X86ISelLowering.cpp revision 15d03fb7f496562d7256ecac69f63e08ee0bfd2e
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63static SDValue Insert128BitVector(SDValue Result,
64                                  SDValue Vec,
65                                  SDValue Idx,
66                                  SelectionDAG &DAG,
67                                  DebugLoc dl);
68
69static SDValue Extract128BitVector(SDValue Vec,
70                                   SDValue Idx,
71                                   SelectionDAG &DAG,
72                                   DebugLoc dl);
73
74/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
75/// sets things up to match to an AVX VEXTRACTF128 instruction or a
76/// simple subregister reference.  Idx is an index in the 128 bits we
77/// want.  It need not be aligned to a 128-bit bounday.  That makes
78/// lowering EXTRACT_VECTOR_ELT operations easier.
79static SDValue Extract128BitVector(SDValue Vec,
80                                   SDValue Idx,
81                                   SelectionDAG &DAG,
82                                   DebugLoc dl) {
83  EVT VT = Vec.getValueType();
84  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
85  EVT ElVT = VT.getVectorElementType();
86  int Factor = VT.getSizeInBits()/128;
87  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
88                                  VT.getVectorNumElements()/Factor);
89
90  // Extract from UNDEF is UNDEF.
91  if (Vec.getOpcode() == ISD::UNDEF)
92    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
93
94  if (isa<ConstantSDNode>(Idx)) {
95    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
96
97    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
98    // we can match to VEXTRACTF128.
99    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
100
101    // This is the index of the first element of the 128-bit chunk
102    // we want.
103    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
104                                 * ElemsPerChunk);
105
106    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
107    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
108                                 VecIdx);
109
110    return Result;
111  }
112
113  return SDValue();
114}
115
116/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
117/// sets things up to match to an AVX VINSERTF128 instruction or a
118/// simple superregister reference.  Idx is an index in the 128 bits
119/// we want.  It need not be aligned to a 128-bit bounday.  That makes
120/// lowering INSERT_VECTOR_ELT operations easier.
121static SDValue Insert128BitVector(SDValue Result,
122                                  SDValue Vec,
123                                  SDValue Idx,
124                                  SelectionDAG &DAG,
125                                  DebugLoc dl) {
126  if (isa<ConstantSDNode>(Idx)) {
127    EVT VT = Vec.getValueType();
128    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
129
130    EVT ElVT = VT.getVectorElementType();
131    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
132    EVT ResultVT = Result.getValueType();
133
134    // Insert the relevant 128 bits.
135    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
136
137    // This is the index of the first element of the 128-bit chunk
138    // we want.
139    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
140                                 * ElemsPerChunk);
141
142    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
143    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
144                         VecIdx);
145    return Result;
146  }
147
148  return SDValue();
149}
150
151static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
152  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
153  bool is64Bit = Subtarget->is64Bit();
154
155  if (Subtarget->isTargetEnvMacho()) {
156    if (is64Bit)
157      return new X8664_MachoTargetObjectFile();
158    return new TargetLoweringObjectFileMachO();
159  }
160
161  if (Subtarget->isTargetELF())
162    return new TargetLoweringObjectFileELF();
163  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
164    return new TargetLoweringObjectFileCOFF();
165  llvm_unreachable("unknown subtarget type");
166}
167
168X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
169  : TargetLowering(TM, createTLOF(TM)) {
170  Subtarget = &TM.getSubtarget<X86Subtarget>();
171  X86ScalarSSEf64 = Subtarget->hasXMMInt();
172  X86ScalarSSEf32 = Subtarget->hasXMM();
173  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
174
175  RegInfo = TM.getRegisterInfo();
176  TD = getTargetData();
177
178  // Set up the TargetLowering object.
179  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
180
181  // X86 is weird, it always uses i8 for shift amounts and setcc results.
182  setBooleanContents(ZeroOrOneBooleanContent);
183
184  // For 64-bit since we have so many registers use the ILP scheduler, for
185  // 32-bit code use the register pressure specific scheduling.
186  if (Subtarget->is64Bit())
187    setSchedulingPreference(Sched::ILP);
188  else
189    setSchedulingPreference(Sched::RegPressure);
190  setStackPointerRegisterToSaveRestore(X86StackPtr);
191
192  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
193    // Setup Windows compiler runtime calls.
194    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
195    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
196    setLibcallName(RTLIB::SREM_I64, "_allrem");
197    setLibcallName(RTLIB::UREM_I64, "_aullrem");
198    setLibcallName(RTLIB::MUL_I64, "_allmul");
199    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
200    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
201    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
202    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
203    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
204    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
207    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
208  }
209
210  if (Subtarget->isTargetDarwin()) {
211    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
212    setUseUnderscoreSetJmp(false);
213    setUseUnderscoreLongJmp(false);
214  } else if (Subtarget->isTargetMingw()) {
215    // MS runtime is weird: it exports _setjmp, but longjmp!
216    setUseUnderscoreSetJmp(true);
217    setUseUnderscoreLongJmp(false);
218  } else {
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(true);
221  }
222
223  // Set up the register classes.
224  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
225  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
226  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
227  if (Subtarget->is64Bit())
228    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
229
230  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
231
232  // We don't accept any truncstore of integer registers.
233  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
234  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
235  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
236  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
239
240  // SETOEQ and SETUNE require checking two conditions.
241  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
243  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
247
248  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
249  // operation.
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
253
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
257  } else if (!UseSoftFloat) {
258    // We have an algorithm for SSE2->double, and we turn this into a
259    // 64-bit FILD followed by conditional FADD for other targets.
260    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
261    // We have an algorithm for SSE2, and we turn this into a 64-bit
262    // FILD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
264  }
265
266  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
267  // this operation.
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
269  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
270
271  if (!UseSoftFloat) {
272    // SSE has no i16 to fp conversion, only i32
273    if (X86ScalarSSEf32) {
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
275      // f32 and f64 cases are Legal, f80 case is not
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
277    } else {
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    }
281  } else {
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
283    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
284  }
285
286  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
287  // are Legal, f80 is custom lowered.
288  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
289  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
290
291  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
292  // this operation.
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
294  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
295
296  if (X86ScalarSSEf32) {
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
298    // f32 and f64 cases are Legal, f80 case is not
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
300  } else {
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  }
304
305  // Handle FP_TO_UINT by promoting the destination to a larger signed
306  // conversion.
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
310
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
313    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
314  } else if (!UseSoftFloat) {
315    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
316      // Expand FP_TO_UINT into a select.
317      // FIXME: We would like to use a Custom expander here eventually to do
318      // the optimal thing for SSE vs. the default expansion in the legalizer.
319      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
320    else
321      // With SSE3 we can use fisttpll to convert to a signed i64; without
322      // SSE, we're stuck with a fistpll.
323      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
324  }
325
326  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
327  if (!X86ScalarSSEf64) {
328    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
329    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
330    if (Subtarget->is64Bit()) {
331      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
332      // Without SSE, i64->f64 goes through memory.
333      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
334    }
335  }
336
337  // Scalar integer divide and remainder are lowered to use operations that
338  // produce two results, to match the available instructions. This exposes
339  // the two-result form to trivial CSE, which is able to combine x/y and x%y
340  // into a single instruction.
341  //
342  // Scalar integer multiply-high is also lowered to use two-result
343  // operations, to match the available instructions. However, plain multiply
344  // (low) operations are left as Legal, as there are single-result
345  // instructions for this in x86. Using the two-result multiply instructions
346  // when both high and low results are needed must be arranged by dagcombine.
347  for (unsigned i = 0, e = 4; i != e; ++i) {
348    MVT VT = IntVTs[i];
349    setOperationAction(ISD::MULHS, VT, Expand);
350    setOperationAction(ISD::MULHU, VT, Expand);
351    setOperationAction(ISD::SDIV, VT, Expand);
352    setOperationAction(ISD::UDIV, VT, Expand);
353    setOperationAction(ISD::SREM, VT, Expand);
354    setOperationAction(ISD::UREM, VT, Expand);
355
356    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
357    setOperationAction(ISD::ADDC, VT, Custom);
358    setOperationAction(ISD::ADDE, VT, Custom);
359    setOperationAction(ISD::SUBC, VT, Custom);
360    setOperationAction(ISD::SUBE, VT, Custom);
361  }
362
363  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
364  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
365  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
366  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
367  if (Subtarget->is64Bit())
368    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
369  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
370  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
372  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
373  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
374  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
376  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
377
378  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
379  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
380  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
381  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
382  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
383  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
384  if (Subtarget->is64Bit()) {
385    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
386    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
387  }
388
389  if (Subtarget->hasPOPCNT()) {
390    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
391  } else {
392    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
393    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
394    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
395    if (Subtarget->is64Bit())
396      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
397  }
398
399  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
400  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
401
402  // These should be promoted to a larger select which is supported.
403  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
404  // X86 wants to expand cmov itself.
405  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
406  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
407  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
408  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
409  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
410  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
411  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
412  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
413  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
414  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
415  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
416  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
417  if (Subtarget->is64Bit()) {
418    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
419    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
420  }
421  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
422
423  // Darwin ABI issue.
424  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
425  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
426  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
427  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
428  if (Subtarget->is64Bit())
429    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
430  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
431  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
432  if (Subtarget->is64Bit()) {
433    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
434    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
435    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
436    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
437    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
438  }
439  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
440  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
441  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
442  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
443  if (Subtarget->is64Bit()) {
444    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
445    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
446    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
447  }
448
449  if (Subtarget->hasXMM())
450    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
451
452  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
453  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
454
455  // On X86 and X86-64, atomic operations are lowered to locked instructions.
456  // Locked instructions, in turn, have implicit fence semantics (all memory
457  // operations are flushed before issuing the locked instruction, and they
458  // are not buffered), so we can fold away the common pattern of
459  // fence-atomic-fence.
460  setShouldFoldAtomicFences(true);
461
462  // Expand certain atomics
463  for (unsigned i = 0, e = 4; i != e; ++i) {
464    MVT VT = IntVTs[i];
465    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
466    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
467  }
468
469  if (!Subtarget->is64Bit()) {
470    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
471    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
472    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
473    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
474    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
475    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
476    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
477  }
478
479  // FIXME - use subtarget debug flags
480  if (!Subtarget->isTargetDarwin() &&
481      !Subtarget->isTargetELF() &&
482      !Subtarget->isTargetCygMing()) {
483    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
484  }
485
486  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
487  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
488  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
489  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
490  if (Subtarget->is64Bit()) {
491    setExceptionPointerRegister(X86::RAX);
492    setExceptionSelectorRegister(X86::RDX);
493  } else {
494    setExceptionPointerRegister(X86::EAX);
495    setExceptionSelectorRegister(X86::EDX);
496  }
497  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
498  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
499
500  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
501
502  setOperationAction(ISD::TRAP, MVT::Other, Legal);
503
504  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
505  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
506  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
507  if (Subtarget->is64Bit()) {
508    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
509    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
510  } else {
511    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
512    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
513  }
514
515  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
516  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
517  setOperationAction(ISD::DYNAMIC_STACKALLOC,
518                     (Subtarget->is64Bit() ? MVT::i64 : MVT::i32),
519                     (Subtarget->isTargetCOFF()
520                      && !Subtarget->isTargetEnvMacho()
521                      ? Custom : Expand));
522
523  if (!UseSoftFloat && X86ScalarSSEf64) {
524    // f32 and f64 use SSE.
525    // Set up the FP register classes.
526    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
527    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
528
529    // Use ANDPD to simulate FABS.
530    setOperationAction(ISD::FABS , MVT::f64, Custom);
531    setOperationAction(ISD::FABS , MVT::f32, Custom);
532
533    // Use XORP to simulate FNEG.
534    setOperationAction(ISD::FNEG , MVT::f64, Custom);
535    setOperationAction(ISD::FNEG , MVT::f32, Custom);
536
537    // Use ANDPD and ORPD to simulate FCOPYSIGN.
538    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
539    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
540
541    // Lower this to FGETSIGNx86 plus an AND.
542    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
543    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
544
545    // We don't support sin/cos/fmod
546    setOperationAction(ISD::FSIN , MVT::f64, Expand);
547    setOperationAction(ISD::FCOS , MVT::f64, Expand);
548    setOperationAction(ISD::FSIN , MVT::f32, Expand);
549    setOperationAction(ISD::FCOS , MVT::f32, Expand);
550
551    // Expand FP immediates into loads from the stack, except for the special
552    // cases we handle.
553    addLegalFPImmediate(APFloat(+0.0)); // xorpd
554    addLegalFPImmediate(APFloat(+0.0f)); // xorps
555  } else if (!UseSoftFloat && X86ScalarSSEf32) {
556    // Use SSE for f32, x87 for f64.
557    // Set up the FP register classes.
558    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
559    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
560
561    // Use ANDPS to simulate FABS.
562    setOperationAction(ISD::FABS , MVT::f32, Custom);
563
564    // Use XORP to simulate FNEG.
565    setOperationAction(ISD::FNEG , MVT::f32, Custom);
566
567    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
568
569    // Use ANDPS and ORPS to simulate FCOPYSIGN.
570    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
571    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
572
573    // We don't support sin/cos/fmod
574    setOperationAction(ISD::FSIN , MVT::f32, Expand);
575    setOperationAction(ISD::FCOS , MVT::f32, Expand);
576
577    // Special cases we handle for FP constants.
578    addLegalFPImmediate(APFloat(+0.0f)); // xorps
579    addLegalFPImmediate(APFloat(+0.0)); // FLD0
580    addLegalFPImmediate(APFloat(+1.0)); // FLD1
581    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
582    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
583
584    if (!UnsafeFPMath) {
585      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
586      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
587    }
588  } else if (!UseSoftFloat) {
589    // f32 and f64 in x87.
590    // Set up the FP register classes.
591    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
592    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
593
594    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
595    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
596    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
597    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
598
599    if (!UnsafeFPMath) {
600      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
601      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
602    }
603    addLegalFPImmediate(APFloat(+0.0)); // FLD0
604    addLegalFPImmediate(APFloat(+1.0)); // FLD1
605    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
606    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
607    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
608    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
609    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
610    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
611  }
612
613  // We don't support FMA.
614  setOperationAction(ISD::FMA, MVT::f64, Expand);
615  setOperationAction(ISD::FMA, MVT::f32, Expand);
616
617  // Long double always uses X87.
618  if (!UseSoftFloat) {
619    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
620    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
621    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
622    {
623      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
624      addLegalFPImmediate(TmpFlt);  // FLD0
625      TmpFlt.changeSign();
626      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
627
628      bool ignored;
629      APFloat TmpFlt2(+1.0);
630      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
631                      &ignored);
632      addLegalFPImmediate(TmpFlt2);  // FLD1
633      TmpFlt2.changeSign();
634      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
635    }
636
637    if (!UnsafeFPMath) {
638      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
639      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
640    }
641
642    setOperationAction(ISD::FMA, MVT::f80, Expand);
643  }
644
645  // Always use a library call for pow.
646  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
647  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
648  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
649
650  setOperationAction(ISD::FLOG, MVT::f80, Expand);
651  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
652  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
653  setOperationAction(ISD::FEXP, MVT::f80, Expand);
654  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
655
656  // First set operation action for all vector types to either promote
657  // (for widening) or expand (for scalarization). Then we will selectively
658  // turn on ones that can be effectively codegen'd.
659  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
660       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
661    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
662    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
663    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
664    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
665    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
666    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
667    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
668    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
669    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
670    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
671    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
672    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
673    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
674    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
675    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
676    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
677    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
678    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
679    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
680    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
681    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
682    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
683    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
684    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
685    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
686    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
711    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
715    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
716         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
717      setTruncStoreAction((MVT::SimpleValueType)VT,
718                          (MVT::SimpleValueType)InnerVT, Expand);
719    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
720    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
721    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
722  }
723
724  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
725  // with -msoft-float, disable use of MMX as well.
726  if (!UseSoftFloat && Subtarget->hasMMX()) {
727    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
728    // No operations on x86mmx supported, everything uses intrinsics.
729  }
730
731  // MMX-sized vectors (other than x86mmx) are expected to be expanded
732  // into smaller operations.
733  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
734  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
735  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
736  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
737  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
738  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
739  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
740  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
741  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
742  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
743  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
744  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
745  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
746  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
747  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
748  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
749  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
750  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
751  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
752  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
753  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
754  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
755  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
756  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
757  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
758  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
759  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
760  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
761  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
762
763  if (!UseSoftFloat && Subtarget->hasXMM()) {
764    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
765
766    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
767    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
768    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
769    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
770    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
771    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
772    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
773    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
774    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
775    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
776    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
777    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
778  }
779
780  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
781    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
782
783    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
784    // registers cannot be used even for integer operations.
785    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
786    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
787    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
788    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
789
790    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
791    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
792    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
793    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
794    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
795    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
796    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
797    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
798    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
799    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
800    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
801    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
802    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
803    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
804    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
805    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
806
807    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
808    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
809    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
810    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
811
812    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
813    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
814    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
815    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
816    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
817
818    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
819    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
820    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
821    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
822    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
823
824    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
825    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
826      EVT VT = (MVT::SimpleValueType)i;
827      // Do not attempt to custom lower non-power-of-2 vectors
828      if (!isPowerOf2_32(VT.getVectorNumElements()))
829        continue;
830      // Do not attempt to custom lower non-128-bit vectors
831      if (!VT.is128BitVector())
832        continue;
833      setOperationAction(ISD::BUILD_VECTOR,
834                         VT.getSimpleVT().SimpleTy, Custom);
835      setOperationAction(ISD::VECTOR_SHUFFLE,
836                         VT.getSimpleVT().SimpleTy, Custom);
837      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
838                         VT.getSimpleVT().SimpleTy, Custom);
839    }
840
841    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
842    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
843    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
844    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
845    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
846    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
847
848    if (Subtarget->is64Bit()) {
849      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
850      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
851    }
852
853    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
854    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
855      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
856      EVT VT = SVT;
857
858      // Do not attempt to promote non-128-bit vectors
859      if (!VT.is128BitVector())
860        continue;
861
862      setOperationAction(ISD::AND,    SVT, Promote);
863      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
864      setOperationAction(ISD::OR,     SVT, Promote);
865      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
866      setOperationAction(ISD::XOR,    SVT, Promote);
867      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
868      setOperationAction(ISD::LOAD,   SVT, Promote);
869      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
870      setOperationAction(ISD::SELECT, SVT, Promote);
871      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
872    }
873
874    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
875
876    // Custom lower v2i64 and v2f64 selects.
877    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
878    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
879    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
880    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
881
882    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
883    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
884  }
885
886  if (Subtarget->hasSSE41()) {
887    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
888    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
889    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
890    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
891    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
892    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
893    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
894    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
895    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
896    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
897
898    // FIXME: Do we need to handle scalar-to-vector here?
899    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
900
901    // Can turn SHL into an integer multiply.
902    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
903    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
904
905    // i8 and i16 vectors are custom , because the source register and source
906    // source memory operand types are not the same width.  f32 vectors are
907    // custom since the immediate controlling the insert encodes additional
908    // information.
909    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
910    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
911    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
912    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
913
914    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
915    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
916    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
917    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
918
919    if (Subtarget->is64Bit()) {
920      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
921      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
922    }
923  }
924
925  if (Subtarget->hasSSE2()) {
926    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
927    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
928    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
929
930    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
931    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
932    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
933
934    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
935    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
936  }
937
938  if (Subtarget->hasSSE42())
939    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
940
941  if (!UseSoftFloat && Subtarget->hasAVX()) {
942    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
943    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
944    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
945    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
946    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
947    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
948
949    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
950    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
951    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
952
953    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
954    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
955    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
956    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
957    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
958    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
959
960    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
961    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
962    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
963    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
964    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
965    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
966
967    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
968    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
969
970    // Custom lower several nodes for 256-bit types.
971    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
972                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
973      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
974      EVT VT = SVT;
975
976      // Extract subvector is special because the value type
977      // (result) is 128-bit but the source is 256-bit wide.
978      if (VT.is128BitVector())
979        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
980
981      // Do not attempt to custom lower other non-256-bit vectors
982      if (!VT.is256BitVector())
983        continue;
984
985      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
986      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
987      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
988      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
989      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
990      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
991    }
992
993    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
994    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
995      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
996      EVT VT = SVT;
997
998      // Do not attempt to promote non-256-bit vectors
999      if (!VT.is256BitVector())
1000        continue;
1001
1002      setOperationAction(ISD::AND,    SVT, Promote);
1003      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1004      setOperationAction(ISD::OR,     SVT, Promote);
1005      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1006      setOperationAction(ISD::XOR,    SVT, Promote);
1007      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1008      setOperationAction(ISD::LOAD,   SVT, Promote);
1009      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1010      setOperationAction(ISD::SELECT, SVT, Promote);
1011      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1012    }
1013  }
1014
1015  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1016  // of this type with custom code.
1017  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1018         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1019    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1020  }
1021
1022  // We want to custom lower some of our intrinsics.
1023  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1024
1025
1026  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1027  // handle type legalization for these operations here.
1028  //
1029  // FIXME: We really should do custom legalization for addition and
1030  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1031  // than generic legalization for 64-bit multiplication-with-overflow, though.
1032  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1033    // Add/Sub/Mul with overflow operations are custom lowered.
1034    MVT VT = IntVTs[i];
1035    setOperationAction(ISD::SADDO, VT, Custom);
1036    setOperationAction(ISD::UADDO, VT, Custom);
1037    setOperationAction(ISD::SSUBO, VT, Custom);
1038    setOperationAction(ISD::USUBO, VT, Custom);
1039    setOperationAction(ISD::SMULO, VT, Custom);
1040    setOperationAction(ISD::UMULO, VT, Custom);
1041  }
1042
1043  // There are no 8-bit 3-address imul/mul instructions
1044  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1045  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1046
1047  if (!Subtarget->is64Bit()) {
1048    // These libcalls are not available in 32-bit.
1049    setLibcallName(RTLIB::SHL_I128, 0);
1050    setLibcallName(RTLIB::SRL_I128, 0);
1051    setLibcallName(RTLIB::SRA_I128, 0);
1052  }
1053
1054  // We have target-specific dag combine patterns for the following nodes:
1055  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1056  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1057  setTargetDAGCombine(ISD::BUILD_VECTOR);
1058  setTargetDAGCombine(ISD::SELECT);
1059  setTargetDAGCombine(ISD::SHL);
1060  setTargetDAGCombine(ISD::SRA);
1061  setTargetDAGCombine(ISD::SRL);
1062  setTargetDAGCombine(ISD::OR);
1063  setTargetDAGCombine(ISD::AND);
1064  setTargetDAGCombine(ISD::ADD);
1065  setTargetDAGCombine(ISD::SUB);
1066  setTargetDAGCombine(ISD::STORE);
1067  setTargetDAGCombine(ISD::ZERO_EXTEND);
1068  setTargetDAGCombine(ISD::SINT_TO_FP);
1069  if (Subtarget->is64Bit())
1070    setTargetDAGCombine(ISD::MUL);
1071
1072  computeRegisterProperties();
1073
1074  // On Darwin, -Os means optimize for size without hurting performance,
1075  // do not reduce the limit.
1076  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1077  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1078  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1079  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1080  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1081  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1082  setPrefLoopAlignment(16);
1083  benefitFromCodePlacementOpt = true;
1084
1085  setPrefFunctionAlignment(4);
1086}
1087
1088
1089MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1090  return MVT::i8;
1091}
1092
1093
1094/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1095/// the desired ByVal argument alignment.
1096static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1097  if (MaxAlign == 16)
1098    return;
1099  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1100    if (VTy->getBitWidth() == 128)
1101      MaxAlign = 16;
1102  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1103    unsigned EltAlign = 0;
1104    getMaxByValAlign(ATy->getElementType(), EltAlign);
1105    if (EltAlign > MaxAlign)
1106      MaxAlign = EltAlign;
1107  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1108    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1109      unsigned EltAlign = 0;
1110      getMaxByValAlign(STy->getElementType(i), EltAlign);
1111      if (EltAlign > MaxAlign)
1112        MaxAlign = EltAlign;
1113      if (MaxAlign == 16)
1114        break;
1115    }
1116  }
1117  return;
1118}
1119
1120/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1121/// function arguments in the caller parameter area. For X86, aggregates
1122/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1123/// are at 4-byte boundaries.
1124unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1125  if (Subtarget->is64Bit()) {
1126    // Max of 8 and alignment of type.
1127    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1128    if (TyAlign > 8)
1129      return TyAlign;
1130    return 8;
1131  }
1132
1133  unsigned Align = 4;
1134  if (Subtarget->hasXMM())
1135    getMaxByValAlign(Ty, Align);
1136  return Align;
1137}
1138
1139/// getOptimalMemOpType - Returns the target specific optimal type for load
1140/// and store operations as a result of memset, memcpy, and memmove
1141/// lowering. If DstAlign is zero that means it's safe to destination
1142/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1143/// means there isn't a need to check it against alignment requirement,
1144/// probably because the source does not need to be loaded. If
1145/// 'NonScalarIntSafe' is true, that means it's safe to return a
1146/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1147/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1148/// constant so it does not need to be loaded.
1149/// It returns EVT::Other if the type should be determined using generic
1150/// target-independent logic.
1151EVT
1152X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1153                                       unsigned DstAlign, unsigned SrcAlign,
1154                                       bool NonScalarIntSafe,
1155                                       bool MemcpyStrSrc,
1156                                       MachineFunction &MF) const {
1157  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1158  // linux.  This is because the stack realignment code can't handle certain
1159  // cases like PR2962.  This should be removed when PR2962 is fixed.
1160  const Function *F = MF.getFunction();
1161  if (NonScalarIntSafe &&
1162      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1163    if (Size >= 16 &&
1164        (Subtarget->isUnalignedMemAccessFast() ||
1165         ((DstAlign == 0 || DstAlign >= 16) &&
1166          (SrcAlign == 0 || SrcAlign >= 16))) &&
1167        Subtarget->getStackAlignment() >= 16) {
1168      if (Subtarget->hasSSE2())
1169        return MVT::v4i32;
1170      if (Subtarget->hasSSE1())
1171        return MVT::v4f32;
1172    } else if (!MemcpyStrSrc && Size >= 8 &&
1173               !Subtarget->is64Bit() &&
1174               Subtarget->getStackAlignment() >= 8 &&
1175               Subtarget->hasXMMInt()) {
1176      // Do not use f64 to lower memcpy if source is string constant. It's
1177      // better to use i32 to avoid the loads.
1178      return MVT::f64;
1179    }
1180  }
1181  if (Subtarget->is64Bit() && Size >= 8)
1182    return MVT::i64;
1183  return MVT::i32;
1184}
1185
1186/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1187/// current function.  The returned value is a member of the
1188/// MachineJumpTableInfo::JTEntryKind enum.
1189unsigned X86TargetLowering::getJumpTableEncoding() const {
1190  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1191  // symbol.
1192  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1193      Subtarget->isPICStyleGOT())
1194    return MachineJumpTableInfo::EK_Custom32;
1195
1196  // Otherwise, use the normal jump table encoding heuristics.
1197  return TargetLowering::getJumpTableEncoding();
1198}
1199
1200const MCExpr *
1201X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1202                                             const MachineBasicBlock *MBB,
1203                                             unsigned uid,MCContext &Ctx) const{
1204  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1205         Subtarget->isPICStyleGOT());
1206  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1207  // entries.
1208  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1209                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1210}
1211
1212/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1213/// jumptable.
1214SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1215                                                    SelectionDAG &DAG) const {
1216  if (!Subtarget->is64Bit())
1217    // This doesn't have DebugLoc associated with it, but is not really the
1218    // same as a Register.
1219    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1220  return Table;
1221}
1222
1223/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1224/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1225/// MCExpr.
1226const MCExpr *X86TargetLowering::
1227getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1228                             MCContext &Ctx) const {
1229  // X86-64 uses RIP relative addressing based on the jump table label.
1230  if (Subtarget->isPICStyleRIPRel())
1231    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1232
1233  // Otherwise, the reference is relative to the PIC base.
1234  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1235}
1236
1237// FIXME: Why this routine is here? Move to RegInfo!
1238std::pair<const TargetRegisterClass*, uint8_t>
1239X86TargetLowering::findRepresentativeClass(EVT VT) const{
1240  const TargetRegisterClass *RRC = 0;
1241  uint8_t Cost = 1;
1242  switch (VT.getSimpleVT().SimpleTy) {
1243  default:
1244    return TargetLowering::findRepresentativeClass(VT);
1245  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1246    RRC = (Subtarget->is64Bit()
1247           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1248    break;
1249  case MVT::x86mmx:
1250    RRC = X86::VR64RegisterClass;
1251    break;
1252  case MVT::f32: case MVT::f64:
1253  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1254  case MVT::v4f32: case MVT::v2f64:
1255  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1256  case MVT::v4f64:
1257    RRC = X86::VR128RegisterClass;
1258    break;
1259  }
1260  return std::make_pair(RRC, Cost);
1261}
1262
1263bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1264                                               unsigned &Offset) const {
1265  if (!Subtarget->isTargetLinux())
1266    return false;
1267
1268  if (Subtarget->is64Bit()) {
1269    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1270    Offset = 0x28;
1271    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1272      AddressSpace = 256;
1273    else
1274      AddressSpace = 257;
1275  } else {
1276    // %gs:0x14 on i386
1277    Offset = 0x14;
1278    AddressSpace = 256;
1279  }
1280  return true;
1281}
1282
1283
1284//===----------------------------------------------------------------------===//
1285//               Return Value Calling Convention Implementation
1286//===----------------------------------------------------------------------===//
1287
1288#include "X86GenCallingConv.inc"
1289
1290bool
1291X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1292				  MachineFunction &MF, bool isVarArg,
1293                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1294                        LLVMContext &Context) const {
1295  SmallVector<CCValAssign, 16> RVLocs;
1296  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1297                 RVLocs, Context);
1298  return CCInfo.CheckReturn(Outs, RetCC_X86);
1299}
1300
1301SDValue
1302X86TargetLowering::LowerReturn(SDValue Chain,
1303                               CallingConv::ID CallConv, bool isVarArg,
1304                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1305                               const SmallVectorImpl<SDValue> &OutVals,
1306                               DebugLoc dl, SelectionDAG &DAG) const {
1307  MachineFunction &MF = DAG.getMachineFunction();
1308  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1309
1310  SmallVector<CCValAssign, 16> RVLocs;
1311  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1312                 RVLocs, *DAG.getContext());
1313  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1314
1315  // Add the regs to the liveout set for the function.
1316  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1317  for (unsigned i = 0; i != RVLocs.size(); ++i)
1318    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1319      MRI.addLiveOut(RVLocs[i].getLocReg());
1320
1321  SDValue Flag;
1322
1323  SmallVector<SDValue, 6> RetOps;
1324  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1325  // Operand #1 = Bytes To Pop
1326  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1327                   MVT::i16));
1328
1329  // Copy the result values into the output registers.
1330  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1331    CCValAssign &VA = RVLocs[i];
1332    assert(VA.isRegLoc() && "Can only return in registers!");
1333    SDValue ValToCopy = OutVals[i];
1334    EVT ValVT = ValToCopy.getValueType();
1335
1336    // If this is x86-64, and we disabled SSE, we can't return FP values,
1337    // or SSE or MMX vectors.
1338    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1339         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1340          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1341      report_fatal_error("SSE register return with SSE disabled");
1342    }
1343    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1344    // llvm-gcc has never done it right and no one has noticed, so this
1345    // should be OK for now.
1346    if (ValVT == MVT::f64 &&
1347        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1348      report_fatal_error("SSE2 register return with SSE2 disabled");
1349
1350    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1351    // the RET instruction and handled by the FP Stackifier.
1352    if (VA.getLocReg() == X86::ST0 ||
1353        VA.getLocReg() == X86::ST1) {
1354      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1355      // change the value to the FP stack register class.
1356      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1357        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1358      RetOps.push_back(ValToCopy);
1359      // Don't emit a copytoreg.
1360      continue;
1361    }
1362
1363    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1364    // which is returned in RAX / RDX.
1365    if (Subtarget->is64Bit()) {
1366      if (ValVT == MVT::x86mmx) {
1367        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1368          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1369          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1370                                  ValToCopy);
1371          // If we don't have SSE2 available, convert to v4f32 so the generated
1372          // register is legal.
1373          if (!Subtarget->hasSSE2())
1374            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1375        }
1376      }
1377    }
1378
1379    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1380    Flag = Chain.getValue(1);
1381  }
1382
1383  // The x86-64 ABI for returning structs by value requires that we copy
1384  // the sret argument into %rax for the return. We saved the argument into
1385  // a virtual register in the entry block, so now we copy the value out
1386  // and into %rax.
1387  if (Subtarget->is64Bit() &&
1388      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1389    MachineFunction &MF = DAG.getMachineFunction();
1390    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1391    unsigned Reg = FuncInfo->getSRetReturnReg();
1392    assert(Reg &&
1393           "SRetReturnReg should have been set in LowerFormalArguments().");
1394    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1395
1396    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1397    Flag = Chain.getValue(1);
1398
1399    // RAX now acts like a return value.
1400    MRI.addLiveOut(X86::RAX);
1401  }
1402
1403  RetOps[0] = Chain;  // Update chain.
1404
1405  // Add the flag if we have it.
1406  if (Flag.getNode())
1407    RetOps.push_back(Flag);
1408
1409  return DAG.getNode(X86ISD::RET_FLAG, dl,
1410                     MVT::Other, &RetOps[0], RetOps.size());
1411}
1412
1413bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1414  if (N->getNumValues() != 1)
1415    return false;
1416  if (!N->hasNUsesOfValue(1, 0))
1417    return false;
1418
1419  SDNode *Copy = *N->use_begin();
1420  if (Copy->getOpcode() != ISD::CopyToReg &&
1421      Copy->getOpcode() != ISD::FP_EXTEND)
1422    return false;
1423
1424  bool HasRet = false;
1425  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1426       UI != UE; ++UI) {
1427    if (UI->getOpcode() != X86ISD::RET_FLAG)
1428      return false;
1429    HasRet = true;
1430  }
1431
1432  return HasRet;
1433}
1434
1435EVT
1436X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1437                                            ISD::NodeType ExtendKind) const {
1438  MVT ReturnMVT;
1439  // TODO: Is this also valid on 32-bit?
1440  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1441    ReturnMVT = MVT::i8;
1442  else
1443    ReturnMVT = MVT::i32;
1444
1445  EVT MinVT = getRegisterType(Context, ReturnMVT);
1446  return VT.bitsLT(MinVT) ? MinVT : VT;
1447}
1448
1449/// LowerCallResult - Lower the result values of a call into the
1450/// appropriate copies out of appropriate physical registers.
1451///
1452SDValue
1453X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1454                                   CallingConv::ID CallConv, bool isVarArg,
1455                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1456                                   DebugLoc dl, SelectionDAG &DAG,
1457                                   SmallVectorImpl<SDValue> &InVals) const {
1458
1459  // Assign locations to each value returned by this call.
1460  SmallVector<CCValAssign, 16> RVLocs;
1461  bool Is64Bit = Subtarget->is64Bit();
1462  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1463		 getTargetMachine(), RVLocs, *DAG.getContext());
1464  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1465
1466  // Copy all of the result registers out of their specified physreg.
1467  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1468    CCValAssign &VA = RVLocs[i];
1469    EVT CopyVT = VA.getValVT();
1470
1471    // If this is x86-64, and we disabled SSE, we can't return FP values
1472    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1473        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1474      report_fatal_error("SSE register return with SSE disabled");
1475    }
1476
1477    SDValue Val;
1478
1479    // If this is a call to a function that returns an fp value on the floating
1480    // point stack, we must guarantee the the value is popped from the stack, so
1481    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1482    // if the return value is not used. We use the FpPOP_RETVAL instruction
1483    // instead.
1484    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1485      // If we prefer to use the value in xmm registers, copy it out as f80 and
1486      // use a truncate to move it from fp stack reg to xmm reg.
1487      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1488      SDValue Ops[] = { Chain, InFlag };
1489      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1490                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1491      Val = Chain.getValue(0);
1492
1493      // Round the f80 to the right size, which also moves it to the appropriate
1494      // xmm register.
1495      if (CopyVT != VA.getValVT())
1496        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1497                          // This truncation won't change the value.
1498                          DAG.getIntPtrConstant(1));
1499    } else {
1500      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1501                                 CopyVT, InFlag).getValue(1);
1502      Val = Chain.getValue(0);
1503    }
1504    InFlag = Chain.getValue(2);
1505    InVals.push_back(Val);
1506  }
1507
1508  return Chain;
1509}
1510
1511
1512//===----------------------------------------------------------------------===//
1513//                C & StdCall & Fast Calling Convention implementation
1514//===----------------------------------------------------------------------===//
1515//  StdCall calling convention seems to be standard for many Windows' API
1516//  routines and around. It differs from C calling convention just a little:
1517//  callee should clean up the stack, not caller. Symbols should be also
1518//  decorated in some fancy way :) It doesn't support any vector arguments.
1519//  For info on fast calling convention see Fast Calling Convention (tail call)
1520//  implementation LowerX86_32FastCCCallTo.
1521
1522/// CallIsStructReturn - Determines whether a call uses struct return
1523/// semantics.
1524static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1525  if (Outs.empty())
1526    return false;
1527
1528  return Outs[0].Flags.isSRet();
1529}
1530
1531/// ArgsAreStructReturn - Determines whether a function uses struct
1532/// return semantics.
1533static bool
1534ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1535  if (Ins.empty())
1536    return false;
1537
1538  return Ins[0].Flags.isSRet();
1539}
1540
1541/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1542/// by "Src" to address "Dst" with size and alignment information specified by
1543/// the specific parameter attribute. The copy will be passed as a byval
1544/// function parameter.
1545static SDValue
1546CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1547                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1548                          DebugLoc dl) {
1549  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1550
1551  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1552                       /*isVolatile*/false, /*AlwaysInline=*/true,
1553                       MachinePointerInfo(), MachinePointerInfo());
1554}
1555
1556/// IsTailCallConvention - Return true if the calling convention is one that
1557/// supports tail call optimization.
1558static bool IsTailCallConvention(CallingConv::ID CC) {
1559  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1560}
1561
1562bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1563  if (!CI->isTailCall())
1564    return false;
1565
1566  CallSite CS(CI);
1567  CallingConv::ID CalleeCC = CS.getCallingConv();
1568  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1569    return false;
1570
1571  return true;
1572}
1573
1574/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1575/// a tailcall target by changing its ABI.
1576static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1577  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1578}
1579
1580SDValue
1581X86TargetLowering::LowerMemArgument(SDValue Chain,
1582                                    CallingConv::ID CallConv,
1583                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1584                                    DebugLoc dl, SelectionDAG &DAG,
1585                                    const CCValAssign &VA,
1586                                    MachineFrameInfo *MFI,
1587                                    unsigned i) const {
1588  // Create the nodes corresponding to a load from this parameter slot.
1589  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1590  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1591  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1592  EVT ValVT;
1593
1594  // If value is passed by pointer we have address passed instead of the value
1595  // itself.
1596  if (VA.getLocInfo() == CCValAssign::Indirect)
1597    ValVT = VA.getLocVT();
1598  else
1599    ValVT = VA.getValVT();
1600
1601  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1602  // changed with more analysis.
1603  // In case of tail call optimization mark all arguments mutable. Since they
1604  // could be overwritten by lowering of arguments in case of a tail call.
1605  if (Flags.isByVal()) {
1606    unsigned Bytes = Flags.getByValSize();
1607    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1608    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1609    return DAG.getFrameIndex(FI, getPointerTy());
1610  } else {
1611    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1612                                    VA.getLocMemOffset(), isImmutable);
1613    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1614    return DAG.getLoad(ValVT, dl, Chain, FIN,
1615                       MachinePointerInfo::getFixedStack(FI),
1616                       false, false, 0);
1617  }
1618}
1619
1620SDValue
1621X86TargetLowering::LowerFormalArguments(SDValue Chain,
1622                                        CallingConv::ID CallConv,
1623                                        bool isVarArg,
1624                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1625                                        DebugLoc dl,
1626                                        SelectionDAG &DAG,
1627                                        SmallVectorImpl<SDValue> &InVals)
1628                                          const {
1629  MachineFunction &MF = DAG.getMachineFunction();
1630  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1631
1632  const Function* Fn = MF.getFunction();
1633  if (Fn->hasExternalLinkage() &&
1634      Subtarget->isTargetCygMing() &&
1635      Fn->getName() == "main")
1636    FuncInfo->setForceFramePointer(true);
1637
1638  MachineFrameInfo *MFI = MF.getFrameInfo();
1639  bool Is64Bit = Subtarget->is64Bit();
1640  bool IsWin64 = Subtarget->isTargetWin64();
1641
1642  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1643         "Var args not supported with calling convention fastcc or ghc");
1644
1645  // Assign locations to all of the incoming arguments.
1646  SmallVector<CCValAssign, 16> ArgLocs;
1647  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1648                 ArgLocs, *DAG.getContext());
1649
1650  // Allocate shadow area for Win64
1651  if (IsWin64) {
1652    CCInfo.AllocateStack(32, 8);
1653  }
1654
1655  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1656
1657  unsigned LastVal = ~0U;
1658  SDValue ArgValue;
1659  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1660    CCValAssign &VA = ArgLocs[i];
1661    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1662    // places.
1663    assert(VA.getValNo() != LastVal &&
1664           "Don't support value assigned to multiple locs yet");
1665    LastVal = VA.getValNo();
1666
1667    if (VA.isRegLoc()) {
1668      EVT RegVT = VA.getLocVT();
1669      TargetRegisterClass *RC = NULL;
1670      if (RegVT == MVT::i32)
1671        RC = X86::GR32RegisterClass;
1672      else if (Is64Bit && RegVT == MVT::i64)
1673        RC = X86::GR64RegisterClass;
1674      else if (RegVT == MVT::f32)
1675        RC = X86::FR32RegisterClass;
1676      else if (RegVT == MVT::f64)
1677        RC = X86::FR64RegisterClass;
1678      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1679        RC = X86::VR256RegisterClass;
1680      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1681        RC = X86::VR128RegisterClass;
1682      else if (RegVT == MVT::x86mmx)
1683        RC = X86::VR64RegisterClass;
1684      else
1685        llvm_unreachable("Unknown argument type!");
1686
1687      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1688      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1689
1690      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1691      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1692      // right size.
1693      if (VA.getLocInfo() == CCValAssign::SExt)
1694        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1695                               DAG.getValueType(VA.getValVT()));
1696      else if (VA.getLocInfo() == CCValAssign::ZExt)
1697        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1698                               DAG.getValueType(VA.getValVT()));
1699      else if (VA.getLocInfo() == CCValAssign::BCvt)
1700        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1701
1702      if (VA.isExtInLoc()) {
1703        // Handle MMX values passed in XMM regs.
1704        if (RegVT.isVector()) {
1705          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1706                                 ArgValue);
1707        } else
1708          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1709      }
1710    } else {
1711      assert(VA.isMemLoc());
1712      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1713    }
1714
1715    // If value is passed via pointer - do a load.
1716    if (VA.getLocInfo() == CCValAssign::Indirect)
1717      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1718                             MachinePointerInfo(), false, false, 0);
1719
1720    InVals.push_back(ArgValue);
1721  }
1722
1723  // The x86-64 ABI for returning structs by value requires that we copy
1724  // the sret argument into %rax for the return. Save the argument into
1725  // a virtual register so that we can access it from the return points.
1726  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1727    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1728    unsigned Reg = FuncInfo->getSRetReturnReg();
1729    if (!Reg) {
1730      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1731      FuncInfo->setSRetReturnReg(Reg);
1732    }
1733    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1734    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1735  }
1736
1737  unsigned StackSize = CCInfo.getNextStackOffset();
1738  // Align stack specially for tail calls.
1739  if (FuncIsMadeTailCallSafe(CallConv))
1740    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1741
1742  // If the function takes variable number of arguments, make a frame index for
1743  // the start of the first vararg value... for expansion of llvm.va_start.
1744  if (isVarArg) {
1745    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1746                    CallConv != CallingConv::X86_ThisCall)) {
1747      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1748    }
1749    if (Is64Bit) {
1750      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1751
1752      // FIXME: We should really autogenerate these arrays
1753      static const unsigned GPR64ArgRegsWin64[] = {
1754        X86::RCX, X86::RDX, X86::R8,  X86::R9
1755      };
1756      static const unsigned GPR64ArgRegs64Bit[] = {
1757        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1758      };
1759      static const unsigned XMMArgRegs64Bit[] = {
1760        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1761        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1762      };
1763      const unsigned *GPR64ArgRegs;
1764      unsigned NumXMMRegs = 0;
1765
1766      if (IsWin64) {
1767        // The XMM registers which might contain var arg parameters are shadowed
1768        // in their paired GPR.  So we only need to save the GPR to their home
1769        // slots.
1770        TotalNumIntRegs = 4;
1771        GPR64ArgRegs = GPR64ArgRegsWin64;
1772      } else {
1773        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1774        GPR64ArgRegs = GPR64ArgRegs64Bit;
1775
1776        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1777      }
1778      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1779                                                       TotalNumIntRegs);
1780
1781      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1782      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1783             "SSE register cannot be used when SSE is disabled!");
1784      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1785             "SSE register cannot be used when SSE is disabled!");
1786      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1787        // Kernel mode asks for SSE to be disabled, so don't push them
1788        // on the stack.
1789        TotalNumXMMRegs = 0;
1790
1791      if (IsWin64) {
1792        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1793        // Get to the caller-allocated home save location.  Add 8 to account
1794        // for the return address.
1795        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1796        FuncInfo->setRegSaveFrameIndex(
1797          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1798        // Fixup to set vararg frame on shadow area (4 x i64).
1799        if (NumIntRegs < 4)
1800          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1801      } else {
1802        // For X86-64, if there are vararg parameters that are passed via
1803        // registers, then we must store them to their spots on the stack so they
1804        // may be loaded by deferencing the result of va_next.
1805        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1806        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1807        FuncInfo->setRegSaveFrameIndex(
1808          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1809                               false));
1810      }
1811
1812      // Store the integer parameter registers.
1813      SmallVector<SDValue, 8> MemOps;
1814      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1815                                        getPointerTy());
1816      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1817      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1818        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1819                                  DAG.getIntPtrConstant(Offset));
1820        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1821                                     X86::GR64RegisterClass);
1822        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1823        SDValue Store =
1824          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1825                       MachinePointerInfo::getFixedStack(
1826                         FuncInfo->getRegSaveFrameIndex(), Offset),
1827                       false, false, 0);
1828        MemOps.push_back(Store);
1829        Offset += 8;
1830      }
1831
1832      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1833        // Now store the XMM (fp + vector) parameter registers.
1834        SmallVector<SDValue, 11> SaveXMMOps;
1835        SaveXMMOps.push_back(Chain);
1836
1837        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1838        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1839        SaveXMMOps.push_back(ALVal);
1840
1841        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1842                               FuncInfo->getRegSaveFrameIndex()));
1843        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1844                               FuncInfo->getVarArgsFPOffset()));
1845
1846        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1847          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1848                                       X86::VR128RegisterClass);
1849          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1850          SaveXMMOps.push_back(Val);
1851        }
1852        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1853                                     MVT::Other,
1854                                     &SaveXMMOps[0], SaveXMMOps.size()));
1855      }
1856
1857      if (!MemOps.empty())
1858        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1859                            &MemOps[0], MemOps.size());
1860    }
1861  }
1862
1863  // Some CCs need callee pop.
1864  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
1865    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1866  } else {
1867    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1868    // If this is an sret function, the return should pop the hidden pointer.
1869    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1870      FuncInfo->setBytesToPopOnReturn(4);
1871  }
1872
1873  if (!Is64Bit) {
1874    // RegSaveFrameIndex is X86-64 only.
1875    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1876    if (CallConv == CallingConv::X86_FastCall ||
1877        CallConv == CallingConv::X86_ThisCall)
1878      // fastcc functions can't have varargs.
1879      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1880  }
1881
1882  return Chain;
1883}
1884
1885SDValue
1886X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1887                                    SDValue StackPtr, SDValue Arg,
1888                                    DebugLoc dl, SelectionDAG &DAG,
1889                                    const CCValAssign &VA,
1890                                    ISD::ArgFlagsTy Flags) const {
1891  unsigned LocMemOffset = VA.getLocMemOffset();
1892  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1893  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1894  if (Flags.isByVal())
1895    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1896
1897  return DAG.getStore(Chain, dl, Arg, PtrOff,
1898                      MachinePointerInfo::getStack(LocMemOffset),
1899                      false, false, 0);
1900}
1901
1902/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1903/// optimization is performed and it is required.
1904SDValue
1905X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1906                                           SDValue &OutRetAddr, SDValue Chain,
1907                                           bool IsTailCall, bool Is64Bit,
1908                                           int FPDiff, DebugLoc dl) const {
1909  // Adjust the Return address stack slot.
1910  EVT VT = getPointerTy();
1911  OutRetAddr = getReturnAddressFrameIndex(DAG);
1912
1913  // Load the "old" Return address.
1914  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1915                           false, false, 0);
1916  return SDValue(OutRetAddr.getNode(), 1);
1917}
1918
1919/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
1920/// optimization is performed and it is required (FPDiff!=0).
1921static SDValue
1922EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1923                         SDValue Chain, SDValue RetAddrFrIdx,
1924                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1925  // Store the return address to the appropriate stack slot.
1926  if (!FPDiff) return Chain;
1927  // Calculate the new stack slot for the return address.
1928  int SlotSize = Is64Bit ? 8 : 4;
1929  int NewReturnAddrFI =
1930    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1931  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1932  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1933  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1934                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1935                       false, false, 0);
1936  return Chain;
1937}
1938
1939SDValue
1940X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1941                             CallingConv::ID CallConv, bool isVarArg,
1942                             bool &isTailCall,
1943                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1944                             const SmallVectorImpl<SDValue> &OutVals,
1945                             const SmallVectorImpl<ISD::InputArg> &Ins,
1946                             DebugLoc dl, SelectionDAG &DAG,
1947                             SmallVectorImpl<SDValue> &InVals) const {
1948  MachineFunction &MF = DAG.getMachineFunction();
1949  bool Is64Bit        = Subtarget->is64Bit();
1950  bool IsWin64        = Subtarget->isTargetWin64();
1951  bool IsStructRet    = CallIsStructReturn(Outs);
1952  bool IsSibcall      = false;
1953
1954  if (isTailCall) {
1955    // Check if it's really possible to do a tail call.
1956    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1957                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1958                                                   Outs, OutVals, Ins, DAG);
1959
1960    // Sibcalls are automatically detected tailcalls which do not require
1961    // ABI changes.
1962    if (!GuaranteedTailCallOpt && isTailCall)
1963      IsSibcall = true;
1964
1965    if (isTailCall)
1966      ++NumTailCalls;
1967  }
1968
1969  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1970         "Var args not supported with calling convention fastcc or ghc");
1971
1972  // Analyze operands of the call, assigning locations to each operand.
1973  SmallVector<CCValAssign, 16> ArgLocs;
1974  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1975                 ArgLocs, *DAG.getContext());
1976
1977  // Allocate shadow area for Win64
1978  if (IsWin64) {
1979    CCInfo.AllocateStack(32, 8);
1980  }
1981
1982  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
1983
1984  // Get a count of how many bytes are to be pushed on the stack.
1985  unsigned NumBytes = CCInfo.getNextStackOffset();
1986  if (IsSibcall)
1987    // This is a sibcall. The memory operands are available in caller's
1988    // own caller's stack.
1989    NumBytes = 0;
1990  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1991    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1992
1993  int FPDiff = 0;
1994  if (isTailCall && !IsSibcall) {
1995    // Lower arguments at fp - stackoffset + fpdiff.
1996    unsigned NumBytesCallerPushed =
1997      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1998    FPDiff = NumBytesCallerPushed - NumBytes;
1999
2000    // Set the delta of movement of the returnaddr stackslot.
2001    // But only set if delta is greater than previous delta.
2002    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2003      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2004  }
2005
2006  if (!IsSibcall)
2007    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2008
2009  SDValue RetAddrFrIdx;
2010  // Load return address for tail calls.
2011  if (isTailCall && FPDiff)
2012    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2013                                    Is64Bit, FPDiff, dl);
2014
2015  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2016  SmallVector<SDValue, 8> MemOpChains;
2017  SDValue StackPtr;
2018
2019  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2020  // of tail call optimization arguments are handle later.
2021  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2022    CCValAssign &VA = ArgLocs[i];
2023    EVT RegVT = VA.getLocVT();
2024    SDValue Arg = OutVals[i];
2025    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2026    bool isByVal = Flags.isByVal();
2027
2028    // Promote the value if needed.
2029    switch (VA.getLocInfo()) {
2030    default: llvm_unreachable("Unknown loc info!");
2031    case CCValAssign::Full: break;
2032    case CCValAssign::SExt:
2033      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2034      break;
2035    case CCValAssign::ZExt:
2036      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2037      break;
2038    case CCValAssign::AExt:
2039      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2040        // Special case: passing MMX values in XMM registers.
2041        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2042        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2043        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2044      } else
2045        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2046      break;
2047    case CCValAssign::BCvt:
2048      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2049      break;
2050    case CCValAssign::Indirect: {
2051      // Store the argument.
2052      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2053      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2054      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2055                           MachinePointerInfo::getFixedStack(FI),
2056                           false, false, 0);
2057      Arg = SpillSlot;
2058      break;
2059    }
2060    }
2061
2062    if (VA.isRegLoc()) {
2063      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2064      if (isVarArg && IsWin64) {
2065        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2066        // shadow reg if callee is a varargs function.
2067        unsigned ShadowReg = 0;
2068        switch (VA.getLocReg()) {
2069        case X86::XMM0: ShadowReg = X86::RCX; break;
2070        case X86::XMM1: ShadowReg = X86::RDX; break;
2071        case X86::XMM2: ShadowReg = X86::R8; break;
2072        case X86::XMM3: ShadowReg = X86::R9; break;
2073        }
2074        if (ShadowReg)
2075          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2076      }
2077    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2078      assert(VA.isMemLoc());
2079      if (StackPtr.getNode() == 0)
2080        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2081      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2082                                             dl, DAG, VA, Flags));
2083    }
2084  }
2085
2086  if (!MemOpChains.empty())
2087    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2088                        &MemOpChains[0], MemOpChains.size());
2089
2090  // Build a sequence of copy-to-reg nodes chained together with token chain
2091  // and flag operands which copy the outgoing args into registers.
2092  SDValue InFlag;
2093  // Tail call byval lowering might overwrite argument registers so in case of
2094  // tail call optimization the copies to registers are lowered later.
2095  if (!isTailCall)
2096    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2097      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2098                               RegsToPass[i].second, InFlag);
2099      InFlag = Chain.getValue(1);
2100    }
2101
2102  if (Subtarget->isPICStyleGOT()) {
2103    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2104    // GOT pointer.
2105    if (!isTailCall) {
2106      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2107                               DAG.getNode(X86ISD::GlobalBaseReg,
2108                                           DebugLoc(), getPointerTy()),
2109                               InFlag);
2110      InFlag = Chain.getValue(1);
2111    } else {
2112      // If we are tail calling and generating PIC/GOT style code load the
2113      // address of the callee into ECX. The value in ecx is used as target of
2114      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2115      // for tail calls on PIC/GOT architectures. Normally we would just put the
2116      // address of GOT into ebx and then call target@PLT. But for tail calls
2117      // ebx would be restored (since ebx is callee saved) before jumping to the
2118      // target@PLT.
2119
2120      // Note: The actual moving to ECX is done further down.
2121      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2122      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2123          !G->getGlobal()->hasProtectedVisibility())
2124        Callee = LowerGlobalAddress(Callee, DAG);
2125      else if (isa<ExternalSymbolSDNode>(Callee))
2126        Callee = LowerExternalSymbol(Callee, DAG);
2127    }
2128  }
2129
2130  if (Is64Bit && isVarArg && !IsWin64) {
2131    // From AMD64 ABI document:
2132    // For calls that may call functions that use varargs or stdargs
2133    // (prototype-less calls or calls to functions containing ellipsis (...) in
2134    // the declaration) %al is used as hidden argument to specify the number
2135    // of SSE registers used. The contents of %al do not need to match exactly
2136    // the number of registers, but must be an ubound on the number of SSE
2137    // registers used and is in the range 0 - 8 inclusive.
2138
2139    // Count the number of XMM registers allocated.
2140    static const unsigned XMMArgRegs[] = {
2141      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2142      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2143    };
2144    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2145    assert((Subtarget->hasXMM() || !NumXMMRegs)
2146           && "SSE registers cannot be used when SSE is disabled");
2147
2148    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2149                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2150    InFlag = Chain.getValue(1);
2151  }
2152
2153
2154  // For tail calls lower the arguments to the 'real' stack slot.
2155  if (isTailCall) {
2156    // Force all the incoming stack arguments to be loaded from the stack
2157    // before any new outgoing arguments are stored to the stack, because the
2158    // outgoing stack slots may alias the incoming argument stack slots, and
2159    // the alias isn't otherwise explicit. This is slightly more conservative
2160    // than necessary, because it means that each store effectively depends
2161    // on every argument instead of just those arguments it would clobber.
2162    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2163
2164    SmallVector<SDValue, 8> MemOpChains2;
2165    SDValue FIN;
2166    int FI = 0;
2167    // Do not flag preceding copytoreg stuff together with the following stuff.
2168    InFlag = SDValue();
2169    if (GuaranteedTailCallOpt) {
2170      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2171        CCValAssign &VA = ArgLocs[i];
2172        if (VA.isRegLoc())
2173          continue;
2174        assert(VA.isMemLoc());
2175        SDValue Arg = OutVals[i];
2176        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2177        // Create frame index.
2178        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2179        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2180        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2181        FIN = DAG.getFrameIndex(FI, getPointerTy());
2182
2183        if (Flags.isByVal()) {
2184          // Copy relative to framepointer.
2185          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2186          if (StackPtr.getNode() == 0)
2187            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2188                                          getPointerTy());
2189          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2190
2191          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2192                                                           ArgChain,
2193                                                           Flags, DAG, dl));
2194        } else {
2195          // Store relative to framepointer.
2196          MemOpChains2.push_back(
2197            DAG.getStore(ArgChain, dl, Arg, FIN,
2198                         MachinePointerInfo::getFixedStack(FI),
2199                         false, false, 0));
2200        }
2201      }
2202    }
2203
2204    if (!MemOpChains2.empty())
2205      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2206                          &MemOpChains2[0], MemOpChains2.size());
2207
2208    // Copy arguments to their registers.
2209    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2210      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2211                               RegsToPass[i].second, InFlag);
2212      InFlag = Chain.getValue(1);
2213    }
2214    InFlag =SDValue();
2215
2216    // Store the return address to the appropriate stack slot.
2217    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2218                                     FPDiff, dl);
2219  }
2220
2221  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2222    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2223    // In the 64-bit large code model, we have to make all calls
2224    // through a register, since the call instruction's 32-bit
2225    // pc-relative offset may not be large enough to hold the whole
2226    // address.
2227  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2228    // If the callee is a GlobalAddress node (quite common, every direct call
2229    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2230    // it.
2231
2232    // We should use extra load for direct calls to dllimported functions in
2233    // non-JIT mode.
2234    const GlobalValue *GV = G->getGlobal();
2235    if (!GV->hasDLLImportLinkage()) {
2236      unsigned char OpFlags = 0;
2237      bool ExtraLoad = false;
2238      unsigned WrapperKind = ISD::DELETED_NODE;
2239
2240      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2241      // external symbols most go through the PLT in PIC mode.  If the symbol
2242      // has hidden or protected visibility, or if it is static or local, then
2243      // we don't need to use the PLT - we can directly call it.
2244      if (Subtarget->isTargetELF() &&
2245          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2246          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2247        OpFlags = X86II::MO_PLT;
2248      } else if (Subtarget->isPICStyleStubAny() &&
2249                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2250                 (!Subtarget->getTargetTriple().isMacOSX() ||
2251                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2252        // PC-relative references to external symbols should go through $stub,
2253        // unless we're building with the leopard linker or later, which
2254        // automatically synthesizes these stubs.
2255        OpFlags = X86II::MO_DARWIN_STUB;
2256      } else if (Subtarget->isPICStyleRIPRel() &&
2257                 isa<Function>(GV) &&
2258                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2259        // If the function is marked as non-lazy, generate an indirect call
2260        // which loads from the GOT directly. This avoids runtime overhead
2261        // at the cost of eager binding (and one extra byte of encoding).
2262        OpFlags = X86II::MO_GOTPCREL;
2263        WrapperKind = X86ISD::WrapperRIP;
2264        ExtraLoad = true;
2265      }
2266
2267      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2268                                          G->getOffset(), OpFlags);
2269
2270      // Add a wrapper if needed.
2271      if (WrapperKind != ISD::DELETED_NODE)
2272        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2273      // Add extra indirection if needed.
2274      if (ExtraLoad)
2275        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2276                             MachinePointerInfo::getGOT(),
2277                             false, false, 0);
2278    }
2279  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2280    unsigned char OpFlags = 0;
2281
2282    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2283    // external symbols should go through the PLT.
2284    if (Subtarget->isTargetELF() &&
2285        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2286      OpFlags = X86II::MO_PLT;
2287    } else if (Subtarget->isPICStyleStubAny() &&
2288               (!Subtarget->getTargetTriple().isMacOSX() ||
2289                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2290      // PC-relative references to external symbols should go through $stub,
2291      // unless we're building with the leopard linker or later, which
2292      // automatically synthesizes these stubs.
2293      OpFlags = X86II::MO_DARWIN_STUB;
2294    }
2295
2296    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2297                                         OpFlags);
2298  }
2299
2300  // Returns a chain & a flag for retval copy to use.
2301  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2302  SmallVector<SDValue, 8> Ops;
2303
2304  if (!IsSibcall && isTailCall) {
2305    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2306                           DAG.getIntPtrConstant(0, true), InFlag);
2307    InFlag = Chain.getValue(1);
2308  }
2309
2310  Ops.push_back(Chain);
2311  Ops.push_back(Callee);
2312
2313  if (isTailCall)
2314    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2315
2316  // Add argument registers to the end of the list so that they are known live
2317  // into the call.
2318  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2319    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2320                                  RegsToPass[i].second.getValueType()));
2321
2322  // Add an implicit use GOT pointer in EBX.
2323  if (!isTailCall && Subtarget->isPICStyleGOT())
2324    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2325
2326  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2327  if (Is64Bit && isVarArg && !IsWin64)
2328    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2329
2330  if (InFlag.getNode())
2331    Ops.push_back(InFlag);
2332
2333  if (isTailCall) {
2334    // We used to do:
2335    //// If this is the first return lowered for this function, add the regs
2336    //// to the liveout set for the function.
2337    // This isn't right, although it's probably harmless on x86; liveouts
2338    // should be computed from returns not tail calls.  Consider a void
2339    // function making a tail call to a function returning int.
2340    return DAG.getNode(X86ISD::TC_RETURN, dl,
2341                       NodeTys, &Ops[0], Ops.size());
2342  }
2343
2344  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2345  InFlag = Chain.getValue(1);
2346
2347  // Create the CALLSEQ_END node.
2348  unsigned NumBytesForCalleeToPush;
2349  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2350    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2351  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2352    // If this is a call to a struct-return function, the callee
2353    // pops the hidden struct pointer, so we have to push it back.
2354    // This is common for Darwin/X86, Linux & Mingw32 targets.
2355    NumBytesForCalleeToPush = 4;
2356  else
2357    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2358
2359  // Returns a flag for retval copy to use.
2360  if (!IsSibcall) {
2361    Chain = DAG.getCALLSEQ_END(Chain,
2362                               DAG.getIntPtrConstant(NumBytes, true),
2363                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2364                                                     true),
2365                               InFlag);
2366    InFlag = Chain.getValue(1);
2367  }
2368
2369  // Handle result values, copying them out of physregs into vregs that we
2370  // return.
2371  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2372                         Ins, dl, DAG, InVals);
2373}
2374
2375
2376//===----------------------------------------------------------------------===//
2377//                Fast Calling Convention (tail call) implementation
2378//===----------------------------------------------------------------------===//
2379
2380//  Like std call, callee cleans arguments, convention except that ECX is
2381//  reserved for storing the tail called function address. Only 2 registers are
2382//  free for argument passing (inreg). Tail call optimization is performed
2383//  provided:
2384//                * tailcallopt is enabled
2385//                * caller/callee are fastcc
2386//  On X86_64 architecture with GOT-style position independent code only local
2387//  (within module) calls are supported at the moment.
2388//  To keep the stack aligned according to platform abi the function
2389//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2390//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2391//  If a tail called function callee has more arguments than the caller the
2392//  caller needs to make sure that there is room to move the RETADDR to. This is
2393//  achieved by reserving an area the size of the argument delta right after the
2394//  original REtADDR, but before the saved framepointer or the spilled registers
2395//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2396//  stack layout:
2397//    arg1
2398//    arg2
2399//    RETADDR
2400//    [ new RETADDR
2401//      move area ]
2402//    (possible EBP)
2403//    ESI
2404//    EDI
2405//    local1 ..
2406
2407/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2408/// for a 16 byte align requirement.
2409unsigned
2410X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2411                                               SelectionDAG& DAG) const {
2412  MachineFunction &MF = DAG.getMachineFunction();
2413  const TargetMachine &TM = MF.getTarget();
2414  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2415  unsigned StackAlignment = TFI.getStackAlignment();
2416  uint64_t AlignMask = StackAlignment - 1;
2417  int64_t Offset = StackSize;
2418  uint64_t SlotSize = TD->getPointerSize();
2419  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2420    // Number smaller than 12 so just add the difference.
2421    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2422  } else {
2423    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2424    Offset = ((~AlignMask) & Offset) + StackAlignment +
2425      (StackAlignment-SlotSize);
2426  }
2427  return Offset;
2428}
2429
2430/// MatchingStackOffset - Return true if the given stack call argument is
2431/// already available in the same position (relatively) of the caller's
2432/// incoming argument stack.
2433static
2434bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2435                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2436                         const X86InstrInfo *TII) {
2437  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2438  int FI = INT_MAX;
2439  if (Arg.getOpcode() == ISD::CopyFromReg) {
2440    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2441    if (!TargetRegisterInfo::isVirtualRegister(VR))
2442      return false;
2443    MachineInstr *Def = MRI->getVRegDef(VR);
2444    if (!Def)
2445      return false;
2446    if (!Flags.isByVal()) {
2447      if (!TII->isLoadFromStackSlot(Def, FI))
2448        return false;
2449    } else {
2450      unsigned Opcode = Def->getOpcode();
2451      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2452          Def->getOperand(1).isFI()) {
2453        FI = Def->getOperand(1).getIndex();
2454        Bytes = Flags.getByValSize();
2455      } else
2456        return false;
2457    }
2458  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2459    if (Flags.isByVal())
2460      // ByVal argument is passed in as a pointer but it's now being
2461      // dereferenced. e.g.
2462      // define @foo(%struct.X* %A) {
2463      //   tail call @bar(%struct.X* byval %A)
2464      // }
2465      return false;
2466    SDValue Ptr = Ld->getBasePtr();
2467    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2468    if (!FINode)
2469      return false;
2470    FI = FINode->getIndex();
2471  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2472    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2473    FI = FINode->getIndex();
2474    Bytes = Flags.getByValSize();
2475  } else
2476    return false;
2477
2478  assert(FI != INT_MAX);
2479  if (!MFI->isFixedObjectIndex(FI))
2480    return false;
2481  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2482}
2483
2484/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2485/// for tail call optimization. Targets which want to do tail call
2486/// optimization should implement this function.
2487bool
2488X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2489                                                     CallingConv::ID CalleeCC,
2490                                                     bool isVarArg,
2491                                                     bool isCalleeStructRet,
2492                                                     bool isCallerStructRet,
2493                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2494                                    const SmallVectorImpl<SDValue> &OutVals,
2495                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2496                                                     SelectionDAG& DAG) const {
2497  if (!IsTailCallConvention(CalleeCC) &&
2498      CalleeCC != CallingConv::C)
2499    return false;
2500
2501  // If -tailcallopt is specified, make fastcc functions tail-callable.
2502  const MachineFunction &MF = DAG.getMachineFunction();
2503  const Function *CallerF = DAG.getMachineFunction().getFunction();
2504  CallingConv::ID CallerCC = CallerF->getCallingConv();
2505  bool CCMatch = CallerCC == CalleeCC;
2506
2507  if (GuaranteedTailCallOpt) {
2508    if (IsTailCallConvention(CalleeCC) && CCMatch)
2509      return true;
2510    return false;
2511  }
2512
2513  // Look for obvious safe cases to perform tail call optimization that do not
2514  // require ABI changes. This is what gcc calls sibcall.
2515
2516  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2517  // emit a special epilogue.
2518  if (RegInfo->needsStackRealignment(MF))
2519    return false;
2520
2521  // Also avoid sibcall optimization if either caller or callee uses struct
2522  // return semantics.
2523  if (isCalleeStructRet || isCallerStructRet)
2524    return false;
2525
2526  // An stdcall caller is expected to clean up its arguments; the callee
2527  // isn't going to do that.
2528  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2529    return false;
2530
2531  // Do not sibcall optimize vararg calls unless all arguments are passed via
2532  // registers.
2533  if (isVarArg && !Outs.empty()) {
2534
2535    // Optimizing for varargs on Win64 is unlikely to be safe without
2536    // additional testing.
2537    if (Subtarget->isTargetWin64())
2538      return false;
2539
2540    SmallVector<CCValAssign, 16> ArgLocs;
2541    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2542		   getTargetMachine(), ArgLocs, *DAG.getContext());
2543
2544    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2545    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2546      if (!ArgLocs[i].isRegLoc())
2547        return false;
2548  }
2549
2550  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2551  // Therefore if it's not used by the call it is not safe to optimize this into
2552  // a sibcall.
2553  bool Unused = false;
2554  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2555    if (!Ins[i].Used) {
2556      Unused = true;
2557      break;
2558    }
2559  }
2560  if (Unused) {
2561    SmallVector<CCValAssign, 16> RVLocs;
2562    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2563		   getTargetMachine(), RVLocs, *DAG.getContext());
2564    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2565    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2566      CCValAssign &VA = RVLocs[i];
2567      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2568        return false;
2569    }
2570  }
2571
2572  // If the calling conventions do not match, then we'd better make sure the
2573  // results are returned in the same way as what the caller expects.
2574  if (!CCMatch) {
2575    SmallVector<CCValAssign, 16> RVLocs1;
2576    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2577		    getTargetMachine(), RVLocs1, *DAG.getContext());
2578    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2579
2580    SmallVector<CCValAssign, 16> RVLocs2;
2581    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2582		    getTargetMachine(), RVLocs2, *DAG.getContext());
2583    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2584
2585    if (RVLocs1.size() != RVLocs2.size())
2586      return false;
2587    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2588      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2589        return false;
2590      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2591        return false;
2592      if (RVLocs1[i].isRegLoc()) {
2593        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2594          return false;
2595      } else {
2596        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2597          return false;
2598      }
2599    }
2600  }
2601
2602  // If the callee takes no arguments then go on to check the results of the
2603  // call.
2604  if (!Outs.empty()) {
2605    // Check if stack adjustment is needed. For now, do not do this if any
2606    // argument is passed on the stack.
2607    SmallVector<CCValAssign, 16> ArgLocs;
2608    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2609		   getTargetMachine(), ArgLocs, *DAG.getContext());
2610
2611    // Allocate shadow area for Win64
2612    if (Subtarget->isTargetWin64()) {
2613      CCInfo.AllocateStack(32, 8);
2614    }
2615
2616    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2617    if (CCInfo.getNextStackOffset()) {
2618      MachineFunction &MF = DAG.getMachineFunction();
2619      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2620        return false;
2621
2622      // Check if the arguments are already laid out in the right way as
2623      // the caller's fixed stack objects.
2624      MachineFrameInfo *MFI = MF.getFrameInfo();
2625      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2626      const X86InstrInfo *TII =
2627        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2628      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2629        CCValAssign &VA = ArgLocs[i];
2630        SDValue Arg = OutVals[i];
2631        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2632        if (VA.getLocInfo() == CCValAssign::Indirect)
2633          return false;
2634        if (!VA.isRegLoc()) {
2635          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2636                                   MFI, MRI, TII))
2637            return false;
2638        }
2639      }
2640    }
2641
2642    // If the tailcall address may be in a register, then make sure it's
2643    // possible to register allocate for it. In 32-bit, the call address can
2644    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2645    // callee-saved registers are restored. These happen to be the same
2646    // registers used to pass 'inreg' arguments so watch out for those.
2647    if (!Subtarget->is64Bit() &&
2648        !isa<GlobalAddressSDNode>(Callee) &&
2649        !isa<ExternalSymbolSDNode>(Callee)) {
2650      unsigned NumInRegs = 0;
2651      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2652        CCValAssign &VA = ArgLocs[i];
2653        if (!VA.isRegLoc())
2654          continue;
2655        unsigned Reg = VA.getLocReg();
2656        switch (Reg) {
2657        default: break;
2658        case X86::EAX: case X86::EDX: case X86::ECX:
2659          if (++NumInRegs == 3)
2660            return false;
2661          break;
2662        }
2663      }
2664    }
2665  }
2666
2667  return true;
2668}
2669
2670FastISel *
2671X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2672  return X86::createFastISel(funcInfo);
2673}
2674
2675
2676//===----------------------------------------------------------------------===//
2677//                           Other Lowering Hooks
2678//===----------------------------------------------------------------------===//
2679
2680static bool MayFoldLoad(SDValue Op) {
2681  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2682}
2683
2684static bool MayFoldIntoStore(SDValue Op) {
2685  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2686}
2687
2688static bool isTargetShuffle(unsigned Opcode) {
2689  switch(Opcode) {
2690  default: return false;
2691  case X86ISD::PSHUFD:
2692  case X86ISD::PSHUFHW:
2693  case X86ISD::PSHUFLW:
2694  case X86ISD::SHUFPD:
2695  case X86ISD::PALIGN:
2696  case X86ISD::SHUFPS:
2697  case X86ISD::MOVLHPS:
2698  case X86ISD::MOVLHPD:
2699  case X86ISD::MOVHLPS:
2700  case X86ISD::MOVLPS:
2701  case X86ISD::MOVLPD:
2702  case X86ISD::MOVSHDUP:
2703  case X86ISD::MOVSLDUP:
2704  case X86ISD::MOVDDUP:
2705  case X86ISD::MOVSS:
2706  case X86ISD::MOVSD:
2707  case X86ISD::UNPCKLPS:
2708  case X86ISD::UNPCKLPD:
2709  case X86ISD::VUNPCKLPSY:
2710  case X86ISD::VUNPCKLPDY:
2711  case X86ISD::PUNPCKLWD:
2712  case X86ISD::PUNPCKLBW:
2713  case X86ISD::PUNPCKLDQ:
2714  case X86ISD::PUNPCKLQDQ:
2715  case X86ISD::UNPCKHPS:
2716  case X86ISD::UNPCKHPD:
2717  case X86ISD::VUNPCKHPSY:
2718  case X86ISD::VUNPCKHPDY:
2719  case X86ISD::PUNPCKHWD:
2720  case X86ISD::PUNPCKHBW:
2721  case X86ISD::PUNPCKHDQ:
2722  case X86ISD::PUNPCKHQDQ:
2723  case X86ISD::VPERMILPS:
2724  case X86ISD::VPERMILPSY:
2725  case X86ISD::VPERMILPD:
2726  case X86ISD::VPERMILPDY:
2727    return true;
2728  }
2729  return false;
2730}
2731
2732static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2733                                               SDValue V1, SelectionDAG &DAG) {
2734  switch(Opc) {
2735  default: llvm_unreachable("Unknown x86 shuffle node");
2736  case X86ISD::MOVSHDUP:
2737  case X86ISD::MOVSLDUP:
2738  case X86ISD::MOVDDUP:
2739    return DAG.getNode(Opc, dl, VT, V1);
2740  }
2741
2742  return SDValue();
2743}
2744
2745static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2746                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2747  switch(Opc) {
2748  default: llvm_unreachable("Unknown x86 shuffle node");
2749  case X86ISD::PSHUFD:
2750  case X86ISD::PSHUFHW:
2751  case X86ISD::PSHUFLW:
2752  case X86ISD::VPERMILPS:
2753  case X86ISD::VPERMILPSY:
2754  case X86ISD::VPERMILPD:
2755  case X86ISD::VPERMILPDY:
2756    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2757  }
2758
2759  return SDValue();
2760}
2761
2762static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2763               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2764  switch(Opc) {
2765  default: llvm_unreachable("Unknown x86 shuffle node");
2766  case X86ISD::PALIGN:
2767  case X86ISD::SHUFPD:
2768  case X86ISD::SHUFPS:
2769    return DAG.getNode(Opc, dl, VT, V1, V2,
2770                       DAG.getConstant(TargetMask, MVT::i8));
2771  }
2772  return SDValue();
2773}
2774
2775static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2776                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2777  switch(Opc) {
2778  default: llvm_unreachable("Unknown x86 shuffle node");
2779  case X86ISD::MOVLHPS:
2780  case X86ISD::MOVLHPD:
2781  case X86ISD::MOVHLPS:
2782  case X86ISD::MOVLPS:
2783  case X86ISD::MOVLPD:
2784  case X86ISD::MOVSS:
2785  case X86ISD::MOVSD:
2786  case X86ISD::UNPCKLPS:
2787  case X86ISD::UNPCKLPD:
2788  case X86ISD::VUNPCKLPSY:
2789  case X86ISD::VUNPCKLPDY:
2790  case X86ISD::PUNPCKLWD:
2791  case X86ISD::PUNPCKLBW:
2792  case X86ISD::PUNPCKLDQ:
2793  case X86ISD::PUNPCKLQDQ:
2794  case X86ISD::UNPCKHPS:
2795  case X86ISD::UNPCKHPD:
2796  case X86ISD::VUNPCKHPSY:
2797  case X86ISD::VUNPCKHPDY:
2798  case X86ISD::PUNPCKHWD:
2799  case X86ISD::PUNPCKHBW:
2800  case X86ISD::PUNPCKHDQ:
2801  case X86ISD::PUNPCKHQDQ:
2802    return DAG.getNode(Opc, dl, VT, V1, V2);
2803  }
2804  return SDValue();
2805}
2806
2807SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2808  MachineFunction &MF = DAG.getMachineFunction();
2809  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2810  int ReturnAddrIndex = FuncInfo->getRAIndex();
2811
2812  if (ReturnAddrIndex == 0) {
2813    // Set up a frame object for the return address.
2814    uint64_t SlotSize = TD->getPointerSize();
2815    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2816                                                           false);
2817    FuncInfo->setRAIndex(ReturnAddrIndex);
2818  }
2819
2820  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2821}
2822
2823
2824bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2825                                       bool hasSymbolicDisplacement) {
2826  // Offset should fit into 32 bit immediate field.
2827  if (!isInt<32>(Offset))
2828    return false;
2829
2830  // If we don't have a symbolic displacement - we don't have any extra
2831  // restrictions.
2832  if (!hasSymbolicDisplacement)
2833    return true;
2834
2835  // FIXME: Some tweaks might be needed for medium code model.
2836  if (M != CodeModel::Small && M != CodeModel::Kernel)
2837    return false;
2838
2839  // For small code model we assume that latest object is 16MB before end of 31
2840  // bits boundary. We may also accept pretty large negative constants knowing
2841  // that all objects are in the positive half of address space.
2842  if (M == CodeModel::Small && Offset < 16*1024*1024)
2843    return true;
2844
2845  // For kernel code model we know that all object resist in the negative half
2846  // of 32bits address space. We may not accept negative offsets, since they may
2847  // be just off and we may accept pretty large positive ones.
2848  if (M == CodeModel::Kernel && Offset > 0)
2849    return true;
2850
2851  return false;
2852}
2853
2854/// isCalleePop - Determines whether the callee is required to pop its
2855/// own arguments. Callee pop is necessary to support tail calls.
2856bool X86::isCalleePop(CallingConv::ID CallingConv,
2857                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2858  if (IsVarArg)
2859    return false;
2860
2861  switch (CallingConv) {
2862  default:
2863    return false;
2864  case CallingConv::X86_StdCall:
2865    return !is64Bit;
2866  case CallingConv::X86_FastCall:
2867    return !is64Bit;
2868  case CallingConv::X86_ThisCall:
2869    return !is64Bit;
2870  case CallingConv::Fast:
2871    return TailCallOpt;
2872  case CallingConv::GHC:
2873    return TailCallOpt;
2874  }
2875}
2876
2877/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2878/// specific condition code, returning the condition code and the LHS/RHS of the
2879/// comparison to make.
2880static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2881                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2882  if (!isFP) {
2883    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2884      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2885        // X > -1   -> X == 0, jump !sign.
2886        RHS = DAG.getConstant(0, RHS.getValueType());
2887        return X86::COND_NS;
2888      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2889        // X < 0   -> X == 0, jump on sign.
2890        return X86::COND_S;
2891      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2892        // X < 1   -> X <= 0
2893        RHS = DAG.getConstant(0, RHS.getValueType());
2894        return X86::COND_LE;
2895      }
2896    }
2897
2898    switch (SetCCOpcode) {
2899    default: llvm_unreachable("Invalid integer condition!");
2900    case ISD::SETEQ:  return X86::COND_E;
2901    case ISD::SETGT:  return X86::COND_G;
2902    case ISD::SETGE:  return X86::COND_GE;
2903    case ISD::SETLT:  return X86::COND_L;
2904    case ISD::SETLE:  return X86::COND_LE;
2905    case ISD::SETNE:  return X86::COND_NE;
2906    case ISD::SETULT: return X86::COND_B;
2907    case ISD::SETUGT: return X86::COND_A;
2908    case ISD::SETULE: return X86::COND_BE;
2909    case ISD::SETUGE: return X86::COND_AE;
2910    }
2911  }
2912
2913  // First determine if it is required or is profitable to flip the operands.
2914
2915  // If LHS is a foldable load, but RHS is not, flip the condition.
2916  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
2917      !ISD::isNON_EXTLoad(RHS.getNode())) {
2918    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2919    std::swap(LHS, RHS);
2920  }
2921
2922  switch (SetCCOpcode) {
2923  default: break;
2924  case ISD::SETOLT:
2925  case ISD::SETOLE:
2926  case ISD::SETUGT:
2927  case ISD::SETUGE:
2928    std::swap(LHS, RHS);
2929    break;
2930  }
2931
2932  // On a floating point condition, the flags are set as follows:
2933  // ZF  PF  CF   op
2934  //  0 | 0 | 0 | X > Y
2935  //  0 | 0 | 1 | X < Y
2936  //  1 | 0 | 0 | X == Y
2937  //  1 | 1 | 1 | unordered
2938  switch (SetCCOpcode) {
2939  default: llvm_unreachable("Condcode should be pre-legalized away");
2940  case ISD::SETUEQ:
2941  case ISD::SETEQ:   return X86::COND_E;
2942  case ISD::SETOLT:              // flipped
2943  case ISD::SETOGT:
2944  case ISD::SETGT:   return X86::COND_A;
2945  case ISD::SETOLE:              // flipped
2946  case ISD::SETOGE:
2947  case ISD::SETGE:   return X86::COND_AE;
2948  case ISD::SETUGT:              // flipped
2949  case ISD::SETULT:
2950  case ISD::SETLT:   return X86::COND_B;
2951  case ISD::SETUGE:              // flipped
2952  case ISD::SETULE:
2953  case ISD::SETLE:   return X86::COND_BE;
2954  case ISD::SETONE:
2955  case ISD::SETNE:   return X86::COND_NE;
2956  case ISD::SETUO:   return X86::COND_P;
2957  case ISD::SETO:    return X86::COND_NP;
2958  case ISD::SETOEQ:
2959  case ISD::SETUNE:  return X86::COND_INVALID;
2960  }
2961}
2962
2963/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2964/// code. Current x86 isa includes the following FP cmov instructions:
2965/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2966static bool hasFPCMov(unsigned X86CC) {
2967  switch (X86CC) {
2968  default:
2969    return false;
2970  case X86::COND_B:
2971  case X86::COND_BE:
2972  case X86::COND_E:
2973  case X86::COND_P:
2974  case X86::COND_A:
2975  case X86::COND_AE:
2976  case X86::COND_NE:
2977  case X86::COND_NP:
2978    return true;
2979  }
2980}
2981
2982/// isFPImmLegal - Returns true if the target can instruction select the
2983/// specified FP immediate natively. If false, the legalizer will
2984/// materialize the FP immediate as a load from a constant pool.
2985bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2986  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2987    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2988      return true;
2989  }
2990  return false;
2991}
2992
2993/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2994/// the specified range (L, H].
2995static bool isUndefOrInRange(int Val, int Low, int Hi) {
2996  return (Val < 0) || (Val >= Low && Val < Hi);
2997}
2998
2999/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3000/// specified value.
3001static bool isUndefOrEqual(int Val, int CmpVal) {
3002  if (Val < 0 || Val == CmpVal)
3003    return true;
3004  return false;
3005}
3006
3007/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3008/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3009/// the second operand.
3010static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3011  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3012    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3013  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3014    return (Mask[0] < 2 && Mask[1] < 2);
3015  return false;
3016}
3017
3018bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3019  SmallVector<int, 8> M;
3020  N->getMask(M);
3021  return ::isPSHUFDMask(M, N->getValueType(0));
3022}
3023
3024/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3025/// is suitable for input to PSHUFHW.
3026static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3027  if (VT != MVT::v8i16)
3028    return false;
3029
3030  // Lower quadword copied in order or undef.
3031  for (int i = 0; i != 4; ++i)
3032    if (Mask[i] >= 0 && Mask[i] != i)
3033      return false;
3034
3035  // Upper quadword shuffled.
3036  for (int i = 4; i != 8; ++i)
3037    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3038      return false;
3039
3040  return true;
3041}
3042
3043bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3044  SmallVector<int, 8> M;
3045  N->getMask(M);
3046  return ::isPSHUFHWMask(M, N->getValueType(0));
3047}
3048
3049/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3050/// is suitable for input to PSHUFLW.
3051static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3052  if (VT != MVT::v8i16)
3053    return false;
3054
3055  // Upper quadword copied in order.
3056  for (int i = 4; i != 8; ++i)
3057    if (Mask[i] >= 0 && Mask[i] != i)
3058      return false;
3059
3060  // Lower quadword shuffled.
3061  for (int i = 0; i != 4; ++i)
3062    if (Mask[i] >= 4)
3063      return false;
3064
3065  return true;
3066}
3067
3068bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3069  SmallVector<int, 8> M;
3070  N->getMask(M);
3071  return ::isPSHUFLWMask(M, N->getValueType(0));
3072}
3073
3074/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3075/// is suitable for input to PALIGNR.
3076static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3077                          bool hasSSSE3) {
3078  int i, e = VT.getVectorNumElements();
3079
3080  // Do not handle v2i64 / v2f64 shuffles with palignr.
3081  if (e < 4 || !hasSSSE3)
3082    return false;
3083
3084  for (i = 0; i != e; ++i)
3085    if (Mask[i] >= 0)
3086      break;
3087
3088  // All undef, not a palignr.
3089  if (i == e)
3090    return false;
3091
3092  // Make sure we're shifting in the right direction.
3093  if (Mask[i] <= i)
3094    return false;
3095
3096  int s = Mask[i] - i;
3097
3098  // Check the rest of the elements to see if they are consecutive.
3099  for (++i; i != e; ++i) {
3100    int m = Mask[i];
3101    if (m >= 0 && m != s+i)
3102      return false;
3103  }
3104  return true;
3105}
3106
3107bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
3108  SmallVector<int, 8> M;
3109  N->getMask(M);
3110  return ::isPALIGNRMask(M, N->getValueType(0), true);
3111}
3112
3113/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3114/// specifies a shuffle of elements that is suitable for input to SHUFP*.
3115static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3116  int NumElems = VT.getVectorNumElements();
3117  if (NumElems != 2 && NumElems != 4)
3118    return false;
3119
3120  int Half = NumElems / 2;
3121  for (int i = 0; i < Half; ++i)
3122    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3123      return false;
3124  for (int i = Half; i < NumElems; ++i)
3125    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3126      return false;
3127
3128  return true;
3129}
3130
3131bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3132  SmallVector<int, 8> M;
3133  N->getMask(M);
3134  return ::isSHUFPMask(M, N->getValueType(0));
3135}
3136
3137/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3138/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3139/// half elements to come from vector 1 (which would equal the dest.) and
3140/// the upper half to come from vector 2.
3141static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3142  int NumElems = VT.getVectorNumElements();
3143
3144  if (NumElems != 2 && NumElems != 4)
3145    return false;
3146
3147  int Half = NumElems / 2;
3148  for (int i = 0; i < Half; ++i)
3149    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3150      return false;
3151  for (int i = Half; i < NumElems; ++i)
3152    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3153      return false;
3154  return true;
3155}
3156
3157static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3158  SmallVector<int, 8> M;
3159  N->getMask(M);
3160  return isCommutedSHUFPMask(M, N->getValueType(0));
3161}
3162
3163/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3164/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3165bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3166  if (N->getValueType(0).getVectorNumElements() != 4)
3167    return false;
3168
3169  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3170  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3171         isUndefOrEqual(N->getMaskElt(1), 7) &&
3172         isUndefOrEqual(N->getMaskElt(2), 2) &&
3173         isUndefOrEqual(N->getMaskElt(3), 3);
3174}
3175
3176/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3177/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3178/// <2, 3, 2, 3>
3179bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3180  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3181
3182  if (NumElems != 4)
3183    return false;
3184
3185  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3186  isUndefOrEqual(N->getMaskElt(1), 3) &&
3187  isUndefOrEqual(N->getMaskElt(2), 2) &&
3188  isUndefOrEqual(N->getMaskElt(3), 3);
3189}
3190
3191/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3192/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3193bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3194  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3195
3196  if (NumElems != 2 && NumElems != 4)
3197    return false;
3198
3199  for (unsigned i = 0; i < NumElems/2; ++i)
3200    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3201      return false;
3202
3203  for (unsigned i = NumElems/2; i < NumElems; ++i)
3204    if (!isUndefOrEqual(N->getMaskElt(i), i))
3205      return false;
3206
3207  return true;
3208}
3209
3210/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3211/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3212bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3213  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3214
3215  if ((NumElems != 2 && NumElems != 4)
3216      || N->getValueType(0).getSizeInBits() > 128)
3217    return false;
3218
3219  for (unsigned i = 0; i < NumElems/2; ++i)
3220    if (!isUndefOrEqual(N->getMaskElt(i), i))
3221      return false;
3222
3223  for (unsigned i = 0; i < NumElems/2; ++i)
3224    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3225      return false;
3226
3227  return true;
3228}
3229
3230/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3231/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3232static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3233                         bool V2IsSplat = false) {
3234  int NumElts = VT.getVectorNumElements();
3235
3236  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3237         "Unsupported vector type for unpckh");
3238
3239  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3240    return false;
3241
3242  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3243  // independently on 128-bit lanes.
3244  unsigned NumLanes = VT.getSizeInBits()/128;
3245  unsigned NumLaneElts = NumElts/NumLanes;
3246
3247  unsigned Start = 0;
3248  unsigned End = NumLaneElts;
3249  for (unsigned s = 0; s < NumLanes; ++s) {
3250    for (unsigned i = Start, j = s * NumLaneElts;
3251         i != End;
3252         i += 2, ++j) {
3253      int BitI  = Mask[i];
3254      int BitI1 = Mask[i+1];
3255      if (!isUndefOrEqual(BitI, j))
3256        return false;
3257      if (V2IsSplat) {
3258        if (!isUndefOrEqual(BitI1, NumElts))
3259          return false;
3260      } else {
3261        if (!isUndefOrEqual(BitI1, j + NumElts))
3262          return false;
3263      }
3264    }
3265    // Process the next 128 bits.
3266    Start += NumLaneElts;
3267    End += NumLaneElts;
3268  }
3269
3270  return true;
3271}
3272
3273bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3274  SmallVector<int, 8> M;
3275  N->getMask(M);
3276  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3277}
3278
3279/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3280/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3281static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3282                         bool V2IsSplat = false) {
3283  int NumElts = VT.getVectorNumElements();
3284
3285  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3286         "Unsupported vector type for unpckh");
3287
3288  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3289    return false;
3290
3291  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3292  // independently on 128-bit lanes.
3293  unsigned NumLanes = VT.getSizeInBits()/128;
3294  unsigned NumLaneElts = NumElts/NumLanes;
3295
3296  unsigned Start = 0;
3297  unsigned End = NumLaneElts;
3298  for (unsigned l = 0; l != NumLanes; ++l) {
3299    for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3300                             i != End; i += 2, ++j) {
3301      int BitI  = Mask[i];
3302      int BitI1 = Mask[i+1];
3303      if (!isUndefOrEqual(BitI, j))
3304        return false;
3305      if (V2IsSplat) {
3306        if (isUndefOrEqual(BitI1, NumElts))
3307          return false;
3308      } else {
3309        if (!isUndefOrEqual(BitI1, j+NumElts))
3310          return false;
3311      }
3312    }
3313    // Process the next 128 bits.
3314    Start += NumLaneElts;
3315    End += NumLaneElts;
3316  }
3317  return true;
3318}
3319
3320bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3321  SmallVector<int, 8> M;
3322  N->getMask(M);
3323  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3324}
3325
3326/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3327/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3328/// <0, 0, 1, 1>
3329static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3330  int NumElems = VT.getVectorNumElements();
3331  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3332    return false;
3333
3334  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3335  // independently on 128-bit lanes.
3336  unsigned NumLanes = VT.getSizeInBits() / 128;
3337  unsigned NumLaneElts = NumElems / NumLanes;
3338
3339  for (unsigned s = 0; s < NumLanes; ++s) {
3340    for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3341         i != NumLaneElts * (s + 1);
3342         i += 2, ++j) {
3343      int BitI  = Mask[i];
3344      int BitI1 = Mask[i+1];
3345
3346      if (!isUndefOrEqual(BitI, j))
3347        return false;
3348      if (!isUndefOrEqual(BitI1, j))
3349        return false;
3350    }
3351  }
3352
3353  return true;
3354}
3355
3356bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3357  SmallVector<int, 8> M;
3358  N->getMask(M);
3359  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3360}
3361
3362/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3363/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3364/// <2, 2, 3, 3>
3365static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3366  int NumElems = VT.getVectorNumElements();
3367  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3368    return false;
3369
3370  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3371    int BitI  = Mask[i];
3372    int BitI1 = Mask[i+1];
3373    if (!isUndefOrEqual(BitI, j))
3374      return false;
3375    if (!isUndefOrEqual(BitI1, j))
3376      return false;
3377  }
3378  return true;
3379}
3380
3381bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3382  SmallVector<int, 8> M;
3383  N->getMask(M);
3384  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3385}
3386
3387/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3388/// specifies a shuffle of elements that is suitable for input to MOVSS,
3389/// MOVSD, and MOVD, i.e. setting the lowest element.
3390static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3391  if (VT.getVectorElementType().getSizeInBits() < 32)
3392    return false;
3393
3394  int NumElts = VT.getVectorNumElements();
3395
3396  if (!isUndefOrEqual(Mask[0], NumElts))
3397    return false;
3398
3399  for (int i = 1; i < NumElts; ++i)
3400    if (!isUndefOrEqual(Mask[i], i))
3401      return false;
3402
3403  return true;
3404}
3405
3406bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3407  SmallVector<int, 8> M;
3408  N->getMask(M);
3409  return ::isMOVLMask(M, N->getValueType(0));
3410}
3411
3412/// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
3413/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3414/// Note that VPERMIL mask matching is different depending whether theunderlying
3415/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3416/// to the same elements of the low, but to the higher half of the source.
3417/// In VPERMILPD the two lanes could be shuffled independently of each other
3418/// with the same restriction that lanes can't be crossed.
3419static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
3420                            const X86Subtarget *Subtarget) {
3421  int NumElts = VT.getVectorNumElements();
3422  int NumLanes = VT.getSizeInBits()/128;
3423
3424  if (!Subtarget->hasAVX())
3425    return false;
3426
3427  // Match any permutation of 128-bit vector with 64-bit types
3428  if (NumLanes == 1 && NumElts != 2)
3429    return false;
3430
3431  // Only match 256-bit with 32 types
3432  if (VT.getSizeInBits() == 256 && NumElts != 4)
3433    return false;
3434
3435  // The mask on the high lane is independent of the low. Both can match
3436  // any element in inside its own lane, but can't cross.
3437  int LaneSize = NumElts/NumLanes;
3438  for (int l = 0; l < NumLanes; ++l)
3439    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3440      int LaneStart = l*LaneSize;
3441      if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
3442        return false;
3443    }
3444
3445  return true;
3446}
3447
3448/// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
3449/// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
3450/// Note that VPERMIL mask matching is different depending whether theunderlying
3451/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3452/// to the same elements of the low, but to the higher half of the source.
3453/// In VPERMILPD the two lanes could be shuffled independently of each other
3454/// with the same restriction that lanes can't be crossed.
3455static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
3456                            const X86Subtarget *Subtarget) {
3457  unsigned NumElts = VT.getVectorNumElements();
3458  unsigned NumLanes = VT.getSizeInBits()/128;
3459
3460  if (!Subtarget->hasAVX())
3461    return false;
3462
3463  // Match any permutation of 128-bit vector with 32-bit types
3464  if (NumLanes == 1 && NumElts != 4)
3465    return false;
3466
3467  // Only match 256-bit with 32 types
3468  if (VT.getSizeInBits() == 256 && NumElts != 8)
3469    return false;
3470
3471  // The mask on the high lane should be the same as the low. Actually,
3472  // they can differ if any of the corresponding index in a lane is undef.
3473  int LaneSize = NumElts/NumLanes;
3474  for (int i = 0; i < LaneSize; ++i) {
3475    int HighElt = i+LaneSize;
3476    if (Mask[i] < 0 || Mask[HighElt] < 0)
3477      continue;
3478    if (Mask[HighElt]-Mask[i] != LaneSize)
3479      return false;
3480  }
3481
3482  return true;
3483}
3484
3485/// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
3486/// the specified VECTOR_MASK mask with VPERMILPS* instructions.
3487static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
3488  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3489  EVT VT = SVOp->getValueType(0);
3490
3491  int NumElts = VT.getVectorNumElements();
3492  int NumLanes = VT.getSizeInBits()/128;
3493
3494  unsigned Mask = 0;
3495  for (int i = 0; i < NumElts/NumLanes /* lane size */; ++i)
3496    Mask |= SVOp->getMaskElt(i) << (i*2);
3497
3498  return Mask;
3499}
3500
3501/// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
3502/// the specified VECTOR_MASK mask with VPERMILPD* instructions.
3503static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
3504  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3505  EVT VT = SVOp->getValueType(0);
3506
3507  int NumElts = VT.getVectorNumElements();
3508  int NumLanes = VT.getSizeInBits()/128;
3509
3510  unsigned Mask = 0;
3511  int LaneSize = NumElts/NumLanes;
3512  for (int l = 0; l < NumLanes; ++l)
3513    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i)
3514      Mask |= (SVOp->getMaskElt(i)-l*LaneSize) << i;
3515
3516  return Mask;
3517}
3518
3519/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3520/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3521/// element of vector 2 and the other elements to come from vector 1 in order.
3522static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3523                               bool V2IsSplat = false, bool V2IsUndef = false) {
3524  int NumOps = VT.getVectorNumElements();
3525  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3526    return false;
3527
3528  if (!isUndefOrEqual(Mask[0], 0))
3529    return false;
3530
3531  for (int i = 1; i < NumOps; ++i)
3532    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3533          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3534          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3535      return false;
3536
3537  return true;
3538}
3539
3540static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3541                           bool V2IsUndef = false) {
3542  SmallVector<int, 8> M;
3543  N->getMask(M);
3544  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3545}
3546
3547/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3548/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3549/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3550bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3551                         const X86Subtarget *Subtarget) {
3552  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3553    return false;
3554
3555  // The second vector must be undef
3556  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3557    return false;
3558
3559  EVT VT = N->getValueType(0);
3560  unsigned NumElems = VT.getVectorNumElements();
3561
3562  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3563      (VT.getSizeInBits() == 256 && NumElems != 8))
3564    return false;
3565
3566  // "i+1" is the value the indexed mask element must have
3567  for (unsigned i = 0; i < NumElems; i += 2)
3568    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3569        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3570      return false;
3571
3572  return true;
3573}
3574
3575/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3576/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3577/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3578bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3579                         const X86Subtarget *Subtarget) {
3580  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3581    return false;
3582
3583  // The second vector must be undef
3584  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3585    return false;
3586
3587  EVT VT = N->getValueType(0);
3588  unsigned NumElems = VT.getVectorNumElements();
3589
3590  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3591      (VT.getSizeInBits() == 256 && NumElems != 8))
3592    return false;
3593
3594  // "i" is the value the indexed mask element must have
3595  for (unsigned i = 0; i < NumElems; i += 2)
3596    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3597        !isUndefOrEqual(N->getMaskElt(i+1), i))
3598      return false;
3599
3600  return true;
3601}
3602
3603/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3604/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3605bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3606  int e = N->getValueType(0).getVectorNumElements() / 2;
3607
3608  for (int i = 0; i < e; ++i)
3609    if (!isUndefOrEqual(N->getMaskElt(i), i))
3610      return false;
3611  for (int i = 0; i < e; ++i)
3612    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3613      return false;
3614  return true;
3615}
3616
3617/// isVEXTRACTF128Index - Return true if the specified
3618/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3619/// suitable for input to VEXTRACTF128.
3620bool X86::isVEXTRACTF128Index(SDNode *N) {
3621  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3622    return false;
3623
3624  // The index should be aligned on a 128-bit boundary.
3625  uint64_t Index =
3626    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3627
3628  unsigned VL = N->getValueType(0).getVectorNumElements();
3629  unsigned VBits = N->getValueType(0).getSizeInBits();
3630  unsigned ElSize = VBits / VL;
3631  bool Result = (Index * ElSize) % 128 == 0;
3632
3633  return Result;
3634}
3635
3636/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3637/// operand specifies a subvector insert that is suitable for input to
3638/// VINSERTF128.
3639bool X86::isVINSERTF128Index(SDNode *N) {
3640  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3641    return false;
3642
3643  // The index should be aligned on a 128-bit boundary.
3644  uint64_t Index =
3645    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3646
3647  unsigned VL = N->getValueType(0).getVectorNumElements();
3648  unsigned VBits = N->getValueType(0).getSizeInBits();
3649  unsigned ElSize = VBits / VL;
3650  bool Result = (Index * ElSize) % 128 == 0;
3651
3652  return Result;
3653}
3654
3655/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3656/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3657unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3658  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3659  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3660
3661  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3662  unsigned Mask = 0;
3663  for (int i = 0; i < NumOperands; ++i) {
3664    int Val = SVOp->getMaskElt(NumOperands-i-1);
3665    if (Val < 0) Val = 0;
3666    if (Val >= NumOperands) Val -= NumOperands;
3667    Mask |= Val;
3668    if (i != NumOperands - 1)
3669      Mask <<= Shift;
3670  }
3671  return Mask;
3672}
3673
3674/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3675/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3676unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3677  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3678  unsigned Mask = 0;
3679  // 8 nodes, but we only care about the last 4.
3680  for (unsigned i = 7; i >= 4; --i) {
3681    int Val = SVOp->getMaskElt(i);
3682    if (Val >= 0)
3683      Mask |= (Val - 4);
3684    if (i != 4)
3685      Mask <<= 2;
3686  }
3687  return Mask;
3688}
3689
3690/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3691/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3692unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3693  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3694  unsigned Mask = 0;
3695  // 8 nodes, but we only care about the first 4.
3696  for (int i = 3; i >= 0; --i) {
3697    int Val = SVOp->getMaskElt(i);
3698    if (Val >= 0)
3699      Mask |= Val;
3700    if (i != 0)
3701      Mask <<= 2;
3702  }
3703  return Mask;
3704}
3705
3706/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3707/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3708unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3709  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3710  EVT VVT = N->getValueType(0);
3711  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3712  int Val = 0;
3713
3714  unsigned i, e;
3715  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3716    Val = SVOp->getMaskElt(i);
3717    if (Val >= 0)
3718      break;
3719  }
3720  assert(Val - i > 0 && "PALIGNR imm should be positive");
3721  return (Val - i) * EltSize;
3722}
3723
3724/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3725/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3726/// instructions.
3727unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3728  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3729    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3730
3731  uint64_t Index =
3732    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3733
3734  EVT VecVT = N->getOperand(0).getValueType();
3735  EVT ElVT = VecVT.getVectorElementType();
3736
3737  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3738  return Index / NumElemsPerChunk;
3739}
3740
3741/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3742/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3743/// instructions.
3744unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3745  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3746    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3747
3748  uint64_t Index =
3749    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3750
3751  EVT VecVT = N->getValueType(0);
3752  EVT ElVT = VecVT.getVectorElementType();
3753
3754  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3755  return Index / NumElemsPerChunk;
3756}
3757
3758/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3759/// constant +0.0.
3760bool X86::isZeroNode(SDValue Elt) {
3761  return ((isa<ConstantSDNode>(Elt) &&
3762           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3763          (isa<ConstantFPSDNode>(Elt) &&
3764           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3765}
3766
3767/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3768/// their permute mask.
3769static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3770                                    SelectionDAG &DAG) {
3771  EVT VT = SVOp->getValueType(0);
3772  unsigned NumElems = VT.getVectorNumElements();
3773  SmallVector<int, 8> MaskVec;
3774
3775  for (unsigned i = 0; i != NumElems; ++i) {
3776    int idx = SVOp->getMaskElt(i);
3777    if (idx < 0)
3778      MaskVec.push_back(idx);
3779    else if (idx < (int)NumElems)
3780      MaskVec.push_back(idx + NumElems);
3781    else
3782      MaskVec.push_back(idx - NumElems);
3783  }
3784  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3785                              SVOp->getOperand(0), &MaskVec[0]);
3786}
3787
3788/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3789/// the two vector operands have swapped position.
3790static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3791  unsigned NumElems = VT.getVectorNumElements();
3792  for (unsigned i = 0; i != NumElems; ++i) {
3793    int idx = Mask[i];
3794    if (idx < 0)
3795      continue;
3796    else if (idx < (int)NumElems)
3797      Mask[i] = idx + NumElems;
3798    else
3799      Mask[i] = idx - NumElems;
3800  }
3801}
3802
3803/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3804/// match movhlps. The lower half elements should come from upper half of
3805/// V1 (and in order), and the upper half elements should come from the upper
3806/// half of V2 (and in order).
3807static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3808  if (Op->getValueType(0).getVectorNumElements() != 4)
3809    return false;
3810  for (unsigned i = 0, e = 2; i != e; ++i)
3811    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3812      return false;
3813  for (unsigned i = 2; i != 4; ++i)
3814    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3815      return false;
3816  return true;
3817}
3818
3819/// isScalarLoadToVector - Returns true if the node is a scalar load that
3820/// is promoted to a vector. It also returns the LoadSDNode by reference if
3821/// required.
3822static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3823  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3824    return false;
3825  N = N->getOperand(0).getNode();
3826  if (!ISD::isNON_EXTLoad(N))
3827    return false;
3828  if (LD)
3829    *LD = cast<LoadSDNode>(N);
3830  return true;
3831}
3832
3833/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3834/// match movlp{s|d}. The lower half elements should come from lower half of
3835/// V1 (and in order), and the upper half elements should come from the upper
3836/// half of V2 (and in order). And since V1 will become the source of the
3837/// MOVLP, it must be either a vector load or a scalar load to vector.
3838static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3839                               ShuffleVectorSDNode *Op) {
3840  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3841    return false;
3842  // Is V2 is a vector load, don't do this transformation. We will try to use
3843  // load folding shufps op.
3844  if (ISD::isNON_EXTLoad(V2))
3845    return false;
3846
3847  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3848
3849  if (NumElems != 2 && NumElems != 4)
3850    return false;
3851  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3852    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3853      return false;
3854  for (unsigned i = NumElems/2; i != NumElems; ++i)
3855    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3856      return false;
3857  return true;
3858}
3859
3860/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3861/// all the same.
3862static bool isSplatVector(SDNode *N) {
3863  if (N->getOpcode() != ISD::BUILD_VECTOR)
3864    return false;
3865
3866  SDValue SplatValue = N->getOperand(0);
3867  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3868    if (N->getOperand(i) != SplatValue)
3869      return false;
3870  return true;
3871}
3872
3873/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3874/// to an zero vector.
3875/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3876static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3877  SDValue V1 = N->getOperand(0);
3878  SDValue V2 = N->getOperand(1);
3879  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3880  for (unsigned i = 0; i != NumElems; ++i) {
3881    int Idx = N->getMaskElt(i);
3882    if (Idx >= (int)NumElems) {
3883      unsigned Opc = V2.getOpcode();
3884      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3885        continue;
3886      if (Opc != ISD::BUILD_VECTOR ||
3887          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3888        return false;
3889    } else if (Idx >= 0) {
3890      unsigned Opc = V1.getOpcode();
3891      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3892        continue;
3893      if (Opc != ISD::BUILD_VECTOR ||
3894          !X86::isZeroNode(V1.getOperand(Idx)))
3895        return false;
3896    }
3897  }
3898  return true;
3899}
3900
3901/// getZeroVector - Returns a vector of specified type with all zero elements.
3902///
3903static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3904                             DebugLoc dl) {
3905  assert(VT.isVector() && "Expected a vector type");
3906
3907  // Always build SSE zero vectors as <4 x i32> bitcasted
3908  // to their dest type. This ensures they get CSE'd.
3909  SDValue Vec;
3910  if (VT.getSizeInBits() == 128) {  // SSE
3911    if (HasSSE2) {  // SSE2
3912      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3913      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3914    } else { // SSE1
3915      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3916      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3917    }
3918  } else if (VT.getSizeInBits() == 256) { // AVX
3919    // 256-bit logic and arithmetic instructions in AVX are
3920    // all floating-point, no support for integer ops. Default
3921    // to emitting fp zeroed vectors then.
3922    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3923    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3924    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3925  }
3926  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3927}
3928
3929/// getOnesVector - Returns a vector of specified type with all bits set.
3930/// Always build ones vectors as <4 x i32>. For 256-bit types, use two
3931/// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
3932/// original type, ensuring they get CSE'd.
3933static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3934  assert(VT.isVector() && "Expected a vector type");
3935  assert((VT.is128BitVector() || VT.is256BitVector())
3936         && "Expected a 128-bit or 256-bit vector type");
3937
3938  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3939  SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
3940                            Cst, Cst, Cst, Cst);
3941
3942  if (VT.is256BitVector()) {
3943    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
3944                              Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
3945    Vec = Insert128BitVector(InsV, Vec,
3946                  DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
3947  }
3948
3949  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3950}
3951
3952/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3953/// that point to V2 points to its first element.
3954static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3955  EVT VT = SVOp->getValueType(0);
3956  unsigned NumElems = VT.getVectorNumElements();
3957
3958  bool Changed = false;
3959  SmallVector<int, 8> MaskVec;
3960  SVOp->getMask(MaskVec);
3961
3962  for (unsigned i = 0; i != NumElems; ++i) {
3963    if (MaskVec[i] > (int)NumElems) {
3964      MaskVec[i] = NumElems;
3965      Changed = true;
3966    }
3967  }
3968  if (Changed)
3969    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3970                                SVOp->getOperand(1), &MaskVec[0]);
3971  return SDValue(SVOp, 0);
3972}
3973
3974/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3975/// operation of specified width.
3976static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3977                       SDValue V2) {
3978  unsigned NumElems = VT.getVectorNumElements();
3979  SmallVector<int, 8> Mask;
3980  Mask.push_back(NumElems);
3981  for (unsigned i = 1; i != NumElems; ++i)
3982    Mask.push_back(i);
3983  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3984}
3985
3986/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3987static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3988                          SDValue V2) {
3989  unsigned NumElems = VT.getVectorNumElements();
3990  SmallVector<int, 8> Mask;
3991  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3992    Mask.push_back(i);
3993    Mask.push_back(i + NumElems);
3994  }
3995  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3996}
3997
3998/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
3999static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4000                          SDValue V2) {
4001  unsigned NumElems = VT.getVectorNumElements();
4002  unsigned Half = NumElems/2;
4003  SmallVector<int, 8> Mask;
4004  for (unsigned i = 0; i != Half; ++i) {
4005    Mask.push_back(i + Half);
4006    Mask.push_back(i + NumElems + Half);
4007  }
4008  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4009}
4010
4011// PromoteSplatv8v16 - All i16 and i8 vector types can't be used directly by
4012// a generic shuffle instruction because the target has no such instructions.
4013// Generate shuffles which repeat i16 and i8 several times until they can be
4014// represented by v4f32 and then be manipulated by target suported shuffles.
4015static SDValue PromoteSplatv8v16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4016  EVT VT = V.getValueType();
4017  int NumElems = VT.getVectorNumElements();
4018  DebugLoc dl = V.getDebugLoc();
4019
4020  while (NumElems > 4) {
4021    if (EltNo < NumElems/2) {
4022      V = getUnpackl(DAG, dl, VT, V, V);
4023    } else {
4024      V = getUnpackh(DAG, dl, VT, V, V);
4025      EltNo -= NumElems/2;
4026    }
4027    NumElems >>= 1;
4028  }
4029  return V;
4030}
4031
4032/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4033static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4034  EVT VT = V.getValueType();
4035  DebugLoc dl = V.getDebugLoc();
4036  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4037         && "Vector size not supported");
4038
4039  bool Is128 = VT.getSizeInBits() == 128;
4040  EVT NVT = Is128 ? MVT::v4f32 : MVT::v8f32;
4041  V = DAG.getNode(ISD::BITCAST, dl, NVT, V);
4042
4043  if (Is128) {
4044    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4045    V = DAG.getVectorShuffle(NVT, dl, V, DAG.getUNDEF(NVT), &SplatMask[0]);
4046  } else {
4047    // The second half of indicies refer to the higher part, which is a
4048    // duplication of the lower one. This makes this shuffle a perfect match
4049    // for the VPERM instruction.
4050    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4051                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4052    V = DAG.getVectorShuffle(NVT, dl, V, DAG.getUNDEF(NVT), &SplatMask[0]);
4053  }
4054
4055  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4056}
4057
4058/// PromoteVectorToScalarSplat - Since there's no native support for
4059/// scalar_to_vector for 256-bit AVX, a 128-bit scalar_to_vector +
4060/// INSERT_SUBVECTOR is generated. Recognize this idiom and do the
4061/// shuffle before the insertion, this yields less instructions in the end.
4062static SDValue PromoteVectorToScalarSplat(ShuffleVectorSDNode *SV,
4063                                          SelectionDAG &DAG) {
4064  EVT SrcVT = SV->getValueType(0);
4065  SDValue V1 = SV->getOperand(0);
4066  DebugLoc dl = SV->getDebugLoc();
4067  int NumElems = SrcVT.getVectorNumElements();
4068
4069  assert(SrcVT.is256BitVector() && "unknown howto handle vector type");
4070
4071  SmallVector<int, 4> Mask;
4072  for (int i = 0; i < NumElems/2; ++i)
4073    Mask.push_back(SV->getMaskElt(i));
4074
4075  EVT SVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
4076                             NumElems/2);
4077  SDValue SV1 = DAG.getVectorShuffle(SVT, dl, V1.getOperand(1),
4078                                     DAG.getUNDEF(SVT), &Mask[0]);
4079  SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), SV1,
4080                                    DAG.getConstant(0, MVT::i32), DAG, dl);
4081
4082  return Insert128BitVector(InsV, SV1,
4083                       DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4084}
4085
4086/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32 and
4087/// v8i32, v16i16 or v32i8 to v8f32.
4088static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4089  EVT SrcVT = SV->getValueType(0);
4090  SDValue V1 = SV->getOperand(0);
4091  DebugLoc dl = SV->getDebugLoc();
4092
4093  int EltNo = SV->getSplatIndex();
4094  int NumElems = SrcVT.getVectorNumElements();
4095  unsigned Size = SrcVT.getSizeInBits();
4096
4097  // Extract the 128-bit part containing the splat element and update
4098  // the splat element index when it refers to the higher register.
4099  if (Size == 256) {
4100    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4101    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4102    if (Idx > 0)
4103      EltNo -= NumElems/2;
4104  }
4105
4106  // Make this 128-bit vector duplicate i8 and i16 elements
4107  if (NumElems > 4)
4108    V1 = PromoteSplatv8v16(V1, DAG, EltNo);
4109
4110  // Recreate the 256-bit vector and place the same 128-bit vector
4111  // into the low and high part. This is necessary because we want
4112  // to use VPERM to shuffle the v8f32 vector, and VPERM only shuffles
4113  // inside each separate v4f32 lane.
4114  if (Size == 256) {
4115    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4116                         DAG.getConstant(0, MVT::i32), DAG, dl);
4117    V1 = Insert128BitVector(InsV, V1,
4118               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4119  }
4120
4121  return getLegalSplat(DAG, V1, EltNo);
4122}
4123
4124/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4125/// vector of zero or undef vector.  This produces a shuffle where the low
4126/// element of V2 is swizzled into the zero/undef vector, landing at element
4127/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4128static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4129                                             bool isZero, bool HasSSE2,
4130                                             SelectionDAG &DAG) {
4131  EVT VT = V2.getValueType();
4132  SDValue V1 = isZero
4133    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4134  unsigned NumElems = VT.getVectorNumElements();
4135  SmallVector<int, 16> MaskVec;
4136  for (unsigned i = 0; i != NumElems; ++i)
4137    // If this is the insertion idx, put the low elt of V2 here.
4138    MaskVec.push_back(i == Idx ? NumElems : i);
4139  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4140}
4141
4142/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4143/// element of the result of the vector shuffle.
4144static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4145                                   unsigned Depth) {
4146  if (Depth == 6)
4147    return SDValue();  // Limit search depth.
4148
4149  SDValue V = SDValue(N, 0);
4150  EVT VT = V.getValueType();
4151  unsigned Opcode = V.getOpcode();
4152
4153  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4154  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4155    Index = SV->getMaskElt(Index);
4156
4157    if (Index < 0)
4158      return DAG.getUNDEF(VT.getVectorElementType());
4159
4160    int NumElems = VT.getVectorNumElements();
4161    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4162    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4163  }
4164
4165  // Recurse into target specific vector shuffles to find scalars.
4166  if (isTargetShuffle(Opcode)) {
4167    int NumElems = VT.getVectorNumElements();
4168    SmallVector<unsigned, 16> ShuffleMask;
4169    SDValue ImmN;
4170
4171    switch(Opcode) {
4172    case X86ISD::SHUFPS:
4173    case X86ISD::SHUFPD:
4174      ImmN = N->getOperand(N->getNumOperands()-1);
4175      DecodeSHUFPSMask(NumElems,
4176                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
4177                       ShuffleMask);
4178      break;
4179    case X86ISD::PUNPCKHBW:
4180    case X86ISD::PUNPCKHWD:
4181    case X86ISD::PUNPCKHDQ:
4182    case X86ISD::PUNPCKHQDQ:
4183      DecodePUNPCKHMask(NumElems, ShuffleMask);
4184      break;
4185    case X86ISD::UNPCKHPS:
4186    case X86ISD::UNPCKHPD:
4187    case X86ISD::VUNPCKHPSY:
4188    case X86ISD::VUNPCKHPDY:
4189      DecodeUNPCKHPMask(NumElems, ShuffleMask);
4190      break;
4191    case X86ISD::PUNPCKLBW:
4192    case X86ISD::PUNPCKLWD:
4193    case X86ISD::PUNPCKLDQ:
4194    case X86ISD::PUNPCKLQDQ:
4195      DecodePUNPCKLMask(VT, ShuffleMask);
4196      break;
4197    case X86ISD::UNPCKLPS:
4198    case X86ISD::UNPCKLPD:
4199    case X86ISD::VUNPCKLPSY:
4200    case X86ISD::VUNPCKLPDY:
4201      DecodeUNPCKLPMask(VT, ShuffleMask);
4202      break;
4203    case X86ISD::MOVHLPS:
4204      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4205      break;
4206    case X86ISD::MOVLHPS:
4207      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4208      break;
4209    case X86ISD::PSHUFD:
4210      ImmN = N->getOperand(N->getNumOperands()-1);
4211      DecodePSHUFMask(NumElems,
4212                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4213                      ShuffleMask);
4214      break;
4215    case X86ISD::PSHUFHW:
4216      ImmN = N->getOperand(N->getNumOperands()-1);
4217      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4218                        ShuffleMask);
4219      break;
4220    case X86ISD::PSHUFLW:
4221      ImmN = N->getOperand(N->getNumOperands()-1);
4222      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4223                        ShuffleMask);
4224      break;
4225    case X86ISD::MOVSS:
4226    case X86ISD::MOVSD: {
4227      // The index 0 always comes from the first element of the second source,
4228      // this is why MOVSS and MOVSD are used in the first place. The other
4229      // elements come from the other positions of the first source vector.
4230      unsigned OpNum = (Index == 0) ? 1 : 0;
4231      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4232                                 Depth+1);
4233    }
4234    case X86ISD::VPERMILPS:
4235    case X86ISD::VPERMILPSY:
4236      // FIXME: Implement the other types
4237      ImmN = N->getOperand(N->getNumOperands()-1);
4238      DecodeVPERMILMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4239                        ShuffleMask);
4240    default:
4241      assert("not implemented for target shuffle node");
4242      return SDValue();
4243    }
4244
4245    Index = ShuffleMask[Index];
4246    if (Index < 0)
4247      return DAG.getUNDEF(VT.getVectorElementType());
4248
4249    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4250    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4251                               Depth+1);
4252  }
4253
4254  // Actual nodes that may contain scalar elements
4255  if (Opcode == ISD::BITCAST) {
4256    V = V.getOperand(0);
4257    EVT SrcVT = V.getValueType();
4258    unsigned NumElems = VT.getVectorNumElements();
4259
4260    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4261      return SDValue();
4262  }
4263
4264  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4265    return (Index == 0) ? V.getOperand(0)
4266                          : DAG.getUNDEF(VT.getVectorElementType());
4267
4268  if (V.getOpcode() == ISD::BUILD_VECTOR)
4269    return V.getOperand(Index);
4270
4271  return SDValue();
4272}
4273
4274/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4275/// shuffle operation which come from a consecutively from a zero. The
4276/// search can start in two different directions, from left or right.
4277static
4278unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4279                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4280  int i = 0;
4281
4282  while (i < NumElems) {
4283    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4284    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4285    if (!(Elt.getNode() &&
4286         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4287      break;
4288    ++i;
4289  }
4290
4291  return i;
4292}
4293
4294/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4295/// MaskE correspond consecutively to elements from one of the vector operands,
4296/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4297static
4298bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4299                              int OpIdx, int NumElems, unsigned &OpNum) {
4300  bool SeenV1 = false;
4301  bool SeenV2 = false;
4302
4303  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4304    int Idx = SVOp->getMaskElt(i);
4305    // Ignore undef indicies
4306    if (Idx < 0)
4307      continue;
4308
4309    if (Idx < NumElems)
4310      SeenV1 = true;
4311    else
4312      SeenV2 = true;
4313
4314    // Only accept consecutive elements from the same vector
4315    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4316      return false;
4317  }
4318
4319  OpNum = SeenV1 ? 0 : 1;
4320  return true;
4321}
4322
4323/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4324/// logical left shift of a vector.
4325static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4326                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4327  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4328  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4329              false /* check zeros from right */, DAG);
4330  unsigned OpSrc;
4331
4332  if (!NumZeros)
4333    return false;
4334
4335  // Considering the elements in the mask that are not consecutive zeros,
4336  // check if they consecutively come from only one of the source vectors.
4337  //
4338  //               V1 = {X, A, B, C}     0
4339  //                         \  \  \    /
4340  //   vector_shuffle V1, V2 <1, 2, 3, X>
4341  //
4342  if (!isShuffleMaskConsecutive(SVOp,
4343            0,                   // Mask Start Index
4344            NumElems-NumZeros-1, // Mask End Index
4345            NumZeros,            // Where to start looking in the src vector
4346            NumElems,            // Number of elements in vector
4347            OpSrc))              // Which source operand ?
4348    return false;
4349
4350  isLeft = false;
4351  ShAmt = NumZeros;
4352  ShVal = SVOp->getOperand(OpSrc);
4353  return true;
4354}
4355
4356/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4357/// logical left shift of a vector.
4358static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4359                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4360  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4361  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4362              true /* check zeros from left */, DAG);
4363  unsigned OpSrc;
4364
4365  if (!NumZeros)
4366    return false;
4367
4368  // Considering the elements in the mask that are not consecutive zeros,
4369  // check if they consecutively come from only one of the source vectors.
4370  //
4371  //                           0    { A, B, X, X } = V2
4372  //                          / \    /  /
4373  //   vector_shuffle V1, V2 <X, X, 4, 5>
4374  //
4375  if (!isShuffleMaskConsecutive(SVOp,
4376            NumZeros,     // Mask Start Index
4377            NumElems-1,   // Mask End Index
4378            0,            // Where to start looking in the src vector
4379            NumElems,     // Number of elements in vector
4380            OpSrc))       // Which source operand ?
4381    return false;
4382
4383  isLeft = true;
4384  ShAmt = NumZeros;
4385  ShVal = SVOp->getOperand(OpSrc);
4386  return true;
4387}
4388
4389/// isVectorShift - Returns true if the shuffle can be implemented as a
4390/// logical left or right shift of a vector.
4391static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4392                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4393  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4394      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4395    return true;
4396
4397  return false;
4398}
4399
4400/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4401///
4402static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4403                                       unsigned NumNonZero, unsigned NumZero,
4404                                       SelectionDAG &DAG,
4405                                       const TargetLowering &TLI) {
4406  if (NumNonZero > 8)
4407    return SDValue();
4408
4409  DebugLoc dl = Op.getDebugLoc();
4410  SDValue V(0, 0);
4411  bool First = true;
4412  for (unsigned i = 0; i < 16; ++i) {
4413    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4414    if (ThisIsNonZero && First) {
4415      if (NumZero)
4416        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4417      else
4418        V = DAG.getUNDEF(MVT::v8i16);
4419      First = false;
4420    }
4421
4422    if ((i & 1) != 0) {
4423      SDValue ThisElt(0, 0), LastElt(0, 0);
4424      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4425      if (LastIsNonZero) {
4426        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4427                              MVT::i16, Op.getOperand(i-1));
4428      }
4429      if (ThisIsNonZero) {
4430        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4431        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4432                              ThisElt, DAG.getConstant(8, MVT::i8));
4433        if (LastIsNonZero)
4434          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4435      } else
4436        ThisElt = LastElt;
4437
4438      if (ThisElt.getNode())
4439        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4440                        DAG.getIntPtrConstant(i/2));
4441    }
4442  }
4443
4444  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4445}
4446
4447/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4448///
4449static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4450                                     unsigned NumNonZero, unsigned NumZero,
4451                                     SelectionDAG &DAG,
4452                                     const TargetLowering &TLI) {
4453  if (NumNonZero > 4)
4454    return SDValue();
4455
4456  DebugLoc dl = Op.getDebugLoc();
4457  SDValue V(0, 0);
4458  bool First = true;
4459  for (unsigned i = 0; i < 8; ++i) {
4460    bool isNonZero = (NonZeros & (1 << i)) != 0;
4461    if (isNonZero) {
4462      if (First) {
4463        if (NumZero)
4464          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4465        else
4466          V = DAG.getUNDEF(MVT::v8i16);
4467        First = false;
4468      }
4469      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4470                      MVT::v8i16, V, Op.getOperand(i),
4471                      DAG.getIntPtrConstant(i));
4472    }
4473  }
4474
4475  return V;
4476}
4477
4478/// getVShift - Return a vector logical shift node.
4479///
4480static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4481                         unsigned NumBits, SelectionDAG &DAG,
4482                         const TargetLowering &TLI, DebugLoc dl) {
4483  EVT ShVT = MVT::v2i64;
4484  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4485  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4486  return DAG.getNode(ISD::BITCAST, dl, VT,
4487                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4488                             DAG.getConstant(NumBits,
4489                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4490}
4491
4492SDValue
4493X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4494                                          SelectionDAG &DAG) const {
4495
4496  // Check if the scalar load can be widened into a vector load. And if
4497  // the address is "base + cst" see if the cst can be "absorbed" into
4498  // the shuffle mask.
4499  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4500    SDValue Ptr = LD->getBasePtr();
4501    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4502      return SDValue();
4503    EVT PVT = LD->getValueType(0);
4504    if (PVT != MVT::i32 && PVT != MVT::f32)
4505      return SDValue();
4506
4507    int FI = -1;
4508    int64_t Offset = 0;
4509    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4510      FI = FINode->getIndex();
4511      Offset = 0;
4512    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4513               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4514      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4515      Offset = Ptr.getConstantOperandVal(1);
4516      Ptr = Ptr.getOperand(0);
4517    } else {
4518      return SDValue();
4519    }
4520
4521    SDValue Chain = LD->getChain();
4522    // Make sure the stack object alignment is at least 16.
4523    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4524    if (DAG.InferPtrAlignment(Ptr) < 16) {
4525      if (MFI->isFixedObjectIndex(FI)) {
4526        // Can't change the alignment. FIXME: It's possible to compute
4527        // the exact stack offset and reference FI + adjust offset instead.
4528        // If someone *really* cares about this. That's the way to implement it.
4529        return SDValue();
4530      } else {
4531        MFI->setObjectAlignment(FI, 16);
4532      }
4533    }
4534
4535    // (Offset % 16) must be multiple of 4. Then address is then
4536    // Ptr + (Offset & ~15).
4537    if (Offset < 0)
4538      return SDValue();
4539    if ((Offset % 16) & 3)
4540      return SDValue();
4541    int64_t StartOffset = Offset & ~15;
4542    if (StartOffset)
4543      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4544                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4545
4546    int EltNo = (Offset - StartOffset) >> 2;
4547    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4548    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4549    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4550                             LD->getPointerInfo().getWithOffset(StartOffset),
4551                             false, false, 0);
4552    // Canonicalize it to a v4i32 shuffle.
4553    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
4554    return DAG.getNode(ISD::BITCAST, dl, VT,
4555                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4556                                            DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4557  }
4558
4559  return SDValue();
4560}
4561
4562/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4563/// vector of type 'VT', see if the elements can be replaced by a single large
4564/// load which has the same value as a build_vector whose operands are 'elts'.
4565///
4566/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4567///
4568/// FIXME: we'd also like to handle the case where the last elements are zero
4569/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4570/// There's even a handy isZeroNode for that purpose.
4571static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4572                                        DebugLoc &DL, SelectionDAG &DAG) {
4573  EVT EltVT = VT.getVectorElementType();
4574  unsigned NumElems = Elts.size();
4575
4576  LoadSDNode *LDBase = NULL;
4577  unsigned LastLoadedElt = -1U;
4578
4579  // For each element in the initializer, see if we've found a load or an undef.
4580  // If we don't find an initial load element, or later load elements are
4581  // non-consecutive, bail out.
4582  for (unsigned i = 0; i < NumElems; ++i) {
4583    SDValue Elt = Elts[i];
4584
4585    if (!Elt.getNode() ||
4586        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4587      return SDValue();
4588    if (!LDBase) {
4589      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4590        return SDValue();
4591      LDBase = cast<LoadSDNode>(Elt.getNode());
4592      LastLoadedElt = i;
4593      continue;
4594    }
4595    if (Elt.getOpcode() == ISD::UNDEF)
4596      continue;
4597
4598    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4599    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4600      return SDValue();
4601    LastLoadedElt = i;
4602  }
4603
4604  // If we have found an entire vector of loads and undefs, then return a large
4605  // load of the entire vector width starting at the base pointer.  If we found
4606  // consecutive loads for the low half, generate a vzext_load node.
4607  if (LastLoadedElt == NumElems - 1) {
4608    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4609      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4610                         LDBase->getPointerInfo(),
4611                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4612    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4613                       LDBase->getPointerInfo(),
4614                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4615                       LDBase->getAlignment());
4616  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4617             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4618    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4619    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4620    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4621                                              Ops, 2, MVT::i32,
4622                                              LDBase->getMemOperand());
4623    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4624  }
4625  return SDValue();
4626}
4627
4628SDValue
4629X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4630  DebugLoc dl = Op.getDebugLoc();
4631
4632  EVT VT = Op.getValueType();
4633  EVT ExtVT = VT.getVectorElementType();
4634  unsigned NumElems = Op.getNumOperands();
4635
4636  // All zero's:
4637  //  - pxor (SSE2), xorps (SSE1), vpxor (128 AVX), xorp[s|d] (256 AVX)
4638  // All one's:
4639  //  - pcmpeqd (SSE2 and 128 AVX), fallback to constant pools (256 AVX)
4640  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4641      ISD::isBuildVectorAllOnes(Op.getNode())) {
4642    // Canonicalize this to <4 x i32> or <8 x 32> (SSE) to
4643    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4644    // eliminated on x86-32 hosts.
4645    if (Op.getValueType() == MVT::v4i32 ||
4646        Op.getValueType() == MVT::v8i32)
4647      return Op;
4648
4649    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4650      return getOnesVector(Op.getValueType(), DAG, dl);
4651    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4652  }
4653
4654  unsigned EVTBits = ExtVT.getSizeInBits();
4655
4656  unsigned NumZero  = 0;
4657  unsigned NumNonZero = 0;
4658  unsigned NonZeros = 0;
4659  bool IsAllConstants = true;
4660  SmallSet<SDValue, 8> Values;
4661  for (unsigned i = 0; i < NumElems; ++i) {
4662    SDValue Elt = Op.getOperand(i);
4663    if (Elt.getOpcode() == ISD::UNDEF)
4664      continue;
4665    Values.insert(Elt);
4666    if (Elt.getOpcode() != ISD::Constant &&
4667        Elt.getOpcode() != ISD::ConstantFP)
4668      IsAllConstants = false;
4669    if (X86::isZeroNode(Elt))
4670      NumZero++;
4671    else {
4672      NonZeros |= (1 << i);
4673      NumNonZero++;
4674    }
4675  }
4676
4677  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4678  if (NumNonZero == 0)
4679    return DAG.getUNDEF(VT);
4680
4681  // Special case for single non-zero, non-undef, element.
4682  if (NumNonZero == 1) {
4683    unsigned Idx = CountTrailingZeros_32(NonZeros);
4684    SDValue Item = Op.getOperand(Idx);
4685
4686    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4687    // the value are obviously zero, truncate the value to i32 and do the
4688    // insertion that way.  Only do this if the value is non-constant or if the
4689    // value is a constant being inserted into element 0.  It is cheaper to do
4690    // a constant pool load than it is to do a movd + shuffle.
4691    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4692        (!IsAllConstants || Idx == 0)) {
4693      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4694        // Handle SSE only.
4695        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4696        EVT VecVT = MVT::v4i32;
4697        unsigned VecElts = 4;
4698
4699        // Truncate the value (which may itself be a constant) to i32, and
4700        // convert it to a vector with movd (S2V+shuffle to zero extend).
4701        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4702        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4703        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4704                                           Subtarget->hasSSE2(), DAG);
4705
4706        // Now we have our 32-bit value zero extended in the low element of
4707        // a vector.  If Idx != 0, swizzle it into place.
4708        if (Idx != 0) {
4709          SmallVector<int, 4> Mask;
4710          Mask.push_back(Idx);
4711          for (unsigned i = 1; i != VecElts; ++i)
4712            Mask.push_back(i);
4713          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4714                                      DAG.getUNDEF(Item.getValueType()),
4715                                      &Mask[0]);
4716        }
4717        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
4718      }
4719    }
4720
4721    // If we have a constant or non-constant insertion into the low element of
4722    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4723    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4724    // depending on what the source datatype is.
4725    if (Idx == 0) {
4726      if (NumZero == 0) {
4727        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4728      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4729          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4730        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4731        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4732        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4733                                           DAG);
4734      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4735        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4736        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4737        EVT MiddleVT = MVT::v4i32;
4738        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4739        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4740                                           Subtarget->hasSSE2(), DAG);
4741        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
4742      }
4743    }
4744
4745    // Is it a vector logical left shift?
4746    if (NumElems == 2 && Idx == 1 &&
4747        X86::isZeroNode(Op.getOperand(0)) &&
4748        !X86::isZeroNode(Op.getOperand(1))) {
4749      unsigned NumBits = VT.getSizeInBits();
4750      return getVShift(true, VT,
4751                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4752                                   VT, Op.getOperand(1)),
4753                       NumBits/2, DAG, *this, dl);
4754    }
4755
4756    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4757      return SDValue();
4758
4759    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4760    // is a non-constant being inserted into an element other than the low one,
4761    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4762    // movd/movss) to move this into the low element, then shuffle it into
4763    // place.
4764    if (EVTBits == 32) {
4765      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4766
4767      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4768      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4769                                         Subtarget->hasSSE2(), DAG);
4770      SmallVector<int, 8> MaskVec;
4771      for (unsigned i = 0; i < NumElems; i++)
4772        MaskVec.push_back(i == Idx ? 0 : 1);
4773      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4774    }
4775  }
4776
4777  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4778  if (Values.size() == 1) {
4779    if (EVTBits == 32) {
4780      // Instead of a shuffle like this:
4781      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4782      // Check if it's possible to issue this instead.
4783      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4784      unsigned Idx = CountTrailingZeros_32(NonZeros);
4785      SDValue Item = Op.getOperand(Idx);
4786      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4787        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4788    }
4789    return SDValue();
4790  }
4791
4792  // A vector full of immediates; various special cases are already
4793  // handled, so this is best done with a single constant-pool load.
4794  if (IsAllConstants)
4795    return SDValue();
4796
4797  // For AVX-length vectors, build the individual 128-bit pieces and use
4798  // shuffles to put them in place.
4799  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
4800    SmallVector<SDValue, 32> V;
4801    for (unsigned i = 0; i < NumElems; ++i)
4802      V.push_back(Op.getOperand(i));
4803
4804    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
4805
4806    // Build both the lower and upper subvector.
4807    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
4808    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
4809                                NumElems/2);
4810
4811    // Recreate the wider vector with the lower and upper part.
4812    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
4813                                DAG.getConstant(0, MVT::i32), DAG, dl);
4814    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
4815                              DAG, dl);
4816  }
4817
4818  // Let legalizer expand 2-wide build_vectors.
4819  if (EVTBits == 64) {
4820    if (NumNonZero == 1) {
4821      // One half is zero or undef.
4822      unsigned Idx = CountTrailingZeros_32(NonZeros);
4823      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4824                                 Op.getOperand(Idx));
4825      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4826                                         Subtarget->hasSSE2(), DAG);
4827    }
4828    return SDValue();
4829  }
4830
4831  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4832  if (EVTBits == 8 && NumElems == 16) {
4833    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4834                                        *this);
4835    if (V.getNode()) return V;
4836  }
4837
4838  if (EVTBits == 16 && NumElems == 8) {
4839    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4840                                      *this);
4841    if (V.getNode()) return V;
4842  }
4843
4844  // If element VT is == 32 bits, turn it into a number of shuffles.
4845  SmallVector<SDValue, 8> V;
4846  V.resize(NumElems);
4847  if (NumElems == 4 && NumZero > 0) {
4848    for (unsigned i = 0; i < 4; ++i) {
4849      bool isZero = !(NonZeros & (1 << i));
4850      if (isZero)
4851        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4852      else
4853        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4854    }
4855
4856    for (unsigned i = 0; i < 2; ++i) {
4857      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4858        default: break;
4859        case 0:
4860          V[i] = V[i*2];  // Must be a zero vector.
4861          break;
4862        case 1:
4863          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4864          break;
4865        case 2:
4866          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4867          break;
4868        case 3:
4869          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4870          break;
4871      }
4872    }
4873
4874    SmallVector<int, 8> MaskVec;
4875    bool Reverse = (NonZeros & 0x3) == 2;
4876    for (unsigned i = 0; i < 2; ++i)
4877      MaskVec.push_back(Reverse ? 1-i : i);
4878    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4879    for (unsigned i = 0; i < 2; ++i)
4880      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4881    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4882  }
4883
4884  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4885    // Check for a build vector of consecutive loads.
4886    for (unsigned i = 0; i < NumElems; ++i)
4887      V[i] = Op.getOperand(i);
4888
4889    // Check for elements which are consecutive loads.
4890    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4891    if (LD.getNode())
4892      return LD;
4893
4894    // For SSE 4.1, use insertps to put the high elements into the low element.
4895    if (getSubtarget()->hasSSE41()) {
4896      SDValue Result;
4897      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4898        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4899      else
4900        Result = DAG.getUNDEF(VT);
4901
4902      for (unsigned i = 1; i < NumElems; ++i) {
4903        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4904        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4905                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4906      }
4907      return Result;
4908    }
4909
4910    // Otherwise, expand into a number of unpckl*, start by extending each of
4911    // our (non-undef) elements to the full vector width with the element in the
4912    // bottom slot of the vector (which generates no code for SSE).
4913    for (unsigned i = 0; i < NumElems; ++i) {
4914      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4915        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4916      else
4917        V[i] = DAG.getUNDEF(VT);
4918    }
4919
4920    // Next, we iteratively mix elements, e.g. for v4f32:
4921    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4922    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4923    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4924    unsigned EltStride = NumElems >> 1;
4925    while (EltStride != 0) {
4926      for (unsigned i = 0; i < EltStride; ++i) {
4927        // If V[i+EltStride] is undef and this is the first round of mixing,
4928        // then it is safe to just drop this shuffle: V[i] is already in the
4929        // right place, the one element (since it's the first round) being
4930        // inserted as undef can be dropped.  This isn't safe for successive
4931        // rounds because they will permute elements within both vectors.
4932        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4933            EltStride == NumElems/2)
4934          continue;
4935
4936        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4937      }
4938      EltStride >>= 1;
4939    }
4940    return V[0];
4941  }
4942  return SDValue();
4943}
4944
4945SDValue
4946X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4947  // We support concatenate two MMX registers and place them in a MMX
4948  // register.  This is better than doing a stack convert.
4949  DebugLoc dl = Op.getDebugLoc();
4950  EVT ResVT = Op.getValueType();
4951  assert(Op.getNumOperands() == 2);
4952  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4953         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4954  int Mask[2];
4955  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
4956  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4957  InVec = Op.getOperand(1);
4958  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4959    unsigned NumElts = ResVT.getVectorNumElements();
4960    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4961    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4962                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4963  } else {
4964    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
4965    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4966    Mask[0] = 0; Mask[1] = 2;
4967    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4968  }
4969  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4970}
4971
4972// v8i16 shuffles - Prefer shuffles in the following order:
4973// 1. [all]   pshuflw, pshufhw, optional move
4974// 2. [ssse3] 1 x pshufb
4975// 3. [ssse3] 2 x pshufb + 1 x por
4976// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4977SDValue
4978X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4979                                            SelectionDAG &DAG) const {
4980  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4981  SDValue V1 = SVOp->getOperand(0);
4982  SDValue V2 = SVOp->getOperand(1);
4983  DebugLoc dl = SVOp->getDebugLoc();
4984  SmallVector<int, 8> MaskVals;
4985
4986  // Determine if more than 1 of the words in each of the low and high quadwords
4987  // of the result come from the same quadword of one of the two inputs.  Undef
4988  // mask values count as coming from any quadword, for better codegen.
4989  SmallVector<unsigned, 4> LoQuad(4);
4990  SmallVector<unsigned, 4> HiQuad(4);
4991  BitVector InputQuads(4);
4992  for (unsigned i = 0; i < 8; ++i) {
4993    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4994    int EltIdx = SVOp->getMaskElt(i);
4995    MaskVals.push_back(EltIdx);
4996    if (EltIdx < 0) {
4997      ++Quad[0];
4998      ++Quad[1];
4999      ++Quad[2];
5000      ++Quad[3];
5001      continue;
5002    }
5003    ++Quad[EltIdx / 4];
5004    InputQuads.set(EltIdx / 4);
5005  }
5006
5007  int BestLoQuad = -1;
5008  unsigned MaxQuad = 1;
5009  for (unsigned i = 0; i < 4; ++i) {
5010    if (LoQuad[i] > MaxQuad) {
5011      BestLoQuad = i;
5012      MaxQuad = LoQuad[i];
5013    }
5014  }
5015
5016  int BestHiQuad = -1;
5017  MaxQuad = 1;
5018  for (unsigned i = 0; i < 4; ++i) {
5019    if (HiQuad[i] > MaxQuad) {
5020      BestHiQuad = i;
5021      MaxQuad = HiQuad[i];
5022    }
5023  }
5024
5025  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5026  // of the two input vectors, shuffle them into one input vector so only a
5027  // single pshufb instruction is necessary. If There are more than 2 input
5028  // quads, disable the next transformation since it does not help SSSE3.
5029  bool V1Used = InputQuads[0] || InputQuads[1];
5030  bool V2Used = InputQuads[2] || InputQuads[3];
5031  if (Subtarget->hasSSSE3()) {
5032    if (InputQuads.count() == 2 && V1Used && V2Used) {
5033      BestLoQuad = InputQuads.find_first();
5034      BestHiQuad = InputQuads.find_next(BestLoQuad);
5035    }
5036    if (InputQuads.count() > 2) {
5037      BestLoQuad = -1;
5038      BestHiQuad = -1;
5039    }
5040  }
5041
5042  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5043  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5044  // words from all 4 input quadwords.
5045  SDValue NewV;
5046  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5047    SmallVector<int, 8> MaskV;
5048    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5049    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5050    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5051                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5052                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5053    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5054
5055    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5056    // source words for the shuffle, to aid later transformations.
5057    bool AllWordsInNewV = true;
5058    bool InOrder[2] = { true, true };
5059    for (unsigned i = 0; i != 8; ++i) {
5060      int idx = MaskVals[i];
5061      if (idx != (int)i)
5062        InOrder[i/4] = false;
5063      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5064        continue;
5065      AllWordsInNewV = false;
5066      break;
5067    }
5068
5069    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5070    if (AllWordsInNewV) {
5071      for (int i = 0; i != 8; ++i) {
5072        int idx = MaskVals[i];
5073        if (idx < 0)
5074          continue;
5075        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5076        if ((idx != i) && idx < 4)
5077          pshufhw = false;
5078        if ((idx != i) && idx > 3)
5079          pshuflw = false;
5080      }
5081      V1 = NewV;
5082      V2Used = false;
5083      BestLoQuad = 0;
5084      BestHiQuad = 1;
5085    }
5086
5087    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5088    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5089    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5090      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5091      unsigned TargetMask = 0;
5092      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5093                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5094      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5095                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5096      V1 = NewV.getOperand(0);
5097      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5098    }
5099  }
5100
5101  // If we have SSSE3, and all words of the result are from 1 input vector,
5102  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5103  // is present, fall back to case 4.
5104  if (Subtarget->hasSSSE3()) {
5105    SmallVector<SDValue,16> pshufbMask;
5106
5107    // If we have elements from both input vectors, set the high bit of the
5108    // shuffle mask element to zero out elements that come from V2 in the V1
5109    // mask, and elements that come from V1 in the V2 mask, so that the two
5110    // results can be OR'd together.
5111    bool TwoInputs = V1Used && V2Used;
5112    for (unsigned i = 0; i != 8; ++i) {
5113      int EltIdx = MaskVals[i] * 2;
5114      if (TwoInputs && (EltIdx >= 16)) {
5115        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5116        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5117        continue;
5118      }
5119      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5120      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5121    }
5122    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5123    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5124                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5125                                 MVT::v16i8, &pshufbMask[0], 16));
5126    if (!TwoInputs)
5127      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5128
5129    // Calculate the shuffle mask for the second input, shuffle it, and
5130    // OR it with the first shuffled input.
5131    pshufbMask.clear();
5132    for (unsigned i = 0; i != 8; ++i) {
5133      int EltIdx = MaskVals[i] * 2;
5134      if (EltIdx < 16) {
5135        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5136        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5137        continue;
5138      }
5139      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5140      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5141    }
5142    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5143    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5144                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5145                                 MVT::v16i8, &pshufbMask[0], 16));
5146    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5147    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5148  }
5149
5150  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5151  // and update MaskVals with new element order.
5152  BitVector InOrder(8);
5153  if (BestLoQuad >= 0) {
5154    SmallVector<int, 8> MaskV;
5155    for (int i = 0; i != 4; ++i) {
5156      int idx = MaskVals[i];
5157      if (idx < 0) {
5158        MaskV.push_back(-1);
5159        InOrder.set(i);
5160      } else if ((idx / 4) == BestLoQuad) {
5161        MaskV.push_back(idx & 3);
5162        InOrder.set(i);
5163      } else {
5164        MaskV.push_back(-1);
5165      }
5166    }
5167    for (unsigned i = 4; i != 8; ++i)
5168      MaskV.push_back(i);
5169    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5170                                &MaskV[0]);
5171
5172    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5173      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5174                               NewV.getOperand(0),
5175                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5176                               DAG);
5177  }
5178
5179  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5180  // and update MaskVals with the new element order.
5181  if (BestHiQuad >= 0) {
5182    SmallVector<int, 8> MaskV;
5183    for (unsigned i = 0; i != 4; ++i)
5184      MaskV.push_back(i);
5185    for (unsigned i = 4; i != 8; ++i) {
5186      int idx = MaskVals[i];
5187      if (idx < 0) {
5188        MaskV.push_back(-1);
5189        InOrder.set(i);
5190      } else if ((idx / 4) == BestHiQuad) {
5191        MaskV.push_back((idx & 3) + 4);
5192        InOrder.set(i);
5193      } else {
5194        MaskV.push_back(-1);
5195      }
5196    }
5197    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5198                                &MaskV[0]);
5199
5200    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5201      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5202                              NewV.getOperand(0),
5203                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5204                              DAG);
5205  }
5206
5207  // In case BestHi & BestLo were both -1, which means each quadword has a word
5208  // from each of the four input quadwords, calculate the InOrder bitvector now
5209  // before falling through to the insert/extract cleanup.
5210  if (BestLoQuad == -1 && BestHiQuad == -1) {
5211    NewV = V1;
5212    for (int i = 0; i != 8; ++i)
5213      if (MaskVals[i] < 0 || MaskVals[i] == i)
5214        InOrder.set(i);
5215  }
5216
5217  // The other elements are put in the right place using pextrw and pinsrw.
5218  for (unsigned i = 0; i != 8; ++i) {
5219    if (InOrder[i])
5220      continue;
5221    int EltIdx = MaskVals[i];
5222    if (EltIdx < 0)
5223      continue;
5224    SDValue ExtOp = (EltIdx < 8)
5225    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5226                  DAG.getIntPtrConstant(EltIdx))
5227    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5228                  DAG.getIntPtrConstant(EltIdx - 8));
5229    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5230                       DAG.getIntPtrConstant(i));
5231  }
5232  return NewV;
5233}
5234
5235// v16i8 shuffles - Prefer shuffles in the following order:
5236// 1. [ssse3] 1 x pshufb
5237// 2. [ssse3] 2 x pshufb + 1 x por
5238// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5239static
5240SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5241                                 SelectionDAG &DAG,
5242                                 const X86TargetLowering &TLI) {
5243  SDValue V1 = SVOp->getOperand(0);
5244  SDValue V2 = SVOp->getOperand(1);
5245  DebugLoc dl = SVOp->getDebugLoc();
5246  SmallVector<int, 16> MaskVals;
5247  SVOp->getMask(MaskVals);
5248
5249  // If we have SSSE3, case 1 is generated when all result bytes come from
5250  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5251  // present, fall back to case 3.
5252  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5253  bool V1Only = true;
5254  bool V2Only = true;
5255  for (unsigned i = 0; i < 16; ++i) {
5256    int EltIdx = MaskVals[i];
5257    if (EltIdx < 0)
5258      continue;
5259    if (EltIdx < 16)
5260      V2Only = false;
5261    else
5262      V1Only = false;
5263  }
5264
5265  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5266  if (TLI.getSubtarget()->hasSSSE3()) {
5267    SmallVector<SDValue,16> pshufbMask;
5268
5269    // If all result elements are from one input vector, then only translate
5270    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5271    //
5272    // Otherwise, we have elements from both input vectors, and must zero out
5273    // elements that come from V2 in the first mask, and V1 in the second mask
5274    // so that we can OR them together.
5275    bool TwoInputs = !(V1Only || V2Only);
5276    for (unsigned i = 0; i != 16; ++i) {
5277      int EltIdx = MaskVals[i];
5278      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5279        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5280        continue;
5281      }
5282      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5283    }
5284    // If all the elements are from V2, assign it to V1 and return after
5285    // building the first pshufb.
5286    if (V2Only)
5287      V1 = V2;
5288    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5289                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5290                                 MVT::v16i8, &pshufbMask[0], 16));
5291    if (!TwoInputs)
5292      return V1;
5293
5294    // Calculate the shuffle mask for the second input, shuffle it, and
5295    // OR it with the first shuffled input.
5296    pshufbMask.clear();
5297    for (unsigned i = 0; i != 16; ++i) {
5298      int EltIdx = MaskVals[i];
5299      if (EltIdx < 16) {
5300        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5301        continue;
5302      }
5303      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5304    }
5305    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5306                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5307                                 MVT::v16i8, &pshufbMask[0], 16));
5308    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5309  }
5310
5311  // No SSSE3 - Calculate in place words and then fix all out of place words
5312  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5313  // the 16 different words that comprise the two doublequadword input vectors.
5314  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5315  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5316  SDValue NewV = V2Only ? V2 : V1;
5317  for (int i = 0; i != 8; ++i) {
5318    int Elt0 = MaskVals[i*2];
5319    int Elt1 = MaskVals[i*2+1];
5320
5321    // This word of the result is all undef, skip it.
5322    if (Elt0 < 0 && Elt1 < 0)
5323      continue;
5324
5325    // This word of the result is already in the correct place, skip it.
5326    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5327      continue;
5328    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5329      continue;
5330
5331    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5332    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5333    SDValue InsElt;
5334
5335    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5336    // using a single extract together, load it and store it.
5337    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5338      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5339                           DAG.getIntPtrConstant(Elt1 / 2));
5340      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5341                        DAG.getIntPtrConstant(i));
5342      continue;
5343    }
5344
5345    // If Elt1 is defined, extract it from the appropriate source.  If the
5346    // source byte is not also odd, shift the extracted word left 8 bits
5347    // otherwise clear the bottom 8 bits if we need to do an or.
5348    if (Elt1 >= 0) {
5349      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5350                           DAG.getIntPtrConstant(Elt1 / 2));
5351      if ((Elt1 & 1) == 0)
5352        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5353                             DAG.getConstant(8,
5354                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5355      else if (Elt0 >= 0)
5356        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5357                             DAG.getConstant(0xFF00, MVT::i16));
5358    }
5359    // If Elt0 is defined, extract it from the appropriate source.  If the
5360    // source byte is not also even, shift the extracted word right 8 bits. If
5361    // Elt1 was also defined, OR the extracted values together before
5362    // inserting them in the result.
5363    if (Elt0 >= 0) {
5364      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5365                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5366      if ((Elt0 & 1) != 0)
5367        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5368                              DAG.getConstant(8,
5369                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5370      else if (Elt1 >= 0)
5371        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5372                             DAG.getConstant(0x00FF, MVT::i16));
5373      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5374                         : InsElt0;
5375    }
5376    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5377                       DAG.getIntPtrConstant(i));
5378  }
5379  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5380}
5381
5382/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5383/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5384/// done when every pair / quad of shuffle mask elements point to elements in
5385/// the right sequence. e.g.
5386/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5387static
5388SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5389                                 SelectionDAG &DAG, DebugLoc dl) {
5390  EVT VT = SVOp->getValueType(0);
5391  SDValue V1 = SVOp->getOperand(0);
5392  SDValue V2 = SVOp->getOperand(1);
5393  unsigned NumElems = VT.getVectorNumElements();
5394  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5395  EVT NewVT;
5396  switch (VT.getSimpleVT().SimpleTy) {
5397  default: assert(false && "Unexpected!");
5398  case MVT::v4f32: NewVT = MVT::v2f64; break;
5399  case MVT::v4i32: NewVT = MVT::v2i64; break;
5400  case MVT::v8i16: NewVT = MVT::v4i32; break;
5401  case MVT::v16i8: NewVT = MVT::v4i32; break;
5402  }
5403
5404  int Scale = NumElems / NewWidth;
5405  SmallVector<int, 8> MaskVec;
5406  for (unsigned i = 0; i < NumElems; i += Scale) {
5407    int StartIdx = -1;
5408    for (int j = 0; j < Scale; ++j) {
5409      int EltIdx = SVOp->getMaskElt(i+j);
5410      if (EltIdx < 0)
5411        continue;
5412      if (StartIdx == -1)
5413        StartIdx = EltIdx - (EltIdx % Scale);
5414      if (EltIdx != StartIdx + j)
5415        return SDValue();
5416    }
5417    if (StartIdx == -1)
5418      MaskVec.push_back(-1);
5419    else
5420      MaskVec.push_back(StartIdx / Scale);
5421  }
5422
5423  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5424  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5425  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5426}
5427
5428/// getVZextMovL - Return a zero-extending vector move low node.
5429///
5430static SDValue getVZextMovL(EVT VT, EVT OpVT,
5431                            SDValue SrcOp, SelectionDAG &DAG,
5432                            const X86Subtarget *Subtarget, DebugLoc dl) {
5433  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5434    LoadSDNode *LD = NULL;
5435    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5436      LD = dyn_cast<LoadSDNode>(SrcOp);
5437    if (!LD) {
5438      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5439      // instead.
5440      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5441      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5442          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5443          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5444          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5445        // PR2108
5446        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5447        return DAG.getNode(ISD::BITCAST, dl, VT,
5448                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5449                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5450                                                   OpVT,
5451                                                   SrcOp.getOperand(0)
5452                                                          .getOperand(0))));
5453      }
5454    }
5455  }
5456
5457  return DAG.getNode(ISD::BITCAST, dl, VT,
5458                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5459                                 DAG.getNode(ISD::BITCAST, dl,
5460                                             OpVT, SrcOp)));
5461}
5462
5463/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5464/// which could not be matched by any known target speficic shuffle
5465static SDValue
5466LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5467  return SDValue();
5468}
5469
5470/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
5471/// 4 elements, and match them with several different shuffle types.
5472static SDValue
5473LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5474  SDValue V1 = SVOp->getOperand(0);
5475  SDValue V2 = SVOp->getOperand(1);
5476  DebugLoc dl = SVOp->getDebugLoc();
5477  EVT VT = SVOp->getValueType(0);
5478
5479  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
5480
5481  SmallVector<std::pair<int, int>, 8> Locs;
5482  Locs.resize(4);
5483  SmallVector<int, 8> Mask1(4U, -1);
5484  SmallVector<int, 8> PermMask;
5485  SVOp->getMask(PermMask);
5486
5487  unsigned NumHi = 0;
5488  unsigned NumLo = 0;
5489  for (unsigned i = 0; i != 4; ++i) {
5490    int Idx = PermMask[i];
5491    if (Idx < 0) {
5492      Locs[i] = std::make_pair(-1, -1);
5493    } else {
5494      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5495      if (Idx < 4) {
5496        Locs[i] = std::make_pair(0, NumLo);
5497        Mask1[NumLo] = Idx;
5498        NumLo++;
5499      } else {
5500        Locs[i] = std::make_pair(1, NumHi);
5501        if (2+NumHi < 4)
5502          Mask1[2+NumHi] = Idx;
5503        NumHi++;
5504      }
5505    }
5506  }
5507
5508  if (NumLo <= 2 && NumHi <= 2) {
5509    // If no more than two elements come from either vector. This can be
5510    // implemented with two shuffles. First shuffle gather the elements.
5511    // The second shuffle, which takes the first shuffle as both of its
5512    // vector operands, put the elements into the right order.
5513    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5514
5515    SmallVector<int, 8> Mask2(4U, -1);
5516
5517    for (unsigned i = 0; i != 4; ++i) {
5518      if (Locs[i].first == -1)
5519        continue;
5520      else {
5521        unsigned Idx = (i < 2) ? 0 : 4;
5522        Idx += Locs[i].first * 2 + Locs[i].second;
5523        Mask2[i] = Idx;
5524      }
5525    }
5526
5527    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5528  } else if (NumLo == 3 || NumHi == 3) {
5529    // Otherwise, we must have three elements from one vector, call it X, and
5530    // one element from the other, call it Y.  First, use a shufps to build an
5531    // intermediate vector with the one element from Y and the element from X
5532    // that will be in the same half in the final destination (the indexes don't
5533    // matter). Then, use a shufps to build the final vector, taking the half
5534    // containing the element from Y from the intermediate, and the other half
5535    // from X.
5536    if (NumHi == 3) {
5537      // Normalize it so the 3 elements come from V1.
5538      CommuteVectorShuffleMask(PermMask, VT);
5539      std::swap(V1, V2);
5540    }
5541
5542    // Find the element from V2.
5543    unsigned HiIndex;
5544    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5545      int Val = PermMask[HiIndex];
5546      if (Val < 0)
5547        continue;
5548      if (Val >= 4)
5549        break;
5550    }
5551
5552    Mask1[0] = PermMask[HiIndex];
5553    Mask1[1] = -1;
5554    Mask1[2] = PermMask[HiIndex^1];
5555    Mask1[3] = -1;
5556    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5557
5558    if (HiIndex >= 2) {
5559      Mask1[0] = PermMask[0];
5560      Mask1[1] = PermMask[1];
5561      Mask1[2] = HiIndex & 1 ? 6 : 4;
5562      Mask1[3] = HiIndex & 1 ? 4 : 6;
5563      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5564    } else {
5565      Mask1[0] = HiIndex & 1 ? 2 : 0;
5566      Mask1[1] = HiIndex & 1 ? 0 : 2;
5567      Mask1[2] = PermMask[2];
5568      Mask1[3] = PermMask[3];
5569      if (Mask1[2] >= 0)
5570        Mask1[2] += 4;
5571      if (Mask1[3] >= 0)
5572        Mask1[3] += 4;
5573      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5574    }
5575  }
5576
5577  // Break it into (shuffle shuffle_hi, shuffle_lo).
5578  Locs.clear();
5579  Locs.resize(4);
5580  SmallVector<int,8> LoMask(4U, -1);
5581  SmallVector<int,8> HiMask(4U, -1);
5582
5583  SmallVector<int,8> *MaskPtr = &LoMask;
5584  unsigned MaskIdx = 0;
5585  unsigned LoIdx = 0;
5586  unsigned HiIdx = 2;
5587  for (unsigned i = 0; i != 4; ++i) {
5588    if (i == 2) {
5589      MaskPtr = &HiMask;
5590      MaskIdx = 1;
5591      LoIdx = 0;
5592      HiIdx = 2;
5593    }
5594    int Idx = PermMask[i];
5595    if (Idx < 0) {
5596      Locs[i] = std::make_pair(-1, -1);
5597    } else if (Idx < 4) {
5598      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5599      (*MaskPtr)[LoIdx] = Idx;
5600      LoIdx++;
5601    } else {
5602      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5603      (*MaskPtr)[HiIdx] = Idx;
5604      HiIdx++;
5605    }
5606  }
5607
5608  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5609  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5610  SmallVector<int, 8> MaskOps;
5611  for (unsigned i = 0; i != 4; ++i) {
5612    if (Locs[i].first == -1) {
5613      MaskOps.push_back(-1);
5614    } else {
5615      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5616      MaskOps.push_back(Idx);
5617    }
5618  }
5619  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5620}
5621
5622static bool MayFoldVectorLoad(SDValue V) {
5623  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5624    V = V.getOperand(0);
5625  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5626    V = V.getOperand(0);
5627  if (MayFoldLoad(V))
5628    return true;
5629  return false;
5630}
5631
5632// FIXME: the version above should always be used. Since there's
5633// a bug where several vector shuffles can't be folded because the
5634// DAG is not updated during lowering and a node claims to have two
5635// uses while it only has one, use this version, and let isel match
5636// another instruction if the load really happens to have more than
5637// one use. Remove this version after this bug get fixed.
5638// rdar://8434668, PR8156
5639static bool RelaxedMayFoldVectorLoad(SDValue V) {
5640  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5641    V = V.getOperand(0);
5642  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5643    V = V.getOperand(0);
5644  if (ISD::isNormalLoad(V.getNode()))
5645    return true;
5646  return false;
5647}
5648
5649/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5650/// a vector extract, and if both can be later optimized into a single load.
5651/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5652/// here because otherwise a target specific shuffle node is going to be
5653/// emitted for this shuffle, and the optimization not done.
5654/// FIXME: This is probably not the best approach, but fix the problem
5655/// until the right path is decided.
5656static
5657bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5658                                         const TargetLowering &TLI) {
5659  EVT VT = V.getValueType();
5660  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5661
5662  // Be sure that the vector shuffle is present in a pattern like this:
5663  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5664  if (!V.hasOneUse())
5665    return false;
5666
5667  SDNode *N = *V.getNode()->use_begin();
5668  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5669    return false;
5670
5671  SDValue EltNo = N->getOperand(1);
5672  if (!isa<ConstantSDNode>(EltNo))
5673    return false;
5674
5675  // If the bit convert changed the number of elements, it is unsafe
5676  // to examine the mask.
5677  bool HasShuffleIntoBitcast = false;
5678  if (V.getOpcode() == ISD::BITCAST) {
5679    EVT SrcVT = V.getOperand(0).getValueType();
5680    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5681      return false;
5682    V = V.getOperand(0);
5683    HasShuffleIntoBitcast = true;
5684  }
5685
5686  // Select the input vector, guarding against out of range extract vector.
5687  unsigned NumElems = VT.getVectorNumElements();
5688  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5689  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5690  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5691
5692  // Skip one more bit_convert if necessary
5693  if (V.getOpcode() == ISD::BITCAST)
5694    V = V.getOperand(0);
5695
5696  if (ISD::isNormalLoad(V.getNode())) {
5697    // Is the original load suitable?
5698    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5699
5700    // FIXME: avoid the multi-use bug that is preventing lots of
5701    // of foldings to be detected, this is still wrong of course, but
5702    // give the temporary desired behavior, and if it happens that
5703    // the load has real more uses, during isel it will not fold, and
5704    // will generate poor code.
5705    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5706      return false;
5707
5708    if (!HasShuffleIntoBitcast)
5709      return true;
5710
5711    // If there's a bitcast before the shuffle, check if the load type and
5712    // alignment is valid.
5713    unsigned Align = LN0->getAlignment();
5714    unsigned NewAlign =
5715      TLI.getTargetData()->getABITypeAlignment(
5716                                    VT.getTypeForEVT(*DAG.getContext()));
5717
5718    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5719      return false;
5720  }
5721
5722  return true;
5723}
5724
5725static
5726SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5727  EVT VT = Op.getValueType();
5728
5729  // Canonizalize to v2f64.
5730  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
5731  return DAG.getNode(ISD::BITCAST, dl, VT,
5732                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5733                                          V1, DAG));
5734}
5735
5736static
5737SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5738                        bool HasSSE2) {
5739  SDValue V1 = Op.getOperand(0);
5740  SDValue V2 = Op.getOperand(1);
5741  EVT VT = Op.getValueType();
5742
5743  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5744
5745  if (HasSSE2 && VT == MVT::v2f64)
5746    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5747
5748  // v4f32 or v4i32
5749  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5750}
5751
5752static
5753SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5754  SDValue V1 = Op.getOperand(0);
5755  SDValue V2 = Op.getOperand(1);
5756  EVT VT = Op.getValueType();
5757
5758  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5759         "unsupported shuffle type");
5760
5761  if (V2.getOpcode() == ISD::UNDEF)
5762    V2 = V1;
5763
5764  // v4i32 or v4f32
5765  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5766}
5767
5768static
5769SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5770  SDValue V1 = Op.getOperand(0);
5771  SDValue V2 = Op.getOperand(1);
5772  EVT VT = Op.getValueType();
5773  unsigned NumElems = VT.getVectorNumElements();
5774
5775  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5776  // operand of these instructions is only memory, so check if there's a
5777  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5778  // same masks.
5779  bool CanFoldLoad = false;
5780
5781  // Trivial case, when V2 comes from a load.
5782  if (MayFoldVectorLoad(V2))
5783    CanFoldLoad = true;
5784
5785  // When V1 is a load, it can be folded later into a store in isel, example:
5786  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5787  //    turns into:
5788  //  (MOVLPSmr addr:$src1, VR128:$src2)
5789  // So, recognize this potential and also use MOVLPS or MOVLPD
5790  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5791    CanFoldLoad = true;
5792
5793  // Both of them can't be memory operations though.
5794  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
5795    CanFoldLoad = false;
5796
5797  if (CanFoldLoad) {
5798    if (HasSSE2 && NumElems == 2)
5799      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5800
5801    if (NumElems == 4)
5802      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5803  }
5804
5805  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5806  // movl and movlp will both match v2i64, but v2i64 is never matched by
5807  // movl earlier because we make it strict to avoid messing with the movlp load
5808  // folding logic (see the code above getMOVLP call). Match it here then,
5809  // this is horrible, but will stay like this until we move all shuffle
5810  // matching to x86 specific nodes. Note that for the 1st condition all
5811  // types are matched with movsd.
5812  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5813    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5814  else if (HasSSE2)
5815    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5816
5817
5818  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5819
5820  // Invert the operand order and use SHUFPS to match it.
5821  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5822                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5823}
5824
5825static inline unsigned getUNPCKLOpcode(EVT VT) {
5826  switch(VT.getSimpleVT().SimpleTy) {
5827  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5828  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5829  case MVT::v4f32: return X86ISD::UNPCKLPS;
5830  case MVT::v2f64: return X86ISD::UNPCKLPD;
5831  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
5832  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
5833  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5834  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5835  default:
5836    llvm_unreachable("Unknown type for unpckl");
5837  }
5838  return 0;
5839}
5840
5841static inline unsigned getUNPCKHOpcode(EVT VT) {
5842  switch(VT.getSimpleVT().SimpleTy) {
5843  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5844  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5845  case MVT::v4f32: return X86ISD::UNPCKHPS;
5846  case MVT::v2f64: return X86ISD::UNPCKHPD;
5847  case MVT::v8f32: return X86ISD::VUNPCKHPSY;
5848  case MVT::v4f64: return X86ISD::VUNPCKHPDY;
5849  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5850  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5851  default:
5852    llvm_unreachable("Unknown type for unpckh");
5853  }
5854  return 0;
5855}
5856
5857static inline unsigned getVPERMILOpcode(EVT VT) {
5858  switch(VT.getSimpleVT().SimpleTy) {
5859  case MVT::v4i32:
5860  case MVT::v4f32: return X86ISD::VPERMILPS;
5861  case MVT::v2i64:
5862  case MVT::v2f64: return X86ISD::VPERMILPD;
5863  case MVT::v8i32:
5864  case MVT::v8f32: return X86ISD::VPERMILPSY;
5865  case MVT::v4i64:
5866  case MVT::v4f64: return X86ISD::VPERMILPDY;
5867  default:
5868    llvm_unreachable("Unknown type for vpermil");
5869  }
5870  return 0;
5871}
5872
5873static
5874SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5875                               const TargetLowering &TLI,
5876                               const X86Subtarget *Subtarget) {
5877  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5878  EVT VT = Op.getValueType();
5879  DebugLoc dl = Op.getDebugLoc();
5880  SDValue V1 = Op.getOperand(0);
5881  SDValue V2 = Op.getOperand(1);
5882
5883  if (isZeroShuffle(SVOp))
5884    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5885
5886  // Handle splat operations
5887  if (SVOp->isSplat()) {
5888    unsigned NumElem = VT.getVectorNumElements();
5889    // Special case, this is the only place now where it's allowed to return
5890    // a vector_shuffle operation without using a target specific node, because
5891    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
5892    // this be moved to DAGCombine instead?
5893    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5894      return Op;
5895
5896    // Since there's no native support for scalar_to_vector for 256-bit AVX, a
5897    // 128-bit scalar_to_vector + INSERT_SUBVECTOR is generated. Recognize this
5898    // idiom and do the shuffle before the insertion, this yields less
5899    // instructions in the end.
5900    if (VT.is256BitVector() &&
5901        V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
5902        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
5903        V1.getOperand(1).getOpcode() == ISD::SCALAR_TO_VECTOR)
5904      return PromoteVectorToScalarSplat(SVOp, DAG);
5905
5906    // Handle splats by matching through known shuffle masks
5907    if ((VT.is128BitVector() && NumElem <= 4) ||
5908        (VT.is256BitVector() && NumElem <= 8))
5909      return SDValue();
5910
5911    // All i16 and i8 vector types can't be used directly by a generic shuffle
5912    // instruction because the target has no such instruction. Generate shuffles
5913    // which repeat i16 and i8 several times until they fit in i32, and then can
5914    // be manipulated by target suported shuffles. After the insertion of the
5915    // necessary shuffles, the result is bitcasted back to v4f32 or v8f32.
5916    return PromoteSplat(SVOp, DAG);
5917  }
5918
5919  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5920  // do it!
5921  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5922    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5923    if (NewOp.getNode())
5924      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
5925  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5926    // FIXME: Figure out a cleaner way to do this.
5927    // Try to make use of movq to zero out the top part.
5928    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5929      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5930      if (NewOp.getNode()) {
5931        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5932          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5933                              DAG, Subtarget, dl);
5934      }
5935    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5936      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5937      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5938        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5939                            DAG, Subtarget, dl);
5940    }
5941  }
5942  return SDValue();
5943}
5944
5945SDValue
5946X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5947  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5948  SDValue V1 = Op.getOperand(0);
5949  SDValue V2 = Op.getOperand(1);
5950  EVT VT = Op.getValueType();
5951  DebugLoc dl = Op.getDebugLoc();
5952  unsigned NumElems = VT.getVectorNumElements();
5953  bool isMMX = VT.getSizeInBits() == 64;
5954  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5955  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5956  bool V1IsSplat = false;
5957  bool V2IsSplat = false;
5958  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5959  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5960  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5961  MachineFunction &MF = DAG.getMachineFunction();
5962  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5963
5964  // Shuffle operations on MMX not supported.
5965  if (isMMX)
5966    return Op;
5967
5968  // Vector shuffle lowering takes 3 steps:
5969  //
5970  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5971  //    narrowing and commutation of operands should be handled.
5972  // 2) Matching of shuffles with known shuffle masks to x86 target specific
5973  //    shuffle nodes.
5974  // 3) Rewriting of unmatched masks into new generic shuffle operations,
5975  //    so the shuffle can be broken into other shuffles and the legalizer can
5976  //    try the lowering again.
5977  //
5978  // The general ideia is that no vector_shuffle operation should be left to
5979  // be matched during isel, all of them must be converted to a target specific
5980  // node here.
5981
5982  // Normalize the input vectors. Here splats, zeroed vectors, profitable
5983  // narrowing and commutation of operands should be handled. The actual code
5984  // doesn't include all of those, work in progress...
5985  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5986  if (NewOp.getNode())
5987    return NewOp;
5988
5989  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5990  // unpckh_undef). Only use pshufd if speed is more important than size.
5991  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5992    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5993  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5994    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5995
5996  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5997      RelaxedMayFoldVectorLoad(V1))
5998    return getMOVDDup(Op, dl, V1, DAG);
5999
6000  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6001    return getMOVHighToLow(Op, dl, DAG);
6002
6003  // Use to match splats
6004  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
6005      (VT == MVT::v2f64 || VT == MVT::v2i64))
6006    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6007
6008  if (X86::isPSHUFDMask(SVOp)) {
6009    // The actual implementation will match the mask in the if above and then
6010    // during isel it can match several different instructions, not only pshufd
6011    // as its name says, sad but true, emulate the behavior for now...
6012    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6013        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6014
6015    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6016
6017    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6018      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6019
6020    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6021      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
6022                                  TargetMask, DAG);
6023
6024    if (VT == MVT::v4f32)
6025      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
6026                                  TargetMask, DAG);
6027  }
6028
6029  // Check if this can be converted into a logical shift.
6030  bool isLeft = false;
6031  unsigned ShAmt = 0;
6032  SDValue ShVal;
6033  bool isShift = getSubtarget()->hasSSE2() &&
6034    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6035  if (isShift && ShVal.hasOneUse()) {
6036    // If the shifted value has multiple uses, it may be cheaper to use
6037    // v_set0 + movlhps or movhlps, etc.
6038    EVT EltVT = VT.getVectorElementType();
6039    ShAmt *= EltVT.getSizeInBits();
6040    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6041  }
6042
6043  if (X86::isMOVLMask(SVOp)) {
6044    if (V1IsUndef)
6045      return V2;
6046    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6047      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6048    if (!X86::isMOVLPMask(SVOp)) {
6049      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6050        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6051
6052      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6053        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6054    }
6055  }
6056
6057  // FIXME: fold these into legal mask.
6058  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
6059    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6060
6061  if (X86::isMOVHLPSMask(SVOp))
6062    return getMOVHighToLow(Op, dl, DAG);
6063
6064  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6065    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6066
6067  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6068    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6069
6070  if (X86::isMOVLPMask(SVOp))
6071    return getMOVLP(Op, dl, DAG, HasSSE2);
6072
6073  if (ShouldXformToMOVHLPS(SVOp) ||
6074      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6075    return CommuteVectorShuffle(SVOp, DAG);
6076
6077  if (isShift) {
6078    // No better options. Use a vshl / vsrl.
6079    EVT EltVT = VT.getVectorElementType();
6080    ShAmt *= EltVT.getSizeInBits();
6081    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6082  }
6083
6084  bool Commuted = false;
6085  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6086  // 1,1,1,1 -> v8i16 though.
6087  V1IsSplat = isSplatVector(V1.getNode());
6088  V2IsSplat = isSplatVector(V2.getNode());
6089
6090  // Canonicalize the splat or undef, if present, to be on the RHS.
6091  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
6092    Op = CommuteVectorShuffle(SVOp, DAG);
6093    SVOp = cast<ShuffleVectorSDNode>(Op);
6094    V1 = SVOp->getOperand(0);
6095    V2 = SVOp->getOperand(1);
6096    std::swap(V1IsSplat, V2IsSplat);
6097    std::swap(V1IsUndef, V2IsUndef);
6098    Commuted = true;
6099  }
6100
6101  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6102    // Shuffling low element of v1 into undef, just return v1.
6103    if (V2IsUndef)
6104      return V1;
6105    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6106    // the instruction selector will not match, so get a canonical MOVL with
6107    // swapped operands to undo the commute.
6108    return getMOVL(DAG, dl, VT, V2, V1);
6109  }
6110
6111  if (X86::isUNPCKLMask(SVOp))
6112    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
6113
6114  if (X86::isUNPCKHMask(SVOp))
6115    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
6116
6117  if (V2IsSplat) {
6118    // Normalize mask so all entries that point to V2 points to its first
6119    // element then try to match unpck{h|l} again. If match, return a
6120    // new vector_shuffle with the corrected mask.
6121    SDValue NewMask = NormalizeMask(SVOp, DAG);
6122    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6123    if (NSVOp != SVOp) {
6124      if (X86::isUNPCKLMask(NSVOp, true)) {
6125        return NewMask;
6126      } else if (X86::isUNPCKHMask(NSVOp, true)) {
6127        return NewMask;
6128      }
6129    }
6130  }
6131
6132  if (Commuted) {
6133    // Commute is back and try unpck* again.
6134    // FIXME: this seems wrong.
6135    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6136    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6137
6138    if (X86::isUNPCKLMask(NewSVOp))
6139      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
6140
6141    if (X86::isUNPCKHMask(NewSVOp))
6142      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
6143  }
6144
6145  // Normalize the node to match x86 shuffle ops if needed
6146  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
6147    return CommuteVectorShuffle(SVOp, DAG);
6148
6149  // The checks below are all present in isShuffleMaskLegal, but they are
6150  // inlined here right now to enable us to directly emit target specific
6151  // nodes, and remove one by one until they don't return Op anymore.
6152  SmallVector<int, 16> M;
6153  SVOp->getMask(M);
6154
6155  if (isPALIGNRMask(M, VT, HasSSSE3))
6156    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6157                                X86::getShufflePALIGNRImmediate(SVOp),
6158                                DAG);
6159
6160  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6161      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6162    if (VT == MVT::v2f64)
6163      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6164    if (VT == MVT::v2i64)
6165      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6166  }
6167
6168  if (isPSHUFHWMask(M, VT))
6169    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6170                                X86::getShufflePSHUFHWImmediate(SVOp),
6171                                DAG);
6172
6173  if (isPSHUFLWMask(M, VT))
6174    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6175                                X86::getShufflePSHUFLWImmediate(SVOp),
6176                                DAG);
6177
6178  if (isSHUFPMask(M, VT)) {
6179    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6180    if (VT == MVT::v4f32 || VT == MVT::v4i32)
6181      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
6182                                  TargetMask, DAG);
6183    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6184      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
6185                                  TargetMask, DAG);
6186  }
6187
6188  if (X86::isUNPCKL_v_undef_Mask(SVOp))
6189    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6190  if (X86::isUNPCKH_v_undef_Mask(SVOp))
6191    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6192
6193  //===--------------------------------------------------------------------===//
6194  // Generate target specific nodes for 128 or 256-bit shuffles only
6195  // supported in the AVX instruction set.
6196  //
6197
6198  // Handle VPERMILPS* permutations
6199  if (isVPERMILPSMask(M, VT, Subtarget))
6200    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6201                                getShuffleVPERMILPSImmediate(SVOp), DAG);
6202
6203  // Handle VPERMILPD* permutations
6204  if (isVPERMILPDMask(M, VT, Subtarget))
6205    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6206                                getShuffleVPERMILPDImmediate(SVOp), DAG);
6207
6208  //===--------------------------------------------------------------------===//
6209  // Since no target specific shuffle was selected for this generic one,
6210  // lower it into other known shuffles. FIXME: this isn't true yet, but
6211  // this is the plan.
6212  //
6213
6214  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6215  if (VT == MVT::v8i16) {
6216    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6217    if (NewOp.getNode())
6218      return NewOp;
6219  }
6220
6221  if (VT == MVT::v16i8) {
6222    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6223    if (NewOp.getNode())
6224      return NewOp;
6225  }
6226
6227  // Handle all 128-bit wide vectors with 4 elements, and match them with
6228  // several different shuffle types.
6229  if (NumElems == 4 && VT.getSizeInBits() == 128)
6230    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6231
6232  // Handle general 256-bit shuffles
6233  if (VT.is256BitVector())
6234    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6235
6236  return SDValue();
6237}
6238
6239SDValue
6240X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6241                                                SelectionDAG &DAG) const {
6242  EVT VT = Op.getValueType();
6243  DebugLoc dl = Op.getDebugLoc();
6244  if (VT.getSizeInBits() == 8) {
6245    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6246                                    Op.getOperand(0), Op.getOperand(1));
6247    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6248                                    DAG.getValueType(VT));
6249    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6250  } else if (VT.getSizeInBits() == 16) {
6251    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6252    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6253    if (Idx == 0)
6254      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6255                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6256                                     DAG.getNode(ISD::BITCAST, dl,
6257                                                 MVT::v4i32,
6258                                                 Op.getOperand(0)),
6259                                     Op.getOperand(1)));
6260    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6261                                    Op.getOperand(0), Op.getOperand(1));
6262    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6263                                    DAG.getValueType(VT));
6264    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6265  } else if (VT == MVT::f32) {
6266    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6267    // the result back to FR32 register. It's only worth matching if the
6268    // result has a single use which is a store or a bitcast to i32.  And in
6269    // the case of a store, it's not worth it if the index is a constant 0,
6270    // because a MOVSSmr can be used instead, which is smaller and faster.
6271    if (!Op.hasOneUse())
6272      return SDValue();
6273    SDNode *User = *Op.getNode()->use_begin();
6274    if ((User->getOpcode() != ISD::STORE ||
6275         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6276          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6277        (User->getOpcode() != ISD::BITCAST ||
6278         User->getValueType(0) != MVT::i32))
6279      return SDValue();
6280    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6281                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6282                                              Op.getOperand(0)),
6283                                              Op.getOperand(1));
6284    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6285  } else if (VT == MVT::i32) {
6286    // ExtractPS works with constant index.
6287    if (isa<ConstantSDNode>(Op.getOperand(1)))
6288      return Op;
6289  }
6290  return SDValue();
6291}
6292
6293
6294SDValue
6295X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6296                                           SelectionDAG &DAG) const {
6297  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6298    return SDValue();
6299
6300  SDValue Vec = Op.getOperand(0);
6301  EVT VecVT = Vec.getValueType();
6302
6303  // If this is a 256-bit vector result, first extract the 128-bit
6304  // vector and then extract from the 128-bit vector.
6305  if (VecVT.getSizeInBits() > 128) {
6306    DebugLoc dl = Op.getNode()->getDebugLoc();
6307    unsigned NumElems = VecVT.getVectorNumElements();
6308    SDValue Idx = Op.getOperand(1);
6309
6310    if (!isa<ConstantSDNode>(Idx))
6311      return SDValue();
6312
6313    unsigned ExtractNumElems = NumElems / (VecVT.getSizeInBits() / 128);
6314    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6315
6316    // Get the 128-bit vector.
6317    bool Upper = IdxVal >= ExtractNumElems;
6318    Vec = Extract128BitVector(Vec, Idx, DAG, dl);
6319
6320    // Extract from it.
6321    SDValue ScaledIdx = Idx;
6322    if (Upper)
6323      ScaledIdx = DAG.getNode(ISD::SUB, dl, Idx.getValueType(), Idx,
6324                              DAG.getConstant(ExtractNumElems,
6325                                              Idx.getValueType()));
6326    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6327                       ScaledIdx);
6328  }
6329
6330  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6331
6332  if (Subtarget->hasSSE41()) {
6333    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6334    if (Res.getNode())
6335      return Res;
6336  }
6337
6338  EVT VT = Op.getValueType();
6339  DebugLoc dl = Op.getDebugLoc();
6340  // TODO: handle v16i8.
6341  if (VT.getSizeInBits() == 16) {
6342    SDValue Vec = Op.getOperand(0);
6343    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6344    if (Idx == 0)
6345      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6346                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6347                                     DAG.getNode(ISD::BITCAST, dl,
6348                                                 MVT::v4i32, Vec),
6349                                     Op.getOperand(1)));
6350    // Transform it so it match pextrw which produces a 32-bit result.
6351    EVT EltVT = MVT::i32;
6352    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6353                                    Op.getOperand(0), Op.getOperand(1));
6354    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6355                                    DAG.getValueType(VT));
6356    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6357  } else if (VT.getSizeInBits() == 32) {
6358    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6359    if (Idx == 0)
6360      return Op;
6361
6362    // SHUFPS the element to the lowest double word, then movss.
6363    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6364    EVT VVT = Op.getOperand(0).getValueType();
6365    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6366                                       DAG.getUNDEF(VVT), Mask);
6367    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6368                       DAG.getIntPtrConstant(0));
6369  } else if (VT.getSizeInBits() == 64) {
6370    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6371    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6372    //        to match extract_elt for f64.
6373    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6374    if (Idx == 0)
6375      return Op;
6376
6377    // UNPCKHPD the element to the lowest double word, then movsd.
6378    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6379    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6380    int Mask[2] = { 1, -1 };
6381    EVT VVT = Op.getOperand(0).getValueType();
6382    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6383                                       DAG.getUNDEF(VVT), Mask);
6384    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6385                       DAG.getIntPtrConstant(0));
6386  }
6387
6388  return SDValue();
6389}
6390
6391SDValue
6392X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6393                                               SelectionDAG &DAG) const {
6394  EVT VT = Op.getValueType();
6395  EVT EltVT = VT.getVectorElementType();
6396  DebugLoc dl = Op.getDebugLoc();
6397
6398  SDValue N0 = Op.getOperand(0);
6399  SDValue N1 = Op.getOperand(1);
6400  SDValue N2 = Op.getOperand(2);
6401
6402  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6403      isa<ConstantSDNode>(N2)) {
6404    unsigned Opc;
6405    if (VT == MVT::v8i16)
6406      Opc = X86ISD::PINSRW;
6407    else if (VT == MVT::v16i8)
6408      Opc = X86ISD::PINSRB;
6409    else
6410      Opc = X86ISD::PINSRB;
6411
6412    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6413    // argument.
6414    if (N1.getValueType() != MVT::i32)
6415      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6416    if (N2.getValueType() != MVT::i32)
6417      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6418    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6419  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6420    // Bits [7:6] of the constant are the source select.  This will always be
6421    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6422    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6423    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6424    // Bits [5:4] of the constant are the destination select.  This is the
6425    //  value of the incoming immediate.
6426    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6427    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6428    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6429    // Create this as a scalar to vector..
6430    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6431    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6432  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
6433    // PINSR* works with constant index.
6434    return Op;
6435  }
6436  return SDValue();
6437}
6438
6439SDValue
6440X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6441  EVT VT = Op.getValueType();
6442  EVT EltVT = VT.getVectorElementType();
6443
6444  DebugLoc dl = Op.getDebugLoc();
6445  SDValue N0 = Op.getOperand(0);
6446  SDValue N1 = Op.getOperand(1);
6447  SDValue N2 = Op.getOperand(2);
6448
6449  // If this is a 256-bit vector result, first insert into a 128-bit
6450  // vector and then insert into the 256-bit vector.
6451  if (VT.getSizeInBits() > 128) {
6452    if (!isa<ConstantSDNode>(N2))
6453      return SDValue();
6454
6455    // Get the 128-bit vector.
6456    unsigned NumElems = VT.getVectorNumElements();
6457    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6458    bool Upper = IdxVal >= NumElems / 2;
6459
6460    SDValue SubN0 = Extract128BitVector(N0, N2, DAG, dl);
6461
6462    // Insert into it.
6463    SDValue ScaledN2 = N2;
6464    if (Upper)
6465      ScaledN2 = DAG.getNode(ISD::SUB, dl, N2.getValueType(), N2,
6466                             DAG.getConstant(NumElems /
6467                                             (VT.getSizeInBits() / 128),
6468                                             N2.getValueType()));
6469    Op = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubN0.getValueType(), SubN0,
6470                     N1, ScaledN2);
6471
6472    // Insert the 128-bit vector
6473    // FIXME: Why UNDEF?
6474    return Insert128BitVector(N0, Op, N2, DAG, dl);
6475  }
6476
6477  if (Subtarget->hasSSE41())
6478    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6479
6480  if (EltVT == MVT::i8)
6481    return SDValue();
6482
6483  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6484    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6485    // as its second argument.
6486    if (N1.getValueType() != MVT::i32)
6487      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6488    if (N2.getValueType() != MVT::i32)
6489      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6490    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6491  }
6492  return SDValue();
6493}
6494
6495SDValue
6496X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6497  LLVMContext *Context = DAG.getContext();
6498  DebugLoc dl = Op.getDebugLoc();
6499  EVT OpVT = Op.getValueType();
6500
6501  // If this is a 256-bit vector result, first insert into a 128-bit
6502  // vector and then insert into the 256-bit vector.
6503  if (OpVT.getSizeInBits() > 128) {
6504    // Insert into a 128-bit vector.
6505    EVT VT128 = EVT::getVectorVT(*Context,
6506                                 OpVT.getVectorElementType(),
6507                                 OpVT.getVectorNumElements() / 2);
6508
6509    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6510
6511    // Insert the 128-bit vector.
6512    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6513                              DAG.getConstant(0, MVT::i32),
6514                              DAG, dl);
6515  }
6516
6517  if (Op.getValueType() == MVT::v1i64 &&
6518      Op.getOperand(0).getValueType() == MVT::i64)
6519    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6520
6521  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6522  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6523         "Expected an SSE type!");
6524  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6525                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6526}
6527
6528// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6529// a simple subregister reference or explicit instructions to grab
6530// upper bits of a vector.
6531SDValue
6532X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6533  if (Subtarget->hasAVX()) {
6534    DebugLoc dl = Op.getNode()->getDebugLoc();
6535    SDValue Vec = Op.getNode()->getOperand(0);
6536    SDValue Idx = Op.getNode()->getOperand(1);
6537
6538    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6539        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6540        return Extract128BitVector(Vec, Idx, DAG, dl);
6541    }
6542  }
6543  return SDValue();
6544}
6545
6546// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6547// simple superregister reference or explicit instructions to insert
6548// the upper bits of a vector.
6549SDValue
6550X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6551  if (Subtarget->hasAVX()) {
6552    DebugLoc dl = Op.getNode()->getDebugLoc();
6553    SDValue Vec = Op.getNode()->getOperand(0);
6554    SDValue SubVec = Op.getNode()->getOperand(1);
6555    SDValue Idx = Op.getNode()->getOperand(2);
6556
6557    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6558        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6559      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6560    }
6561  }
6562  return SDValue();
6563}
6564
6565// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6566// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6567// one of the above mentioned nodes. It has to be wrapped because otherwise
6568// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6569// be used to form addressing mode. These wrapped nodes will be selected
6570// into MOV32ri.
6571SDValue
6572X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6573  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6574
6575  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6576  // global base reg.
6577  unsigned char OpFlag = 0;
6578  unsigned WrapperKind = X86ISD::Wrapper;
6579  CodeModel::Model M = getTargetMachine().getCodeModel();
6580
6581  if (Subtarget->isPICStyleRIPRel() &&
6582      (M == CodeModel::Small || M == CodeModel::Kernel))
6583    WrapperKind = X86ISD::WrapperRIP;
6584  else if (Subtarget->isPICStyleGOT())
6585    OpFlag = X86II::MO_GOTOFF;
6586  else if (Subtarget->isPICStyleStubPIC())
6587    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6588
6589  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6590                                             CP->getAlignment(),
6591                                             CP->getOffset(), OpFlag);
6592  DebugLoc DL = CP->getDebugLoc();
6593  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6594  // With PIC, the address is actually $g + Offset.
6595  if (OpFlag) {
6596    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6597                         DAG.getNode(X86ISD::GlobalBaseReg,
6598                                     DebugLoc(), getPointerTy()),
6599                         Result);
6600  }
6601
6602  return Result;
6603}
6604
6605SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
6606  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
6607
6608  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6609  // global base reg.
6610  unsigned char OpFlag = 0;
6611  unsigned WrapperKind = X86ISD::Wrapper;
6612  CodeModel::Model M = getTargetMachine().getCodeModel();
6613
6614  if (Subtarget->isPICStyleRIPRel() &&
6615      (M == CodeModel::Small || M == CodeModel::Kernel))
6616    WrapperKind = X86ISD::WrapperRIP;
6617  else if (Subtarget->isPICStyleGOT())
6618    OpFlag = X86II::MO_GOTOFF;
6619  else if (Subtarget->isPICStyleStubPIC())
6620    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6621
6622  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
6623                                          OpFlag);
6624  DebugLoc DL = JT->getDebugLoc();
6625  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6626
6627  // With PIC, the address is actually $g + Offset.
6628  if (OpFlag)
6629    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6630                         DAG.getNode(X86ISD::GlobalBaseReg,
6631                                     DebugLoc(), getPointerTy()),
6632                         Result);
6633
6634  return Result;
6635}
6636
6637SDValue
6638X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
6639  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
6640
6641  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6642  // global base reg.
6643  unsigned char OpFlag = 0;
6644  unsigned WrapperKind = X86ISD::Wrapper;
6645  CodeModel::Model M = getTargetMachine().getCodeModel();
6646
6647  if (Subtarget->isPICStyleRIPRel() &&
6648      (M == CodeModel::Small || M == CodeModel::Kernel))
6649    WrapperKind = X86ISD::WrapperRIP;
6650  else if (Subtarget->isPICStyleGOT())
6651    OpFlag = X86II::MO_GOTOFF;
6652  else if (Subtarget->isPICStyleStubPIC())
6653    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6654
6655  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
6656
6657  DebugLoc DL = Op.getDebugLoc();
6658  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6659
6660
6661  // With PIC, the address is actually $g + Offset.
6662  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
6663      !Subtarget->is64Bit()) {
6664    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6665                         DAG.getNode(X86ISD::GlobalBaseReg,
6666                                     DebugLoc(), getPointerTy()),
6667                         Result);
6668  }
6669
6670  return Result;
6671}
6672
6673SDValue
6674X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
6675  // Create the TargetBlockAddressAddress node.
6676  unsigned char OpFlags =
6677    Subtarget->ClassifyBlockAddressReference();
6678  CodeModel::Model M = getTargetMachine().getCodeModel();
6679  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
6680  DebugLoc dl = Op.getDebugLoc();
6681  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
6682                                       /*isTarget=*/true, OpFlags);
6683
6684  if (Subtarget->isPICStyleRIPRel() &&
6685      (M == CodeModel::Small || M == CodeModel::Kernel))
6686    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6687  else
6688    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6689
6690  // With PIC, the address is actually $g + Offset.
6691  if (isGlobalRelativeToPICBase(OpFlags)) {
6692    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6693                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6694                         Result);
6695  }
6696
6697  return Result;
6698}
6699
6700SDValue
6701X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
6702                                      int64_t Offset,
6703                                      SelectionDAG &DAG) const {
6704  // Create the TargetGlobalAddress node, folding in the constant
6705  // offset if it is legal.
6706  unsigned char OpFlags =
6707    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
6708  CodeModel::Model M = getTargetMachine().getCodeModel();
6709  SDValue Result;
6710  if (OpFlags == X86II::MO_NO_FLAG &&
6711      X86::isOffsetSuitableForCodeModel(Offset, M)) {
6712    // A direct static reference to a global.
6713    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
6714    Offset = 0;
6715  } else {
6716    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
6717  }
6718
6719  if (Subtarget->isPICStyleRIPRel() &&
6720      (M == CodeModel::Small || M == CodeModel::Kernel))
6721    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6722  else
6723    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6724
6725  // With PIC, the address is actually $g + Offset.
6726  if (isGlobalRelativeToPICBase(OpFlags)) {
6727    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6728                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6729                         Result);
6730  }
6731
6732  // For globals that require a load from a stub to get the address, emit the
6733  // load.
6734  if (isGlobalStubReference(OpFlags))
6735    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6736                         MachinePointerInfo::getGOT(), false, false, 0);
6737
6738  // If there was a non-zero offset that we didn't fold, create an explicit
6739  // addition for it.
6740  if (Offset != 0)
6741    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6742                         DAG.getConstant(Offset, getPointerTy()));
6743
6744  return Result;
6745}
6746
6747SDValue
6748X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6749  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6750  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6751  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6752}
6753
6754static SDValue
6755GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6756           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6757           unsigned char OperandFlags) {
6758  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6759  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6760  DebugLoc dl = GA->getDebugLoc();
6761  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6762                                           GA->getValueType(0),
6763                                           GA->getOffset(),
6764                                           OperandFlags);
6765  if (InFlag) {
6766    SDValue Ops[] = { Chain,  TGA, *InFlag };
6767    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6768  } else {
6769    SDValue Ops[]  = { Chain, TGA };
6770    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6771  }
6772
6773  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6774  MFI->setAdjustsStack(true);
6775
6776  SDValue Flag = Chain.getValue(1);
6777  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6778}
6779
6780// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6781static SDValue
6782LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6783                                const EVT PtrVT) {
6784  SDValue InFlag;
6785  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6786  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6787                                     DAG.getNode(X86ISD::GlobalBaseReg,
6788                                                 DebugLoc(), PtrVT), InFlag);
6789  InFlag = Chain.getValue(1);
6790
6791  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6792}
6793
6794// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6795static SDValue
6796LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6797                                const EVT PtrVT) {
6798  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6799                    X86::RAX, X86II::MO_TLSGD);
6800}
6801
6802// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6803// "local exec" model.
6804static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6805                                   const EVT PtrVT, TLSModel::Model model,
6806                                   bool is64Bit) {
6807  DebugLoc dl = GA->getDebugLoc();
6808
6809  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6810  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6811                                                         is64Bit ? 257 : 256));
6812
6813  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6814                                      DAG.getIntPtrConstant(0),
6815                                      MachinePointerInfo(Ptr), false, false, 0);
6816
6817  unsigned char OperandFlags = 0;
6818  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6819  // initialexec.
6820  unsigned WrapperKind = X86ISD::Wrapper;
6821  if (model == TLSModel::LocalExec) {
6822    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6823  } else if (is64Bit) {
6824    assert(model == TLSModel::InitialExec);
6825    OperandFlags = X86II::MO_GOTTPOFF;
6826    WrapperKind = X86ISD::WrapperRIP;
6827  } else {
6828    assert(model == TLSModel::InitialExec);
6829    OperandFlags = X86II::MO_INDNTPOFF;
6830  }
6831
6832  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6833  // exec)
6834  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6835                                           GA->getValueType(0),
6836                                           GA->getOffset(), OperandFlags);
6837  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6838
6839  if (model == TLSModel::InitialExec)
6840    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6841                         MachinePointerInfo::getGOT(), false, false, 0);
6842
6843  // The address of the thread local variable is the add of the thread
6844  // pointer with the offset of the variable.
6845  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6846}
6847
6848SDValue
6849X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6850
6851  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6852  const GlobalValue *GV = GA->getGlobal();
6853
6854  if (Subtarget->isTargetELF()) {
6855    // TODO: implement the "local dynamic" model
6856    // TODO: implement the "initial exec"model for pic executables
6857
6858    // If GV is an alias then use the aliasee for determining
6859    // thread-localness.
6860    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6861      GV = GA->resolveAliasedGlobal(false);
6862
6863    TLSModel::Model model
6864      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6865
6866    switch (model) {
6867      case TLSModel::GeneralDynamic:
6868      case TLSModel::LocalDynamic: // not implemented
6869        if (Subtarget->is64Bit())
6870          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6871        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6872
6873      case TLSModel::InitialExec:
6874      case TLSModel::LocalExec:
6875        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6876                                   Subtarget->is64Bit());
6877    }
6878  } else if (Subtarget->isTargetDarwin()) {
6879    // Darwin only has one model of TLS.  Lower to that.
6880    unsigned char OpFlag = 0;
6881    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6882                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6883
6884    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6885    // global base reg.
6886    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6887                  !Subtarget->is64Bit();
6888    if (PIC32)
6889      OpFlag = X86II::MO_TLVP_PIC_BASE;
6890    else
6891      OpFlag = X86II::MO_TLVP;
6892    DebugLoc DL = Op.getDebugLoc();
6893    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6894                                                GA->getValueType(0),
6895                                                GA->getOffset(), OpFlag);
6896    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6897
6898    // With PIC32, the address is actually $g + Offset.
6899    if (PIC32)
6900      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6901                           DAG.getNode(X86ISD::GlobalBaseReg,
6902                                       DebugLoc(), getPointerTy()),
6903                           Offset);
6904
6905    // Lowering the machine isd will make sure everything is in the right
6906    // location.
6907    SDValue Chain = DAG.getEntryNode();
6908    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6909    SDValue Args[] = { Chain, Offset };
6910    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
6911
6912    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6913    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6914    MFI->setAdjustsStack(true);
6915
6916    // And our return value (tls address) is in the standard call return value
6917    // location.
6918    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6919    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6920  }
6921
6922  assert(false &&
6923         "TLS not implemented for this target.");
6924
6925  llvm_unreachable("Unreachable");
6926  return SDValue();
6927}
6928
6929
6930/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
6931/// take a 2 x i32 value to shift plus a shift amount.
6932SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
6933  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6934  EVT VT = Op.getValueType();
6935  unsigned VTBits = VT.getSizeInBits();
6936  DebugLoc dl = Op.getDebugLoc();
6937  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6938  SDValue ShOpLo = Op.getOperand(0);
6939  SDValue ShOpHi = Op.getOperand(1);
6940  SDValue ShAmt  = Op.getOperand(2);
6941  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6942                                     DAG.getConstant(VTBits - 1, MVT::i8))
6943                       : DAG.getConstant(0, VT);
6944
6945  SDValue Tmp2, Tmp3;
6946  if (Op.getOpcode() == ISD::SHL_PARTS) {
6947    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6948    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6949  } else {
6950    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6951    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6952  }
6953
6954  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6955                                DAG.getConstant(VTBits, MVT::i8));
6956  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6957                             AndNode, DAG.getConstant(0, MVT::i8));
6958
6959  SDValue Hi, Lo;
6960  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6961  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6962  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6963
6964  if (Op.getOpcode() == ISD::SHL_PARTS) {
6965    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6966    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6967  } else {
6968    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6969    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6970  }
6971
6972  SDValue Ops[2] = { Lo, Hi };
6973  return DAG.getMergeValues(Ops, 2, dl);
6974}
6975
6976SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6977                                           SelectionDAG &DAG) const {
6978  EVT SrcVT = Op.getOperand(0).getValueType();
6979
6980  if (SrcVT.isVector())
6981    return SDValue();
6982
6983  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6984         "Unknown SINT_TO_FP to lower!");
6985
6986  // These are really Legal; return the operand so the caller accepts it as
6987  // Legal.
6988  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6989    return Op;
6990  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6991      Subtarget->is64Bit()) {
6992    return Op;
6993  }
6994
6995  DebugLoc dl = Op.getDebugLoc();
6996  unsigned Size = SrcVT.getSizeInBits()/8;
6997  MachineFunction &MF = DAG.getMachineFunction();
6998  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6999  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7000  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7001                               StackSlot,
7002                               MachinePointerInfo::getFixedStack(SSFI),
7003                               false, false, 0);
7004  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7005}
7006
7007SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7008                                     SDValue StackSlot,
7009                                     SelectionDAG &DAG) const {
7010  // Build the FILD
7011  DebugLoc DL = Op.getDebugLoc();
7012  SDVTList Tys;
7013  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7014  if (useSSE)
7015    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7016  else
7017    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7018
7019  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7020
7021  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7022  MachineMemOperand *MMO;
7023  if (FI) {
7024    int SSFI = FI->getIndex();
7025    MMO =
7026      DAG.getMachineFunction()
7027      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7028                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7029  } else {
7030    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7031    StackSlot = StackSlot.getOperand(1);
7032  }
7033  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7034  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7035                                           X86ISD::FILD, DL,
7036                                           Tys, Ops, array_lengthof(Ops),
7037                                           SrcVT, MMO);
7038
7039  if (useSSE) {
7040    Chain = Result.getValue(1);
7041    SDValue InFlag = Result.getValue(2);
7042
7043    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7044    // shouldn't be necessary except that RFP cannot be live across
7045    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7046    MachineFunction &MF = DAG.getMachineFunction();
7047    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7048    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7049    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7050    Tys = DAG.getVTList(MVT::Other);
7051    SDValue Ops[] = {
7052      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7053    };
7054    MachineMemOperand *MMO =
7055      DAG.getMachineFunction()
7056      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7057                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7058
7059    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7060                                    Ops, array_lengthof(Ops),
7061                                    Op.getValueType(), MMO);
7062    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7063                         MachinePointerInfo::getFixedStack(SSFI),
7064                         false, false, 0);
7065  }
7066
7067  return Result;
7068}
7069
7070// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7071SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7072                                               SelectionDAG &DAG) const {
7073  // This algorithm is not obvious. Here it is in C code, more or less:
7074  /*
7075    double uint64_to_double( uint32_t hi, uint32_t lo ) {
7076      static const __m128i exp = { 0x4330000045300000ULL, 0 };
7077      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7078
7079      // Copy ints to xmm registers.
7080      __m128i xh = _mm_cvtsi32_si128( hi );
7081      __m128i xl = _mm_cvtsi32_si128( lo );
7082
7083      // Combine into low half of a single xmm register.
7084      __m128i x = _mm_unpacklo_epi32( xh, xl );
7085      __m128d d;
7086      double sd;
7087
7088      // Merge in appropriate exponents to give the integer bits the right
7089      // magnitude.
7090      x = _mm_unpacklo_epi32( x, exp );
7091
7092      // Subtract away the biases to deal with the IEEE-754 double precision
7093      // implicit 1.
7094      d = _mm_sub_pd( (__m128d) x, bias );
7095
7096      // All conversions up to here are exact. The correctly rounded result is
7097      // calculated using the current rounding mode using the following
7098      // horizontal add.
7099      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7100      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7101                                // store doesn't really need to be here (except
7102                                // maybe to zero the other double)
7103      return sd;
7104    }
7105  */
7106
7107  DebugLoc dl = Op.getDebugLoc();
7108  LLVMContext *Context = DAG.getContext();
7109
7110  // Build some magic constants.
7111  std::vector<Constant*> CV0;
7112  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7113  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7114  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7115  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7116  Constant *C0 = ConstantVector::get(CV0);
7117  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7118
7119  std::vector<Constant*> CV1;
7120  CV1.push_back(
7121    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7122  CV1.push_back(
7123    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7124  Constant *C1 = ConstantVector::get(CV1);
7125  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7126
7127  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7128                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7129                                        Op.getOperand(0),
7130                                        DAG.getIntPtrConstant(1)));
7131  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7132                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7133                                        Op.getOperand(0),
7134                                        DAG.getIntPtrConstant(0)));
7135  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7136  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7137                              MachinePointerInfo::getConstantPool(),
7138                              false, false, 16);
7139  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7140  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7141  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7142                              MachinePointerInfo::getConstantPool(),
7143                              false, false, 16);
7144  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7145
7146  // Add the halves; easiest way is to swap them into another reg first.
7147  int ShufMask[2] = { 1, -1 };
7148  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7149                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7150  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7151  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7152                     DAG.getIntPtrConstant(0));
7153}
7154
7155// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7156SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7157                                               SelectionDAG &DAG) const {
7158  DebugLoc dl = Op.getDebugLoc();
7159  // FP constant to bias correct the final result.
7160  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7161                                   MVT::f64);
7162
7163  // Load the 32-bit value into an XMM register.
7164  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7165                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7166                                         Op.getOperand(0),
7167                                         DAG.getIntPtrConstant(0)));
7168
7169  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7170                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7171                     DAG.getIntPtrConstant(0));
7172
7173  // Or the load with the bias.
7174  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7175                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7176                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7177                                                   MVT::v2f64, Load)),
7178                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7179                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7180                                                   MVT::v2f64, Bias)));
7181  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7182                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7183                   DAG.getIntPtrConstant(0));
7184
7185  // Subtract the bias.
7186  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7187
7188  // Handle final rounding.
7189  EVT DestVT = Op.getValueType();
7190
7191  if (DestVT.bitsLT(MVT::f64)) {
7192    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7193                       DAG.getIntPtrConstant(0));
7194  } else if (DestVT.bitsGT(MVT::f64)) {
7195    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7196  }
7197
7198  // Handle final rounding.
7199  return Sub;
7200}
7201
7202SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7203                                           SelectionDAG &DAG) const {
7204  SDValue N0 = Op.getOperand(0);
7205  DebugLoc dl = Op.getDebugLoc();
7206
7207  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7208  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7209  // the optimization here.
7210  if (DAG.SignBitIsZero(N0))
7211    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7212
7213  EVT SrcVT = N0.getValueType();
7214  EVT DstVT = Op.getValueType();
7215  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7216    return LowerUINT_TO_FP_i64(Op, DAG);
7217  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7218    return LowerUINT_TO_FP_i32(Op, DAG);
7219
7220  // Make a 64-bit buffer, and use it to build an FILD.
7221  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7222  if (SrcVT == MVT::i32) {
7223    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7224    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7225                                     getPointerTy(), StackSlot, WordOff);
7226    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7227                                  StackSlot, MachinePointerInfo(),
7228                                  false, false, 0);
7229    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7230                                  OffsetSlot, MachinePointerInfo(),
7231                                  false, false, 0);
7232    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7233    return Fild;
7234  }
7235
7236  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7237  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7238                                StackSlot, MachinePointerInfo(),
7239                               false, false, 0);
7240  // For i64 source, we need to add the appropriate power of 2 if the input
7241  // was negative.  This is the same as the optimization in
7242  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7243  // we must be careful to do the computation in x87 extended precision, not
7244  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7245  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7246  MachineMemOperand *MMO =
7247    DAG.getMachineFunction()
7248    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7249                          MachineMemOperand::MOLoad, 8, 8);
7250
7251  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7252  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7253  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7254                                         MVT::i64, MMO);
7255
7256  APInt FF(32, 0x5F800000ULL);
7257
7258  // Check whether the sign bit is set.
7259  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7260                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7261                                 ISD::SETLT);
7262
7263  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7264  SDValue FudgePtr = DAG.getConstantPool(
7265                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7266                                         getPointerTy());
7267
7268  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7269  SDValue Zero = DAG.getIntPtrConstant(0);
7270  SDValue Four = DAG.getIntPtrConstant(4);
7271  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7272                               Zero, Four);
7273  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7274
7275  // Load the value out, extending it from f32 to f80.
7276  // FIXME: Avoid the extend by constructing the right constant pool?
7277  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7278                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7279                                 MVT::f32, false, false, 4);
7280  // Extend everything to 80 bits to force it to be done on x87.
7281  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7282  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7283}
7284
7285std::pair<SDValue,SDValue> X86TargetLowering::
7286FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7287  DebugLoc DL = Op.getDebugLoc();
7288
7289  EVT DstTy = Op.getValueType();
7290
7291  if (!IsSigned) {
7292    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7293    DstTy = MVT::i64;
7294  }
7295
7296  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7297         DstTy.getSimpleVT() >= MVT::i16 &&
7298         "Unknown FP_TO_SINT to lower!");
7299
7300  // These are really Legal.
7301  if (DstTy == MVT::i32 &&
7302      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7303    return std::make_pair(SDValue(), SDValue());
7304  if (Subtarget->is64Bit() &&
7305      DstTy == MVT::i64 &&
7306      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7307    return std::make_pair(SDValue(), SDValue());
7308
7309  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7310  // stack slot.
7311  MachineFunction &MF = DAG.getMachineFunction();
7312  unsigned MemSize = DstTy.getSizeInBits()/8;
7313  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7314  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7315
7316
7317
7318  unsigned Opc;
7319  switch (DstTy.getSimpleVT().SimpleTy) {
7320  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7321  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7322  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7323  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7324  }
7325
7326  SDValue Chain = DAG.getEntryNode();
7327  SDValue Value = Op.getOperand(0);
7328  EVT TheVT = Op.getOperand(0).getValueType();
7329  if (isScalarFPTypeInSSEReg(TheVT)) {
7330    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7331    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7332                         MachinePointerInfo::getFixedStack(SSFI),
7333                         false, false, 0);
7334    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7335    SDValue Ops[] = {
7336      Chain, StackSlot, DAG.getValueType(TheVT)
7337    };
7338
7339    MachineMemOperand *MMO =
7340      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7341                              MachineMemOperand::MOLoad, MemSize, MemSize);
7342    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7343                                    DstTy, MMO);
7344    Chain = Value.getValue(1);
7345    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7346    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7347  }
7348
7349  MachineMemOperand *MMO =
7350    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7351                            MachineMemOperand::MOStore, MemSize, MemSize);
7352
7353  // Build the FP_TO_INT*_IN_MEM
7354  SDValue Ops[] = { Chain, Value, StackSlot };
7355  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7356                                         Ops, 3, DstTy, MMO);
7357
7358  return std::make_pair(FIST, StackSlot);
7359}
7360
7361SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7362                                           SelectionDAG &DAG) const {
7363  if (Op.getValueType().isVector())
7364    return SDValue();
7365
7366  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7367  SDValue FIST = Vals.first, StackSlot = Vals.second;
7368  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7369  if (FIST.getNode() == 0) return Op;
7370
7371  // Load the result.
7372  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7373                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7374}
7375
7376SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7377                                           SelectionDAG &DAG) const {
7378  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7379  SDValue FIST = Vals.first, StackSlot = Vals.second;
7380  assert(FIST.getNode() && "Unexpected failure");
7381
7382  // Load the result.
7383  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7384                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7385}
7386
7387SDValue X86TargetLowering::LowerFABS(SDValue Op,
7388                                     SelectionDAG &DAG) const {
7389  LLVMContext *Context = DAG.getContext();
7390  DebugLoc dl = Op.getDebugLoc();
7391  EVT VT = Op.getValueType();
7392  EVT EltVT = VT;
7393  if (VT.isVector())
7394    EltVT = VT.getVectorElementType();
7395  std::vector<Constant*> CV;
7396  if (EltVT == MVT::f64) {
7397    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7398    CV.push_back(C);
7399    CV.push_back(C);
7400  } else {
7401    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7402    CV.push_back(C);
7403    CV.push_back(C);
7404    CV.push_back(C);
7405    CV.push_back(C);
7406  }
7407  Constant *C = ConstantVector::get(CV);
7408  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7409  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7410                             MachinePointerInfo::getConstantPool(),
7411                             false, false, 16);
7412  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7413}
7414
7415SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7416  LLVMContext *Context = DAG.getContext();
7417  DebugLoc dl = Op.getDebugLoc();
7418  EVT VT = Op.getValueType();
7419  EVT EltVT = VT;
7420  if (VT.isVector())
7421    EltVT = VT.getVectorElementType();
7422  std::vector<Constant*> CV;
7423  if (EltVT == MVT::f64) {
7424    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7425    CV.push_back(C);
7426    CV.push_back(C);
7427  } else {
7428    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7429    CV.push_back(C);
7430    CV.push_back(C);
7431    CV.push_back(C);
7432    CV.push_back(C);
7433  }
7434  Constant *C = ConstantVector::get(CV);
7435  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7436  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7437                             MachinePointerInfo::getConstantPool(),
7438                             false, false, 16);
7439  if (VT.isVector()) {
7440    return DAG.getNode(ISD::BITCAST, dl, VT,
7441                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
7442                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7443                                Op.getOperand(0)),
7444                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
7445  } else {
7446    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7447  }
7448}
7449
7450SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7451  LLVMContext *Context = DAG.getContext();
7452  SDValue Op0 = Op.getOperand(0);
7453  SDValue Op1 = Op.getOperand(1);
7454  DebugLoc dl = Op.getDebugLoc();
7455  EVT VT = Op.getValueType();
7456  EVT SrcVT = Op1.getValueType();
7457
7458  // If second operand is smaller, extend it first.
7459  if (SrcVT.bitsLT(VT)) {
7460    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7461    SrcVT = VT;
7462  }
7463  // And if it is bigger, shrink it first.
7464  if (SrcVT.bitsGT(VT)) {
7465    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7466    SrcVT = VT;
7467  }
7468
7469  // At this point the operands and the result should have the same
7470  // type, and that won't be f80 since that is not custom lowered.
7471
7472  // First get the sign bit of second operand.
7473  std::vector<Constant*> CV;
7474  if (SrcVT == MVT::f64) {
7475    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7476    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7477  } else {
7478    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7479    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7480    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7481    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7482  }
7483  Constant *C = ConstantVector::get(CV);
7484  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7485  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7486                              MachinePointerInfo::getConstantPool(),
7487                              false, false, 16);
7488  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7489
7490  // Shift sign bit right or left if the two operands have different types.
7491  if (SrcVT.bitsGT(VT)) {
7492    // Op0 is MVT::f32, Op1 is MVT::f64.
7493    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7494    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7495                          DAG.getConstant(32, MVT::i32));
7496    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7497    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7498                          DAG.getIntPtrConstant(0));
7499  }
7500
7501  // Clear first operand sign bit.
7502  CV.clear();
7503  if (VT == MVT::f64) {
7504    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7505    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7506  } else {
7507    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7508    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7509    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7510    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7511  }
7512  C = ConstantVector::get(CV);
7513  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7514  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7515                              MachinePointerInfo::getConstantPool(),
7516                              false, false, 16);
7517  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7518
7519  // Or the value with the sign bit.
7520  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7521}
7522
7523SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
7524  SDValue N0 = Op.getOperand(0);
7525  DebugLoc dl = Op.getDebugLoc();
7526  EVT VT = Op.getValueType();
7527
7528  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
7529  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
7530                                  DAG.getConstant(1, VT));
7531  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
7532}
7533
7534/// Emit nodes that will be selected as "test Op0,Op0", or something
7535/// equivalent.
7536SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7537                                    SelectionDAG &DAG) const {
7538  DebugLoc dl = Op.getDebugLoc();
7539
7540  // CF and OF aren't always set the way we want. Determine which
7541  // of these we need.
7542  bool NeedCF = false;
7543  bool NeedOF = false;
7544  switch (X86CC) {
7545  default: break;
7546  case X86::COND_A: case X86::COND_AE:
7547  case X86::COND_B: case X86::COND_BE:
7548    NeedCF = true;
7549    break;
7550  case X86::COND_G: case X86::COND_GE:
7551  case X86::COND_L: case X86::COND_LE:
7552  case X86::COND_O: case X86::COND_NO:
7553    NeedOF = true;
7554    break;
7555  }
7556
7557  // See if we can use the EFLAGS value from the operand instead of
7558  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
7559  // we prove that the arithmetic won't overflow, we can't use OF or CF.
7560  if (Op.getResNo() != 0 || NeedOF || NeedCF)
7561    // Emit a CMP with 0, which is the TEST pattern.
7562    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7563                       DAG.getConstant(0, Op.getValueType()));
7564
7565  unsigned Opcode = 0;
7566  unsigned NumOperands = 0;
7567  switch (Op.getNode()->getOpcode()) {
7568  case ISD::ADD:
7569    // Due to an isel shortcoming, be conservative if this add is likely to be
7570    // selected as part of a load-modify-store instruction. When the root node
7571    // in a match is a store, isel doesn't know how to remap non-chain non-flag
7572    // uses of other nodes in the match, such as the ADD in this case. This
7573    // leads to the ADD being left around and reselected, with the result being
7574    // two adds in the output.  Alas, even if none our users are stores, that
7575    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
7576    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
7577    // climbing the DAG back to the root, and it doesn't seem to be worth the
7578    // effort.
7579    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7580           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7581      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
7582        goto default_case;
7583
7584    if (ConstantSDNode *C =
7585        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
7586      // An add of one will be selected as an INC.
7587      if (C->getAPIntValue() == 1) {
7588        Opcode = X86ISD::INC;
7589        NumOperands = 1;
7590        break;
7591      }
7592
7593      // An add of negative one (subtract of one) will be selected as a DEC.
7594      if (C->getAPIntValue().isAllOnesValue()) {
7595        Opcode = X86ISD::DEC;
7596        NumOperands = 1;
7597        break;
7598      }
7599    }
7600
7601    // Otherwise use a regular EFLAGS-setting add.
7602    Opcode = X86ISD::ADD;
7603    NumOperands = 2;
7604    break;
7605  case ISD::AND: {
7606    // If the primary and result isn't used, don't bother using X86ISD::AND,
7607    // because a TEST instruction will be better.
7608    bool NonFlagUse = false;
7609    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7610           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
7611      SDNode *User = *UI;
7612      unsigned UOpNo = UI.getOperandNo();
7613      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
7614        // Look pass truncate.
7615        UOpNo = User->use_begin().getOperandNo();
7616        User = *User->use_begin();
7617      }
7618
7619      if (User->getOpcode() != ISD::BRCOND &&
7620          User->getOpcode() != ISD::SETCC &&
7621          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
7622        NonFlagUse = true;
7623        break;
7624      }
7625    }
7626
7627    if (!NonFlagUse)
7628      break;
7629  }
7630    // FALL THROUGH
7631  case ISD::SUB:
7632  case ISD::OR:
7633  case ISD::XOR:
7634    // Due to the ISEL shortcoming noted above, be conservative if this op is
7635    // likely to be selected as part of a load-modify-store instruction.
7636    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7637           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7638      if (UI->getOpcode() == ISD::STORE)
7639        goto default_case;
7640
7641    // Otherwise use a regular EFLAGS-setting instruction.
7642    switch (Op.getNode()->getOpcode()) {
7643    default: llvm_unreachable("unexpected operator!");
7644    case ISD::SUB: Opcode = X86ISD::SUB; break;
7645    case ISD::OR:  Opcode = X86ISD::OR;  break;
7646    case ISD::XOR: Opcode = X86ISD::XOR; break;
7647    case ISD::AND: Opcode = X86ISD::AND; break;
7648    }
7649
7650    NumOperands = 2;
7651    break;
7652  case X86ISD::ADD:
7653  case X86ISD::SUB:
7654  case X86ISD::INC:
7655  case X86ISD::DEC:
7656  case X86ISD::OR:
7657  case X86ISD::XOR:
7658  case X86ISD::AND:
7659    return SDValue(Op.getNode(), 1);
7660  default:
7661  default_case:
7662    break;
7663  }
7664
7665  if (Opcode == 0)
7666    // Emit a CMP with 0, which is the TEST pattern.
7667    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7668                       DAG.getConstant(0, Op.getValueType()));
7669
7670  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
7671  SmallVector<SDValue, 4> Ops;
7672  for (unsigned i = 0; i != NumOperands; ++i)
7673    Ops.push_back(Op.getOperand(i));
7674
7675  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
7676  DAG.ReplaceAllUsesWith(Op, New);
7677  return SDValue(New.getNode(), 1);
7678}
7679
7680/// Emit nodes that will be selected as "cmp Op0,Op1", or something
7681/// equivalent.
7682SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
7683                                   SelectionDAG &DAG) const {
7684  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
7685    if (C->getAPIntValue() == 0)
7686      return EmitTest(Op0, X86CC, DAG);
7687
7688  DebugLoc dl = Op0.getDebugLoc();
7689  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
7690}
7691
7692/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
7693/// if it's possible.
7694SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
7695                                     DebugLoc dl, SelectionDAG &DAG) const {
7696  SDValue Op0 = And.getOperand(0);
7697  SDValue Op1 = And.getOperand(1);
7698  if (Op0.getOpcode() == ISD::TRUNCATE)
7699    Op0 = Op0.getOperand(0);
7700  if (Op1.getOpcode() == ISD::TRUNCATE)
7701    Op1 = Op1.getOperand(0);
7702
7703  SDValue LHS, RHS;
7704  if (Op1.getOpcode() == ISD::SHL)
7705    std::swap(Op0, Op1);
7706  if (Op0.getOpcode() == ISD::SHL) {
7707    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
7708      if (And00C->getZExtValue() == 1) {
7709        // If we looked past a truncate, check that it's only truncating away
7710        // known zeros.
7711        unsigned BitWidth = Op0.getValueSizeInBits();
7712        unsigned AndBitWidth = And.getValueSizeInBits();
7713        if (BitWidth > AndBitWidth) {
7714          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
7715          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
7716          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
7717            return SDValue();
7718        }
7719        LHS = Op1;
7720        RHS = Op0.getOperand(1);
7721      }
7722  } else if (Op1.getOpcode() == ISD::Constant) {
7723    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
7724    SDValue AndLHS = Op0;
7725    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
7726      LHS = AndLHS.getOperand(0);
7727      RHS = AndLHS.getOperand(1);
7728    }
7729  }
7730
7731  if (LHS.getNode()) {
7732    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
7733    // instruction.  Since the shift amount is in-range-or-undefined, we know
7734    // that doing a bittest on the i32 value is ok.  We extend to i32 because
7735    // the encoding for the i16 version is larger than the i32 version.
7736    // Also promote i16 to i32 for performance / code size reason.
7737    if (LHS.getValueType() == MVT::i8 ||
7738        LHS.getValueType() == MVT::i16)
7739      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
7740
7741    // If the operand types disagree, extend the shift amount to match.  Since
7742    // BT ignores high bits (like shifts) we can use anyextend.
7743    if (LHS.getValueType() != RHS.getValueType())
7744      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
7745
7746    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
7747    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
7748    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7749                       DAG.getConstant(Cond, MVT::i8), BT);
7750  }
7751
7752  return SDValue();
7753}
7754
7755SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7756  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7757  SDValue Op0 = Op.getOperand(0);
7758  SDValue Op1 = Op.getOperand(1);
7759  DebugLoc dl = Op.getDebugLoc();
7760  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7761
7762  // Optimize to BT if possible.
7763  // Lower (X & (1 << N)) == 0 to BT(X, N).
7764  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7765  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7766  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
7767      Op1.getOpcode() == ISD::Constant &&
7768      cast<ConstantSDNode>(Op1)->isNullValue() &&
7769      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7770    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7771    if (NewSetCC.getNode())
7772      return NewSetCC;
7773  }
7774
7775  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
7776  // these.
7777  if (Op1.getOpcode() == ISD::Constant &&
7778      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7779       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7780      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7781
7782    // If the input is a setcc, then reuse the input setcc or use a new one with
7783    // the inverted condition.
7784    if (Op0.getOpcode() == X86ISD::SETCC) {
7785      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7786      bool Invert = (CC == ISD::SETNE) ^
7787        cast<ConstantSDNode>(Op1)->isNullValue();
7788      if (!Invert) return Op0;
7789
7790      CCode = X86::GetOppositeBranchCondition(CCode);
7791      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7792                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7793    }
7794  }
7795
7796  bool isFP = Op1.getValueType().isFloatingPoint();
7797  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7798  if (X86CC == X86::COND_INVALID)
7799    return SDValue();
7800
7801  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
7802  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7803                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
7804}
7805
7806SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7807  SDValue Cond;
7808  SDValue Op0 = Op.getOperand(0);
7809  SDValue Op1 = Op.getOperand(1);
7810  SDValue CC = Op.getOperand(2);
7811  EVT VT = Op.getValueType();
7812  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7813  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7814  DebugLoc dl = Op.getDebugLoc();
7815
7816  if (isFP) {
7817    unsigned SSECC = 8;
7818    EVT VT0 = Op0.getValueType();
7819    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7820    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7821    bool Swap = false;
7822
7823    switch (SetCCOpcode) {
7824    default: break;
7825    case ISD::SETOEQ:
7826    case ISD::SETEQ:  SSECC = 0; break;
7827    case ISD::SETOGT:
7828    case ISD::SETGT: Swap = true; // Fallthrough
7829    case ISD::SETLT:
7830    case ISD::SETOLT: SSECC = 1; break;
7831    case ISD::SETOGE:
7832    case ISD::SETGE: Swap = true; // Fallthrough
7833    case ISD::SETLE:
7834    case ISD::SETOLE: SSECC = 2; break;
7835    case ISD::SETUO:  SSECC = 3; break;
7836    case ISD::SETUNE:
7837    case ISD::SETNE:  SSECC = 4; break;
7838    case ISD::SETULE: Swap = true;
7839    case ISD::SETUGE: SSECC = 5; break;
7840    case ISD::SETULT: Swap = true;
7841    case ISD::SETUGT: SSECC = 6; break;
7842    case ISD::SETO:   SSECC = 7; break;
7843    }
7844    if (Swap)
7845      std::swap(Op0, Op1);
7846
7847    // In the two special cases we can't handle, emit two comparisons.
7848    if (SSECC == 8) {
7849      if (SetCCOpcode == ISD::SETUEQ) {
7850        SDValue UNORD, EQ;
7851        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7852        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7853        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7854      }
7855      else if (SetCCOpcode == ISD::SETONE) {
7856        SDValue ORD, NEQ;
7857        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7858        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7859        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7860      }
7861      llvm_unreachable("Illegal FP comparison");
7862    }
7863    // Handle all other FP comparisons here.
7864    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7865  }
7866
7867  // We are handling one of the integer comparisons here.  Since SSE only has
7868  // GT and EQ comparisons for integer, swapping operands and multiple
7869  // operations may be required for some comparisons.
7870  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7871  bool Swap = false, Invert = false, FlipSigns = false;
7872
7873  switch (VT.getSimpleVT().SimpleTy) {
7874  default: break;
7875  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7876  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7877  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7878  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7879  }
7880
7881  switch (SetCCOpcode) {
7882  default: break;
7883  case ISD::SETNE:  Invert = true;
7884  case ISD::SETEQ:  Opc = EQOpc; break;
7885  case ISD::SETLT:  Swap = true;
7886  case ISD::SETGT:  Opc = GTOpc; break;
7887  case ISD::SETGE:  Swap = true;
7888  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
7889  case ISD::SETULT: Swap = true;
7890  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7891  case ISD::SETUGE: Swap = true;
7892  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7893  }
7894  if (Swap)
7895    std::swap(Op0, Op1);
7896
7897  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
7898  // bits of the inputs before performing those operations.
7899  if (FlipSigns) {
7900    EVT EltVT = VT.getVectorElementType();
7901    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7902                                      EltVT);
7903    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7904    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7905                                    SignBits.size());
7906    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7907    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7908  }
7909
7910  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7911
7912  // If the logical-not of the result is required, perform that now.
7913  if (Invert)
7914    Result = DAG.getNOT(dl, Result, VT);
7915
7916  return Result;
7917}
7918
7919// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7920static bool isX86LogicalCmp(SDValue Op) {
7921  unsigned Opc = Op.getNode()->getOpcode();
7922  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7923    return true;
7924  if (Op.getResNo() == 1 &&
7925      (Opc == X86ISD::ADD ||
7926       Opc == X86ISD::SUB ||
7927       Opc == X86ISD::ADC ||
7928       Opc == X86ISD::SBB ||
7929       Opc == X86ISD::SMUL ||
7930       Opc == X86ISD::UMUL ||
7931       Opc == X86ISD::INC ||
7932       Opc == X86ISD::DEC ||
7933       Opc == X86ISD::OR ||
7934       Opc == X86ISD::XOR ||
7935       Opc == X86ISD::AND))
7936    return true;
7937
7938  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
7939    return true;
7940
7941  return false;
7942}
7943
7944static bool isZero(SDValue V) {
7945  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7946  return C && C->isNullValue();
7947}
7948
7949static bool isAllOnes(SDValue V) {
7950  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7951  return C && C->isAllOnesValue();
7952}
7953
7954SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7955  bool addTest = true;
7956  SDValue Cond  = Op.getOperand(0);
7957  SDValue Op1 = Op.getOperand(1);
7958  SDValue Op2 = Op.getOperand(2);
7959  DebugLoc DL = Op.getDebugLoc();
7960  SDValue CC;
7961
7962  if (Cond.getOpcode() == ISD::SETCC) {
7963    SDValue NewCond = LowerSETCC(Cond, DAG);
7964    if (NewCond.getNode())
7965      Cond = NewCond;
7966  }
7967
7968  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
7969  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
7970  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
7971  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
7972  if (Cond.getOpcode() == X86ISD::SETCC &&
7973      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
7974      isZero(Cond.getOperand(1).getOperand(1))) {
7975    SDValue Cmp = Cond.getOperand(1);
7976
7977    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
7978
7979    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
7980        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
7981      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
7982
7983      SDValue CmpOp0 = Cmp.getOperand(0);
7984      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
7985                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7986
7987      SDValue Res =   // Res = 0 or -1.
7988        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7989                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7990
7991      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
7992        Res = DAG.getNOT(DL, Res, Res.getValueType());
7993
7994      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7995      if (N2C == 0 || !N2C->isNullValue())
7996        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
7997      return Res;
7998    }
7999  }
8000
8001  // Look past (and (setcc_carry (cmp ...)), 1).
8002  if (Cond.getOpcode() == ISD::AND &&
8003      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8004    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8005    if (C && C->getAPIntValue() == 1)
8006      Cond = Cond.getOperand(0);
8007  }
8008
8009  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8010  // setting operand in place of the X86ISD::SETCC.
8011  if (Cond.getOpcode() == X86ISD::SETCC ||
8012      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8013    CC = Cond.getOperand(0);
8014
8015    SDValue Cmp = Cond.getOperand(1);
8016    unsigned Opc = Cmp.getOpcode();
8017    EVT VT = Op.getValueType();
8018
8019    bool IllegalFPCMov = false;
8020    if (VT.isFloatingPoint() && !VT.isVector() &&
8021        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8022      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8023
8024    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8025        Opc == X86ISD::BT) { // FIXME
8026      Cond = Cmp;
8027      addTest = false;
8028    }
8029  }
8030
8031  if (addTest) {
8032    // Look pass the truncate.
8033    if (Cond.getOpcode() == ISD::TRUNCATE)
8034      Cond = Cond.getOperand(0);
8035
8036    // We know the result of AND is compared against zero. Try to match
8037    // it to BT.
8038    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8039      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8040      if (NewSetCC.getNode()) {
8041        CC = NewSetCC.getOperand(0);
8042        Cond = NewSetCC.getOperand(1);
8043        addTest = false;
8044      }
8045    }
8046  }
8047
8048  if (addTest) {
8049    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8050    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8051  }
8052
8053  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8054  // a <  b ?  0 : -1 -> RES = setcc_carry
8055  // a >= b ? -1 :  0 -> RES = setcc_carry
8056  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8057  if (Cond.getOpcode() == X86ISD::CMP) {
8058    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8059
8060    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8061        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8062      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8063                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8064      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8065        return DAG.getNOT(DL, Res, Res.getValueType());
8066      return Res;
8067    }
8068  }
8069
8070  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8071  // condition is true.
8072  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8073  SDValue Ops[] = { Op2, Op1, CC, Cond };
8074  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8075}
8076
8077// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8078// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8079// from the AND / OR.
8080static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8081  Opc = Op.getOpcode();
8082  if (Opc != ISD::OR && Opc != ISD::AND)
8083    return false;
8084  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8085          Op.getOperand(0).hasOneUse() &&
8086          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8087          Op.getOperand(1).hasOneUse());
8088}
8089
8090// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8091// 1 and that the SETCC node has a single use.
8092static bool isXor1OfSetCC(SDValue Op) {
8093  if (Op.getOpcode() != ISD::XOR)
8094    return false;
8095  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8096  if (N1C && N1C->getAPIntValue() == 1) {
8097    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8098      Op.getOperand(0).hasOneUse();
8099  }
8100  return false;
8101}
8102
8103SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8104  bool addTest = true;
8105  SDValue Chain = Op.getOperand(0);
8106  SDValue Cond  = Op.getOperand(1);
8107  SDValue Dest  = Op.getOperand(2);
8108  DebugLoc dl = Op.getDebugLoc();
8109  SDValue CC;
8110
8111  if (Cond.getOpcode() == ISD::SETCC) {
8112    SDValue NewCond = LowerSETCC(Cond, DAG);
8113    if (NewCond.getNode())
8114      Cond = NewCond;
8115  }
8116#if 0
8117  // FIXME: LowerXALUO doesn't handle these!!
8118  else if (Cond.getOpcode() == X86ISD::ADD  ||
8119           Cond.getOpcode() == X86ISD::SUB  ||
8120           Cond.getOpcode() == X86ISD::SMUL ||
8121           Cond.getOpcode() == X86ISD::UMUL)
8122    Cond = LowerXALUO(Cond, DAG);
8123#endif
8124
8125  // Look pass (and (setcc_carry (cmp ...)), 1).
8126  if (Cond.getOpcode() == ISD::AND &&
8127      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8128    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8129    if (C && C->getAPIntValue() == 1)
8130      Cond = Cond.getOperand(0);
8131  }
8132
8133  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8134  // setting operand in place of the X86ISD::SETCC.
8135  if (Cond.getOpcode() == X86ISD::SETCC ||
8136      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8137    CC = Cond.getOperand(0);
8138
8139    SDValue Cmp = Cond.getOperand(1);
8140    unsigned Opc = Cmp.getOpcode();
8141    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8142    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8143      Cond = Cmp;
8144      addTest = false;
8145    } else {
8146      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8147      default: break;
8148      case X86::COND_O:
8149      case X86::COND_B:
8150        // These can only come from an arithmetic instruction with overflow,
8151        // e.g. SADDO, UADDO.
8152        Cond = Cond.getNode()->getOperand(1);
8153        addTest = false;
8154        break;
8155      }
8156    }
8157  } else {
8158    unsigned CondOpc;
8159    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8160      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8161      if (CondOpc == ISD::OR) {
8162        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8163        // two branches instead of an explicit OR instruction with a
8164        // separate test.
8165        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8166            isX86LogicalCmp(Cmp)) {
8167          CC = Cond.getOperand(0).getOperand(0);
8168          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8169                              Chain, Dest, CC, Cmp);
8170          CC = Cond.getOperand(1).getOperand(0);
8171          Cond = Cmp;
8172          addTest = false;
8173        }
8174      } else { // ISD::AND
8175        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8176        // two branches instead of an explicit AND instruction with a
8177        // separate test. However, we only do this if this block doesn't
8178        // have a fall-through edge, because this requires an explicit
8179        // jmp when the condition is false.
8180        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8181            isX86LogicalCmp(Cmp) &&
8182            Op.getNode()->hasOneUse()) {
8183          X86::CondCode CCode =
8184            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8185          CCode = X86::GetOppositeBranchCondition(CCode);
8186          CC = DAG.getConstant(CCode, MVT::i8);
8187          SDNode *User = *Op.getNode()->use_begin();
8188          // Look for an unconditional branch following this conditional branch.
8189          // We need this because we need to reverse the successors in order
8190          // to implement FCMP_OEQ.
8191          if (User->getOpcode() == ISD::BR) {
8192            SDValue FalseBB = User->getOperand(1);
8193            SDNode *NewBR =
8194              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8195            assert(NewBR == User);
8196            (void)NewBR;
8197            Dest = FalseBB;
8198
8199            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8200                                Chain, Dest, CC, Cmp);
8201            X86::CondCode CCode =
8202              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8203            CCode = X86::GetOppositeBranchCondition(CCode);
8204            CC = DAG.getConstant(CCode, MVT::i8);
8205            Cond = Cmp;
8206            addTest = false;
8207          }
8208        }
8209      }
8210    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8211      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8212      // It should be transformed during dag combiner except when the condition
8213      // is set by a arithmetics with overflow node.
8214      X86::CondCode CCode =
8215        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8216      CCode = X86::GetOppositeBranchCondition(CCode);
8217      CC = DAG.getConstant(CCode, MVT::i8);
8218      Cond = Cond.getOperand(0).getOperand(1);
8219      addTest = false;
8220    }
8221  }
8222
8223  if (addTest) {
8224    // Look pass the truncate.
8225    if (Cond.getOpcode() == ISD::TRUNCATE)
8226      Cond = Cond.getOperand(0);
8227
8228    // We know the result of AND is compared against zero. Try to match
8229    // it to BT.
8230    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8231      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8232      if (NewSetCC.getNode()) {
8233        CC = NewSetCC.getOperand(0);
8234        Cond = NewSetCC.getOperand(1);
8235        addTest = false;
8236      }
8237    }
8238  }
8239
8240  if (addTest) {
8241    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8242    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8243  }
8244  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8245                     Chain, Dest, CC, Cond);
8246}
8247
8248
8249// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8250// Calls to _alloca is needed to probe the stack when allocating more than 4k
8251// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8252// that the guard pages used by the OS virtual memory manager are allocated in
8253// correct sequence.
8254SDValue
8255X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8256                                           SelectionDAG &DAG) const {
8257  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
8258         "This should be used only on Windows targets");
8259  assert(!Subtarget->isTargetEnvMacho());
8260  DebugLoc dl = Op.getDebugLoc();
8261
8262  // Get the inputs.
8263  SDValue Chain = Op.getOperand(0);
8264  SDValue Size  = Op.getOperand(1);
8265  // FIXME: Ensure alignment here
8266
8267  SDValue Flag;
8268
8269  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
8270  unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8271
8272  Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8273  Flag = Chain.getValue(1);
8274
8275  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8276
8277  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8278  Flag = Chain.getValue(1);
8279
8280  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8281
8282  SDValue Ops1[2] = { Chain.getValue(0), Chain };
8283  return DAG.getMergeValues(Ops1, 2, dl);
8284}
8285
8286SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8287  MachineFunction &MF = DAG.getMachineFunction();
8288  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8289
8290  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8291  DebugLoc DL = Op.getDebugLoc();
8292
8293  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8294    // vastart just stores the address of the VarArgsFrameIndex slot into the
8295    // memory location argument.
8296    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8297                                   getPointerTy());
8298    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8299                        MachinePointerInfo(SV), false, false, 0);
8300  }
8301
8302  // __va_list_tag:
8303  //   gp_offset         (0 - 6 * 8)
8304  //   fp_offset         (48 - 48 + 8 * 16)
8305  //   overflow_arg_area (point to parameters coming in memory).
8306  //   reg_save_area
8307  SmallVector<SDValue, 8> MemOps;
8308  SDValue FIN = Op.getOperand(1);
8309  // Store gp_offset
8310  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
8311                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
8312                                               MVT::i32),
8313                               FIN, MachinePointerInfo(SV), false, false, 0);
8314  MemOps.push_back(Store);
8315
8316  // Store fp_offset
8317  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8318                    FIN, DAG.getIntPtrConstant(4));
8319  Store = DAG.getStore(Op.getOperand(0), DL,
8320                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
8321                                       MVT::i32),
8322                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
8323  MemOps.push_back(Store);
8324
8325  // Store ptr to overflow_arg_area
8326  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8327                    FIN, DAG.getIntPtrConstant(4));
8328  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8329                                    getPointerTy());
8330  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
8331                       MachinePointerInfo(SV, 8),
8332                       false, false, 0);
8333  MemOps.push_back(Store);
8334
8335  // Store ptr to reg_save_area.
8336  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8337                    FIN, DAG.getIntPtrConstant(8));
8338  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
8339                                    getPointerTy());
8340  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
8341                       MachinePointerInfo(SV, 16), false, false, 0);
8342  MemOps.push_back(Store);
8343  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
8344                     &MemOps[0], MemOps.size());
8345}
8346
8347SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
8348  assert(Subtarget->is64Bit() &&
8349         "LowerVAARG only handles 64-bit va_arg!");
8350  assert((Subtarget->isTargetLinux() ||
8351          Subtarget->isTargetDarwin()) &&
8352          "Unhandled target in LowerVAARG");
8353  assert(Op.getNode()->getNumOperands() == 4);
8354  SDValue Chain = Op.getOperand(0);
8355  SDValue SrcPtr = Op.getOperand(1);
8356  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8357  unsigned Align = Op.getConstantOperandVal(3);
8358  DebugLoc dl = Op.getDebugLoc();
8359
8360  EVT ArgVT = Op.getNode()->getValueType(0);
8361  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8362  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
8363  uint8_t ArgMode;
8364
8365  // Decide which area this value should be read from.
8366  // TODO: Implement the AMD64 ABI in its entirety. This simple
8367  // selection mechanism works only for the basic types.
8368  if (ArgVT == MVT::f80) {
8369    llvm_unreachable("va_arg for f80 not yet implemented");
8370  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
8371    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
8372  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
8373    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
8374  } else {
8375    llvm_unreachable("Unhandled argument type in LowerVAARG");
8376  }
8377
8378  if (ArgMode == 2) {
8379    // Sanity Check: Make sure using fp_offset makes sense.
8380    assert(!UseSoftFloat &&
8381           !(DAG.getMachineFunction()
8382                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
8383           Subtarget->hasXMM());
8384  }
8385
8386  // Insert VAARG_64 node into the DAG
8387  // VAARG_64 returns two values: Variable Argument Address, Chain
8388  SmallVector<SDValue, 11> InstOps;
8389  InstOps.push_back(Chain);
8390  InstOps.push_back(SrcPtr);
8391  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
8392  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
8393  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
8394  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
8395  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
8396                                          VTs, &InstOps[0], InstOps.size(),
8397                                          MVT::i64,
8398                                          MachinePointerInfo(SV),
8399                                          /*Align=*/0,
8400                                          /*Volatile=*/false,
8401                                          /*ReadMem=*/true,
8402                                          /*WriteMem=*/true);
8403  Chain = VAARG.getValue(1);
8404
8405  // Load the next argument and return it
8406  return DAG.getLoad(ArgVT, dl,
8407                     Chain,
8408                     VAARG,
8409                     MachinePointerInfo(),
8410                     false, false, 0);
8411}
8412
8413SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
8414  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
8415  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
8416  SDValue Chain = Op.getOperand(0);
8417  SDValue DstPtr = Op.getOperand(1);
8418  SDValue SrcPtr = Op.getOperand(2);
8419  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
8420  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8421  DebugLoc DL = Op.getDebugLoc();
8422
8423  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
8424                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
8425                       false,
8426                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
8427}
8428
8429SDValue
8430X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
8431  DebugLoc dl = Op.getDebugLoc();
8432  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8433  switch (IntNo) {
8434  default: return SDValue();    // Don't custom lower most intrinsics.
8435  // Comparison intrinsics.
8436  case Intrinsic::x86_sse_comieq_ss:
8437  case Intrinsic::x86_sse_comilt_ss:
8438  case Intrinsic::x86_sse_comile_ss:
8439  case Intrinsic::x86_sse_comigt_ss:
8440  case Intrinsic::x86_sse_comige_ss:
8441  case Intrinsic::x86_sse_comineq_ss:
8442  case Intrinsic::x86_sse_ucomieq_ss:
8443  case Intrinsic::x86_sse_ucomilt_ss:
8444  case Intrinsic::x86_sse_ucomile_ss:
8445  case Intrinsic::x86_sse_ucomigt_ss:
8446  case Intrinsic::x86_sse_ucomige_ss:
8447  case Intrinsic::x86_sse_ucomineq_ss:
8448  case Intrinsic::x86_sse2_comieq_sd:
8449  case Intrinsic::x86_sse2_comilt_sd:
8450  case Intrinsic::x86_sse2_comile_sd:
8451  case Intrinsic::x86_sse2_comigt_sd:
8452  case Intrinsic::x86_sse2_comige_sd:
8453  case Intrinsic::x86_sse2_comineq_sd:
8454  case Intrinsic::x86_sse2_ucomieq_sd:
8455  case Intrinsic::x86_sse2_ucomilt_sd:
8456  case Intrinsic::x86_sse2_ucomile_sd:
8457  case Intrinsic::x86_sse2_ucomigt_sd:
8458  case Intrinsic::x86_sse2_ucomige_sd:
8459  case Intrinsic::x86_sse2_ucomineq_sd: {
8460    unsigned Opc = 0;
8461    ISD::CondCode CC = ISD::SETCC_INVALID;
8462    switch (IntNo) {
8463    default: break;
8464    case Intrinsic::x86_sse_comieq_ss:
8465    case Intrinsic::x86_sse2_comieq_sd:
8466      Opc = X86ISD::COMI;
8467      CC = ISD::SETEQ;
8468      break;
8469    case Intrinsic::x86_sse_comilt_ss:
8470    case Intrinsic::x86_sse2_comilt_sd:
8471      Opc = X86ISD::COMI;
8472      CC = ISD::SETLT;
8473      break;
8474    case Intrinsic::x86_sse_comile_ss:
8475    case Intrinsic::x86_sse2_comile_sd:
8476      Opc = X86ISD::COMI;
8477      CC = ISD::SETLE;
8478      break;
8479    case Intrinsic::x86_sse_comigt_ss:
8480    case Intrinsic::x86_sse2_comigt_sd:
8481      Opc = X86ISD::COMI;
8482      CC = ISD::SETGT;
8483      break;
8484    case Intrinsic::x86_sse_comige_ss:
8485    case Intrinsic::x86_sse2_comige_sd:
8486      Opc = X86ISD::COMI;
8487      CC = ISD::SETGE;
8488      break;
8489    case Intrinsic::x86_sse_comineq_ss:
8490    case Intrinsic::x86_sse2_comineq_sd:
8491      Opc = X86ISD::COMI;
8492      CC = ISD::SETNE;
8493      break;
8494    case Intrinsic::x86_sse_ucomieq_ss:
8495    case Intrinsic::x86_sse2_ucomieq_sd:
8496      Opc = X86ISD::UCOMI;
8497      CC = ISD::SETEQ;
8498      break;
8499    case Intrinsic::x86_sse_ucomilt_ss:
8500    case Intrinsic::x86_sse2_ucomilt_sd:
8501      Opc = X86ISD::UCOMI;
8502      CC = ISD::SETLT;
8503      break;
8504    case Intrinsic::x86_sse_ucomile_ss:
8505    case Intrinsic::x86_sse2_ucomile_sd:
8506      Opc = X86ISD::UCOMI;
8507      CC = ISD::SETLE;
8508      break;
8509    case Intrinsic::x86_sse_ucomigt_ss:
8510    case Intrinsic::x86_sse2_ucomigt_sd:
8511      Opc = X86ISD::UCOMI;
8512      CC = ISD::SETGT;
8513      break;
8514    case Intrinsic::x86_sse_ucomige_ss:
8515    case Intrinsic::x86_sse2_ucomige_sd:
8516      Opc = X86ISD::UCOMI;
8517      CC = ISD::SETGE;
8518      break;
8519    case Intrinsic::x86_sse_ucomineq_ss:
8520    case Intrinsic::x86_sse2_ucomineq_sd:
8521      Opc = X86ISD::UCOMI;
8522      CC = ISD::SETNE;
8523      break;
8524    }
8525
8526    SDValue LHS = Op.getOperand(1);
8527    SDValue RHS = Op.getOperand(2);
8528    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
8529    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
8530    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
8531    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8532                                DAG.getConstant(X86CC, MVT::i8), Cond);
8533    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8534  }
8535  // ptest and testp intrinsics. The intrinsic these come from are designed to
8536  // return an integer value, not just an instruction so lower it to the ptest
8537  // or testp pattern and a setcc for the result.
8538  case Intrinsic::x86_sse41_ptestz:
8539  case Intrinsic::x86_sse41_ptestc:
8540  case Intrinsic::x86_sse41_ptestnzc:
8541  case Intrinsic::x86_avx_ptestz_256:
8542  case Intrinsic::x86_avx_ptestc_256:
8543  case Intrinsic::x86_avx_ptestnzc_256:
8544  case Intrinsic::x86_avx_vtestz_ps:
8545  case Intrinsic::x86_avx_vtestc_ps:
8546  case Intrinsic::x86_avx_vtestnzc_ps:
8547  case Intrinsic::x86_avx_vtestz_pd:
8548  case Intrinsic::x86_avx_vtestc_pd:
8549  case Intrinsic::x86_avx_vtestnzc_pd:
8550  case Intrinsic::x86_avx_vtestz_ps_256:
8551  case Intrinsic::x86_avx_vtestc_ps_256:
8552  case Intrinsic::x86_avx_vtestnzc_ps_256:
8553  case Intrinsic::x86_avx_vtestz_pd_256:
8554  case Intrinsic::x86_avx_vtestc_pd_256:
8555  case Intrinsic::x86_avx_vtestnzc_pd_256: {
8556    bool IsTestPacked = false;
8557    unsigned X86CC = 0;
8558    switch (IntNo) {
8559    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
8560    case Intrinsic::x86_avx_vtestz_ps:
8561    case Intrinsic::x86_avx_vtestz_pd:
8562    case Intrinsic::x86_avx_vtestz_ps_256:
8563    case Intrinsic::x86_avx_vtestz_pd_256:
8564      IsTestPacked = true; // Fallthrough
8565    case Intrinsic::x86_sse41_ptestz:
8566    case Intrinsic::x86_avx_ptestz_256:
8567      // ZF = 1
8568      X86CC = X86::COND_E;
8569      break;
8570    case Intrinsic::x86_avx_vtestc_ps:
8571    case Intrinsic::x86_avx_vtestc_pd:
8572    case Intrinsic::x86_avx_vtestc_ps_256:
8573    case Intrinsic::x86_avx_vtestc_pd_256:
8574      IsTestPacked = true; // Fallthrough
8575    case Intrinsic::x86_sse41_ptestc:
8576    case Intrinsic::x86_avx_ptestc_256:
8577      // CF = 1
8578      X86CC = X86::COND_B;
8579      break;
8580    case Intrinsic::x86_avx_vtestnzc_ps:
8581    case Intrinsic::x86_avx_vtestnzc_pd:
8582    case Intrinsic::x86_avx_vtestnzc_ps_256:
8583    case Intrinsic::x86_avx_vtestnzc_pd_256:
8584      IsTestPacked = true; // Fallthrough
8585    case Intrinsic::x86_sse41_ptestnzc:
8586    case Intrinsic::x86_avx_ptestnzc_256:
8587      // ZF and CF = 0
8588      X86CC = X86::COND_A;
8589      break;
8590    }
8591
8592    SDValue LHS = Op.getOperand(1);
8593    SDValue RHS = Op.getOperand(2);
8594    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
8595    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
8596    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
8597    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
8598    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8599  }
8600
8601  // Fix vector shift instructions where the last operand is a non-immediate
8602  // i32 value.
8603  case Intrinsic::x86_sse2_pslli_w:
8604  case Intrinsic::x86_sse2_pslli_d:
8605  case Intrinsic::x86_sse2_pslli_q:
8606  case Intrinsic::x86_sse2_psrli_w:
8607  case Intrinsic::x86_sse2_psrli_d:
8608  case Intrinsic::x86_sse2_psrli_q:
8609  case Intrinsic::x86_sse2_psrai_w:
8610  case Intrinsic::x86_sse2_psrai_d:
8611  case Intrinsic::x86_mmx_pslli_w:
8612  case Intrinsic::x86_mmx_pslli_d:
8613  case Intrinsic::x86_mmx_pslli_q:
8614  case Intrinsic::x86_mmx_psrli_w:
8615  case Intrinsic::x86_mmx_psrli_d:
8616  case Intrinsic::x86_mmx_psrli_q:
8617  case Intrinsic::x86_mmx_psrai_w:
8618  case Intrinsic::x86_mmx_psrai_d: {
8619    SDValue ShAmt = Op.getOperand(2);
8620    if (isa<ConstantSDNode>(ShAmt))
8621      return SDValue();
8622
8623    unsigned NewIntNo = 0;
8624    EVT ShAmtVT = MVT::v4i32;
8625    switch (IntNo) {
8626    case Intrinsic::x86_sse2_pslli_w:
8627      NewIntNo = Intrinsic::x86_sse2_psll_w;
8628      break;
8629    case Intrinsic::x86_sse2_pslli_d:
8630      NewIntNo = Intrinsic::x86_sse2_psll_d;
8631      break;
8632    case Intrinsic::x86_sse2_pslli_q:
8633      NewIntNo = Intrinsic::x86_sse2_psll_q;
8634      break;
8635    case Intrinsic::x86_sse2_psrli_w:
8636      NewIntNo = Intrinsic::x86_sse2_psrl_w;
8637      break;
8638    case Intrinsic::x86_sse2_psrli_d:
8639      NewIntNo = Intrinsic::x86_sse2_psrl_d;
8640      break;
8641    case Intrinsic::x86_sse2_psrli_q:
8642      NewIntNo = Intrinsic::x86_sse2_psrl_q;
8643      break;
8644    case Intrinsic::x86_sse2_psrai_w:
8645      NewIntNo = Intrinsic::x86_sse2_psra_w;
8646      break;
8647    case Intrinsic::x86_sse2_psrai_d:
8648      NewIntNo = Intrinsic::x86_sse2_psra_d;
8649      break;
8650    default: {
8651      ShAmtVT = MVT::v2i32;
8652      switch (IntNo) {
8653      case Intrinsic::x86_mmx_pslli_w:
8654        NewIntNo = Intrinsic::x86_mmx_psll_w;
8655        break;
8656      case Intrinsic::x86_mmx_pslli_d:
8657        NewIntNo = Intrinsic::x86_mmx_psll_d;
8658        break;
8659      case Intrinsic::x86_mmx_pslli_q:
8660        NewIntNo = Intrinsic::x86_mmx_psll_q;
8661        break;
8662      case Intrinsic::x86_mmx_psrli_w:
8663        NewIntNo = Intrinsic::x86_mmx_psrl_w;
8664        break;
8665      case Intrinsic::x86_mmx_psrli_d:
8666        NewIntNo = Intrinsic::x86_mmx_psrl_d;
8667        break;
8668      case Intrinsic::x86_mmx_psrli_q:
8669        NewIntNo = Intrinsic::x86_mmx_psrl_q;
8670        break;
8671      case Intrinsic::x86_mmx_psrai_w:
8672        NewIntNo = Intrinsic::x86_mmx_psra_w;
8673        break;
8674      case Intrinsic::x86_mmx_psrai_d:
8675        NewIntNo = Intrinsic::x86_mmx_psra_d;
8676        break;
8677      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8678      }
8679      break;
8680    }
8681    }
8682
8683    // The vector shift intrinsics with scalars uses 32b shift amounts but
8684    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
8685    // to be zero.
8686    SDValue ShOps[4];
8687    ShOps[0] = ShAmt;
8688    ShOps[1] = DAG.getConstant(0, MVT::i32);
8689    if (ShAmtVT == MVT::v4i32) {
8690      ShOps[2] = DAG.getUNDEF(MVT::i32);
8691      ShOps[3] = DAG.getUNDEF(MVT::i32);
8692      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
8693    } else {
8694      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
8695// FIXME this must be lowered to get rid of the invalid type.
8696    }
8697
8698    EVT VT = Op.getValueType();
8699    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
8700    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8701                       DAG.getConstant(NewIntNo, MVT::i32),
8702                       Op.getOperand(1), ShAmt);
8703  }
8704  }
8705}
8706
8707SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
8708                                           SelectionDAG &DAG) const {
8709  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8710  MFI->setReturnAddressIsTaken(true);
8711
8712  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8713  DebugLoc dl = Op.getDebugLoc();
8714
8715  if (Depth > 0) {
8716    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
8717    SDValue Offset =
8718      DAG.getConstant(TD->getPointerSize(),
8719                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8720    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8721                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
8722                                   FrameAddr, Offset),
8723                       MachinePointerInfo(), false, false, 0);
8724  }
8725
8726  // Just load the return address.
8727  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
8728  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8729                     RetAddrFI, MachinePointerInfo(), false, false, 0);
8730}
8731
8732SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
8733  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8734  MFI->setFrameAddressIsTaken(true);
8735
8736  EVT VT = Op.getValueType();
8737  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
8738  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8739  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
8740  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
8741  while (Depth--)
8742    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
8743                            MachinePointerInfo(),
8744                            false, false, 0);
8745  return FrameAddr;
8746}
8747
8748SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
8749                                                     SelectionDAG &DAG) const {
8750  return DAG.getIntPtrConstant(2*TD->getPointerSize());
8751}
8752
8753SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
8754  MachineFunction &MF = DAG.getMachineFunction();
8755  SDValue Chain     = Op.getOperand(0);
8756  SDValue Offset    = Op.getOperand(1);
8757  SDValue Handler   = Op.getOperand(2);
8758  DebugLoc dl       = Op.getDebugLoc();
8759
8760  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
8761                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
8762                                     getPointerTy());
8763  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
8764
8765  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
8766                                  DAG.getIntPtrConstant(TD->getPointerSize()));
8767  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
8768  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
8769                       false, false, 0);
8770  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
8771  MF.getRegInfo().addLiveOut(StoreAddrReg);
8772
8773  return DAG.getNode(X86ISD::EH_RETURN, dl,
8774                     MVT::Other,
8775                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
8776}
8777
8778SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
8779                                             SelectionDAG &DAG) const {
8780  SDValue Root = Op.getOperand(0);
8781  SDValue Trmp = Op.getOperand(1); // trampoline
8782  SDValue FPtr = Op.getOperand(2); // nested function
8783  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
8784  DebugLoc dl  = Op.getDebugLoc();
8785
8786  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8787
8788  if (Subtarget->is64Bit()) {
8789    SDValue OutChains[6];
8790
8791    // Large code-model.
8792    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
8793    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8794
8795    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
8796    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
8797
8798    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8799
8800    // Load the pointer to the nested function into R11.
8801    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8802    SDValue Addr = Trmp;
8803    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8804                                Addr, MachinePointerInfo(TrmpAddr),
8805                                false, false, 0);
8806
8807    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8808                       DAG.getConstant(2, MVT::i64));
8809    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8810                                MachinePointerInfo(TrmpAddr, 2),
8811                                false, false, 2);
8812
8813    // Load the 'nest' parameter value into R10.
8814    // R10 is specified in X86CallingConv.td
8815    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8816    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8817                       DAG.getConstant(10, MVT::i64));
8818    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8819                                Addr, MachinePointerInfo(TrmpAddr, 10),
8820                                false, false, 0);
8821
8822    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8823                       DAG.getConstant(12, MVT::i64));
8824    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8825                                MachinePointerInfo(TrmpAddr, 12),
8826                                false, false, 2);
8827
8828    // Jump to the nested function.
8829    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8830    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8831                       DAG.getConstant(20, MVT::i64));
8832    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8833                                Addr, MachinePointerInfo(TrmpAddr, 20),
8834                                false, false, 0);
8835
8836    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8837    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8838                       DAG.getConstant(22, MVT::i64));
8839    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8840                                MachinePointerInfo(TrmpAddr, 22),
8841                                false, false, 0);
8842
8843    SDValue Ops[] =
8844      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8845    return DAG.getMergeValues(Ops, 2, dl);
8846  } else {
8847    const Function *Func =
8848      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8849    CallingConv::ID CC = Func->getCallingConv();
8850    unsigned NestReg;
8851
8852    switch (CC) {
8853    default:
8854      llvm_unreachable("Unsupported calling convention");
8855    case CallingConv::C:
8856    case CallingConv::X86_StdCall: {
8857      // Pass 'nest' parameter in ECX.
8858      // Must be kept in sync with X86CallingConv.td
8859      NestReg = X86::ECX;
8860
8861      // Check that ECX wasn't needed by an 'inreg' parameter.
8862      FunctionType *FTy = Func->getFunctionType();
8863      const AttrListPtr &Attrs = Func->getAttributes();
8864
8865      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8866        unsigned InRegCount = 0;
8867        unsigned Idx = 1;
8868
8869        for (FunctionType::param_iterator I = FTy->param_begin(),
8870             E = FTy->param_end(); I != E; ++I, ++Idx)
8871          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8872            // FIXME: should only count parameters that are lowered to integers.
8873            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8874
8875        if (InRegCount > 2) {
8876          report_fatal_error("Nest register in use - reduce number of inreg"
8877                             " parameters!");
8878        }
8879      }
8880      break;
8881    }
8882    case CallingConv::X86_FastCall:
8883    case CallingConv::X86_ThisCall:
8884    case CallingConv::Fast:
8885      // Pass 'nest' parameter in EAX.
8886      // Must be kept in sync with X86CallingConv.td
8887      NestReg = X86::EAX;
8888      break;
8889    }
8890
8891    SDValue OutChains[4];
8892    SDValue Addr, Disp;
8893
8894    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8895                       DAG.getConstant(10, MVT::i32));
8896    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8897
8898    // This is storing the opcode for MOV32ri.
8899    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8900    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
8901    OutChains[0] = DAG.getStore(Root, dl,
8902                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8903                                Trmp, MachinePointerInfo(TrmpAddr),
8904                                false, false, 0);
8905
8906    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8907                       DAG.getConstant(1, MVT::i32));
8908    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8909                                MachinePointerInfo(TrmpAddr, 1),
8910                                false, false, 1);
8911
8912    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8913    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8914                       DAG.getConstant(5, MVT::i32));
8915    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8916                                MachinePointerInfo(TrmpAddr, 5),
8917                                false, false, 1);
8918
8919    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8920                       DAG.getConstant(6, MVT::i32));
8921    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8922                                MachinePointerInfo(TrmpAddr, 6),
8923                                false, false, 1);
8924
8925    SDValue Ops[] =
8926      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8927    return DAG.getMergeValues(Ops, 2, dl);
8928  }
8929}
8930
8931SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8932                                            SelectionDAG &DAG) const {
8933  /*
8934   The rounding mode is in bits 11:10 of FPSR, and has the following
8935   settings:
8936     00 Round to nearest
8937     01 Round to -inf
8938     10 Round to +inf
8939     11 Round to 0
8940
8941  FLT_ROUNDS, on the other hand, expects the following:
8942    -1 Undefined
8943     0 Round to 0
8944     1 Round to nearest
8945     2 Round to +inf
8946     3 Round to -inf
8947
8948  To perform the conversion, we do:
8949    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8950  */
8951
8952  MachineFunction &MF = DAG.getMachineFunction();
8953  const TargetMachine &TM = MF.getTarget();
8954  const TargetFrameLowering &TFI = *TM.getFrameLowering();
8955  unsigned StackAlignment = TFI.getStackAlignment();
8956  EVT VT = Op.getValueType();
8957  DebugLoc DL = Op.getDebugLoc();
8958
8959  // Save FP Control Word to stack slot
8960  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8961  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8962
8963
8964  MachineMemOperand *MMO =
8965   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8966                           MachineMemOperand::MOStore, 2, 2);
8967
8968  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8969  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8970                                          DAG.getVTList(MVT::Other),
8971                                          Ops, 2, MVT::i16, MMO);
8972
8973  // Load FP Control Word from stack slot
8974  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8975                            MachinePointerInfo(), false, false, 0);
8976
8977  // Transform as necessary
8978  SDValue CWD1 =
8979    DAG.getNode(ISD::SRL, DL, MVT::i16,
8980                DAG.getNode(ISD::AND, DL, MVT::i16,
8981                            CWD, DAG.getConstant(0x800, MVT::i16)),
8982                DAG.getConstant(11, MVT::i8));
8983  SDValue CWD2 =
8984    DAG.getNode(ISD::SRL, DL, MVT::i16,
8985                DAG.getNode(ISD::AND, DL, MVT::i16,
8986                            CWD, DAG.getConstant(0x400, MVT::i16)),
8987                DAG.getConstant(9, MVT::i8));
8988
8989  SDValue RetVal =
8990    DAG.getNode(ISD::AND, DL, MVT::i16,
8991                DAG.getNode(ISD::ADD, DL, MVT::i16,
8992                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8993                            DAG.getConstant(1, MVT::i16)),
8994                DAG.getConstant(3, MVT::i16));
8995
8996
8997  return DAG.getNode((VT.getSizeInBits() < 16 ?
8998                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8999}
9000
9001SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9002  EVT VT = Op.getValueType();
9003  EVT OpVT = VT;
9004  unsigned NumBits = VT.getSizeInBits();
9005  DebugLoc dl = Op.getDebugLoc();
9006
9007  Op = Op.getOperand(0);
9008  if (VT == MVT::i8) {
9009    // Zero extend to i32 since there is not an i8 bsr.
9010    OpVT = MVT::i32;
9011    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9012  }
9013
9014  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9015  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9016  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9017
9018  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9019  SDValue Ops[] = {
9020    Op,
9021    DAG.getConstant(NumBits+NumBits-1, OpVT),
9022    DAG.getConstant(X86::COND_E, MVT::i8),
9023    Op.getValue(1)
9024  };
9025  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9026
9027  // Finally xor with NumBits-1.
9028  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9029
9030  if (VT == MVT::i8)
9031    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9032  return Op;
9033}
9034
9035SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9036  EVT VT = Op.getValueType();
9037  EVT OpVT = VT;
9038  unsigned NumBits = VT.getSizeInBits();
9039  DebugLoc dl = Op.getDebugLoc();
9040
9041  Op = Op.getOperand(0);
9042  if (VT == MVT::i8) {
9043    OpVT = MVT::i32;
9044    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9045  }
9046
9047  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9048  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9049  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9050
9051  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9052  SDValue Ops[] = {
9053    Op,
9054    DAG.getConstant(NumBits, OpVT),
9055    DAG.getConstant(X86::COND_E, MVT::i8),
9056    Op.getValue(1)
9057  };
9058  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9059
9060  if (VT == MVT::i8)
9061    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9062  return Op;
9063}
9064
9065SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
9066  EVT VT = Op.getValueType();
9067  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9068  DebugLoc dl = Op.getDebugLoc();
9069
9070  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9071  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9072  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9073  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9074  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9075  //
9076  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9077  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9078  //  return AloBlo + AloBhi + AhiBlo;
9079
9080  SDValue A = Op.getOperand(0);
9081  SDValue B = Op.getOperand(1);
9082
9083  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9084                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9085                       A, DAG.getConstant(32, MVT::i32));
9086  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9087                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9088                       B, DAG.getConstant(32, MVT::i32));
9089  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9090                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9091                       A, B);
9092  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9093                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9094                       A, Bhi);
9095  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9096                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9097                       Ahi, B);
9098  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9099                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9100                       AloBhi, DAG.getConstant(32, MVT::i32));
9101  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9102                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9103                       AhiBlo, DAG.getConstant(32, MVT::i32));
9104  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9105  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9106  return Res;
9107}
9108
9109SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
9110
9111  EVT VT = Op.getValueType();
9112  DebugLoc dl = Op.getDebugLoc();
9113  SDValue R = Op.getOperand(0);
9114  SDValue Amt = Op.getOperand(1);
9115
9116  LLVMContext *Context = DAG.getContext();
9117
9118  // Must have SSE2.
9119  if (!Subtarget->hasSSE2()) return SDValue();
9120
9121  // Optimize shl/srl/sra with constant shift amount.
9122  if (isSplatVector(Amt.getNode())) {
9123    SDValue SclrAmt = Amt->getOperand(0);
9124    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
9125      uint64_t ShiftAmt = C->getZExtValue();
9126
9127      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
9128       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9129                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9130                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9131
9132      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
9133       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9134                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9135                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9136
9137      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
9138       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9139                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9140                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9141
9142      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
9143       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9144                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9145                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9146
9147      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
9148       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9149                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9150                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9151
9152      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
9153       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9154                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9155                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9156
9157      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
9158       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9159                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9160                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9161
9162      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
9163       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9164                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9165                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9166    }
9167  }
9168
9169  // Lower SHL with variable shift amount.
9170  // Cannot lower SHL without SSE2 or later.
9171  if (!Subtarget->hasSSE2()) return SDValue();
9172
9173  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
9174    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9175                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9176                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
9177
9178    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
9179
9180    std::vector<Constant*> CV(4, CI);
9181    Constant *C = ConstantVector::get(CV);
9182    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9183    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9184                                 MachinePointerInfo::getConstantPool(),
9185                                 false, false, 16);
9186
9187    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
9188    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
9189    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
9190    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
9191  }
9192  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
9193    // a = a << 5;
9194    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9195                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9196                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
9197
9198    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
9199    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
9200
9201    std::vector<Constant*> CVM1(16, CM1);
9202    std::vector<Constant*> CVM2(16, CM2);
9203    Constant *C = ConstantVector::get(CVM1);
9204    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9205    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9206                            MachinePointerInfo::getConstantPool(),
9207                            false, false, 16);
9208
9209    // r = pblendv(r, psllw(r & (char16)15, 4), a);
9210    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9211    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9212                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9213                    DAG.getConstant(4, MVT::i32));
9214    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9215    // a += a
9216    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9217
9218    C = ConstantVector::get(CVM2);
9219    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9220    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9221                    MachinePointerInfo::getConstantPool(),
9222                    false, false, 16);
9223
9224    // r = pblendv(r, psllw(r & (char16)63, 2), a);
9225    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9226    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9227                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9228                    DAG.getConstant(2, MVT::i32));
9229    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9230    // a += a
9231    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9232
9233    // return pblendv(r, r+r, a);
9234    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
9235                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
9236    return R;
9237  }
9238  return SDValue();
9239}
9240
9241SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
9242  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
9243  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
9244  // looks for this combo and may remove the "setcc" instruction if the "setcc"
9245  // has only one use.
9246  SDNode *N = Op.getNode();
9247  SDValue LHS = N->getOperand(0);
9248  SDValue RHS = N->getOperand(1);
9249  unsigned BaseOp = 0;
9250  unsigned Cond = 0;
9251  DebugLoc DL = Op.getDebugLoc();
9252  switch (Op.getOpcode()) {
9253  default: llvm_unreachable("Unknown ovf instruction!");
9254  case ISD::SADDO:
9255    // A subtract of one will be selected as a INC. Note that INC doesn't
9256    // set CF, so we can't do this for UADDO.
9257    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
9258      if (C->isOne()) {
9259        BaseOp = X86ISD::INC;
9260        Cond = X86::COND_O;
9261        break;
9262      }
9263    BaseOp = X86ISD::ADD;
9264    Cond = X86::COND_O;
9265    break;
9266  case ISD::UADDO:
9267    BaseOp = X86ISD::ADD;
9268    Cond = X86::COND_B;
9269    break;
9270  case ISD::SSUBO:
9271    // A subtract of one will be selected as a DEC. Note that DEC doesn't
9272    // set CF, so we can't do this for USUBO.
9273    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
9274      if (C->isOne()) {
9275        BaseOp = X86ISD::DEC;
9276        Cond = X86::COND_O;
9277        break;
9278      }
9279    BaseOp = X86ISD::SUB;
9280    Cond = X86::COND_O;
9281    break;
9282  case ISD::USUBO:
9283    BaseOp = X86ISD::SUB;
9284    Cond = X86::COND_B;
9285    break;
9286  case ISD::SMULO:
9287    BaseOp = X86ISD::SMUL;
9288    Cond = X86::COND_O;
9289    break;
9290  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
9291    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
9292                                 MVT::i32);
9293    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
9294
9295    SDValue SetCC =
9296      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9297                  DAG.getConstant(X86::COND_O, MVT::i32),
9298                  SDValue(Sum.getNode(), 2));
9299
9300    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
9301  }
9302  }
9303
9304  // Also sets EFLAGS.
9305  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
9306  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
9307
9308  SDValue SetCC =
9309    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
9310                DAG.getConstant(Cond, MVT::i32),
9311                SDValue(Sum.getNode(), 1));
9312
9313  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
9314}
9315
9316SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
9317  DebugLoc dl = Op.getDebugLoc();
9318  SDNode* Node = Op.getNode();
9319  EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9320  EVT VT = Node->getValueType(0);
9321
9322  if (Subtarget->hasSSE2() && VT.isVector()) {
9323    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
9324                        ExtraVT.getScalarType().getSizeInBits();
9325    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
9326
9327    unsigned SHLIntrinsicsID = 0;
9328    unsigned SRAIntrinsicsID = 0;
9329    switch (VT.getSimpleVT().SimpleTy) {
9330      default:
9331        return SDValue();
9332      case MVT::v2i64: {
9333        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_q;
9334        SRAIntrinsicsID = 0;
9335        break;
9336      }
9337      case MVT::v4i32: {
9338        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
9339        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
9340        break;
9341      }
9342      case MVT::v8i16: {
9343        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
9344        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
9345        break;
9346      }
9347    }
9348
9349    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9350                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
9351                         Node->getOperand(0), ShAmt);
9352
9353    // In case of 1 bit sext, no need to shr
9354    if (ExtraVT.getScalarType().getSizeInBits() == 1) return Tmp1;
9355
9356    if (SRAIntrinsicsID) {
9357      Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9358                         DAG.getConstant(SRAIntrinsicsID, MVT::i32),
9359                         Tmp1, ShAmt);
9360    }
9361    return Tmp1;
9362  }
9363
9364  return SDValue();
9365}
9366
9367
9368SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
9369  DebugLoc dl = Op.getDebugLoc();
9370
9371  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
9372  // There isn't any reason to disable it if the target processor supports it.
9373  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
9374    SDValue Chain = Op.getOperand(0);
9375    SDValue Zero = DAG.getConstant(0, MVT::i32);
9376    SDValue Ops[] = {
9377      DAG.getRegister(X86::ESP, MVT::i32), // Base
9378      DAG.getTargetConstant(1, MVT::i8),   // Scale
9379      DAG.getRegister(0, MVT::i32),        // Index
9380      DAG.getTargetConstant(0, MVT::i32),  // Disp
9381      DAG.getRegister(0, MVT::i32),        // Segment.
9382      Zero,
9383      Chain
9384    };
9385    SDNode *Res =
9386      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
9387                          array_lengthof(Ops));
9388    return SDValue(Res, 0);
9389  }
9390
9391  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
9392  if (!isDev)
9393    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
9394
9395  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
9396  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
9397  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
9398  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
9399
9400  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
9401  if (!Op1 && !Op2 && !Op3 && Op4)
9402    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
9403
9404  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
9405  if (Op1 && !Op2 && !Op3 && !Op4)
9406    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
9407
9408  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
9409  //           (MFENCE)>;
9410  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
9411}
9412
9413SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
9414                                             SelectionDAG &DAG) const {
9415  DebugLoc dl = Op.getDebugLoc();
9416  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
9417    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
9418  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
9419    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
9420
9421  // The only fence that needs an instruction is a sequentially-consistent
9422  // cross-thread fence.
9423  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
9424    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
9425    // no-sse2). There isn't any reason to disable it if the target processor
9426    // supports it.
9427    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
9428      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
9429
9430    SDValue Chain = Op.getOperand(0);
9431    SDValue Zero = DAG.getConstant(0, MVT::i32);
9432    SDValue Ops[] = {
9433      DAG.getRegister(X86::ESP, MVT::i32), // Base
9434      DAG.getTargetConstant(1, MVT::i8),   // Scale
9435      DAG.getRegister(0, MVT::i32),        // Index
9436      DAG.getTargetConstant(0, MVT::i32),  // Disp
9437      DAG.getRegister(0, MVT::i32),        // Segment.
9438      Zero,
9439      Chain
9440    };
9441    SDNode *Res =
9442      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
9443                         array_lengthof(Ops));
9444    return SDValue(Res, 0);
9445  }
9446
9447  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
9448  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
9449}
9450
9451
9452SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
9453  EVT T = Op.getValueType();
9454  DebugLoc DL = Op.getDebugLoc();
9455  unsigned Reg = 0;
9456  unsigned size = 0;
9457  switch(T.getSimpleVT().SimpleTy) {
9458  default:
9459    assert(false && "Invalid value type!");
9460  case MVT::i8:  Reg = X86::AL;  size = 1; break;
9461  case MVT::i16: Reg = X86::AX;  size = 2; break;
9462  case MVT::i32: Reg = X86::EAX; size = 4; break;
9463  case MVT::i64:
9464    assert(Subtarget->is64Bit() && "Node not type legal!");
9465    Reg = X86::RAX; size = 8;
9466    break;
9467  }
9468  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
9469                                    Op.getOperand(2), SDValue());
9470  SDValue Ops[] = { cpIn.getValue(0),
9471                    Op.getOperand(1),
9472                    Op.getOperand(3),
9473                    DAG.getTargetConstant(size, MVT::i8),
9474                    cpIn.getValue(1) };
9475  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9476  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
9477  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
9478                                           Ops, 5, T, MMO);
9479  SDValue cpOut =
9480    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
9481  return cpOut;
9482}
9483
9484SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
9485                                                 SelectionDAG &DAG) const {
9486  assert(Subtarget->is64Bit() && "Result not type legalized?");
9487  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9488  SDValue TheChain = Op.getOperand(0);
9489  DebugLoc dl = Op.getDebugLoc();
9490  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9491  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
9492  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
9493                                   rax.getValue(2));
9494  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
9495                            DAG.getConstant(32, MVT::i8));
9496  SDValue Ops[] = {
9497    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
9498    rdx.getValue(1)
9499  };
9500  return DAG.getMergeValues(Ops, 2, dl);
9501}
9502
9503SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
9504                                            SelectionDAG &DAG) const {
9505  EVT SrcVT = Op.getOperand(0).getValueType();
9506  EVT DstVT = Op.getValueType();
9507  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
9508         Subtarget->hasMMX() && "Unexpected custom BITCAST");
9509  assert((DstVT == MVT::i64 ||
9510          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
9511         "Unexpected custom BITCAST");
9512  // i64 <=> MMX conversions are Legal.
9513  if (SrcVT==MVT::i64 && DstVT.isVector())
9514    return Op;
9515  if (DstVT==MVT::i64 && SrcVT.isVector())
9516    return Op;
9517  // MMX <=> MMX conversions are Legal.
9518  if (SrcVT.isVector() && DstVT.isVector())
9519    return Op;
9520  // All other conversions need to be expanded.
9521  return SDValue();
9522}
9523
9524SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
9525  SDNode *Node = Op.getNode();
9526  DebugLoc dl = Node->getDebugLoc();
9527  EVT T = Node->getValueType(0);
9528  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
9529                              DAG.getConstant(0, T), Node->getOperand(2));
9530  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
9531                       cast<AtomicSDNode>(Node)->getMemoryVT(),
9532                       Node->getOperand(0),
9533                       Node->getOperand(1), negOp,
9534                       cast<AtomicSDNode>(Node)->getSrcValue(),
9535                       cast<AtomicSDNode>(Node)->getAlignment());
9536}
9537
9538static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
9539  EVT VT = Op.getNode()->getValueType(0);
9540
9541  // Let legalize expand this if it isn't a legal type yet.
9542  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9543    return SDValue();
9544
9545  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9546
9547  unsigned Opc;
9548  bool ExtraOp = false;
9549  switch (Op.getOpcode()) {
9550  default: assert(0 && "Invalid code");
9551  case ISD::ADDC: Opc = X86ISD::ADD; break;
9552  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
9553  case ISD::SUBC: Opc = X86ISD::SUB; break;
9554  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
9555  }
9556
9557  if (!ExtraOp)
9558    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9559                       Op.getOperand(1));
9560  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9561                     Op.getOperand(1), Op.getOperand(2));
9562}
9563
9564/// LowerOperation - Provide custom lowering hooks for some operations.
9565///
9566SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9567  switch (Op.getOpcode()) {
9568  default: llvm_unreachable("Should not custom lower this!");
9569  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
9570  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
9571  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
9572  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
9573  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
9574  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9575  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
9576  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9577  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9578  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9579  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
9580  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
9581  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9582  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9583  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9584  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9585  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
9586  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9587  case ISD::SHL_PARTS:
9588  case ISD::SRA_PARTS:
9589  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
9590  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
9591  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
9592  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
9593  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
9594  case ISD::FABS:               return LowerFABS(Op, DAG);
9595  case ISD::FNEG:               return LowerFNEG(Op, DAG);
9596  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
9597  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
9598  case ISD::SETCC:              return LowerSETCC(Op, DAG);
9599  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
9600  case ISD::SELECT:             return LowerSELECT(Op, DAG);
9601  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
9602  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9603  case ISD::VASTART:            return LowerVASTART(Op, DAG);
9604  case ISD::VAARG:              return LowerVAARG(Op, DAG);
9605  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9606  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9607  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9608  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9609  case ISD::FRAME_TO_ARGS_OFFSET:
9610                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
9611  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9612  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
9613  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
9614  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9615  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
9616  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
9617  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
9618  case ISD::SRA:
9619  case ISD::SRL:
9620  case ISD::SHL:                return LowerShift(Op, DAG);
9621  case ISD::SADDO:
9622  case ISD::UADDO:
9623  case ISD::SSUBO:
9624  case ISD::USUBO:
9625  case ISD::SMULO:
9626  case ISD::UMULO:              return LowerXALUO(Op, DAG);
9627  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
9628  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9629  case ISD::ADDC:
9630  case ISD::ADDE:
9631  case ISD::SUBC:
9632  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
9633  }
9634}
9635
9636void X86TargetLowering::
9637ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
9638                        SelectionDAG &DAG, unsigned NewOp) const {
9639  EVT T = Node->getValueType(0);
9640  DebugLoc dl = Node->getDebugLoc();
9641  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
9642
9643  SDValue Chain = Node->getOperand(0);
9644  SDValue In1 = Node->getOperand(1);
9645  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9646                             Node->getOperand(2), DAG.getIntPtrConstant(0));
9647  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9648                             Node->getOperand(2), DAG.getIntPtrConstant(1));
9649  SDValue Ops[] = { Chain, In1, In2L, In2H };
9650  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9651  SDValue Result =
9652    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
9653                            cast<MemSDNode>(Node)->getMemOperand());
9654  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
9655  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9656  Results.push_back(Result.getValue(2));
9657}
9658
9659/// ReplaceNodeResults - Replace a node with an illegal result type
9660/// with a new node built out of custom code.
9661void X86TargetLowering::ReplaceNodeResults(SDNode *N,
9662                                           SmallVectorImpl<SDValue>&Results,
9663                                           SelectionDAG &DAG) const {
9664  DebugLoc dl = N->getDebugLoc();
9665  switch (N->getOpcode()) {
9666  default:
9667    assert(false && "Do not know how to custom type legalize this operation!");
9668    return;
9669  case ISD::SIGN_EXTEND_INREG:
9670  case ISD::ADDC:
9671  case ISD::ADDE:
9672  case ISD::SUBC:
9673  case ISD::SUBE:
9674    // We don't want to expand or promote these.
9675    return;
9676  case ISD::FP_TO_SINT: {
9677    std::pair<SDValue,SDValue> Vals =
9678        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
9679    SDValue FIST = Vals.first, StackSlot = Vals.second;
9680    if (FIST.getNode() != 0) {
9681      EVT VT = N->getValueType(0);
9682      // Return a load from the stack slot.
9683      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
9684                                    MachinePointerInfo(), false, false, 0));
9685    }
9686    return;
9687  }
9688  case ISD::READCYCLECOUNTER: {
9689    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9690    SDValue TheChain = N->getOperand(0);
9691    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9692    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
9693                                     rd.getValue(1));
9694    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
9695                                     eax.getValue(2));
9696    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
9697    SDValue Ops[] = { eax, edx };
9698    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
9699    Results.push_back(edx.getValue(1));
9700    return;
9701  }
9702  case ISD::ATOMIC_CMP_SWAP: {
9703    EVT T = N->getValueType(0);
9704    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
9705    SDValue cpInL, cpInH;
9706    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9707                        DAG.getConstant(0, MVT::i32));
9708    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9709                        DAG.getConstant(1, MVT::i32));
9710    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
9711    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
9712                             cpInL.getValue(1));
9713    SDValue swapInL, swapInH;
9714    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9715                          DAG.getConstant(0, MVT::i32));
9716    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9717                          DAG.getConstant(1, MVT::i32));
9718    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
9719                               cpInH.getValue(1));
9720    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
9721                               swapInL.getValue(1));
9722    SDValue Ops[] = { swapInH.getValue(0),
9723                      N->getOperand(1),
9724                      swapInH.getValue(1) };
9725    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9726    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
9727    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
9728                                             Ops, 3, T, MMO);
9729    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
9730                                        MVT::i32, Result.getValue(1));
9731    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
9732                                        MVT::i32, cpOutL.getValue(2));
9733    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
9734    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9735    Results.push_back(cpOutH.getValue(1));
9736    return;
9737  }
9738  case ISD::ATOMIC_LOAD_ADD:
9739    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
9740    return;
9741  case ISD::ATOMIC_LOAD_AND:
9742    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
9743    return;
9744  case ISD::ATOMIC_LOAD_NAND:
9745    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
9746    return;
9747  case ISD::ATOMIC_LOAD_OR:
9748    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
9749    return;
9750  case ISD::ATOMIC_LOAD_SUB:
9751    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
9752    return;
9753  case ISD::ATOMIC_LOAD_XOR:
9754    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
9755    return;
9756  case ISD::ATOMIC_SWAP:
9757    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
9758    return;
9759  }
9760}
9761
9762const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
9763  switch (Opcode) {
9764  default: return NULL;
9765  case X86ISD::BSF:                return "X86ISD::BSF";
9766  case X86ISD::BSR:                return "X86ISD::BSR";
9767  case X86ISD::SHLD:               return "X86ISD::SHLD";
9768  case X86ISD::SHRD:               return "X86ISD::SHRD";
9769  case X86ISD::FAND:               return "X86ISD::FAND";
9770  case X86ISD::FOR:                return "X86ISD::FOR";
9771  case X86ISD::FXOR:               return "X86ISD::FXOR";
9772  case X86ISD::FSRL:               return "X86ISD::FSRL";
9773  case X86ISD::FILD:               return "X86ISD::FILD";
9774  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
9775  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
9776  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
9777  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
9778  case X86ISD::FLD:                return "X86ISD::FLD";
9779  case X86ISD::FST:                return "X86ISD::FST";
9780  case X86ISD::CALL:               return "X86ISD::CALL";
9781  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
9782  case X86ISD::BT:                 return "X86ISD::BT";
9783  case X86ISD::CMP:                return "X86ISD::CMP";
9784  case X86ISD::COMI:               return "X86ISD::COMI";
9785  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
9786  case X86ISD::SETCC:              return "X86ISD::SETCC";
9787  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
9788  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
9789  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
9790  case X86ISD::CMOV:               return "X86ISD::CMOV";
9791  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
9792  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
9793  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
9794  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
9795  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
9796  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
9797  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
9798  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
9799  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
9800  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
9801  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
9802  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
9803  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
9804  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
9805  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
9806  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
9807  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
9808  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
9809  case X86ISD::FMAX:               return "X86ISD::FMAX";
9810  case X86ISD::FMIN:               return "X86ISD::FMIN";
9811  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
9812  case X86ISD::FRCP:               return "X86ISD::FRCP";
9813  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
9814  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
9815  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
9816  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
9817  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
9818  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
9819  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
9820  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
9821  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
9822  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
9823  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
9824  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
9825  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
9826  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
9827  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
9828  case X86ISD::VSHL:               return "X86ISD::VSHL";
9829  case X86ISD::VSRL:               return "X86ISD::VSRL";
9830  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
9831  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
9832  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
9833  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
9834  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
9835  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
9836  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
9837  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
9838  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
9839  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
9840  case X86ISD::ADD:                return "X86ISD::ADD";
9841  case X86ISD::SUB:                return "X86ISD::SUB";
9842  case X86ISD::ADC:                return "X86ISD::ADC";
9843  case X86ISD::SBB:                return "X86ISD::SBB";
9844  case X86ISD::SMUL:               return "X86ISD::SMUL";
9845  case X86ISD::UMUL:               return "X86ISD::UMUL";
9846  case X86ISD::INC:                return "X86ISD::INC";
9847  case X86ISD::DEC:                return "X86ISD::DEC";
9848  case X86ISD::OR:                 return "X86ISD::OR";
9849  case X86ISD::XOR:                return "X86ISD::XOR";
9850  case X86ISD::AND:                return "X86ISD::AND";
9851  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
9852  case X86ISD::PTEST:              return "X86ISD::PTEST";
9853  case X86ISD::TESTP:              return "X86ISD::TESTP";
9854  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
9855  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
9856  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
9857  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
9858  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
9859  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
9860  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
9861  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
9862  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
9863  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
9864  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
9865  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
9866  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
9867  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
9868  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
9869  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
9870  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
9871  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
9872  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
9873  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
9874  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
9875  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
9876  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
9877  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
9878  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
9879  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
9880  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
9881  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
9882  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
9883  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
9884  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
9885  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
9886  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
9887  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
9888  case X86ISD::VPERMILPS:          return "X86ISD::VPERMILPS";
9889  case X86ISD::VPERMILPSY:         return "X86ISD::VPERMILPSY";
9890  case X86ISD::VPERMILPD:          return "X86ISD::VPERMILPD";
9891  case X86ISD::VPERMILPDY:         return "X86ISD::VPERMILPDY";
9892  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
9893  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
9894  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
9895  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
9896  }
9897}
9898
9899// isLegalAddressingMode - Return true if the addressing mode represented
9900// by AM is legal for this target, for a load/store of the specified type.
9901bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
9902                                              Type *Ty) const {
9903  // X86 supports extremely general addressing modes.
9904  CodeModel::Model M = getTargetMachine().getCodeModel();
9905  Reloc::Model R = getTargetMachine().getRelocationModel();
9906
9907  // X86 allows a sign-extended 32-bit immediate field as a displacement.
9908  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
9909    return false;
9910
9911  if (AM.BaseGV) {
9912    unsigned GVFlags =
9913      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
9914
9915    // If a reference to this global requires an extra load, we can't fold it.
9916    if (isGlobalStubReference(GVFlags))
9917      return false;
9918
9919    // If BaseGV requires a register for the PIC base, we cannot also have a
9920    // BaseReg specified.
9921    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
9922      return false;
9923
9924    // If lower 4G is not available, then we must use rip-relative addressing.
9925    if ((M != CodeModel::Small || R != Reloc::Static) &&
9926        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
9927      return false;
9928  }
9929
9930  switch (AM.Scale) {
9931  case 0:
9932  case 1:
9933  case 2:
9934  case 4:
9935  case 8:
9936    // These scales always work.
9937    break;
9938  case 3:
9939  case 5:
9940  case 9:
9941    // These scales are formed with basereg+scalereg.  Only accept if there is
9942    // no basereg yet.
9943    if (AM.HasBaseReg)
9944      return false;
9945    break;
9946  default:  // Other stuff never works.
9947    return false;
9948  }
9949
9950  return true;
9951}
9952
9953
9954bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
9955  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
9956    return false;
9957  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
9958  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
9959  if (NumBits1 <= NumBits2)
9960    return false;
9961  return true;
9962}
9963
9964bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
9965  if (!VT1.isInteger() || !VT2.isInteger())
9966    return false;
9967  unsigned NumBits1 = VT1.getSizeInBits();
9968  unsigned NumBits2 = VT2.getSizeInBits();
9969  if (NumBits1 <= NumBits2)
9970    return false;
9971  return true;
9972}
9973
9974bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
9975  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9976  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
9977}
9978
9979bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
9980  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9981  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
9982}
9983
9984bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
9985  // i16 instructions are longer (0x66 prefix) and potentially slower.
9986  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
9987}
9988
9989/// isShuffleMaskLegal - Targets can use this to indicate that they only
9990/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
9991/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
9992/// are assumed to be legal.
9993bool
9994X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
9995                                      EVT VT) const {
9996  // Very little shuffling can be done for 64-bit vectors right now.
9997  if (VT.getSizeInBits() == 64)
9998    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
9999
10000  // FIXME: pshufb, blends, shifts.
10001  return (VT.getVectorNumElements() == 2 ||
10002          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
10003          isMOVLMask(M, VT) ||
10004          isSHUFPMask(M, VT) ||
10005          isPSHUFDMask(M, VT) ||
10006          isPSHUFHWMask(M, VT) ||
10007          isPSHUFLWMask(M, VT) ||
10008          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
10009          isUNPCKLMask(M, VT) ||
10010          isUNPCKHMask(M, VT) ||
10011          isUNPCKL_v_undef_Mask(M, VT) ||
10012          isUNPCKH_v_undef_Mask(M, VT));
10013}
10014
10015bool
10016X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
10017                                          EVT VT) const {
10018  unsigned NumElts = VT.getVectorNumElements();
10019  // FIXME: This collection of masks seems suspect.
10020  if (NumElts == 2)
10021    return true;
10022  if (NumElts == 4 && VT.getSizeInBits() == 128) {
10023    return (isMOVLMask(Mask, VT)  ||
10024            isCommutedMOVLMask(Mask, VT, true) ||
10025            isSHUFPMask(Mask, VT) ||
10026            isCommutedSHUFPMask(Mask, VT));
10027  }
10028  return false;
10029}
10030
10031//===----------------------------------------------------------------------===//
10032//                           X86 Scheduler Hooks
10033//===----------------------------------------------------------------------===//
10034
10035// private utility function
10036MachineBasicBlock *
10037X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
10038                                                       MachineBasicBlock *MBB,
10039                                                       unsigned regOpc,
10040                                                       unsigned immOpc,
10041                                                       unsigned LoadOpc,
10042                                                       unsigned CXchgOpc,
10043                                                       unsigned notOpc,
10044                                                       unsigned EAXreg,
10045                                                       TargetRegisterClass *RC,
10046                                                       bool invSrc) const {
10047  // For the atomic bitwise operator, we generate
10048  //   thisMBB:
10049  //   newMBB:
10050  //     ld  t1 = [bitinstr.addr]
10051  //     op  t2 = t1, [bitinstr.val]
10052  //     mov EAX = t1
10053  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10054  //     bz  newMBB
10055  //     fallthrough -->nextMBB
10056  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10057  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10058  MachineFunction::iterator MBBIter = MBB;
10059  ++MBBIter;
10060
10061  /// First build the CFG
10062  MachineFunction *F = MBB->getParent();
10063  MachineBasicBlock *thisMBB = MBB;
10064  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10065  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10066  F->insert(MBBIter, newMBB);
10067  F->insert(MBBIter, nextMBB);
10068
10069  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10070  nextMBB->splice(nextMBB->begin(), thisMBB,
10071                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10072                  thisMBB->end());
10073  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10074
10075  // Update thisMBB to fall through to newMBB
10076  thisMBB->addSuccessor(newMBB);
10077
10078  // newMBB jumps to itself and fall through to nextMBB
10079  newMBB->addSuccessor(nextMBB);
10080  newMBB->addSuccessor(newMBB);
10081
10082  // Insert instructions into newMBB based on incoming instruction
10083  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10084         "unexpected number of operands");
10085  DebugLoc dl = bInstr->getDebugLoc();
10086  MachineOperand& destOper = bInstr->getOperand(0);
10087  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10088  int numArgs = bInstr->getNumOperands() - 1;
10089  for (int i=0; i < numArgs; ++i)
10090    argOpers[i] = &bInstr->getOperand(i+1);
10091
10092  // x86 address has 4 operands: base, index, scale, and displacement
10093  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10094  int valArgIndx = lastAddrIndx + 1;
10095
10096  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10097  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
10098  for (int i=0; i <= lastAddrIndx; ++i)
10099    (*MIB).addOperand(*argOpers[i]);
10100
10101  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
10102  if (invSrc) {
10103    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
10104  }
10105  else
10106    tt = t1;
10107
10108  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10109  assert((argOpers[valArgIndx]->isReg() ||
10110          argOpers[valArgIndx]->isImm()) &&
10111         "invalid operand");
10112  if (argOpers[valArgIndx]->isReg())
10113    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
10114  else
10115    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
10116  MIB.addReg(tt);
10117  (*MIB).addOperand(*argOpers[valArgIndx]);
10118
10119  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
10120  MIB.addReg(t1);
10121
10122  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
10123  for (int i=0; i <= lastAddrIndx; ++i)
10124    (*MIB).addOperand(*argOpers[i]);
10125  MIB.addReg(t2);
10126  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10127  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10128                    bInstr->memoperands_end());
10129
10130  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10131  MIB.addReg(EAXreg);
10132
10133  // insert branch
10134  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10135
10136  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10137  return nextMBB;
10138}
10139
10140// private utility function:  64 bit atomics on 32 bit host.
10141MachineBasicBlock *
10142X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
10143                                                       MachineBasicBlock *MBB,
10144                                                       unsigned regOpcL,
10145                                                       unsigned regOpcH,
10146                                                       unsigned immOpcL,
10147                                                       unsigned immOpcH,
10148                                                       bool invSrc) const {
10149  // For the atomic bitwise operator, we generate
10150  //   thisMBB (instructions are in pairs, except cmpxchg8b)
10151  //     ld t1,t2 = [bitinstr.addr]
10152  //   newMBB:
10153  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
10154  //     op  t5, t6 <- out1, out2, [bitinstr.val]
10155  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
10156  //     mov ECX, EBX <- t5, t6
10157  //     mov EAX, EDX <- t1, t2
10158  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
10159  //     mov t3, t4 <- EAX, EDX
10160  //     bz  newMBB
10161  //     result in out1, out2
10162  //     fallthrough -->nextMBB
10163
10164  const TargetRegisterClass *RC = X86::GR32RegisterClass;
10165  const unsigned LoadOpc = X86::MOV32rm;
10166  const unsigned NotOpc = X86::NOT32r;
10167  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10168  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10169  MachineFunction::iterator MBBIter = MBB;
10170  ++MBBIter;
10171
10172  /// First build the CFG
10173  MachineFunction *F = MBB->getParent();
10174  MachineBasicBlock *thisMBB = MBB;
10175  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10176  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10177  F->insert(MBBIter, newMBB);
10178  F->insert(MBBIter, nextMBB);
10179
10180  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10181  nextMBB->splice(nextMBB->begin(), thisMBB,
10182                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10183                  thisMBB->end());
10184  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10185
10186  // Update thisMBB to fall through to newMBB
10187  thisMBB->addSuccessor(newMBB);
10188
10189  // newMBB jumps to itself and fall through to nextMBB
10190  newMBB->addSuccessor(nextMBB);
10191  newMBB->addSuccessor(newMBB);
10192
10193  DebugLoc dl = bInstr->getDebugLoc();
10194  // Insert instructions into newMBB based on incoming instruction
10195  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
10196  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
10197         "unexpected number of operands");
10198  MachineOperand& dest1Oper = bInstr->getOperand(0);
10199  MachineOperand& dest2Oper = bInstr->getOperand(1);
10200  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10201  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
10202    argOpers[i] = &bInstr->getOperand(i+2);
10203
10204    // We use some of the operands multiple times, so conservatively just
10205    // clear any kill flags that might be present.
10206    if (argOpers[i]->isReg() && argOpers[i]->isUse())
10207      argOpers[i]->setIsKill(false);
10208  }
10209
10210  // x86 address has 5 operands: base, index, scale, displacement, and segment.
10211  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10212
10213  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10214  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
10215  for (int i=0; i <= lastAddrIndx; ++i)
10216    (*MIB).addOperand(*argOpers[i]);
10217  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10218  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
10219  // add 4 to displacement.
10220  for (int i=0; i <= lastAddrIndx-2; ++i)
10221    (*MIB).addOperand(*argOpers[i]);
10222  MachineOperand newOp3 = *(argOpers[3]);
10223  if (newOp3.isImm())
10224    newOp3.setImm(newOp3.getImm()+4);
10225  else
10226    newOp3.setOffset(newOp3.getOffset()+4);
10227  (*MIB).addOperand(newOp3);
10228  (*MIB).addOperand(*argOpers[lastAddrIndx]);
10229
10230  // t3/4 are defined later, at the bottom of the loop
10231  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
10232  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
10233  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
10234    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
10235  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
10236    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
10237
10238  // The subsequent operations should be using the destination registers of
10239  //the PHI instructions.
10240  if (invSrc) {
10241    t1 = F->getRegInfo().createVirtualRegister(RC);
10242    t2 = F->getRegInfo().createVirtualRegister(RC);
10243    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
10244    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
10245  } else {
10246    t1 = dest1Oper.getReg();
10247    t2 = dest2Oper.getReg();
10248  }
10249
10250  int valArgIndx = lastAddrIndx + 1;
10251  assert((argOpers[valArgIndx]->isReg() ||
10252          argOpers[valArgIndx]->isImm()) &&
10253         "invalid operand");
10254  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
10255  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
10256  if (argOpers[valArgIndx]->isReg())
10257    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
10258  else
10259    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
10260  if (regOpcL != X86::MOV32rr)
10261    MIB.addReg(t1);
10262  (*MIB).addOperand(*argOpers[valArgIndx]);
10263  assert(argOpers[valArgIndx + 1]->isReg() ==
10264         argOpers[valArgIndx]->isReg());
10265  assert(argOpers[valArgIndx + 1]->isImm() ==
10266         argOpers[valArgIndx]->isImm());
10267  if (argOpers[valArgIndx + 1]->isReg())
10268    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
10269  else
10270    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
10271  if (regOpcH != X86::MOV32rr)
10272    MIB.addReg(t2);
10273  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
10274
10275  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
10276  MIB.addReg(t1);
10277  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
10278  MIB.addReg(t2);
10279
10280  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
10281  MIB.addReg(t5);
10282  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
10283  MIB.addReg(t6);
10284
10285  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
10286  for (int i=0; i <= lastAddrIndx; ++i)
10287    (*MIB).addOperand(*argOpers[i]);
10288
10289  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10290  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10291                    bInstr->memoperands_end());
10292
10293  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
10294  MIB.addReg(X86::EAX);
10295  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
10296  MIB.addReg(X86::EDX);
10297
10298  // insert branch
10299  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10300
10301  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10302  return nextMBB;
10303}
10304
10305// private utility function
10306MachineBasicBlock *
10307X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
10308                                                      MachineBasicBlock *MBB,
10309                                                      unsigned cmovOpc) const {
10310  // For the atomic min/max operator, we generate
10311  //   thisMBB:
10312  //   newMBB:
10313  //     ld t1 = [min/max.addr]
10314  //     mov t2 = [min/max.val]
10315  //     cmp  t1, t2
10316  //     cmov[cond] t2 = t1
10317  //     mov EAX = t1
10318  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10319  //     bz   newMBB
10320  //     fallthrough -->nextMBB
10321  //
10322  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10323  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10324  MachineFunction::iterator MBBIter = MBB;
10325  ++MBBIter;
10326
10327  /// First build the CFG
10328  MachineFunction *F = MBB->getParent();
10329  MachineBasicBlock *thisMBB = MBB;
10330  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10331  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10332  F->insert(MBBIter, newMBB);
10333  F->insert(MBBIter, nextMBB);
10334
10335  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10336  nextMBB->splice(nextMBB->begin(), thisMBB,
10337                  llvm::next(MachineBasicBlock::iterator(mInstr)),
10338                  thisMBB->end());
10339  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10340
10341  // Update thisMBB to fall through to newMBB
10342  thisMBB->addSuccessor(newMBB);
10343
10344  // newMBB jumps to newMBB and fall through to nextMBB
10345  newMBB->addSuccessor(nextMBB);
10346  newMBB->addSuccessor(newMBB);
10347
10348  DebugLoc dl = mInstr->getDebugLoc();
10349  // Insert instructions into newMBB based on incoming instruction
10350  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10351         "unexpected number of operands");
10352  MachineOperand& destOper = mInstr->getOperand(0);
10353  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10354  int numArgs = mInstr->getNumOperands() - 1;
10355  for (int i=0; i < numArgs; ++i)
10356    argOpers[i] = &mInstr->getOperand(i+1);
10357
10358  // x86 address has 4 operands: base, index, scale, and displacement
10359  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10360  int valArgIndx = lastAddrIndx + 1;
10361
10362  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10363  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
10364  for (int i=0; i <= lastAddrIndx; ++i)
10365    (*MIB).addOperand(*argOpers[i]);
10366
10367  // We only support register and immediate values
10368  assert((argOpers[valArgIndx]->isReg() ||
10369          argOpers[valArgIndx]->isImm()) &&
10370         "invalid operand");
10371
10372  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10373  if (argOpers[valArgIndx]->isReg())
10374    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
10375  else
10376    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
10377  (*MIB).addOperand(*argOpers[valArgIndx]);
10378
10379  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
10380  MIB.addReg(t1);
10381
10382  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
10383  MIB.addReg(t1);
10384  MIB.addReg(t2);
10385
10386  // Generate movc
10387  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10388  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
10389  MIB.addReg(t2);
10390  MIB.addReg(t1);
10391
10392  // Cmp and exchange if none has modified the memory location
10393  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
10394  for (int i=0; i <= lastAddrIndx; ++i)
10395    (*MIB).addOperand(*argOpers[i]);
10396  MIB.addReg(t3);
10397  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10398  (*MIB).setMemRefs(mInstr->memoperands_begin(),
10399                    mInstr->memoperands_end());
10400
10401  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10402  MIB.addReg(X86::EAX);
10403
10404  // insert branch
10405  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10406
10407  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
10408  return nextMBB;
10409}
10410
10411// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
10412// or XMM0_V32I8 in AVX all of this code can be replaced with that
10413// in the .td file.
10414MachineBasicBlock *
10415X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
10416                            unsigned numArgs, bool memArg) const {
10417  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
10418         "Target must have SSE4.2 or AVX features enabled");
10419
10420  DebugLoc dl = MI->getDebugLoc();
10421  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10422  unsigned Opc;
10423  if (!Subtarget->hasAVX()) {
10424    if (memArg)
10425      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
10426    else
10427      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
10428  } else {
10429    if (memArg)
10430      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
10431    else
10432      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
10433  }
10434
10435  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
10436  for (unsigned i = 0; i < numArgs; ++i) {
10437    MachineOperand &Op = MI->getOperand(i+1);
10438    if (!(Op.isReg() && Op.isImplicit()))
10439      MIB.addOperand(Op);
10440  }
10441  BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
10442    .addReg(X86::XMM0);
10443
10444  MI->eraseFromParent();
10445  return BB;
10446}
10447
10448MachineBasicBlock *
10449X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
10450  DebugLoc dl = MI->getDebugLoc();
10451  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10452
10453  // Address into RAX/EAX, other two args into ECX, EDX.
10454  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
10455  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
10456  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
10457  for (int i = 0; i < X86::AddrNumOperands; ++i)
10458    MIB.addOperand(MI->getOperand(i));
10459
10460  unsigned ValOps = X86::AddrNumOperands;
10461  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
10462    .addReg(MI->getOperand(ValOps).getReg());
10463  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
10464    .addReg(MI->getOperand(ValOps+1).getReg());
10465
10466  // The instruction doesn't actually take any operands though.
10467  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
10468
10469  MI->eraseFromParent(); // The pseudo is gone now.
10470  return BB;
10471}
10472
10473MachineBasicBlock *
10474X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
10475  DebugLoc dl = MI->getDebugLoc();
10476  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10477
10478  // First arg in ECX, the second in EAX.
10479  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
10480    .addReg(MI->getOperand(0).getReg());
10481  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
10482    .addReg(MI->getOperand(1).getReg());
10483
10484  // The instruction doesn't actually take any operands though.
10485  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
10486
10487  MI->eraseFromParent(); // The pseudo is gone now.
10488  return BB;
10489}
10490
10491MachineBasicBlock *
10492X86TargetLowering::EmitVAARG64WithCustomInserter(
10493                   MachineInstr *MI,
10494                   MachineBasicBlock *MBB) const {
10495  // Emit va_arg instruction on X86-64.
10496
10497  // Operands to this pseudo-instruction:
10498  // 0  ) Output        : destination address (reg)
10499  // 1-5) Input         : va_list address (addr, i64mem)
10500  // 6  ) ArgSize       : Size (in bytes) of vararg type
10501  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
10502  // 8  ) Align         : Alignment of type
10503  // 9  ) EFLAGS (implicit-def)
10504
10505  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
10506  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
10507
10508  unsigned DestReg = MI->getOperand(0).getReg();
10509  MachineOperand &Base = MI->getOperand(1);
10510  MachineOperand &Scale = MI->getOperand(2);
10511  MachineOperand &Index = MI->getOperand(3);
10512  MachineOperand &Disp = MI->getOperand(4);
10513  MachineOperand &Segment = MI->getOperand(5);
10514  unsigned ArgSize = MI->getOperand(6).getImm();
10515  unsigned ArgMode = MI->getOperand(7).getImm();
10516  unsigned Align = MI->getOperand(8).getImm();
10517
10518  // Memory Reference
10519  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
10520  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
10521  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
10522
10523  // Machine Information
10524  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10525  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
10526  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
10527  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
10528  DebugLoc DL = MI->getDebugLoc();
10529
10530  // struct va_list {
10531  //   i32   gp_offset
10532  //   i32   fp_offset
10533  //   i64   overflow_area (address)
10534  //   i64   reg_save_area (address)
10535  // }
10536  // sizeof(va_list) = 24
10537  // alignment(va_list) = 8
10538
10539  unsigned TotalNumIntRegs = 6;
10540  unsigned TotalNumXMMRegs = 8;
10541  bool UseGPOffset = (ArgMode == 1);
10542  bool UseFPOffset = (ArgMode == 2);
10543  unsigned MaxOffset = TotalNumIntRegs * 8 +
10544                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
10545
10546  /* Align ArgSize to a multiple of 8 */
10547  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
10548  bool NeedsAlign = (Align > 8);
10549
10550  MachineBasicBlock *thisMBB = MBB;
10551  MachineBasicBlock *overflowMBB;
10552  MachineBasicBlock *offsetMBB;
10553  MachineBasicBlock *endMBB;
10554
10555  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
10556  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
10557  unsigned OffsetReg = 0;
10558
10559  if (!UseGPOffset && !UseFPOffset) {
10560    // If we only pull from the overflow region, we don't create a branch.
10561    // We don't need to alter control flow.
10562    OffsetDestReg = 0; // unused
10563    OverflowDestReg = DestReg;
10564
10565    offsetMBB = NULL;
10566    overflowMBB = thisMBB;
10567    endMBB = thisMBB;
10568  } else {
10569    // First emit code to check if gp_offset (or fp_offset) is below the bound.
10570    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
10571    // If not, pull from overflow_area. (branch to overflowMBB)
10572    //
10573    //       thisMBB
10574    //         |     .
10575    //         |        .
10576    //     offsetMBB   overflowMBB
10577    //         |        .
10578    //         |     .
10579    //        endMBB
10580
10581    // Registers for the PHI in endMBB
10582    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
10583    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
10584
10585    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10586    MachineFunction *MF = MBB->getParent();
10587    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10588    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10589    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10590
10591    MachineFunction::iterator MBBIter = MBB;
10592    ++MBBIter;
10593
10594    // Insert the new basic blocks
10595    MF->insert(MBBIter, offsetMBB);
10596    MF->insert(MBBIter, overflowMBB);
10597    MF->insert(MBBIter, endMBB);
10598
10599    // Transfer the remainder of MBB and its successor edges to endMBB.
10600    endMBB->splice(endMBB->begin(), thisMBB,
10601                    llvm::next(MachineBasicBlock::iterator(MI)),
10602                    thisMBB->end());
10603    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10604
10605    // Make offsetMBB and overflowMBB successors of thisMBB
10606    thisMBB->addSuccessor(offsetMBB);
10607    thisMBB->addSuccessor(overflowMBB);
10608
10609    // endMBB is a successor of both offsetMBB and overflowMBB
10610    offsetMBB->addSuccessor(endMBB);
10611    overflowMBB->addSuccessor(endMBB);
10612
10613    // Load the offset value into a register
10614    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10615    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
10616      .addOperand(Base)
10617      .addOperand(Scale)
10618      .addOperand(Index)
10619      .addDisp(Disp, UseFPOffset ? 4 : 0)
10620      .addOperand(Segment)
10621      .setMemRefs(MMOBegin, MMOEnd);
10622
10623    // Check if there is enough room left to pull this argument.
10624    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
10625      .addReg(OffsetReg)
10626      .addImm(MaxOffset + 8 - ArgSizeA8);
10627
10628    // Branch to "overflowMBB" if offset >= max
10629    // Fall through to "offsetMBB" otherwise
10630    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
10631      .addMBB(overflowMBB);
10632  }
10633
10634  // In offsetMBB, emit code to use the reg_save_area.
10635  if (offsetMBB) {
10636    assert(OffsetReg != 0);
10637
10638    // Read the reg_save_area address.
10639    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
10640    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
10641      .addOperand(Base)
10642      .addOperand(Scale)
10643      .addOperand(Index)
10644      .addDisp(Disp, 16)
10645      .addOperand(Segment)
10646      .setMemRefs(MMOBegin, MMOEnd);
10647
10648    // Zero-extend the offset
10649    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
10650      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
10651        .addImm(0)
10652        .addReg(OffsetReg)
10653        .addImm(X86::sub_32bit);
10654
10655    // Add the offset to the reg_save_area to get the final address.
10656    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
10657      .addReg(OffsetReg64)
10658      .addReg(RegSaveReg);
10659
10660    // Compute the offset for the next argument
10661    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10662    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
10663      .addReg(OffsetReg)
10664      .addImm(UseFPOffset ? 16 : 8);
10665
10666    // Store it back into the va_list.
10667    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
10668      .addOperand(Base)
10669      .addOperand(Scale)
10670      .addOperand(Index)
10671      .addDisp(Disp, UseFPOffset ? 4 : 0)
10672      .addOperand(Segment)
10673      .addReg(NextOffsetReg)
10674      .setMemRefs(MMOBegin, MMOEnd);
10675
10676    // Jump to endMBB
10677    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
10678      .addMBB(endMBB);
10679  }
10680
10681  //
10682  // Emit code to use overflow area
10683  //
10684
10685  // Load the overflow_area address into a register.
10686  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
10687  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
10688    .addOperand(Base)
10689    .addOperand(Scale)
10690    .addOperand(Index)
10691    .addDisp(Disp, 8)
10692    .addOperand(Segment)
10693    .setMemRefs(MMOBegin, MMOEnd);
10694
10695  // If we need to align it, do so. Otherwise, just copy the address
10696  // to OverflowDestReg.
10697  if (NeedsAlign) {
10698    // Align the overflow address
10699    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
10700    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
10701
10702    // aligned_addr = (addr + (align-1)) & ~(align-1)
10703    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
10704      .addReg(OverflowAddrReg)
10705      .addImm(Align-1);
10706
10707    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
10708      .addReg(TmpReg)
10709      .addImm(~(uint64_t)(Align-1));
10710  } else {
10711    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
10712      .addReg(OverflowAddrReg);
10713  }
10714
10715  // Compute the next overflow address after this argument.
10716  // (the overflow address should be kept 8-byte aligned)
10717  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
10718  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
10719    .addReg(OverflowDestReg)
10720    .addImm(ArgSizeA8);
10721
10722  // Store the new overflow address.
10723  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
10724    .addOperand(Base)
10725    .addOperand(Scale)
10726    .addOperand(Index)
10727    .addDisp(Disp, 8)
10728    .addOperand(Segment)
10729    .addReg(NextAddrReg)
10730    .setMemRefs(MMOBegin, MMOEnd);
10731
10732  // If we branched, emit the PHI to the front of endMBB.
10733  if (offsetMBB) {
10734    BuildMI(*endMBB, endMBB->begin(), DL,
10735            TII->get(X86::PHI), DestReg)
10736      .addReg(OffsetDestReg).addMBB(offsetMBB)
10737      .addReg(OverflowDestReg).addMBB(overflowMBB);
10738  }
10739
10740  // Erase the pseudo instruction
10741  MI->eraseFromParent();
10742
10743  return endMBB;
10744}
10745
10746MachineBasicBlock *
10747X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
10748                                                 MachineInstr *MI,
10749                                                 MachineBasicBlock *MBB) const {
10750  // Emit code to save XMM registers to the stack. The ABI says that the
10751  // number of registers to save is given in %al, so it's theoretically
10752  // possible to do an indirect jump trick to avoid saving all of them,
10753  // however this code takes a simpler approach and just executes all
10754  // of the stores if %al is non-zero. It's less code, and it's probably
10755  // easier on the hardware branch predictor, and stores aren't all that
10756  // expensive anyway.
10757
10758  // Create the new basic blocks. One block contains all the XMM stores,
10759  // and one block is the final destination regardless of whether any
10760  // stores were performed.
10761  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10762  MachineFunction *F = MBB->getParent();
10763  MachineFunction::iterator MBBIter = MBB;
10764  ++MBBIter;
10765  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
10766  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
10767  F->insert(MBBIter, XMMSaveMBB);
10768  F->insert(MBBIter, EndMBB);
10769
10770  // Transfer the remainder of MBB and its successor edges to EndMBB.
10771  EndMBB->splice(EndMBB->begin(), MBB,
10772                 llvm::next(MachineBasicBlock::iterator(MI)),
10773                 MBB->end());
10774  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
10775
10776  // The original block will now fall through to the XMM save block.
10777  MBB->addSuccessor(XMMSaveMBB);
10778  // The XMMSaveMBB will fall through to the end block.
10779  XMMSaveMBB->addSuccessor(EndMBB);
10780
10781  // Now add the instructions.
10782  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10783  DebugLoc DL = MI->getDebugLoc();
10784
10785  unsigned CountReg = MI->getOperand(0).getReg();
10786  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
10787  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
10788
10789  if (!Subtarget->isTargetWin64()) {
10790    // If %al is 0, branch around the XMM save block.
10791    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
10792    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
10793    MBB->addSuccessor(EndMBB);
10794  }
10795
10796  // In the XMM save block, save all the XMM argument registers.
10797  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
10798    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
10799    MachineMemOperand *MMO =
10800      F->getMachineMemOperand(
10801          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
10802        MachineMemOperand::MOStore,
10803        /*Size=*/16, /*Align=*/16);
10804    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
10805      .addFrameIndex(RegSaveFrameIndex)
10806      .addImm(/*Scale=*/1)
10807      .addReg(/*IndexReg=*/0)
10808      .addImm(/*Disp=*/Offset)
10809      .addReg(/*Segment=*/0)
10810      .addReg(MI->getOperand(i).getReg())
10811      .addMemOperand(MMO);
10812  }
10813
10814  MI->eraseFromParent();   // The pseudo instruction is gone now.
10815
10816  return EndMBB;
10817}
10818
10819MachineBasicBlock *
10820X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
10821                                     MachineBasicBlock *BB) const {
10822  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10823  DebugLoc DL = MI->getDebugLoc();
10824
10825  // To "insert" a SELECT_CC instruction, we actually have to insert the
10826  // diamond control-flow pattern.  The incoming instruction knows the
10827  // destination vreg to set, the condition code register to branch on, the
10828  // true/false values to select between, and a branch opcode to use.
10829  const BasicBlock *LLVM_BB = BB->getBasicBlock();
10830  MachineFunction::iterator It = BB;
10831  ++It;
10832
10833  //  thisMBB:
10834  //  ...
10835  //   TrueVal = ...
10836  //   cmpTY ccX, r1, r2
10837  //   bCC copy1MBB
10838  //   fallthrough --> copy0MBB
10839  MachineBasicBlock *thisMBB = BB;
10840  MachineFunction *F = BB->getParent();
10841  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10842  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10843  F->insert(It, copy0MBB);
10844  F->insert(It, sinkMBB);
10845
10846  // If the EFLAGS register isn't dead in the terminator, then claim that it's
10847  // live into the sink and copy blocks.
10848  const MachineFunction *MF = BB->getParent();
10849  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
10850  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
10851
10852  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
10853    const MachineOperand &MO = MI->getOperand(I);
10854    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
10855    unsigned Reg = MO.getReg();
10856    if (Reg != X86::EFLAGS) continue;
10857    copy0MBB->addLiveIn(Reg);
10858    sinkMBB->addLiveIn(Reg);
10859  }
10860
10861  // Transfer the remainder of BB and its successor edges to sinkMBB.
10862  sinkMBB->splice(sinkMBB->begin(), BB,
10863                  llvm::next(MachineBasicBlock::iterator(MI)),
10864                  BB->end());
10865  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10866
10867  // Add the true and fallthrough blocks as its successors.
10868  BB->addSuccessor(copy0MBB);
10869  BB->addSuccessor(sinkMBB);
10870
10871  // Create the conditional branch instruction.
10872  unsigned Opc =
10873    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
10874  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
10875
10876  //  copy0MBB:
10877  //   %FalseValue = ...
10878  //   # fallthrough to sinkMBB
10879  copy0MBB->addSuccessor(sinkMBB);
10880
10881  //  sinkMBB:
10882  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10883  //  ...
10884  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10885          TII->get(X86::PHI), MI->getOperand(0).getReg())
10886    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
10887    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
10888
10889  MI->eraseFromParent();   // The pseudo instruction is gone now.
10890  return sinkMBB;
10891}
10892
10893MachineBasicBlock *
10894X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
10895                                          MachineBasicBlock *BB) const {
10896  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10897  DebugLoc DL = MI->getDebugLoc();
10898
10899  assert(!Subtarget->isTargetEnvMacho());
10900
10901  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
10902  // non-trivial part is impdef of ESP.
10903
10904  if (Subtarget->isTargetWin64()) {
10905    if (Subtarget->isTargetCygMing()) {
10906      // ___chkstk(Mingw64):
10907      // Clobbers R10, R11, RAX and EFLAGS.
10908      // Updates RSP.
10909      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
10910        .addExternalSymbol("___chkstk")
10911        .addReg(X86::RAX, RegState::Implicit)
10912        .addReg(X86::RSP, RegState::Implicit)
10913        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
10914        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
10915        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10916    } else {
10917      // __chkstk(MSVCRT): does not update stack pointer.
10918      // Clobbers R10, R11 and EFLAGS.
10919      // FIXME: RAX(allocated size) might be reused and not killed.
10920      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
10921        .addExternalSymbol("__chkstk")
10922        .addReg(X86::RAX, RegState::Implicit)
10923        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10924      // RAX has the offset to subtracted from RSP.
10925      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
10926        .addReg(X86::RSP)
10927        .addReg(X86::RAX);
10928    }
10929  } else {
10930    const char *StackProbeSymbol =
10931      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
10932
10933    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
10934      .addExternalSymbol(StackProbeSymbol)
10935      .addReg(X86::EAX, RegState::Implicit)
10936      .addReg(X86::ESP, RegState::Implicit)
10937      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
10938      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
10939      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10940  }
10941
10942  MI->eraseFromParent();   // The pseudo instruction is gone now.
10943  return BB;
10944}
10945
10946MachineBasicBlock *
10947X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
10948                                      MachineBasicBlock *BB) const {
10949  // This is pretty easy.  We're taking the value that we received from
10950  // our load from the relocation, sticking it in either RDI (x86-64)
10951  // or EAX and doing an indirect call.  The return value will then
10952  // be in the normal return register.
10953  const X86InstrInfo *TII
10954    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
10955  DebugLoc DL = MI->getDebugLoc();
10956  MachineFunction *F = BB->getParent();
10957
10958  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
10959  assert(MI->getOperand(3).isGlobal() && "This should be a global");
10960
10961  if (Subtarget->is64Bit()) {
10962    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10963                                      TII->get(X86::MOV64rm), X86::RDI)
10964    .addReg(X86::RIP)
10965    .addImm(0).addReg(0)
10966    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10967                      MI->getOperand(3).getTargetFlags())
10968    .addReg(0);
10969    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
10970    addDirectMem(MIB, X86::RDI);
10971  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
10972    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10973                                      TII->get(X86::MOV32rm), X86::EAX)
10974    .addReg(0)
10975    .addImm(0).addReg(0)
10976    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10977                      MI->getOperand(3).getTargetFlags())
10978    .addReg(0);
10979    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10980    addDirectMem(MIB, X86::EAX);
10981  } else {
10982    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10983                                      TII->get(X86::MOV32rm), X86::EAX)
10984    .addReg(TII->getGlobalBaseReg(F))
10985    .addImm(0).addReg(0)
10986    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10987                      MI->getOperand(3).getTargetFlags())
10988    .addReg(0);
10989    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10990    addDirectMem(MIB, X86::EAX);
10991  }
10992
10993  MI->eraseFromParent(); // The pseudo instruction is gone now.
10994  return BB;
10995}
10996
10997MachineBasicBlock *
10998X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
10999                                               MachineBasicBlock *BB) const {
11000  switch (MI->getOpcode()) {
11001  default: assert(false && "Unexpected instr type to insert");
11002  case X86::TAILJMPd64:
11003  case X86::TAILJMPr64:
11004  case X86::TAILJMPm64:
11005    assert(!"TAILJMP64 would not be touched here.");
11006  case X86::TCRETURNdi64:
11007  case X86::TCRETURNri64:
11008  case X86::TCRETURNmi64:
11009    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
11010    // On AMD64, additional defs should be added before register allocation.
11011    if (!Subtarget->isTargetWin64()) {
11012      MI->addRegisterDefined(X86::RSI);
11013      MI->addRegisterDefined(X86::RDI);
11014      MI->addRegisterDefined(X86::XMM6);
11015      MI->addRegisterDefined(X86::XMM7);
11016      MI->addRegisterDefined(X86::XMM8);
11017      MI->addRegisterDefined(X86::XMM9);
11018      MI->addRegisterDefined(X86::XMM10);
11019      MI->addRegisterDefined(X86::XMM11);
11020      MI->addRegisterDefined(X86::XMM12);
11021      MI->addRegisterDefined(X86::XMM13);
11022      MI->addRegisterDefined(X86::XMM14);
11023      MI->addRegisterDefined(X86::XMM15);
11024    }
11025    return BB;
11026  case X86::WIN_ALLOCA:
11027    return EmitLoweredWinAlloca(MI, BB);
11028  case X86::TLSCall_32:
11029  case X86::TLSCall_64:
11030    return EmitLoweredTLSCall(MI, BB);
11031  case X86::CMOV_GR8:
11032  case X86::CMOV_FR32:
11033  case X86::CMOV_FR64:
11034  case X86::CMOV_V4F32:
11035  case X86::CMOV_V2F64:
11036  case X86::CMOV_V2I64:
11037  case X86::CMOV_GR16:
11038  case X86::CMOV_GR32:
11039  case X86::CMOV_RFP32:
11040  case X86::CMOV_RFP64:
11041  case X86::CMOV_RFP80:
11042    return EmitLoweredSelect(MI, BB);
11043
11044  case X86::FP32_TO_INT16_IN_MEM:
11045  case X86::FP32_TO_INT32_IN_MEM:
11046  case X86::FP32_TO_INT64_IN_MEM:
11047  case X86::FP64_TO_INT16_IN_MEM:
11048  case X86::FP64_TO_INT32_IN_MEM:
11049  case X86::FP64_TO_INT64_IN_MEM:
11050  case X86::FP80_TO_INT16_IN_MEM:
11051  case X86::FP80_TO_INT32_IN_MEM:
11052  case X86::FP80_TO_INT64_IN_MEM: {
11053    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11054    DebugLoc DL = MI->getDebugLoc();
11055
11056    // Change the floating point control register to use "round towards zero"
11057    // mode when truncating to an integer value.
11058    MachineFunction *F = BB->getParent();
11059    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
11060    addFrameReference(BuildMI(*BB, MI, DL,
11061                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
11062
11063    // Load the old value of the high byte of the control word...
11064    unsigned OldCW =
11065      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
11066    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
11067                      CWFrameIdx);
11068
11069    // Set the high part to be round to zero...
11070    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
11071      .addImm(0xC7F);
11072
11073    // Reload the modified control word now...
11074    addFrameReference(BuildMI(*BB, MI, DL,
11075                              TII->get(X86::FLDCW16m)), CWFrameIdx);
11076
11077    // Restore the memory image of control word to original value
11078    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
11079      .addReg(OldCW);
11080
11081    // Get the X86 opcode to use.
11082    unsigned Opc;
11083    switch (MI->getOpcode()) {
11084    default: llvm_unreachable("illegal opcode!");
11085    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
11086    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
11087    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
11088    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
11089    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
11090    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
11091    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
11092    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
11093    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
11094    }
11095
11096    X86AddressMode AM;
11097    MachineOperand &Op = MI->getOperand(0);
11098    if (Op.isReg()) {
11099      AM.BaseType = X86AddressMode::RegBase;
11100      AM.Base.Reg = Op.getReg();
11101    } else {
11102      AM.BaseType = X86AddressMode::FrameIndexBase;
11103      AM.Base.FrameIndex = Op.getIndex();
11104    }
11105    Op = MI->getOperand(1);
11106    if (Op.isImm())
11107      AM.Scale = Op.getImm();
11108    Op = MI->getOperand(2);
11109    if (Op.isImm())
11110      AM.IndexReg = Op.getImm();
11111    Op = MI->getOperand(3);
11112    if (Op.isGlobal()) {
11113      AM.GV = Op.getGlobal();
11114    } else {
11115      AM.Disp = Op.getImm();
11116    }
11117    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
11118                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
11119
11120    // Reload the original control word now.
11121    addFrameReference(BuildMI(*BB, MI, DL,
11122                              TII->get(X86::FLDCW16m)), CWFrameIdx);
11123
11124    MI->eraseFromParent();   // The pseudo instruction is gone now.
11125    return BB;
11126  }
11127    // String/text processing lowering.
11128  case X86::PCMPISTRM128REG:
11129  case X86::VPCMPISTRM128REG:
11130    return EmitPCMP(MI, BB, 3, false /* in-mem */);
11131  case X86::PCMPISTRM128MEM:
11132  case X86::VPCMPISTRM128MEM:
11133    return EmitPCMP(MI, BB, 3, true /* in-mem */);
11134  case X86::PCMPESTRM128REG:
11135  case X86::VPCMPESTRM128REG:
11136    return EmitPCMP(MI, BB, 5, false /* in mem */);
11137  case X86::PCMPESTRM128MEM:
11138  case X86::VPCMPESTRM128MEM:
11139    return EmitPCMP(MI, BB, 5, true /* in mem */);
11140
11141    // Thread synchronization.
11142  case X86::MONITOR:
11143    return EmitMonitor(MI, BB);
11144  case X86::MWAIT:
11145    return EmitMwait(MI, BB);
11146
11147    // Atomic Lowering.
11148  case X86::ATOMAND32:
11149    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
11150                                               X86::AND32ri, X86::MOV32rm,
11151                                               X86::LCMPXCHG32,
11152                                               X86::NOT32r, X86::EAX,
11153                                               X86::GR32RegisterClass);
11154  case X86::ATOMOR32:
11155    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
11156                                               X86::OR32ri, X86::MOV32rm,
11157                                               X86::LCMPXCHG32,
11158                                               X86::NOT32r, X86::EAX,
11159                                               X86::GR32RegisterClass);
11160  case X86::ATOMXOR32:
11161    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
11162                                               X86::XOR32ri, X86::MOV32rm,
11163                                               X86::LCMPXCHG32,
11164                                               X86::NOT32r, X86::EAX,
11165                                               X86::GR32RegisterClass);
11166  case X86::ATOMNAND32:
11167    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
11168                                               X86::AND32ri, X86::MOV32rm,
11169                                               X86::LCMPXCHG32,
11170                                               X86::NOT32r, X86::EAX,
11171                                               X86::GR32RegisterClass, true);
11172  case X86::ATOMMIN32:
11173    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
11174  case X86::ATOMMAX32:
11175    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
11176  case X86::ATOMUMIN32:
11177    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
11178  case X86::ATOMUMAX32:
11179    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
11180
11181  case X86::ATOMAND16:
11182    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
11183                                               X86::AND16ri, X86::MOV16rm,
11184                                               X86::LCMPXCHG16,
11185                                               X86::NOT16r, X86::AX,
11186                                               X86::GR16RegisterClass);
11187  case X86::ATOMOR16:
11188    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
11189                                               X86::OR16ri, X86::MOV16rm,
11190                                               X86::LCMPXCHG16,
11191                                               X86::NOT16r, X86::AX,
11192                                               X86::GR16RegisterClass);
11193  case X86::ATOMXOR16:
11194    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
11195                                               X86::XOR16ri, X86::MOV16rm,
11196                                               X86::LCMPXCHG16,
11197                                               X86::NOT16r, X86::AX,
11198                                               X86::GR16RegisterClass);
11199  case X86::ATOMNAND16:
11200    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
11201                                               X86::AND16ri, X86::MOV16rm,
11202                                               X86::LCMPXCHG16,
11203                                               X86::NOT16r, X86::AX,
11204                                               X86::GR16RegisterClass, true);
11205  case X86::ATOMMIN16:
11206    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
11207  case X86::ATOMMAX16:
11208    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
11209  case X86::ATOMUMIN16:
11210    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
11211  case X86::ATOMUMAX16:
11212    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
11213
11214  case X86::ATOMAND8:
11215    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
11216                                               X86::AND8ri, X86::MOV8rm,
11217                                               X86::LCMPXCHG8,
11218                                               X86::NOT8r, X86::AL,
11219                                               X86::GR8RegisterClass);
11220  case X86::ATOMOR8:
11221    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
11222                                               X86::OR8ri, X86::MOV8rm,
11223                                               X86::LCMPXCHG8,
11224                                               X86::NOT8r, X86::AL,
11225                                               X86::GR8RegisterClass);
11226  case X86::ATOMXOR8:
11227    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
11228                                               X86::XOR8ri, X86::MOV8rm,
11229                                               X86::LCMPXCHG8,
11230                                               X86::NOT8r, X86::AL,
11231                                               X86::GR8RegisterClass);
11232  case X86::ATOMNAND8:
11233    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
11234                                               X86::AND8ri, X86::MOV8rm,
11235                                               X86::LCMPXCHG8,
11236                                               X86::NOT8r, X86::AL,
11237                                               X86::GR8RegisterClass, true);
11238  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
11239  // This group is for 64-bit host.
11240  case X86::ATOMAND64:
11241    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
11242                                               X86::AND64ri32, X86::MOV64rm,
11243                                               X86::LCMPXCHG64,
11244                                               X86::NOT64r, X86::RAX,
11245                                               X86::GR64RegisterClass);
11246  case X86::ATOMOR64:
11247    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
11248                                               X86::OR64ri32, X86::MOV64rm,
11249                                               X86::LCMPXCHG64,
11250                                               X86::NOT64r, X86::RAX,
11251                                               X86::GR64RegisterClass);
11252  case X86::ATOMXOR64:
11253    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
11254                                               X86::XOR64ri32, X86::MOV64rm,
11255                                               X86::LCMPXCHG64,
11256                                               X86::NOT64r, X86::RAX,
11257                                               X86::GR64RegisterClass);
11258  case X86::ATOMNAND64:
11259    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
11260                                               X86::AND64ri32, X86::MOV64rm,
11261                                               X86::LCMPXCHG64,
11262                                               X86::NOT64r, X86::RAX,
11263                                               X86::GR64RegisterClass, true);
11264  case X86::ATOMMIN64:
11265    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
11266  case X86::ATOMMAX64:
11267    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
11268  case X86::ATOMUMIN64:
11269    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
11270  case X86::ATOMUMAX64:
11271    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
11272
11273  // This group does 64-bit operations on a 32-bit host.
11274  case X86::ATOMAND6432:
11275    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11276                                               X86::AND32rr, X86::AND32rr,
11277                                               X86::AND32ri, X86::AND32ri,
11278                                               false);
11279  case X86::ATOMOR6432:
11280    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11281                                               X86::OR32rr, X86::OR32rr,
11282                                               X86::OR32ri, X86::OR32ri,
11283                                               false);
11284  case X86::ATOMXOR6432:
11285    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11286                                               X86::XOR32rr, X86::XOR32rr,
11287                                               X86::XOR32ri, X86::XOR32ri,
11288                                               false);
11289  case X86::ATOMNAND6432:
11290    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11291                                               X86::AND32rr, X86::AND32rr,
11292                                               X86::AND32ri, X86::AND32ri,
11293                                               true);
11294  case X86::ATOMADD6432:
11295    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11296                                               X86::ADD32rr, X86::ADC32rr,
11297                                               X86::ADD32ri, X86::ADC32ri,
11298                                               false);
11299  case X86::ATOMSUB6432:
11300    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11301                                               X86::SUB32rr, X86::SBB32rr,
11302                                               X86::SUB32ri, X86::SBB32ri,
11303                                               false);
11304  case X86::ATOMSWAP6432:
11305    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11306                                               X86::MOV32rr, X86::MOV32rr,
11307                                               X86::MOV32ri, X86::MOV32ri,
11308                                               false);
11309  case X86::VASTART_SAVE_XMM_REGS:
11310    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
11311
11312  case X86::VAARG_64:
11313    return EmitVAARG64WithCustomInserter(MI, BB);
11314  }
11315}
11316
11317//===----------------------------------------------------------------------===//
11318//                           X86 Optimization Hooks
11319//===----------------------------------------------------------------------===//
11320
11321void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
11322                                                       const APInt &Mask,
11323                                                       APInt &KnownZero,
11324                                                       APInt &KnownOne,
11325                                                       const SelectionDAG &DAG,
11326                                                       unsigned Depth) const {
11327  unsigned Opc = Op.getOpcode();
11328  assert((Opc >= ISD::BUILTIN_OP_END ||
11329          Opc == ISD::INTRINSIC_WO_CHAIN ||
11330          Opc == ISD::INTRINSIC_W_CHAIN ||
11331          Opc == ISD::INTRINSIC_VOID) &&
11332         "Should use MaskedValueIsZero if you don't know whether Op"
11333         " is a target node!");
11334
11335  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
11336  switch (Opc) {
11337  default: break;
11338  case X86ISD::ADD:
11339  case X86ISD::SUB:
11340  case X86ISD::ADC:
11341  case X86ISD::SBB:
11342  case X86ISD::SMUL:
11343  case X86ISD::UMUL:
11344  case X86ISD::INC:
11345  case X86ISD::DEC:
11346  case X86ISD::OR:
11347  case X86ISD::XOR:
11348  case X86ISD::AND:
11349    // These nodes' second result is a boolean.
11350    if (Op.getResNo() == 0)
11351      break;
11352    // Fallthrough
11353  case X86ISD::SETCC:
11354    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
11355                                       Mask.getBitWidth() - 1);
11356    break;
11357  }
11358}
11359
11360unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
11361                                                         unsigned Depth) const {
11362  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
11363  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
11364    return Op.getValueType().getScalarType().getSizeInBits();
11365
11366  // Fallback case.
11367  return 1;
11368}
11369
11370/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
11371/// node is a GlobalAddress + offset.
11372bool X86TargetLowering::isGAPlusOffset(SDNode *N,
11373                                       const GlobalValue* &GA,
11374                                       int64_t &Offset) const {
11375  if (N->getOpcode() == X86ISD::Wrapper) {
11376    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
11377      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
11378      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
11379      return true;
11380    }
11381  }
11382  return TargetLowering::isGAPlusOffset(N, GA, Offset);
11383}
11384
11385/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
11386static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
11387                                        TargetLowering::DAGCombinerInfo &DCI) {
11388  DebugLoc dl = N->getDebugLoc();
11389  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
11390  SDValue V1 = SVOp->getOperand(0);
11391  SDValue V2 = SVOp->getOperand(1);
11392  EVT VT = SVOp->getValueType(0);
11393
11394  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
11395      V2.getOpcode() == ISD::CONCAT_VECTORS) {
11396    //
11397    //                   0,0,0,...
11398    //                      |
11399    //    V      UNDEF    BUILD_VECTOR    UNDEF
11400    //     \      /           \           /
11401    //  CONCAT_VECTOR         CONCAT_VECTOR
11402    //         \                  /
11403    //          \                /
11404    //          RESULT: V + zero extended
11405    //
11406    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
11407        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
11408        V1.getOperand(1).getOpcode() != ISD::UNDEF)
11409      return SDValue();
11410
11411    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
11412      return SDValue();
11413
11414    // To match the shuffle mask, the first half of the mask should
11415    // be exactly the first vector, and all the rest a splat with the
11416    // first element of the second one.
11417    int NumElems = VT.getVectorNumElements();
11418    for (int i = 0; i < NumElems/2; ++i)
11419      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
11420          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
11421        return SDValue();
11422
11423    // Emit a zeroed vector and insert the desired subvector on its
11424    // first half.
11425    SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, DAG, dl);
11426    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
11427                         DAG.getConstant(0, MVT::i32), DAG, dl);
11428    return DCI.CombineTo(N, InsV);
11429  }
11430
11431  return SDValue();
11432}
11433
11434/// PerformShuffleCombine - Performs several different shuffle combines.
11435static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
11436                                     TargetLowering::DAGCombinerInfo &DCI) {
11437  DebugLoc dl = N->getDebugLoc();
11438  EVT VT = N->getValueType(0);
11439
11440  // Don't create instructions with illegal types after legalize types has run.
11441  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11442  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
11443    return SDValue();
11444
11445  // Only handle pure VECTOR_SHUFFLE nodes.
11446  if (VT.getSizeInBits() == 256 && N->getOpcode() == ISD::VECTOR_SHUFFLE)
11447    return PerformShuffleCombine256(N, DAG, DCI);
11448
11449  // Only handle 128 wide vector from here on.
11450  if (VT.getSizeInBits() != 128)
11451    return SDValue();
11452
11453  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
11454  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
11455  // consecutive, non-overlapping, and in the right order.
11456  SmallVector<SDValue, 16> Elts;
11457  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
11458    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
11459
11460  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
11461}
11462
11463/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
11464/// generation and convert it from being a bunch of shuffles and extracts
11465/// to a simple store and scalar loads to extract the elements.
11466static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
11467                                                const TargetLowering &TLI) {
11468  SDValue InputVector = N->getOperand(0);
11469
11470  // Only operate on vectors of 4 elements, where the alternative shuffling
11471  // gets to be more expensive.
11472  if (InputVector.getValueType() != MVT::v4i32)
11473    return SDValue();
11474
11475  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
11476  // single use which is a sign-extend or zero-extend, and all elements are
11477  // used.
11478  SmallVector<SDNode *, 4> Uses;
11479  unsigned ExtractedElements = 0;
11480  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
11481       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
11482    if (UI.getUse().getResNo() != InputVector.getResNo())
11483      return SDValue();
11484
11485    SDNode *Extract = *UI;
11486    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11487      return SDValue();
11488
11489    if (Extract->getValueType(0) != MVT::i32)
11490      return SDValue();
11491    if (!Extract->hasOneUse())
11492      return SDValue();
11493    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
11494        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
11495      return SDValue();
11496    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
11497      return SDValue();
11498
11499    // Record which element was extracted.
11500    ExtractedElements |=
11501      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
11502
11503    Uses.push_back(Extract);
11504  }
11505
11506  // If not all the elements were used, this may not be worthwhile.
11507  if (ExtractedElements != 15)
11508    return SDValue();
11509
11510  // Ok, we've now decided to do the transformation.
11511  DebugLoc dl = InputVector.getDebugLoc();
11512
11513  // Store the value to a temporary stack slot.
11514  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
11515  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
11516                            MachinePointerInfo(), false, false, 0);
11517
11518  // Replace each use (extract) with a load of the appropriate element.
11519  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
11520       UE = Uses.end(); UI != UE; ++UI) {
11521    SDNode *Extract = *UI;
11522
11523    // cOMpute the element's address.
11524    SDValue Idx = Extract->getOperand(1);
11525    unsigned EltSize =
11526        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
11527    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
11528    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
11529
11530    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
11531                                     StackPtr, OffsetVal);
11532
11533    // Load the scalar.
11534    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
11535                                     ScalarAddr, MachinePointerInfo(),
11536                                     false, false, 0);
11537
11538    // Replace the exact with the load.
11539    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
11540  }
11541
11542  // The replacement was made in place; don't return anything.
11543  return SDValue();
11544}
11545
11546/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
11547static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
11548                                    const X86Subtarget *Subtarget) {
11549  DebugLoc DL = N->getDebugLoc();
11550  SDValue Cond = N->getOperand(0);
11551  // Get the LHS/RHS of the select.
11552  SDValue LHS = N->getOperand(1);
11553  SDValue RHS = N->getOperand(2);
11554
11555  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
11556  // instructions match the semantics of the common C idiom x<y?x:y but not
11557  // x<=y?x:y, because of how they handle negative zero (which can be
11558  // ignored in unsafe-math mode).
11559  if (Subtarget->hasSSE2() &&
11560      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
11561      Cond.getOpcode() == ISD::SETCC) {
11562    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
11563
11564    unsigned Opcode = 0;
11565    // Check for x CC y ? x : y.
11566    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
11567        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
11568      switch (CC) {
11569      default: break;
11570      case ISD::SETULT:
11571        // Converting this to a min would handle NaNs incorrectly, and swapping
11572        // the operands would cause it to handle comparisons between positive
11573        // and negative zero incorrectly.
11574        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11575          if (!UnsafeFPMath &&
11576              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11577            break;
11578          std::swap(LHS, RHS);
11579        }
11580        Opcode = X86ISD::FMIN;
11581        break;
11582      case ISD::SETOLE:
11583        // Converting this to a min would handle comparisons between positive
11584        // and negative zero incorrectly.
11585        if (!UnsafeFPMath &&
11586            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
11587          break;
11588        Opcode = X86ISD::FMIN;
11589        break;
11590      case ISD::SETULE:
11591        // Converting this to a min would handle both negative zeros and NaNs
11592        // incorrectly, but we can swap the operands to fix both.
11593        std::swap(LHS, RHS);
11594      case ISD::SETOLT:
11595      case ISD::SETLT:
11596      case ISD::SETLE:
11597        Opcode = X86ISD::FMIN;
11598        break;
11599
11600      case ISD::SETOGE:
11601        // Converting this to a max would handle comparisons between positive
11602        // and negative zero incorrectly.
11603        if (!UnsafeFPMath &&
11604            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
11605          break;
11606        Opcode = X86ISD::FMAX;
11607        break;
11608      case ISD::SETUGT:
11609        // Converting this to a max would handle NaNs incorrectly, and swapping
11610        // the operands would cause it to handle comparisons between positive
11611        // and negative zero incorrectly.
11612        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11613          if (!UnsafeFPMath &&
11614              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11615            break;
11616          std::swap(LHS, RHS);
11617        }
11618        Opcode = X86ISD::FMAX;
11619        break;
11620      case ISD::SETUGE:
11621        // Converting this to a max would handle both negative zeros and NaNs
11622        // incorrectly, but we can swap the operands to fix both.
11623        std::swap(LHS, RHS);
11624      case ISD::SETOGT:
11625      case ISD::SETGT:
11626      case ISD::SETGE:
11627        Opcode = X86ISD::FMAX;
11628        break;
11629      }
11630    // Check for x CC y ? y : x -- a min/max with reversed arms.
11631    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
11632               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
11633      switch (CC) {
11634      default: break;
11635      case ISD::SETOGE:
11636        // Converting this to a min would handle comparisons between positive
11637        // and negative zero incorrectly, and swapping the operands would
11638        // cause it to handle NaNs incorrectly.
11639        if (!UnsafeFPMath &&
11640            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
11641          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11642            break;
11643          std::swap(LHS, RHS);
11644        }
11645        Opcode = X86ISD::FMIN;
11646        break;
11647      case ISD::SETUGT:
11648        // Converting this to a min would handle NaNs incorrectly.
11649        if (!UnsafeFPMath &&
11650            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
11651          break;
11652        Opcode = X86ISD::FMIN;
11653        break;
11654      case ISD::SETUGE:
11655        // Converting this to a min would handle both negative zeros and NaNs
11656        // incorrectly, but we can swap the operands to fix both.
11657        std::swap(LHS, RHS);
11658      case ISD::SETOGT:
11659      case ISD::SETGT:
11660      case ISD::SETGE:
11661        Opcode = X86ISD::FMIN;
11662        break;
11663
11664      case ISD::SETULT:
11665        // Converting this to a max would handle NaNs incorrectly.
11666        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11667          break;
11668        Opcode = X86ISD::FMAX;
11669        break;
11670      case ISD::SETOLE:
11671        // Converting this to a max would handle comparisons between positive
11672        // and negative zero incorrectly, and swapping the operands would
11673        // cause it to handle NaNs incorrectly.
11674        if (!UnsafeFPMath &&
11675            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
11676          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11677            break;
11678          std::swap(LHS, RHS);
11679        }
11680        Opcode = X86ISD::FMAX;
11681        break;
11682      case ISD::SETULE:
11683        // Converting this to a max would handle both negative zeros and NaNs
11684        // incorrectly, but we can swap the operands to fix both.
11685        std::swap(LHS, RHS);
11686      case ISD::SETOLT:
11687      case ISD::SETLT:
11688      case ISD::SETLE:
11689        Opcode = X86ISD::FMAX;
11690        break;
11691      }
11692    }
11693
11694    if (Opcode)
11695      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
11696  }
11697
11698  // If this is a select between two integer constants, try to do some
11699  // optimizations.
11700  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
11701    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
11702      // Don't do this for crazy integer types.
11703      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
11704        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
11705        // so that TrueC (the true value) is larger than FalseC.
11706        bool NeedsCondInvert = false;
11707
11708        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
11709            // Efficiently invertible.
11710            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
11711             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
11712              isa<ConstantSDNode>(Cond.getOperand(1))))) {
11713          NeedsCondInvert = true;
11714          std::swap(TrueC, FalseC);
11715        }
11716
11717        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
11718        if (FalseC->getAPIntValue() == 0 &&
11719            TrueC->getAPIntValue().isPowerOf2()) {
11720          if (NeedsCondInvert) // Invert the condition if needed.
11721            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11722                               DAG.getConstant(1, Cond.getValueType()));
11723
11724          // Zero extend the condition if needed.
11725          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
11726
11727          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11728          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
11729                             DAG.getConstant(ShAmt, MVT::i8));
11730        }
11731
11732        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
11733        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11734          if (NeedsCondInvert) // Invert the condition if needed.
11735            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11736                               DAG.getConstant(1, Cond.getValueType()));
11737
11738          // Zero extend the condition if needed.
11739          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11740                             FalseC->getValueType(0), Cond);
11741          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11742                             SDValue(FalseC, 0));
11743        }
11744
11745        // Optimize cases that will turn into an LEA instruction.  This requires
11746        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11747        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11748          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11749          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11750
11751          bool isFastMultiplier = false;
11752          if (Diff < 10) {
11753            switch ((unsigned char)Diff) {
11754              default: break;
11755              case 1:  // result = add base, cond
11756              case 2:  // result = lea base(    , cond*2)
11757              case 3:  // result = lea base(cond, cond*2)
11758              case 4:  // result = lea base(    , cond*4)
11759              case 5:  // result = lea base(cond, cond*4)
11760              case 8:  // result = lea base(    , cond*8)
11761              case 9:  // result = lea base(cond, cond*8)
11762                isFastMultiplier = true;
11763                break;
11764            }
11765          }
11766
11767          if (isFastMultiplier) {
11768            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11769            if (NeedsCondInvert) // Invert the condition if needed.
11770              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11771                                 DAG.getConstant(1, Cond.getValueType()));
11772
11773            // Zero extend the condition if needed.
11774            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11775                               Cond);
11776            // Scale the condition by the difference.
11777            if (Diff != 1)
11778              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11779                                 DAG.getConstant(Diff, Cond.getValueType()));
11780
11781            // Add the base if non-zero.
11782            if (FalseC->getAPIntValue() != 0)
11783              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11784                                 SDValue(FalseC, 0));
11785            return Cond;
11786          }
11787        }
11788      }
11789  }
11790
11791  return SDValue();
11792}
11793
11794/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
11795static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
11796                                  TargetLowering::DAGCombinerInfo &DCI) {
11797  DebugLoc DL = N->getDebugLoc();
11798
11799  // If the flag operand isn't dead, don't touch this CMOV.
11800  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
11801    return SDValue();
11802
11803  SDValue FalseOp = N->getOperand(0);
11804  SDValue TrueOp = N->getOperand(1);
11805  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
11806  SDValue Cond = N->getOperand(3);
11807  if (CC == X86::COND_E || CC == X86::COND_NE) {
11808    switch (Cond.getOpcode()) {
11809    default: break;
11810    case X86ISD::BSR:
11811    case X86ISD::BSF:
11812      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
11813      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
11814        return (CC == X86::COND_E) ? FalseOp : TrueOp;
11815    }
11816  }
11817
11818  // If this is a select between two integer constants, try to do some
11819  // optimizations.  Note that the operands are ordered the opposite of SELECT
11820  // operands.
11821  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
11822    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
11823      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
11824      // larger than FalseC (the false value).
11825      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
11826        CC = X86::GetOppositeBranchCondition(CC);
11827        std::swap(TrueC, FalseC);
11828      }
11829
11830      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
11831      // This is efficient for any integer data type (including i8/i16) and
11832      // shift amount.
11833      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
11834        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11835                           DAG.getConstant(CC, MVT::i8), Cond);
11836
11837        // Zero extend the condition if needed.
11838        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
11839
11840        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11841        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
11842                           DAG.getConstant(ShAmt, MVT::i8));
11843        if (N->getNumValues() == 2)  // Dead flag value?
11844          return DCI.CombineTo(N, Cond, SDValue());
11845        return Cond;
11846      }
11847
11848      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
11849      // for any integer data type, including i8/i16.
11850      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11851        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11852                           DAG.getConstant(CC, MVT::i8), Cond);
11853
11854        // Zero extend the condition if needed.
11855        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11856                           FalseC->getValueType(0), Cond);
11857        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11858                           SDValue(FalseC, 0));
11859
11860        if (N->getNumValues() == 2)  // Dead flag value?
11861          return DCI.CombineTo(N, Cond, SDValue());
11862        return Cond;
11863      }
11864
11865      // Optimize cases that will turn into an LEA instruction.  This requires
11866      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11867      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11868        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11869        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11870
11871        bool isFastMultiplier = false;
11872        if (Diff < 10) {
11873          switch ((unsigned char)Diff) {
11874          default: break;
11875          case 1:  // result = add base, cond
11876          case 2:  // result = lea base(    , cond*2)
11877          case 3:  // result = lea base(cond, cond*2)
11878          case 4:  // result = lea base(    , cond*4)
11879          case 5:  // result = lea base(cond, cond*4)
11880          case 8:  // result = lea base(    , cond*8)
11881          case 9:  // result = lea base(cond, cond*8)
11882            isFastMultiplier = true;
11883            break;
11884          }
11885        }
11886
11887        if (isFastMultiplier) {
11888          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11889          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11890                             DAG.getConstant(CC, MVT::i8), Cond);
11891          // Zero extend the condition if needed.
11892          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11893                             Cond);
11894          // Scale the condition by the difference.
11895          if (Diff != 1)
11896            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11897                               DAG.getConstant(Diff, Cond.getValueType()));
11898
11899          // Add the base if non-zero.
11900          if (FalseC->getAPIntValue() != 0)
11901            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11902                               SDValue(FalseC, 0));
11903          if (N->getNumValues() == 2)  // Dead flag value?
11904            return DCI.CombineTo(N, Cond, SDValue());
11905          return Cond;
11906        }
11907      }
11908    }
11909  }
11910  return SDValue();
11911}
11912
11913
11914/// PerformMulCombine - Optimize a single multiply with constant into two
11915/// in order to implement it with two cheaper instructions, e.g.
11916/// LEA + SHL, LEA + LEA.
11917static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
11918                                 TargetLowering::DAGCombinerInfo &DCI) {
11919  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11920    return SDValue();
11921
11922  EVT VT = N->getValueType(0);
11923  if (VT != MVT::i64)
11924    return SDValue();
11925
11926  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11927  if (!C)
11928    return SDValue();
11929  uint64_t MulAmt = C->getZExtValue();
11930  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
11931    return SDValue();
11932
11933  uint64_t MulAmt1 = 0;
11934  uint64_t MulAmt2 = 0;
11935  if ((MulAmt % 9) == 0) {
11936    MulAmt1 = 9;
11937    MulAmt2 = MulAmt / 9;
11938  } else if ((MulAmt % 5) == 0) {
11939    MulAmt1 = 5;
11940    MulAmt2 = MulAmt / 5;
11941  } else if ((MulAmt % 3) == 0) {
11942    MulAmt1 = 3;
11943    MulAmt2 = MulAmt / 3;
11944  }
11945  if (MulAmt2 &&
11946      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
11947    DebugLoc DL = N->getDebugLoc();
11948
11949    if (isPowerOf2_64(MulAmt2) &&
11950        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
11951      // If second multiplifer is pow2, issue it first. We want the multiply by
11952      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
11953      // is an add.
11954      std::swap(MulAmt1, MulAmt2);
11955
11956    SDValue NewMul;
11957    if (isPowerOf2_64(MulAmt1))
11958      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
11959                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
11960    else
11961      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
11962                           DAG.getConstant(MulAmt1, VT));
11963
11964    if (isPowerOf2_64(MulAmt2))
11965      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
11966                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
11967    else
11968      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
11969                           DAG.getConstant(MulAmt2, VT));
11970
11971    // Do not add new nodes to DAG combiner worklist.
11972    DCI.CombineTo(N, NewMul, false);
11973  }
11974  return SDValue();
11975}
11976
11977static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
11978  SDValue N0 = N->getOperand(0);
11979  SDValue N1 = N->getOperand(1);
11980  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
11981  EVT VT = N0.getValueType();
11982
11983  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
11984  // since the result of setcc_c is all zero's or all ones.
11985  if (N1C && N0.getOpcode() == ISD::AND &&
11986      N0.getOperand(1).getOpcode() == ISD::Constant) {
11987    SDValue N00 = N0.getOperand(0);
11988    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
11989        ((N00.getOpcode() == ISD::ANY_EXTEND ||
11990          N00.getOpcode() == ISD::ZERO_EXTEND) &&
11991         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
11992      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
11993      APInt ShAmt = N1C->getAPIntValue();
11994      Mask = Mask.shl(ShAmt);
11995      if (Mask != 0)
11996        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
11997                           N00, DAG.getConstant(Mask, VT));
11998    }
11999  }
12000
12001  return SDValue();
12002}
12003
12004/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
12005///                       when possible.
12006static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
12007                                   const X86Subtarget *Subtarget) {
12008  EVT VT = N->getValueType(0);
12009  if (!VT.isVector() && VT.isInteger() &&
12010      N->getOpcode() == ISD::SHL)
12011    return PerformSHLCombine(N, DAG);
12012
12013  // On X86 with SSE2 support, we can transform this to a vector shift if
12014  // all elements are shifted by the same amount.  We can't do this in legalize
12015  // because the a constant vector is typically transformed to a constant pool
12016  // so we have no knowledge of the shift amount.
12017  if (!Subtarget->hasSSE2())
12018    return SDValue();
12019
12020  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
12021    return SDValue();
12022
12023  SDValue ShAmtOp = N->getOperand(1);
12024  EVT EltVT = VT.getVectorElementType();
12025  DebugLoc DL = N->getDebugLoc();
12026  SDValue BaseShAmt = SDValue();
12027  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
12028    unsigned NumElts = VT.getVectorNumElements();
12029    unsigned i = 0;
12030    for (; i != NumElts; ++i) {
12031      SDValue Arg = ShAmtOp.getOperand(i);
12032      if (Arg.getOpcode() == ISD::UNDEF) continue;
12033      BaseShAmt = Arg;
12034      break;
12035    }
12036    for (; i != NumElts; ++i) {
12037      SDValue Arg = ShAmtOp.getOperand(i);
12038      if (Arg.getOpcode() == ISD::UNDEF) continue;
12039      if (Arg != BaseShAmt) {
12040        return SDValue();
12041      }
12042    }
12043  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
12044             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
12045    SDValue InVec = ShAmtOp.getOperand(0);
12046    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
12047      unsigned NumElts = InVec.getValueType().getVectorNumElements();
12048      unsigned i = 0;
12049      for (; i != NumElts; ++i) {
12050        SDValue Arg = InVec.getOperand(i);
12051        if (Arg.getOpcode() == ISD::UNDEF) continue;
12052        BaseShAmt = Arg;
12053        break;
12054      }
12055    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
12056       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
12057         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
12058         if (C->getZExtValue() == SplatIdx)
12059           BaseShAmt = InVec.getOperand(1);
12060       }
12061    }
12062    if (BaseShAmt.getNode() == 0)
12063      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
12064                              DAG.getIntPtrConstant(0));
12065  } else
12066    return SDValue();
12067
12068  // The shift amount is an i32.
12069  if (EltVT.bitsGT(MVT::i32))
12070    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
12071  else if (EltVT.bitsLT(MVT::i32))
12072    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
12073
12074  // The shift amount is identical so we can do a vector shift.
12075  SDValue  ValOp = N->getOperand(0);
12076  switch (N->getOpcode()) {
12077  default:
12078    llvm_unreachable("Unknown shift opcode!");
12079    break;
12080  case ISD::SHL:
12081    if (VT == MVT::v2i64)
12082      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12083                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
12084                         ValOp, BaseShAmt);
12085    if (VT == MVT::v4i32)
12086      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12087                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
12088                         ValOp, BaseShAmt);
12089    if (VT == MVT::v8i16)
12090      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12091                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
12092                         ValOp, BaseShAmt);
12093    break;
12094  case ISD::SRA:
12095    if (VT == MVT::v4i32)
12096      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12097                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
12098                         ValOp, BaseShAmt);
12099    if (VT == MVT::v8i16)
12100      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12101                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
12102                         ValOp, BaseShAmt);
12103    break;
12104  case ISD::SRL:
12105    if (VT == MVT::v2i64)
12106      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12107                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
12108                         ValOp, BaseShAmt);
12109    if (VT == MVT::v4i32)
12110      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12111                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
12112                         ValOp, BaseShAmt);
12113    if (VT ==  MVT::v8i16)
12114      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12115                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
12116                         ValOp, BaseShAmt);
12117    break;
12118  }
12119  return SDValue();
12120}
12121
12122
12123// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
12124// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
12125// and friends.  Likewise for OR -> CMPNEQSS.
12126static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
12127                            TargetLowering::DAGCombinerInfo &DCI,
12128                            const X86Subtarget *Subtarget) {
12129  unsigned opcode;
12130
12131  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
12132  // we're requiring SSE2 for both.
12133  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
12134    SDValue N0 = N->getOperand(0);
12135    SDValue N1 = N->getOperand(1);
12136    SDValue CMP0 = N0->getOperand(1);
12137    SDValue CMP1 = N1->getOperand(1);
12138    DebugLoc DL = N->getDebugLoc();
12139
12140    // The SETCCs should both refer to the same CMP.
12141    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
12142      return SDValue();
12143
12144    SDValue CMP00 = CMP0->getOperand(0);
12145    SDValue CMP01 = CMP0->getOperand(1);
12146    EVT     VT    = CMP00.getValueType();
12147
12148    if (VT == MVT::f32 || VT == MVT::f64) {
12149      bool ExpectingFlags = false;
12150      // Check for any users that want flags:
12151      for (SDNode::use_iterator UI = N->use_begin(),
12152             UE = N->use_end();
12153           !ExpectingFlags && UI != UE; ++UI)
12154        switch (UI->getOpcode()) {
12155        default:
12156        case ISD::BR_CC:
12157        case ISD::BRCOND:
12158        case ISD::SELECT:
12159          ExpectingFlags = true;
12160          break;
12161        case ISD::CopyToReg:
12162        case ISD::SIGN_EXTEND:
12163        case ISD::ZERO_EXTEND:
12164        case ISD::ANY_EXTEND:
12165          break;
12166        }
12167
12168      if (!ExpectingFlags) {
12169        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
12170        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
12171
12172        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
12173          X86::CondCode tmp = cc0;
12174          cc0 = cc1;
12175          cc1 = tmp;
12176        }
12177
12178        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
12179            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
12180          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
12181          X86ISD::NodeType NTOperator = is64BitFP ?
12182            X86ISD::FSETCCsd : X86ISD::FSETCCss;
12183          // FIXME: need symbolic constants for these magic numbers.
12184          // See X86ATTInstPrinter.cpp:printSSECC().
12185          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
12186          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
12187                                              DAG.getConstant(x86cc, MVT::i8));
12188          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
12189                                              OnesOrZeroesF);
12190          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
12191                                      DAG.getConstant(1, MVT::i32));
12192          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
12193          return OneBitOfTruth;
12194        }
12195      }
12196    }
12197  }
12198  return SDValue();
12199}
12200
12201/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
12202/// so it can be folded inside ANDNP.
12203static bool CanFoldXORWithAllOnes(const SDNode *N) {
12204  EVT VT = N->getValueType(0);
12205
12206  // Match direct AllOnes for 128 and 256-bit vectors
12207  if (ISD::isBuildVectorAllOnes(N))
12208    return true;
12209
12210  // Look through a bit convert.
12211  if (N->getOpcode() == ISD::BITCAST)
12212    N = N->getOperand(0).getNode();
12213
12214  // Sometimes the operand may come from a insert_subvector building a 256-bit
12215  // allones vector
12216  SDValue V1 = N->getOperand(0);
12217  SDValue V2 = N->getOperand(1);
12218
12219  if (VT.getSizeInBits() == 256 &&
12220      N->getOpcode() == ISD::INSERT_SUBVECTOR &&
12221      V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
12222      V1.getOperand(0).getOpcode() == ISD::UNDEF &&
12223      ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
12224      ISD::isBuildVectorAllOnes(V2.getNode()))
12225    return true;
12226
12227  return false;
12228}
12229
12230static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
12231                                 TargetLowering::DAGCombinerInfo &DCI,
12232                                 const X86Subtarget *Subtarget) {
12233  if (DCI.isBeforeLegalizeOps())
12234    return SDValue();
12235
12236  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
12237  if (R.getNode())
12238    return R;
12239
12240  // Want to form ANDNP nodes:
12241  // 1) In the hopes of then easily combining them with OR and AND nodes
12242  //    to form PBLEND/PSIGN.
12243  // 2) To match ANDN packed intrinsics
12244  EVT VT = N->getValueType(0);
12245  if (VT != MVT::v2i64 && VT != MVT::v4i64)
12246    return SDValue();
12247
12248  SDValue N0 = N->getOperand(0);
12249  SDValue N1 = N->getOperand(1);
12250  DebugLoc DL = N->getDebugLoc();
12251
12252  // Check LHS for vnot
12253  if (N0.getOpcode() == ISD::XOR &&
12254      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
12255      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
12256    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
12257
12258  // Check RHS for vnot
12259  if (N1.getOpcode() == ISD::XOR &&
12260      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
12261      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
12262    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
12263
12264  return SDValue();
12265}
12266
12267static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
12268                                TargetLowering::DAGCombinerInfo &DCI,
12269                                const X86Subtarget *Subtarget) {
12270  if (DCI.isBeforeLegalizeOps())
12271    return SDValue();
12272
12273  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
12274  if (R.getNode())
12275    return R;
12276
12277  EVT VT = N->getValueType(0);
12278  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
12279    return SDValue();
12280
12281  SDValue N0 = N->getOperand(0);
12282  SDValue N1 = N->getOperand(1);
12283
12284  // look for psign/blend
12285  if (Subtarget->hasSSSE3()) {
12286    if (VT == MVT::v2i64) {
12287      // Canonicalize pandn to RHS
12288      if (N0.getOpcode() == X86ISD::ANDNP)
12289        std::swap(N0, N1);
12290      // or (and (m, x), (pandn m, y))
12291      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
12292        SDValue Mask = N1.getOperand(0);
12293        SDValue X    = N1.getOperand(1);
12294        SDValue Y;
12295        if (N0.getOperand(0) == Mask)
12296          Y = N0.getOperand(1);
12297        if (N0.getOperand(1) == Mask)
12298          Y = N0.getOperand(0);
12299
12300        // Check to see if the mask appeared in both the AND and ANDNP and
12301        if (!Y.getNode())
12302          return SDValue();
12303
12304        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
12305        if (Mask.getOpcode() != ISD::BITCAST ||
12306            X.getOpcode() != ISD::BITCAST ||
12307            Y.getOpcode() != ISD::BITCAST)
12308          return SDValue();
12309
12310        // Look through mask bitcast.
12311        Mask = Mask.getOperand(0);
12312        EVT MaskVT = Mask.getValueType();
12313
12314        // Validate that the Mask operand is a vector sra node.  The sra node
12315        // will be an intrinsic.
12316        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
12317          return SDValue();
12318
12319        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
12320        // there is no psrai.b
12321        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
12322        case Intrinsic::x86_sse2_psrai_w:
12323        case Intrinsic::x86_sse2_psrai_d:
12324          break;
12325        default: return SDValue();
12326        }
12327
12328        // Check that the SRA is all signbits.
12329        SDValue SraC = Mask.getOperand(2);
12330        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
12331        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
12332        if ((SraAmt + 1) != EltBits)
12333          return SDValue();
12334
12335        DebugLoc DL = N->getDebugLoc();
12336
12337        // Now we know we at least have a plendvb with the mask val.  See if
12338        // we can form a psignb/w/d.
12339        // psign = x.type == y.type == mask.type && y = sub(0, x);
12340        X = X.getOperand(0);
12341        Y = Y.getOperand(0);
12342        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
12343            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
12344            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
12345          unsigned Opc = 0;
12346          switch (EltBits) {
12347          case 8: Opc = X86ISD::PSIGNB; break;
12348          case 16: Opc = X86ISD::PSIGNW; break;
12349          case 32: Opc = X86ISD::PSIGND; break;
12350          default: break;
12351          }
12352          if (Opc) {
12353            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
12354            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
12355          }
12356        }
12357        // PBLENDVB only available on SSE 4.1
12358        if (!Subtarget->hasSSE41())
12359          return SDValue();
12360
12361        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
12362        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
12363        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
12364        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
12365        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
12366      }
12367    }
12368  }
12369
12370  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
12371  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
12372    std::swap(N0, N1);
12373  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
12374    return SDValue();
12375  if (!N0.hasOneUse() || !N1.hasOneUse())
12376    return SDValue();
12377
12378  SDValue ShAmt0 = N0.getOperand(1);
12379  if (ShAmt0.getValueType() != MVT::i8)
12380    return SDValue();
12381  SDValue ShAmt1 = N1.getOperand(1);
12382  if (ShAmt1.getValueType() != MVT::i8)
12383    return SDValue();
12384  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
12385    ShAmt0 = ShAmt0.getOperand(0);
12386  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
12387    ShAmt1 = ShAmt1.getOperand(0);
12388
12389  DebugLoc DL = N->getDebugLoc();
12390  unsigned Opc = X86ISD::SHLD;
12391  SDValue Op0 = N0.getOperand(0);
12392  SDValue Op1 = N1.getOperand(0);
12393  if (ShAmt0.getOpcode() == ISD::SUB) {
12394    Opc = X86ISD::SHRD;
12395    std::swap(Op0, Op1);
12396    std::swap(ShAmt0, ShAmt1);
12397  }
12398
12399  unsigned Bits = VT.getSizeInBits();
12400  if (ShAmt1.getOpcode() == ISD::SUB) {
12401    SDValue Sum = ShAmt1.getOperand(0);
12402    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
12403      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
12404      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
12405        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
12406      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
12407        return DAG.getNode(Opc, DL, VT,
12408                           Op0, Op1,
12409                           DAG.getNode(ISD::TRUNCATE, DL,
12410                                       MVT::i8, ShAmt0));
12411    }
12412  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
12413    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
12414    if (ShAmt0C &&
12415        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
12416      return DAG.getNode(Opc, DL, VT,
12417                         N0.getOperand(0), N1.getOperand(0),
12418                         DAG.getNode(ISD::TRUNCATE, DL,
12419                                       MVT::i8, ShAmt0));
12420  }
12421
12422  return SDValue();
12423}
12424
12425/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
12426static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
12427                                   const X86Subtarget *Subtarget) {
12428  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
12429  // the FP state in cases where an emms may be missing.
12430  // A preferable solution to the general problem is to figure out the right
12431  // places to insert EMMS.  This qualifies as a quick hack.
12432
12433  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
12434  StoreSDNode *St = cast<StoreSDNode>(N);
12435  EVT VT = St->getValue().getValueType();
12436  if (VT.getSizeInBits() != 64)
12437    return SDValue();
12438
12439  const Function *F = DAG.getMachineFunction().getFunction();
12440  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
12441  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
12442    && Subtarget->hasSSE2();
12443  if ((VT.isVector() ||
12444       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
12445      isa<LoadSDNode>(St->getValue()) &&
12446      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
12447      St->getChain().hasOneUse() && !St->isVolatile()) {
12448    SDNode* LdVal = St->getValue().getNode();
12449    LoadSDNode *Ld = 0;
12450    int TokenFactorIndex = -1;
12451    SmallVector<SDValue, 8> Ops;
12452    SDNode* ChainVal = St->getChain().getNode();
12453    // Must be a store of a load.  We currently handle two cases:  the load
12454    // is a direct child, and it's under an intervening TokenFactor.  It is
12455    // possible to dig deeper under nested TokenFactors.
12456    if (ChainVal == LdVal)
12457      Ld = cast<LoadSDNode>(St->getChain());
12458    else if (St->getValue().hasOneUse() &&
12459             ChainVal->getOpcode() == ISD::TokenFactor) {
12460      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
12461        if (ChainVal->getOperand(i).getNode() == LdVal) {
12462          TokenFactorIndex = i;
12463          Ld = cast<LoadSDNode>(St->getValue());
12464        } else
12465          Ops.push_back(ChainVal->getOperand(i));
12466      }
12467    }
12468
12469    if (!Ld || !ISD::isNormalLoad(Ld))
12470      return SDValue();
12471
12472    // If this is not the MMX case, i.e. we are just turning i64 load/store
12473    // into f64 load/store, avoid the transformation if there are multiple
12474    // uses of the loaded value.
12475    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
12476      return SDValue();
12477
12478    DebugLoc LdDL = Ld->getDebugLoc();
12479    DebugLoc StDL = N->getDebugLoc();
12480    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
12481    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
12482    // pair instead.
12483    if (Subtarget->is64Bit() || F64IsLegal) {
12484      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
12485      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
12486                                  Ld->getPointerInfo(), Ld->isVolatile(),
12487                                  Ld->isNonTemporal(), Ld->getAlignment());
12488      SDValue NewChain = NewLd.getValue(1);
12489      if (TokenFactorIndex != -1) {
12490        Ops.push_back(NewChain);
12491        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
12492                               Ops.size());
12493      }
12494      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
12495                          St->getPointerInfo(),
12496                          St->isVolatile(), St->isNonTemporal(),
12497                          St->getAlignment());
12498    }
12499
12500    // Otherwise, lower to two pairs of 32-bit loads / stores.
12501    SDValue LoAddr = Ld->getBasePtr();
12502    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
12503                                 DAG.getConstant(4, MVT::i32));
12504
12505    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
12506                               Ld->getPointerInfo(),
12507                               Ld->isVolatile(), Ld->isNonTemporal(),
12508                               Ld->getAlignment());
12509    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
12510                               Ld->getPointerInfo().getWithOffset(4),
12511                               Ld->isVolatile(), Ld->isNonTemporal(),
12512                               MinAlign(Ld->getAlignment(), 4));
12513
12514    SDValue NewChain = LoLd.getValue(1);
12515    if (TokenFactorIndex != -1) {
12516      Ops.push_back(LoLd);
12517      Ops.push_back(HiLd);
12518      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
12519                             Ops.size());
12520    }
12521
12522    LoAddr = St->getBasePtr();
12523    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
12524                         DAG.getConstant(4, MVT::i32));
12525
12526    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
12527                                St->getPointerInfo(),
12528                                St->isVolatile(), St->isNonTemporal(),
12529                                St->getAlignment());
12530    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
12531                                St->getPointerInfo().getWithOffset(4),
12532                                St->isVolatile(),
12533                                St->isNonTemporal(),
12534                                MinAlign(St->getAlignment(), 4));
12535    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
12536  }
12537  return SDValue();
12538}
12539
12540/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
12541/// X86ISD::FXOR nodes.
12542static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
12543  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
12544  // F[X]OR(0.0, x) -> x
12545  // F[X]OR(x, 0.0) -> x
12546  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
12547    if (C->getValueAPF().isPosZero())
12548      return N->getOperand(1);
12549  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
12550    if (C->getValueAPF().isPosZero())
12551      return N->getOperand(0);
12552  return SDValue();
12553}
12554
12555/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
12556static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
12557  // FAND(0.0, x) -> 0.0
12558  // FAND(x, 0.0) -> 0.0
12559  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
12560    if (C->getValueAPF().isPosZero())
12561      return N->getOperand(0);
12562  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
12563    if (C->getValueAPF().isPosZero())
12564      return N->getOperand(1);
12565  return SDValue();
12566}
12567
12568static SDValue PerformBTCombine(SDNode *N,
12569                                SelectionDAG &DAG,
12570                                TargetLowering::DAGCombinerInfo &DCI) {
12571  // BT ignores high bits in the bit index operand.
12572  SDValue Op1 = N->getOperand(1);
12573  if (Op1.hasOneUse()) {
12574    unsigned BitWidth = Op1.getValueSizeInBits();
12575    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
12576    APInt KnownZero, KnownOne;
12577    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
12578                                          !DCI.isBeforeLegalizeOps());
12579    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12580    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
12581        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
12582      DCI.CommitTargetLoweringOpt(TLO);
12583  }
12584  return SDValue();
12585}
12586
12587static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
12588  SDValue Op = N->getOperand(0);
12589  if (Op.getOpcode() == ISD::BITCAST)
12590    Op = Op.getOperand(0);
12591  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
12592  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
12593      VT.getVectorElementType().getSizeInBits() ==
12594      OpVT.getVectorElementType().getSizeInBits()) {
12595    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
12596  }
12597  return SDValue();
12598}
12599
12600static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
12601  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
12602  //           (and (i32 x86isd::setcc_carry), 1)
12603  // This eliminates the zext. This transformation is necessary because
12604  // ISD::SETCC is always legalized to i8.
12605  DebugLoc dl = N->getDebugLoc();
12606  SDValue N0 = N->getOperand(0);
12607  EVT VT = N->getValueType(0);
12608  if (N0.getOpcode() == ISD::AND &&
12609      N0.hasOneUse() &&
12610      N0.getOperand(0).hasOneUse()) {
12611    SDValue N00 = N0.getOperand(0);
12612    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
12613      return SDValue();
12614    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
12615    if (!C || C->getZExtValue() != 1)
12616      return SDValue();
12617    return DAG.getNode(ISD::AND, dl, VT,
12618                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
12619                                   N00.getOperand(0), N00.getOperand(1)),
12620                       DAG.getConstant(1, VT));
12621  }
12622
12623  return SDValue();
12624}
12625
12626// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
12627static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
12628  unsigned X86CC = N->getConstantOperandVal(0);
12629  SDValue EFLAG = N->getOperand(1);
12630  DebugLoc DL = N->getDebugLoc();
12631
12632  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
12633  // a zext and produces an all-ones bit which is more useful than 0/1 in some
12634  // cases.
12635  if (X86CC == X86::COND_B)
12636    return DAG.getNode(ISD::AND, DL, MVT::i8,
12637                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
12638                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
12639                       DAG.getConstant(1, MVT::i8));
12640
12641  return SDValue();
12642}
12643
12644static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
12645                                        const X86TargetLowering *XTLI) {
12646  SDValue Op0 = N->getOperand(0);
12647  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
12648  // a 32-bit target where SSE doesn't support i64->FP operations.
12649  if (Op0.getOpcode() == ISD::LOAD) {
12650    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
12651    EVT VT = Ld->getValueType(0);
12652    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
12653        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
12654        !XTLI->getSubtarget()->is64Bit() &&
12655        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
12656      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
12657                                          Ld->getChain(), Op0, DAG);
12658      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
12659      return FILDChain;
12660    }
12661  }
12662  return SDValue();
12663}
12664
12665// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
12666static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
12667                                 X86TargetLowering::DAGCombinerInfo &DCI) {
12668  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
12669  // the result is either zero or one (depending on the input carry bit).
12670  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
12671  if (X86::isZeroNode(N->getOperand(0)) &&
12672      X86::isZeroNode(N->getOperand(1)) &&
12673      // We don't have a good way to replace an EFLAGS use, so only do this when
12674      // dead right now.
12675      SDValue(N, 1).use_empty()) {
12676    DebugLoc DL = N->getDebugLoc();
12677    EVT VT = N->getValueType(0);
12678    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
12679    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
12680                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
12681                                           DAG.getConstant(X86::COND_B,MVT::i8),
12682                                           N->getOperand(2)),
12683                               DAG.getConstant(1, VT));
12684    return DCI.CombineTo(N, Res1, CarryOut);
12685  }
12686
12687  return SDValue();
12688}
12689
12690// fold (add Y, (sete  X, 0)) -> adc  0, Y
12691//      (add Y, (setne X, 0)) -> sbb -1, Y
12692//      (sub (sete  X, 0), Y) -> sbb  0, Y
12693//      (sub (setne X, 0), Y) -> adc -1, Y
12694static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
12695  DebugLoc DL = N->getDebugLoc();
12696
12697  // Look through ZExts.
12698  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
12699  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
12700    return SDValue();
12701
12702  SDValue SetCC = Ext.getOperand(0);
12703  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
12704    return SDValue();
12705
12706  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
12707  if (CC != X86::COND_E && CC != X86::COND_NE)
12708    return SDValue();
12709
12710  SDValue Cmp = SetCC.getOperand(1);
12711  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
12712      !X86::isZeroNode(Cmp.getOperand(1)) ||
12713      !Cmp.getOperand(0).getValueType().isInteger())
12714    return SDValue();
12715
12716  SDValue CmpOp0 = Cmp.getOperand(0);
12717  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
12718                               DAG.getConstant(1, CmpOp0.getValueType()));
12719
12720  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
12721  if (CC == X86::COND_NE)
12722    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
12723                       DL, OtherVal.getValueType(), OtherVal,
12724                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
12725  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
12726                     DL, OtherVal.getValueType(), OtherVal,
12727                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
12728}
12729
12730static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
12731  SDValue Op0 = N->getOperand(0);
12732  SDValue Op1 = N->getOperand(1);
12733
12734  // X86 can't encode an immediate LHS of a sub. See if we can push the
12735  // negation into a preceding instruction.
12736  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
12737    uint64_t Op0C = C->getSExtValue();
12738
12739    // If the RHS of the sub is a XOR with one use and a constant, invert the
12740    // immediate. Then add one to the LHS of the sub so we can turn
12741    // X-Y -> X+~Y+1, saving one register.
12742    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
12743        isa<ConstantSDNode>(Op1.getOperand(1))) {
12744      uint64_t XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getSExtValue();
12745      EVT VT = Op0.getValueType();
12746      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
12747                                   Op1.getOperand(0),
12748                                   DAG.getConstant(~XorC, VT));
12749      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
12750                         DAG.getConstant(Op0C+1, VT));
12751    }
12752  }
12753
12754  return OptimizeConditionalInDecrement(N, DAG);
12755}
12756
12757SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
12758                                             DAGCombinerInfo &DCI) const {
12759  SelectionDAG &DAG = DCI.DAG;
12760  switch (N->getOpcode()) {
12761  default: break;
12762  case ISD::EXTRACT_VECTOR_ELT:
12763    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
12764  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
12765  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
12766  case ISD::ADD:            return OptimizeConditionalInDecrement(N, DAG);
12767  case ISD::SUB:            return PerformSubCombine(N, DAG);
12768  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
12769  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
12770  case ISD::SHL:
12771  case ISD::SRA:
12772  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
12773  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
12774  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
12775  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
12776  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
12777  case X86ISD::FXOR:
12778  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
12779  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
12780  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
12781  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
12782  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
12783  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
12784  case X86ISD::SHUFPS:      // Handle all target specific shuffles
12785  case X86ISD::SHUFPD:
12786  case X86ISD::PALIGN:
12787  case X86ISD::PUNPCKHBW:
12788  case X86ISD::PUNPCKHWD:
12789  case X86ISD::PUNPCKHDQ:
12790  case X86ISD::PUNPCKHQDQ:
12791  case X86ISD::UNPCKHPS:
12792  case X86ISD::UNPCKHPD:
12793  case X86ISD::VUNPCKHPSY:
12794  case X86ISD::VUNPCKHPDY:
12795  case X86ISD::PUNPCKLBW:
12796  case X86ISD::PUNPCKLWD:
12797  case X86ISD::PUNPCKLDQ:
12798  case X86ISD::PUNPCKLQDQ:
12799  case X86ISD::UNPCKLPS:
12800  case X86ISD::UNPCKLPD:
12801  case X86ISD::VUNPCKLPSY:
12802  case X86ISD::VUNPCKLPDY:
12803  case X86ISD::MOVHLPS:
12804  case X86ISD::MOVLHPS:
12805  case X86ISD::PSHUFD:
12806  case X86ISD::PSHUFHW:
12807  case X86ISD::PSHUFLW:
12808  case X86ISD::MOVSS:
12809  case X86ISD::MOVSD:
12810  case X86ISD::VPERMILPS:
12811  case X86ISD::VPERMILPSY:
12812  case X86ISD::VPERMILPD:
12813  case X86ISD::VPERMILPDY:
12814  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI);
12815  }
12816
12817  return SDValue();
12818}
12819
12820/// isTypeDesirableForOp - Return true if the target has native support for
12821/// the specified value type and it is 'desirable' to use the type for the
12822/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
12823/// instruction encodings are longer and some i16 instructions are slow.
12824bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
12825  if (!isTypeLegal(VT))
12826    return false;
12827  if (VT != MVT::i16)
12828    return true;
12829
12830  switch (Opc) {
12831  default:
12832    return true;
12833  case ISD::LOAD:
12834  case ISD::SIGN_EXTEND:
12835  case ISD::ZERO_EXTEND:
12836  case ISD::ANY_EXTEND:
12837  case ISD::SHL:
12838  case ISD::SRL:
12839  case ISD::SUB:
12840  case ISD::ADD:
12841  case ISD::MUL:
12842  case ISD::AND:
12843  case ISD::OR:
12844  case ISD::XOR:
12845    return false;
12846  }
12847}
12848
12849/// IsDesirableToPromoteOp - This method query the target whether it is
12850/// beneficial for dag combiner to promote the specified node. If true, it
12851/// should return the desired promotion type by reference.
12852bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
12853  EVT VT = Op.getValueType();
12854  if (VT != MVT::i16)
12855    return false;
12856
12857  bool Promote = false;
12858  bool Commute = false;
12859  switch (Op.getOpcode()) {
12860  default: break;
12861  case ISD::LOAD: {
12862    LoadSDNode *LD = cast<LoadSDNode>(Op);
12863    // If the non-extending load has a single use and it's not live out, then it
12864    // might be folded.
12865    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
12866                                                     Op.hasOneUse()*/) {
12867      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
12868             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
12869        // The only case where we'd want to promote LOAD (rather then it being
12870        // promoted as an operand is when it's only use is liveout.
12871        if (UI->getOpcode() != ISD::CopyToReg)
12872          return false;
12873      }
12874    }
12875    Promote = true;
12876    break;
12877  }
12878  case ISD::SIGN_EXTEND:
12879  case ISD::ZERO_EXTEND:
12880  case ISD::ANY_EXTEND:
12881    Promote = true;
12882    break;
12883  case ISD::SHL:
12884  case ISD::SRL: {
12885    SDValue N0 = Op.getOperand(0);
12886    // Look out for (store (shl (load), x)).
12887    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
12888      return false;
12889    Promote = true;
12890    break;
12891  }
12892  case ISD::ADD:
12893  case ISD::MUL:
12894  case ISD::AND:
12895  case ISD::OR:
12896  case ISD::XOR:
12897    Commute = true;
12898    // fallthrough
12899  case ISD::SUB: {
12900    SDValue N0 = Op.getOperand(0);
12901    SDValue N1 = Op.getOperand(1);
12902    if (!Commute && MayFoldLoad(N1))
12903      return false;
12904    // Avoid disabling potential load folding opportunities.
12905    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
12906      return false;
12907    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
12908      return false;
12909    Promote = true;
12910  }
12911  }
12912
12913  PVT = MVT::i32;
12914  return Promote;
12915}
12916
12917//===----------------------------------------------------------------------===//
12918//                           X86 Inline Assembly Support
12919//===----------------------------------------------------------------------===//
12920
12921bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
12922  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
12923
12924  std::string AsmStr = IA->getAsmString();
12925
12926  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
12927  SmallVector<StringRef, 4> AsmPieces;
12928  SplitString(AsmStr, AsmPieces, ";\n");
12929
12930  switch (AsmPieces.size()) {
12931  default: return false;
12932  case 1:
12933    AsmStr = AsmPieces[0];
12934    AsmPieces.clear();
12935    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
12936
12937    // FIXME: this should verify that we are targeting a 486 or better.  If not,
12938    // we will turn this bswap into something that will be lowered to logical ops
12939    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
12940    // so don't worry about this.
12941    // bswap $0
12942    if (AsmPieces.size() == 2 &&
12943        (AsmPieces[0] == "bswap" ||
12944         AsmPieces[0] == "bswapq" ||
12945         AsmPieces[0] == "bswapl") &&
12946        (AsmPieces[1] == "$0" ||
12947         AsmPieces[1] == "${0:q}")) {
12948      // No need to check constraints, nothing other than the equivalent of
12949      // "=r,0" would be valid here.
12950      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12951      if (!Ty || Ty->getBitWidth() % 16 != 0)
12952        return false;
12953      return IntrinsicLowering::LowerToByteSwap(CI);
12954    }
12955    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
12956    if (CI->getType()->isIntegerTy(16) &&
12957        AsmPieces.size() == 3 &&
12958        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
12959        AsmPieces[1] == "$$8," &&
12960        AsmPieces[2] == "${0:w}" &&
12961        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12962      AsmPieces.clear();
12963      const std::string &ConstraintsStr = IA->getConstraintString();
12964      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12965      std::sort(AsmPieces.begin(), AsmPieces.end());
12966      if (AsmPieces.size() == 4 &&
12967          AsmPieces[0] == "~{cc}" &&
12968          AsmPieces[1] == "~{dirflag}" &&
12969          AsmPieces[2] == "~{flags}" &&
12970          AsmPieces[3] == "~{fpsr}") {
12971        IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12972        if (!Ty || Ty->getBitWidth() % 16 != 0)
12973          return false;
12974        return IntrinsicLowering::LowerToByteSwap(CI);
12975      }
12976    }
12977    break;
12978  case 3:
12979    if (CI->getType()->isIntegerTy(32) &&
12980        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12981      SmallVector<StringRef, 4> Words;
12982      SplitString(AsmPieces[0], Words, " \t,");
12983      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12984          Words[2] == "${0:w}") {
12985        Words.clear();
12986        SplitString(AsmPieces[1], Words, " \t,");
12987        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
12988            Words[2] == "$0") {
12989          Words.clear();
12990          SplitString(AsmPieces[2], Words, " \t,");
12991          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12992              Words[2] == "${0:w}") {
12993            AsmPieces.clear();
12994            const std::string &ConstraintsStr = IA->getConstraintString();
12995            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12996            std::sort(AsmPieces.begin(), AsmPieces.end());
12997            if (AsmPieces.size() == 4 &&
12998                AsmPieces[0] == "~{cc}" &&
12999                AsmPieces[1] == "~{dirflag}" &&
13000                AsmPieces[2] == "~{flags}" &&
13001                AsmPieces[3] == "~{fpsr}") {
13002              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13003              if (!Ty || Ty->getBitWidth() % 16 != 0)
13004                return false;
13005              return IntrinsicLowering::LowerToByteSwap(CI);
13006            }
13007          }
13008        }
13009      }
13010    }
13011
13012    if (CI->getType()->isIntegerTy(64)) {
13013      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
13014      if (Constraints.size() >= 2 &&
13015          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
13016          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
13017        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
13018        SmallVector<StringRef, 4> Words;
13019        SplitString(AsmPieces[0], Words, " \t");
13020        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
13021          Words.clear();
13022          SplitString(AsmPieces[1], Words, " \t");
13023          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
13024            Words.clear();
13025            SplitString(AsmPieces[2], Words, " \t,");
13026            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
13027                Words[2] == "%edx") {
13028              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13029              if (!Ty || Ty->getBitWidth() % 16 != 0)
13030                return false;
13031              return IntrinsicLowering::LowerToByteSwap(CI);
13032            }
13033          }
13034        }
13035      }
13036    }
13037    break;
13038  }
13039  return false;
13040}
13041
13042
13043
13044/// getConstraintType - Given a constraint letter, return the type of
13045/// constraint it is for this target.
13046X86TargetLowering::ConstraintType
13047X86TargetLowering::getConstraintType(const std::string &Constraint) const {
13048  if (Constraint.size() == 1) {
13049    switch (Constraint[0]) {
13050    case 'R':
13051    case 'q':
13052    case 'Q':
13053    case 'f':
13054    case 't':
13055    case 'u':
13056    case 'y':
13057    case 'x':
13058    case 'Y':
13059    case 'l':
13060      return C_RegisterClass;
13061    case 'a':
13062    case 'b':
13063    case 'c':
13064    case 'd':
13065    case 'S':
13066    case 'D':
13067    case 'A':
13068      return C_Register;
13069    case 'I':
13070    case 'J':
13071    case 'K':
13072    case 'L':
13073    case 'M':
13074    case 'N':
13075    case 'G':
13076    case 'C':
13077    case 'e':
13078    case 'Z':
13079      return C_Other;
13080    default:
13081      break;
13082    }
13083  }
13084  return TargetLowering::getConstraintType(Constraint);
13085}
13086
13087/// Examine constraint type and operand type and determine a weight value.
13088/// This object must already have been set up with the operand type
13089/// and the current alternative constraint selected.
13090TargetLowering::ConstraintWeight
13091  X86TargetLowering::getSingleConstraintMatchWeight(
13092    AsmOperandInfo &info, const char *constraint) const {
13093  ConstraintWeight weight = CW_Invalid;
13094  Value *CallOperandVal = info.CallOperandVal;
13095    // If we don't have a value, we can't do a match,
13096    // but allow it at the lowest weight.
13097  if (CallOperandVal == NULL)
13098    return CW_Default;
13099  Type *type = CallOperandVal->getType();
13100  // Look at the constraint type.
13101  switch (*constraint) {
13102  default:
13103    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13104  case 'R':
13105  case 'q':
13106  case 'Q':
13107  case 'a':
13108  case 'b':
13109  case 'c':
13110  case 'd':
13111  case 'S':
13112  case 'D':
13113  case 'A':
13114    if (CallOperandVal->getType()->isIntegerTy())
13115      weight = CW_SpecificReg;
13116    break;
13117  case 'f':
13118  case 't':
13119  case 'u':
13120      if (type->isFloatingPointTy())
13121        weight = CW_SpecificReg;
13122      break;
13123  case 'y':
13124      if (type->isX86_MMXTy() && Subtarget->hasMMX())
13125        weight = CW_SpecificReg;
13126      break;
13127  case 'x':
13128  case 'Y':
13129    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
13130      weight = CW_Register;
13131    break;
13132  case 'I':
13133    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
13134      if (C->getZExtValue() <= 31)
13135        weight = CW_Constant;
13136    }
13137    break;
13138  case 'J':
13139    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13140      if (C->getZExtValue() <= 63)
13141        weight = CW_Constant;
13142    }
13143    break;
13144  case 'K':
13145    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13146      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
13147        weight = CW_Constant;
13148    }
13149    break;
13150  case 'L':
13151    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13152      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
13153        weight = CW_Constant;
13154    }
13155    break;
13156  case 'M':
13157    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13158      if (C->getZExtValue() <= 3)
13159        weight = CW_Constant;
13160    }
13161    break;
13162  case 'N':
13163    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13164      if (C->getZExtValue() <= 0xff)
13165        weight = CW_Constant;
13166    }
13167    break;
13168  case 'G':
13169  case 'C':
13170    if (dyn_cast<ConstantFP>(CallOperandVal)) {
13171      weight = CW_Constant;
13172    }
13173    break;
13174  case 'e':
13175    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13176      if ((C->getSExtValue() >= -0x80000000LL) &&
13177          (C->getSExtValue() <= 0x7fffffffLL))
13178        weight = CW_Constant;
13179    }
13180    break;
13181  case 'Z':
13182    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13183      if (C->getZExtValue() <= 0xffffffff)
13184        weight = CW_Constant;
13185    }
13186    break;
13187  }
13188  return weight;
13189}
13190
13191/// LowerXConstraint - try to replace an X constraint, which matches anything,
13192/// with another that has more specific requirements based on the type of the
13193/// corresponding operand.
13194const char *X86TargetLowering::
13195LowerXConstraint(EVT ConstraintVT) const {
13196  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
13197  // 'f' like normal targets.
13198  if (ConstraintVT.isFloatingPoint()) {
13199    if (Subtarget->hasXMMInt())
13200      return "Y";
13201    if (Subtarget->hasXMM())
13202      return "x";
13203  }
13204
13205  return TargetLowering::LowerXConstraint(ConstraintVT);
13206}
13207
13208/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13209/// vector.  If it is invalid, don't add anything to Ops.
13210void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13211                                                     std::string &Constraint,
13212                                                     std::vector<SDValue>&Ops,
13213                                                     SelectionDAG &DAG) const {
13214  SDValue Result(0, 0);
13215
13216  // Only support length 1 constraints for now.
13217  if (Constraint.length() > 1) return;
13218
13219  char ConstraintLetter = Constraint[0];
13220  switch (ConstraintLetter) {
13221  default: break;
13222  case 'I':
13223    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13224      if (C->getZExtValue() <= 31) {
13225        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13226        break;
13227      }
13228    }
13229    return;
13230  case 'J':
13231    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13232      if (C->getZExtValue() <= 63) {
13233        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13234        break;
13235      }
13236    }
13237    return;
13238  case 'K':
13239    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13240      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
13241        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13242        break;
13243      }
13244    }
13245    return;
13246  case 'N':
13247    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13248      if (C->getZExtValue() <= 255) {
13249        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13250        break;
13251      }
13252    }
13253    return;
13254  case 'e': {
13255    // 32-bit signed value
13256    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13257      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
13258                                           C->getSExtValue())) {
13259        // Widen to 64 bits here to get it sign extended.
13260        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
13261        break;
13262      }
13263    // FIXME gcc accepts some relocatable values here too, but only in certain
13264    // memory models; it's complicated.
13265    }
13266    return;
13267  }
13268  case 'Z': {
13269    // 32-bit unsigned value
13270    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13271      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
13272                                           C->getZExtValue())) {
13273        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13274        break;
13275      }
13276    }
13277    // FIXME gcc accepts some relocatable values here too, but only in certain
13278    // memory models; it's complicated.
13279    return;
13280  }
13281  case 'i': {
13282    // Literal immediates are always ok.
13283    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
13284      // Widen to 64 bits here to get it sign extended.
13285      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
13286      break;
13287    }
13288
13289    // In any sort of PIC mode addresses need to be computed at runtime by
13290    // adding in a register or some sort of table lookup.  These can't
13291    // be used as immediates.
13292    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
13293      return;
13294
13295    // If we are in non-pic codegen mode, we allow the address of a global (with
13296    // an optional displacement) to be used with 'i'.
13297    GlobalAddressSDNode *GA = 0;
13298    int64_t Offset = 0;
13299
13300    // Match either (GA), (GA+C), (GA+C1+C2), etc.
13301    while (1) {
13302      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
13303        Offset += GA->getOffset();
13304        break;
13305      } else if (Op.getOpcode() == ISD::ADD) {
13306        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
13307          Offset += C->getZExtValue();
13308          Op = Op.getOperand(0);
13309          continue;
13310        }
13311      } else if (Op.getOpcode() == ISD::SUB) {
13312        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
13313          Offset += -C->getZExtValue();
13314          Op = Op.getOperand(0);
13315          continue;
13316        }
13317      }
13318
13319      // Otherwise, this isn't something we can handle, reject it.
13320      return;
13321    }
13322
13323    const GlobalValue *GV = GA->getGlobal();
13324    // If we require an extra load to get this address, as in PIC mode, we
13325    // can't accept it.
13326    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
13327                                                        getTargetMachine())))
13328      return;
13329
13330    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
13331                                        GA->getValueType(0), Offset);
13332    break;
13333  }
13334  }
13335
13336  if (Result.getNode()) {
13337    Ops.push_back(Result);
13338    return;
13339  }
13340  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13341}
13342
13343std::pair<unsigned, const TargetRegisterClass*>
13344X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
13345                                                EVT VT) const {
13346  // First, see if this is a constraint that directly corresponds to an LLVM
13347  // register class.
13348  if (Constraint.size() == 1) {
13349    // GCC Constraint Letters
13350    switch (Constraint[0]) {
13351    default: break;
13352      // TODO: Slight differences here in allocation order and leaving
13353      // RIP in the class. Do they matter any more here than they do
13354      // in the normal allocation?
13355    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
13356      if (Subtarget->is64Bit()) {
13357	if (VT == MVT::i32 || VT == MVT::f32)
13358	  return std::make_pair(0U, X86::GR32RegisterClass);
13359	else if (VT == MVT::i16)
13360	  return std::make_pair(0U, X86::GR16RegisterClass);
13361	else if (VT == MVT::i8 || VT == MVT::i1)
13362	  return std::make_pair(0U, X86::GR8RegisterClass);
13363	else if (VT == MVT::i64 || VT == MVT::f64)
13364	  return std::make_pair(0U, X86::GR64RegisterClass);
13365	break;
13366      }
13367      // 32-bit fallthrough
13368    case 'Q':   // Q_REGS
13369      if (VT == MVT::i32 || VT == MVT::f32)
13370	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
13371      else if (VT == MVT::i16)
13372	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
13373      else if (VT == MVT::i8 || VT == MVT::i1)
13374	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
13375      else if (VT == MVT::i64)
13376	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
13377      break;
13378    case 'r':   // GENERAL_REGS
13379    case 'l':   // INDEX_REGS
13380      if (VT == MVT::i8 || VT == MVT::i1)
13381        return std::make_pair(0U, X86::GR8RegisterClass);
13382      if (VT == MVT::i16)
13383        return std::make_pair(0U, X86::GR16RegisterClass);
13384      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
13385        return std::make_pair(0U, X86::GR32RegisterClass);
13386      return std::make_pair(0U, X86::GR64RegisterClass);
13387    case 'R':   // LEGACY_REGS
13388      if (VT == MVT::i8 || VT == MVT::i1)
13389        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
13390      if (VT == MVT::i16)
13391        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
13392      if (VT == MVT::i32 || !Subtarget->is64Bit())
13393        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
13394      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
13395    case 'f':  // FP Stack registers.
13396      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
13397      // value to the correct fpstack register class.
13398      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
13399        return std::make_pair(0U, X86::RFP32RegisterClass);
13400      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
13401        return std::make_pair(0U, X86::RFP64RegisterClass);
13402      return std::make_pair(0U, X86::RFP80RegisterClass);
13403    case 'y':   // MMX_REGS if MMX allowed.
13404      if (!Subtarget->hasMMX()) break;
13405      return std::make_pair(0U, X86::VR64RegisterClass);
13406    case 'Y':   // SSE_REGS if SSE2 allowed
13407      if (!Subtarget->hasXMMInt()) break;
13408      // FALL THROUGH.
13409    case 'x':   // SSE_REGS if SSE1 allowed
13410      if (!Subtarget->hasXMM()) break;
13411
13412      switch (VT.getSimpleVT().SimpleTy) {
13413      default: break;
13414      // Scalar SSE types.
13415      case MVT::f32:
13416      case MVT::i32:
13417        return std::make_pair(0U, X86::FR32RegisterClass);
13418      case MVT::f64:
13419      case MVT::i64:
13420        return std::make_pair(0U, X86::FR64RegisterClass);
13421      // Vector types.
13422      case MVT::v16i8:
13423      case MVT::v8i16:
13424      case MVT::v4i32:
13425      case MVT::v2i64:
13426      case MVT::v4f32:
13427      case MVT::v2f64:
13428        return std::make_pair(0U, X86::VR128RegisterClass);
13429      }
13430      break;
13431    }
13432  }
13433
13434  // Use the default implementation in TargetLowering to convert the register
13435  // constraint into a member of a register class.
13436  std::pair<unsigned, const TargetRegisterClass*> Res;
13437  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
13438
13439  // Not found as a standard register?
13440  if (Res.second == 0) {
13441    // Map st(0) -> st(7) -> ST0
13442    if (Constraint.size() == 7 && Constraint[0] == '{' &&
13443        tolower(Constraint[1]) == 's' &&
13444        tolower(Constraint[2]) == 't' &&
13445        Constraint[3] == '(' &&
13446        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
13447        Constraint[5] == ')' &&
13448        Constraint[6] == '}') {
13449
13450      Res.first = X86::ST0+Constraint[4]-'0';
13451      Res.second = X86::RFP80RegisterClass;
13452      return Res;
13453    }
13454
13455    // GCC allows "st(0)" to be called just plain "st".
13456    if (StringRef("{st}").equals_lower(Constraint)) {
13457      Res.first = X86::ST0;
13458      Res.second = X86::RFP80RegisterClass;
13459      return Res;
13460    }
13461
13462    // flags -> EFLAGS
13463    if (StringRef("{flags}").equals_lower(Constraint)) {
13464      Res.first = X86::EFLAGS;
13465      Res.second = X86::CCRRegisterClass;
13466      return Res;
13467    }
13468
13469    // 'A' means EAX + EDX.
13470    if (Constraint == "A") {
13471      Res.first = X86::EAX;
13472      Res.second = X86::GR32_ADRegisterClass;
13473      return Res;
13474    }
13475    return Res;
13476  }
13477
13478  // Otherwise, check to see if this is a register class of the wrong value
13479  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
13480  // turn into {ax},{dx}.
13481  if (Res.second->hasType(VT))
13482    return Res;   // Correct type already, nothing to do.
13483
13484  // All of the single-register GCC register classes map their values onto
13485  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
13486  // really want an 8-bit or 32-bit register, map to the appropriate register
13487  // class and return the appropriate register.
13488  if (Res.second == X86::GR16RegisterClass) {
13489    if (VT == MVT::i8) {
13490      unsigned DestReg = 0;
13491      switch (Res.first) {
13492      default: break;
13493      case X86::AX: DestReg = X86::AL; break;
13494      case X86::DX: DestReg = X86::DL; break;
13495      case X86::CX: DestReg = X86::CL; break;
13496      case X86::BX: DestReg = X86::BL; break;
13497      }
13498      if (DestReg) {
13499        Res.first = DestReg;
13500        Res.second = X86::GR8RegisterClass;
13501      }
13502    } else if (VT == MVT::i32) {
13503      unsigned DestReg = 0;
13504      switch (Res.first) {
13505      default: break;
13506      case X86::AX: DestReg = X86::EAX; break;
13507      case X86::DX: DestReg = X86::EDX; break;
13508      case X86::CX: DestReg = X86::ECX; break;
13509      case X86::BX: DestReg = X86::EBX; break;
13510      case X86::SI: DestReg = X86::ESI; break;
13511      case X86::DI: DestReg = X86::EDI; break;
13512      case X86::BP: DestReg = X86::EBP; break;
13513      case X86::SP: DestReg = X86::ESP; break;
13514      }
13515      if (DestReg) {
13516        Res.first = DestReg;
13517        Res.second = X86::GR32RegisterClass;
13518      }
13519    } else if (VT == MVT::i64) {
13520      unsigned DestReg = 0;
13521      switch (Res.first) {
13522      default: break;
13523      case X86::AX: DestReg = X86::RAX; break;
13524      case X86::DX: DestReg = X86::RDX; break;
13525      case X86::CX: DestReg = X86::RCX; break;
13526      case X86::BX: DestReg = X86::RBX; break;
13527      case X86::SI: DestReg = X86::RSI; break;
13528      case X86::DI: DestReg = X86::RDI; break;
13529      case X86::BP: DestReg = X86::RBP; break;
13530      case X86::SP: DestReg = X86::RSP; break;
13531      }
13532      if (DestReg) {
13533        Res.first = DestReg;
13534        Res.second = X86::GR64RegisterClass;
13535      }
13536    }
13537  } else if (Res.second == X86::FR32RegisterClass ||
13538             Res.second == X86::FR64RegisterClass ||
13539             Res.second == X86::VR128RegisterClass) {
13540    // Handle references to XMM physical registers that got mapped into the
13541    // wrong class.  This can happen with constraints like {xmm0} where the
13542    // target independent register mapper will just pick the first match it can
13543    // find, ignoring the required type.
13544    if (VT == MVT::f32)
13545      Res.second = X86::FR32RegisterClass;
13546    else if (VT == MVT::f64)
13547      Res.second = X86::FR64RegisterClass;
13548    else if (X86::VR128RegisterClass->hasType(VT))
13549      Res.second = X86::VR128RegisterClass;
13550  }
13551
13552  return Res;
13553}
13554