
7018  // GT and EQ comparisons for integer, swapping operands and multiple
7019  // operations may be required for some comparisons.
7020  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7021  bool Swap = false, Invert = false, FlipSigns = false;
7022
7023  switch (VT.getSimpleVT().SimpleTy) {
7024  default: break;
7025  case MVT::v8i8:
7026  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7027  case MVT::v4i16:
7028  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7029  case MVT::v2i32:
7030  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7031  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7032  }
7033
7034  switch (SetCCOpcode) {
7035  default: break;
7036  case ISD::SETNE:  Invert = true;
7037  case ISD::SETEQ:  Opc = EQOpc; break;
7038  case ISD::SETLT:  Swap = true;
7039  case ISD::SETGT:  Opc = GTOpc; break;
7040  case ISD::SETGE:  Swap = true;
7041  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
7042  case ISD::SETULT: Swap = true;
7043  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7044  case ISD::SETUGE: Swap = true;
7045  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7046  }
7047  if (Swap)
7048    std::swap(Op0, Op1);
7049
7050  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
7051  // bits of the inputs before performing those operations.
7052  if (FlipSigns) {
7053    EVT EltVT = VT.getVectorElementType();
7054    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7055                                      EltVT);
7056    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7057    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7058                                    SignBits.size());
7059    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7060    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7061  }
7062
7063  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7064
7065  // If the logical-not of the result is required, perform that now.
7066  if (Invert)
7067    Result = DAG.getNOT(dl, Result, VT);
7068
7069  return Result;
7070}
7071
7072// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7073static bool isX86LogicalCmp(SDValue Op) {
7074  unsigned Opc = Op.getNode()->getOpcode();
7075  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7076    return true;
7077  if (Op.getResNo() == 1 &&
7078      (Opc == X86ISD::ADD ||
7079       Opc == X86ISD::SUB ||
7080       Opc == X86ISD::SMUL ||
7081       Opc == X86ISD::UMUL ||
7082       Opc == X86ISD::INC ||
7083       Opc == X86ISD::DEC ||
7084       Opc == X86ISD::OR ||
7085       Opc == X86ISD::XOR ||
7086       Opc == X86ISD::AND))
7087    return true;
7088
7089  return false;
7090}
7091
7092SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7093  bool addTest = true;
7094  SDValue Cond  = Op.getOperand(0);
7095  DebugLoc dl = Op.getDebugLoc();
7096  SDValue CC;
7097
7098  if (Cond.getOpcode() == ISD::SETCC) {
7099    SDValue NewCond = LowerSETCC(Cond, DAG);
7100    if (NewCond.getNode())
7101      Cond = NewCond;
7102  }
7103
7104  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
7105  SDValue Op1 = Op.getOperand(1);
7106  SDValue Op2 = Op.getOperand(2);
7107  if (Cond.getOpcode() == X86ISD::SETCC &&
7108      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
7109    SDValue Cmp = Cond.getOperand(1);
7110    if (Cmp.getOpcode() == X86ISD::CMP) {
7111      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
7112      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7113      ConstantSDNode *RHSC =
7114        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
7115      if (N1C && N1C->isAllOnesValue() &&
7116          N2C && N2C->isNullValue() &&
7117          RHSC && RHSC->isNullValue()) {
7118        SDValue CmpOp0 = Cmp.getOperand(0);
7119        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7120                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7121        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
7122                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7123      }
7124    }
7125  }
7126
7127  // Look pass (and (setcc_carry (cmp ...)), 1).
7128  if (Cond.getOpcode() == ISD::AND &&
7129      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7130    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7131    if (C && C->getAPIntValue() == 1)
7132      Cond = Cond.getOperand(0);
7133  }
7134
7135  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7136  // setting operand in place of the X86ISD::SETCC.
7137  if (Cond.getOpcode() == X86ISD::SETCC ||
7138      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7139    CC = Cond.getOperand(0);
7140
7141    SDValue Cmp = Cond.getOperand(1);
7142    unsigned Opc = Cmp.getOpcode();
7143    EVT VT = Op.getValueType();
7144
7145    bool IllegalFPCMov = false;
7146    if (VT.isFloatingPoint() && !VT.isVector() &&
7147        !isScalarFPTypeInSSEReg(VT))  // FPStack?
7148      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7149
7150    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7151        Opc == X86ISD::BT) { // FIXME
7152      Cond = Cmp;
7153      addTest = false;
7154    }
7155  }
7156
7157  if (addTest) {
7158    // Look pass the truncate.
7159    if (Cond.getOpcode() == ISD::TRUNCATE)
7160      Cond = Cond.getOperand(0);
7161
7162    // We know the result of AND is compared against zero. Try to match
7163    // it to BT.
7164    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7165      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7166      if (NewSetCC.getNode()) {
7167        CC = NewSetCC.getOperand(0);
7168        Cond = NewSetCC.getOperand(1);
7169        addTest = false;
7170      }
7171    }
7172  }
7173
7174  if (addTest) {
7175    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7176    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7177  }
7178
7179  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7180  // condition is true.
7181  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
7182  SDValue Ops[] = { Op2, Op1, CC, Cond };
7183  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
7184}
7185
7186// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7187// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7188// from the AND / OR.
7189static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7190  Opc = Op.getOpcode();
7191  if (Opc != ISD::OR && Opc != ISD::AND)
7192    return false;
7193  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7194          Op.getOperand(0).hasOneUse() &&
7195          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7196          Op.getOperand(1).hasOneUse());
7197}
7198
7199// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7200// 1 and that the SETCC node has a single use.
7201static bool isXor1OfSetCC(SDValue Op) {
7202  if (Op.getOpcode() != ISD::XOR)
7203    return false;
7204  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7205  if (N1C && N1C->getAPIntValue() == 1) {
7206    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7207      Op.getOperand(0).hasOneUse();
7208  }
7209  return false;
7210}
7211
7212SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7213  bool addTest = true;
7214  SDValue Chain = Op.getOperand(0);
7215  SDValue Cond  = Op.getOperand(1);
7216  SDValue Dest  = Op.getOperand(2);
7217  DebugLoc dl = Op.getDebugLoc();
7218  SDValue CC;
7219
7220  if (Cond.getOpcode() == ISD::SETCC) {
7221    SDValue NewCond = LowerSETCC(Cond, DAG);
7222    if (NewCond.getNode())
7223      Cond = NewCond;
7224  }
7225#if 0
7226  // FIXME: LowerXALUO doesn't handle these!!
7227  else if (Cond.getOpcode() == X86ISD::ADD  ||
7228           Cond.getOpcode() == X86ISD::SUB  ||
7229           Cond.getOpcode() == X86ISD::SMUL ||
7230           Cond.getOpcode() == X86ISD::UMUL)
7231    Cond = LowerXALUO(Cond, DAG);
7232#endif
7233
7234  // Look pass (and (setcc_carry (cmp ...)), 1).
7235  if (Cond.getOpcode() == ISD::AND &&
7236      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7237    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7238    if (C && C->getAPIntValue() == 1)
7239      Cond = Cond.getOperand(0);
7240  }
7241
7242  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7243  // setting operand in place of the X86ISD::SETCC.
7244  if (Cond.getOpcode() == X86ISD::SETCC ||
7245      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7246    CC = Cond.getOperand(0);
7247
7248    SDValue Cmp = Cond.getOperand(1);
7249    unsigned Opc = Cmp.getOpcode();
7250    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7251    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7252      Cond = Cmp;
7253      addTest = false;
7254    } else {
7255      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7256      default: break;
7257      case X86::COND_O:
7258      case X86::COND_B:
7259        // These can only come from an arithmetic instruction with overflow,
7260        // e.g. SADDO, UADDO.
7261        Cond = Cond.getNode()->getOperand(1);
7262        addTest = false;
7263        break;
7264      }
7265    }
7266  } else {
7267    unsigned CondOpc;
7268    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7269      SDValue Cmp = Cond.getOperand(0).getOperand(1);
7270      if (CondOpc == ISD::OR) {
7271        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7272        // two branches instead of an explicit OR instruction with a
7273        // separate test.
7274        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7275            isX86LogicalCmp(Cmp)) {
7276          CC = Cond.getOperand(0).getOperand(0);
7277          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7278                              Chain, Dest, CC, Cmp);
7279          CC = Cond.getOperand(1).getOperand(0);
7280          Cond = Cmp;
7281          addTest = false;
7282        }
7283      } else { // ISD::AND
7284        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7285        // two branches instead of an explicit AND instruction with a
7286        // separate test. However, we only do this if this block doesn't
7287        // have a fall-through edge, because this requires an explicit
7288        // jmp when the condition is false.
7289        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7290            isX86LogicalCmp(Cmp) &&
7291            Op.getNode()->hasOneUse()) {
7292          X86::CondCode CCode =
7293            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7294          CCode = X86::GetOppositeBranchCondition(CCode);
7295          CC = DAG.getConstant(CCode, MVT::i8);
7296          SDNode *User = *Op.getNode()->use_begin();
7297          // Look for an unconditional branch following this conditional branch.
7298          // We need this because we need to reverse the successors in order
7299          // to implement FCMP_OEQ.
7300          if (User->getOpcode() == ISD::BR) {
7301            SDValue FalseBB = User->getOperand(1);
7302            SDNode *NewBR =
7303              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7304            assert(NewBR == User);
7305            (void)NewBR;
7306            Dest = FalseBB;
7307
7308            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7309                                Chain, Dest, CC, Cmp);
7310            X86::CondCode CCode =
7311              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7312            CCode = X86::GetOppositeBranchCondition(CCode);
7313            CC = DAG.getConstant(CCode, MVT::i8);
7314            Cond = Cmp;
7315            addTest = false;
7316          }
7317        }
7318      }
7319    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7320      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7321      // It should be transformed during dag combiner except when the condition
7322      // is set by a arithmetics with overflow node.
7323      X86::CondCode CCode =
7324        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7325      CCode = X86::GetOppositeBranchCondition(CCode);
7326      CC = DAG.getConstant(CCode, MVT::i8);
7327      Cond = Cond.getOperand(0).getOperand(1);
7328      addTest = false;
7329    }
7330  }
7331
7332  if (addTest) {
7333    // Look pass the truncate.
7334    if (Cond.getOpcode() == ISD::TRUNCATE)
7335      Cond = Cond.getOperand(0);
7336
7337    // We know the result of AND is compared against zero. Try to match
7338    // it to BT.
7339    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7340      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7341      if (NewSetCC.getNode()) {
7342        CC = NewSetCC.getOperand(0);
7343        Cond = NewSetCC.getOperand(1);
7344        addTest = false;
7345      }
7346    }
7347  }
7348
7349  if (addTest) {
7350    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7351    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7352  }
7353  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7354                     Chain, Dest, CC, Cond);
7355}
7356
7357
7358// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7359// Calls to _alloca is needed to probe the stack when allocating more than 4k
7360// bytes in one go. Touching the stack at 4K increments is necessary to ensure
7361// that the guard pages used by the OS virtual memory manager are allocated in
7362// correct sequence.
7363SDValue
7364X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7365                                           SelectionDAG &DAG) const {
7366  assert(Subtarget->isTargetCygMing() &&
7367         "This should be used only on Cygwin/Mingw targets");
7368  DebugLoc dl = Op.getDebugLoc();
7369
7370  // Get the inputs.
7371  SDValue Chain = Op.getOperand(0);
7372  SDValue Size  = Op.getOperand(1);
7373  // FIXME: Ensure alignment here
7374
7375  SDValue Flag;
7376
7377  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7378
7379  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
7380  Flag = Chain.getValue(1);
7381
7382  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
7383
7384  Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
7385  Flag = Chain.getValue(1);
7386
7387  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7388
7389  SDValue Ops1[2] = { Chain.getValue(0), Chain };
7390  return DAG.getMergeValues(Ops1, 2, dl);
7391}
7392
7393SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7394  MachineFunction &MF = DAG.getMachineFunction();
7395  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7396
7397  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7398  DebugLoc dl = Op.getDebugLoc();
7399
7400  if (!Subtarget->is64Bit()) {
7401    // vastart just stores the address of the VarArgsFrameIndex slot into the
7402    // memory location argument.
7403    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7404                                   getPointerTy());
7405    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
7406                        false, false, 0);
7407  }
7408
7409  // __va_list_tag:
7410  //   gp_offset         (0 - 6 * 8)
7411  //   fp_offset         (48 - 48 + 8 * 16)
7412  //   overflow_arg_area (point to parameters coming in memory).
7413  //   reg_save_area
7414  SmallVector<SDValue, 8> MemOps;
7415  SDValue FIN = Op.getOperand(1);
7416  // Store gp_offset
7417  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
7418                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
7419                                               MVT::i32),
7420                               FIN, SV, 0, false, false, 0);
7421  MemOps.push_back(Store);
7422
7423  // Store fp_offset
7424  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7425                    FIN, DAG.getIntPtrConstant(4));
7426  Store = DAG.getStore(Op.getOperand(0), dl,
7427                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
7428                                       MVT::i32),
7429                       FIN, SV, 4, false, false, 0);
7430  MemOps.push_back(Store);
7431
7432  // Store ptr to overflow_arg_area
7433  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7434                    FIN, DAG.getIntPtrConstant(4));
7435  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7436                                    getPointerTy());
7437  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 8,
7438                       false, false, 0);
7439  MemOps.push_back(Store);
7440
7441  // Store ptr to reg_save_area.
7442  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7443                    FIN, DAG.getIntPtrConstant(8));
7444  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
7445                                    getPointerTy());
7446  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 16,
7447                       false, false, 0);
7448  MemOps.push_back(Store);
7449  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7450                     &MemOps[0], MemOps.size());
7451}
7452
7453SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
7454  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
7455  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
7456
7457  report_fatal_error("VAArgInst is not yet implemented for x86-64!");
7458  return SDValue();
7459}
7460
7461SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
7462  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
7463  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
7464  SDValue Chain = Op.getOperand(0);
7465  SDValue DstPtr = Op.getOperand(1);
7466  SDValue SrcPtr = Op.getOperand(2);
7467  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
7468  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7469  DebugLoc dl = Op.getDebugLoc();
7470
7471  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
7472                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
7473                       false, DstSV, 0, SrcSV, 0);
7474}
7475
7476SDValue
7477X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
7478  DebugLoc dl = Op.getDebugLoc();
7479  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7480  switch (IntNo) {
7481  default: return SDValue();    // Don't custom lower most intrinsics.
7482  // Comparison intrinsics.
7483  case Intrinsic::x86_sse_comieq_ss:
7484  case Intrinsic::x86_sse_comilt_ss:
7485  case Intrinsic::x86_sse_comile_ss:
7486  case Intrinsic::x86_sse_comigt_ss:
7487  case Intrinsic::x86_sse_comige_ss:
7488  case Intrinsic::x86_sse_comineq_ss:
7489  case Intrinsic::x86_sse_ucomieq_ss:
7490  case Intrinsic::x86_sse_ucomilt_ss:
7491  case Intrinsic::x86_sse_ucomile_ss:
7492  case Intrinsic::x86_sse_ucomigt_ss:
7493  case Intrinsic::x86_sse_ucomige_ss:
7494  case Intrinsic::x86_sse_ucomineq_ss:
7495  case Intrinsic::x86_sse2_comieq_sd:
7496  case Intrinsic::x86_sse2_comilt_sd:
7497  case Intrinsic::x86_sse2_comile_sd:
7498  case Intrinsic::x86_sse2_comigt_sd:
7499  case Intrinsic::x86_sse2_comige_sd:
7500  case Intrinsic::x86_sse2_comineq_sd:
7501  case Intrinsic::x86_sse2_ucomieq_sd:
7502  case Intrinsic::x86_sse2_ucomilt_sd:
7503  case Intrinsic::x86_sse2_ucomile_sd:
7504  case Intrinsic::x86_sse2_ucomigt_sd:
7505  case Intrinsic::x86_sse2_ucomige_sd:
7506  case Intrinsic::x86_sse2_ucomineq_sd: {
7507    unsigned Opc = 0;
7508    ISD::CondCode CC = ISD::SETCC_INVALID;
7509    switch (IntNo) {
7510    default: break;
7511    case Intrinsic::x86_sse_comieq_ss:
7512    case Intrinsic::x86_sse2_comieq_sd:
7513      Opc = X86ISD::COMI;
7514      CC = ISD::SETEQ;
7515      break;
7516    case Intrinsic::x86_sse_comilt_ss:
7517    case Intrinsic::x86_sse2_comilt_sd:
7518      Opc = X86ISD::COMI;
7519      CC = ISD::SETLT;
7520      break;
7521    case Intrinsic::x86_sse_comile_ss:
7522    case Intrinsic::x86_sse2_comile_sd:
7523      Opc = X86ISD::COMI;
7524      CC = ISD::SETLE;
7525      break;
7526    case Intrinsic::x86_sse_comigt_ss:
7527    case Intrinsic::x86_sse2_comigt_sd:
7528      Opc = X86ISD::COMI;
7529      CC = ISD::SETGT;
7530      break;
7531    case Intrinsic::x86_sse_comige_ss:
7532    case Intrinsic::x86_sse2_comige_sd:
7533      Opc = X86ISD::COMI;
7534      CC = ISD::SETGE;
7535      break;
7536    case Intrinsic::x86_sse_comineq_ss:
7537    case Intrinsic::x86_sse2_comineq_sd:
7538      Opc = X86ISD::COMI;
7539      CC = ISD::SETNE;
7540      break;
7541    case Intrinsic::x86_sse_ucomieq_ss:
7542    case Intrinsic::x86_sse2_ucomieq_sd:
7543      Opc = X86ISD::UCOMI;
7544      CC = ISD::SETEQ;
7545      break;
7546    case Intrinsic::x86_sse_ucomilt_ss:
7547    case Intrinsic::x86_sse2_ucomilt_sd:
7548      Opc = X86ISD::UCOMI;
7549      CC = ISD::SETLT;
7550      break;
7551    case Intrinsic::x86_sse_ucomile_ss:
7552    case Intrinsic::x86_sse2_ucomile_sd:
7553      Opc = X86ISD::UCOMI;
7554      CC = ISD::SETLE;
7555      break;
7556    case Intrinsic::x86_sse_ucomigt_ss:
7557    case Intrinsic::x86_sse2_ucomigt_sd:
7558      Opc = X86ISD::UCOMI;
7559      CC = ISD::SETGT;
7560      break;
7561    case Intrinsic::x86_sse_ucomige_ss:
7562    case Intrinsic::x86_sse2_ucomige_sd:
7563      Opc = X86ISD::UCOMI;
7564      CC = ISD::SETGE;
7565      break;
7566    case Intrinsic::x86_sse_ucomineq_ss:
7567    case Intrinsic::x86_sse2_ucomineq_sd:
7568      Opc = X86ISD::UCOMI;
7569      CC = ISD::SETNE;
7570      break;
7571    }
7572
7573    SDValue LHS = Op.getOperand(1);
7574    SDValue RHS = Op.getOperand(2);
7575    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
7576    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
7577    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
7578    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7579                                DAG.getConstant(X86CC, MVT::i8), Cond);
7580    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7581  }
7582  // ptest and testp intrinsics. The intrinsic these come from are designed to
7583  // return an integer value, not just an instruction so lower it to the ptest
7584  // or testp pattern and a setcc for the result.
7585  case Intrinsic::x86_sse41_ptestz:
7586  case Intrinsic::x86_sse41_ptestc:
7587  case Intrinsic::x86_sse41_ptestnzc:
7588  case Intrinsic::x86_avx_ptestz_256:
7589  case Intrinsic::x86_avx_ptestc_256:
7590  case Intrinsic::x86_avx_ptestnzc_256:
7591  case Intrinsic::x86_avx_vtestz_ps:
7592  case Intrinsic::x86_avx_vtestc_ps:
7593  case Intrinsic::x86_avx_vtestnzc_ps:
7594  case Intrinsic::x86_avx_vtestz_pd:
7595  case Intrinsic::x86_avx_vtestc_pd:
7596  case Intrinsic::x86_avx_vtestnzc_pd:
7597  case Intrinsic::x86_avx_vtestz_ps_256:
7598  case Intrinsic::x86_avx_vtestc_ps_256:
7599  case Intrinsic::x86_avx_vtestnzc_ps_256:
7600  case Intrinsic::x86_avx_vtestz_pd_256:
7601  case Intrinsic::x86_avx_vtestc_pd_256:
7602  case Intrinsic::x86_avx_vtestnzc_pd_256: {
7603    bool IsTestPacked = false;
7604    unsigned X86CC = 0;
7605    switch (IntNo) {
7606    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7607    case Intrinsic::x86_avx_vtestz_ps:
7608    case Intrinsic::x86_avx_vtestz_pd:
7609    case Intrinsic::x86_avx_vtestz_ps_256:
7610    case Intrinsic::x86_avx_vtestz_pd_256:
7611      IsTestPacked = true; // Fallthrough
7612    case Intrinsic::x86_sse41_ptestz:
7613    case Intrinsic::x86_avx_ptestz_256:
7614      // ZF = 1
7615      X86CC = X86::COND_E;
7616      break;
7617    case Intrinsic::x86_avx_vtestc_ps:
7618    case Intrinsic::x86_avx_vtestc_pd:
7619    case Intrinsic::x86_avx_vtestc_ps_256:
7620    case Intrinsic::x86_avx_vtestc_pd_256:
7621      IsTestPacked = true; // Fallthrough
7622    case Intrinsic::x86_sse41_ptestc:
7623    case Intrinsic::x86_avx_ptestc_256:
7624      // CF = 1
7625      X86CC = X86::COND_B;
7626      break;
7627    case Intrinsic::x86_avx_vtestnzc_ps:
7628    case Intrinsic::x86_avx_vtestnzc_pd:
7629    case Intrinsic::x86_avx_vtestnzc_ps_256:
7630    case Intrinsic::x86_avx_vtestnzc_pd_256:
7631      IsTestPacked = true; // Fallthrough
7632    case Intrinsic::x86_sse41_ptestnzc:
7633    case Intrinsic::x86_avx_ptestnzc_256:
7634      // ZF and CF = 0
7635      X86CC = X86::COND_A;
7636      break;
7637    }
7638
7639    SDValue LHS = Op.getOperand(1);
7640    SDValue RHS = Op.getOperand(2);
7641    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
7642    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
7643    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7644    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7645    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7646  }
7647
7648  // Fix vector shift instructions where the last operand is a non-immediate
7649  // i32 value.
7650  case Intrinsic::x86_sse2_pslli_w:
7651  case Intrinsic::x86_sse2_pslli_d:
7652  case Intrinsic::x86_sse2_pslli_q:
7653  case Intrinsic::x86_sse2_psrli_w:
7654  case Intrinsic::x86_sse2_psrli_d:
7655  case Intrinsic::x86_sse2_psrli_q:
7656  case Intrinsic::x86_sse2_psrai_w:
7657  case Intrinsic::x86_sse2_psrai_d:
7658  case Intrinsic::x86_mmx_pslli_w:
7659  case Intrinsic::x86_mmx_pslli_d:
7660  case Intrinsic::x86_mmx_pslli_q:
7661  case Intrinsic::x86_mmx_psrli_w:
7662  case Intrinsic::x86_mmx_psrli_d:
7663  case Intrinsic::x86_mmx_psrli_q:
7664  case Intrinsic::x86_mmx_psrai_w:
7665  case Intrinsic::x86_mmx_psrai_d: {
7666    SDValue ShAmt = Op.getOperand(2);
7667    if (isa<ConstantSDNode>(ShAmt))
7668      return SDValue();
7669
7670    unsigned NewIntNo = 0;
7671    EVT ShAmtVT = MVT::v4i32;
7672    switch (IntNo) {
7673    case Intrinsic::x86_sse2_pslli_w:
7674      NewIntNo = Intrinsic::x86_sse2_psll_w;
7675      break;
7676    case Intrinsic::x86_sse2_pslli_d:
7677      NewIntNo = Intrinsic::x86_sse2_psll_d;
7678      break;
7679    case Intrinsic::x86_sse2_pslli_q:
7680      NewIntNo = Intrinsic::x86_sse2_psll_q;
7681      break;
7682    case Intrinsic::x86_sse2_psrli_w:
7683      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7684      break;
7685    case Intrinsic::x86_sse2_psrli_d:
7686      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7687      break;
7688    case Intrinsic::x86_sse2_psrli_q:
7689      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7690      break;
7691    case Intrinsic::x86_sse2_psrai_w:
7692      NewIntNo = Intrinsic::x86_sse2_psra_w;
7693      break;
7694    case Intrinsic::x86_sse2_psrai_d:
7695      NewIntNo = Intrinsic::x86_sse2_psra_d;
7696      break;
7697    default: {
7698      ShAmtVT = MVT::v2i32;
7699      switch (IntNo) {
7700      case Intrinsic::x86_mmx_pslli_w:
7701        NewIntNo = Intrinsic::x86_mmx_psll_w;
7702        break;
7703      case Intrinsic::x86_mmx_pslli_d:
7704        NewIntNo = Intrinsic::x86_mmx_psll_d;
7705        break;
7706      case Intrinsic::x86_mmx_pslli_q:
7707        NewIntNo = Intrinsic::x86_mmx_psll_q;
7708        break;
7709      case Intrinsic::x86_mmx_psrli_w:
7710        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7711        break;
7712      case Intrinsic::x86_mmx_psrli_d:
7713        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7714        break;
7715      case Intrinsic::x86_mmx_psrli_q:
7716        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7717        break;
7718      case Intrinsic::x86_mmx_psrai_w:
7719        NewIntNo = Intrinsic::x86_mmx_psra_w;
7720        break;
7721      case Intrinsic::x86_mmx_psrai_d:
7722        NewIntNo = Intrinsic::x86_mmx_psra_d;
7723        break;
7724      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7725      }
7726      break;
7727    }
7728    }
7729
7730    // The vector shift intrinsics with scalars uses 32b shift amounts but
7731    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7732    // to be zero.
7733    SDValue ShOps[4];
7734    ShOps[0] = ShAmt;
7735    ShOps[1] = DAG.getConstant(0, MVT::i32);
7736    if (ShAmtVT == MVT::v4i32) {
7737      ShOps[2] = DAG.getUNDEF(MVT::i32);
7738      ShOps[3] = DAG.getUNDEF(MVT::i32);
7739      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7740    } else {
7741      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7742    }
7743
7744    EVT VT = Op.getValueType();
7745    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7746    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7747                       DAG.getConstant(NewIntNo, MVT::i32),
7748                       Op.getOperand(1), ShAmt);
7749  }
7750  }
7751}
7752
7753SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7754                                           SelectionDAG &DAG) const {
7755  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7756  MFI->setReturnAddressIsTaken(true);
7757
7758  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7759  DebugLoc dl = Op.getDebugLoc();
7760
7761  if (Depth > 0) {
7762    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7763    SDValue Offset =
7764      DAG.getConstant(TD->getPointerSize(),
7765                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7766    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7767                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7768                                   FrameAddr, Offset),
7769                       NULL, 0, false, false, 0);
7770  }
7771
7772  // Just load the return address.
7773  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7774  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7775                     RetAddrFI, NULL, 0, false, false, 0);
7776}
7777
7778SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7779  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7780  MFI->setFrameAddressIsTaken(true);
7781
7782  EVT VT = Op.getValueType();
7783  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7784  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7785  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7786  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7787  while (Depth--)
7788    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
7789                            false, false, 0);
7790  return FrameAddr;
7791}
7792
7793SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7794                                                     SelectionDAG &DAG) const {
7795  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7796}
7797
7798SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
7799  MachineFunction &MF = DAG.getMachineFunction();
7800  SDValue Chain     = Op.getOperand(0);
7801  SDValue Offset    = Op.getOperand(1);
7802  SDValue Handler   = Op.getOperand(2);
7803  DebugLoc dl       = Op.getDebugLoc();
7804
7805  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
7806                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7807                                     getPointerTy());
7808  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7809
7810  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
7811                                  DAG.getIntPtrConstant(TD->getPointerSize()));
7812  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7813  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7814  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7815  MF.getRegInfo().addLiveOut(StoreAddrReg);
7816
7817  return DAG.getNode(X86ISD::EH_RETURN, dl,
7818                     MVT::Other,
7819                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7820}
7821
7822SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7823                                             SelectionDAG &DAG) const {
7824  SDValue Root = Op.getOperand(0);
7825  SDValue Trmp = Op.getOperand(1); // trampoline
7826  SDValue FPtr = Op.getOperand(2); // nested function
7827  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7828  DebugLoc dl  = Op.getDebugLoc();
7829
7830  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7831
7832  if (Subtarget->is64Bit()) {
7833    SDValue OutChains[6];
7834
7835    // Large code-model.
7836    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7837    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7838
7839    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7840    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7841
7842    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7843
7844    // Load the pointer to the nested function into R11.
7845    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7846    SDValue Addr = Trmp;
7847    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7848                                Addr, TrmpAddr, 0, false, false, 0);
7849
7850    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7851                       DAG.getConstant(2, MVT::i64));
7852    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7853                                false, false, 2);
7854
7855    // Load the 'nest' parameter value into R10.
7856    // R10 is specified in X86CallingConv.td
7857    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7858    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7859                       DAG.getConstant(10, MVT::i64));
7860    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7861                                Addr, TrmpAddr, 10, false, false, 0);
7862
7863    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7864                       DAG.getConstant(12, MVT::i64));
7865    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7866                                false, false, 2);
7867
7868    // Jump to the nested function.
7869    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7870    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7871                       DAG.getConstant(20, MVT::i64));
7872    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7873                                Addr, TrmpAddr, 20, false, false, 0);
7874
7875    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7876    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7877                       DAG.getConstant(22, MVT::i64));
7878    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7879                                TrmpAddr, 22, false, false, 0);
7880
7881    SDValue Ops[] =
7882      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7883    return DAG.getMergeValues(Ops, 2, dl);
7884  } else {
7885    const Function *Func =
7886      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7887    CallingConv::ID CC = Func->getCallingConv();
7888    unsigned NestReg;
7889
7890    switch (CC) {
7891    default:
7892      llvm_unreachable("Unsupported calling convention");
7893    case CallingConv::C:
7894    case CallingConv::X86_StdCall: {
7895      // Pass 'nest' parameter in ECX.
7896      // Must be kept in sync with X86CallingConv.td
7897      NestReg = X86::ECX;
7898
7899      // Check that ECX wasn't needed by an 'inreg' parameter.
7900      const FunctionType *FTy = Func->getFunctionType();
7901      const AttrListPtr &Attrs = Func->getAttributes();
7902
7903      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7904        unsigned InRegCount = 0;
7905        unsigned Idx = 1;
7906
7907        for (FunctionType::param_iterator I = FTy->param_begin(),
7908             E = FTy->param_end(); I != E; ++I, ++Idx)
7909          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7910            // FIXME: should only count parameters that are lowered to integers.
7911            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7912
7913        if (InRegCount > 2) {
7914          report_fatal_error("Nest register in use - reduce number of inreg"
7915                             " parameters!");
7916        }
7917      }
7918      break;
7919    }
7920    case CallingConv::X86_FastCall:
7921    case CallingConv::X86_ThisCall:
7922    case CallingConv::Fast:
7923      // Pass 'nest' parameter in EAX.
7924      // Must be kept in sync with X86CallingConv.td
7925      NestReg = X86::EAX;
7926      break;
7927    }
7928
7929    SDValue OutChains[4];
7930    SDValue Addr, Disp;
7931
7932    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7933                       DAG.getConstant(10, MVT::i32));
7934    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7935
7936    // This is storing the opcode for MOV32ri.
7937    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7938    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7939    OutChains[0] = DAG.getStore(Root, dl,
7940                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7941                                Trmp, TrmpAddr, 0, false, false, 0);
7942
7943    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7944                       DAG.getConstant(1, MVT::i32));
7945    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7946                                false, false, 1);
7947
7948    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7949    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7950                       DAG.getConstant(5, MVT::i32));
7951    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7952                                TrmpAddr, 5, false, false, 1);
7953
7954    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7955                       DAG.getConstant(6, MVT::i32));
7956    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7957                                false, false, 1);
7958
7959    SDValue Ops[] =
7960      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7961    return DAG.getMergeValues(Ops, 2, dl);
7962  }
7963}
7964
7965SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7966                                            SelectionDAG &DAG) const {
7967  /*
7968   The rounding mode is in bits 11:10 of FPSR, and has the following
7969   settings:
7970     00 Round to nearest
7971     01 Round to -inf
7972     10 Round to +inf
7973     11 Round to 0
7974
7975  FLT_ROUNDS, on the other hand, expects the following:
7976    -1 Undefined
7977     0 Round to 0
7978     1 Round to nearest
7979     2 Round to +inf
7980     3 Round to -inf
7981
7982  To perform the conversion, we do:
7983    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7984  */
7985
7986  MachineFunction &MF = DAG.getMachineFunction();
7987  const TargetMachine &TM = MF.getTarget();
7988  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7989  unsigned StackAlignment = TFI.getStackAlignment();
7990  EVT VT = Op.getValueType();
7991  DebugLoc dl = Op.getDebugLoc();
7992
7993  // Save FP Control Word to stack slot
7994  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7995  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7996
7997  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7998                              DAG.getEntryNode(), StackSlot);
7999
8000  // Load FP Control Word from stack slot
8001  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
8002                            false, false, 0);
8003
8004  // Transform as necessary
8005  SDValue CWD1 =
8006    DAG.getNode(ISD::SRL, dl, MVT::i16,
8007                DAG.getNode(ISD::AND, dl, MVT::i16,
8008                            CWD, DAG.getConstant(0x800, MVT::i16)),
8009                DAG.getConstant(11, MVT::i8));
8010  SDValue CWD2 =
8011    DAG.getNode(ISD::SRL, dl, MVT::i16,
8012                DAG.getNode(ISD::AND, dl, MVT::i16,
8013                            CWD, DAG.getConstant(0x400, MVT::i16)),
8014                DAG.getConstant(9, MVT::i8));
8015
8016  SDValue RetVal =
8017    DAG.getNode(ISD::AND, dl, MVT::i16,
8018                DAG.getNode(ISD::ADD, dl, MVT::i16,
8019                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
8020                            DAG.getConstant(1, MVT::i16)),
8021                DAG.getConstant(3, MVT::i16));
8022
8023
8024  return DAG.getNode((VT.getSizeInBits() < 16 ?
8025                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
8026}
8027
8028SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8029  EVT VT = Op.getValueType();
8030  EVT OpVT = VT;
8031  unsigned NumBits = VT.getSizeInBits();
8032  DebugLoc dl = Op.getDebugLoc();
8033
8034  Op = Op.getOperand(0);
8035  if (VT == MVT::i8) {
8036    // Zero extend to i32 since there is not an i8 bsr.
8037    OpVT = MVT::i32;
8038    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8039  }
8040
8041  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8042  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8043  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
8044
8045  // If src is zero (i.e. bsr sets ZF), returns NumBits.
8046  SDValue Ops[] = {
8047    Op,
8048    DAG.getConstant(NumBits+NumBits-1, OpVT),
8049    DAG.getConstant(X86::COND_E, MVT::i8),
8050    Op.getValue(1)
8051  };
8052  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8053
8054  // Finally xor with NumBits-1.
8055  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
8056
8057  if (VT == MVT::i8)
8058    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8059  return Op;
8060}
8061
8062SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
8063  EVT VT = Op.getValueType();
8064  EVT OpVT = VT;
8065  unsigned NumBits = VT.getSizeInBits();
8066  DebugLoc dl = Op.getDebugLoc();
8067
8068  Op = Op.getOperand(0);
8069  if (VT == MVT::i8) {
8070    OpVT = MVT::i32;
8071    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8072  }
8073
8074  // Issue a bsf (scan bits forward) which also sets EFLAGS.
8075  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8076  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
8077
8078  // If src is zero (i.e. bsf sets ZF), returns NumBits.
8079  SDValue Ops[] = {
8080    Op,
8081    DAG.getConstant(NumBits, OpVT),
8082    DAG.getConstant(X86::COND_E, MVT::i8),
8083    Op.getValue(1)
8084  };
8085  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8086
8087  if (VT == MVT::i8)
8088    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8089  return Op;
8090}
8091
8092SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
8093  EVT VT = Op.getValueType();
8094  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
8095  DebugLoc dl = Op.getDebugLoc();
8096
8097  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8098  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8099  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8100  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8101  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8102  //
8103  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8104  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8105  //  return AloBlo + AloBhi + AhiBlo;
8106
8107  SDValue A = Op.getOperand(0);
8108  SDValue B = Op.getOperand(1);
8109
8110  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8111                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8112                       A, DAG.getConstant(32, MVT::i32));
8113  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8114                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8115                       B, DAG.getConstant(32, MVT::i32));
8116  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8117                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8118                       A, B);
8119  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8120                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8121                       A, Bhi);
8122  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8123                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8124                       Ahi, B);
8125  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8126                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8127                       AloBhi, DAG.getConstant(32, MVT::i32));
8128  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8129                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8130                       AhiBlo, DAG.getConstant(32, MVT::i32));
8131  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
8132  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
8133  return Res;
8134}
8135
8136SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
8137  EVT VT = Op.getValueType();
8138  DebugLoc dl = Op.getDebugLoc();
8139  SDValue R = Op.getOperand(0);
8140
8141  LLVMContext *Context = DAG.getContext();
8142
8143  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
8144
8145  if (VT == MVT::v4i32) {
8146    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8147                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8148                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
8149
8150    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
8151
8152    std::vector<Constant*> CV(4, CI);
8153    Constant *C = ConstantVector::get(CV);
8154    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8155    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8156                                 PseudoSourceValue::getConstantPool(), 0,
8157                                 false, false, 16);
8158
8159    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
8160    Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, Op);
8161    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
8162    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
8163  }
8164  if (VT == MVT::v16i8) {
8165    // a = a << 5;
8166    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8167                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8168                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
8169
8170    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
8171    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
8172
8173    std::vector<Constant*> CVM1(16, CM1);
8174    std::vector<Constant*> CVM2(16, CM2);
8175    Constant *C = ConstantVector::get(CVM1);
8176    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8177    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8178                            PseudoSourceValue::getConstantPool(), 0,
8179                            false, false, 16);
8180
8181    // r = pblendv(r, psllw(r & (char16)15, 4), a);
8182    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8183    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8184                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8185                    DAG.getConstant(4, MVT::i32));
8186    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8187                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8188                    R, M, Op);
8189    // a += a
8190    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8191
8192    C = ConstantVector::get(CVM2);
8193    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8194    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8195                    PseudoSourceValue::getConstantPool(), 0, false, false, 16);
8196
8197    // r = pblendv(r, psllw(r & (char16)63, 2), a);
8198    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8199    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8200                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8201                    DAG.getConstant(2, MVT::i32));
8202    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8203                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8204                    R, M, Op);
8205    // a += a
8206    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8207
8208    // return pblendv(r, r+r, a);
8209    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8210                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8211                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
8212    return R;
8213  }
8214  return SDValue();
8215}
8216
8217SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
8218  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8219  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8220  // looks for this combo and may remove the "setcc" instruction if the "setcc"
8221  // has only one use.
8222  SDNode *N = Op.getNode();
8223  SDValue LHS = N->getOperand(0);
8224  SDValue RHS = N->getOperand(1);
8225  unsigned BaseOp = 0;
8226  unsigned Cond = 0;
8227  DebugLoc dl = Op.getDebugLoc();
8228
8229  switch (Op.getOpcode()) {
8230  default: llvm_unreachable("Unknown ovf instruction!");
8231  case ISD::SADDO:
8232    // A subtract of one will be selected as a INC. Note that INC doesn't
8233    // set CF, so we can't do this for UADDO.
8234    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8235      if (C->getAPIntValue() == 1) {
8236        BaseOp = X86ISD::INC;
8237        Cond = X86::COND_O;
8238        break;
8239      }
8240    BaseOp = X86ISD::ADD;
8241    Cond = X86::COND_O;
8242    break;
8243  case ISD::UADDO:
8244    BaseOp = X86ISD::ADD;
8245    Cond = X86::COND_B;
8246    break;
8247  case ISD::SSUBO:
8248    // A subtract of one will be selected as a DEC. Note that DEC doesn't
8249    // set CF, so we can't do this for USUBO.
8250    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8251      if (C->getAPIntValue() == 1) {
8252        BaseOp = X86ISD::DEC;
8253        Cond = X86::COND_O;
8254        break;
8255      }
8256    BaseOp = X86ISD::SUB;
8257    Cond = X86::COND_O;
8258    break;
8259  case ISD::USUBO:
8260    BaseOp = X86ISD::SUB;
8261    Cond = X86::COND_B;
8262    break;
8263  case ISD::SMULO:
8264    BaseOp = X86ISD::SMUL;
8265    Cond = X86::COND_O;
8266    break;
8267  case ISD::UMULO:
8268    BaseOp = X86ISD::UMUL;
8269    Cond = X86::COND_B;
8270    break;
8271  }
8272
8273  // Also sets EFLAGS.
8274  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
8275  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
8276
8277  SDValue SetCC =
8278    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
8279                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
8280
8281  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8282  return Sum;
8283}
8284
8285SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
8286  DebugLoc dl = Op.getDebugLoc();
8287
8288  if (!Subtarget->hasSSE2()) {
8289    SDValue Chain = Op.getOperand(0);
8290    SDValue Zero = DAG.getConstant(0,
8291                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8292    SDValue Ops[] = {
8293      DAG.getRegister(X86::ESP, MVT::i32), // Base
8294      DAG.getTargetConstant(1, MVT::i8),   // Scale
8295      DAG.getRegister(0, MVT::i32),        // Index
8296      DAG.getTargetConstant(0, MVT::i32),  // Disp
8297      DAG.getRegister(0, MVT::i32),        // Segment.
8298      Zero,
8299      Chain
8300    };
8301    SDNode *Res =
8302      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
8303                          array_lengthof(Ops));
8304    return SDValue(Res, 0);
8305  }
8306
8307  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
8308  if (!isDev)
8309    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
8310
8311  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8312  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8313  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
8314  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
8315
8316  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
8317  if (!Op1 && !Op2 && !Op3 && Op4)
8318    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
8319
8320  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
8321  if (Op1 && !Op2 && !Op3 && !Op4)
8322    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
8323
8324  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
8325  //           (MFENCE)>;
8326  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
8327}
8328
8329SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8330  EVT T = Op.getValueType();
8331  DebugLoc dl = Op.getDebugLoc();
8332  unsigned Reg = 0;
8333  unsigned size = 0;
8334  switch(T.getSimpleVT().SimpleTy) {
8335  default:
8336    assert(false && "Invalid value type!");
8337  case MVT::i8:  Reg = X86::AL;  size = 1; break;
8338  case MVT::i16: Reg = X86::AX;  size = 2; break;
8339  case MVT::i32: Reg = X86::EAX; size = 4; break;
8340  case MVT::i64:
8341    assert(Subtarget->is64Bit() && "Node not type legal!");
8342    Reg = X86::RAX; size = 8;
8343    break;
8344  }
8345  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
8346                                    Op.getOperand(2), SDValue());
8347  SDValue Ops[] = { cpIn.getValue(0),
8348                    Op.getOperand(1),
8349                    Op.getOperand(3),
8350                    DAG.getTargetConstant(size, MVT::i8),
8351                    cpIn.getValue(1) };
8352  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8353  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
8354  SDValue cpOut =
8355    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
8356  return cpOut;
8357}
8358
8359SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
8360                                                 SelectionDAG &DAG) const {
8361  assert(Subtarget->is64Bit() && "Result not type legalized?");
8362  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8363  SDValue TheChain = Op.getOperand(0);
8364  DebugLoc dl = Op.getDebugLoc();
8365  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8366  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
8367  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
8368                                   rax.getValue(2));
8369  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
8370                            DAG.getConstant(32, MVT::i8));
8371  SDValue Ops[] = {
8372    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
8373    rdx.getValue(1)
8374  };
8375  return DAG.getMergeValues(Ops, 2, dl);
8376}
8377
8378SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op,
8379                                            SelectionDAG &DAG) const {
8380  EVT SrcVT = Op.getOperand(0).getValueType();
8381  EVT DstVT = Op.getValueType();
8382  assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
8383          Subtarget->hasMMX() && !DisableMMX) &&
8384         "Unexpected custom BIT_CONVERT");
8385  assert((DstVT == MVT::i64 ||
8386          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
8387         "Unexpected custom BIT_CONVERT");
8388  // i64 <=> MMX conversions are Legal.
8389  if (SrcVT==MVT::i64 && DstVT.isVector())
8390    return Op;
8391  if (DstVT==MVT::i64 && SrcVT.isVector())
8392    return Op;
8393  // MMX <=> MMX conversions are Legal.
8394  if (SrcVT.isVector() && DstVT.isVector())
8395    return Op;
8396  // All other conversions need to be expanded.
8397  return SDValue();
8398}
8399SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
8400  SDNode *Node = Op.getNode();
8401  DebugLoc dl = Node->getDebugLoc();
8402  EVT T = Node->getValueType(0);
8403  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
8404                              DAG.getConstant(0, T), Node->getOperand(2));
8405  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
8406                       cast<AtomicSDNode>(Node)->getMemoryVT(),
8407                       Node->getOperand(0),
8408                       Node->getOperand(1), negOp,
8409                       cast<AtomicSDNode>(Node)->getSrcValue(),
8410                       cast<AtomicSDNode>(Node)->getAlignment());
8411}
8412
8413/// LowerOperation - Provide custom lowering hooks for some operations.
8414///
8415SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8416  switch (Op.getOpcode()) {
8417  default: llvm_unreachable("Should not custom lower this!");
8418  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
8419  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
8420  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
8421  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
8422  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
8423  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
8424  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8425  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
8426  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
8427  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
8428  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
8429  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
8430  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
8431  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
8432  case ISD::SHL_PARTS:
8433  case ISD::SRA_PARTS:
8434  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
8435  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
8436  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
8437  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
8438  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
8439  case ISD::FABS:               return LowerFABS(Op, DAG);
8440  case ISD::FNEG:               return LowerFNEG(Op, DAG);
8441  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
8442  case ISD::SETCC:              return LowerSETCC(Op, DAG);
8443  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
8444  case ISD::SELECT:             return LowerSELECT(Op, DAG);
8445  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
8446  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
8447  case ISD::VASTART:            return LowerVASTART(Op, DAG);
8448  case ISD::VAARG:              return LowerVAARG(Op, DAG);
8449  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
8450  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
8451  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
8452  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
8453  case ISD::FRAME_TO_ARGS_OFFSET:
8454                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
8455  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
8456  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
8457  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
8458  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
8459  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
8460  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
8461  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
8462  case ISD::SHL:                return LowerSHL(Op, DAG);
8463  case ISD::SADDO:
8464  case ISD::UADDO:
8465  case ISD::SSUBO:
8466  case ISD::USUBO:
8467  case ISD::SMULO:
8468  case ISD::UMULO:              return LowerXALUO(Op, DAG);
8469  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
8470  case ISD::BIT_CONVERT:        return LowerBIT_CONVERT(Op, DAG);
8471  }
8472}
8473
8474void X86TargetLowering::
8475ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
8476                        SelectionDAG &DAG, unsigned NewOp) const {
8477  EVT T = Node->getValueType(0);
8478  DebugLoc dl = Node->getDebugLoc();
8479  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
8480
8481  SDValue Chain = Node->getOperand(0);
8482  SDValue In1 = Node->getOperand(1);
8483  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8484                             Node->getOperand(2), DAG.getIntPtrConstant(0));
8485  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8486                             Node->getOperand(2), DAG.getIntPtrConstant(1));
8487  SDValue Ops[] = { Chain, In1, In2L, In2H };
8488  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8489  SDValue Result =
8490    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
8491                            cast<MemSDNode>(Node)->getMemOperand());
8492  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
8493  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8494  Results.push_back(Result.getValue(2));
8495}
8496
8497/// ReplaceNodeResults - Replace a node with an illegal result type
8498/// with a new node built out of custom code.
8499void X86TargetLowering::ReplaceNodeResults(SDNode *N,
8500                                           SmallVectorImpl<SDValue>&Results,
8501                                           SelectionDAG &DAG) const {
8502  DebugLoc dl = N->getDebugLoc();
8503  switch (N->getOpcode()) {
8504  default:
8505    assert(false && "Do not know how to custom type legalize this operation!");
8506    return;
8507  case ISD::FP_TO_SINT: {
8508    std::pair<SDValue,SDValue> Vals =
8509        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
8510    SDValue FIST = Vals.first, StackSlot = Vals.second;
8511    if (FIST.getNode() != 0) {
8512      EVT VT = N->getValueType(0);
8513      // Return a load from the stack slot.
8514      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
8515                                    false, false, 0));
8516    }
8517    return;
8518  }
8519  case ISD::READCYCLECOUNTER: {
8520    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8521    SDValue TheChain = N->getOperand(0);
8522    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8523    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
8524                                     rd.getValue(1));
8525    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
8526                                     eax.getValue(2));
8527    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
8528    SDValue Ops[] = { eax, edx };
8529    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
8530    Results.push_back(edx.getValue(1));
8531    return;
8532  }
8533  case ISD::ATOMIC_CMP_SWAP: {
8534    EVT T = N->getValueType(0);
8535    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
8536    SDValue cpInL, cpInH;
8537    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8538                        DAG.getConstant(0, MVT::i32));
8539    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8540                        DAG.getConstant(1, MVT::i32));
8541    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
8542    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
8543                             cpInL.getValue(1));
8544    SDValue swapInL, swapInH;
8545    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8546                          DAG.getConstant(0, MVT::i32));
8547    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8548                          DAG.getConstant(1, MVT::i32));
8549    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
8550                               cpInH.getValue(1));
8551    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
8552                               swapInL.getValue(1));
8553    SDValue Ops[] = { swapInH.getValue(0),
8554                      N->getOperand(1),
8555                      swapInH.getValue(1) };
8556    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8557    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
8558    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
8559                                        MVT::i32, Result.getValue(1));
8560    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
8561                                        MVT::i32, cpOutL.getValue(2));
8562    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
8563    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8564    Results.push_back(cpOutH.getValue(1));
8565    return;
8566  }
8567  case ISD::ATOMIC_LOAD_ADD:
8568    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
8569    return;
8570  case ISD::ATOMIC_LOAD_AND:
8571    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
8572    return;
8573  case ISD::ATOMIC_LOAD_NAND:
8574    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
8575    return;
8576  case ISD::ATOMIC_LOAD_OR:
8577    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
8578    return;
8579  case ISD::ATOMIC_LOAD_SUB:
8580    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
8581    return;
8582  case ISD::ATOMIC_LOAD_XOR:
8583    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
8584    return;
8585  case ISD::ATOMIC_SWAP:
8586    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
8587    return;
8588  }
8589}
8590
8591const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
8592  switch (Opcode) {
8593  default: return NULL;
8594  case X86ISD::BSF:                return "X86ISD::BSF";
8595  case X86ISD::BSR:                return "X86ISD::BSR";
8596  case X86ISD::SHLD:               return "X86ISD::SHLD";
8597  case X86ISD::SHRD:               return "X86ISD::SHRD";
8598  case X86ISD::FAND:               return "X86ISD::FAND";
8599  case X86ISD::FOR:                return "X86ISD::FOR";
8600  case X86ISD::FXOR:               return "X86ISD::FXOR";
8601  case X86ISD::FSRL:               return "X86ISD::FSRL";
8602  case X86ISD::FILD:               return "X86ISD::FILD";
8603  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
8604  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
8605  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
8606  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
8607  case X86ISD::FLD:                return "X86ISD::FLD";
8608  case X86ISD::FST:                return "X86ISD::FST";
8609  case X86ISD::CALL:               return "X86ISD::CALL";
8610  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
8611  case X86ISD::BT:                 return "X86ISD::BT";
8612  case X86ISD::CMP:                return "X86ISD::CMP";
8613  case X86ISD::COMI:               return "X86ISD::COMI";
8614  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
8615  case X86ISD::SETCC:              return "X86ISD::SETCC";
8616  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
8617  case X86ISD::CMOV:               return "X86ISD::CMOV";
8618  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
8619  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
8620  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
8621  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
8622  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
8623  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
8624  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
8625  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
8626  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
8627  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
8628  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
8629  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
8630  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
8631  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
8632  case X86ISD::FMAX:               return "X86ISD::FMAX";
8633  case X86ISD::FMIN:               return "X86ISD::FMIN";
8634  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
8635  case X86ISD::FRCP:               return "X86ISD::FRCP";
8636  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
8637  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
8638  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
8639  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
8640  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
8641  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
8642  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
8643  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
8644  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
8645  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
8646  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
8647  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
8648  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
8649  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
8650  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
8651  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
8652  case X86ISD::VSHL:               return "X86ISD::VSHL";
8653  case X86ISD::VSRL:               return "X86ISD::VSRL";
8654  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
8655  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
8656  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
8657  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
8658  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
8659  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
8660  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
8661  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
8662  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
8663  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
8664  case X86ISD::ADD:                return "X86ISD::ADD";
8665  case X86ISD::SUB:                return "X86ISD::SUB";
8666  case X86ISD::SMUL:               return "X86ISD::SMUL";
8667  case X86ISD::UMUL:               return "X86ISD::UMUL";
8668  case X86ISD::INC:                return "X86ISD::INC";
8669  case X86ISD::DEC:                return "X86ISD::DEC";
8670  case X86ISD::OR:                 return "X86ISD::OR";
8671  case X86ISD::XOR:                return "X86ISD::XOR";
8672  case X86ISD::AND:                return "X86ISD::AND";
8673  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
8674  case X86ISD::PTEST:              return "X86ISD::PTEST";
8675  case X86ISD::TESTP:              return "X86ISD::TESTP";
8676  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
8677  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
8678  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
8679  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
8680  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
8681  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
8682  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
8683  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
8684  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
8685  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
8686  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
8687  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
8688  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
8689  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
8690  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
8691  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
8692  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
8693  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
8694  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
8695  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
8696  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
8697  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
8698  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
8699  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
8700  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
8701  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
8702  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
8703  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
8704  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
8705  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
8706  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
8707  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
8708  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
8709  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
8710  case X86ISD::MINGW_ALLOCA:       return "X86ISD::MINGW_ALLOCA";
8711  }
8712}
8713
8714// isLegalAddressingMode - Return true if the addressing mode represented
8715// by AM is legal for this target, for a load/store of the specified type.
8716bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
8717                                              const Type *Ty) const {
8718  // X86 supports extremely general addressing modes.
8719  CodeModel::Model M = getTargetMachine().getCodeModel();
8720  Reloc::Model R = getTargetMachine().getRelocationModel();
8721
8722  // X86 allows a sign-extended 32-bit immediate field as a displacement.
8723  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
8724    return false;
8725
8726  if (AM.BaseGV) {
8727    unsigned GVFlags =
8728      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
8729
8730    // If a reference to this global requires an extra load, we can't fold it.
8731    if (isGlobalStubReference(GVFlags))
8732      return false;
8733
8734    // If BaseGV requires a register for the PIC base, we cannot also have a
8735    // BaseReg specified.
8736    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
8737      return false;
8738
8739    // If lower 4G is not available, then we must use rip-relative addressing.
8740    if ((M != CodeModel::Small || R != Reloc::Static) &&
8741        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
8742      return false;
8743  }
8744
8745  switch (AM.Scale) {
8746  case 0:
8747  case 1:
8748  case 2:
8749  case 4:
8750  case 8:
8751    // These scales always work.
8752    break;
8753  case 3:
8754  case 5:
8755  case 9:
8756    // These scales are formed with basereg+scalereg.  Only accept if there is
8757    // no basereg yet.
8758    if (AM.HasBaseReg)
8759      return false;
8760    break;
8761  default:  // Other stuff never works.
8762    return false;
8763  }
8764
8765  return true;
8766}
8767
8768
8769bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
8770  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8771    return false;
8772  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8773  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8774  if (NumBits1 <= NumBits2)
8775    return false;
8776  return true;
8777}
8778
8779bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8780  if (!VT1.isInteger() || !VT2.isInteger())
8781    return false;
8782  unsigned NumBits1 = VT1.getSizeInBits();
8783  unsigned NumBits2 = VT2.getSizeInBits();
8784  if (NumBits1 <= NumBits2)
8785    return false;
8786  return true;
8787}
8788
8789bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
8790  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8791  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
8792}
8793
8794bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8795  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8796  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
8797}
8798
8799bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
8800  // i16 instructions are longer (0x66 prefix) and potentially slower.
8801  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
8802}
8803
8804/// isShuffleMaskLegal - Targets can use this to indicate that they only
8805/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8806/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8807/// are assumed to be legal.
8808bool
8809X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
8810                                      EVT VT) const {
8811  // Very little shuffling can be done for 64-bit vectors right now.
8812  if (VT.getSizeInBits() == 64)
8813    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
8814
8815  // FIXME: pshufb, blends, shifts.
8816  return (VT.getVectorNumElements() == 2 ||
8817          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
8818          isMOVLMask(M, VT) ||
8819          isSHUFPMask(M, VT) ||
8820          isPSHUFDMask(M, VT) ||
8821          isPSHUFHWMask(M, VT) ||
8822          isPSHUFLWMask(M, VT) ||
8823          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
8824          isUNPCKLMask(M, VT) ||
8825          isUNPCKHMask(M, VT) ||
8826          isUNPCKL_v_undef_Mask(M, VT) ||
8827          isUNPCKH_v_undef_Mask(M, VT));
8828}
8829
8830bool
8831X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
8832                                          EVT VT) const {
8833  unsigned NumElts = VT.getVectorNumElements();
8834  // FIXME: This collection of masks seems suspect.
8835  if (NumElts == 2)
8836    return true;
8837  if (NumElts == 4 && VT.getSizeInBits() == 128) {
8838    return (isMOVLMask(Mask, VT)  ||
8839            isCommutedMOVLMask(Mask, VT, true) ||
8840            isSHUFPMask(Mask, VT) ||
8841            isCommutedSHUFPMask(Mask, VT));
8842  }
8843  return false;
8844}
8845
8846//===----------------------------------------------------------------------===//
8847//                           X86 Scheduler Hooks
8848//===----------------------------------------------------------------------===//
8849
8850// private utility function
8851MachineBasicBlock *
8852X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
8853                                                       MachineBasicBlock *MBB,
8854                                                       unsigned regOpc,
8855                                                       unsigned immOpc,
8856                                                       unsigned LoadOpc,
8857                                                       unsigned CXchgOpc,
8858                                                       unsigned notOpc,
8859                                                       unsigned EAXreg,
8860                                                       TargetRegisterClass *RC,
8861                                                       bool invSrc) const {
8862  // For the atomic bitwise operator, we generate
8863  //   thisMBB:
8864  //   newMBB:
8865  //     ld  t1 = [bitinstr.addr]
8866  //     op  t2 = t1, [bitinstr.val]
8867  //     mov EAX = t1
8868  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8869  //     bz  newMBB
8870  //     fallthrough -->nextMBB
8871  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8872  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8873  MachineFunction::iterator MBBIter = MBB;
8874  ++MBBIter;
8875
8876  /// First build the CFG
8877  MachineFunction *F = MBB->getParent();
8878  MachineBasicBlock *thisMBB = MBB;
8879  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8880  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8881  F->insert(MBBIter, newMBB);
8882  F->insert(MBBIter, nextMBB);
8883
8884  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8885  nextMBB->splice(nextMBB->begin(), thisMBB,
8886                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8887                  thisMBB->end());
8888  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8889
8890  // Update thisMBB to fall through to newMBB
8891  thisMBB->addSuccessor(newMBB);
8892
8893  // newMBB jumps to itself and fall through to nextMBB
8894  newMBB->addSuccessor(nextMBB);
8895  newMBB->addSuccessor(newMBB);
8896
8897  // Insert instructions into newMBB based on incoming instruction
8898  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
8899         "unexpected number of operands");
8900  DebugLoc dl = bInstr->getDebugLoc();
8901  MachineOperand& destOper = bInstr->getOperand(0);
8902  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8903  int numArgs = bInstr->getNumOperands() - 1;
8904  for (int i=0; i < numArgs; ++i)
8905    argOpers[i] = &bInstr->getOperand(i+1);
8906
8907  // x86 address has 4 operands: base, index, scale, and displacement
8908  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8909  int valArgIndx = lastAddrIndx + 1;
8910
8911  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8912  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
8913  for (int i=0; i <= lastAddrIndx; ++i)
8914    (*MIB).addOperand(*argOpers[i]);
8915
8916  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
8917  if (invSrc) {
8918    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
8919  }
8920  else
8921    tt = t1;
8922
8923  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8924  assert((argOpers[valArgIndx]->isReg() ||
8925          argOpers[valArgIndx]->isImm()) &&
8926         "invalid operand");
8927  if (argOpers[valArgIndx]->isReg())
8928    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
8929  else
8930    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
8931  MIB.addReg(tt);
8932  (*MIB).addOperand(*argOpers[valArgIndx]);
8933
8934  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
8935  MIB.addReg(t1);
8936
8937  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
8938  for (int i=0; i <= lastAddrIndx; ++i)
8939    (*MIB).addOperand(*argOpers[i]);
8940  MIB.addReg(t2);
8941  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8942  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8943                    bInstr->memoperands_end());
8944
8945  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
8946  MIB.addReg(EAXreg);
8947
8948  // insert branch
8949  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8950
8951  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8952  return nextMBB;
8953}
8954
8955// private utility function:  64 bit atomics on 32 bit host.
8956MachineBasicBlock *
8957X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
8958                                                       MachineBasicBlock *MBB,
8959                                                       unsigned regOpcL,
8960                                                       unsigned regOpcH,
8961                                                       unsigned immOpcL,
8962                                                       unsigned immOpcH,
8963                                                       bool invSrc) const {
8964  // For the atomic bitwise operator, we generate
8965  //   thisMBB (instructions are in pairs, except cmpxchg8b)
8966  //     ld t1,t2 = [bitinstr.addr]
8967  //   newMBB:
8968  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
8969  //     op  t5, t6 <- out1, out2, [bitinstr.val]
8970  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
8971  //     mov ECX, EBX <- t5, t6
8972  //     mov EAX, EDX <- t1, t2
8973  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
8974  //     mov t3, t4 <- EAX, EDX
8975  //     bz  newMBB
8976  //     result in out1, out2
8977  //     fallthrough -->nextMBB
8978
8979  const TargetRegisterClass *RC = X86::GR32RegisterClass;
8980  const unsigned LoadOpc = X86::MOV32rm;
8981  const unsigned NotOpc = X86::NOT32r;
8982  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8983  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8984  MachineFunction::iterator MBBIter = MBB;
8985  ++MBBIter;
8986
8987  /// First build the CFG
8988  MachineFunction *F = MBB->getParent();
8989  MachineBasicBlock *thisMBB = MBB;
8990  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8991  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8992  F->insert(MBBIter, newMBB);
8993  F->insert(MBBIter, nextMBB);
8994
8995  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8996  nextMBB->splice(nextMBB->begin(), thisMBB,
8997                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8998                  thisMBB->end());
8999  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9000
9001  // Update thisMBB to fall through to newMBB
9002  thisMBB->addSuccessor(newMBB);
9003
9004  // newMBB jumps to itself and fall through to nextMBB
9005  newMBB->addSuccessor(nextMBB);
9006  newMBB->addSuccessor(newMBB);
9007
9008  DebugLoc dl = bInstr->getDebugLoc();
9009  // Insert instructions into newMBB based on incoming instruction
9010  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
9011  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
9012         "unexpected number of operands");
9013  MachineOperand& dest1Oper = bInstr->getOperand(0);
9014  MachineOperand& dest2Oper = bInstr->getOperand(1);
9015  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9016  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
9017    argOpers[i] = &bInstr->getOperand(i+2);
9018
9019    // We use some of the operands multiple times, so conservatively just
9020    // clear any kill flags that might be present.
9021    if (argOpers[i]->isReg() && argOpers[i]->isUse())
9022      argOpers[i]->setIsKill(false);
9023  }
9024
9025  // x86 address has 5 operands: base, index, scale, displacement, and segment.
9026  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9027
9028  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9029  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
9030  for (int i=0; i <= lastAddrIndx; ++i)
9031    (*MIB).addOperand(*argOpers[i]);
9032  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9033  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
9034  // add 4 to displacement.
9035  for (int i=0; i <= lastAddrIndx-2; ++i)
9036    (*MIB).addOperand(*argOpers[i]);
9037  MachineOperand newOp3 = *(argOpers[3]);
9038  if (newOp3.isImm())
9039    newOp3.setImm(newOp3.getImm()+4);
9040  else
9041    newOp3.setOffset(newOp3.getOffset()+4);
9042  (*MIB).addOperand(newOp3);
9043  (*MIB).addOperand(*argOpers[lastAddrIndx]);
9044
9045  // t3/4 are defined later, at the bottom of the loop
9046  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
9047  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
9048  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
9049    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
9050  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
9051    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
9052
9053  // The subsequent operations should be using the destination registers of
9054  //the PHI instructions.
9055  if (invSrc) {
9056    t1 = F->getRegInfo().createVirtualRegister(RC);
9057    t2 = F->getRegInfo().createVirtualRegister(RC);
9058    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
9059    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
9060  } else {
9061    t1 = dest1Oper.getReg();
9062    t2 = dest2Oper.getReg();
9063  }
9064
9065  int valArgIndx = lastAddrIndx + 1;
9066  assert((argOpers[valArgIndx]->isReg() ||
9067          argOpers[valArgIndx]->isImm()) &&
9068         "invalid operand");
9069  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
9070  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
9071  if (argOpers[valArgIndx]->isReg())
9072    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
9073  else
9074    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
9075  if (regOpcL != X86::MOV32rr)
9076    MIB.addReg(t1);
9077  (*MIB).addOperand(*argOpers[valArgIndx]);
9078  assert(argOpers[valArgIndx + 1]->isReg() ==
9079         argOpers[valArgIndx]->isReg());
9080  assert(argOpers[valArgIndx + 1]->isImm() ==
9081         argOpers[valArgIndx]->isImm());
9082  if (argOpers[valArgIndx + 1]->isReg())
9083    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
9084  else
9085    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
9086  if (regOpcH != X86::MOV32rr)
9087    MIB.addReg(t2);
9088  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
9089
9090  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9091  MIB.addReg(t1);
9092  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
9093  MIB.addReg(t2);
9094
9095  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
9096  MIB.addReg(t5);
9097  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
9098  MIB.addReg(t6);
9099
9100  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
9101  for (int i=0; i <= lastAddrIndx; ++i)
9102    (*MIB).addOperand(*argOpers[i]);
9103
9104  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9105  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9106                    bInstr->memoperands_end());
9107
9108  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
9109  MIB.addReg(X86::EAX);
9110  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
9111  MIB.addReg(X86::EDX);
9112
9113  // insert branch
9114  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9115
9116  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9117  return nextMBB;
9118}
9119
9120// private utility function
9121MachineBasicBlock *
9122X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
9123                                                      MachineBasicBlock *MBB,
9124                                                      unsigned cmovOpc) const {
9125  // For the atomic min/max operator, we generate
9126  //   thisMBB:
9127  //   newMBB:
9128  //     ld t1 = [min/max.addr]
9129  //     mov t2 = [min/max.val]
9130  //     cmp  t1, t2
9131  //     cmov[cond] t2 = t1
9132  //     mov EAX = t1
9133  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9134  //     bz   newMBB
9135  //     fallthrough -->nextMBB
9136  //
9137  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9138  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9139  MachineFunction::iterator MBBIter = MBB;
9140  ++MBBIter;
9141
9142  /// First build the CFG
9143  MachineFunction *F = MBB->getParent();
9144  MachineBasicBlock *thisMBB = MBB;
9145  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9146  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9147  F->insert(MBBIter, newMBB);
9148  F->insert(MBBIter, nextMBB);
9149
9150  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9151  nextMBB->splice(nextMBB->begin(), thisMBB,
9152                  llvm::next(MachineBasicBlock::iterator(mInstr)),
9153                  thisMBB->end());
9154  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9155
9156  // Update thisMBB to fall through to newMBB
9157  thisMBB->addSuccessor(newMBB);
9158
9159  // newMBB jumps to newMBB and fall through to nextMBB
9160  newMBB->addSuccessor(nextMBB);
9161  newMBB->addSuccessor(newMBB);
9162
9163  DebugLoc dl = mInstr->getDebugLoc();
9164  // Insert instructions into newMBB based on incoming instruction
9165  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9166         "unexpected number of operands");
9167  MachineOperand& destOper = mInstr->getOperand(0);
9168  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9169  int numArgs = mInstr->getNumOperands() - 1;
9170  for (int i=0; i < numArgs; ++i)
9171    argOpers[i] = &mInstr->getOperand(i+1);
9172
9173  // x86 address has 4 operands: base, index, scale, and displacement
9174  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9175  int valArgIndx = lastAddrIndx + 1;
9176
9177  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9178  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
9179  for (int i=0; i <= lastAddrIndx; ++i)
9180    (*MIB).addOperand(*argOpers[i]);
9181
9182  // We only support register and immediate values
9183  assert((argOpers[valArgIndx]->isReg() ||
9184          argOpers[valArgIndx]->isImm()) &&
9185         "invalid operand");
9186
9187  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9188  if (argOpers[valArgIndx]->isReg())
9189    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
9190  else
9191    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
9192  (*MIB).addOperand(*argOpers[valArgIndx]);
9193
9194  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9195  MIB.addReg(t1);
9196
9197  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
9198  MIB.addReg(t1);
9199  MIB.addReg(t2);
9200
9201  // Generate movc
9202  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9203  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
9204  MIB.addReg(t2);
9205  MIB.addReg(t1);
9206
9207  // Cmp and exchange if none has modified the memory location
9208  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
9209  for (int i=0; i <= lastAddrIndx; ++i)
9210    (*MIB).addOperand(*argOpers[i]);
9211  MIB.addReg(t3);
9212  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9213  (*MIB).setMemRefs(mInstr->memoperands_begin(),
9214                    mInstr->memoperands_end());
9215
9216  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9217  MIB.addReg(X86::EAX);
9218
9219  // insert branch
9220  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9221
9222  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
9223  return nextMBB;
9224}
9225
9226// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
9227// or XMM0_V32I8 in AVX all of this code can be replaced with that
9228// in the .td file.
9229MachineBasicBlock *
9230X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
9231                            unsigned numArgs, bool memArg) const {
9232
9233  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
9234         "Target must have SSE4.2 or AVX features enabled");
9235
9236  DebugLoc dl = MI->getDebugLoc();
9237  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9238
9239  unsigned Opc;
9240
9241  if (!Subtarget->hasAVX()) {
9242    if (memArg)
9243      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
9244    else
9245      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
9246  } else {
9247    if (memArg)
9248      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
9249    else
9250      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
9251  }
9252
9253  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
9254
9255  for (unsigned i = 0; i < numArgs; ++i) {
9256    MachineOperand &Op = MI->getOperand(i+1);
9257
9258    if (!(Op.isReg() && Op.isImplicit()))
9259      MIB.addOperand(Op);
9260  }
9261
9262  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
9263    .addReg(X86::XMM0);
9264
9265  MI->eraseFromParent();
9266
9267  return BB;
9268}
9269
9270MachineBasicBlock *
9271X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
9272                                                 MachineInstr *MI,
9273                                                 MachineBasicBlock *MBB) const {
9274  // Emit code to save XMM registers to the stack. The ABI says that the
9275  // number of registers to save is given in %al, so it's theoretically
9276  // possible to do an indirect jump trick to avoid saving all of them,
9277  // however this code takes a simpler approach and just executes all
9278  // of the stores if %al is non-zero. It's less code, and it's probably
9279  // easier on the hardware branch predictor, and stores aren't all that
9280  // expensive anyway.
9281
9282  // Create the new basic blocks. One block contains all the XMM stores,
9283  // and one block is the final destination regardless of whether any
9284  // stores were performed.
9285  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9286  MachineFunction *F = MBB->getParent();
9287  MachineFunction::iterator MBBIter = MBB;
9288  ++MBBIter;
9289  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
9290  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
9291  F->insert(MBBIter, XMMSaveMBB);
9292  F->insert(MBBIter, EndMBB);
9293
9294  // Transfer the remainder of MBB and its successor edges to EndMBB.
9295  EndMBB->splice(EndMBB->begin(), MBB,
9296                 llvm::next(MachineBasicBlock::iterator(MI)),
9297                 MBB->end());
9298  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
9299
9300  // The original block will now fall through to the XMM save block.
9301  MBB->addSuccessor(XMMSaveMBB);
9302  // The XMMSaveMBB will fall through to the end block.
9303  XMMSaveMBB->addSuccessor(EndMBB);
9304
9305  // Now add the instructions.
9306  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9307  DebugLoc DL = MI->getDebugLoc();
9308
9309  unsigned CountReg = MI->getOperand(0).getReg();
9310  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
9311  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
9312
9313  if (!Subtarget->isTargetWin64()) {
9314    // If %al is 0, branch around the XMM save block.
9315    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
9316    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
9317    MBB->addSuccessor(EndMBB);
9318  }
9319
9320  // In the XMM save block, save all the XMM argument registers.
9321  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
9322    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
9323    MachineMemOperand *MMO =
9324      F->getMachineMemOperand(
9325        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
9326        MachineMemOperand::MOStore, Offset,
9327        /*Size=*/16, /*Align=*/16);
9328    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
9329      .addFrameIndex(RegSaveFrameIndex)
9330      .addImm(/*Scale=*/1)
9331      .addReg(/*IndexReg=*/0)
9332      .addImm(/*Disp=*/Offset)
9333      .addReg(/*Segment=*/0)
9334      .addReg(MI->getOperand(i).getReg())
9335      .addMemOperand(MMO);
9336  }
9337
9338  MI->eraseFromParent();   // The pseudo instruction is gone now.
9339
9340  return EndMBB;
9341}
9342
9343MachineBasicBlock *
9344X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
9345                                     MachineBasicBlock *BB) const {
9346  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9347  DebugLoc DL = MI->getDebugLoc();
9348
9349  // To "insert" a SELECT_CC instruction, we actually have to insert the
9350  // diamond control-flow pattern.  The incoming instruction knows the
9351  // destination vreg to set, the condition code register to branch on, the
9352  // true/false values to select between, and a branch opcode to use.
9353  const BasicBlock *LLVM_BB = BB->getBasicBlock();
9354  MachineFunction::iterator It = BB;
9355  ++It;
9356
9357  //  thisMBB:
9358  //  ...
9359  //   TrueVal = ...
9360  //   cmpTY ccX, r1, r2
9361  //   bCC copy1MBB
9362  //   fallthrough --> copy0MBB
9363  MachineBasicBlock *thisMBB = BB;
9364  MachineFunction *F = BB->getParent();
9365  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9366  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9367  F->insert(It, copy0MBB);
9368  F->insert(It, sinkMBB);
9369
9370  // If the EFLAGS register isn't dead in the terminator, then claim that it's
9371  // live into the sink and copy blocks.
9372  const MachineFunction *MF = BB->getParent();
9373  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
9374  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
9375
9376  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
9377    const MachineOperand &MO = MI->getOperand(I);
9378    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
9379    unsigned Reg = MO.getReg();
9380    if (Reg != X86::EFLAGS) continue;
9381    copy0MBB->addLiveIn(Reg);
9382    sinkMBB->addLiveIn(Reg);
9383  }
9384
9385  // Transfer the remainder of BB and its successor edges to sinkMBB.
9386  sinkMBB->splice(sinkMBB->begin(), BB,
9387                  llvm::next(MachineBasicBlock::iterator(MI)),
9388                  BB->end());
9389  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9390
9391  // Add the true and fallthrough blocks as its successors.
9392  BB->addSuccessor(copy0MBB);
9393  BB->addSuccessor(sinkMBB);
9394
9395  // Create the conditional branch instruction.
9396  unsigned Opc =
9397    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
9398  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
9399
9400  //  copy0MBB:
9401  //   %FalseValue = ...
9402  //   # fallthrough to sinkMBB
9403  copy0MBB->addSuccessor(sinkMBB);
9404
9405  //  sinkMBB:
9406  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9407  //  ...
9408  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
9409          TII->get(X86::PHI), MI->getOperand(0).getReg())
9410    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
9411    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
9412
9413  MI->eraseFromParent();   // The pseudo instruction is gone now.
9414  return sinkMBB;
9415}
9416
9417MachineBasicBlock *
9418X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
9419                                          MachineBasicBlock *BB) const {
9420  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9421  DebugLoc DL = MI->getDebugLoc();
9422
9423  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
9424  // non-trivial part is impdef of ESP.
9425  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
9426  // mingw-w64.
9427
9428  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
9429    .addExternalSymbol("_alloca")
9430    .addReg(X86::EAX, RegState::Implicit)
9431    .addReg(X86::ESP, RegState::Implicit)
9432    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
9433    .addReg(X86::ESP, RegState::Define | RegState::Implicit)
9434    .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
9435
9436  MI->eraseFromParent();   // The pseudo instruction is gone now.
9437  return BB;
9438}
9439
9440MachineBasicBlock *
9441X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
9442                                      MachineBasicBlock *BB) const {
9443  // This is pretty easy.  We're taking the value that we received from
9444  // our load from the relocation, sticking it in either RDI (x86-64)
9445  // or EAX and doing an indirect call.  The return value will then
9446  // be in the normal return register.
9447  const X86InstrInfo *TII
9448    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
9449  DebugLoc DL = MI->getDebugLoc();
9450  MachineFunction *F = BB->getParent();
9451  bool IsWin64 = Subtarget->isTargetWin64();
9452
9453  assert(MI->getOperand(3).isGlobal() && "This should be a global");
9454
9455  if (Subtarget->is64Bit()) {
9456    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9457                                      TII->get(X86::MOV64rm), X86::RDI)
9458    .addReg(X86::RIP)
9459    .addImm(0).addReg(0)
9460    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9461                      MI->getOperand(3).getTargetFlags())
9462    .addReg(0);
9463    MIB = BuildMI(*BB, MI, DL, TII->get(IsWin64 ? X86::WINCALL64m : X86::CALL64m));
9464    addDirectMem(MIB, X86::RDI);
9465  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
9466    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9467                                      TII->get(X86::MOV32rm), X86::EAX)
9468    .addReg(0)
9469    .addImm(0).addReg(0)
9470    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9471                      MI->getOperand(3).getTargetFlags())
9472    .addReg(0);
9473    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9474    addDirectMem(MIB, X86::EAX);
9475  } else {
9476    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9477                                      TII->get(X86::MOV32rm), X86::EAX)
9478    .addReg(TII->getGlobalBaseReg(F))
9479    .addImm(0).addReg(0)
9480    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9481                      MI->getOperand(3).getTargetFlags())
9482    .addReg(0);
9483    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9484    addDirectMem(MIB, X86::EAX);
9485  }
9486
9487  MI->eraseFromParent(); // The pseudo instruction is gone now.
9488  return BB;
9489}
9490
9491MachineBasicBlock *
9492X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
9493                                               MachineBasicBlock *BB) const {
9494  switch (MI->getOpcode()) {
9495  default: assert(false && "Unexpected instr type to insert");
9496  case X86::MINGW_ALLOCA:
9497    return EmitLoweredMingwAlloca(MI, BB);
9498  case X86::TLSCall_32:
9499  case X86::TLSCall_64:
9500    return EmitLoweredTLSCall(MI, BB);
9501  case X86::CMOV_GR8:
9502  case X86::CMOV_V1I64:
9503  case X86::CMOV_FR32:
9504  case X86::CMOV_FR64:
9505  case X86::CMOV_V4F32:
9506  case X86::CMOV_V2F64:
9507  case X86::CMOV_V2I64:
9508  case X86::CMOV_GR16:
9509  case X86::CMOV_GR32:
9510  case X86::CMOV_RFP32:
9511  case X86::CMOV_RFP64:
9512  case X86::CMOV_RFP80:
9513    return EmitLoweredSelect(MI, BB);
9514
9515  case X86::FP32_TO_INT16_IN_MEM:
9516  case X86::FP32_TO_INT32_IN_MEM:
9517  case X86::FP32_TO_INT64_IN_MEM:
9518  case X86::FP64_TO_INT16_IN_MEM:
9519  case X86::FP64_TO_INT32_IN_MEM:
9520  case X86::FP64_TO_INT64_IN_MEM:
9521  case X86::FP80_TO_INT16_IN_MEM:
9522  case X86::FP80_TO_INT32_IN_MEM:
9523  case X86::FP80_TO_INT64_IN_MEM: {
9524    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9525    DebugLoc DL = MI->getDebugLoc();
9526
9527    // Change the floating point control register to use "round towards zero"
9528    // mode when truncating to an integer value.
9529    MachineFunction *F = BB->getParent();
9530    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
9531    addFrameReference(BuildMI(*BB, MI, DL,
9532                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
9533
9534    // Load the old value of the high byte of the control word...
9535    unsigned OldCW =
9536      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
9537    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
9538                      CWFrameIdx);
9539
9540    // Set the high part to be round to zero...
9541    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
9542      .addImm(0xC7F);
9543
9544    // Reload the modified control word now...
9545    addFrameReference(BuildMI(*BB, MI, DL,
9546                              TII->get(X86::FLDCW16m)), CWFrameIdx);
9547
9548    // Restore the memory image of control word to original value
9549    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
9550      .addReg(OldCW);
9551
9552    // Get the X86 opcode to use.
9553    unsigned Opc;
9554    switch (MI->getOpcode()) {
9555    default: llvm_unreachable("illegal opcode!");
9556    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
9557    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
9558    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
9559    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
9560    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
9561    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
9562    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
9563    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
9564    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
9565    }
9566
9567    X86AddressMode AM;
9568    MachineOperand &Op = MI->getOperand(0);
9569    if (Op.isReg()) {
9570      AM.BaseType = X86AddressMode::RegBase;
9571      AM.Base.Reg = Op.getReg();
9572    } else {
9573      AM.BaseType = X86AddressMode::FrameIndexBase;
9574      AM.Base.FrameIndex = Op.getIndex();
9575    }
9576    Op = MI->getOperand(1);
9577    if (Op.isImm())
9578      AM.Scale = Op.getImm();
9579    Op = MI->getOperand(2);
9580    if (Op.isImm())
9581      AM.IndexReg = Op.getImm();
9582    Op = MI->getOperand(3);
9583    if (Op.isGlobal()) {
9584      AM.GV = Op.getGlobal();
9585    } else {
9586      AM.Disp = Op.getImm();
9587    }
9588    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
9589                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
9590
9591    // Reload the original control word now.
9592    addFrameReference(BuildMI(*BB, MI, DL,
9593                              TII->get(X86::FLDCW16m)), CWFrameIdx);
9594
9595    MI->eraseFromParent();   // The pseudo instruction is gone now.
9596    return BB;
9597  }
9598    // String/text processing lowering.
9599  case X86::PCMPISTRM128REG:
9600  case X86::VPCMPISTRM128REG:
9601    return EmitPCMP(MI, BB, 3, false /* in-mem */);
9602  case X86::PCMPISTRM128MEM:
9603  case X86::VPCMPISTRM128MEM:
9604    return EmitPCMP(MI, BB, 3, true /* in-mem */);
9605  case X86::PCMPESTRM128REG:
9606  case X86::VPCMPESTRM128REG:
9607    return EmitPCMP(MI, BB, 5, false /* in mem */);
9608  case X86::PCMPESTRM128MEM:
9609  case X86::VPCMPESTRM128MEM:
9610    return EmitPCMP(MI, BB, 5, true /* in mem */);
9611
9612    // Atomic Lowering.
9613  case X86::ATOMAND32:
9614    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
9615                                               X86::AND32ri, X86::MOV32rm,
9616                                               X86::LCMPXCHG32,
9617                                               X86::NOT32r, X86::EAX,
9618                                               X86::GR32RegisterClass);
9619  case X86::ATOMOR32:
9620    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
9621                                               X86::OR32ri, X86::MOV32rm,
9622                                               X86::LCMPXCHG32,
9623                                               X86::NOT32r, X86::EAX,
9624                                               X86::GR32RegisterClass);
9625  case X86::ATOMXOR32:
9626    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
9627                                               X86::XOR32ri, X86::MOV32rm,
9628                                               X86::LCMPXCHG32,
9629                                               X86::NOT32r, X86::EAX,
9630                                               X86::GR32RegisterClass);
9631  case X86::ATOMNAND32:
9632    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
9633                                               X86::AND32ri, X86::MOV32rm,
9634                                               X86::LCMPXCHG32,
9635                                               X86::NOT32r, X86::EAX,
9636                                               X86::GR32RegisterClass, true);
9637  case X86::ATOMMIN32:
9638    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
9639  case X86::ATOMMAX32:
9640    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
9641  case X86::ATOMUMIN32:
9642    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
9643  case X86::ATOMUMAX32:
9644    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
9645
9646  case X86::ATOMAND16:
9647    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9648                                               X86::AND16ri, X86::MOV16rm,
9649                                               X86::LCMPXCHG16,
9650                                               X86::NOT16r, X86::AX,
9651                                               X86::GR16RegisterClass);
9652  case X86::ATOMOR16:
9653    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
9654                                               X86::OR16ri, X86::MOV16rm,
9655                                               X86::LCMPXCHG16,
9656                                               X86::NOT16r, X86::AX,
9657                                               X86::GR16RegisterClass);
9658  case X86::ATOMXOR16:
9659    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
9660                                               X86::XOR16ri, X86::MOV16rm,
9661                                               X86::LCMPXCHG16,
9662                                               X86::NOT16r, X86::AX,
9663                                               X86::GR16RegisterClass);
9664  case X86::ATOMNAND16:
9665    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9666                                               X86::AND16ri, X86::MOV16rm,
9667                                               X86::LCMPXCHG16,
9668                                               X86::NOT16r, X86::AX,
9669                                               X86::GR16RegisterClass, true);
9670  case X86::ATOMMIN16:
9671    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
9672  case X86::ATOMMAX16:
9673    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
9674  case X86::ATOMUMIN16:
9675    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
9676  case X86::ATOMUMAX16:
9677    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
9678
9679  case X86::ATOMAND8:
9680    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9681                                               X86::AND8ri, X86::MOV8rm,
9682                                               X86::LCMPXCHG8,
9683                                               X86::NOT8r, X86::AL,
9684                                               X86::GR8RegisterClass);
9685  case X86::ATOMOR8:
9686    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
9687                                               X86::OR8ri, X86::MOV8rm,
9688                                               X86::LCMPXCHG8,
9689                                               X86::NOT8r, X86::AL,
9690                                               X86::GR8RegisterClass);
9691  case X86::ATOMXOR8:
9692    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
9693                                               X86::XOR8ri, X86::MOV8rm,
9694                                               X86::LCMPXCHG8,
9695                                               X86::NOT8r, X86::AL,
9696                                               X86::GR8RegisterClass);
9697  case X86::ATOMNAND8:
9698    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9699                                               X86::AND8ri, X86::MOV8rm,
9700                                               X86::LCMPXCHG8,
9701                                               X86::NOT8r, X86::AL,
9702                                               X86::GR8RegisterClass, true);
9703  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
9704  // This group is for 64-bit host.
9705  case X86::ATOMAND64:
9706    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9707                                               X86::AND64ri32, X86::MOV64rm,
9708                                               X86::LCMPXCHG64,
9709                                               X86::NOT64r, X86::RAX,
9710                                               X86::GR64RegisterClass);
9711  case X86::ATOMOR64:
9712    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
9713                                               X86::OR64ri32, X86::MOV64rm,
9714                                               X86::LCMPXCHG64,
9715                                               X86::NOT64r, X86::RAX,
9716                                               X86::GR64RegisterClass);
9717  case X86::ATOMXOR64:
9718    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
9719                                               X86::XOR64ri32, X86::MOV64rm,
9720                                               X86::LCMPXCHG64,
9721                                               X86::NOT64r, X86::RAX,
9722                                               X86::GR64RegisterClass);
9723  case X86::ATOMNAND64:
9724    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9725                                               X86::AND64ri32, X86::MOV64rm,
9726                                               X86::LCMPXCHG64,
9727                                               X86::NOT64r, X86::RAX,
9728                                               X86::GR64RegisterClass, true);
9729  case X86::ATOMMIN64:
9730    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
9731  case X86::ATOMMAX64:
9732    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
9733  case X86::ATOMUMIN64:
9734    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
9735  case X86::ATOMUMAX64:
9736    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
9737
9738  // This group does 64-bit operations on a 32-bit host.
9739  case X86::ATOMAND6432:
9740    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9741                                               X86::AND32rr, X86::AND32rr,
9742                                               X86::AND32ri, X86::AND32ri,
9743                                               false);
9744  case X86::ATOMOR6432:
9745    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9746                                               X86::OR32rr, X86::OR32rr,
9747                                               X86::OR32ri, X86::OR32ri,
9748                                               false);
9749  case X86::ATOMXOR6432:
9750    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9751                                               X86::XOR32rr, X86::XOR32rr,
9752                                               X86::XOR32ri, X86::XOR32ri,
9753                                               false);
9754  case X86::ATOMNAND6432:
9755    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9756                                               X86::AND32rr, X86::AND32rr,
9757                                               X86::AND32ri, X86::AND32ri,
9758                                               true);
9759  case X86::ATOMADD6432:
9760    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9761                                               X86::ADD32rr, X86::ADC32rr,
9762                                               X86::ADD32ri, X86::ADC32ri,
9763                                               false);
9764  case X86::ATOMSUB6432:
9765    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9766                                               X86::SUB32rr, X86::SBB32rr,
9767                                               X86::SUB32ri, X86::SBB32ri,
9768                                               false);
9769  case X86::ATOMSWAP6432:
9770    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9771                                               X86::MOV32rr, X86::MOV32rr,
9772                                               X86::MOV32ri, X86::MOV32ri,
9773                                               false);
9774  case X86::VASTART_SAVE_XMM_REGS:
9775    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
9776  }
9777}
9778
9779//===----------------------------------------------------------------------===//
9780//                           X86 Optimization Hooks
9781//===----------------------------------------------------------------------===//
9782
9783void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
9784                                                       const APInt &Mask,
9785                                                       APInt &KnownZero,
9786                                                       APInt &KnownOne,
9787                                                       const SelectionDAG &DAG,
9788                                                       unsigned Depth) const {
9789  unsigned Opc = Op.getOpcode();
9790  assert((Opc >= ISD::BUILTIN_OP_END ||
9791          Opc == ISD::INTRINSIC_WO_CHAIN ||
9792          Opc == ISD::INTRINSIC_W_CHAIN ||
9793          Opc == ISD::INTRINSIC_VOID) &&
9794         "Should use MaskedValueIsZero if you don't know whether Op"
9795         " is a target node!");
9796
9797  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
9798  switch (Opc) {
9799  default: break;
9800  case X86ISD::ADD:
9801  case X86ISD::SUB:
9802  case X86ISD::SMUL:
9803  case X86ISD::UMUL:
9804  case X86ISD::INC:
9805  case X86ISD::DEC:
9806  case X86ISD::OR:
9807  case X86ISD::XOR:
9808  case X86ISD::AND:
9809    // These nodes' second result is a boolean.
9810    if (Op.getResNo() == 0)
9811      break;
9812    // Fallthrough
9813  case X86ISD::SETCC:
9814    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
9815                                       Mask.getBitWidth() - 1);
9816    break;
9817  }
9818}
9819
9820/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
9821/// node is a GlobalAddress + offset.
9822bool X86TargetLowering::isGAPlusOffset(SDNode *N,
9823                                       const GlobalValue* &GA,
9824                                       int64_t &Offset) const {
9825  if (N->getOpcode() == X86ISD::Wrapper) {
9826    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
9827      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
9828      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
9829      return true;
9830    }
9831  }
9832  return TargetLowering::isGAPlusOffset(N, GA, Offset);
9833}
9834
9835/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
9836/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
9837/// if the load addresses are consecutive, non-overlapping, and in the right
9838/// order.
9839static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
9840                                     const TargetLowering &TLI) {
9841  DebugLoc dl = N->getDebugLoc();
9842  EVT VT = N->getValueType(0);
9843
9844  if (VT.getSizeInBits() != 128)
9845    return SDValue();
9846
9847  SmallVector<SDValue, 16> Elts;
9848  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
9849    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
9850
9851  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
9852}
9853
9854/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
9855/// generation and convert it from being a bunch of shuffles and extracts
9856/// to a simple store and scalar loads to extract the elements.
9857static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
9858                                                const TargetLowering &TLI) {
9859  SDValue InputVector = N->getOperand(0);
9860
9861  // Only operate on vectors of 4 elements, where the alternative shuffling
9862  // gets to be more expensive.
9863  if (InputVector.getValueType() != MVT::v4i32)
9864    return SDValue();
9865
9866  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
9867  // single use which is a sign-extend or zero-extend, and all elements are
9868  // used.
9869  SmallVector<SDNode *, 4> Uses;
9870  unsigned ExtractedElements = 0;
9871  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
9872       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
9873    if (UI.getUse().getResNo() != InputVector.getResNo())
9874      return SDValue();
9875
9876    SDNode *Extract = *UI;
9877    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9878      return SDValue();
9879
9880    if (Extract->getValueType(0) != MVT::i32)
9881      return SDValue();
9882    if (!Extract->hasOneUse())
9883      return SDValue();
9884    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
9885        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
9886      return SDValue();
9887    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
9888      return SDValue();
9889
9890    // Record which element was extracted.
9891    ExtractedElements |=
9892      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
9893
9894    Uses.push_back(Extract);
9895  }
9896
9897  // If not all the elements were used, this may not be worthwhile.
9898  if (ExtractedElements != 15)
9899    return SDValue();
9900
9901  // Ok, we've now decided to do the transformation.
9902  DebugLoc dl = InputVector.getDebugLoc();
9903
9904  // Store the value to a temporary stack slot.
9905  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
9906  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL,
9907                            0, false, false, 0);
9908
9909  // Replace each use (extract) with a load of the appropriate element.
9910  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
9911       UE = Uses.end(); UI != UE; ++UI) {
9912    SDNode *Extract = *UI;
9913
9914    // Compute the element's address.
9915    SDValue Idx = Extract->getOperand(1);
9916    unsigned EltSize =
9917        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
9918    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
9919    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
9920
9921    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
9922                                     OffsetVal, StackPtr);
9923
9924    // Load the scalar.
9925    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
9926                                     ScalarAddr, NULL, 0, false, false, 0);
9927
9928    // Replace the exact with the load.
9929    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
9930  }
9931
9932  // The replacement was made in place; don't return anything.
9933  return SDValue();
9934}
9935
9936/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
9937static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
9938                                    const X86Subtarget *Subtarget) {
9939  DebugLoc DL = N->getDebugLoc();
9940  SDValue Cond = N->getOperand(0);
9941  // Get the LHS/RHS of the select.
9942  SDValue LHS = N->getOperand(1);
9943  SDValue RHS = N->getOperand(2);
9944
9945  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
9946  // instructions match the semantics of the common C idiom x<y?x:y but not
9947  // x<=y?x:y, because of how they handle negative zero (which can be
9948  // ignored in unsafe-math mode).
9949  if (Subtarget->hasSSE2() &&
9950      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
9951      Cond.getOpcode() == ISD::SETCC) {
9952    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
9953
9954    unsigned Opcode = 0;
9955    // Check for x CC y ? x : y.
9956    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
9957        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
9958      switch (CC) {
9959      default: break;
9960      case ISD::SETULT:
9961        // Converting this to a min would handle NaNs incorrectly, and swapping
9962        // the operands would cause it to handle comparisons between positive
9963        // and negative zero incorrectly.
9964        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9965          if (!UnsafeFPMath &&
9966              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9967            break;
9968          std::swap(LHS, RHS);
9969        }
9970        Opcode = X86ISD::FMIN;
9971        break;
9972      case ISD::SETOLE:
9973        // Converting this to a min would handle comparisons between positive
9974        // and negative zero incorrectly.
9975        if (!UnsafeFPMath &&
9976            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
9977          break;
9978        Opcode = X86ISD::FMIN;
9979        break;
9980      case ISD::SETULE:
9981        // Converting this to a min would handle both negative zeros and NaNs
9982        // incorrectly, but we can swap the operands to fix both.
9983        std::swap(LHS, RHS);
9984      case ISD::SETOLT:
9985      case ISD::SETLT:
9986      case ISD::SETLE:
9987        Opcode = X86ISD::FMIN;
9988        break;
9989
9990      case ISD::SETOGE:
9991        // Converting this to a max would handle comparisons between positive
9992        // and negative zero incorrectly.
9993        if (!UnsafeFPMath &&
9994            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
9995          break;
9996        Opcode = X86ISD::FMAX;
9997        break;
9998      case ISD::SETUGT:
9999        // Converting this to a max would handle NaNs incorrectly, and swapping
10000        // the operands would cause it to handle comparisons between positive
10001        // and negative zero incorrectly.
10002        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10003          if (!UnsafeFPMath &&
10004              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10005            break;
10006          std::swap(LHS, RHS);
10007        }
10008        Opcode = X86ISD::FMAX;
10009        break;
10010      case ISD::SETUGE:
10011        // Converting this to a max would handle both negative zeros and NaNs
10012        // incorrectly, but we can swap the operands to fix both.
10013        std::swap(LHS, RHS);
10014      case ISD::SETOGT:
10015      case ISD::SETGT:
10016      case ISD::SETGE:
10017        Opcode = X86ISD::FMAX;
10018        break;
10019      }
10020    // Check for x CC y ? y : x -- a min/max with reversed arms.
10021    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
10022               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
10023      switch (CC) {
10024      default: break;
10025      case ISD::SETOGE:
10026        // Converting this to a min would handle comparisons between positive
10027        // and negative zero incorrectly, and swapping the operands would
10028        // cause it to handle NaNs incorrectly.
10029        if (!UnsafeFPMath &&
10030            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
10031          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10032            break;
10033          std::swap(LHS, RHS);
10034        }
10035        Opcode = X86ISD::FMIN;
10036        break;
10037      case ISD::SETUGT:
10038        // Converting this to a min would handle NaNs incorrectly.
10039        if (!UnsafeFPMath &&
10040            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
10041          break;
10042        Opcode = X86ISD::FMIN;
10043        break;
10044      case ISD::SETUGE:
10045        // Converting this to a min would handle both negative zeros and NaNs
10046        // incorrectly, but we can swap the operands to fix both.
10047        std::swap(LHS, RHS);
10048      case ISD::SETOGT:
10049      case ISD::SETGT:
10050      case ISD::SETGE:
10051        Opcode = X86ISD::FMIN;
10052        break;
10053
10054      case ISD::SETULT:
10055        // Converting this to a max would handle NaNs incorrectly.
10056        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10057          break;
10058        Opcode = X86ISD::FMAX;
10059        break;
10060      case ISD::SETOLE:
10061        // Converting this to a max would handle comparisons between positive
10062        // and negative zero incorrectly, and swapping the operands would
10063        // cause it to handle NaNs incorrectly.
10064        if (!UnsafeFPMath &&
10065            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
10066          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10067            break;
10068          std::swap(LHS, RHS);
10069        }
10070        Opcode = X86ISD::FMAX;
10071        break;
10072      case ISD::SETULE:
10073        // Converting this to a max would handle both negative zeros and NaNs
10074        // incorrectly, but we can swap the operands to fix both.
10075        std::swap(LHS, RHS);
10076      case ISD::SETOLT:
10077      case ISD::SETLT:
10078      case ISD::SETLE:
10079        Opcode = X86ISD::FMAX;
10080        break;
10081      }
10082    }
10083
10084    if (Opcode)
10085      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
10086  }
10087
10088  // If this is a select between two integer constants, try to do some
10089  // optimizations.
10090  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
10091    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
10092      // Don't do this for crazy integer types.
10093      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
10094        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
10095        // so that TrueC (the true value) is larger than FalseC.
10096        bool NeedsCondInvert = false;
10097
10098        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
10099            // Efficiently invertible.
10100            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
10101             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
10102              isa<ConstantSDNode>(Cond.getOperand(1))))) {
10103          NeedsCondInvert = true;
10104          std::swap(TrueC, FalseC);
10105        }
10106
10107        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
10108        if (FalseC->getAPIntValue() == 0 &&
10109            TrueC->getAPIntValue().isPowerOf2()) {
10110          if (NeedsCondInvert) // Invert the condition if needed.
10111            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10112                               DAG.getConstant(1, Cond.getValueType()));
10113
10114          // Zero extend the condition if needed.
10115          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
10116
10117          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10118          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
10119                             DAG.getConstant(ShAmt, MVT::i8));
10120        }
10121
10122        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
10123        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10124          if (NeedsCondInvert) // Invert the condition if needed.
10125            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10126                               DAG.getConstant(1, Cond.getValueType()));
10127
10128          // Zero extend the condition if needed.
10129          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10130                             FalseC->getValueType(0), Cond);
10131          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10132                             SDValue(FalseC, 0));
10133        }
10134
10135        // Optimize cases that will turn into an LEA instruction.  This requires
10136        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10137        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10138          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10139          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10140
10141          bool isFastMultiplier = false;
10142          if (Diff < 10) {
10143            switch ((unsigned char)Diff) {
10144              default: break;
10145              case 1:  // result = add base, cond
10146              case 2:  // result = lea base(    , cond*2)
10147              case 3:  // result = lea base(cond, cond*2)
10148              case 4:  // result = lea base(    , cond*4)
10149              case 5:  // result = lea base(cond, cond*4)
10150              case 8:  // result = lea base(    , cond*8)
10151              case 9:  // result = lea base(cond, cond*8)
10152                isFastMultiplier = true;
10153                break;
10154            }
10155          }
10156
10157          if (isFastMultiplier) {
10158            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10159            if (NeedsCondInvert) // Invert the condition if needed.
10160              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10161                                 DAG.getConstant(1, Cond.getValueType()));
10162
10163            // Zero extend the condition if needed.
10164            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10165                               Cond);
10166            // Scale the condition by the difference.
10167            if (Diff != 1)
10168              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10169                                 DAG.getConstant(Diff, Cond.getValueType()));
10170
10171            // Add the base if non-zero.
10172            if (FalseC->getAPIntValue() != 0)
10173              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10174                                 SDValue(FalseC, 0));
10175            return Cond;
10176          }
10177        }
10178      }
10179  }
10180
10181  return SDValue();
10182}
10183
10184/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
10185static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
10186                                  TargetLowering::DAGCombinerInfo &DCI) {
10187  DebugLoc DL = N->getDebugLoc();
10188
10189  // If the flag operand isn't dead, don't touch this CMOV.
10190  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
10191    return SDValue();
10192
10193  // If this is a select between two integer constants, try to do some
10194  // optimizations.  Note that the operands are ordered the opposite of SELECT
10195  // operands.
10196  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
10197    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10198      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
10199      // larger than FalseC (the false value).
10200      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
10201
10202      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
10203        CC = X86::GetOppositeBranchCondition(CC);
10204        std::swap(TrueC, FalseC);
10205      }
10206
10207      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
10208      // This is efficient for any integer data type (including i8/i16) and
10209      // shift amount.
10210      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
10211        SDValue Cond = N->getOperand(3);
10212        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10213                           DAG.getConstant(CC, MVT::i8), Cond);
10214
10215        // Zero extend the condition if needed.
10216        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
10217
10218        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10219        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
10220                           DAG.getConstant(ShAmt, MVT::i8));
10221        if (N->getNumValues() == 2)  // Dead flag value?
10222          return DCI.CombineTo(N, Cond, SDValue());
10223        return Cond;
10224      }
10225
10226      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
10227      // for any integer data type, including i8/i16.
10228      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10229        SDValue Cond = N->getOperand(3);
10230        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10231                           DAG.getConstant(CC, MVT::i8), Cond);
10232
10233        // Zero extend the condition if needed.
10234        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10235                           FalseC->getValueType(0), Cond);
10236        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10237                           SDValue(FalseC, 0));
10238
10239        if (N->getNumValues() == 2)  // Dead flag value?
10240          return DCI.CombineTo(N, Cond, SDValue());
10241        return Cond;
10242      }
10243
10244      // Optimize cases that will turn into an LEA instruction.  This requires
10245      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10246      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10247        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10248        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10249
10250        bool isFastMultiplier = false;
10251        if (Diff < 10) {
10252          switch ((unsigned char)Diff) {
10253          default: break;
10254          case 1:  // result = add base, cond
10255          case 2:  // result = lea base(    , cond*2)
10256          case 3:  // result = lea base(cond, cond*2)
10257          case 4:  // result = lea base(    , cond*4)
10258          case 5:  // result = lea base(cond, cond*4)
10259          case 8:  // result = lea base(    , cond*8)
10260          case 9:  // result = lea base(cond, cond*8)
10261            isFastMultiplier = true;
10262            break;
10263          }
10264        }
10265
10266        if (isFastMultiplier) {
10267          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10268          SDValue Cond = N->getOperand(3);
10269          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10270                             DAG.getConstant(CC, MVT::i8), Cond);
10271          // Zero extend the condition if needed.
10272          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10273                             Cond);
10274          // Scale the condition by the difference.
10275          if (Diff != 1)
10276            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10277                               DAG.getConstant(Diff, Cond.getValueType()));
10278
10279          // Add the base if non-zero.
10280          if (FalseC->getAPIntValue() != 0)
10281            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10282                               SDValue(FalseC, 0));
10283          if (N->getNumValues() == 2)  // Dead flag value?
10284            return DCI.CombineTo(N, Cond, SDValue());
10285          return Cond;
10286        }
10287      }
10288    }
10289  }
10290  return SDValue();
10291}
10292
10293
10294/// PerformMulCombine - Optimize a single multiply with constant into two
10295/// in order to implement it with two cheaper instructions, e.g.
10296/// LEA + SHL, LEA + LEA.
10297static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
10298                                 TargetLowering::DAGCombinerInfo &DCI) {
10299  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10300    return SDValue();
10301
10302  EVT VT = N->getValueType(0);
10303  if (VT != MVT::i64)
10304    return SDValue();
10305
10306  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10307  if (!C)
10308    return SDValue();
10309  uint64_t MulAmt = C->getZExtValue();
10310  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
10311    return SDValue();
10312
10313  uint64_t MulAmt1 = 0;
10314  uint64_t MulAmt2 = 0;
10315  if ((MulAmt % 9) == 0) {
10316    MulAmt1 = 9;
10317    MulAmt2 = MulAmt / 9;
10318  } else if ((MulAmt % 5) == 0) {
10319    MulAmt1 = 5;
10320    MulAmt2 = MulAmt / 5;
10321  } else if ((MulAmt % 3) == 0) {
10322    MulAmt1 = 3;
10323    MulAmt2 = MulAmt / 3;
10324  }
10325  if (MulAmt2 &&
10326      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
10327    DebugLoc DL = N->getDebugLoc();
10328
10329    if (isPowerOf2_64(MulAmt2) &&
10330        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
10331      // If second multiplifer is pow2, issue it first. We want the multiply by
10332      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
10333      // is an add.
10334      std::swap(MulAmt1, MulAmt2);
10335
10336    SDValue NewMul;
10337    if (isPowerOf2_64(MulAmt1))
10338      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
10339                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
10340    else
10341      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
10342                           DAG.getConstant(MulAmt1, VT));
10343
10344    if (isPowerOf2_64(MulAmt2))
10345      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
10346                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
10347    else
10348      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
10349                           DAG.getConstant(MulAmt2, VT));
10350
10351    // Do not add new nodes to DAG combiner worklist.
10352    DCI.CombineTo(N, NewMul, false);
10353  }
10354  return SDValue();
10355}
10356
10357static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
10358  SDValue N0 = N->getOperand(0);
10359  SDValue N1 = N->getOperand(1);
10360  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
10361  EVT VT = N0.getValueType();
10362
10363  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
10364  // since the result of setcc_c is all zero's or all ones.
10365  if (N1C && N0.getOpcode() == ISD::AND &&
10366      N0.getOperand(1).getOpcode() == ISD::Constant) {
10367    SDValue N00 = N0.getOperand(0);
10368    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
10369        ((N00.getOpcode() == ISD::ANY_EXTEND ||
10370          N00.getOpcode() == ISD::ZERO_EXTEND) &&
10371         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
10372      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
10373      APInt ShAmt = N1C->getAPIntValue();
10374      Mask = Mask.shl(ShAmt);
10375      if (Mask != 0)
10376        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
10377                           N00, DAG.getConstant(Mask, VT));
10378    }
10379  }
10380
10381  return SDValue();
10382}
10383
10384/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
10385///                       when possible.
10386static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
10387                                   const X86Subtarget *Subtarget) {
10388  EVT VT = N->getValueType(0);
10389  if (!VT.isVector() && VT.isInteger() &&
10390      N->getOpcode() == ISD::SHL)
10391    return PerformSHLCombine(N, DAG);
10392
10393  // On X86 with SSE2 support, we can transform this to a vector shift if
10394  // all elements are shifted by the same amount.  We can't do this in legalize
10395  // because the a constant vector is typically transformed to a constant pool
10396  // so we have no knowledge of the shift amount.
10397  if (!Subtarget->hasSSE2())
10398    return SDValue();
10399
10400  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
10401    return SDValue();
10402
10403  SDValue ShAmtOp = N->getOperand(1);
10404  EVT EltVT = VT.getVectorElementType();
10405  DebugLoc DL = N->getDebugLoc();
10406  SDValue BaseShAmt = SDValue();
10407  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
10408    unsigned NumElts = VT.getVectorNumElements();
10409    unsigned i = 0;
10410    for (; i != NumElts; ++i) {
10411      SDValue Arg = ShAmtOp.getOperand(i);
10412      if (Arg.getOpcode() == ISD::UNDEF) continue;
10413      BaseShAmt = Arg;
10414      break;
10415    }
10416    for (; i != NumElts; ++i) {
10417      SDValue Arg = ShAmtOp.getOperand(i);
10418      if (Arg.getOpcode() == ISD::UNDEF) continue;
10419      if (Arg != BaseShAmt) {
10420        return SDValue();
10421      }
10422    }
10423  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
10424             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
10425    SDValue InVec = ShAmtOp.getOperand(0);
10426    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
10427      unsigned NumElts = InVec.getValueType().getVectorNumElements();
10428      unsigned i = 0;
10429      for (; i != NumElts; ++i) {
10430        SDValue Arg = InVec.getOperand(i);
10431        if (Arg.getOpcode() == ISD::UNDEF) continue;
10432        BaseShAmt = Arg;
10433        break;
10434      }
10435    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
10436       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
10437         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
10438         if (C->getZExtValue() == SplatIdx)
10439           BaseShAmt = InVec.getOperand(1);
10440       }
10441    }
10442    if (BaseShAmt.getNode() == 0)
10443      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
10444                              DAG.getIntPtrConstant(0));
10445  } else
10446    return SDValue();
10447
10448  // The shift amount is an i32.
10449  if (EltVT.bitsGT(MVT::i32))
10450    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
10451  else if (EltVT.bitsLT(MVT::i32))
10452    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
10453
10454  // The shift amount is identical so we can do a vector shift.
10455  SDValue  ValOp = N->getOperand(0);
10456  switch (N->getOpcode()) {
10457  default:
10458    llvm_unreachable("Unknown shift opcode!");
10459    break;
10460  case ISD::SHL:
10461    if (VT == MVT::v2i64)
10462      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10463                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10464                         ValOp, BaseShAmt);
10465    if (VT == MVT::v4i32)
10466      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10467                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10468                         ValOp, BaseShAmt);
10469    if (VT == MVT::v8i16)
10470      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10471                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10472                         ValOp, BaseShAmt);
10473    break;
10474  case ISD::SRA:
10475    if (VT == MVT::v4i32)
10476      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10477                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10478                         ValOp, BaseShAmt);
10479    if (VT == MVT::v8i16)
10480      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10481                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10482                         ValOp, BaseShAmt);
10483    break;
10484  case ISD::SRL:
10485    if (VT == MVT::v2i64)
10486      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10487                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10488                         ValOp, BaseShAmt);
10489    if (VT == MVT::v4i32)
10490      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10491                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10492                         ValOp, BaseShAmt);
10493    if (VT ==  MVT::v8i16)
10494      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10495                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10496                         ValOp, BaseShAmt);
10497    break;
10498  }
10499  return SDValue();
10500}
10501
10502static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
10503                                TargetLowering::DAGCombinerInfo &DCI,
10504                                const X86Subtarget *Subtarget) {
10505  if (DCI.isBeforeLegalizeOps())
10506    return SDValue();
10507
10508  EVT VT = N->getValueType(0);
10509  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
10510    return SDValue();
10511
10512  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
10513  SDValue N0 = N->getOperand(0);
10514  SDValue N1 = N->getOperand(1);
10515  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
10516    std::swap(N0, N1);
10517  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
10518    return SDValue();
10519  if (!N0.hasOneUse() || !N1.hasOneUse())
10520    return SDValue();
10521
10522  SDValue ShAmt0 = N0.getOperand(1);
10523  if (ShAmt0.getValueType() != MVT::i8)
10524    return SDValue();
10525  SDValue ShAmt1 = N1.getOperand(1);
10526  if (ShAmt1.getValueType() != MVT::i8)
10527    return SDValue();
10528  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
10529    ShAmt0 = ShAmt0.getOperand(0);
10530  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
10531    ShAmt1 = ShAmt1.getOperand(0);
10532
10533  DebugLoc DL = N->getDebugLoc();
10534  unsigned Opc = X86ISD::SHLD;
10535  SDValue Op0 = N0.getOperand(0);
10536  SDValue Op1 = N1.getOperand(0);
10537  if (ShAmt0.getOpcode() == ISD::SUB) {
10538    Opc = X86ISD::SHRD;
10539    std::swap(Op0, Op1);
10540    std::swap(ShAmt0, ShAmt1);
10541  }
10542
10543  unsigned Bits = VT.getSizeInBits();
10544  if (ShAmt1.getOpcode() == ISD::SUB) {
10545    SDValue Sum = ShAmt1.getOperand(0);
10546    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
10547      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
10548      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
10549        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
10550      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
10551        return DAG.getNode(Opc, DL, VT,
10552                           Op0, Op1,
10553                           DAG.getNode(ISD::TRUNCATE, DL,
10554                                       MVT::i8, ShAmt0));
10555    }
10556  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
10557    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
10558    if (ShAmt0C &&
10559        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
10560      return DAG.getNode(Opc, DL, VT,
10561                         N0.getOperand(0), N1.getOperand(0),
10562                         DAG.getNode(ISD::TRUNCATE, DL,
10563                                       MVT::i8, ShAmt0));
10564  }
10565
10566  return SDValue();
10567}
10568
10569/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
10570static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
10571                                   const X86Subtarget *Subtarget) {
10572  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
10573  // the FP state in cases where an emms may be missing.
10574  // A preferable solution to the general problem is to figure out the right
10575  // places to insert EMMS.  This qualifies as a quick hack.
10576
10577  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
10578  StoreSDNode *St = cast<StoreSDNode>(N);
10579  EVT VT = St->getValue().getValueType();
10580  if (VT.getSizeInBits() != 64)
10581    return SDValue();
10582
10583  const Function *F = DAG.getMachineFunction().getFunction();
10584  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
10585  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
10586    && Subtarget->hasSSE2();
10587  if ((VT.isVector() ||
10588       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
10589      isa<LoadSDNode>(St->getValue()) &&
10590      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
10591      St->getChain().hasOneUse() && !St->isVolatile()) {
10592    SDNode* LdVal = St->getValue().getNode();
10593    LoadSDNode *Ld = 0;
10594    int TokenFactorIndex = -1;
10595    SmallVector<SDValue, 8> Ops;
10596    SDNode* ChainVal = St->getChain().getNode();
10597    // Must be a store of a load.  We currently handle two cases:  the load
10598    // is a direct child, and it's under an intervening TokenFactor.  It is
10599    // possible to dig deeper under nested TokenFactors.
10600    if (ChainVal == LdVal)
10601      Ld = cast<LoadSDNode>(St->getChain());
10602    else if (St->getValue().hasOneUse() &&
10603             ChainVal->getOpcode() == ISD::TokenFactor) {
10604      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
10605        if (ChainVal->getOperand(i).getNode() == LdVal) {
10606          TokenFactorIndex = i;
10607          Ld = cast<LoadSDNode>(St->getValue());
10608        } else
10609          Ops.push_back(ChainVal->getOperand(i));
10610      }
10611    }
10612
10613    if (!Ld || !ISD::isNormalLoad(Ld))
10614      return SDValue();
10615
10616    // If this is not the MMX case, i.e. we are just turning i64 load/store
10617    // into f64 load/store, avoid the transformation if there are multiple
10618    // uses of the loaded value.
10619    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
10620      return SDValue();
10621
10622    DebugLoc LdDL = Ld->getDebugLoc();
10623    DebugLoc StDL = N->getDebugLoc();
10624    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
10625    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
10626    // pair instead.
10627    if (Subtarget->is64Bit() || F64IsLegal) {
10628      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
10629      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
10630                                  Ld->getBasePtr(), Ld->getSrcValue(),
10631                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
10632                                  Ld->isNonTemporal(), Ld->getAlignment());
10633      SDValue NewChain = NewLd.getValue(1);
10634      if (TokenFactorIndex != -1) {
10635        Ops.push_back(NewChain);
10636        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10637                               Ops.size());
10638      }
10639      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
10640                          St->getSrcValue(), St->getSrcValueOffset(),
10641                          St->isVolatile(), St->isNonTemporal(),
10642                          St->getAlignment());
10643    }
10644
10645    // Otherwise, lower to two pairs of 32-bit loads / stores.
10646    SDValue LoAddr = Ld->getBasePtr();
10647    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
10648                                 DAG.getConstant(4, MVT::i32));
10649
10650    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
10651                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
10652                               Ld->isVolatile(), Ld->isNonTemporal(),
10653                               Ld->getAlignment());
10654    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
10655                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
10656                               Ld->isVolatile(), Ld->isNonTemporal(),
10657                               MinAlign(Ld->getAlignment(), 4));
10658
10659    SDValue NewChain = LoLd.getValue(1);
10660    if (TokenFactorIndex != -1) {
10661      Ops.push_back(LoLd);
10662      Ops.push_back(HiLd);
10663      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10664                             Ops.size());
10665    }
10666
10667    LoAddr = St->getBasePtr();
10668    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
10669                         DAG.getConstant(4, MVT::i32));
10670
10671    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
10672                                St->getSrcValue(), St->getSrcValueOffset(),
10673                                St->isVolatile(), St->isNonTemporal(),
10674                                St->getAlignment());
10675    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
10676                                St->getSrcValue(),
10677                                St->getSrcValueOffset() + 4,
10678                                St->isVolatile(),
10679                                St->isNonTemporal(),
10680                                MinAlign(St->getAlignment(), 4));
10681    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
10682  }
10683  return SDValue();
10684}
10685
10686/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
10687/// X86ISD::FXOR nodes.
10688static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
10689  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
10690  // F[X]OR(0.0, x) -> x
10691  // F[X]OR(x, 0.0) -> x
10692  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10693    if (C->getValueAPF().isPosZero())
10694      return N->getOperand(1);
10695  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10696    if (C->getValueAPF().isPosZero())
10697      return N->getOperand(0);
10698  return SDValue();
10699}
10700
10701/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
10702static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
10703  // FAND(0.0, x) -> 0.0
10704  // FAND(x, 0.0) -> 0.0
10705  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10706    if (C->getValueAPF().isPosZero())
10707      return N->getOperand(0);
10708  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10709    if (C->getValueAPF().isPosZero())
10710      return N->getOperand(1);
10711  return SDValue();
10712}
10713
10714static SDValue PerformBTCombine(SDNode *N,
10715                                SelectionDAG &DAG,
10716                                TargetLowering::DAGCombinerInfo &DCI) {
10717  // BT ignores high bits in the bit index operand.
10718  SDValue Op1 = N->getOperand(1);
10719  if (Op1.hasOneUse()) {
10720    unsigned BitWidth = Op1.getValueSizeInBits();
10721    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
10722    APInt KnownZero, KnownOne;
10723    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
10724                                          !DCI.isBeforeLegalizeOps());
10725    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10726    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
10727        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
10728      DCI.CommitTargetLoweringOpt(TLO);
10729  }
10730  return SDValue();
10731}
10732
10733static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
10734  SDValue Op = N->getOperand(0);
10735  if (Op.getOpcode() == ISD::BIT_CONVERT)
10736    Op = Op.getOperand(0);
10737  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
10738  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
10739      VT.getVectorElementType().getSizeInBits() ==
10740      OpVT.getVectorElementType().getSizeInBits()) {
10741    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
10742  }
10743  return SDValue();
10744}
10745
10746static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
10747  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
10748  //           (and (i32 x86isd::setcc_carry), 1)
10749  // This eliminates the zext. This transformation is necessary because
10750  // ISD::SETCC is always legalized to i8.
10751  DebugLoc dl = N->getDebugLoc();
10752  SDValue N0 = N->getOperand(0);
10753  EVT VT = N->getValueType(0);
10754  if (N0.getOpcode() == ISD::AND &&
10755      N0.hasOneUse() &&
10756      N0.getOperand(0).hasOneUse()) {
10757    SDValue N00 = N0.getOperand(0);
10758    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
10759      return SDValue();
10760    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
10761    if (!C || C->getZExtValue() != 1)
10762      return SDValue();
10763    return DAG.getNode(ISD::AND, dl, VT,
10764                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
10765                                   N00.getOperand(0), N00.getOperand(1)),
10766                       DAG.getConstant(1, VT));
10767  }
10768
10769  return SDValue();
10770}
10771
10772SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
10773                                             DAGCombinerInfo &DCI) const {
10774  SelectionDAG &DAG = DCI.DAG;
10775  switch (N->getOpcode()) {
10776  default: break;
10777  case ISD::EXTRACT_VECTOR_ELT:
10778                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
10779  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
10780  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
10781  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
10782  case ISD::SHL:
10783  case ISD::SRA:
10784  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
10785  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
10786  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
10787  case X86ISD::FXOR:
10788  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
10789  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
10790  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
10791  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
10792  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
10793  case X86ISD::SHUFPS:      // Handle all target specific shuffles
10794  case X86ISD::SHUFPD:
10795  case X86ISD::PALIGN:
10796  case X86ISD::PUNPCKHBW:
10797  case X86ISD::PUNPCKHWD:
10798  case X86ISD::PUNPCKHDQ:
10799  case X86ISD::PUNPCKHQDQ:
10800  case X86ISD::UNPCKHPS:
10801  case X86ISD::UNPCKHPD:
10802  case X86ISD::PUNPCKLBW:
10803  case X86ISD::PUNPCKLWD:
10804  case X86ISD::PUNPCKLDQ:
10805  case X86ISD::PUNPCKLQDQ:
10806  case X86ISD::UNPCKLPS:
10807  case X86ISD::UNPCKLPD:
10808  case X86ISD::MOVHLPS:
10809  case X86ISD::MOVLHPS:
10810  case X86ISD::PSHUFD:
10811  case X86ISD::PSHUFHW:
10812  case X86ISD::PSHUFLW:
10813  case X86ISD::MOVSS:
10814  case X86ISD::MOVSD:
10815  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
10816  }
10817
10818  return SDValue();
10819}
10820
10821/// isTypeDesirableForOp - Return true if the target has native support for
10822/// the specified value type and it is 'desirable' to use the type for the
10823/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
10824/// instruction encodings are longer and some i16 instructions are slow.
10825bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
10826  if (!isTypeLegal(VT))
10827    return false;
10828  if (VT != MVT::i16)
10829    return true;
10830
10831  switch (Opc) {
10832  default:
10833    return true;
10834  case ISD::LOAD:
10835  case ISD::SIGN_EXTEND:
10836  case ISD::ZERO_EXTEND:
10837  case ISD::ANY_EXTEND:
10838  case ISD::SHL:
10839  case ISD::SRL:
10840  case ISD::SUB:
10841  case ISD::ADD:
10842  case ISD::MUL:
10843  case ISD::AND:
10844  case ISD::OR:
10845  case ISD::XOR:
10846    return false;
10847  }
10848}
10849
10850/// IsDesirableToPromoteOp - This method query the target whether it is
10851/// beneficial for dag combiner to promote the specified node. If true, it
10852/// should return the desired promotion type by reference.
10853bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
10854  EVT VT = Op.getValueType();
10855  if (VT != MVT::i16)
10856    return false;
10857
10858  bool Promote = false;
10859  bool Commute = false;
10860  switch (Op.getOpcode()) {
10861  default: break;
10862  case ISD::LOAD: {
10863    LoadSDNode *LD = cast<LoadSDNode>(Op);
10864    // If the non-extending load has a single use and it's not live out, then it
10865    // might be folded.
10866    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
10867                                                     Op.hasOneUse()*/) {
10868      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
10869             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
10870        // The only case where we'd want to promote LOAD (rather then it being
10871        // promoted as an operand is when it's only use is liveout.
10872        if (UI->getOpcode() != ISD::CopyToReg)
10873          return false;
10874      }
10875    }
10876    Promote = true;
10877    break;
10878  }
10879  case ISD::SIGN_EXTEND:
10880  case ISD::ZERO_EXTEND:
10881  case ISD::ANY_EXTEND:
10882    Promote = true;
10883    break;
10884  case ISD::SHL:
10885  case ISD::SRL: {
10886    SDValue N0 = Op.getOperand(0);
10887    // Look out for (store (shl (load), x)).
10888    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
10889      return false;
10890    Promote = true;
10891    break;
10892  }
10893  case ISD::ADD:
10894  case ISD::MUL:
10895  case ISD::AND:
10896  case ISD::OR:
10897  case ISD::XOR:
10898    Commute = true;
10899    // fallthrough
10900  case ISD::SUB: {
10901    SDValue N0 = Op.getOperand(0);
10902    SDValue N1 = Op.getOperand(1);
10903    if (!Commute && MayFoldLoad(N1))
10904      return false;
10905    // Avoid disabling potential load folding opportunities.
10906    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
10907      return false;
10908    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
10909      return false;
10910    Promote = true;
10911  }
10912  }
10913
10914  PVT = MVT::i32;
10915  return Promote;
10916}
10917
10918//===----------------------------------------------------------------------===//
10919//                           X86 Inline Assembly Support
10920//===----------------------------------------------------------------------===//
10921
10922static bool LowerToBSwap(CallInst *CI) {
10923  // FIXME: this should verify that we are targetting a 486 or better.  If not,
10924  // we will turn this bswap into something that will be lowered to logical ops
10925  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
10926  // so don't worry about this.
10927
10928  // Verify this is a simple bswap.
10929  if (CI->getNumArgOperands() != 1 ||
10930      CI->getType() != CI->getArgOperand(0)->getType() ||
10931      !CI->getType()->isIntegerTy())
10932    return false;
10933
10934  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
10935  if (!Ty || Ty->getBitWidth() % 16 != 0)
10936    return false;
10937
10938  // Okay, we can do this xform, do so now.
10939  const Type *Tys[] = { Ty };
10940  Module *M = CI->getParent()->getParent()->getParent();
10941  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
10942
10943  Value *Op = CI->getArgOperand(0);
10944  Op = CallInst::Create(Int, Op, CI->getName(), CI);
10945
10946  CI->replaceAllUsesWith(Op);
10947  CI->eraseFromParent();
10948  return true;
10949}
10950
10951bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
10952  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
10953  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
10954
10955  std::string AsmStr = IA->getAsmString();
10956
10957  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
10958  SmallVector<StringRef, 4> AsmPieces;
10959  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
10960
10961  switch (AsmPieces.size()) {
10962  default: return false;
10963  case 1:
10964    AsmStr = AsmPieces[0];
10965    AsmPieces.clear();
10966    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
10967
10968    // bswap $0
10969    if (AsmPieces.size() == 2 &&
10970        (AsmPieces[0] == "bswap" ||
10971         AsmPieces[0] == "bswapq" ||
10972         AsmPieces[0] == "bswapl") &&
10973        (AsmPieces[1] == "$0" ||
10974         AsmPieces[1] == "${0:q}")) {
10975      // No need to check constraints, nothing other than the equivalent of
10976      // "=r,0" would be valid here.
10977      return LowerToBSwap(CI);
10978    }
10979    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
10980    if (CI->getType()->isIntegerTy(16) &&
10981        AsmPieces.size() == 3 &&
10982        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
10983        AsmPieces[1] == "$$8," &&
10984        AsmPieces[2] == "${0:w}" &&
10985        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
10986      AsmPieces.clear();
10987      const std::string &Constraints = IA->getConstraintString();
10988      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
10989      std::sort(AsmPieces.begin(), AsmPieces.end());
10990      if (AsmPieces.size() == 4 &&
10991          AsmPieces[0] == "~{cc}" &&
10992          AsmPieces[1] == "~{dirflag}" &&
10993          AsmPieces[2] == "~{flags}" &&
10994          AsmPieces[3] == "~{fpsr}") {
10995        return LowerToBSwap(CI);
10996      }
10997    }
10998    break;
10999  case 3:
11000    if (CI->getType()->isIntegerTy(64) &&
11001        Constraints.size() >= 2 &&
11002        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
11003        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
11004      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
11005      SmallVector<StringRef, 4> Words;
11006      SplitString(AsmPieces[0], Words, " \t");
11007      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
11008        Words.clear();
11009        SplitString(AsmPieces[1], Words, " \t");
11010        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
11011          Words.clear();
11012          SplitString(AsmPieces[2], Words, " \t,");
11013          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
11014              Words[2] == "%edx") {
11015            return LowerToBSwap(CI);
11016          }
11017        }
11018      }
11019    }
11020    break;
11021  }
11022  return false;
11023}
11024
11025
11026
11027/// getConstraintType - Given a constraint letter, return the type of
11028/// constraint it is for this target.
11029X86TargetLowering::ConstraintType
11030X86TargetLowering::getConstraintType(const std::string &Constraint) const {
11031  if (Constraint.size() == 1) {
11032    switch (Constraint[0]) {
11033    case 'A':
11034      return C_Register;
11035    case 'f':
11036    case 'r':
11037    case 'R':
11038    case 'l':
11039    case 'q':
11040    case 'Q':
11041    case 'x':
11042    case 'y':
11043    case 'Y':
11044      return C_RegisterClass;
11045    case 'e':
11046    case 'Z':
11047      return C_Other;
11048    default:
11049      break;
11050    }
11051  }
11052  return TargetLowering::getConstraintType(Constraint);
11053}
11054
11055/// LowerXConstraint - try to replace an X constraint, which matches anything,
11056/// with another that has more specific requirements based on the type of the
11057/// corresponding operand.
11058const char *X86TargetLowering::
11059LowerXConstraint(EVT ConstraintVT) const {
11060  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
11061  // 'f' like normal targets.
11062  if (ConstraintVT.isFloatingPoint()) {
11063    if (Subtarget->hasSSE2())
11064      return "Y";
11065    if (Subtarget->hasSSE1())
11066      return "x";
11067  }
11068
11069  return TargetLowering::LowerXConstraint(ConstraintVT);
11070}
11071
11072/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
11073/// vector.  If it is invalid, don't add anything to Ops.
11074void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11075                                                     char Constraint,
11076                                                     std::vector<SDValue>&Ops,
11077                                                     SelectionDAG &DAG) const {
11078  SDValue Result(0, 0);
11079
11080  switch (Constraint) {
11081  default: break;
11082  case 'I':
11083    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11084      if (C->getZExtValue() <= 31) {
11085        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11086        break;
11087      }
11088    }
11089    return;
11090  case 'J':
11091    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11092      if (C->getZExtValue() <= 63) {
11093        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11094        break;
11095      }
11096    }
11097    return;
11098  case 'K':
11099    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11100      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
11101        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11102        break;
11103      }
11104    }
11105    return;
11106  case 'N':
11107    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11108      if (C->getZExtValue() <= 255) {
11109        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11110        break;
11111      }
11112    }
11113    return;
11114  case 'e': {
11115    // 32-bit signed value
11116    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11117      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
11118                                           C->getSExtValue())) {
11119        // Widen to 64 bits here to get it sign extended.
11120        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
11121        break;
11122      }
11123    // FIXME gcc accepts some relocatable values here too, but only in certain
11124    // memory models; it's complicated.
11125    }
11126    return;
11127  }
11128  case 'Z': {
11129    // 32-bit unsigned value
11130    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11131      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
11132                                           C->getZExtValue())) {
11133        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11134        break;
11135      }
11136    }
11137    // FIXME gcc accepts some relocatable values here too, but only in certain
11138    // memory models; it's complicated.
11139    return;
11140  }
11141  case 'i': {
11142    // Literal immediates are always ok.
11143    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
11144      // Widen to 64 bits here to get it sign extended.
11145      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
11146      break;
11147    }
11148
11149    // In any sort of PIC mode addresses need to be computed at runtime by
11150    // adding in a register or some sort of table lookup.  These can't
11151    // be used as immediates.
11152    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
11153      return;
11154
11155    // If we are in non-pic codegen mode, we allow the address of a global (with
11156    // an optional displacement) to be used with 'i'.
11157    GlobalAddressSDNode *GA = 0;
11158    int64_t Offset = 0;
11159
11160    // Match either (GA), (GA+C), (GA+C1+C2), etc.
11161    while (1) {
11162      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
11163        Offset += GA->getOffset();
11164        break;
11165      } else if (Op.getOpcode() == ISD::ADD) {
11166        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
11167          Offset += C->getZExtValue();
11168          Op = Op.getOperand(0);
11169          continue;
11170        }
11171      } else if (Op.getOpcode() == ISD::SUB) {
11172        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
11173          Offset += -C->getZExtValue();
11174          Op = Op.getOperand(0);
11175          continue;
11176        }
11177      }
11178
11179      // Otherwise, this isn't something we can handle, reject it.
11180      return;
11181    }
11182
11183    const GlobalValue *GV = GA->getGlobal();
11184    // If we require an extra load to get this address, as in PIC mode, we
11185    // can't accept it.
11186    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
11187                                                        getTargetMachine())))
11188      return;
11189
11190    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
11191                                        GA->getValueType(0), Offset);
11192    break;
11193  }
11194  }
11195
11196  if (Result.getNode()) {
11197    Ops.push_back(Result);
11198    return;
11199  }
11200  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11201}
11202
11203std::vector<unsigned> X86TargetLowering::
11204getRegClassForInlineAsmConstraint(const std::string &Constraint,
11205                                  EVT VT) const {
11206  if (Constraint.size() == 1) {
11207    // FIXME: not handling fp-stack yet!
11208    switch (Constraint[0]) {      // GCC X86 Constraint Letters
11209    default: break;  // Unknown constraint letter
11210    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
11211      if (Subtarget->is64Bit()) {
11212        if (VT == MVT::i32)
11213          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
11214                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
11215                                       X86::R10D,X86::R11D,X86::R12D,
11216                                       X86::R13D,X86::R14D,X86::R15D,
11217                                       X86::EBP, X86::ESP, 0);
11218        else if (VT == MVT::i16)
11219          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
11220                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
11221                                       X86::R10W,X86::R11W,X86::R12W,
11222                                       X86::R13W,X86::R14W,X86::R15W,
11223                                       X86::BP,  X86::SP, 0);
11224        else if (VT == MVT::i8)
11225          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
11226                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
11227                                       X86::R10B,X86::R11B,X86::R12B,
11228                                       X86::R13B,X86::R14B,X86::R15B,
11229                                       X86::BPL, X86::SPL, 0);
11230
11231        else if (VT == MVT::i64)
11232          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
11233                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
11234                                       X86::R10, X86::R11, X86::R12,
11235                                       X86::R13, X86::R14, X86::R15,
11236                                       X86::RBP, X86::RSP, 0);
11237
11238        break;
11239      }
11240      // 32-bit fallthrough
11241    case 'Q':   // Q_REGS
11242      if (VT == MVT::i32)
11243        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
11244      else if (VT == MVT::i16)
11245        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
11246      else if (VT == MVT::i8)
11247        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
11248      else if (VT == MVT::i64)
11249        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
11250      break;
11251    }
11252  }
11253
11254  return std::vector<unsigned>();
11255}
11256
11257std::pair<unsigned, const TargetRegisterClass*>
11258X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
11259                                                EVT VT) const {
11260  // First, see if this is a constraint that directly corresponds to an LLVM
11261  // register class.
11262  if (Constraint.size() == 1) {
11263    // GCC Constraint Letters
11264    switch (Constraint[0]) {
11265    default: break;
11266    case 'r':   // GENERAL_REGS
11267    case 'l':   // INDEX_REGS
11268      if (VT == MVT::i8)
11269        return std::make_pair(0U, X86::GR8RegisterClass);
11270      if (VT == MVT::i16)
11271        return std::make_pair(0U, X86::GR16RegisterClass);
11272      if (VT == MVT::i32 || !Subtarget->is64Bit())
11273        return std::make_pair(0U, X86::GR32RegisterClass);
11274      return std::make_pair(0U, X86::GR64RegisterClass);
11275    case 'R':   // LEGACY_REGS
11276      if (VT == MVT::i8)
11277        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
11278      if (VT == MVT::i16)
11279        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
11280      if (VT == MVT::i32 || !Subtarget->is64Bit())
11281        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
11282      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
11283    case 'f':  // FP Stack registers.
11284      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
11285      // value to the correct fpstack register class.
11286      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
11287        return std::make_pair(0U, X86::RFP32RegisterClass);
11288      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
11289        return std::make_pair(0U, X86::RFP64RegisterClass);
11290      return std::make_pair(0U, X86::RFP80RegisterClass);
11291    case 'y':   // MMX_REGS if MMX allowed.
11292      if (!Subtarget->hasMMX()) break;
11293      return std::make_pair(0U, X86::VR64RegisterClass);
11294    case 'Y':   // SSE_REGS if SSE2 allowed
11295      if (!Subtarget->hasSSE2()) break;
11296      // FALL THROUGH.
11297    case 'x':   // SSE_REGS if SSE1 allowed
11298      if (!Subtarget->hasSSE1()) break;
11299
11300      switch (VT.getSimpleVT().SimpleTy) {
11301      default: break;
11302      // Scalar SSE types.
11303      case MVT::f32:
11304      case MVT::i32:
11305        return std::make_pair(0U, X86::FR32RegisterClass);
11306      case MVT::f64:
11307      case MVT::i64:
11308        return std::make_pair(0U, X86::FR64RegisterClass);
11309      // Vector types.
11310      case MVT::v16i8:
11311      case MVT::v8i16:
11312      case MVT::v4i32:
11313      case MVT::v2i64:
11314      case MVT::v4f32:
11315      case MVT::v2f64:
11316        return std::make_pair(0U, X86::VR128RegisterClass);
11317      }
11318      break;
11319    }
11320  }
11321
11322  // Use the default implementation in TargetLowering to convert the register
11323  // constraint into a member of a register class.
11324  std::pair<unsigned, const TargetRegisterClass*> Res;
11325  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
11326
11327  // Not found as a standard register?
11328  if (Res.second == 0) {
11329    // Map st(0) -> st(7) -> ST0
11330    if (Constraint.size() == 7 && Constraint[0] == '{' &&
11331        tolower(Constraint[1]) == 's' &&
11332        tolower(Constraint[2]) == 't' &&
11333        Constraint[3] == '(' &&
11334        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
11335        Constraint[5] == ')' &&
11336        Constraint[6] == '}') {
11337
11338      Res.first = X86::ST0+Constraint[4]-'0';
11339      Res.second = X86::RFP80RegisterClass;
11340      return Res;
11341    }
11342
11343    // GCC allows "st(0)" to be called just plain "st".
11344    if (StringRef("{st}").equals_lower(Constraint)) {
11345      Res.first = X86::ST0;
11346      Res.second = X86::RFP80RegisterClass;
11347      return Res;
11348    }
11349
11350    // flags -> EFLAGS
11351    if (StringRef("{flags}").equals_lower(Constraint)) {
11352      Res.first = X86::EFLAGS;
11353      Res.second = X86::CCRRegisterClass;
11354      return Res;
11355    }
11356
11357    // 'A' means EAX + EDX.
11358    if (Constraint == "A") {
11359      Res.first = X86::EAX;
11360      Res.second = X86::GR32_ADRegisterClass;
11361      return Res;
11362    }
11363    return Res;
11364  }
11365
11366  // Otherwise, check to see if this is a register class of the wrong value
11367  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
11368  // turn into {ax},{dx}.
11369  if (Res.second->hasType(VT))
11370    return Res;   // Correct type already, nothing to do.
11371
11372  // All of the single-register GCC register classes map their values onto
11373  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
11374  // really want an 8-bit or 32-bit register, map to the appropriate register
11375  // class and return the appropriate register.
11376  if (Res.second == X86::GR16RegisterClass) {
11377    if (VT == MVT::i8) {
11378      unsigned DestReg = 0;
11379      switch (Res.first) {
11380      default: break;
11381      case X86::AX: DestReg = X86::AL; break;
11382      case X86::DX: DestReg = X86::DL; break;
11383      case X86::CX: DestReg = X86::CL; break;
11384      case X86::BX: DestReg = X86::BL; break;
11385      }
11386      if (DestReg) {
11387        Res.first = DestReg;
11388        Res.second = X86::GR8RegisterClass;
11389      }
11390    } else if (VT == MVT::i32) {
11391      unsigned DestReg = 0;
11392      switch (Res.first) {
11393      default: break;
11394      case X86::AX: DestReg = X86::EAX; break;
11395      case X86::DX: DestReg = X86::EDX; break;
11396      case X86::CX: DestReg = X86::ECX; break;
11397      case X86::BX: DestReg = X86::EBX; break;
11398      case X86::SI: DestReg = X86::ESI; break;
11399      case X86::DI: DestReg = X86::EDI; break;
11400      case X86::BP: DestReg = X86::EBP; break;
11401      case X86::SP: DestReg = X86::ESP; break;
11402      }
11403      if (DestReg) {
11404        Res.first = DestReg;
11405        Res.second = X86::GR32RegisterClass;
11406      }
11407    } else if (VT == MVT::i64) {
11408      unsigned DestReg = 0;
11409      switch (Res.first) {
11410      default: break;
11411      case X86::AX: DestReg = X86::RAX; break;
11412      case X86::DX: DestReg = X86::RDX; break;
11413      case X86::CX: DestReg = X86::RCX; break;
11414      case X86::BX: DestReg = X86::RBX; break;
11415      case X86::SI: DestReg = X86::RSI; break;
11416      case X86::DI: DestReg = X86::RDI; break;
11417      case X86::BP: DestReg = X86::RBP; break;
11418      case X86::SP: DestReg = X86::RSP; break;
11419      }
11420      if (DestReg) {
11421        Res.first = DestReg;
11422        Res.second = X86::GR64RegisterClass;
11423      }
11424    }
11425  } else if (Res.second == X86::FR32RegisterClass ||
11426             Res.second == X86::FR64RegisterClass ||
11427             Res.second == X86::VR128RegisterClass) {
11428    // Handle references to XMM physical registers that got mapped into the
11429    // wrong class.  This can happen with constraints like {xmm0} where the
11430    // target independent register mapper will just pick the first match it can
11431    // find, ignoring the required type.
11432    if (VT == MVT::f32)
11433      Res.second = X86::FR32RegisterClass;
11434    else if (VT == MVT::f64)
11435      Res.second = X86::FR64RegisterClass;
11436    else if (X86::VR128RegisterClass->hasType(VT))
11437      Res.second = X86::VR128RegisterClass;
11438  }
11439
11440  return Res;
11441}
11442