X86ISelLowering.cpp revision 1e93df6f0b5ee6e36d7ec18e6035f0f5a53e5ec6
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalAlias.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/LLVMContext.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCExpr.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Dwarf.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52using namespace llvm;
53using namespace dwarf;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57static cl::opt<bool>
58DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
59
60// Disable16Bit - 16-bit operations typically have a larger encoding than
61// corresponding 32-bit instructions, and 16-bit code is slow on some
62// processors. This is an experimental flag to disable 16-bit operations
63// (which forces them to be Legalized to 32-bit operations).
64static cl::opt<bool>
65Disable16Bit("disable-16bit", cl::Hidden,
66             cl::desc("Disable use of 16-bit instructions"));
67static cl::opt<bool>
68Promote16Bit("promote-16bit", cl::Hidden,
69             cl::desc("Promote 16-bit instructions"));
70
71// Forward declarations.
72static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
73                       SDValue V2);
74
75static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
76  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
77  default: llvm_unreachable("unknown subtarget type");
78  case X86Subtarget::isDarwin:
79    if (TM.getSubtarget<X86Subtarget>().is64Bit())
80      return new X8664_MachoTargetObjectFile();
81    return new TargetLoweringObjectFileMachO();
82  case X86Subtarget::isELF:
83   if (TM.getSubtarget<X86Subtarget>().is64Bit())
84     return new X8664_ELFTargetObjectFile(TM);
85    return new X8632_ELFTargetObjectFile(TM);
86  case X86Subtarget::isMingw:
87  case X86Subtarget::isCygwin:
88  case X86Subtarget::isWindows:
89    return new TargetLoweringObjectFileCOFF();
90  }
91}
92
93X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
94  : TargetLowering(TM, createTLOF(TM)) {
95  Subtarget = &TM.getSubtarget<X86Subtarget>();
96  X86ScalarSSEf64 = Subtarget->hasSSE2();
97  X86ScalarSSEf32 = Subtarget->hasSSE1();
98  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
99
100  RegInfo = TM.getRegisterInfo();
101  TD = getTargetData();
102
103  // Set up the TargetLowering object.
104
105  // X86 is weird, it always uses i8 for shift amounts and setcc results.
106  setShiftAmountType(MVT::i8);
107  setBooleanContents(ZeroOrOneBooleanContent);
108  setSchedulingPreference(SchedulingForRegPressure);
109  setStackPointerRegisterToSaveRestore(X86StackPtr);
110
111  if (Subtarget->isTargetDarwin()) {
112    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
113    setUseUnderscoreSetJmp(false);
114    setUseUnderscoreLongJmp(false);
115  } else if (Subtarget->isTargetMingw()) {
116    // MS runtime is weird: it exports _setjmp, but longjmp!
117    setUseUnderscoreSetJmp(true);
118    setUseUnderscoreLongJmp(false);
119  } else {
120    setUseUnderscoreSetJmp(true);
121    setUseUnderscoreLongJmp(true);
122  }
123
124  // Set up the register classes.
125  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
126  if (!Disable16Bit)
127    addRegisterClass(MVT::i16, X86::GR16RegisterClass);
128  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
129  if (Subtarget->is64Bit())
130    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
131
132  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
133
134  // We don't accept any truncstore of integer registers.
135  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
136  if (!Disable16Bit)
137    setTruncStoreAction(MVT::i64, MVT::i16, Expand);
138  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
139  if (!Disable16Bit)
140    setTruncStoreAction(MVT::i32, MVT::i16, Expand);
141  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
142  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
143
144  // SETOEQ and SETUNE require checking two conditions.
145  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
146  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
147  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
148  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
149  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
150  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
151
152  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
153  // operation.
154  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
155  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
156  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
157
158  if (Subtarget->is64Bit()) {
159    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
160    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
161  } else if (!UseSoftFloat) {
162    if (X86ScalarSSEf64) {
163      // We have an impenetrably clever algorithm for ui64->double only.
164      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
165    }
166    // We have an algorithm for SSE2, and we turn this into a 64-bit
167    // FILD for other targets.
168    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
169  }
170
171  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
172  // this operation.
173  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
174  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
175
176  if (!UseSoftFloat) {
177    // SSE has no i16 to fp conversion, only i32
178    if (X86ScalarSSEf32) {
179      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
180      // f32 and f64 cases are Legal, f80 case is not
181      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
182    } else {
183      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
184      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
185    }
186  } else {
187    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
188    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
189  }
190
191  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
192  // are Legal, f80 is custom lowered.
193  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
194  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
195
196  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
197  // this operation.
198  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
199  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
200
201  if (X86ScalarSSEf32) {
202    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
203    // f32 and f64 cases are Legal, f80 case is not
204    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
205  } else {
206    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
207    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
208  }
209
210  // Handle FP_TO_UINT by promoting the destination to a larger signed
211  // conversion.
212  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
213  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
214  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
215
216  if (Subtarget->is64Bit()) {
217    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
218    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
219  } else if (!UseSoftFloat) {
220    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
221      // Expand FP_TO_UINT into a select.
222      // FIXME: We would like to use a Custom expander here eventually to do
223      // the optimal thing for SSE vs. the default expansion in the legalizer.
224      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
225    else
226      // With SSE3 we can use fisttpll to convert to a signed i64; without
227      // SSE, we're stuck with a fistpll.
228      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
229  }
230
231  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
232  if (!X86ScalarSSEf64) {
233    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
234    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
235  }
236
237  // Scalar integer divide and remainder are lowered to use operations that
238  // produce two results, to match the available instructions. This exposes
239  // the two-result form to trivial CSE, which is able to combine x/y and x%y
240  // into a single instruction.
241  //
242  // Scalar integer multiply-high is also lowered to use two-result
243  // operations, to match the available instructions. However, plain multiply
244  // (low) operations are left as Legal, as there are single-result
245  // instructions for this in x86. Using the two-result multiply instructions
246  // when both high and low results are needed must be arranged by dagcombine.
247  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
248  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
249  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
250  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
251  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
252  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
253  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
254  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
255  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
256  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
257  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
258  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
259  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
260  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
261  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
262  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
263  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
264  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
265  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
266  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
267  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
268  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
269  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
270  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
271
272  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
273  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
274  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
275  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
276  if (Subtarget->is64Bit())
277    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
278  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
279  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
280  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
281  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
282  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
283  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
284  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
285  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
286
287  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
288  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
289  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
290  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
291  if (Disable16Bit) {
292    setOperationAction(ISD::CTTZ           , MVT::i16  , Expand);
293    setOperationAction(ISD::CTLZ           , MVT::i16  , Expand);
294  } else {
295    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
296    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
297  }
298  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
299  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
300  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
301  if (Subtarget->is64Bit()) {
302    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
303    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
304    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
305  }
306
307  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
308  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
309
310  // These should be promoted to a larger select which is supported.
311  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
312  // X86 wants to expand cmov itself.
313  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
314  if (Disable16Bit)
315    setOperationAction(ISD::SELECT        , MVT::i16  , Expand);
316  else
317    setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
318  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
319  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
320  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
321  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
322  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
323  if (Disable16Bit)
324    setOperationAction(ISD::SETCC         , MVT::i16  , Expand);
325  else
326    setOperationAction(ISD::SETCC         , MVT::i16  , Custom);
327  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
328  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
329  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
330  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
331  if (Subtarget->is64Bit()) {
332    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
333    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
334  }
335  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
336
337  // Darwin ABI issue.
338  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
339  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
340  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
341  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
342  if (Subtarget->is64Bit())
343    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
344  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
345  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
346  if (Subtarget->is64Bit()) {
347    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
348    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
349    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
350    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
351    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
352  }
353  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
354  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
355  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
356  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
357  if (Subtarget->is64Bit()) {
358    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
359    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
360    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
361  }
362
363  if (Subtarget->hasSSE1())
364    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
365
366  if (!Subtarget->hasSSE2())
367    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
368
369  // Expand certain atomics
370  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
371  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
372  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
373  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
374
375  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
376  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
377  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
378  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
379
380  if (!Subtarget->is64Bit()) {
381    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
382    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
383    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
384    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
385    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
386    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
387    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
388  }
389
390  // FIXME - use subtarget debug flags
391  if (!Subtarget->isTargetDarwin() &&
392      !Subtarget->isTargetELF() &&
393      !Subtarget->isTargetCygMing()) {
394    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
395  }
396
397  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
398  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
399  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
400  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
401  if (Subtarget->is64Bit()) {
402    setExceptionPointerRegister(X86::RAX);
403    setExceptionSelectorRegister(X86::RDX);
404  } else {
405    setExceptionPointerRegister(X86::EAX);
406    setExceptionSelectorRegister(X86::EDX);
407  }
408  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
409  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
410
411  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
412
413  setOperationAction(ISD::TRAP, MVT::Other, Legal);
414
415  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
416  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
417  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
418  if (Subtarget->is64Bit()) {
419    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
420    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
421  } else {
422    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
423    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
424  }
425
426  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
427  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
428  if (Subtarget->is64Bit())
429    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
430  if (Subtarget->isTargetCygMing())
431    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
432  else
433    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
434
435  if (!UseSoftFloat && X86ScalarSSEf64) {
436    // f32 and f64 use SSE.
437    // Set up the FP register classes.
438    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
439    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
440
441    // Use ANDPD to simulate FABS.
442    setOperationAction(ISD::FABS , MVT::f64, Custom);
443    setOperationAction(ISD::FABS , MVT::f32, Custom);
444
445    // Use XORP to simulate FNEG.
446    setOperationAction(ISD::FNEG , MVT::f64, Custom);
447    setOperationAction(ISD::FNEG , MVT::f32, Custom);
448
449    // Use ANDPD and ORPD to simulate FCOPYSIGN.
450    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
451    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
452
453    // We don't support sin/cos/fmod
454    setOperationAction(ISD::FSIN , MVT::f64, Expand);
455    setOperationAction(ISD::FCOS , MVT::f64, Expand);
456    setOperationAction(ISD::FSIN , MVT::f32, Expand);
457    setOperationAction(ISD::FCOS , MVT::f32, Expand);
458
459    // Expand FP immediates into loads from the stack, except for the special
460    // cases we handle.
461    addLegalFPImmediate(APFloat(+0.0)); // xorpd
462    addLegalFPImmediate(APFloat(+0.0f)); // xorps
463  } else if (!UseSoftFloat && X86ScalarSSEf32) {
464    // Use SSE for f32, x87 for f64.
465    // Set up the FP register classes.
466    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
467    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
468
469    // Use ANDPS to simulate FABS.
470    setOperationAction(ISD::FABS , MVT::f32, Custom);
471
472    // Use XORP to simulate FNEG.
473    setOperationAction(ISD::FNEG , MVT::f32, Custom);
474
475    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
476
477    // Use ANDPS and ORPS to simulate FCOPYSIGN.
478    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
479    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
480
481    // We don't support sin/cos/fmod
482    setOperationAction(ISD::FSIN , MVT::f32, Expand);
483    setOperationAction(ISD::FCOS , MVT::f32, Expand);
484
485    // Special cases we handle for FP constants.
486    addLegalFPImmediate(APFloat(+0.0f)); // xorps
487    addLegalFPImmediate(APFloat(+0.0)); // FLD0
488    addLegalFPImmediate(APFloat(+1.0)); // FLD1
489    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
490    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
491
492    if (!UnsafeFPMath) {
493      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
494      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
495    }
496  } else if (!UseSoftFloat) {
497    // f32 and f64 in x87.
498    // Set up the FP register classes.
499    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
500    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
501
502    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
503    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
504    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
505    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
506
507    if (!UnsafeFPMath) {
508      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
509      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
510    }
511    addLegalFPImmediate(APFloat(+0.0)); // FLD0
512    addLegalFPImmediate(APFloat(+1.0)); // FLD1
513    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
514    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
515    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
516    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
517    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
518    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
519  }
520
521  // Long double always uses X87.
522  if (!UseSoftFloat) {
523    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
524    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
525    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
526    {
527      bool ignored;
528      APFloat TmpFlt(+0.0);
529      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
530                     &ignored);
531      addLegalFPImmediate(TmpFlt);  // FLD0
532      TmpFlt.changeSign();
533      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
534      APFloat TmpFlt2(+1.0);
535      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
536                      &ignored);
537      addLegalFPImmediate(TmpFlt2);  // FLD1
538      TmpFlt2.changeSign();
539      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
540    }
541
542    if (!UnsafeFPMath) {
543      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
544      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
545    }
546  }
547
548  // Always use a library call for pow.
549  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
550  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
551  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
552
553  setOperationAction(ISD::FLOG, MVT::f80, Expand);
554  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
555  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
556  setOperationAction(ISD::FEXP, MVT::f80, Expand);
557  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
558
559  // First set operation action for all vector types to either promote
560  // (for widening) or expand (for scalarization). Then we will selectively
561  // turn on ones that can be effectively codegen'd.
562  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
563       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
564    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
579    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
580    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
604    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
605    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
606    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
607    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
608    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
609    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
610    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
611    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
612    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
613    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
614    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
615    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
616    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
617    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
618         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
619      setTruncStoreAction((MVT::SimpleValueType)VT,
620                          (MVT::SimpleValueType)InnerVT, Expand);
621    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
622    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
623    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
624  }
625
626  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
627  // with -msoft-float, disable use of MMX as well.
628  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
629    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
630    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
631    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
632    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
633    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
634
635    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
636    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
637    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
638    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
639
640    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
641    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
642    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
643    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
644
645    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
646    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
647
648    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
649    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
650    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
651    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
652    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
653    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
654    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
655
656    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
657    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
658    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
659    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
660    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
661    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
662    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
663
664    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
665    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
666    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
667    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
668    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
669    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
670    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
671
672    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
673    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
674    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
675    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
676    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
677    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
678    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
679    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
680    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
681
682    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
683    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
684    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
685    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
686    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
687
688    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
689    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
690    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
691    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
692
693    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
694    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
695    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
696    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
697
698    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
699
700    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
701    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
702    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
703    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
704    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
705    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
706    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
707  }
708
709  if (!UseSoftFloat && Subtarget->hasSSE1()) {
710    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
711
712    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
713    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
714    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
715    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
716    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
717    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
718    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
719    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
720    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
721    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
722    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
723    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
724  }
725
726  if (!UseSoftFloat && Subtarget->hasSSE2()) {
727    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
728
729    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
730    // registers cannot be used even for integer operations.
731    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
732    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
733    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
734    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
735
736    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
737    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
738    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
739    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
740    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
741    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
742    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
743    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
744    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
745    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
746    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
747    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
748    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
749    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
750    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
751    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
752
753    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
754    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
755    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
756    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
757
758    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
759    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
760    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
761    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
762    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
763
764    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
765    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
766    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
767    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
768    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
769
770    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
771    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
772      EVT VT = (MVT::SimpleValueType)i;
773      // Do not attempt to custom lower non-power-of-2 vectors
774      if (!isPowerOf2_32(VT.getVectorNumElements()))
775        continue;
776      // Do not attempt to custom lower non-128-bit vectors
777      if (!VT.is128BitVector())
778        continue;
779      setOperationAction(ISD::BUILD_VECTOR,
780                         VT.getSimpleVT().SimpleTy, Custom);
781      setOperationAction(ISD::VECTOR_SHUFFLE,
782                         VT.getSimpleVT().SimpleTy, Custom);
783      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
784                         VT.getSimpleVT().SimpleTy, Custom);
785    }
786
787    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
788    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
789    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
790    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
791    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
792    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
793
794    if (Subtarget->is64Bit()) {
795      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
796      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
797    }
798
799    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
800    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
801      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
802      EVT VT = SVT;
803
804      // Do not attempt to promote non-128-bit vectors
805      if (!VT.is128BitVector()) {
806        continue;
807      }
808
809      setOperationAction(ISD::AND,    SVT, Promote);
810      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
811      setOperationAction(ISD::OR,     SVT, Promote);
812      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
813      setOperationAction(ISD::XOR,    SVT, Promote);
814      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
815      setOperationAction(ISD::LOAD,   SVT, Promote);
816      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
817      setOperationAction(ISD::SELECT, SVT, Promote);
818      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
819    }
820
821    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
822
823    // Custom lower v2i64 and v2f64 selects.
824    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
825    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
826    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
827    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
828
829    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
830    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
831    if (!DisableMMX && Subtarget->hasMMX()) {
832      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
833      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
834    }
835  }
836
837  if (Subtarget->hasSSE41()) {
838    // FIXME: Do we need to handle scalar-to-vector here?
839    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
840
841    // i8 and i16 vectors are custom , because the source register and source
842    // source memory operand types are not the same width.  f32 vectors are
843    // custom since the immediate controlling the insert encodes additional
844    // information.
845    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
846    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
847    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
848    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
849
850    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
851    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
852    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
853    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
854
855    if (Subtarget->is64Bit()) {
856      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
857      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
858    }
859  }
860
861  if (Subtarget->hasSSE42()) {
862    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
863  }
864
865  if (!UseSoftFloat && Subtarget->hasAVX()) {
866    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
867    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
868    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
869    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
870
871    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
872    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
873    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
874    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
875    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
876    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
877    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
878    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
879    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
880    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
881    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
882    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
883    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
884    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
885    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
886
887    // Operations to consider commented out -v16i16 v32i8
888    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
889    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
890    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
891    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
892    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
893    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
894    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
895    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
896    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
897    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
898    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
899    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
900    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
901    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
902
903    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
904    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
905    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
906    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
907
908    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
909    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
910    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
911    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
912    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
913
914    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
915    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
916    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
917    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
918    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
919    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
920
921#if 0
922    // Not sure we want to do this since there are no 256-bit integer
923    // operations in AVX
924
925    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
926    // This includes 256-bit vectors
927    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
928      EVT VT = (MVT::SimpleValueType)i;
929
930      // Do not attempt to custom lower non-power-of-2 vectors
931      if (!isPowerOf2_32(VT.getVectorNumElements()))
932        continue;
933
934      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
935      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
936      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
937    }
938
939    if (Subtarget->is64Bit()) {
940      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
941      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
942    }
943#endif
944
945#if 0
946    // Not sure we want to do this since there are no 256-bit integer
947    // operations in AVX
948
949    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
950    // Including 256-bit vectors
951    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
952      EVT VT = (MVT::SimpleValueType)i;
953
954      if (!VT.is256BitVector()) {
955        continue;
956      }
957      setOperationAction(ISD::AND,    VT, Promote);
958      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
959      setOperationAction(ISD::OR,     VT, Promote);
960      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
961      setOperationAction(ISD::XOR,    VT, Promote);
962      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
963      setOperationAction(ISD::LOAD,   VT, Promote);
964      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
965      setOperationAction(ISD::SELECT, VT, Promote);
966      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
967    }
968
969    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
970#endif
971  }
972
973  // We want to custom lower some of our intrinsics.
974  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
975
976  // Add/Sub/Mul with overflow operations are custom lowered.
977  setOperationAction(ISD::SADDO, MVT::i32, Custom);
978  setOperationAction(ISD::SADDO, MVT::i64, Custom);
979  setOperationAction(ISD::UADDO, MVT::i32, Custom);
980  setOperationAction(ISD::UADDO, MVT::i64, Custom);
981  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
982  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
983  setOperationAction(ISD::USUBO, MVT::i32, Custom);
984  setOperationAction(ISD::USUBO, MVT::i64, Custom);
985  setOperationAction(ISD::SMULO, MVT::i32, Custom);
986  setOperationAction(ISD::SMULO, MVT::i64, Custom);
987
988  if (!Subtarget->is64Bit()) {
989    // These libcalls are not available in 32-bit.
990    setLibcallName(RTLIB::SHL_I128, 0);
991    setLibcallName(RTLIB::SRL_I128, 0);
992    setLibcallName(RTLIB::SRA_I128, 0);
993  }
994
995  // We have target-specific dag combine patterns for the following nodes:
996  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
997  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
998  setTargetDAGCombine(ISD::BUILD_VECTOR);
999  setTargetDAGCombine(ISD::SELECT);
1000  setTargetDAGCombine(ISD::SHL);
1001  setTargetDAGCombine(ISD::SRA);
1002  setTargetDAGCombine(ISD::SRL);
1003  setTargetDAGCombine(ISD::OR);
1004  setTargetDAGCombine(ISD::STORE);
1005  setTargetDAGCombine(ISD::MEMBARRIER);
1006  setTargetDAGCombine(ISD::ZERO_EXTEND);
1007  if (Subtarget->is64Bit())
1008    setTargetDAGCombine(ISD::MUL);
1009
1010  computeRegisterProperties();
1011
1012  // FIXME: These should be based on subtarget info. Plus, the values should
1013  // be smaller when we are in optimizing for size mode.
1014  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1015  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1016  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1017  setPrefLoopAlignment(16);
1018  benefitFromCodePlacementOpt = true;
1019}
1020
1021
1022MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1023  return MVT::i8;
1024}
1025
1026
1027/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1028/// the desired ByVal argument alignment.
1029static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1030  if (MaxAlign == 16)
1031    return;
1032  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1033    if (VTy->getBitWidth() == 128)
1034      MaxAlign = 16;
1035  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1036    unsigned EltAlign = 0;
1037    getMaxByValAlign(ATy->getElementType(), EltAlign);
1038    if (EltAlign > MaxAlign)
1039      MaxAlign = EltAlign;
1040  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1041    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1042      unsigned EltAlign = 0;
1043      getMaxByValAlign(STy->getElementType(i), EltAlign);
1044      if (EltAlign > MaxAlign)
1045        MaxAlign = EltAlign;
1046      if (MaxAlign == 16)
1047        break;
1048    }
1049  }
1050  return;
1051}
1052
1053/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1054/// function arguments in the caller parameter area. For X86, aggregates
1055/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1056/// are at 4-byte boundaries.
1057unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1058  if (Subtarget->is64Bit()) {
1059    // Max of 8 and alignment of type.
1060    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1061    if (TyAlign > 8)
1062      return TyAlign;
1063    return 8;
1064  }
1065
1066  unsigned Align = 4;
1067  if (Subtarget->hasSSE1())
1068    getMaxByValAlign(Ty, Align);
1069  return Align;
1070}
1071
1072/// getOptimalMemOpType - Returns the target specific optimal type for load
1073/// and store operations as a result of memset, memcpy, and memmove
1074/// lowering. If DstAlign is zero that means it's safe to destination
1075/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1076/// means there isn't a need to check it against alignment requirement,
1077/// probably because the source does not need to be loaded. If
1078/// 'NonScalarIntSafe' is true, that means it's safe to return a
1079/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1080/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1081/// constant so it does not need to be loaded.
1082/// It returns EVT::Other if the type should be determined using generic
1083/// target-independent logic.
1084EVT
1085X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1086                                       unsigned DstAlign, unsigned SrcAlign,
1087                                       bool NonScalarIntSafe,
1088                                       bool MemcpyStrSrc,
1089                                       MachineFunction &MF) const {
1090  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1091  // linux.  This is because the stack realignment code can't handle certain
1092  // cases like PR2962.  This should be removed when PR2962 is fixed.
1093  const Function *F = MF.getFunction();
1094  if (NonScalarIntSafe &&
1095      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1096    if (Size >= 16 &&
1097        (Subtarget->isUnalignedMemAccessFast() ||
1098         ((DstAlign == 0 || DstAlign >= 16) &&
1099          (SrcAlign == 0 || SrcAlign >= 16))) &&
1100        Subtarget->getStackAlignment() >= 16) {
1101      if (Subtarget->hasSSE2())
1102        return MVT::v4i32;
1103      if (Subtarget->hasSSE1())
1104        return MVT::v4f32;
1105    } else if (!MemcpyStrSrc && Size >= 8 &&
1106               !Subtarget->is64Bit() &&
1107               Subtarget->getStackAlignment() >= 8 &&
1108               Subtarget->hasSSE2()) {
1109      // Do not use f64 to lower memcpy if source is string constant. It's
1110      // better to use i32 to avoid the loads.
1111      return MVT::f64;
1112    }
1113  }
1114  if (Subtarget->is64Bit() && Size >= 8)
1115    return MVT::i64;
1116  return MVT::i32;
1117}
1118
1119/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1120/// current function.  The returned value is a member of the
1121/// MachineJumpTableInfo::JTEntryKind enum.
1122unsigned X86TargetLowering::getJumpTableEncoding() const {
1123  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1124  // symbol.
1125  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1126      Subtarget->isPICStyleGOT())
1127    return MachineJumpTableInfo::EK_Custom32;
1128
1129  // Otherwise, use the normal jump table encoding heuristics.
1130  return TargetLowering::getJumpTableEncoding();
1131}
1132
1133/// getPICBaseSymbol - Return the X86-32 PIC base.
1134MCSymbol *
1135X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1136                                    MCContext &Ctx) const {
1137  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1138  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1139                               Twine(MF->getFunctionNumber())+"$pb");
1140}
1141
1142
1143const MCExpr *
1144X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1145                                             const MachineBasicBlock *MBB,
1146                                             unsigned uid,MCContext &Ctx) const{
1147  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1148         Subtarget->isPICStyleGOT());
1149  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1150  // entries.
1151  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1152                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1153}
1154
1155/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1156/// jumptable.
1157SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1158                                                    SelectionDAG &DAG) const {
1159  if (!Subtarget->is64Bit())
1160    // This doesn't have DebugLoc associated with it, but is not really the
1161    // same as a Register.
1162    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1163  return Table;
1164}
1165
1166/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1167/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1168/// MCExpr.
1169const MCExpr *X86TargetLowering::
1170getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1171                             MCContext &Ctx) const {
1172  // X86-64 uses RIP relative addressing based on the jump table label.
1173  if (Subtarget->isPICStyleRIPRel())
1174    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1175
1176  // Otherwise, the reference is relative to the PIC base.
1177  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1178}
1179
1180/// getFunctionAlignment - Return the Log2 alignment of this function.
1181unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1182  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1183}
1184
1185//===----------------------------------------------------------------------===//
1186//               Return Value Calling Convention Implementation
1187//===----------------------------------------------------------------------===//
1188
1189#include "X86GenCallingConv.inc"
1190
1191bool
1192X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1193                        const SmallVectorImpl<EVT> &OutTys,
1194                        const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1195                        SelectionDAG &DAG) {
1196  SmallVector<CCValAssign, 16> RVLocs;
1197  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1198                 RVLocs, *DAG.getContext());
1199  return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86);
1200}
1201
1202SDValue
1203X86TargetLowering::LowerReturn(SDValue Chain,
1204                               CallingConv::ID CallConv, bool isVarArg,
1205                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1206                               DebugLoc dl, SelectionDAG &DAG) {
1207  MachineFunction &MF = DAG.getMachineFunction();
1208  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1209
1210  SmallVector<CCValAssign, 16> RVLocs;
1211  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1212                 RVLocs, *DAG.getContext());
1213  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1214
1215  // Add the regs to the liveout set for the function.
1216  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1217  for (unsigned i = 0; i != RVLocs.size(); ++i)
1218    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1219      MRI.addLiveOut(RVLocs[i].getLocReg());
1220
1221  SDValue Flag;
1222
1223  SmallVector<SDValue, 6> RetOps;
1224  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1225  // Operand #1 = Bytes To Pop
1226  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1227                   MVT::i16));
1228
1229  // Copy the result values into the output registers.
1230  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1231    CCValAssign &VA = RVLocs[i];
1232    assert(VA.isRegLoc() && "Can only return in registers!");
1233    SDValue ValToCopy = Outs[i].Val;
1234
1235    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1236    // the RET instruction and handled by the FP Stackifier.
1237    if (VA.getLocReg() == X86::ST0 ||
1238        VA.getLocReg() == X86::ST1) {
1239      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1240      // change the value to the FP stack register class.
1241      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1242        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1243      RetOps.push_back(ValToCopy);
1244      // Don't emit a copytoreg.
1245      continue;
1246    }
1247
1248    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1249    // which is returned in RAX / RDX.
1250    if (Subtarget->is64Bit()) {
1251      EVT ValVT = ValToCopy.getValueType();
1252      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1253        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1254        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1255          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1256      }
1257    }
1258
1259    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1260    Flag = Chain.getValue(1);
1261  }
1262
1263  // The x86-64 ABI for returning structs by value requires that we copy
1264  // the sret argument into %rax for the return. We saved the argument into
1265  // a virtual register in the entry block, so now we copy the value out
1266  // and into %rax.
1267  if (Subtarget->is64Bit() &&
1268      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1269    MachineFunction &MF = DAG.getMachineFunction();
1270    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1271    unsigned Reg = FuncInfo->getSRetReturnReg();
1272    if (!Reg) {
1273      Reg = MRI.createVirtualRegister(getRegClassFor(MVT::i64));
1274      FuncInfo->setSRetReturnReg(Reg);
1275    }
1276    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1277
1278    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1279    Flag = Chain.getValue(1);
1280
1281    // RAX now acts like a return value.
1282    MRI.addLiveOut(X86::RAX);
1283  }
1284
1285  RetOps[0] = Chain;  // Update chain.
1286
1287  // Add the flag if we have it.
1288  if (Flag.getNode())
1289    RetOps.push_back(Flag);
1290
1291  return DAG.getNode(X86ISD::RET_FLAG, dl,
1292                     MVT::Other, &RetOps[0], RetOps.size());
1293}
1294
1295/// LowerCallResult - Lower the result values of a call into the
1296/// appropriate copies out of appropriate physical registers.
1297///
1298SDValue
1299X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1300                                   CallingConv::ID CallConv, bool isVarArg,
1301                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1302                                   DebugLoc dl, SelectionDAG &DAG,
1303                                   SmallVectorImpl<SDValue> &InVals) {
1304
1305  // Assign locations to each value returned by this call.
1306  SmallVector<CCValAssign, 16> RVLocs;
1307  bool Is64Bit = Subtarget->is64Bit();
1308  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1309                 RVLocs, *DAG.getContext());
1310  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1311
1312  // Copy all of the result registers out of their specified physreg.
1313  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1314    CCValAssign &VA = RVLocs[i];
1315    EVT CopyVT = VA.getValVT();
1316
1317    // If this is x86-64, and we disabled SSE, we can't return FP values
1318    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1319        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1320      report_fatal_error("SSE register return with SSE disabled");
1321    }
1322
1323    // If this is a call to a function that returns an fp value on the floating
1324    // point stack, but where we prefer to use the value in xmm registers, copy
1325    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1326    if ((VA.getLocReg() == X86::ST0 ||
1327         VA.getLocReg() == X86::ST1) &&
1328        isScalarFPTypeInSSEReg(VA.getValVT())) {
1329      CopyVT = MVT::f80;
1330    }
1331
1332    SDValue Val;
1333    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1334      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1335      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1336        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1337                                   MVT::v2i64, InFlag).getValue(1);
1338        Val = Chain.getValue(0);
1339        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1340                          Val, DAG.getConstant(0, MVT::i64));
1341      } else {
1342        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1343                                   MVT::i64, InFlag).getValue(1);
1344        Val = Chain.getValue(0);
1345      }
1346      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1347    } else {
1348      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1349                                 CopyVT, InFlag).getValue(1);
1350      Val = Chain.getValue(0);
1351    }
1352    InFlag = Chain.getValue(2);
1353
1354    if (CopyVT != VA.getValVT()) {
1355      // Round the F80 the right size, which also moves to the appropriate xmm
1356      // register.
1357      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1358                        // This truncation won't change the value.
1359                        DAG.getIntPtrConstant(1));
1360    }
1361
1362    InVals.push_back(Val);
1363  }
1364
1365  return Chain;
1366}
1367
1368
1369//===----------------------------------------------------------------------===//
1370//                C & StdCall & Fast Calling Convention implementation
1371//===----------------------------------------------------------------------===//
1372//  StdCall calling convention seems to be standard for many Windows' API
1373//  routines and around. It differs from C calling convention just a little:
1374//  callee should clean up the stack, not caller. Symbols should be also
1375//  decorated in some fancy way :) It doesn't support any vector arguments.
1376//  For info on fast calling convention see Fast Calling Convention (tail call)
1377//  implementation LowerX86_32FastCCCallTo.
1378
1379/// CallIsStructReturn - Determines whether a call uses struct return
1380/// semantics.
1381static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1382  if (Outs.empty())
1383    return false;
1384
1385  return Outs[0].Flags.isSRet();
1386}
1387
1388/// ArgsAreStructReturn - Determines whether a function uses struct
1389/// return semantics.
1390static bool
1391ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1392  if (Ins.empty())
1393    return false;
1394
1395  return Ins[0].Flags.isSRet();
1396}
1397
1398/// IsCalleePop - Determines whether the callee is required to pop its
1399/// own arguments. Callee pop is necessary to support tail calls.
1400bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){
1401  if (IsVarArg)
1402    return false;
1403
1404  switch (CallingConv) {
1405  default:
1406    return false;
1407  case CallingConv::X86_StdCall:
1408    return !Subtarget->is64Bit();
1409  case CallingConv::X86_FastCall:
1410    return !Subtarget->is64Bit();
1411  case CallingConv::Fast:
1412    return GuaranteedTailCallOpt;
1413  case CallingConv::GHC:
1414    return GuaranteedTailCallOpt;
1415  }
1416}
1417
1418/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1419/// given CallingConvention value.
1420CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1421  if (Subtarget->is64Bit()) {
1422    if (CC == CallingConv::GHC)
1423      return CC_X86_64_GHC;
1424    else if (Subtarget->isTargetWin64())
1425      return CC_X86_Win64_C;
1426    else
1427      return CC_X86_64_C;
1428  }
1429
1430  if (CC == CallingConv::X86_FastCall)
1431    return CC_X86_32_FastCall;
1432  else if (CC == CallingConv::Fast)
1433    return CC_X86_32_FastCC;
1434  else if (CC == CallingConv::GHC)
1435    return CC_X86_32_GHC;
1436  else
1437    return CC_X86_32_C;
1438}
1439
1440/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1441/// by "Src" to address "Dst" with size and alignment information specified by
1442/// the specific parameter attribute. The copy will be passed as a byval
1443/// function parameter.
1444static SDValue
1445CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1446                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1447                          DebugLoc dl) {
1448  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1449  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1450                       /*isVolatile*/false, /*AlwaysInline=*/true,
1451                       NULL, 0, NULL, 0);
1452}
1453
1454/// IsTailCallConvention - Return true if the calling convention is one that
1455/// supports tail call optimization.
1456static bool IsTailCallConvention(CallingConv::ID CC) {
1457  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1458}
1459
1460/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1461/// a tailcall target by changing its ABI.
1462static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1463  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1464}
1465
1466SDValue
1467X86TargetLowering::LowerMemArgument(SDValue Chain,
1468                                    CallingConv::ID CallConv,
1469                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1470                                    DebugLoc dl, SelectionDAG &DAG,
1471                                    const CCValAssign &VA,
1472                                    MachineFrameInfo *MFI,
1473                                    unsigned i) {
1474  // Create the nodes corresponding to a load from this parameter slot.
1475  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1476  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1477  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1478  EVT ValVT;
1479
1480  // If value is passed by pointer we have address passed instead of the value
1481  // itself.
1482  if (VA.getLocInfo() == CCValAssign::Indirect)
1483    ValVT = VA.getLocVT();
1484  else
1485    ValVT = VA.getValVT();
1486
1487  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1488  // changed with more analysis.
1489  // In case of tail call optimization mark all arguments mutable. Since they
1490  // could be overwritten by lowering of arguments in case of a tail call.
1491  if (Flags.isByVal()) {
1492    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1493                                    VA.getLocMemOffset(), isImmutable, false);
1494    return DAG.getFrameIndex(FI, getPointerTy());
1495  } else {
1496    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1497                                    VA.getLocMemOffset(), isImmutable, false);
1498    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1499    return DAG.getLoad(ValVT, dl, Chain, FIN,
1500                       PseudoSourceValue::getFixedStack(FI), 0,
1501                       false, false, 0);
1502  }
1503}
1504
1505SDValue
1506X86TargetLowering::LowerFormalArguments(SDValue Chain,
1507                                        CallingConv::ID CallConv,
1508                                        bool isVarArg,
1509                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1510                                        DebugLoc dl,
1511                                        SelectionDAG &DAG,
1512                                        SmallVectorImpl<SDValue> &InVals) {
1513  MachineFunction &MF = DAG.getMachineFunction();
1514  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1515
1516  const Function* Fn = MF.getFunction();
1517  if (Fn->hasExternalLinkage() &&
1518      Subtarget->isTargetCygMing() &&
1519      Fn->getName() == "main")
1520    FuncInfo->setForceFramePointer(true);
1521
1522  MachineFrameInfo *MFI = MF.getFrameInfo();
1523  bool Is64Bit = Subtarget->is64Bit();
1524  bool IsWin64 = Subtarget->isTargetWin64();
1525
1526  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1527         "Var args not supported with calling convention fastcc or ghc");
1528
1529  // Assign locations to all of the incoming arguments.
1530  SmallVector<CCValAssign, 16> ArgLocs;
1531  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1532                 ArgLocs, *DAG.getContext());
1533  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1534
1535  unsigned LastVal = ~0U;
1536  SDValue ArgValue;
1537  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1538    CCValAssign &VA = ArgLocs[i];
1539    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1540    // places.
1541    assert(VA.getValNo() != LastVal &&
1542           "Don't support value assigned to multiple locs yet");
1543    LastVal = VA.getValNo();
1544
1545    if (VA.isRegLoc()) {
1546      EVT RegVT = VA.getLocVT();
1547      TargetRegisterClass *RC = NULL;
1548      if (RegVT == MVT::i32)
1549        RC = X86::GR32RegisterClass;
1550      else if (Is64Bit && RegVT == MVT::i64)
1551        RC = X86::GR64RegisterClass;
1552      else if (RegVT == MVT::f32)
1553        RC = X86::FR32RegisterClass;
1554      else if (RegVT == MVT::f64)
1555        RC = X86::FR64RegisterClass;
1556      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1557        RC = X86::VR128RegisterClass;
1558      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1559        RC = X86::VR64RegisterClass;
1560      else
1561        llvm_unreachable("Unknown argument type!");
1562
1563      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1564      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1565
1566      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1567      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1568      // right size.
1569      if (VA.getLocInfo() == CCValAssign::SExt)
1570        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1571                               DAG.getValueType(VA.getValVT()));
1572      else if (VA.getLocInfo() == CCValAssign::ZExt)
1573        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1574                               DAG.getValueType(VA.getValVT()));
1575      else if (VA.getLocInfo() == CCValAssign::BCvt)
1576        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1577
1578      if (VA.isExtInLoc()) {
1579        // Handle MMX values passed in XMM regs.
1580        if (RegVT.isVector()) {
1581          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1582                                 ArgValue, DAG.getConstant(0, MVT::i64));
1583          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1584        } else
1585          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1586      }
1587    } else {
1588      assert(VA.isMemLoc());
1589      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1590    }
1591
1592    // If value is passed via pointer - do a load.
1593    if (VA.getLocInfo() == CCValAssign::Indirect)
1594      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1595                             false, false, 0);
1596
1597    InVals.push_back(ArgValue);
1598  }
1599
1600  // The x86-64 ABI for returning structs by value requires that we copy
1601  // the sret argument into %rax for the return. Save the argument into
1602  // a virtual register so that we can access it from the return points.
1603  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1604    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1605    unsigned Reg = FuncInfo->getSRetReturnReg();
1606    if (!Reg) {
1607      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1608      FuncInfo->setSRetReturnReg(Reg);
1609    }
1610    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1611    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1612  }
1613
1614  unsigned StackSize = CCInfo.getNextStackOffset();
1615  // Align stack specially for tail calls.
1616  if (FuncIsMadeTailCallSafe(CallConv))
1617    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1618
1619  // If the function takes variable number of arguments, make a frame index for
1620  // the start of the first vararg value... for expansion of llvm.va_start.
1621  if (isVarArg) {
1622    if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1623      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,
1624                                                            true, false));
1625    }
1626    if (Is64Bit) {
1627      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1628
1629      // FIXME: We should really autogenerate these arrays
1630      static const unsigned GPR64ArgRegsWin64[] = {
1631        X86::RCX, X86::RDX, X86::R8,  X86::R9
1632      };
1633      static const unsigned XMMArgRegsWin64[] = {
1634        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1635      };
1636      static const unsigned GPR64ArgRegs64Bit[] = {
1637        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1638      };
1639      static const unsigned XMMArgRegs64Bit[] = {
1640        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1641        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1642      };
1643      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1644
1645      if (IsWin64) {
1646        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1647        GPR64ArgRegs = GPR64ArgRegsWin64;
1648        XMMArgRegs = XMMArgRegsWin64;
1649      } else {
1650        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1651        GPR64ArgRegs = GPR64ArgRegs64Bit;
1652        XMMArgRegs = XMMArgRegs64Bit;
1653      }
1654      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1655                                                       TotalNumIntRegs);
1656      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1657                                                       TotalNumXMMRegs);
1658
1659      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1660      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1661             "SSE register cannot be used when SSE is disabled!");
1662      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1663             "SSE register cannot be used when SSE is disabled!");
1664      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1665        // Kernel mode asks for SSE to be disabled, so don't push them
1666        // on the stack.
1667        TotalNumXMMRegs = 0;
1668
1669      // For X86-64, if there are vararg parameters that are passed via
1670      // registers, then we must store them to their spots on the stack so they
1671      // may be loaded by deferencing the result of va_next.
1672      FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1673      FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1674      FuncInfo->setRegSaveFrameIndex(
1675        MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1676                               false));
1677
1678      // Store the integer parameter registers.
1679      SmallVector<SDValue, 8> MemOps;
1680      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1681                                        getPointerTy());
1682      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1683      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1684        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1685                                  DAG.getIntPtrConstant(Offset));
1686        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1687                                     X86::GR64RegisterClass);
1688        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1689        SDValue Store =
1690          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1691                       PseudoSourceValue::getFixedStack(
1692                         FuncInfo->getRegSaveFrameIndex()),
1693                       Offset, false, false, 0);
1694        MemOps.push_back(Store);
1695        Offset += 8;
1696      }
1697
1698      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1699        // Now store the XMM (fp + vector) parameter registers.
1700        SmallVector<SDValue, 11> SaveXMMOps;
1701        SaveXMMOps.push_back(Chain);
1702
1703        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1704        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1705        SaveXMMOps.push_back(ALVal);
1706
1707        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1708                               FuncInfo->getRegSaveFrameIndex()));
1709        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1710                               FuncInfo->getVarArgsFPOffset()));
1711
1712        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1713          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1714                                       X86::VR128RegisterClass);
1715          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1716          SaveXMMOps.push_back(Val);
1717        }
1718        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1719                                     MVT::Other,
1720                                     &SaveXMMOps[0], SaveXMMOps.size()));
1721      }
1722
1723      if (!MemOps.empty())
1724        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1725                            &MemOps[0], MemOps.size());
1726    }
1727  }
1728
1729  // Some CCs need callee pop.
1730  if (IsCalleePop(isVarArg, CallConv)) {
1731    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1732  } else {
1733    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1734    // If this is an sret function, the return should pop the hidden pointer.
1735    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1736      FuncInfo->setBytesToPopOnReturn(4);
1737  }
1738
1739  if (!Is64Bit) {
1740    // RegSaveFrameIndex is X86-64 only.
1741    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1742    if (CallConv == CallingConv::X86_FastCall)
1743      // fastcc functions can't have varargs.
1744      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1745  }
1746
1747  return Chain;
1748}
1749
1750SDValue
1751X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1752                                    SDValue StackPtr, SDValue Arg,
1753                                    DebugLoc dl, SelectionDAG &DAG,
1754                                    const CCValAssign &VA,
1755                                    ISD::ArgFlagsTy Flags) {
1756  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1757  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1758  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1759  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1760  if (Flags.isByVal()) {
1761    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1762  }
1763  return DAG.getStore(Chain, dl, Arg, PtrOff,
1764                      PseudoSourceValue::getStack(), LocMemOffset,
1765                      false, false, 0);
1766}
1767
1768/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1769/// optimization is performed and it is required.
1770SDValue
1771X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1772                                           SDValue &OutRetAddr, SDValue Chain,
1773                                           bool IsTailCall, bool Is64Bit,
1774                                           int FPDiff, DebugLoc dl) {
1775  // Adjust the Return address stack slot.
1776  EVT VT = getPointerTy();
1777  OutRetAddr = getReturnAddressFrameIndex(DAG);
1778
1779  // Load the "old" Return address.
1780  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1781  return SDValue(OutRetAddr.getNode(), 1);
1782}
1783
1784/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1785/// optimization is performed and it is required (FPDiff!=0).
1786static SDValue
1787EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1788                         SDValue Chain, SDValue RetAddrFrIdx,
1789                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1790  // Store the return address to the appropriate stack slot.
1791  if (!FPDiff) return Chain;
1792  // Calculate the new stack slot for the return address.
1793  int SlotSize = Is64Bit ? 8 : 4;
1794  int NewReturnAddrFI =
1795    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false, false);
1796  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1797  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1798  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1799                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1800                       false, false, 0);
1801  return Chain;
1802}
1803
1804SDValue
1805X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1806                             CallingConv::ID CallConv, bool isVarArg,
1807                             bool &isTailCall,
1808                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1809                             const SmallVectorImpl<ISD::InputArg> &Ins,
1810                             DebugLoc dl, SelectionDAG &DAG,
1811                             SmallVectorImpl<SDValue> &InVals) {
1812  MachineFunction &MF = DAG.getMachineFunction();
1813  bool Is64Bit        = Subtarget->is64Bit();
1814  bool IsStructRet    = CallIsStructReturn(Outs);
1815  bool IsSibcall      = false;
1816
1817  if (isTailCall) {
1818    // Check if it's really possible to do a tail call.
1819    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1820                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1821                                                   Outs, Ins, DAG);
1822
1823    // Sibcalls are automatically detected tailcalls which do not require
1824    // ABI changes.
1825    if (!GuaranteedTailCallOpt && isTailCall)
1826      IsSibcall = true;
1827
1828    if (isTailCall)
1829      ++NumTailCalls;
1830  }
1831
1832  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1833         "Var args not supported with calling convention fastcc or ghc");
1834
1835  // Analyze operands of the call, assigning locations to each operand.
1836  SmallVector<CCValAssign, 16> ArgLocs;
1837  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1838                 ArgLocs, *DAG.getContext());
1839  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1840
1841  // Get a count of how many bytes are to be pushed on the stack.
1842  unsigned NumBytes = CCInfo.getNextStackOffset();
1843  if (IsSibcall)
1844    // This is a sibcall. The memory operands are available in caller's
1845    // own caller's stack.
1846    NumBytes = 0;
1847  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1848    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1849
1850  int FPDiff = 0;
1851  if (isTailCall && !IsSibcall) {
1852    // Lower arguments at fp - stackoffset + fpdiff.
1853    unsigned NumBytesCallerPushed =
1854      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1855    FPDiff = NumBytesCallerPushed - NumBytes;
1856
1857    // Set the delta of movement of the returnaddr stackslot.
1858    // But only set if delta is greater than previous delta.
1859    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1860      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1861  }
1862
1863  if (!IsSibcall)
1864    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1865
1866  SDValue RetAddrFrIdx;
1867  // Load return adress for tail calls.
1868  if (isTailCall && FPDiff)
1869    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1870                                    Is64Bit, FPDiff, dl);
1871
1872  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1873  SmallVector<SDValue, 8> MemOpChains;
1874  SDValue StackPtr;
1875
1876  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1877  // of tail call optimization arguments are handle later.
1878  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1879    CCValAssign &VA = ArgLocs[i];
1880    EVT RegVT = VA.getLocVT();
1881    SDValue Arg = Outs[i].Val;
1882    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1883    bool isByVal = Flags.isByVal();
1884
1885    // Promote the value if needed.
1886    switch (VA.getLocInfo()) {
1887    default: llvm_unreachable("Unknown loc info!");
1888    case CCValAssign::Full: break;
1889    case CCValAssign::SExt:
1890      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1891      break;
1892    case CCValAssign::ZExt:
1893      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1894      break;
1895    case CCValAssign::AExt:
1896      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1897        // Special case: passing MMX values in XMM registers.
1898        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1899        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1900        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1901      } else
1902        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1903      break;
1904    case CCValAssign::BCvt:
1905      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1906      break;
1907    case CCValAssign::Indirect: {
1908      // Store the argument.
1909      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1910      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1911      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1912                           PseudoSourceValue::getFixedStack(FI), 0,
1913                           false, false, 0);
1914      Arg = SpillSlot;
1915      break;
1916    }
1917    }
1918
1919    if (VA.isRegLoc()) {
1920      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1921    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1922      assert(VA.isMemLoc());
1923      if (StackPtr.getNode() == 0)
1924        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1925      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1926                                             dl, DAG, VA, Flags));
1927    }
1928  }
1929
1930  if (!MemOpChains.empty())
1931    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1932                        &MemOpChains[0], MemOpChains.size());
1933
1934  // Build a sequence of copy-to-reg nodes chained together with token chain
1935  // and flag operands which copy the outgoing args into registers.
1936  SDValue InFlag;
1937  // Tail call byval lowering might overwrite argument registers so in case of
1938  // tail call optimization the copies to registers are lowered later.
1939  if (!isTailCall)
1940    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1941      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1942                               RegsToPass[i].second, InFlag);
1943      InFlag = Chain.getValue(1);
1944    }
1945
1946  if (Subtarget->isPICStyleGOT()) {
1947    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1948    // GOT pointer.
1949    if (!isTailCall) {
1950      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1951                               DAG.getNode(X86ISD::GlobalBaseReg,
1952                                           DebugLoc(), getPointerTy()),
1953                               InFlag);
1954      InFlag = Chain.getValue(1);
1955    } else {
1956      // If we are tail calling and generating PIC/GOT style code load the
1957      // address of the callee into ECX. The value in ecx is used as target of
1958      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1959      // for tail calls on PIC/GOT architectures. Normally we would just put the
1960      // address of GOT into ebx and then call target@PLT. But for tail calls
1961      // ebx would be restored (since ebx is callee saved) before jumping to the
1962      // target@PLT.
1963
1964      // Note: The actual moving to ECX is done further down.
1965      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1966      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1967          !G->getGlobal()->hasProtectedVisibility())
1968        Callee = LowerGlobalAddress(Callee, DAG);
1969      else if (isa<ExternalSymbolSDNode>(Callee))
1970        Callee = LowerExternalSymbol(Callee, DAG);
1971    }
1972  }
1973
1974  if (Is64Bit && isVarArg) {
1975    // From AMD64 ABI document:
1976    // For calls that may call functions that use varargs or stdargs
1977    // (prototype-less calls or calls to functions containing ellipsis (...) in
1978    // the declaration) %al is used as hidden argument to specify the number
1979    // of SSE registers used. The contents of %al do not need to match exactly
1980    // the number of registers, but must be an ubound on the number of SSE
1981    // registers used and is in the range 0 - 8 inclusive.
1982
1983    // FIXME: Verify this on Win64
1984    // Count the number of XMM registers allocated.
1985    static const unsigned XMMArgRegs[] = {
1986      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1987      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1988    };
1989    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1990    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1991           && "SSE registers cannot be used when SSE is disabled");
1992
1993    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1994                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1995    InFlag = Chain.getValue(1);
1996  }
1997
1998
1999  // For tail calls lower the arguments to the 'real' stack slot.
2000  if (isTailCall) {
2001    // Force all the incoming stack arguments to be loaded from the stack
2002    // before any new outgoing arguments are stored to the stack, because the
2003    // outgoing stack slots may alias the incoming argument stack slots, and
2004    // the alias isn't otherwise explicit. This is slightly more conservative
2005    // than necessary, because it means that each store effectively depends
2006    // on every argument instead of just those arguments it would clobber.
2007    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2008
2009    SmallVector<SDValue, 8> MemOpChains2;
2010    SDValue FIN;
2011    int FI = 0;
2012    // Do not flag preceeding copytoreg stuff together with the following stuff.
2013    InFlag = SDValue();
2014    if (GuaranteedTailCallOpt) {
2015      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2016        CCValAssign &VA = ArgLocs[i];
2017        if (VA.isRegLoc())
2018          continue;
2019        assert(VA.isMemLoc());
2020        SDValue Arg = Outs[i].Val;
2021        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2022        // Create frame index.
2023        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2024        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2025        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true, false);
2026        FIN = DAG.getFrameIndex(FI, getPointerTy());
2027
2028        if (Flags.isByVal()) {
2029          // Copy relative to framepointer.
2030          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2031          if (StackPtr.getNode() == 0)
2032            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2033                                          getPointerTy());
2034          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2035
2036          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2037                                                           ArgChain,
2038                                                           Flags, DAG, dl));
2039        } else {
2040          // Store relative to framepointer.
2041          MemOpChains2.push_back(
2042            DAG.getStore(ArgChain, dl, Arg, FIN,
2043                         PseudoSourceValue::getFixedStack(FI), 0,
2044                         false, false, 0));
2045        }
2046      }
2047    }
2048
2049    if (!MemOpChains2.empty())
2050      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2051                          &MemOpChains2[0], MemOpChains2.size());
2052
2053    // Copy arguments to their registers.
2054    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2055      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2056                               RegsToPass[i].second, InFlag);
2057      InFlag = Chain.getValue(1);
2058    }
2059    InFlag =SDValue();
2060
2061    // Store the return address to the appropriate stack slot.
2062    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2063                                     FPDiff, dl);
2064  }
2065
2066  bool WasGlobalOrExternal = false;
2067  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2068    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2069    // In the 64-bit large code model, we have to make all calls
2070    // through a register, since the call instruction's 32-bit
2071    // pc-relative offset may not be large enough to hold the whole
2072    // address.
2073  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2074    WasGlobalOrExternal = true;
2075    // If the callee is a GlobalAddress node (quite common, every direct call
2076    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2077    // it.
2078
2079    // We should use extra load for direct calls to dllimported functions in
2080    // non-JIT mode.
2081    const GlobalValue *GV = G->getGlobal();
2082    if (!GV->hasDLLImportLinkage()) {
2083      unsigned char OpFlags = 0;
2084
2085      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2086      // external symbols most go through the PLT in PIC mode.  If the symbol
2087      // has hidden or protected visibility, or if it is static or local, then
2088      // we don't need to use the PLT - we can directly call it.
2089      if (Subtarget->isTargetELF() &&
2090          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2091          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2092        OpFlags = X86II::MO_PLT;
2093      } else if (Subtarget->isPICStyleStubAny() &&
2094               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2095               Subtarget->getDarwinVers() < 9) {
2096        // PC-relative references to external symbols should go through $stub,
2097        // unless we're building with the leopard linker or later, which
2098        // automatically synthesizes these stubs.
2099        OpFlags = X86II::MO_DARWIN_STUB;
2100      }
2101
2102      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
2103                                          G->getOffset(), OpFlags);
2104    }
2105  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2106    WasGlobalOrExternal = true;
2107    unsigned char OpFlags = 0;
2108
2109    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2110    // symbols should go through the PLT.
2111    if (Subtarget->isTargetELF() &&
2112        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2113      OpFlags = X86II::MO_PLT;
2114    } else if (Subtarget->isPICStyleStubAny() &&
2115             Subtarget->getDarwinVers() < 9) {
2116      // PC-relative references to external symbols should go through $stub,
2117      // unless we're building with the leopard linker or later, which
2118      // automatically synthesizes these stubs.
2119      OpFlags = X86II::MO_DARWIN_STUB;
2120    }
2121
2122    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2123                                         OpFlags);
2124  }
2125
2126  // Returns a chain & a flag for retval copy to use.
2127  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2128  SmallVector<SDValue, 8> Ops;
2129
2130  if (!IsSibcall && isTailCall) {
2131    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2132                           DAG.getIntPtrConstant(0, true), InFlag);
2133    InFlag = Chain.getValue(1);
2134  }
2135
2136  Ops.push_back(Chain);
2137  Ops.push_back(Callee);
2138
2139  if (isTailCall)
2140    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2141
2142  // Add argument registers to the end of the list so that they are known live
2143  // into the call.
2144  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2145    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2146                                  RegsToPass[i].second.getValueType()));
2147
2148  // Add an implicit use GOT pointer in EBX.
2149  if (!isTailCall && Subtarget->isPICStyleGOT())
2150    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2151
2152  // Add an implicit use of AL for x86 vararg functions.
2153  if (Is64Bit && isVarArg)
2154    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2155
2156  if (InFlag.getNode())
2157    Ops.push_back(InFlag);
2158
2159  if (isTailCall) {
2160    // If this is the first return lowered for this function, add the regs
2161    // to the liveout set for the function.
2162    if (MF.getRegInfo().liveout_empty()) {
2163      SmallVector<CCValAssign, 16> RVLocs;
2164      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2165                     *DAG.getContext());
2166      CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2167      for (unsigned i = 0; i != RVLocs.size(); ++i)
2168        if (RVLocs[i].isRegLoc())
2169          MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2170    }
2171    return DAG.getNode(X86ISD::TC_RETURN, dl,
2172                       NodeTys, &Ops[0], Ops.size());
2173  }
2174
2175  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2176  InFlag = Chain.getValue(1);
2177
2178  // Create the CALLSEQ_END node.
2179  unsigned NumBytesForCalleeToPush;
2180  if (IsCalleePop(isVarArg, CallConv))
2181    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2182  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2183    // If this is a call to a struct-return function, the callee
2184    // pops the hidden struct pointer, so we have to push it back.
2185    // This is common for Darwin/X86, Linux & Mingw32 targets.
2186    NumBytesForCalleeToPush = 4;
2187  else
2188    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2189
2190  // Returns a flag for retval copy to use.
2191  if (!IsSibcall) {
2192    Chain = DAG.getCALLSEQ_END(Chain,
2193                               DAG.getIntPtrConstant(NumBytes, true),
2194                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2195                                                     true),
2196                               InFlag);
2197    InFlag = Chain.getValue(1);
2198  }
2199
2200  // Handle result values, copying them out of physregs into vregs that we
2201  // return.
2202  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2203                         Ins, dl, DAG, InVals);
2204}
2205
2206
2207//===----------------------------------------------------------------------===//
2208//                Fast Calling Convention (tail call) implementation
2209//===----------------------------------------------------------------------===//
2210
2211//  Like std call, callee cleans arguments, convention except that ECX is
2212//  reserved for storing the tail called function address. Only 2 registers are
2213//  free for argument passing (inreg). Tail call optimization is performed
2214//  provided:
2215//                * tailcallopt is enabled
2216//                * caller/callee are fastcc
2217//  On X86_64 architecture with GOT-style position independent code only local
2218//  (within module) calls are supported at the moment.
2219//  To keep the stack aligned according to platform abi the function
2220//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2221//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2222//  If a tail called function callee has more arguments than the caller the
2223//  caller needs to make sure that there is room to move the RETADDR to. This is
2224//  achieved by reserving an area the size of the argument delta right after the
2225//  original REtADDR, but before the saved framepointer or the spilled registers
2226//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2227//  stack layout:
2228//    arg1
2229//    arg2
2230//    RETADDR
2231//    [ new RETADDR
2232//      move area ]
2233//    (possible EBP)
2234//    ESI
2235//    EDI
2236//    local1 ..
2237
2238/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2239/// for a 16 byte align requirement.
2240unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2241                                                        SelectionDAG& DAG) {
2242  MachineFunction &MF = DAG.getMachineFunction();
2243  const TargetMachine &TM = MF.getTarget();
2244  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2245  unsigned StackAlignment = TFI.getStackAlignment();
2246  uint64_t AlignMask = StackAlignment - 1;
2247  int64_t Offset = StackSize;
2248  uint64_t SlotSize = TD->getPointerSize();
2249  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2250    // Number smaller than 12 so just add the difference.
2251    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2252  } else {
2253    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2254    Offset = ((~AlignMask) & Offset) + StackAlignment +
2255      (StackAlignment-SlotSize);
2256  }
2257  return Offset;
2258}
2259
2260/// MatchingStackOffset - Return true if the given stack call argument is
2261/// already available in the same position (relatively) of the caller's
2262/// incoming argument stack.
2263static
2264bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2265                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2266                         const X86InstrInfo *TII) {
2267  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2268  int FI = INT_MAX;
2269  if (Arg.getOpcode() == ISD::CopyFromReg) {
2270    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2271    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2272      return false;
2273    MachineInstr *Def = MRI->getVRegDef(VR);
2274    if (!Def)
2275      return false;
2276    if (!Flags.isByVal()) {
2277      if (!TII->isLoadFromStackSlot(Def, FI))
2278        return false;
2279    } else {
2280      unsigned Opcode = Def->getOpcode();
2281      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2282          Def->getOperand(1).isFI()) {
2283        FI = Def->getOperand(1).getIndex();
2284        Bytes = Flags.getByValSize();
2285      } else
2286        return false;
2287    }
2288  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2289    if (Flags.isByVal())
2290      // ByVal argument is passed in as a pointer but it's now being
2291      // dereferenced. e.g.
2292      // define @foo(%struct.X* %A) {
2293      //   tail call @bar(%struct.X* byval %A)
2294      // }
2295      return false;
2296    SDValue Ptr = Ld->getBasePtr();
2297    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2298    if (!FINode)
2299      return false;
2300    FI = FINode->getIndex();
2301  } else
2302    return false;
2303
2304  assert(FI != INT_MAX);
2305  if (!MFI->isFixedObjectIndex(FI))
2306    return false;
2307  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2308}
2309
2310/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2311/// for tail call optimization. Targets which want to do tail call
2312/// optimization should implement this function.
2313bool
2314X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2315                                                     CallingConv::ID CalleeCC,
2316                                                     bool isVarArg,
2317                                                     bool isCalleeStructRet,
2318                                                     bool isCallerStructRet,
2319                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2320                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2321                                                     SelectionDAG& DAG) const {
2322  if (!IsTailCallConvention(CalleeCC) &&
2323      CalleeCC != CallingConv::C)
2324    return false;
2325
2326  // If -tailcallopt is specified, make fastcc functions tail-callable.
2327  const MachineFunction &MF = DAG.getMachineFunction();
2328  const Function *CallerF = DAG.getMachineFunction().getFunction();
2329  if (GuaranteedTailCallOpt) {
2330    if (IsTailCallConvention(CalleeCC) &&
2331        CallerF->getCallingConv() == CalleeCC)
2332      return true;
2333    return false;
2334  }
2335
2336  // Look for obvious safe cases to perform tail call optimization that does not
2337  // requite ABI changes. This is what gcc calls sibcall.
2338
2339  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2340  // emit a special epilogue.
2341  if (RegInfo->needsStackRealignment(MF))
2342    return false;
2343
2344  // Do not sibcall optimize vararg calls unless the call site is not passing any
2345  // arguments.
2346  if (isVarArg && !Outs.empty())
2347    return false;
2348
2349  // Also avoid sibcall optimization if either caller or callee uses struct
2350  // return semantics.
2351  if (isCalleeStructRet || isCallerStructRet)
2352    return false;
2353
2354  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2355  // Therefore if it's not used by the call it is not safe to optimize this into
2356  // a sibcall.
2357  bool Unused = false;
2358  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2359    if (!Ins[i].Used) {
2360      Unused = true;
2361      break;
2362    }
2363  }
2364  if (Unused) {
2365    SmallVector<CCValAssign, 16> RVLocs;
2366    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2367                   RVLocs, *DAG.getContext());
2368    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2369    for (unsigned i = 0; i != RVLocs.size(); ++i) {
2370      CCValAssign &VA = RVLocs[i];
2371      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2372        return false;
2373    }
2374  }
2375
2376  // If the callee takes no arguments then go on to check the results of the
2377  // call.
2378  if (!Outs.empty()) {
2379    // Check if stack adjustment is needed. For now, do not do this if any
2380    // argument is passed on the stack.
2381    SmallVector<CCValAssign, 16> ArgLocs;
2382    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2383                   ArgLocs, *DAG.getContext());
2384    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2385    if (CCInfo.getNextStackOffset()) {
2386      MachineFunction &MF = DAG.getMachineFunction();
2387      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2388        return false;
2389      if (Subtarget->isTargetWin64())
2390        // Win64 ABI has additional complications.
2391        return false;
2392
2393      // Check if the arguments are already laid out in the right way as
2394      // the caller's fixed stack objects.
2395      MachineFrameInfo *MFI = MF.getFrameInfo();
2396      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2397      const X86InstrInfo *TII =
2398        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2399      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2400        CCValAssign &VA = ArgLocs[i];
2401        EVT RegVT = VA.getLocVT();
2402        SDValue Arg = Outs[i].Val;
2403        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2404        if (VA.getLocInfo() == CCValAssign::Indirect)
2405          return false;
2406        if (!VA.isRegLoc()) {
2407          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2408                                   MFI, MRI, TII))
2409            return false;
2410        }
2411      }
2412    }
2413  }
2414
2415  return true;
2416}
2417
2418FastISel *
2419X86TargetLowering::createFastISel(MachineFunction &mf,
2420                            DenseMap<const Value *, unsigned> &vm,
2421                            DenseMap<const BasicBlock*, MachineBasicBlock*> &bm,
2422                            DenseMap<const AllocaInst *, int> &am
2423#ifndef NDEBUG
2424                          , SmallSet<const Instruction *, 8> &cil
2425#endif
2426                                  ) {
2427  return X86::createFastISel(mf, vm, bm, am
2428#ifndef NDEBUG
2429                             , cil
2430#endif
2431                             );
2432}
2433
2434
2435//===----------------------------------------------------------------------===//
2436//                           Other Lowering Hooks
2437//===----------------------------------------------------------------------===//
2438
2439
2440SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2441  MachineFunction &MF = DAG.getMachineFunction();
2442  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2443  int ReturnAddrIndex = FuncInfo->getRAIndex();
2444
2445  if (ReturnAddrIndex == 0) {
2446    // Set up a frame object for the return address.
2447    uint64_t SlotSize = TD->getPointerSize();
2448    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2449                                                           false, false);
2450    FuncInfo->setRAIndex(ReturnAddrIndex);
2451  }
2452
2453  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2454}
2455
2456
2457bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2458                                       bool hasSymbolicDisplacement) {
2459  // Offset should fit into 32 bit immediate field.
2460  if (!isInt<32>(Offset))
2461    return false;
2462
2463  // If we don't have a symbolic displacement - we don't have any extra
2464  // restrictions.
2465  if (!hasSymbolicDisplacement)
2466    return true;
2467
2468  // FIXME: Some tweaks might be needed for medium code model.
2469  if (M != CodeModel::Small && M != CodeModel::Kernel)
2470    return false;
2471
2472  // For small code model we assume that latest object is 16MB before end of 31
2473  // bits boundary. We may also accept pretty large negative constants knowing
2474  // that all objects are in the positive half of address space.
2475  if (M == CodeModel::Small && Offset < 16*1024*1024)
2476    return true;
2477
2478  // For kernel code model we know that all object resist in the negative half
2479  // of 32bits address space. We may not accept negative offsets, since they may
2480  // be just off and we may accept pretty large positive ones.
2481  if (M == CodeModel::Kernel && Offset > 0)
2482    return true;
2483
2484  return false;
2485}
2486
2487/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2488/// specific condition code, returning the condition code and the LHS/RHS of the
2489/// comparison to make.
2490static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2491                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2492  if (!isFP) {
2493    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2494      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2495        // X > -1   -> X == 0, jump !sign.
2496        RHS = DAG.getConstant(0, RHS.getValueType());
2497        return X86::COND_NS;
2498      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2499        // X < 0   -> X == 0, jump on sign.
2500        return X86::COND_S;
2501      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2502        // X < 1   -> X <= 0
2503        RHS = DAG.getConstant(0, RHS.getValueType());
2504        return X86::COND_LE;
2505      }
2506    }
2507
2508    switch (SetCCOpcode) {
2509    default: llvm_unreachable("Invalid integer condition!");
2510    case ISD::SETEQ:  return X86::COND_E;
2511    case ISD::SETGT:  return X86::COND_G;
2512    case ISD::SETGE:  return X86::COND_GE;
2513    case ISD::SETLT:  return X86::COND_L;
2514    case ISD::SETLE:  return X86::COND_LE;
2515    case ISD::SETNE:  return X86::COND_NE;
2516    case ISD::SETULT: return X86::COND_B;
2517    case ISD::SETUGT: return X86::COND_A;
2518    case ISD::SETULE: return X86::COND_BE;
2519    case ISD::SETUGE: return X86::COND_AE;
2520    }
2521  }
2522
2523  // First determine if it is required or is profitable to flip the operands.
2524
2525  // If LHS is a foldable load, but RHS is not, flip the condition.
2526  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2527      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2528    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2529    std::swap(LHS, RHS);
2530  }
2531
2532  switch (SetCCOpcode) {
2533  default: break;
2534  case ISD::SETOLT:
2535  case ISD::SETOLE:
2536  case ISD::SETUGT:
2537  case ISD::SETUGE:
2538    std::swap(LHS, RHS);
2539    break;
2540  }
2541
2542  // On a floating point condition, the flags are set as follows:
2543  // ZF  PF  CF   op
2544  //  0 | 0 | 0 | X > Y
2545  //  0 | 0 | 1 | X < Y
2546  //  1 | 0 | 0 | X == Y
2547  //  1 | 1 | 1 | unordered
2548  switch (SetCCOpcode) {
2549  default: llvm_unreachable("Condcode should be pre-legalized away");
2550  case ISD::SETUEQ:
2551  case ISD::SETEQ:   return X86::COND_E;
2552  case ISD::SETOLT:              // flipped
2553  case ISD::SETOGT:
2554  case ISD::SETGT:   return X86::COND_A;
2555  case ISD::SETOLE:              // flipped
2556  case ISD::SETOGE:
2557  case ISD::SETGE:   return X86::COND_AE;
2558  case ISD::SETUGT:              // flipped
2559  case ISD::SETULT:
2560  case ISD::SETLT:   return X86::COND_B;
2561  case ISD::SETUGE:              // flipped
2562  case ISD::SETULE:
2563  case ISD::SETLE:   return X86::COND_BE;
2564  case ISD::SETONE:
2565  case ISD::SETNE:   return X86::COND_NE;
2566  case ISD::SETUO:   return X86::COND_P;
2567  case ISD::SETO:    return X86::COND_NP;
2568  case ISD::SETOEQ:
2569  case ISD::SETUNE:  return X86::COND_INVALID;
2570  }
2571}
2572
2573/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2574/// code. Current x86 isa includes the following FP cmov instructions:
2575/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2576static bool hasFPCMov(unsigned X86CC) {
2577  switch (X86CC) {
2578  default:
2579    return false;
2580  case X86::COND_B:
2581  case X86::COND_BE:
2582  case X86::COND_E:
2583  case X86::COND_P:
2584  case X86::COND_A:
2585  case X86::COND_AE:
2586  case X86::COND_NE:
2587  case X86::COND_NP:
2588    return true;
2589  }
2590}
2591
2592/// isFPImmLegal - Returns true if the target can instruction select the
2593/// specified FP immediate natively. If false, the legalizer will
2594/// materialize the FP immediate as a load from a constant pool.
2595bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2596  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2597    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2598      return true;
2599  }
2600  return false;
2601}
2602
2603/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2604/// the specified range (L, H].
2605static bool isUndefOrInRange(int Val, int Low, int Hi) {
2606  return (Val < 0) || (Val >= Low && Val < Hi);
2607}
2608
2609/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2610/// specified value.
2611static bool isUndefOrEqual(int Val, int CmpVal) {
2612  if (Val < 0 || Val == CmpVal)
2613    return true;
2614  return false;
2615}
2616
2617/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2618/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2619/// the second operand.
2620static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2621  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2622    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2623  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2624    return (Mask[0] < 2 && Mask[1] < 2);
2625  return false;
2626}
2627
2628bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2629  SmallVector<int, 8> M;
2630  N->getMask(M);
2631  return ::isPSHUFDMask(M, N->getValueType(0));
2632}
2633
2634/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2635/// is suitable for input to PSHUFHW.
2636static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2637  if (VT != MVT::v8i16)
2638    return false;
2639
2640  // Lower quadword copied in order or undef.
2641  for (int i = 0; i != 4; ++i)
2642    if (Mask[i] >= 0 && Mask[i] != i)
2643      return false;
2644
2645  // Upper quadword shuffled.
2646  for (int i = 4; i != 8; ++i)
2647    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2648      return false;
2649
2650  return true;
2651}
2652
2653bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2654  SmallVector<int, 8> M;
2655  N->getMask(M);
2656  return ::isPSHUFHWMask(M, N->getValueType(0));
2657}
2658
2659/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2660/// is suitable for input to PSHUFLW.
2661static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2662  if (VT != MVT::v8i16)
2663    return false;
2664
2665  // Upper quadword copied in order.
2666  for (int i = 4; i != 8; ++i)
2667    if (Mask[i] >= 0 && Mask[i] != i)
2668      return false;
2669
2670  // Lower quadword shuffled.
2671  for (int i = 0; i != 4; ++i)
2672    if (Mask[i] >= 4)
2673      return false;
2674
2675  return true;
2676}
2677
2678bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2679  SmallVector<int, 8> M;
2680  N->getMask(M);
2681  return ::isPSHUFLWMask(M, N->getValueType(0));
2682}
2683
2684/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2685/// is suitable for input to PALIGNR.
2686static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2687                          bool hasSSSE3) {
2688  int i, e = VT.getVectorNumElements();
2689
2690  // Do not handle v2i64 / v2f64 shuffles with palignr.
2691  if (e < 4 || !hasSSSE3)
2692    return false;
2693
2694  for (i = 0; i != e; ++i)
2695    if (Mask[i] >= 0)
2696      break;
2697
2698  // All undef, not a palignr.
2699  if (i == e)
2700    return false;
2701
2702  // Determine if it's ok to perform a palignr with only the LHS, since we
2703  // don't have access to the actual shuffle elements to see if RHS is undef.
2704  bool Unary = Mask[i] < (int)e;
2705  bool NeedsUnary = false;
2706
2707  int s = Mask[i] - i;
2708
2709  // Check the rest of the elements to see if they are consecutive.
2710  for (++i; i != e; ++i) {
2711    int m = Mask[i];
2712    if (m < 0)
2713      continue;
2714
2715    Unary = Unary && (m < (int)e);
2716    NeedsUnary = NeedsUnary || (m < s);
2717
2718    if (NeedsUnary && !Unary)
2719      return false;
2720    if (Unary && m != ((s+i) & (e-1)))
2721      return false;
2722    if (!Unary && m != (s+i))
2723      return false;
2724  }
2725  return true;
2726}
2727
2728bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2729  SmallVector<int, 8> M;
2730  N->getMask(M);
2731  return ::isPALIGNRMask(M, N->getValueType(0), true);
2732}
2733
2734/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2735/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2736static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2737  int NumElems = VT.getVectorNumElements();
2738  if (NumElems != 2 && NumElems != 4)
2739    return false;
2740
2741  int Half = NumElems / 2;
2742  for (int i = 0; i < Half; ++i)
2743    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2744      return false;
2745  for (int i = Half; i < NumElems; ++i)
2746    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2747      return false;
2748
2749  return true;
2750}
2751
2752bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2753  SmallVector<int, 8> M;
2754  N->getMask(M);
2755  return ::isSHUFPMask(M, N->getValueType(0));
2756}
2757
2758/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2759/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2760/// half elements to come from vector 1 (which would equal the dest.) and
2761/// the upper half to come from vector 2.
2762static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2763  int NumElems = VT.getVectorNumElements();
2764
2765  if (NumElems != 2 && NumElems != 4)
2766    return false;
2767
2768  int Half = NumElems / 2;
2769  for (int i = 0; i < Half; ++i)
2770    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2771      return false;
2772  for (int i = Half; i < NumElems; ++i)
2773    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2774      return false;
2775  return true;
2776}
2777
2778static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2779  SmallVector<int, 8> M;
2780  N->getMask(M);
2781  return isCommutedSHUFPMask(M, N->getValueType(0));
2782}
2783
2784/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2785/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2786bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2787  if (N->getValueType(0).getVectorNumElements() != 4)
2788    return false;
2789
2790  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2791  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2792         isUndefOrEqual(N->getMaskElt(1), 7) &&
2793         isUndefOrEqual(N->getMaskElt(2), 2) &&
2794         isUndefOrEqual(N->getMaskElt(3), 3);
2795}
2796
2797/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2798/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2799/// <2, 3, 2, 3>
2800bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2801  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2802
2803  if (NumElems != 4)
2804    return false;
2805
2806  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2807  isUndefOrEqual(N->getMaskElt(1), 3) &&
2808  isUndefOrEqual(N->getMaskElt(2), 2) &&
2809  isUndefOrEqual(N->getMaskElt(3), 3);
2810}
2811
2812/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2813/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2814bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2815  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2816
2817  if (NumElems != 2 && NumElems != 4)
2818    return false;
2819
2820  for (unsigned i = 0; i < NumElems/2; ++i)
2821    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2822      return false;
2823
2824  for (unsigned i = NumElems/2; i < NumElems; ++i)
2825    if (!isUndefOrEqual(N->getMaskElt(i), i))
2826      return false;
2827
2828  return true;
2829}
2830
2831/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2832/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2833bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2834  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2835
2836  if (NumElems != 2 && NumElems != 4)
2837    return false;
2838
2839  for (unsigned i = 0; i < NumElems/2; ++i)
2840    if (!isUndefOrEqual(N->getMaskElt(i), i))
2841      return false;
2842
2843  for (unsigned i = 0; i < NumElems/2; ++i)
2844    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2845      return false;
2846
2847  return true;
2848}
2849
2850/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2851/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2852static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2853                         bool V2IsSplat = false) {
2854  int NumElts = VT.getVectorNumElements();
2855  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2856    return false;
2857
2858  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2859    int BitI  = Mask[i];
2860    int BitI1 = Mask[i+1];
2861    if (!isUndefOrEqual(BitI, j))
2862      return false;
2863    if (V2IsSplat) {
2864      if (!isUndefOrEqual(BitI1, NumElts))
2865        return false;
2866    } else {
2867      if (!isUndefOrEqual(BitI1, j + NumElts))
2868        return false;
2869    }
2870  }
2871  return true;
2872}
2873
2874bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2875  SmallVector<int, 8> M;
2876  N->getMask(M);
2877  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2878}
2879
2880/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2881/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2882static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2883                         bool V2IsSplat = false) {
2884  int NumElts = VT.getVectorNumElements();
2885  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2886    return false;
2887
2888  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2889    int BitI  = Mask[i];
2890    int BitI1 = Mask[i+1];
2891    if (!isUndefOrEqual(BitI, j + NumElts/2))
2892      return false;
2893    if (V2IsSplat) {
2894      if (isUndefOrEqual(BitI1, NumElts))
2895        return false;
2896    } else {
2897      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2898        return false;
2899    }
2900  }
2901  return true;
2902}
2903
2904bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2905  SmallVector<int, 8> M;
2906  N->getMask(M);
2907  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2908}
2909
2910/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2911/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2912/// <0, 0, 1, 1>
2913static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2914  int NumElems = VT.getVectorNumElements();
2915  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2916    return false;
2917
2918  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2919    int BitI  = Mask[i];
2920    int BitI1 = Mask[i+1];
2921    if (!isUndefOrEqual(BitI, j))
2922      return false;
2923    if (!isUndefOrEqual(BitI1, j))
2924      return false;
2925  }
2926  return true;
2927}
2928
2929bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2930  SmallVector<int, 8> M;
2931  N->getMask(M);
2932  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2933}
2934
2935/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2936/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2937/// <2, 2, 3, 3>
2938static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2939  int NumElems = VT.getVectorNumElements();
2940  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2941    return false;
2942
2943  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2944    int BitI  = Mask[i];
2945    int BitI1 = Mask[i+1];
2946    if (!isUndefOrEqual(BitI, j))
2947      return false;
2948    if (!isUndefOrEqual(BitI1, j))
2949      return false;
2950  }
2951  return true;
2952}
2953
2954bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2955  SmallVector<int, 8> M;
2956  N->getMask(M);
2957  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2958}
2959
2960/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2961/// specifies a shuffle of elements that is suitable for input to MOVSS,
2962/// MOVSD, and MOVD, i.e. setting the lowest element.
2963static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2964  if (VT.getVectorElementType().getSizeInBits() < 32)
2965    return false;
2966
2967  int NumElts = VT.getVectorNumElements();
2968
2969  if (!isUndefOrEqual(Mask[0], NumElts))
2970    return false;
2971
2972  for (int i = 1; i < NumElts; ++i)
2973    if (!isUndefOrEqual(Mask[i], i))
2974      return false;
2975
2976  return true;
2977}
2978
2979bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2980  SmallVector<int, 8> M;
2981  N->getMask(M);
2982  return ::isMOVLMask(M, N->getValueType(0));
2983}
2984
2985/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2986/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2987/// element of vector 2 and the other elements to come from vector 1 in order.
2988static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2989                               bool V2IsSplat = false, bool V2IsUndef = false) {
2990  int NumOps = VT.getVectorNumElements();
2991  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2992    return false;
2993
2994  if (!isUndefOrEqual(Mask[0], 0))
2995    return false;
2996
2997  for (int i = 1; i < NumOps; ++i)
2998    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2999          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3000          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3001      return false;
3002
3003  return true;
3004}
3005
3006static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3007                           bool V2IsUndef = false) {
3008  SmallVector<int, 8> M;
3009  N->getMask(M);
3010  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3011}
3012
3013/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3014/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3015bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3016  if (N->getValueType(0).getVectorNumElements() != 4)
3017    return false;
3018
3019  // Expect 1, 1, 3, 3
3020  for (unsigned i = 0; i < 2; ++i) {
3021    int Elt = N->getMaskElt(i);
3022    if (Elt >= 0 && Elt != 1)
3023      return false;
3024  }
3025
3026  bool HasHi = false;
3027  for (unsigned i = 2; i < 4; ++i) {
3028    int Elt = N->getMaskElt(i);
3029    if (Elt >= 0 && Elt != 3)
3030      return false;
3031    if (Elt == 3)
3032      HasHi = true;
3033  }
3034  // Don't use movshdup if it can be done with a shufps.
3035  // FIXME: verify that matching u, u, 3, 3 is what we want.
3036  return HasHi;
3037}
3038
3039/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3040/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3041bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3042  if (N->getValueType(0).getVectorNumElements() != 4)
3043    return false;
3044
3045  // Expect 0, 0, 2, 2
3046  for (unsigned i = 0; i < 2; ++i)
3047    if (N->getMaskElt(i) > 0)
3048      return false;
3049
3050  bool HasHi = false;
3051  for (unsigned i = 2; i < 4; ++i) {
3052    int Elt = N->getMaskElt(i);
3053    if (Elt >= 0 && Elt != 2)
3054      return false;
3055    if (Elt == 2)
3056      HasHi = true;
3057  }
3058  // Don't use movsldup if it can be done with a shufps.
3059  return HasHi;
3060}
3061
3062/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3063/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3064bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3065  int e = N->getValueType(0).getVectorNumElements() / 2;
3066
3067  for (int i = 0; i < e; ++i)
3068    if (!isUndefOrEqual(N->getMaskElt(i), i))
3069      return false;
3070  for (int i = 0; i < e; ++i)
3071    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3072      return false;
3073  return true;
3074}
3075
3076/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3077/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3078unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3079  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3080  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3081
3082  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3083  unsigned Mask = 0;
3084  for (int i = 0; i < NumOperands; ++i) {
3085    int Val = SVOp->getMaskElt(NumOperands-i-1);
3086    if (Val < 0) Val = 0;
3087    if (Val >= NumOperands) Val -= NumOperands;
3088    Mask |= Val;
3089    if (i != NumOperands - 1)
3090      Mask <<= Shift;
3091  }
3092  return Mask;
3093}
3094
3095/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3096/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3097unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3098  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3099  unsigned Mask = 0;
3100  // 8 nodes, but we only care about the last 4.
3101  for (unsigned i = 7; i >= 4; --i) {
3102    int Val = SVOp->getMaskElt(i);
3103    if (Val >= 0)
3104      Mask |= (Val - 4);
3105    if (i != 4)
3106      Mask <<= 2;
3107  }
3108  return Mask;
3109}
3110
3111/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3112/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3113unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3114  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3115  unsigned Mask = 0;
3116  // 8 nodes, but we only care about the first 4.
3117  for (int i = 3; i >= 0; --i) {
3118    int Val = SVOp->getMaskElt(i);
3119    if (Val >= 0)
3120      Mask |= Val;
3121    if (i != 0)
3122      Mask <<= 2;
3123  }
3124  return Mask;
3125}
3126
3127/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3128/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3129unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3130  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3131  EVT VVT = N->getValueType(0);
3132  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3133  int Val = 0;
3134
3135  unsigned i, e;
3136  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3137    Val = SVOp->getMaskElt(i);
3138    if (Val >= 0)
3139      break;
3140  }
3141  return (Val - i) * EltSize;
3142}
3143
3144/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3145/// constant +0.0.
3146bool X86::isZeroNode(SDValue Elt) {
3147  return ((isa<ConstantSDNode>(Elt) &&
3148           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
3149          (isa<ConstantFPSDNode>(Elt) &&
3150           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3151}
3152
3153/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3154/// their permute mask.
3155static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3156                                    SelectionDAG &DAG) {
3157  EVT VT = SVOp->getValueType(0);
3158  unsigned NumElems = VT.getVectorNumElements();
3159  SmallVector<int, 8> MaskVec;
3160
3161  for (unsigned i = 0; i != NumElems; ++i) {
3162    int idx = SVOp->getMaskElt(i);
3163    if (idx < 0)
3164      MaskVec.push_back(idx);
3165    else if (idx < (int)NumElems)
3166      MaskVec.push_back(idx + NumElems);
3167    else
3168      MaskVec.push_back(idx - NumElems);
3169  }
3170  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3171                              SVOp->getOperand(0), &MaskVec[0]);
3172}
3173
3174/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3175/// the two vector operands have swapped position.
3176static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3177  unsigned NumElems = VT.getVectorNumElements();
3178  for (unsigned i = 0; i != NumElems; ++i) {
3179    int idx = Mask[i];
3180    if (idx < 0)
3181      continue;
3182    else if (idx < (int)NumElems)
3183      Mask[i] = idx + NumElems;
3184    else
3185      Mask[i] = idx - NumElems;
3186  }
3187}
3188
3189/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3190/// match movhlps. The lower half elements should come from upper half of
3191/// V1 (and in order), and the upper half elements should come from the upper
3192/// half of V2 (and in order).
3193static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3194  if (Op->getValueType(0).getVectorNumElements() != 4)
3195    return false;
3196  for (unsigned i = 0, e = 2; i != e; ++i)
3197    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3198      return false;
3199  for (unsigned i = 2; i != 4; ++i)
3200    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3201      return false;
3202  return true;
3203}
3204
3205/// isScalarLoadToVector - Returns true if the node is a scalar load that
3206/// is promoted to a vector. It also returns the LoadSDNode by reference if
3207/// required.
3208static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3209  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3210    return false;
3211  N = N->getOperand(0).getNode();
3212  if (!ISD::isNON_EXTLoad(N))
3213    return false;
3214  if (LD)
3215    *LD = cast<LoadSDNode>(N);
3216  return true;
3217}
3218
3219/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3220/// match movlp{s|d}. The lower half elements should come from lower half of
3221/// V1 (and in order), and the upper half elements should come from the upper
3222/// half of V2 (and in order). And since V1 will become the source of the
3223/// MOVLP, it must be either a vector load or a scalar load to vector.
3224static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3225                               ShuffleVectorSDNode *Op) {
3226  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3227    return false;
3228  // Is V2 is a vector load, don't do this transformation. We will try to use
3229  // load folding shufps op.
3230  if (ISD::isNON_EXTLoad(V2))
3231    return false;
3232
3233  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3234
3235  if (NumElems != 2 && NumElems != 4)
3236    return false;
3237  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3238    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3239      return false;
3240  for (unsigned i = NumElems/2; i != NumElems; ++i)
3241    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3242      return false;
3243  return true;
3244}
3245
3246/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3247/// all the same.
3248static bool isSplatVector(SDNode *N) {
3249  if (N->getOpcode() != ISD::BUILD_VECTOR)
3250    return false;
3251
3252  SDValue SplatValue = N->getOperand(0);
3253  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3254    if (N->getOperand(i) != SplatValue)
3255      return false;
3256  return true;
3257}
3258
3259/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3260/// to an zero vector.
3261/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3262static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3263  SDValue V1 = N->getOperand(0);
3264  SDValue V2 = N->getOperand(1);
3265  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3266  for (unsigned i = 0; i != NumElems; ++i) {
3267    int Idx = N->getMaskElt(i);
3268    if (Idx >= (int)NumElems) {
3269      unsigned Opc = V2.getOpcode();
3270      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3271        continue;
3272      if (Opc != ISD::BUILD_VECTOR ||
3273          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3274        return false;
3275    } else if (Idx >= 0) {
3276      unsigned Opc = V1.getOpcode();
3277      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3278        continue;
3279      if (Opc != ISD::BUILD_VECTOR ||
3280          !X86::isZeroNode(V1.getOperand(Idx)))
3281        return false;
3282    }
3283  }
3284  return true;
3285}
3286
3287/// getZeroVector - Returns a vector of specified type with all zero elements.
3288///
3289static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3290                             DebugLoc dl) {
3291  assert(VT.isVector() && "Expected a vector type");
3292
3293  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3294  // type.  This ensures they get CSE'd.
3295  SDValue Vec;
3296  if (VT.getSizeInBits() == 64) { // MMX
3297    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3298    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3299  } else if (HasSSE2) {  // SSE2
3300    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3301    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3302  } else { // SSE1
3303    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3304    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3305  }
3306  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3307}
3308
3309/// getOnesVector - Returns a vector of specified type with all bits set.
3310///
3311static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3312  assert(VT.isVector() && "Expected a vector type");
3313
3314  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3315  // type.  This ensures they get CSE'd.
3316  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3317  SDValue Vec;
3318  if (VT.getSizeInBits() == 64)  // MMX
3319    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3320  else                                              // SSE
3321    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3322  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3323}
3324
3325
3326/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3327/// that point to V2 points to its first element.
3328static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3329  EVT VT = SVOp->getValueType(0);
3330  unsigned NumElems = VT.getVectorNumElements();
3331
3332  bool Changed = false;
3333  SmallVector<int, 8> MaskVec;
3334  SVOp->getMask(MaskVec);
3335
3336  for (unsigned i = 0; i != NumElems; ++i) {
3337    if (MaskVec[i] > (int)NumElems) {
3338      MaskVec[i] = NumElems;
3339      Changed = true;
3340    }
3341  }
3342  if (Changed)
3343    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3344                                SVOp->getOperand(1), &MaskVec[0]);
3345  return SDValue(SVOp, 0);
3346}
3347
3348/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3349/// operation of specified width.
3350static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3351                       SDValue V2) {
3352  unsigned NumElems = VT.getVectorNumElements();
3353  SmallVector<int, 8> Mask;
3354  Mask.push_back(NumElems);
3355  for (unsigned i = 1; i != NumElems; ++i)
3356    Mask.push_back(i);
3357  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3358}
3359
3360/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3361static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3362                          SDValue V2) {
3363  unsigned NumElems = VT.getVectorNumElements();
3364  SmallVector<int, 8> Mask;
3365  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3366    Mask.push_back(i);
3367    Mask.push_back(i + NumElems);
3368  }
3369  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3370}
3371
3372/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3373static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3374                          SDValue V2) {
3375  unsigned NumElems = VT.getVectorNumElements();
3376  unsigned Half = NumElems/2;
3377  SmallVector<int, 8> Mask;
3378  for (unsigned i = 0; i != Half; ++i) {
3379    Mask.push_back(i + Half);
3380    Mask.push_back(i + NumElems + Half);
3381  }
3382  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3383}
3384
3385/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3386static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3387                            bool HasSSE2) {
3388  if (SV->getValueType(0).getVectorNumElements() <= 4)
3389    return SDValue(SV, 0);
3390
3391  EVT PVT = MVT::v4f32;
3392  EVT VT = SV->getValueType(0);
3393  DebugLoc dl = SV->getDebugLoc();
3394  SDValue V1 = SV->getOperand(0);
3395  int NumElems = VT.getVectorNumElements();
3396  int EltNo = SV->getSplatIndex();
3397
3398  // unpack elements to the correct location
3399  while (NumElems > 4) {
3400    if (EltNo < NumElems/2) {
3401      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3402    } else {
3403      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3404      EltNo -= NumElems/2;
3405    }
3406    NumElems >>= 1;
3407  }
3408
3409  // Perform the splat.
3410  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3411  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3412  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3413  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3414}
3415
3416/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3417/// vector of zero or undef vector.  This produces a shuffle where the low
3418/// element of V2 is swizzled into the zero/undef vector, landing at element
3419/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3420static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3421                                             bool isZero, bool HasSSE2,
3422                                             SelectionDAG &DAG) {
3423  EVT VT = V2.getValueType();
3424  SDValue V1 = isZero
3425    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3426  unsigned NumElems = VT.getVectorNumElements();
3427  SmallVector<int, 16> MaskVec;
3428  for (unsigned i = 0; i != NumElems; ++i)
3429    // If this is the insertion idx, put the low elt of V2 here.
3430    MaskVec.push_back(i == Idx ? NumElems : i);
3431  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3432}
3433
3434/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3435/// a shuffle that is zero.
3436static
3437unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3438                                  bool Low, SelectionDAG &DAG) {
3439  unsigned NumZeros = 0;
3440  for (int i = 0; i < NumElems; ++i) {
3441    unsigned Index = Low ? i : NumElems-i-1;
3442    int Idx = SVOp->getMaskElt(Index);
3443    if (Idx < 0) {
3444      ++NumZeros;
3445      continue;
3446    }
3447    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3448    if (Elt.getNode() && X86::isZeroNode(Elt))
3449      ++NumZeros;
3450    else
3451      break;
3452  }
3453  return NumZeros;
3454}
3455
3456/// isVectorShift - Returns true if the shuffle can be implemented as a
3457/// logical left or right shift of a vector.
3458/// FIXME: split into pslldqi, psrldqi, palignr variants.
3459static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3460                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3461  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3462
3463  isLeft = true;
3464  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3465  if (!NumZeros) {
3466    isLeft = false;
3467    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3468    if (!NumZeros)
3469      return false;
3470  }
3471  bool SeenV1 = false;
3472  bool SeenV2 = false;
3473  for (unsigned i = NumZeros; i < NumElems; ++i) {
3474    unsigned Val = isLeft ? (i - NumZeros) : i;
3475    int Idx_ = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3476    if (Idx_ < 0)
3477      continue;
3478    unsigned Idx = (unsigned) Idx_;
3479    if (Idx < NumElems)
3480      SeenV1 = true;
3481    else {
3482      Idx -= NumElems;
3483      SeenV2 = true;
3484    }
3485    if (Idx != Val)
3486      return false;
3487  }
3488  if (SeenV1 && SeenV2)
3489    return false;
3490
3491  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3492  ShAmt = NumZeros;
3493  return true;
3494}
3495
3496
3497/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3498///
3499static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3500                                       unsigned NumNonZero, unsigned NumZero,
3501                                       SelectionDAG &DAG, TargetLowering &TLI) {
3502  if (NumNonZero > 8)
3503    return SDValue();
3504
3505  DebugLoc dl = Op.getDebugLoc();
3506  SDValue V(0, 0);
3507  bool First = true;
3508  for (unsigned i = 0; i < 16; ++i) {
3509    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3510    if (ThisIsNonZero && First) {
3511      if (NumZero)
3512        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3513      else
3514        V = DAG.getUNDEF(MVT::v8i16);
3515      First = false;
3516    }
3517
3518    if ((i & 1) != 0) {
3519      SDValue ThisElt(0, 0), LastElt(0, 0);
3520      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3521      if (LastIsNonZero) {
3522        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3523                              MVT::i16, Op.getOperand(i-1));
3524      }
3525      if (ThisIsNonZero) {
3526        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3527        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3528                              ThisElt, DAG.getConstant(8, MVT::i8));
3529        if (LastIsNonZero)
3530          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3531      } else
3532        ThisElt = LastElt;
3533
3534      if (ThisElt.getNode())
3535        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3536                        DAG.getIntPtrConstant(i/2));
3537    }
3538  }
3539
3540  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3541}
3542
3543/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3544///
3545static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3546                                       unsigned NumNonZero, unsigned NumZero,
3547                                       SelectionDAG &DAG, TargetLowering &TLI) {
3548  if (NumNonZero > 4)
3549    return SDValue();
3550
3551  DebugLoc dl = Op.getDebugLoc();
3552  SDValue V(0, 0);
3553  bool First = true;
3554  for (unsigned i = 0; i < 8; ++i) {
3555    bool isNonZero = (NonZeros & (1 << i)) != 0;
3556    if (isNonZero) {
3557      if (First) {
3558        if (NumZero)
3559          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3560        else
3561          V = DAG.getUNDEF(MVT::v8i16);
3562        First = false;
3563      }
3564      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3565                      MVT::v8i16, V, Op.getOperand(i),
3566                      DAG.getIntPtrConstant(i));
3567    }
3568  }
3569
3570  return V;
3571}
3572
3573/// getVShift - Return a vector logical shift node.
3574///
3575static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3576                         unsigned NumBits, SelectionDAG &DAG,
3577                         const TargetLowering &TLI, DebugLoc dl) {
3578  bool isMMX = VT.getSizeInBits() == 64;
3579  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3580  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3581  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3582  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3583                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3584                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3585}
3586
3587SDValue
3588X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3589                                          SelectionDAG &DAG) {
3590
3591  // Check if the scalar load can be widened into a vector load. And if
3592  // the address is "base + cst" see if the cst can be "absorbed" into
3593  // the shuffle mask.
3594  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3595    SDValue Ptr = LD->getBasePtr();
3596    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3597      return SDValue();
3598    EVT PVT = LD->getValueType(0);
3599    if (PVT != MVT::i32 && PVT != MVT::f32)
3600      return SDValue();
3601
3602    int FI = -1;
3603    int64_t Offset = 0;
3604    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3605      FI = FINode->getIndex();
3606      Offset = 0;
3607    } else if (Ptr.getOpcode() == ISD::ADD &&
3608               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3609               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3610      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3611      Offset = Ptr.getConstantOperandVal(1);
3612      Ptr = Ptr.getOperand(0);
3613    } else {
3614      return SDValue();
3615    }
3616
3617    SDValue Chain = LD->getChain();
3618    // Make sure the stack object alignment is at least 16.
3619    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3620    if (DAG.InferPtrAlignment(Ptr) < 16) {
3621      if (MFI->isFixedObjectIndex(FI)) {
3622        // Can't change the alignment. FIXME: It's possible to compute
3623        // the exact stack offset and reference FI + adjust offset instead.
3624        // If someone *really* cares about this. That's the way to implement it.
3625        return SDValue();
3626      } else {
3627        MFI->setObjectAlignment(FI, 16);
3628      }
3629    }
3630
3631    // (Offset % 16) must be multiple of 4. Then address is then
3632    // Ptr + (Offset & ~15).
3633    if (Offset < 0)
3634      return SDValue();
3635    if ((Offset % 16) & 3)
3636      return SDValue();
3637    int64_t StartOffset = Offset & ~15;
3638    if (StartOffset)
3639      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3640                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3641
3642    int EltNo = (Offset - StartOffset) >> 2;
3643    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3644    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3645    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3646                             false, false, 0);
3647    // Canonicalize it to a v4i32 shuffle.
3648    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3649    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3650                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3651                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3652  }
3653
3654  return SDValue();
3655}
3656
3657/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
3658/// vector of type 'VT', see if the elements can be replaced by a single large
3659/// load which has the same value as a build_vector whose operands are 'elts'.
3660///
3661/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
3662///
3663/// FIXME: we'd also like to handle the case where the last elements are zero
3664/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
3665/// There's even a handy isZeroNode for that purpose.
3666static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
3667                                        DebugLoc &dl, SelectionDAG &DAG) {
3668  EVT EltVT = VT.getVectorElementType();
3669  unsigned NumElems = Elts.size();
3670
3671  LoadSDNode *LDBase = NULL;
3672  unsigned LastLoadedElt = -1U;
3673
3674  // For each element in the initializer, see if we've found a load or an undef.
3675  // If we don't find an initial load element, or later load elements are
3676  // non-consecutive, bail out.
3677  for (unsigned i = 0; i < NumElems; ++i) {
3678    SDValue Elt = Elts[i];
3679
3680    if (!Elt.getNode() ||
3681        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
3682      return SDValue();
3683    if (!LDBase) {
3684      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
3685        return SDValue();
3686      LDBase = cast<LoadSDNode>(Elt.getNode());
3687      LastLoadedElt = i;
3688      continue;
3689    }
3690    if (Elt.getOpcode() == ISD::UNDEF)
3691      continue;
3692
3693    LoadSDNode *LD = cast<LoadSDNode>(Elt);
3694    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
3695      return SDValue();
3696    LastLoadedElt = i;
3697  }
3698
3699  // If we have found an entire vector of loads and undefs, then return a large
3700  // load of the entire vector width starting at the base pointer.  If we found
3701  // consecutive loads for the low half, generate a vzext_load node.
3702  if (LastLoadedElt == NumElems - 1) {
3703    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
3704      return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3705                         LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3706                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
3707    return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3708                       LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3709                       LDBase->isVolatile(), LDBase->isNonTemporal(),
3710                       LDBase->getAlignment());
3711  } else if (NumElems == 4 && LastLoadedElt == 1) {
3712    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
3713    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
3714    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
3715    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
3716  }
3717  return SDValue();
3718}
3719
3720SDValue
3721X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3722  DebugLoc dl = Op.getDebugLoc();
3723  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3724  if (ISD::isBuildVectorAllZeros(Op.getNode())
3725      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3726    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3727    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3728    // eliminated on x86-32 hosts.
3729    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3730      return Op;
3731
3732    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3733      return getOnesVector(Op.getValueType(), DAG, dl);
3734    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3735  }
3736
3737  EVT VT = Op.getValueType();
3738  EVT ExtVT = VT.getVectorElementType();
3739  unsigned EVTBits = ExtVT.getSizeInBits();
3740
3741  unsigned NumElems = Op.getNumOperands();
3742  unsigned NumZero  = 0;
3743  unsigned NumNonZero = 0;
3744  unsigned NonZeros = 0;
3745  bool IsAllConstants = true;
3746  SmallSet<SDValue, 8> Values;
3747  for (unsigned i = 0; i < NumElems; ++i) {
3748    SDValue Elt = Op.getOperand(i);
3749    if (Elt.getOpcode() == ISD::UNDEF)
3750      continue;
3751    Values.insert(Elt);
3752    if (Elt.getOpcode() != ISD::Constant &&
3753        Elt.getOpcode() != ISD::ConstantFP)
3754      IsAllConstants = false;
3755    if (X86::isZeroNode(Elt))
3756      NumZero++;
3757    else {
3758      NonZeros |= (1 << i);
3759      NumNonZero++;
3760    }
3761  }
3762
3763  if (NumNonZero == 0) {
3764    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3765    return DAG.getUNDEF(VT);
3766  }
3767
3768  // Special case for single non-zero, non-undef, element.
3769  if (NumNonZero == 1) {
3770    unsigned Idx = CountTrailingZeros_32(NonZeros);
3771    SDValue Item = Op.getOperand(Idx);
3772
3773    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3774    // the value are obviously zero, truncate the value to i32 and do the
3775    // insertion that way.  Only do this if the value is non-constant or if the
3776    // value is a constant being inserted into element 0.  It is cheaper to do
3777    // a constant pool load than it is to do a movd + shuffle.
3778    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3779        (!IsAllConstants || Idx == 0)) {
3780      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3781        // Handle MMX and SSE both.
3782        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3783        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3784
3785        // Truncate the value (which may itself be a constant) to i32, and
3786        // convert it to a vector with movd (S2V+shuffle to zero extend).
3787        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3788        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3789        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3790                                           Subtarget->hasSSE2(), DAG);
3791
3792        // Now we have our 32-bit value zero extended in the low element of
3793        // a vector.  If Idx != 0, swizzle it into place.
3794        if (Idx != 0) {
3795          SmallVector<int, 4> Mask;
3796          Mask.push_back(Idx);
3797          for (unsigned i = 1; i != VecElts; ++i)
3798            Mask.push_back(i);
3799          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3800                                      DAG.getUNDEF(Item.getValueType()),
3801                                      &Mask[0]);
3802        }
3803        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3804      }
3805    }
3806
3807    // If we have a constant or non-constant insertion into the low element of
3808    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3809    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3810    // depending on what the source datatype is.
3811    if (Idx == 0) {
3812      if (NumZero == 0) {
3813        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3814      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3815          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3816        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3817        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3818        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3819                                           DAG);
3820      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3821        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3822        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3823        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3824        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3825                                           Subtarget->hasSSE2(), DAG);
3826        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3827      }
3828    }
3829
3830    // Is it a vector logical left shift?
3831    if (NumElems == 2 && Idx == 1 &&
3832        X86::isZeroNode(Op.getOperand(0)) &&
3833        !X86::isZeroNode(Op.getOperand(1))) {
3834      unsigned NumBits = VT.getSizeInBits();
3835      return getVShift(true, VT,
3836                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3837                                   VT, Op.getOperand(1)),
3838                       NumBits/2, DAG, *this, dl);
3839    }
3840
3841    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3842      return SDValue();
3843
3844    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3845    // is a non-constant being inserted into an element other than the low one,
3846    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3847    // movd/movss) to move this into the low element, then shuffle it into
3848    // place.
3849    if (EVTBits == 32) {
3850      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3851
3852      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3853      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3854                                         Subtarget->hasSSE2(), DAG);
3855      SmallVector<int, 8> MaskVec;
3856      for (unsigned i = 0; i < NumElems; i++)
3857        MaskVec.push_back(i == Idx ? 0 : 1);
3858      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3859    }
3860  }
3861
3862  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3863  if (Values.size() == 1) {
3864    if (EVTBits == 32) {
3865      // Instead of a shuffle like this:
3866      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
3867      // Check if it's possible to issue this instead.
3868      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
3869      unsigned Idx = CountTrailingZeros_32(NonZeros);
3870      SDValue Item = Op.getOperand(Idx);
3871      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
3872        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
3873    }
3874    return SDValue();
3875  }
3876
3877  // A vector full of immediates; various special cases are already
3878  // handled, so this is best done with a single constant-pool load.
3879  if (IsAllConstants)
3880    return SDValue();
3881
3882  // Let legalizer expand 2-wide build_vectors.
3883  if (EVTBits == 64) {
3884    if (NumNonZero == 1) {
3885      // One half is zero or undef.
3886      unsigned Idx = CountTrailingZeros_32(NonZeros);
3887      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3888                                 Op.getOperand(Idx));
3889      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3890                                         Subtarget->hasSSE2(), DAG);
3891    }
3892    return SDValue();
3893  }
3894
3895  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3896  if (EVTBits == 8 && NumElems == 16) {
3897    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3898                                        *this);
3899    if (V.getNode()) return V;
3900  }
3901
3902  if (EVTBits == 16 && NumElems == 8) {
3903    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3904                                        *this);
3905    if (V.getNode()) return V;
3906  }
3907
3908  // If element VT is == 32 bits, turn it into a number of shuffles.
3909  SmallVector<SDValue, 8> V;
3910  V.resize(NumElems);
3911  if (NumElems == 4 && NumZero > 0) {
3912    for (unsigned i = 0; i < 4; ++i) {
3913      bool isZero = !(NonZeros & (1 << i));
3914      if (isZero)
3915        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3916      else
3917        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3918    }
3919
3920    for (unsigned i = 0; i < 2; ++i) {
3921      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3922        default: break;
3923        case 0:
3924          V[i] = V[i*2];  // Must be a zero vector.
3925          break;
3926        case 1:
3927          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3928          break;
3929        case 2:
3930          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3931          break;
3932        case 3:
3933          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3934          break;
3935      }
3936    }
3937
3938    SmallVector<int, 8> MaskVec;
3939    bool Reverse = (NonZeros & 0x3) == 2;
3940    for (unsigned i = 0; i < 2; ++i)
3941      MaskVec.push_back(Reverse ? 1-i : i);
3942    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3943    for (unsigned i = 0; i < 2; ++i)
3944      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3945    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3946  }
3947
3948  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
3949    // Check for a build vector of consecutive loads.
3950    for (unsigned i = 0; i < NumElems; ++i)
3951      V[i] = Op.getOperand(i);
3952
3953    // Check for elements which are consecutive loads.
3954    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
3955    if (LD.getNode())
3956      return LD;
3957
3958    // For SSE 4.1, use inserts into undef.
3959    if (getSubtarget()->hasSSE41()) {
3960      V[0] = DAG.getUNDEF(VT);
3961      for (unsigned i = 0; i < NumElems; ++i)
3962        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3963          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3964                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3965      return V[0];
3966    }
3967
3968    // Otherwise, expand into a number of unpckl*
3969    // e.g. for v4f32
3970    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3971    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3972    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3973    for (unsigned i = 0; i < NumElems; ++i)
3974      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3975    NumElems >>= 1;
3976    while (NumElems != 0) {
3977      for (unsigned i = 0; i < NumElems; ++i)
3978        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3979      NumElems >>= 1;
3980    }
3981    return V[0];
3982  }
3983  return SDValue();
3984}
3985
3986SDValue
3987X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3988  // We support concatenate two MMX registers and place them in a MMX
3989  // register.  This is better than doing a stack convert.
3990  DebugLoc dl = Op.getDebugLoc();
3991  EVT ResVT = Op.getValueType();
3992  assert(Op.getNumOperands() == 2);
3993  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
3994         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
3995  int Mask[2];
3996  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
3997  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3998  InVec = Op.getOperand(1);
3999  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4000    unsigned NumElts = ResVT.getVectorNumElements();
4001    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4002    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4003                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4004  } else {
4005    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
4006    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4007    Mask[0] = 0; Mask[1] = 2;
4008    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4009  }
4010  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4011}
4012
4013// v8i16 shuffles - Prefer shuffles in the following order:
4014// 1. [all]   pshuflw, pshufhw, optional move
4015// 2. [ssse3] 1 x pshufb
4016// 3. [ssse3] 2 x pshufb + 1 x por
4017// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4018static
4019SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
4020                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
4021  SDValue V1 = SVOp->getOperand(0);
4022  SDValue V2 = SVOp->getOperand(1);
4023  DebugLoc dl = SVOp->getDebugLoc();
4024  SmallVector<int, 8> MaskVals;
4025
4026  // Determine if more than 1 of the words in each of the low and high quadwords
4027  // of the result come from the same quadword of one of the two inputs.  Undef
4028  // mask values count as coming from any quadword, for better codegen.
4029  SmallVector<unsigned, 4> LoQuad(4);
4030  SmallVector<unsigned, 4> HiQuad(4);
4031  BitVector InputQuads(4);
4032  for (unsigned i = 0; i < 8; ++i) {
4033    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4034    int EltIdx = SVOp->getMaskElt(i);
4035    MaskVals.push_back(EltIdx);
4036    if (EltIdx < 0) {
4037      ++Quad[0];
4038      ++Quad[1];
4039      ++Quad[2];
4040      ++Quad[3];
4041      continue;
4042    }
4043    ++Quad[EltIdx / 4];
4044    InputQuads.set(EltIdx / 4);
4045  }
4046
4047  int BestLoQuad = -1;
4048  unsigned MaxQuad = 1;
4049  for (unsigned i = 0; i < 4; ++i) {
4050    if (LoQuad[i] > MaxQuad) {
4051      BestLoQuad = i;
4052      MaxQuad = LoQuad[i];
4053    }
4054  }
4055
4056  int BestHiQuad = -1;
4057  MaxQuad = 1;
4058  for (unsigned i = 0; i < 4; ++i) {
4059    if (HiQuad[i] > MaxQuad) {
4060      BestHiQuad = i;
4061      MaxQuad = HiQuad[i];
4062    }
4063  }
4064
4065  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4066  // of the two input vectors, shuffle them into one input vector so only a
4067  // single pshufb instruction is necessary. If There are more than 2 input
4068  // quads, disable the next transformation since it does not help SSSE3.
4069  bool V1Used = InputQuads[0] || InputQuads[1];
4070  bool V2Used = InputQuads[2] || InputQuads[3];
4071  if (TLI.getSubtarget()->hasSSSE3()) {
4072    if (InputQuads.count() == 2 && V1Used && V2Used) {
4073      BestLoQuad = InputQuads.find_first();
4074      BestHiQuad = InputQuads.find_next(BestLoQuad);
4075    }
4076    if (InputQuads.count() > 2) {
4077      BestLoQuad = -1;
4078      BestHiQuad = -1;
4079    }
4080  }
4081
4082  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4083  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4084  // words from all 4 input quadwords.
4085  SDValue NewV;
4086  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4087    SmallVector<int, 8> MaskV;
4088    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4089    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4090    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4091                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4092                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4093    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4094
4095    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4096    // source words for the shuffle, to aid later transformations.
4097    bool AllWordsInNewV = true;
4098    bool InOrder[2] = { true, true };
4099    for (unsigned i = 0; i != 8; ++i) {
4100      int idx = MaskVals[i];
4101      if (idx != (int)i)
4102        InOrder[i/4] = false;
4103      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4104        continue;
4105      AllWordsInNewV = false;
4106      break;
4107    }
4108
4109    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4110    if (AllWordsInNewV) {
4111      for (int i = 0; i != 8; ++i) {
4112        int idx = MaskVals[i];
4113        if (idx < 0)
4114          continue;
4115        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4116        if ((idx != i) && idx < 4)
4117          pshufhw = false;
4118        if ((idx != i) && idx > 3)
4119          pshuflw = false;
4120      }
4121      V1 = NewV;
4122      V2Used = false;
4123      BestLoQuad = 0;
4124      BestHiQuad = 1;
4125    }
4126
4127    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4128    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4129    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4130      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4131                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4132    }
4133  }
4134
4135  // If we have SSSE3, and all words of the result are from 1 input vector,
4136  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4137  // is present, fall back to case 4.
4138  if (TLI.getSubtarget()->hasSSSE3()) {
4139    SmallVector<SDValue,16> pshufbMask;
4140
4141    // If we have elements from both input vectors, set the high bit of the
4142    // shuffle mask element to zero out elements that come from V2 in the V1
4143    // mask, and elements that come from V1 in the V2 mask, so that the two
4144    // results can be OR'd together.
4145    bool TwoInputs = V1Used && V2Used;
4146    for (unsigned i = 0; i != 8; ++i) {
4147      int EltIdx = MaskVals[i] * 2;
4148      if (TwoInputs && (EltIdx >= 16)) {
4149        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4150        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4151        continue;
4152      }
4153      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4154      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4155    }
4156    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4157    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4158                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4159                                 MVT::v16i8, &pshufbMask[0], 16));
4160    if (!TwoInputs)
4161      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4162
4163    // Calculate the shuffle mask for the second input, shuffle it, and
4164    // OR it with the first shuffled input.
4165    pshufbMask.clear();
4166    for (unsigned i = 0; i != 8; ++i) {
4167      int EltIdx = MaskVals[i] * 2;
4168      if (EltIdx < 16) {
4169        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4170        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4171        continue;
4172      }
4173      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4174      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4175    }
4176    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4177    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4178                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4179                                 MVT::v16i8, &pshufbMask[0], 16));
4180    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4181    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4182  }
4183
4184  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4185  // and update MaskVals with new element order.
4186  BitVector InOrder(8);
4187  if (BestLoQuad >= 0) {
4188    SmallVector<int, 8> MaskV;
4189    for (int i = 0; i != 4; ++i) {
4190      int idx = MaskVals[i];
4191      if (idx < 0) {
4192        MaskV.push_back(-1);
4193        InOrder.set(i);
4194      } else if ((idx / 4) == BestLoQuad) {
4195        MaskV.push_back(idx & 3);
4196        InOrder.set(i);
4197      } else {
4198        MaskV.push_back(-1);
4199      }
4200    }
4201    for (unsigned i = 4; i != 8; ++i)
4202      MaskV.push_back(i);
4203    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4204                                &MaskV[0]);
4205  }
4206
4207  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4208  // and update MaskVals with the new element order.
4209  if (BestHiQuad >= 0) {
4210    SmallVector<int, 8> MaskV;
4211    for (unsigned i = 0; i != 4; ++i)
4212      MaskV.push_back(i);
4213    for (unsigned i = 4; i != 8; ++i) {
4214      int idx = MaskVals[i];
4215      if (idx < 0) {
4216        MaskV.push_back(-1);
4217        InOrder.set(i);
4218      } else if ((idx / 4) == BestHiQuad) {
4219        MaskV.push_back((idx & 3) + 4);
4220        InOrder.set(i);
4221      } else {
4222        MaskV.push_back(-1);
4223      }
4224    }
4225    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4226                                &MaskV[0]);
4227  }
4228
4229  // In case BestHi & BestLo were both -1, which means each quadword has a word
4230  // from each of the four input quadwords, calculate the InOrder bitvector now
4231  // before falling through to the insert/extract cleanup.
4232  if (BestLoQuad == -1 && BestHiQuad == -1) {
4233    NewV = V1;
4234    for (int i = 0; i != 8; ++i)
4235      if (MaskVals[i] < 0 || MaskVals[i] == i)
4236        InOrder.set(i);
4237  }
4238
4239  // The other elements are put in the right place using pextrw and pinsrw.
4240  for (unsigned i = 0; i != 8; ++i) {
4241    if (InOrder[i])
4242      continue;
4243    int EltIdx = MaskVals[i];
4244    if (EltIdx < 0)
4245      continue;
4246    SDValue ExtOp = (EltIdx < 8)
4247    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4248                  DAG.getIntPtrConstant(EltIdx))
4249    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4250                  DAG.getIntPtrConstant(EltIdx - 8));
4251    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4252                       DAG.getIntPtrConstant(i));
4253  }
4254  return NewV;
4255}
4256
4257// v16i8 shuffles - Prefer shuffles in the following order:
4258// 1. [ssse3] 1 x pshufb
4259// 2. [ssse3] 2 x pshufb + 1 x por
4260// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4261static
4262SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4263                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
4264  SDValue V1 = SVOp->getOperand(0);
4265  SDValue V2 = SVOp->getOperand(1);
4266  DebugLoc dl = SVOp->getDebugLoc();
4267  SmallVector<int, 16> MaskVals;
4268  SVOp->getMask(MaskVals);
4269
4270  // If we have SSSE3, case 1 is generated when all result bytes come from
4271  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4272  // present, fall back to case 3.
4273  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4274  bool V1Only = true;
4275  bool V2Only = true;
4276  for (unsigned i = 0; i < 16; ++i) {
4277    int EltIdx = MaskVals[i];
4278    if (EltIdx < 0)
4279      continue;
4280    if (EltIdx < 16)
4281      V2Only = false;
4282    else
4283      V1Only = false;
4284  }
4285
4286  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4287  if (TLI.getSubtarget()->hasSSSE3()) {
4288    SmallVector<SDValue,16> pshufbMask;
4289
4290    // If all result elements are from one input vector, then only translate
4291    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4292    //
4293    // Otherwise, we have elements from both input vectors, and must zero out
4294    // elements that come from V2 in the first mask, and V1 in the second mask
4295    // so that we can OR them together.
4296    bool TwoInputs = !(V1Only || V2Only);
4297    for (unsigned i = 0; i != 16; ++i) {
4298      int EltIdx = MaskVals[i];
4299      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4300        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4301        continue;
4302      }
4303      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4304    }
4305    // If all the elements are from V2, assign it to V1 and return after
4306    // building the first pshufb.
4307    if (V2Only)
4308      V1 = V2;
4309    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4310                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4311                                 MVT::v16i8, &pshufbMask[0], 16));
4312    if (!TwoInputs)
4313      return V1;
4314
4315    // Calculate the shuffle mask for the second input, shuffle it, and
4316    // OR it with the first shuffled input.
4317    pshufbMask.clear();
4318    for (unsigned i = 0; i != 16; ++i) {
4319      int EltIdx = MaskVals[i];
4320      if (EltIdx < 16) {
4321        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4322        continue;
4323      }
4324      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4325    }
4326    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4327                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4328                                 MVT::v16i8, &pshufbMask[0], 16));
4329    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4330  }
4331
4332  // No SSSE3 - Calculate in place words and then fix all out of place words
4333  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4334  // the 16 different words that comprise the two doublequadword input vectors.
4335  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4336  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4337  SDValue NewV = V2Only ? V2 : V1;
4338  for (int i = 0; i != 8; ++i) {
4339    int Elt0 = MaskVals[i*2];
4340    int Elt1 = MaskVals[i*2+1];
4341
4342    // This word of the result is all undef, skip it.
4343    if (Elt0 < 0 && Elt1 < 0)
4344      continue;
4345
4346    // This word of the result is already in the correct place, skip it.
4347    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4348      continue;
4349    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4350      continue;
4351
4352    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4353    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4354    SDValue InsElt;
4355
4356    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4357    // using a single extract together, load it and store it.
4358    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4359      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4360                           DAG.getIntPtrConstant(Elt1 / 2));
4361      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4362                        DAG.getIntPtrConstant(i));
4363      continue;
4364    }
4365
4366    // If Elt1 is defined, extract it from the appropriate source.  If the
4367    // source byte is not also odd, shift the extracted word left 8 bits
4368    // otherwise clear the bottom 8 bits if we need to do an or.
4369    if (Elt1 >= 0) {
4370      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4371                           DAG.getIntPtrConstant(Elt1 / 2));
4372      if ((Elt1 & 1) == 0)
4373        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4374                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4375      else if (Elt0 >= 0)
4376        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4377                             DAG.getConstant(0xFF00, MVT::i16));
4378    }
4379    // If Elt0 is defined, extract it from the appropriate source.  If the
4380    // source byte is not also even, shift the extracted word right 8 bits. If
4381    // Elt1 was also defined, OR the extracted values together before
4382    // inserting them in the result.
4383    if (Elt0 >= 0) {
4384      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4385                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4386      if ((Elt0 & 1) != 0)
4387        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4388                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4389      else if (Elt1 >= 0)
4390        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4391                             DAG.getConstant(0x00FF, MVT::i16));
4392      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4393                         : InsElt0;
4394    }
4395    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4396                       DAG.getIntPtrConstant(i));
4397  }
4398  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4399}
4400
4401/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4402/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
4403/// done when every pair / quad of shuffle mask elements point to elements in
4404/// the right sequence. e.g.
4405/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4406static
4407SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4408                                 SelectionDAG &DAG,
4409                                 TargetLowering &TLI, DebugLoc dl) {
4410  EVT VT = SVOp->getValueType(0);
4411  SDValue V1 = SVOp->getOperand(0);
4412  SDValue V2 = SVOp->getOperand(1);
4413  unsigned NumElems = VT.getVectorNumElements();
4414  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4415  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
4416  EVT MaskEltVT = MaskVT.getVectorElementType();
4417  EVT NewVT = MaskVT;
4418  switch (VT.getSimpleVT().SimpleTy) {
4419  default: assert(false && "Unexpected!");
4420  case MVT::v4f32: NewVT = MVT::v2f64; break;
4421  case MVT::v4i32: NewVT = MVT::v2i64; break;
4422  case MVT::v8i16: NewVT = MVT::v4i32; break;
4423  case MVT::v16i8: NewVT = MVT::v4i32; break;
4424  }
4425
4426  if (NewWidth == 2) {
4427    if (VT.isInteger())
4428      NewVT = MVT::v2i64;
4429    else
4430      NewVT = MVT::v2f64;
4431  }
4432  int Scale = NumElems / NewWidth;
4433  SmallVector<int, 8> MaskVec;
4434  for (unsigned i = 0; i < NumElems; i += Scale) {
4435    int StartIdx = -1;
4436    for (int j = 0; j < Scale; ++j) {
4437      int EltIdx = SVOp->getMaskElt(i+j);
4438      if (EltIdx < 0)
4439        continue;
4440      if (StartIdx == -1)
4441        StartIdx = EltIdx - (EltIdx % Scale);
4442      if (EltIdx != StartIdx + j)
4443        return SDValue();
4444    }
4445    if (StartIdx == -1)
4446      MaskVec.push_back(-1);
4447    else
4448      MaskVec.push_back(StartIdx / Scale);
4449  }
4450
4451  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4452  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4453  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4454}
4455
4456/// getVZextMovL - Return a zero-extending vector move low node.
4457///
4458static SDValue getVZextMovL(EVT VT, EVT OpVT,
4459                            SDValue SrcOp, SelectionDAG &DAG,
4460                            const X86Subtarget *Subtarget, DebugLoc dl) {
4461  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4462    LoadSDNode *LD = NULL;
4463    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4464      LD = dyn_cast<LoadSDNode>(SrcOp);
4465    if (!LD) {
4466      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4467      // instead.
4468      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4469      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4470          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4471          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4472          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4473        // PR2108
4474        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4475        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4476                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4477                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4478                                                   OpVT,
4479                                                   SrcOp.getOperand(0)
4480                                                          .getOperand(0))));
4481      }
4482    }
4483  }
4484
4485  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4486                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4487                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4488                                             OpVT, SrcOp)));
4489}
4490
4491/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4492/// shuffles.
4493static SDValue
4494LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4495  SDValue V1 = SVOp->getOperand(0);
4496  SDValue V2 = SVOp->getOperand(1);
4497  DebugLoc dl = SVOp->getDebugLoc();
4498  EVT VT = SVOp->getValueType(0);
4499
4500  SmallVector<std::pair<int, int>, 8> Locs;
4501  Locs.resize(4);
4502  SmallVector<int, 8> Mask1(4U, -1);
4503  SmallVector<int, 8> PermMask;
4504  SVOp->getMask(PermMask);
4505
4506  unsigned NumHi = 0;
4507  unsigned NumLo = 0;
4508  for (unsigned i = 0; i != 4; ++i) {
4509    int Idx = PermMask[i];
4510    if (Idx < 0) {
4511      Locs[i] = std::make_pair(-1, -1);
4512    } else {
4513      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4514      if (Idx < 4) {
4515        Locs[i] = std::make_pair(0, NumLo);
4516        Mask1[NumLo] = Idx;
4517        NumLo++;
4518      } else {
4519        Locs[i] = std::make_pair(1, NumHi);
4520        if (2+NumHi < 4)
4521          Mask1[2+NumHi] = Idx;
4522        NumHi++;
4523      }
4524    }
4525  }
4526
4527  if (NumLo <= 2 && NumHi <= 2) {
4528    // If no more than two elements come from either vector. This can be
4529    // implemented with two shuffles. First shuffle gather the elements.
4530    // The second shuffle, which takes the first shuffle as both of its
4531    // vector operands, put the elements into the right order.
4532    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4533
4534    SmallVector<int, 8> Mask2(4U, -1);
4535
4536    for (unsigned i = 0; i != 4; ++i) {
4537      if (Locs[i].first == -1)
4538        continue;
4539      else {
4540        unsigned Idx = (i < 2) ? 0 : 4;
4541        Idx += Locs[i].first * 2 + Locs[i].second;
4542        Mask2[i] = Idx;
4543      }
4544    }
4545
4546    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4547  } else if (NumLo == 3 || NumHi == 3) {
4548    // Otherwise, we must have three elements from one vector, call it X, and
4549    // one element from the other, call it Y.  First, use a shufps to build an
4550    // intermediate vector with the one element from Y and the element from X
4551    // that will be in the same half in the final destination (the indexes don't
4552    // matter). Then, use a shufps to build the final vector, taking the half
4553    // containing the element from Y from the intermediate, and the other half
4554    // from X.
4555    if (NumHi == 3) {
4556      // Normalize it so the 3 elements come from V1.
4557      CommuteVectorShuffleMask(PermMask, VT);
4558      std::swap(V1, V2);
4559    }
4560
4561    // Find the element from V2.
4562    unsigned HiIndex;
4563    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4564      int Val = PermMask[HiIndex];
4565      if (Val < 0)
4566        continue;
4567      if (Val >= 4)
4568        break;
4569    }
4570
4571    Mask1[0] = PermMask[HiIndex];
4572    Mask1[1] = -1;
4573    Mask1[2] = PermMask[HiIndex^1];
4574    Mask1[3] = -1;
4575    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4576
4577    if (HiIndex >= 2) {
4578      Mask1[0] = PermMask[0];
4579      Mask1[1] = PermMask[1];
4580      Mask1[2] = HiIndex & 1 ? 6 : 4;
4581      Mask1[3] = HiIndex & 1 ? 4 : 6;
4582      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4583    } else {
4584      Mask1[0] = HiIndex & 1 ? 2 : 0;
4585      Mask1[1] = HiIndex & 1 ? 0 : 2;
4586      Mask1[2] = PermMask[2];
4587      Mask1[3] = PermMask[3];
4588      if (Mask1[2] >= 0)
4589        Mask1[2] += 4;
4590      if (Mask1[3] >= 0)
4591        Mask1[3] += 4;
4592      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4593    }
4594  }
4595
4596  // Break it into (shuffle shuffle_hi, shuffle_lo).
4597  Locs.clear();
4598  SmallVector<int,8> LoMask(4U, -1);
4599  SmallVector<int,8> HiMask(4U, -1);
4600
4601  SmallVector<int,8> *MaskPtr = &LoMask;
4602  unsigned MaskIdx = 0;
4603  unsigned LoIdx = 0;
4604  unsigned HiIdx = 2;
4605  for (unsigned i = 0; i != 4; ++i) {
4606    if (i == 2) {
4607      MaskPtr = &HiMask;
4608      MaskIdx = 1;
4609      LoIdx = 0;
4610      HiIdx = 2;
4611    }
4612    int Idx = PermMask[i];
4613    if (Idx < 0) {
4614      Locs[i] = std::make_pair(-1, -1);
4615    } else if (Idx < 4) {
4616      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4617      (*MaskPtr)[LoIdx] = Idx;
4618      LoIdx++;
4619    } else {
4620      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4621      (*MaskPtr)[HiIdx] = Idx;
4622      HiIdx++;
4623    }
4624  }
4625
4626  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4627  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4628  SmallVector<int, 8> MaskOps;
4629  for (unsigned i = 0; i != 4; ++i) {
4630    if (Locs[i].first == -1) {
4631      MaskOps.push_back(-1);
4632    } else {
4633      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4634      MaskOps.push_back(Idx);
4635    }
4636  }
4637  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4638}
4639
4640SDValue
4641X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4642  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4643  SDValue V1 = Op.getOperand(0);
4644  SDValue V2 = Op.getOperand(1);
4645  EVT VT = Op.getValueType();
4646  DebugLoc dl = Op.getDebugLoc();
4647  unsigned NumElems = VT.getVectorNumElements();
4648  bool isMMX = VT.getSizeInBits() == 64;
4649  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4650  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4651  bool V1IsSplat = false;
4652  bool V2IsSplat = false;
4653
4654  if (isZeroShuffle(SVOp))
4655    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4656
4657  // Promote splats to v4f32.
4658  if (SVOp->isSplat()) {
4659    if (isMMX || NumElems < 4)
4660      return Op;
4661    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4662  }
4663
4664  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4665  // do it!
4666  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4667    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4668    if (NewOp.getNode())
4669      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4670                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4671  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4672    // FIXME: Figure out a cleaner way to do this.
4673    // Try to make use of movq to zero out the top part.
4674    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4675      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4676      if (NewOp.getNode()) {
4677        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4678          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4679                              DAG, Subtarget, dl);
4680      }
4681    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4682      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4683      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4684        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4685                            DAG, Subtarget, dl);
4686    }
4687  }
4688
4689  if (X86::isPSHUFDMask(SVOp))
4690    return Op;
4691
4692  // Check if this can be converted into a logical shift.
4693  bool isLeft = false;
4694  unsigned ShAmt = 0;
4695  SDValue ShVal;
4696  bool isShift = getSubtarget()->hasSSE2() &&
4697    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4698  if (isShift && ShVal.hasOneUse()) {
4699    // If the shifted value has multiple uses, it may be cheaper to use
4700    // v_set0 + movlhps or movhlps, etc.
4701    EVT EltVT = VT.getVectorElementType();
4702    ShAmt *= EltVT.getSizeInBits();
4703    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4704  }
4705
4706  if (X86::isMOVLMask(SVOp)) {
4707    if (V1IsUndef)
4708      return V2;
4709    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4710      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4711    if (!isMMX)
4712      return Op;
4713  }
4714
4715  // FIXME: fold these into legal mask.
4716  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4717                 X86::isMOVSLDUPMask(SVOp) ||
4718                 X86::isMOVHLPSMask(SVOp) ||
4719                 X86::isMOVLHPSMask(SVOp) ||
4720                 X86::isMOVLPMask(SVOp)))
4721    return Op;
4722
4723  if (ShouldXformToMOVHLPS(SVOp) ||
4724      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4725    return CommuteVectorShuffle(SVOp, DAG);
4726
4727  if (isShift) {
4728    // No better options. Use a vshl / vsrl.
4729    EVT EltVT = VT.getVectorElementType();
4730    ShAmt *= EltVT.getSizeInBits();
4731    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4732  }
4733
4734  bool Commuted = false;
4735  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4736  // 1,1,1,1 -> v8i16 though.
4737  V1IsSplat = isSplatVector(V1.getNode());
4738  V2IsSplat = isSplatVector(V2.getNode());
4739
4740  // Canonicalize the splat or undef, if present, to be on the RHS.
4741  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4742    Op = CommuteVectorShuffle(SVOp, DAG);
4743    SVOp = cast<ShuffleVectorSDNode>(Op);
4744    V1 = SVOp->getOperand(0);
4745    V2 = SVOp->getOperand(1);
4746    std::swap(V1IsSplat, V2IsSplat);
4747    std::swap(V1IsUndef, V2IsUndef);
4748    Commuted = true;
4749  }
4750
4751  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4752    // Shuffling low element of v1 into undef, just return v1.
4753    if (V2IsUndef)
4754      return V1;
4755    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4756    // the instruction selector will not match, so get a canonical MOVL with
4757    // swapped operands to undo the commute.
4758    return getMOVL(DAG, dl, VT, V2, V1);
4759  }
4760
4761  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4762      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4763      X86::isUNPCKLMask(SVOp) ||
4764      X86::isUNPCKHMask(SVOp))
4765    return Op;
4766
4767  if (V2IsSplat) {
4768    // Normalize mask so all entries that point to V2 points to its first
4769    // element then try to match unpck{h|l} again. If match, return a
4770    // new vector_shuffle with the corrected mask.
4771    SDValue NewMask = NormalizeMask(SVOp, DAG);
4772    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4773    if (NSVOp != SVOp) {
4774      if (X86::isUNPCKLMask(NSVOp, true)) {
4775        return NewMask;
4776      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4777        return NewMask;
4778      }
4779    }
4780  }
4781
4782  if (Commuted) {
4783    // Commute is back and try unpck* again.
4784    // FIXME: this seems wrong.
4785    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4786    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4787    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4788        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4789        X86::isUNPCKLMask(NewSVOp) ||
4790        X86::isUNPCKHMask(NewSVOp))
4791      return NewOp;
4792  }
4793
4794  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4795
4796  // Normalize the node to match x86 shuffle ops if needed
4797  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4798    return CommuteVectorShuffle(SVOp, DAG);
4799
4800  // Check for legal shuffle and return?
4801  SmallVector<int, 16> PermMask;
4802  SVOp->getMask(PermMask);
4803  if (isShuffleMaskLegal(PermMask, VT))
4804    return Op;
4805
4806  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4807  if (VT == MVT::v8i16) {
4808    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4809    if (NewOp.getNode())
4810      return NewOp;
4811  }
4812
4813  if (VT == MVT::v16i8) {
4814    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4815    if (NewOp.getNode())
4816      return NewOp;
4817  }
4818
4819  // Handle all 4 wide cases with a number of shuffles except for MMX.
4820  if (NumElems == 4 && !isMMX)
4821    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4822
4823  return SDValue();
4824}
4825
4826SDValue
4827X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4828                                                SelectionDAG &DAG) {
4829  EVT VT = Op.getValueType();
4830  DebugLoc dl = Op.getDebugLoc();
4831  if (VT.getSizeInBits() == 8) {
4832    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4833                                    Op.getOperand(0), Op.getOperand(1));
4834    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4835                                    DAG.getValueType(VT));
4836    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4837  } else if (VT.getSizeInBits() == 16) {
4838    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4839    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4840    if (Idx == 0)
4841      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4842                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4843                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4844                                                 MVT::v4i32,
4845                                                 Op.getOperand(0)),
4846                                     Op.getOperand(1)));
4847    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4848                                    Op.getOperand(0), Op.getOperand(1));
4849    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4850                                    DAG.getValueType(VT));
4851    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4852  } else if (VT == MVT::f32) {
4853    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4854    // the result back to FR32 register. It's only worth matching if the
4855    // result has a single use which is a store or a bitcast to i32.  And in
4856    // the case of a store, it's not worth it if the index is a constant 0,
4857    // because a MOVSSmr can be used instead, which is smaller and faster.
4858    if (!Op.hasOneUse())
4859      return SDValue();
4860    SDNode *User = *Op.getNode()->use_begin();
4861    if ((User->getOpcode() != ISD::STORE ||
4862         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4863          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4864        (User->getOpcode() != ISD::BIT_CONVERT ||
4865         User->getValueType(0) != MVT::i32))
4866      return SDValue();
4867    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4868                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4869                                              Op.getOperand(0)),
4870                                              Op.getOperand(1));
4871    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4872  } else if (VT == MVT::i32) {
4873    // ExtractPS works with constant index.
4874    if (isa<ConstantSDNode>(Op.getOperand(1)))
4875      return Op;
4876  }
4877  return SDValue();
4878}
4879
4880
4881SDValue
4882X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4883  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4884    return SDValue();
4885
4886  if (Subtarget->hasSSE41()) {
4887    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4888    if (Res.getNode())
4889      return Res;
4890  }
4891
4892  EVT VT = Op.getValueType();
4893  DebugLoc dl = Op.getDebugLoc();
4894  // TODO: handle v16i8.
4895  if (VT.getSizeInBits() == 16) {
4896    SDValue Vec = Op.getOperand(0);
4897    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4898    if (Idx == 0)
4899      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4900                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4901                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4902                                                 MVT::v4i32, Vec),
4903                                     Op.getOperand(1)));
4904    // Transform it so it match pextrw which produces a 32-bit result.
4905    EVT EltVT = MVT::i32;
4906    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
4907                                    Op.getOperand(0), Op.getOperand(1));
4908    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
4909                                    DAG.getValueType(VT));
4910    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4911  } else if (VT.getSizeInBits() == 32) {
4912    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4913    if (Idx == 0)
4914      return Op;
4915
4916    // SHUFPS the element to the lowest double word, then movss.
4917    int Mask[4] = { Idx, -1, -1, -1 };
4918    EVT VVT = Op.getOperand(0).getValueType();
4919    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4920                                       DAG.getUNDEF(VVT), Mask);
4921    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4922                       DAG.getIntPtrConstant(0));
4923  } else if (VT.getSizeInBits() == 64) {
4924    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4925    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4926    //        to match extract_elt for f64.
4927    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4928    if (Idx == 0)
4929      return Op;
4930
4931    // UNPCKHPD the element to the lowest double word, then movsd.
4932    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4933    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4934    int Mask[2] = { 1, -1 };
4935    EVT VVT = Op.getOperand(0).getValueType();
4936    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4937                                       DAG.getUNDEF(VVT), Mask);
4938    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4939                       DAG.getIntPtrConstant(0));
4940  }
4941
4942  return SDValue();
4943}
4944
4945SDValue
4946X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4947  EVT VT = Op.getValueType();
4948  EVT EltVT = VT.getVectorElementType();
4949  DebugLoc dl = Op.getDebugLoc();
4950
4951  SDValue N0 = Op.getOperand(0);
4952  SDValue N1 = Op.getOperand(1);
4953  SDValue N2 = Op.getOperand(2);
4954
4955  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
4956      isa<ConstantSDNode>(N2)) {
4957    unsigned Opc;
4958    if (VT == MVT::v8i16)
4959      Opc = X86ISD::PINSRW;
4960    else if (VT == MVT::v4i16)
4961      Opc = X86ISD::MMX_PINSRW;
4962    else if (VT == MVT::v16i8)
4963      Opc = X86ISD::PINSRB;
4964    else
4965      Opc = X86ISD::PINSRB;
4966
4967    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4968    // argument.
4969    if (N1.getValueType() != MVT::i32)
4970      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4971    if (N2.getValueType() != MVT::i32)
4972      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4973    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4974  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4975    // Bits [7:6] of the constant are the source select.  This will always be
4976    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4977    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4978    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4979    // Bits [5:4] of the constant are the destination select.  This is the
4980    //  value of the incoming immediate.
4981    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4982    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4983    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4984    // Create this as a scalar to vector..
4985    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4986    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4987  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4988    // PINSR* works with constant index.
4989    return Op;
4990  }
4991  return SDValue();
4992}
4993
4994SDValue
4995X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4996  EVT VT = Op.getValueType();
4997  EVT EltVT = VT.getVectorElementType();
4998
4999  if (Subtarget->hasSSE41())
5000    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5001
5002  if (EltVT == MVT::i8)
5003    return SDValue();
5004
5005  DebugLoc dl = Op.getDebugLoc();
5006  SDValue N0 = Op.getOperand(0);
5007  SDValue N1 = Op.getOperand(1);
5008  SDValue N2 = Op.getOperand(2);
5009
5010  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5011    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5012    // as its second argument.
5013    if (N1.getValueType() != MVT::i32)
5014      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5015    if (N2.getValueType() != MVT::i32)
5016      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5017    return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
5018                       dl, VT, N0, N1, N2);
5019  }
5020  return SDValue();
5021}
5022
5023SDValue
5024X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
5025  DebugLoc dl = Op.getDebugLoc();
5026  if (Op.getValueType() == MVT::v2f32)
5027    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
5028                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
5029                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
5030                                               Op.getOperand(0))));
5031
5032  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
5033    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5034
5035  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5036  EVT VT = MVT::v2i32;
5037  switch (Op.getValueType().getSimpleVT().SimpleTy) {
5038  default: break;
5039  case MVT::v16i8:
5040  case MVT::v8i16:
5041    VT = MVT::v4i32;
5042    break;
5043  }
5044  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5045                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
5046}
5047
5048// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5049// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5050// one of the above mentioned nodes. It has to be wrapped because otherwise
5051// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5052// be used to form addressing mode. These wrapped nodes will be selected
5053// into MOV32ri.
5054SDValue
5055X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
5056  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5057
5058  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5059  // global base reg.
5060  unsigned char OpFlag = 0;
5061  unsigned WrapperKind = X86ISD::Wrapper;
5062  CodeModel::Model M = getTargetMachine().getCodeModel();
5063
5064  if (Subtarget->isPICStyleRIPRel() &&
5065      (M == CodeModel::Small || M == CodeModel::Kernel))
5066    WrapperKind = X86ISD::WrapperRIP;
5067  else if (Subtarget->isPICStyleGOT())
5068    OpFlag = X86II::MO_GOTOFF;
5069  else if (Subtarget->isPICStyleStubPIC())
5070    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5071
5072  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5073                                             CP->getAlignment(),
5074                                             CP->getOffset(), OpFlag);
5075  DebugLoc DL = CP->getDebugLoc();
5076  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5077  // With PIC, the address is actually $g + Offset.
5078  if (OpFlag) {
5079    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5080                         DAG.getNode(X86ISD::GlobalBaseReg,
5081                                     DebugLoc(), getPointerTy()),
5082                         Result);
5083  }
5084
5085  return Result;
5086}
5087
5088SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
5089  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5090
5091  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5092  // global base reg.
5093  unsigned char OpFlag = 0;
5094  unsigned WrapperKind = X86ISD::Wrapper;
5095  CodeModel::Model M = getTargetMachine().getCodeModel();
5096
5097  if (Subtarget->isPICStyleRIPRel() &&
5098      (M == CodeModel::Small || M == CodeModel::Kernel))
5099    WrapperKind = X86ISD::WrapperRIP;
5100  else if (Subtarget->isPICStyleGOT())
5101    OpFlag = X86II::MO_GOTOFF;
5102  else if (Subtarget->isPICStyleStubPIC())
5103    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5104
5105  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5106                                          OpFlag);
5107  DebugLoc DL = JT->getDebugLoc();
5108  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5109
5110  // With PIC, the address is actually $g + Offset.
5111  if (OpFlag) {
5112    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5113                         DAG.getNode(X86ISD::GlobalBaseReg,
5114                                     DebugLoc(), getPointerTy()),
5115                         Result);
5116  }
5117
5118  return Result;
5119}
5120
5121SDValue
5122X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
5123  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5124
5125  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5126  // global base reg.
5127  unsigned char OpFlag = 0;
5128  unsigned WrapperKind = X86ISD::Wrapper;
5129  CodeModel::Model M = getTargetMachine().getCodeModel();
5130
5131  if (Subtarget->isPICStyleRIPRel() &&
5132      (M == CodeModel::Small || M == CodeModel::Kernel))
5133    WrapperKind = X86ISD::WrapperRIP;
5134  else if (Subtarget->isPICStyleGOT())
5135    OpFlag = X86II::MO_GOTOFF;
5136  else if (Subtarget->isPICStyleStubPIC())
5137    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5138
5139  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5140
5141  DebugLoc DL = Op.getDebugLoc();
5142  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5143
5144
5145  // With PIC, the address is actually $g + Offset.
5146  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5147      !Subtarget->is64Bit()) {
5148    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5149                         DAG.getNode(X86ISD::GlobalBaseReg,
5150                                     DebugLoc(), getPointerTy()),
5151                         Result);
5152  }
5153
5154  return Result;
5155}
5156
5157SDValue
5158X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
5159  // Create the TargetBlockAddressAddress node.
5160  unsigned char OpFlags =
5161    Subtarget->ClassifyBlockAddressReference();
5162  CodeModel::Model M = getTargetMachine().getCodeModel();
5163  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5164  DebugLoc dl = Op.getDebugLoc();
5165  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5166                                       /*isTarget=*/true, OpFlags);
5167
5168  if (Subtarget->isPICStyleRIPRel() &&
5169      (M == CodeModel::Small || M == CodeModel::Kernel))
5170    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5171  else
5172    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5173
5174  // With PIC, the address is actually $g + Offset.
5175  if (isGlobalRelativeToPICBase(OpFlags)) {
5176    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5177                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5178                         Result);
5179  }
5180
5181  return Result;
5182}
5183
5184SDValue
5185X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5186                                      int64_t Offset,
5187                                      SelectionDAG &DAG) const {
5188  // Create the TargetGlobalAddress node, folding in the constant
5189  // offset if it is legal.
5190  unsigned char OpFlags =
5191    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5192  CodeModel::Model M = getTargetMachine().getCodeModel();
5193  SDValue Result;
5194  if (OpFlags == X86II::MO_NO_FLAG &&
5195      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5196    // A direct static reference to a global.
5197    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
5198    Offset = 0;
5199  } else {
5200    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
5201  }
5202
5203  if (Subtarget->isPICStyleRIPRel() &&
5204      (M == CodeModel::Small || M == CodeModel::Kernel))
5205    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5206  else
5207    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5208
5209  // With PIC, the address is actually $g + Offset.
5210  if (isGlobalRelativeToPICBase(OpFlags)) {
5211    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5212                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5213                         Result);
5214  }
5215
5216  // For globals that require a load from a stub to get the address, emit the
5217  // load.
5218  if (isGlobalStubReference(OpFlags))
5219    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5220                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5221
5222  // If there was a non-zero offset that we didn't fold, create an explicit
5223  // addition for it.
5224  if (Offset != 0)
5225    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5226                         DAG.getConstant(Offset, getPointerTy()));
5227
5228  return Result;
5229}
5230
5231SDValue
5232X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
5233  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5234  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5235  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5236}
5237
5238static SDValue
5239GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5240           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5241           unsigned char OperandFlags) {
5242  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5243  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5244  DebugLoc dl = GA->getDebugLoc();
5245  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
5246                                           GA->getValueType(0),
5247                                           GA->getOffset(),
5248                                           OperandFlags);
5249  if (InFlag) {
5250    SDValue Ops[] = { Chain,  TGA, *InFlag };
5251    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5252  } else {
5253    SDValue Ops[]  = { Chain, TGA };
5254    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5255  }
5256
5257  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5258  MFI->setHasCalls(true);
5259
5260  SDValue Flag = Chain.getValue(1);
5261  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5262}
5263
5264// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5265static SDValue
5266LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5267                                const EVT PtrVT) {
5268  SDValue InFlag;
5269  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5270  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5271                                     DAG.getNode(X86ISD::GlobalBaseReg,
5272                                                 DebugLoc(), PtrVT), InFlag);
5273  InFlag = Chain.getValue(1);
5274
5275  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5276}
5277
5278// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5279static SDValue
5280LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5281                                const EVT PtrVT) {
5282  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5283                    X86::RAX, X86II::MO_TLSGD);
5284}
5285
5286// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5287// "local exec" model.
5288static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5289                                   const EVT PtrVT, TLSModel::Model model,
5290                                   bool is64Bit) {
5291  DebugLoc dl = GA->getDebugLoc();
5292  // Get the Thread Pointer
5293  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5294                             DebugLoc(), PtrVT,
5295                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5296                                             MVT::i32));
5297
5298  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5299                                      NULL, 0, false, false, 0);
5300
5301  unsigned char OperandFlags = 0;
5302  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5303  // initialexec.
5304  unsigned WrapperKind = X86ISD::Wrapper;
5305  if (model == TLSModel::LocalExec) {
5306    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5307  } else if (is64Bit) {
5308    assert(model == TLSModel::InitialExec);
5309    OperandFlags = X86II::MO_GOTTPOFF;
5310    WrapperKind = X86ISD::WrapperRIP;
5311  } else {
5312    assert(model == TLSModel::InitialExec);
5313    OperandFlags = X86II::MO_INDNTPOFF;
5314  }
5315
5316  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5317  // exec)
5318  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5319                                           GA->getOffset(), OperandFlags);
5320  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5321
5322  if (model == TLSModel::InitialExec)
5323    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5324                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5325
5326  // The address of the thread local variable is the add of the thread
5327  // pointer with the offset of the variable.
5328  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5329}
5330
5331SDValue
5332X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
5333  // TODO: implement the "local dynamic" model
5334  // TODO: implement the "initial exec"model for pic executables
5335  assert(Subtarget->isTargetELF() &&
5336         "TLS not implemented for non-ELF targets");
5337  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5338  const GlobalValue *GV = GA->getGlobal();
5339
5340  // If GV is an alias then use the aliasee for determining
5341  // thread-localness.
5342  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5343    GV = GA->resolveAliasedGlobal(false);
5344
5345  TLSModel::Model model = getTLSModel(GV,
5346                                      getTargetMachine().getRelocationModel());
5347
5348  switch (model) {
5349  case TLSModel::GeneralDynamic:
5350  case TLSModel::LocalDynamic: // not implemented
5351    if (Subtarget->is64Bit())
5352      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5353    return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5354
5355  case TLSModel::InitialExec:
5356  case TLSModel::LocalExec:
5357    return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5358                               Subtarget->is64Bit());
5359  }
5360
5361  llvm_unreachable("Unreachable");
5362  return SDValue();
5363}
5364
5365
5366/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5367/// take a 2 x i32 value to shift plus a shift amount.
5368SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
5369  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5370  EVT VT = Op.getValueType();
5371  unsigned VTBits = VT.getSizeInBits();
5372  DebugLoc dl = Op.getDebugLoc();
5373  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5374  SDValue ShOpLo = Op.getOperand(0);
5375  SDValue ShOpHi = Op.getOperand(1);
5376  SDValue ShAmt  = Op.getOperand(2);
5377  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5378                                     DAG.getConstant(VTBits - 1, MVT::i8))
5379                       : DAG.getConstant(0, VT);
5380
5381  SDValue Tmp2, Tmp3;
5382  if (Op.getOpcode() == ISD::SHL_PARTS) {
5383    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5384    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5385  } else {
5386    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5387    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5388  }
5389
5390  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5391                                DAG.getConstant(VTBits, MVT::i8));
5392  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
5393                             AndNode, DAG.getConstant(0, MVT::i8));
5394
5395  SDValue Hi, Lo;
5396  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5397  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5398  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5399
5400  if (Op.getOpcode() == ISD::SHL_PARTS) {
5401    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5402    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5403  } else {
5404    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5405    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5406  }
5407
5408  SDValue Ops[2] = { Lo, Hi };
5409  return DAG.getMergeValues(Ops, 2, dl);
5410}
5411
5412SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5413  EVT SrcVT = Op.getOperand(0).getValueType();
5414
5415  if (SrcVT.isVector()) {
5416    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5417      return Op;
5418    }
5419    return SDValue();
5420  }
5421
5422  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5423         "Unknown SINT_TO_FP to lower!");
5424
5425  // These are really Legal; return the operand so the caller accepts it as
5426  // Legal.
5427  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5428    return Op;
5429  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5430      Subtarget->is64Bit()) {
5431    return Op;
5432  }
5433
5434  DebugLoc dl = Op.getDebugLoc();
5435  unsigned Size = SrcVT.getSizeInBits()/8;
5436  MachineFunction &MF = DAG.getMachineFunction();
5437  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5438  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5439  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5440                               StackSlot,
5441                               PseudoSourceValue::getFixedStack(SSFI), 0,
5442                               false, false, 0);
5443  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5444}
5445
5446SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5447                                     SDValue StackSlot,
5448                                     SelectionDAG &DAG) {
5449  // Build the FILD
5450  DebugLoc dl = Op.getDebugLoc();
5451  SDVTList Tys;
5452  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5453  if (useSSE)
5454    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5455  else
5456    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5457  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5458  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5459                               Tys, Ops, array_lengthof(Ops));
5460
5461  if (useSSE) {
5462    Chain = Result.getValue(1);
5463    SDValue InFlag = Result.getValue(2);
5464
5465    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5466    // shouldn't be necessary except that RFP cannot be live across
5467    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5468    MachineFunction &MF = DAG.getMachineFunction();
5469    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5470    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5471    Tys = DAG.getVTList(MVT::Other);
5472    SDValue Ops[] = {
5473      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5474    };
5475    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5476    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5477                         PseudoSourceValue::getFixedStack(SSFI), 0,
5478                         false, false, 0);
5479  }
5480
5481  return Result;
5482}
5483
5484// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5485SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
5486  // This algorithm is not obvious. Here it is in C code, more or less:
5487  /*
5488    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5489      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5490      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5491
5492      // Copy ints to xmm registers.
5493      __m128i xh = _mm_cvtsi32_si128( hi );
5494      __m128i xl = _mm_cvtsi32_si128( lo );
5495
5496      // Combine into low half of a single xmm register.
5497      __m128i x = _mm_unpacklo_epi32( xh, xl );
5498      __m128d d;
5499      double sd;
5500
5501      // Merge in appropriate exponents to give the integer bits the right
5502      // magnitude.
5503      x = _mm_unpacklo_epi32( x, exp );
5504
5505      // Subtract away the biases to deal with the IEEE-754 double precision
5506      // implicit 1.
5507      d = _mm_sub_pd( (__m128d) x, bias );
5508
5509      // All conversions up to here are exact. The correctly rounded result is
5510      // calculated using the current rounding mode using the following
5511      // horizontal add.
5512      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5513      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5514                                // store doesn't really need to be here (except
5515                                // maybe to zero the other double)
5516      return sd;
5517    }
5518  */
5519
5520  DebugLoc dl = Op.getDebugLoc();
5521  LLVMContext *Context = DAG.getContext();
5522
5523  // Build some magic constants.
5524  std::vector<Constant*> CV0;
5525  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5526  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5527  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5528  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5529  Constant *C0 = ConstantVector::get(CV0);
5530  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5531
5532  std::vector<Constant*> CV1;
5533  CV1.push_back(
5534    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5535  CV1.push_back(
5536    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5537  Constant *C1 = ConstantVector::get(CV1);
5538  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5539
5540  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5541                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5542                                        Op.getOperand(0),
5543                                        DAG.getIntPtrConstant(1)));
5544  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5545                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5546                                        Op.getOperand(0),
5547                                        DAG.getIntPtrConstant(0)));
5548  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5549  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5550                              PseudoSourceValue::getConstantPool(), 0,
5551                              false, false, 16);
5552  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5553  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5554  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5555                              PseudoSourceValue::getConstantPool(), 0,
5556                              false, false, 16);
5557  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5558
5559  // Add the halves; easiest way is to swap them into another reg first.
5560  int ShufMask[2] = { 1, -1 };
5561  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5562                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5563  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5564  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5565                     DAG.getIntPtrConstant(0));
5566}
5567
5568// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5569SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
5570  DebugLoc dl = Op.getDebugLoc();
5571  // FP constant to bias correct the final result.
5572  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5573                                   MVT::f64);
5574
5575  // Load the 32-bit value into an XMM register.
5576  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5577                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5578                                         Op.getOperand(0),
5579                                         DAG.getIntPtrConstant(0)));
5580
5581  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5582                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5583                     DAG.getIntPtrConstant(0));
5584
5585  // Or the load with the bias.
5586  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5587                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5588                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5589                                                   MVT::v2f64, Load)),
5590                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5591                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5592                                                   MVT::v2f64, Bias)));
5593  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5594                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5595                   DAG.getIntPtrConstant(0));
5596
5597  // Subtract the bias.
5598  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5599
5600  // Handle final rounding.
5601  EVT DestVT = Op.getValueType();
5602
5603  if (DestVT.bitsLT(MVT::f64)) {
5604    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5605                       DAG.getIntPtrConstant(0));
5606  } else if (DestVT.bitsGT(MVT::f64)) {
5607    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5608  }
5609
5610  // Handle final rounding.
5611  return Sub;
5612}
5613
5614SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5615  SDValue N0 = Op.getOperand(0);
5616  DebugLoc dl = Op.getDebugLoc();
5617
5618  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5619  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5620  // the optimization here.
5621  if (DAG.SignBitIsZero(N0))
5622    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5623
5624  EVT SrcVT = N0.getValueType();
5625  if (SrcVT == MVT::i64) {
5626    // We only handle SSE2 f64 target here; caller can expand the rest.
5627    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5628      return SDValue();
5629
5630    return LowerUINT_TO_FP_i64(Op, DAG);
5631  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5632    return LowerUINT_TO_FP_i32(Op, DAG);
5633  }
5634
5635  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5636
5637  // Make a 64-bit buffer, and use it to build an FILD.
5638  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5639  SDValue WordOff = DAG.getConstant(4, getPointerTy());
5640  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5641                                   getPointerTy(), StackSlot, WordOff);
5642  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5643                                StackSlot, NULL, 0, false, false, 0);
5644  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5645                                OffsetSlot, NULL, 0, false, false, 0);
5646  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5647}
5648
5649std::pair<SDValue,SDValue> X86TargetLowering::
5650FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5651  DebugLoc dl = Op.getDebugLoc();
5652
5653  EVT DstTy = Op.getValueType();
5654
5655  if (!IsSigned) {
5656    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5657    DstTy = MVT::i64;
5658  }
5659
5660  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5661         DstTy.getSimpleVT() >= MVT::i16 &&
5662         "Unknown FP_TO_SINT to lower!");
5663
5664  // These are really Legal.
5665  if (DstTy == MVT::i32 &&
5666      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5667    return std::make_pair(SDValue(), SDValue());
5668  if (Subtarget->is64Bit() &&
5669      DstTy == MVT::i64 &&
5670      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5671    return std::make_pair(SDValue(), SDValue());
5672
5673  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5674  // stack slot.
5675  MachineFunction &MF = DAG.getMachineFunction();
5676  unsigned MemSize = DstTy.getSizeInBits()/8;
5677  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5678  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5679
5680  unsigned Opc;
5681  switch (DstTy.getSimpleVT().SimpleTy) {
5682  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5683  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5684  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5685  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5686  }
5687
5688  SDValue Chain = DAG.getEntryNode();
5689  SDValue Value = Op.getOperand(0);
5690  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5691    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5692    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5693                         PseudoSourceValue::getFixedStack(SSFI), 0,
5694                         false, false, 0);
5695    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5696    SDValue Ops[] = {
5697      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5698    };
5699    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5700    Chain = Value.getValue(1);
5701    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5702    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5703  }
5704
5705  // Build the FP_TO_INT*_IN_MEM
5706  SDValue Ops[] = { Chain, Value, StackSlot };
5707  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5708
5709  return std::make_pair(FIST, StackSlot);
5710}
5711
5712SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5713  if (Op.getValueType().isVector()) {
5714    if (Op.getValueType() == MVT::v2i32 &&
5715        Op.getOperand(0).getValueType() == MVT::v2f64) {
5716      return Op;
5717    }
5718    return SDValue();
5719  }
5720
5721  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5722  SDValue FIST = Vals.first, StackSlot = Vals.second;
5723  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5724  if (FIST.getNode() == 0) return Op;
5725
5726  // Load the result.
5727  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5728                     FIST, StackSlot, NULL, 0, false, false, 0);
5729}
5730
5731SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5732  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5733  SDValue FIST = Vals.first, StackSlot = Vals.second;
5734  assert(FIST.getNode() && "Unexpected failure");
5735
5736  // Load the result.
5737  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5738                     FIST, StackSlot, NULL, 0, false, false, 0);
5739}
5740
5741SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5742  LLVMContext *Context = DAG.getContext();
5743  DebugLoc dl = Op.getDebugLoc();
5744  EVT VT = Op.getValueType();
5745  EVT EltVT = VT;
5746  if (VT.isVector())
5747    EltVT = VT.getVectorElementType();
5748  std::vector<Constant*> CV;
5749  if (EltVT == MVT::f64) {
5750    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5751    CV.push_back(C);
5752    CV.push_back(C);
5753  } else {
5754    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5755    CV.push_back(C);
5756    CV.push_back(C);
5757    CV.push_back(C);
5758    CV.push_back(C);
5759  }
5760  Constant *C = ConstantVector::get(CV);
5761  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5762  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5763                             PseudoSourceValue::getConstantPool(), 0,
5764                             false, false, 16);
5765  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5766}
5767
5768SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5769  LLVMContext *Context = DAG.getContext();
5770  DebugLoc dl = Op.getDebugLoc();
5771  EVT VT = Op.getValueType();
5772  EVT EltVT = VT;
5773  if (VT.isVector())
5774    EltVT = VT.getVectorElementType();
5775  std::vector<Constant*> CV;
5776  if (EltVT == MVT::f64) {
5777    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5778    CV.push_back(C);
5779    CV.push_back(C);
5780  } else {
5781    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5782    CV.push_back(C);
5783    CV.push_back(C);
5784    CV.push_back(C);
5785    CV.push_back(C);
5786  }
5787  Constant *C = ConstantVector::get(CV);
5788  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5789  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5790                             PseudoSourceValue::getConstantPool(), 0,
5791                             false, false, 16);
5792  if (VT.isVector()) {
5793    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5794                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5795                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5796                                Op.getOperand(0)),
5797                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5798  } else {
5799    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5800  }
5801}
5802
5803SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5804  LLVMContext *Context = DAG.getContext();
5805  SDValue Op0 = Op.getOperand(0);
5806  SDValue Op1 = Op.getOperand(1);
5807  DebugLoc dl = Op.getDebugLoc();
5808  EVT VT = Op.getValueType();
5809  EVT SrcVT = Op1.getValueType();
5810
5811  // If second operand is smaller, extend it first.
5812  if (SrcVT.bitsLT(VT)) {
5813    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5814    SrcVT = VT;
5815  }
5816  // And if it is bigger, shrink it first.
5817  if (SrcVT.bitsGT(VT)) {
5818    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5819    SrcVT = VT;
5820  }
5821
5822  // At this point the operands and the result should have the same
5823  // type, and that won't be f80 since that is not custom lowered.
5824
5825  // First get the sign bit of second operand.
5826  std::vector<Constant*> CV;
5827  if (SrcVT == MVT::f64) {
5828    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5829    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5830  } else {
5831    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5832    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5833    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5834    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5835  }
5836  Constant *C = ConstantVector::get(CV);
5837  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5838  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5839                              PseudoSourceValue::getConstantPool(), 0,
5840                              false, false, 16);
5841  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5842
5843  // Shift sign bit right or left if the two operands have different types.
5844  if (SrcVT.bitsGT(VT)) {
5845    // Op0 is MVT::f32, Op1 is MVT::f64.
5846    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5847    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5848                          DAG.getConstant(32, MVT::i32));
5849    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5850    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5851                          DAG.getIntPtrConstant(0));
5852  }
5853
5854  // Clear first operand sign bit.
5855  CV.clear();
5856  if (VT == MVT::f64) {
5857    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5858    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5859  } else {
5860    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5861    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5862    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5863    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5864  }
5865  C = ConstantVector::get(CV);
5866  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5867  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5868                              PseudoSourceValue::getConstantPool(), 0,
5869                              false, false, 16);
5870  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5871
5872  // Or the value with the sign bit.
5873  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5874}
5875
5876/// Emit nodes that will be selected as "test Op0,Op0", or something
5877/// equivalent.
5878SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5879                                    SelectionDAG &DAG) {
5880  DebugLoc dl = Op.getDebugLoc();
5881
5882  // CF and OF aren't always set the way we want. Determine which
5883  // of these we need.
5884  bool NeedCF = false;
5885  bool NeedOF = false;
5886  switch (X86CC) {
5887  case X86::COND_A: case X86::COND_AE:
5888  case X86::COND_B: case X86::COND_BE:
5889    NeedCF = true;
5890    break;
5891  case X86::COND_G: case X86::COND_GE:
5892  case X86::COND_L: case X86::COND_LE:
5893  case X86::COND_O: case X86::COND_NO:
5894    NeedOF = true;
5895    break;
5896  default: break;
5897  }
5898
5899  // See if we can use the EFLAGS value from the operand instead of
5900  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5901  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5902  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5903    unsigned Opcode = 0;
5904    unsigned NumOperands = 0;
5905    switch (Op.getNode()->getOpcode()) {
5906    case ISD::ADD:
5907      // Due to an isel shortcoming, be conservative if this add is likely to
5908      // be selected as part of a load-modify-store instruction. When the root
5909      // node in a match is a store, isel doesn't know how to remap non-chain
5910      // non-flag uses of other nodes in the match, such as the ADD in this
5911      // case. This leads to the ADD being left around and reselected, with
5912      // the result being two adds in the output.
5913      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5914           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5915        if (UI->getOpcode() == ISD::STORE)
5916          goto default_case;
5917      if (ConstantSDNode *C =
5918            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5919        // An add of one will be selected as an INC.
5920        if (C->getAPIntValue() == 1) {
5921          Opcode = X86ISD::INC;
5922          NumOperands = 1;
5923          break;
5924        }
5925        // An add of negative one (subtract of one) will be selected as a DEC.
5926        if (C->getAPIntValue().isAllOnesValue()) {
5927          Opcode = X86ISD::DEC;
5928          NumOperands = 1;
5929          break;
5930        }
5931      }
5932      // Otherwise use a regular EFLAGS-setting add.
5933      Opcode = X86ISD::ADD;
5934      NumOperands = 2;
5935      break;
5936    case ISD::AND: {
5937      // If the primary and result isn't used, don't bother using X86ISD::AND,
5938      // because a TEST instruction will be better.
5939      bool NonFlagUse = false;
5940      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5941             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
5942        SDNode *User = *UI;
5943        unsigned UOpNo = UI.getOperandNo();
5944        if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
5945          // Look pass truncate.
5946          UOpNo = User->use_begin().getOperandNo();
5947          User = *User->use_begin();
5948        }
5949        if (User->getOpcode() != ISD::BRCOND &&
5950            User->getOpcode() != ISD::SETCC &&
5951            (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
5952          NonFlagUse = true;
5953          break;
5954        }
5955      }
5956      if (!NonFlagUse)
5957        break;
5958    }
5959    // FALL THROUGH
5960    case ISD::SUB:
5961    case ISD::OR:
5962    case ISD::XOR:
5963      // Due to the ISEL shortcoming noted above, be conservative if this op is
5964      // likely to be selected as part of a load-modify-store instruction.
5965      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5966           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5967        if (UI->getOpcode() == ISD::STORE)
5968          goto default_case;
5969      // Otherwise use a regular EFLAGS-setting instruction.
5970      switch (Op.getNode()->getOpcode()) {
5971      case ISD::SUB: Opcode = X86ISD::SUB; break;
5972      case ISD::OR:  Opcode = X86ISD::OR;  break;
5973      case ISD::XOR: Opcode = X86ISD::XOR; break;
5974      case ISD::AND: Opcode = X86ISD::AND; break;
5975      default: llvm_unreachable("unexpected operator!");
5976      }
5977      NumOperands = 2;
5978      break;
5979    case X86ISD::ADD:
5980    case X86ISD::SUB:
5981    case X86ISD::INC:
5982    case X86ISD::DEC:
5983    case X86ISD::OR:
5984    case X86ISD::XOR:
5985    case X86ISD::AND:
5986      return SDValue(Op.getNode(), 1);
5987    default:
5988    default_case:
5989      break;
5990    }
5991    if (Opcode != 0) {
5992      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5993      SmallVector<SDValue, 4> Ops;
5994      for (unsigned i = 0; i != NumOperands; ++i)
5995        Ops.push_back(Op.getOperand(i));
5996      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5997      DAG.ReplaceAllUsesWith(Op, New);
5998      return SDValue(New.getNode(), 1);
5999    }
6000  }
6001
6002  // Otherwise just emit a CMP with 0, which is the TEST pattern.
6003  if (Promote16Bit && Op.getValueType() == MVT::i16)
6004    Op = DAG.getNode(ISD::ANY_EXTEND, Op.getDebugLoc(), MVT::i32, Op);
6005  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6006                     DAG.getConstant(0, Op.getValueType()));
6007}
6008
6009/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6010/// equivalent.
6011SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6012                                   SelectionDAG &DAG) {
6013  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6014    if (C->getAPIntValue() == 0)
6015      return EmitTest(Op0, X86CC, DAG);
6016
6017  DebugLoc dl = Op0.getDebugLoc();
6018  if (Promote16Bit && Op0.getValueType() == MVT::i16) {
6019    Op0 = DAG.getNode(ISD::ANY_EXTEND, Op0.getDebugLoc(), MVT::i32, Op0);
6020    Op1 = DAG.getNode(ISD::ANY_EXTEND, Op1.getDebugLoc(), MVT::i32, Op1);
6021  }
6022  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6023}
6024
6025/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6026/// if it's possible.
6027static SDValue LowerToBT(SDValue And, ISD::CondCode CC,
6028                         DebugLoc dl, SelectionDAG &DAG) {
6029  SDValue Op0 = And.getOperand(0);
6030  SDValue Op1 = And.getOperand(1);
6031  if (Op0.getOpcode() == ISD::TRUNCATE)
6032    Op0 = Op0.getOperand(0);
6033  if (Op1.getOpcode() == ISD::TRUNCATE)
6034    Op1 = Op1.getOperand(0);
6035
6036  SDValue LHS, RHS;
6037  if (Op1.getOpcode() == ISD::SHL) {
6038    if (ConstantSDNode *And10C = dyn_cast<ConstantSDNode>(Op1.getOperand(0)))
6039      if (And10C->getZExtValue() == 1) {
6040        LHS = Op0;
6041        RHS = Op1.getOperand(1);
6042      }
6043  } else if (Op0.getOpcode() == ISD::SHL) {
6044    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6045      if (And00C->getZExtValue() == 1) {
6046        LHS = Op1;
6047        RHS = Op0.getOperand(1);
6048      }
6049  } else if (Op1.getOpcode() == ISD::Constant) {
6050    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6051    SDValue AndLHS = Op0;
6052    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6053      LHS = AndLHS.getOperand(0);
6054      RHS = AndLHS.getOperand(1);
6055    }
6056  }
6057
6058  if (LHS.getNode()) {
6059    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
6060    // instruction.  Since the shift amount is in-range-or-undefined, we know
6061    // that doing a bittest on the i32 value is ok.  We extend to i32 because
6062    // the encoding for the i16 version is larger than the i32 version.
6063    // Also promote i16 to i32 for performance / code size reason.
6064    if (LHS.getValueType() == MVT::i8 ||
6065        (Promote16Bit && LHS.getValueType() == MVT::i16))
6066      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6067
6068    // If the operand types disagree, extend the shift amount to match.  Since
6069    // BT ignores high bits (like shifts) we can use anyextend.
6070    if (LHS.getValueType() != RHS.getValueType())
6071      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6072
6073    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6074    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6075    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6076                       DAG.getConstant(Cond, MVT::i8), BT);
6077  }
6078
6079  return SDValue();
6080}
6081
6082SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
6083  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6084  SDValue Op0 = Op.getOperand(0);
6085  SDValue Op1 = Op.getOperand(1);
6086  DebugLoc dl = Op.getDebugLoc();
6087  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6088
6089  // Optimize to BT if possible.
6090  // Lower (X & (1 << N)) == 0 to BT(X, N).
6091  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
6092  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
6093  if (Op0.getOpcode() == ISD::AND &&
6094      Op0.hasOneUse() &&
6095      Op1.getOpcode() == ISD::Constant &&
6096      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
6097      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6098    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
6099    if (NewSetCC.getNode())
6100      return NewSetCC;
6101  }
6102
6103  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
6104  if (Op0.getOpcode() == X86ISD::SETCC &&
6105      Op1.getOpcode() == ISD::Constant &&
6106      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
6107       cast<ConstantSDNode>(Op1)->isNullValue()) &&
6108      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6109    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
6110    bool Invert = (CC == ISD::SETNE) ^
6111      cast<ConstantSDNode>(Op1)->isNullValue();
6112    if (Invert)
6113      CCode = X86::GetOppositeBranchCondition(CCode);
6114    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6115                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
6116  }
6117
6118  bool isFP = Op1.getValueType().isFloatingPoint();
6119  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
6120  if (X86CC == X86::COND_INVALID)
6121    return SDValue();
6122
6123  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
6124
6125  // Use sbb x, x to materialize carry bit into a GPR.
6126  if (X86CC == X86::COND_B)
6127    return DAG.getNode(ISD::AND, dl, MVT::i8,
6128                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
6129                                   DAG.getConstant(X86CC, MVT::i8), Cond),
6130                       DAG.getConstant(1, MVT::i8));
6131
6132  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6133                     DAG.getConstant(X86CC, MVT::i8), Cond);
6134}
6135
6136SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
6137  SDValue Cond;
6138  SDValue Op0 = Op.getOperand(0);
6139  SDValue Op1 = Op.getOperand(1);
6140  SDValue CC = Op.getOperand(2);
6141  EVT VT = Op.getValueType();
6142  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6143  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6144  DebugLoc dl = Op.getDebugLoc();
6145
6146  if (isFP) {
6147    unsigned SSECC = 8;
6148    EVT VT0 = Op0.getValueType();
6149    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
6150    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
6151    bool Swap = false;
6152
6153    switch (SetCCOpcode) {
6154    default: break;
6155    case ISD::SETOEQ:
6156    case ISD::SETEQ:  SSECC = 0; break;
6157    case ISD::SETOGT:
6158    case ISD::SETGT: Swap = true; // Fallthrough
6159    case ISD::SETLT:
6160    case ISD::SETOLT: SSECC = 1; break;
6161    case ISD::SETOGE:
6162    case ISD::SETGE: Swap = true; // Fallthrough
6163    case ISD::SETLE:
6164    case ISD::SETOLE: SSECC = 2; break;
6165    case ISD::SETUO:  SSECC = 3; break;
6166    case ISD::SETUNE:
6167    case ISD::SETNE:  SSECC = 4; break;
6168    case ISD::SETULE: Swap = true;
6169    case ISD::SETUGE: SSECC = 5; break;
6170    case ISD::SETULT: Swap = true;
6171    case ISD::SETUGT: SSECC = 6; break;
6172    case ISD::SETO:   SSECC = 7; break;
6173    }
6174    if (Swap)
6175      std::swap(Op0, Op1);
6176
6177    // In the two special cases we can't handle, emit two comparisons.
6178    if (SSECC == 8) {
6179      if (SetCCOpcode == ISD::SETUEQ) {
6180        SDValue UNORD, EQ;
6181        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6182        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6183        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6184      }
6185      else if (SetCCOpcode == ISD::SETONE) {
6186        SDValue ORD, NEQ;
6187        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6188        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6189        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6190      }
6191      llvm_unreachable("Illegal FP comparison");
6192    }
6193    // Handle all other FP comparisons here.
6194    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6195  }
6196
6197  // We are handling one of the integer comparisons here.  Since SSE only has
6198  // GT and EQ comparisons for integer, swapping operands and multiple
6199  // operations may be required for some comparisons.
6200  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6201  bool Swap = false, Invert = false, FlipSigns = false;
6202
6203  switch (VT.getSimpleVT().SimpleTy) {
6204  default: break;
6205  case MVT::v8i8:
6206  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6207  case MVT::v4i16:
6208  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6209  case MVT::v2i32:
6210  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6211  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6212  }
6213
6214  switch (SetCCOpcode) {
6215  default: break;
6216  case ISD::SETNE:  Invert = true;
6217  case ISD::SETEQ:  Opc = EQOpc; break;
6218  case ISD::SETLT:  Swap = true;
6219  case ISD::SETGT:  Opc = GTOpc; break;
6220  case ISD::SETGE:  Swap = true;
6221  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6222  case ISD::SETULT: Swap = true;
6223  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6224  case ISD::SETUGE: Swap = true;
6225  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6226  }
6227  if (Swap)
6228    std::swap(Op0, Op1);
6229
6230  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6231  // bits of the inputs before performing those operations.
6232  if (FlipSigns) {
6233    EVT EltVT = VT.getVectorElementType();
6234    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6235                                      EltVT);
6236    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6237    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6238                                    SignBits.size());
6239    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6240    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6241  }
6242
6243  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6244
6245  // If the logical-not of the result is required, perform that now.
6246  if (Invert)
6247    Result = DAG.getNOT(dl, Result, VT);
6248
6249  return Result;
6250}
6251
6252// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6253static bool isX86LogicalCmp(SDValue Op) {
6254  unsigned Opc = Op.getNode()->getOpcode();
6255  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6256    return true;
6257  if (Op.getResNo() == 1 &&
6258      (Opc == X86ISD::ADD ||
6259       Opc == X86ISD::SUB ||
6260       Opc == X86ISD::SMUL ||
6261       Opc == X86ISD::UMUL ||
6262       Opc == X86ISD::INC ||
6263       Opc == X86ISD::DEC ||
6264       Opc == X86ISD::OR ||
6265       Opc == X86ISD::XOR ||
6266       Opc == X86ISD::AND))
6267    return true;
6268
6269  return false;
6270}
6271
6272SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
6273  bool addTest = true;
6274  SDValue Cond  = Op.getOperand(0);
6275  DebugLoc dl = Op.getDebugLoc();
6276  SDValue CC;
6277
6278  if (Cond.getOpcode() == ISD::SETCC) {
6279    SDValue NewCond = LowerSETCC(Cond, DAG);
6280    if (NewCond.getNode())
6281      Cond = NewCond;
6282  }
6283
6284  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6285  SDValue Op1 = Op.getOperand(1);
6286  SDValue Op2 = Op.getOperand(2);
6287  if (Cond.getOpcode() == X86ISD::SETCC &&
6288      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6289    SDValue Cmp = Cond.getOperand(1);
6290    if (Cmp.getOpcode() == X86ISD::CMP) {
6291      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6292      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6293      ConstantSDNode *RHSC =
6294        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6295      if (N1C && N1C->isAllOnesValue() &&
6296          N2C && N2C->isNullValue() &&
6297          RHSC && RHSC->isNullValue()) {
6298        SDValue CmpOp0 = Cmp.getOperand(0);
6299        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6300                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6301        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6302                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6303      }
6304    }
6305  }
6306
6307  // Look pass (and (setcc_carry (cmp ...)), 1).
6308  if (Cond.getOpcode() == ISD::AND &&
6309      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6310    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6311    if (C && C->getAPIntValue() == 1)
6312      Cond = Cond.getOperand(0);
6313  }
6314
6315  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6316  // setting operand in place of the X86ISD::SETCC.
6317  if (Cond.getOpcode() == X86ISD::SETCC ||
6318      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6319    CC = Cond.getOperand(0);
6320
6321    SDValue Cmp = Cond.getOperand(1);
6322    unsigned Opc = Cmp.getOpcode();
6323    EVT VT = Op.getValueType();
6324
6325    bool IllegalFPCMov = false;
6326    if (VT.isFloatingPoint() && !VT.isVector() &&
6327        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6328      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6329
6330    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6331        Opc == X86ISD::BT) { // FIXME
6332      Cond = Cmp;
6333      addTest = false;
6334    }
6335  }
6336
6337  if (addTest) {
6338    // Look pass the truncate.
6339    if (Cond.getOpcode() == ISD::TRUNCATE)
6340      Cond = Cond.getOperand(0);
6341
6342    // We know the result of AND is compared against zero. Try to match
6343    // it to BT.
6344    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6345      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6346      if (NewSetCC.getNode()) {
6347        CC = NewSetCC.getOperand(0);
6348        Cond = NewSetCC.getOperand(1);
6349        addTest = false;
6350      }
6351    }
6352  }
6353
6354  if (addTest) {
6355    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6356    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6357  }
6358
6359  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6360  // condition is true.
6361  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6362  SDValue Ops[] = { Op2, Op1, CC, Cond };
6363  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6364}
6365
6366// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6367// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6368// from the AND / OR.
6369static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6370  Opc = Op.getOpcode();
6371  if (Opc != ISD::OR && Opc != ISD::AND)
6372    return false;
6373  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6374          Op.getOperand(0).hasOneUse() &&
6375          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6376          Op.getOperand(1).hasOneUse());
6377}
6378
6379// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6380// 1 and that the SETCC node has a single use.
6381static bool isXor1OfSetCC(SDValue Op) {
6382  if (Op.getOpcode() != ISD::XOR)
6383    return false;
6384  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6385  if (N1C && N1C->getAPIntValue() == 1) {
6386    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6387      Op.getOperand(0).hasOneUse();
6388  }
6389  return false;
6390}
6391
6392SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
6393  bool addTest = true;
6394  SDValue Chain = Op.getOperand(0);
6395  SDValue Cond  = Op.getOperand(1);
6396  SDValue Dest  = Op.getOperand(2);
6397  DebugLoc dl = Op.getDebugLoc();
6398  SDValue CC;
6399
6400  if (Cond.getOpcode() == ISD::SETCC) {
6401    SDValue NewCond = LowerSETCC(Cond, DAG);
6402    if (NewCond.getNode())
6403      Cond = NewCond;
6404  }
6405#if 0
6406  // FIXME: LowerXALUO doesn't handle these!!
6407  else if (Cond.getOpcode() == X86ISD::ADD  ||
6408           Cond.getOpcode() == X86ISD::SUB  ||
6409           Cond.getOpcode() == X86ISD::SMUL ||
6410           Cond.getOpcode() == X86ISD::UMUL)
6411    Cond = LowerXALUO(Cond, DAG);
6412#endif
6413
6414  // Look pass (and (setcc_carry (cmp ...)), 1).
6415  if (Cond.getOpcode() == ISD::AND &&
6416      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6417    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6418    if (C && C->getAPIntValue() == 1)
6419      Cond = Cond.getOperand(0);
6420  }
6421
6422  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6423  // setting operand in place of the X86ISD::SETCC.
6424  if (Cond.getOpcode() == X86ISD::SETCC ||
6425      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6426    CC = Cond.getOperand(0);
6427
6428    SDValue Cmp = Cond.getOperand(1);
6429    unsigned Opc = Cmp.getOpcode();
6430    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6431    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6432      Cond = Cmp;
6433      addTest = false;
6434    } else {
6435      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6436      default: break;
6437      case X86::COND_O:
6438      case X86::COND_B:
6439        // These can only come from an arithmetic instruction with overflow,
6440        // e.g. SADDO, UADDO.
6441        Cond = Cond.getNode()->getOperand(1);
6442        addTest = false;
6443        break;
6444      }
6445    }
6446  } else {
6447    unsigned CondOpc;
6448    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6449      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6450      if (CondOpc == ISD::OR) {
6451        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6452        // two branches instead of an explicit OR instruction with a
6453        // separate test.
6454        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6455            isX86LogicalCmp(Cmp)) {
6456          CC = Cond.getOperand(0).getOperand(0);
6457          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6458                              Chain, Dest, CC, Cmp);
6459          CC = Cond.getOperand(1).getOperand(0);
6460          Cond = Cmp;
6461          addTest = false;
6462        }
6463      } else { // ISD::AND
6464        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6465        // two branches instead of an explicit AND instruction with a
6466        // separate test. However, we only do this if this block doesn't
6467        // have a fall-through edge, because this requires an explicit
6468        // jmp when the condition is false.
6469        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6470            isX86LogicalCmp(Cmp) &&
6471            Op.getNode()->hasOneUse()) {
6472          X86::CondCode CCode =
6473            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6474          CCode = X86::GetOppositeBranchCondition(CCode);
6475          CC = DAG.getConstant(CCode, MVT::i8);
6476          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
6477          // Look for an unconditional branch following this conditional branch.
6478          // We need this because we need to reverse the successors in order
6479          // to implement FCMP_OEQ.
6480          if (User.getOpcode() == ISD::BR) {
6481            SDValue FalseBB = User.getOperand(1);
6482            SDValue NewBR =
6483              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
6484            assert(NewBR == User);
6485            Dest = FalseBB;
6486
6487            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6488                                Chain, Dest, CC, Cmp);
6489            X86::CondCode CCode =
6490              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
6491            CCode = X86::GetOppositeBranchCondition(CCode);
6492            CC = DAG.getConstant(CCode, MVT::i8);
6493            Cond = Cmp;
6494            addTest = false;
6495          }
6496        }
6497      }
6498    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
6499      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
6500      // It should be transformed during dag combiner except when the condition
6501      // is set by a arithmetics with overflow node.
6502      X86::CondCode CCode =
6503        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6504      CCode = X86::GetOppositeBranchCondition(CCode);
6505      CC = DAG.getConstant(CCode, MVT::i8);
6506      Cond = Cond.getOperand(0).getOperand(1);
6507      addTest = false;
6508    }
6509  }
6510
6511  if (addTest) {
6512    // Look pass the truncate.
6513    if (Cond.getOpcode() == ISD::TRUNCATE)
6514      Cond = Cond.getOperand(0);
6515
6516    // We know the result of AND is compared against zero. Try to match
6517    // it to BT.
6518    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6519      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6520      if (NewSetCC.getNode()) {
6521        CC = NewSetCC.getOperand(0);
6522        Cond = NewSetCC.getOperand(1);
6523        addTest = false;
6524      }
6525    }
6526  }
6527
6528  if (addTest) {
6529    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6530    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6531  }
6532  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6533                     Chain, Dest, CC, Cond);
6534}
6535
6536
6537// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
6538// Calls to _alloca is needed to probe the stack when allocating more than 4k
6539// bytes in one go. Touching the stack at 4K increments is necessary to ensure
6540// that the guard pages used by the OS virtual memory manager are allocated in
6541// correct sequence.
6542SDValue
6543X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6544                                           SelectionDAG &DAG) {
6545  assert(Subtarget->isTargetCygMing() &&
6546         "This should be used only on Cygwin/Mingw targets");
6547  DebugLoc dl = Op.getDebugLoc();
6548
6549  // Get the inputs.
6550  SDValue Chain = Op.getOperand(0);
6551  SDValue Size  = Op.getOperand(1);
6552  // FIXME: Ensure alignment here
6553
6554  SDValue Flag;
6555
6556  EVT IntPtr = getPointerTy();
6557  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6558
6559  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6560  Flag = Chain.getValue(1);
6561
6562  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6563
6564  Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
6565  Flag = Chain.getValue(1);
6566
6567  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6568
6569  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6570  return DAG.getMergeValues(Ops1, 2, dl);
6571}
6572
6573SDValue
6574X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
6575                                           SDValue Chain,
6576                                           SDValue Dst, SDValue Src,
6577                                           SDValue Size, unsigned Align,
6578                                           bool isVolatile,
6579                                           const Value *DstSV,
6580                                           uint64_t DstSVOff) {
6581  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6582
6583  // If not DWORD aligned or size is more than the threshold, call the library.
6584  // The libc version is likely to be faster for these cases. It can use the
6585  // address value and run time information about the CPU.
6586  if ((Align & 3) != 0 ||
6587      !ConstantSize ||
6588      ConstantSize->getZExtValue() >
6589        getSubtarget()->getMaxInlineSizeThreshold()) {
6590    SDValue InFlag(0, 0);
6591
6592    // Check to see if there is a specialized entry-point for memory zeroing.
6593    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
6594
6595    if (const char *bzeroEntry =  V &&
6596        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
6597      EVT IntPtr = getPointerTy();
6598      const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
6599      TargetLowering::ArgListTy Args;
6600      TargetLowering::ArgListEntry Entry;
6601      Entry.Node = Dst;
6602      Entry.Ty = IntPtrTy;
6603      Args.push_back(Entry);
6604      Entry.Node = Size;
6605      Args.push_back(Entry);
6606      std::pair<SDValue,SDValue> CallResult =
6607        LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
6608                    false, false, false, false,
6609                    0, CallingConv::C, false, /*isReturnValueUsed=*/false,
6610                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
6611      return CallResult.second;
6612    }
6613
6614    // Otherwise have the target-independent code call memset.
6615    return SDValue();
6616  }
6617
6618  uint64_t SizeVal = ConstantSize->getZExtValue();
6619  SDValue InFlag(0, 0);
6620  EVT AVT;
6621  SDValue Count;
6622  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
6623  unsigned BytesLeft = 0;
6624  bool TwoRepStos = false;
6625  if (ValC) {
6626    unsigned ValReg;
6627    uint64_t Val = ValC->getZExtValue() & 255;
6628
6629    // If the value is a constant, then we can potentially use larger sets.
6630    switch (Align & 3) {
6631    case 2:   // WORD aligned
6632      AVT = MVT::i16;
6633      ValReg = X86::AX;
6634      Val = (Val << 8) | Val;
6635      break;
6636    case 0:  // DWORD aligned
6637      AVT = MVT::i32;
6638      ValReg = X86::EAX;
6639      Val = (Val << 8)  | Val;
6640      Val = (Val << 16) | Val;
6641      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
6642        AVT = MVT::i64;
6643        ValReg = X86::RAX;
6644        Val = (Val << 32) | Val;
6645      }
6646      break;
6647    default:  // Byte aligned
6648      AVT = MVT::i8;
6649      ValReg = X86::AL;
6650      Count = DAG.getIntPtrConstant(SizeVal);
6651      break;
6652    }
6653
6654    if (AVT.bitsGT(MVT::i8)) {
6655      unsigned UBytes = AVT.getSizeInBits() / 8;
6656      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
6657      BytesLeft = SizeVal % UBytes;
6658    }
6659
6660    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
6661                              InFlag);
6662    InFlag = Chain.getValue(1);
6663  } else {
6664    AVT = MVT::i8;
6665    Count  = DAG.getIntPtrConstant(SizeVal);
6666    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
6667    InFlag = Chain.getValue(1);
6668  }
6669
6670  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6671                                                              X86::ECX,
6672                            Count, InFlag);
6673  InFlag = Chain.getValue(1);
6674  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6675                                                              X86::EDI,
6676                            Dst, InFlag);
6677  InFlag = Chain.getValue(1);
6678
6679  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6680  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6681  Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6682
6683  if (TwoRepStos) {
6684    InFlag = Chain.getValue(1);
6685    Count  = Size;
6686    EVT CVT = Count.getValueType();
6687    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
6688                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
6689    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
6690                                                             X86::ECX,
6691                              Left, InFlag);
6692    InFlag = Chain.getValue(1);
6693    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6694    SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag };
6695    Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6696  } else if (BytesLeft) {
6697    // Handle the last 1 - 7 bytes.
6698    unsigned Offset = SizeVal - BytesLeft;
6699    EVT AddrVT = Dst.getValueType();
6700    EVT SizeVT = Size.getValueType();
6701
6702    Chain = DAG.getMemset(Chain, dl,
6703                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
6704                                      DAG.getConstant(Offset, AddrVT)),
6705                          Src,
6706                          DAG.getConstant(BytesLeft, SizeVT),
6707                          Align, isVolatile, DstSV, DstSVOff + Offset);
6708  }
6709
6710  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
6711  return Chain;
6712}
6713
6714SDValue
6715X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
6716                                      SDValue Chain, SDValue Dst, SDValue Src,
6717                                      SDValue Size, unsigned Align,
6718                                      bool isVolatile, bool AlwaysInline,
6719                                      const Value *DstSV, uint64_t DstSVOff,
6720                                      const Value *SrcSV, uint64_t SrcSVOff) {
6721  // This requires the copy size to be a constant, preferrably
6722  // within a subtarget-specific limit.
6723  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6724  if (!ConstantSize)
6725    return SDValue();
6726  uint64_t SizeVal = ConstantSize->getZExtValue();
6727  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6728    return SDValue();
6729
6730  /// If not DWORD aligned, call the library.
6731  if ((Align & 3) != 0)
6732    return SDValue();
6733
6734  // DWORD aligned
6735  EVT AVT = MVT::i32;
6736  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
6737    AVT = MVT::i64;
6738
6739  unsigned UBytes = AVT.getSizeInBits() / 8;
6740  unsigned CountVal = SizeVal / UBytes;
6741  SDValue Count = DAG.getIntPtrConstant(CountVal);
6742  unsigned BytesLeft = SizeVal % UBytes;
6743
6744  SDValue InFlag(0, 0);
6745  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6746                                                              X86::ECX,
6747                            Count, InFlag);
6748  InFlag = Chain.getValue(1);
6749  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6750                                                              X86::EDI,
6751                            Dst, InFlag);
6752  InFlag = Chain.getValue(1);
6753  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6754                                                              X86::ESI,
6755                            Src, InFlag);
6756  InFlag = Chain.getValue(1);
6757
6758  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6759  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6760  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops,
6761                                array_lengthof(Ops));
6762
6763  SmallVector<SDValue, 4> Results;
6764  Results.push_back(RepMovs);
6765  if (BytesLeft) {
6766    // Handle the last 1 - 7 bytes.
6767    unsigned Offset = SizeVal - BytesLeft;
6768    EVT DstVT = Dst.getValueType();
6769    EVT SrcVT = Src.getValueType();
6770    EVT SizeVT = Size.getValueType();
6771    Results.push_back(DAG.getMemcpy(Chain, dl,
6772                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6773                                                DAG.getConstant(Offset, DstVT)),
6774                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6775                                                DAG.getConstant(Offset, SrcVT)),
6776                                    DAG.getConstant(BytesLeft, SizeVT),
6777                                    Align, isVolatile, AlwaysInline,
6778                                    DstSV, DstSVOff + Offset,
6779                                    SrcSV, SrcSVOff + Offset));
6780  }
6781
6782  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6783                     &Results[0], Results.size());
6784}
6785
6786SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6787  MachineFunction &MF = DAG.getMachineFunction();
6788  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
6789
6790  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6791  DebugLoc dl = Op.getDebugLoc();
6792
6793  if (!Subtarget->is64Bit()) {
6794    // vastart just stores the address of the VarArgsFrameIndex slot into the
6795    // memory location argument.
6796    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
6797                                   getPointerTy());
6798    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
6799                        false, false, 0);
6800  }
6801
6802  // __va_list_tag:
6803  //   gp_offset         (0 - 6 * 8)
6804  //   fp_offset         (48 - 48 + 8 * 16)
6805  //   overflow_arg_area (point to parameters coming in memory).
6806  //   reg_save_area
6807  SmallVector<SDValue, 8> MemOps;
6808  SDValue FIN = Op.getOperand(1);
6809  // Store gp_offset
6810  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6811                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
6812                                               MVT::i32),
6813                               FIN, SV, 0, false, false, 0);
6814  MemOps.push_back(Store);
6815
6816  // Store fp_offset
6817  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6818                    FIN, DAG.getIntPtrConstant(4));
6819  Store = DAG.getStore(Op.getOperand(0), dl,
6820                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
6821                                       MVT::i32),
6822                       FIN, SV, 0, false, false, 0);
6823  MemOps.push_back(Store);
6824
6825  // Store ptr to overflow_arg_area
6826  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6827                    FIN, DAG.getIntPtrConstant(4));
6828  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
6829                                    getPointerTy());
6830  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0,
6831                       false, false, 0);
6832  MemOps.push_back(Store);
6833
6834  // Store ptr to reg_save_area.
6835  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6836                    FIN, DAG.getIntPtrConstant(8));
6837  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
6838                                    getPointerTy());
6839  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0,
6840                       false, false, 0);
6841  MemOps.push_back(Store);
6842  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6843                     &MemOps[0], MemOps.size());
6844}
6845
6846SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6847  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6848  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6849  SDValue Chain = Op.getOperand(0);
6850  SDValue SrcPtr = Op.getOperand(1);
6851  SDValue SrcSV = Op.getOperand(2);
6852
6853  report_fatal_error("VAArgInst is not yet implemented for x86-64!");
6854  return SDValue();
6855}
6856
6857SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6858  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6859  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6860  SDValue Chain = Op.getOperand(0);
6861  SDValue DstPtr = Op.getOperand(1);
6862  SDValue SrcPtr = Op.getOperand(2);
6863  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6864  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6865  DebugLoc dl = Op.getDebugLoc();
6866
6867  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6868                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
6869                       false, DstSV, 0, SrcSV, 0);
6870}
6871
6872SDValue
6873X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6874  DebugLoc dl = Op.getDebugLoc();
6875  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6876  switch (IntNo) {
6877  default: return SDValue();    // Don't custom lower most intrinsics.
6878  // Comparison intrinsics.
6879  case Intrinsic::x86_sse_comieq_ss:
6880  case Intrinsic::x86_sse_comilt_ss:
6881  case Intrinsic::x86_sse_comile_ss:
6882  case Intrinsic::x86_sse_comigt_ss:
6883  case Intrinsic::x86_sse_comige_ss:
6884  case Intrinsic::x86_sse_comineq_ss:
6885  case Intrinsic::x86_sse_ucomieq_ss:
6886  case Intrinsic::x86_sse_ucomilt_ss:
6887  case Intrinsic::x86_sse_ucomile_ss:
6888  case Intrinsic::x86_sse_ucomigt_ss:
6889  case Intrinsic::x86_sse_ucomige_ss:
6890  case Intrinsic::x86_sse_ucomineq_ss:
6891  case Intrinsic::x86_sse2_comieq_sd:
6892  case Intrinsic::x86_sse2_comilt_sd:
6893  case Intrinsic::x86_sse2_comile_sd:
6894  case Intrinsic::x86_sse2_comigt_sd:
6895  case Intrinsic::x86_sse2_comige_sd:
6896  case Intrinsic::x86_sse2_comineq_sd:
6897  case Intrinsic::x86_sse2_ucomieq_sd:
6898  case Intrinsic::x86_sse2_ucomilt_sd:
6899  case Intrinsic::x86_sse2_ucomile_sd:
6900  case Intrinsic::x86_sse2_ucomigt_sd:
6901  case Intrinsic::x86_sse2_ucomige_sd:
6902  case Intrinsic::x86_sse2_ucomineq_sd: {
6903    unsigned Opc = 0;
6904    ISD::CondCode CC = ISD::SETCC_INVALID;
6905    switch (IntNo) {
6906    default: break;
6907    case Intrinsic::x86_sse_comieq_ss:
6908    case Intrinsic::x86_sse2_comieq_sd:
6909      Opc = X86ISD::COMI;
6910      CC = ISD::SETEQ;
6911      break;
6912    case Intrinsic::x86_sse_comilt_ss:
6913    case Intrinsic::x86_sse2_comilt_sd:
6914      Opc = X86ISD::COMI;
6915      CC = ISD::SETLT;
6916      break;
6917    case Intrinsic::x86_sse_comile_ss:
6918    case Intrinsic::x86_sse2_comile_sd:
6919      Opc = X86ISD::COMI;
6920      CC = ISD::SETLE;
6921      break;
6922    case Intrinsic::x86_sse_comigt_ss:
6923    case Intrinsic::x86_sse2_comigt_sd:
6924      Opc = X86ISD::COMI;
6925      CC = ISD::SETGT;
6926      break;
6927    case Intrinsic::x86_sse_comige_ss:
6928    case Intrinsic::x86_sse2_comige_sd:
6929      Opc = X86ISD::COMI;
6930      CC = ISD::SETGE;
6931      break;
6932    case Intrinsic::x86_sse_comineq_ss:
6933    case Intrinsic::x86_sse2_comineq_sd:
6934      Opc = X86ISD::COMI;
6935      CC = ISD::SETNE;
6936      break;
6937    case Intrinsic::x86_sse_ucomieq_ss:
6938    case Intrinsic::x86_sse2_ucomieq_sd:
6939      Opc = X86ISD::UCOMI;
6940      CC = ISD::SETEQ;
6941      break;
6942    case Intrinsic::x86_sse_ucomilt_ss:
6943    case Intrinsic::x86_sse2_ucomilt_sd:
6944      Opc = X86ISD::UCOMI;
6945      CC = ISD::SETLT;
6946      break;
6947    case Intrinsic::x86_sse_ucomile_ss:
6948    case Intrinsic::x86_sse2_ucomile_sd:
6949      Opc = X86ISD::UCOMI;
6950      CC = ISD::SETLE;
6951      break;
6952    case Intrinsic::x86_sse_ucomigt_ss:
6953    case Intrinsic::x86_sse2_ucomigt_sd:
6954      Opc = X86ISD::UCOMI;
6955      CC = ISD::SETGT;
6956      break;
6957    case Intrinsic::x86_sse_ucomige_ss:
6958    case Intrinsic::x86_sse2_ucomige_sd:
6959      Opc = X86ISD::UCOMI;
6960      CC = ISD::SETGE;
6961      break;
6962    case Intrinsic::x86_sse_ucomineq_ss:
6963    case Intrinsic::x86_sse2_ucomineq_sd:
6964      Opc = X86ISD::UCOMI;
6965      CC = ISD::SETNE;
6966      break;
6967    }
6968
6969    SDValue LHS = Op.getOperand(1);
6970    SDValue RHS = Op.getOperand(2);
6971    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6972    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
6973    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6974    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6975                                DAG.getConstant(X86CC, MVT::i8), Cond);
6976    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6977  }
6978  // ptest intrinsics. The intrinsic these come from are designed to return
6979  // an integer value, not just an instruction so lower it to the ptest
6980  // pattern and a setcc for the result.
6981  case Intrinsic::x86_sse41_ptestz:
6982  case Intrinsic::x86_sse41_ptestc:
6983  case Intrinsic::x86_sse41_ptestnzc:{
6984    unsigned X86CC = 0;
6985    switch (IntNo) {
6986    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6987    case Intrinsic::x86_sse41_ptestz:
6988      // ZF = 1
6989      X86CC = X86::COND_E;
6990      break;
6991    case Intrinsic::x86_sse41_ptestc:
6992      // CF = 1
6993      X86CC = X86::COND_B;
6994      break;
6995    case Intrinsic::x86_sse41_ptestnzc:
6996      // ZF and CF = 0
6997      X86CC = X86::COND_A;
6998      break;
6999    }
7000
7001    SDValue LHS = Op.getOperand(1);
7002    SDValue RHS = Op.getOperand(2);
7003    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
7004    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7005    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7006    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7007  }
7008
7009  // Fix vector shift instructions where the last operand is a non-immediate
7010  // i32 value.
7011  case Intrinsic::x86_sse2_pslli_w:
7012  case Intrinsic::x86_sse2_pslli_d:
7013  case Intrinsic::x86_sse2_pslli_q:
7014  case Intrinsic::x86_sse2_psrli_w:
7015  case Intrinsic::x86_sse2_psrli_d:
7016  case Intrinsic::x86_sse2_psrli_q:
7017  case Intrinsic::x86_sse2_psrai_w:
7018  case Intrinsic::x86_sse2_psrai_d:
7019  case Intrinsic::x86_mmx_pslli_w:
7020  case Intrinsic::x86_mmx_pslli_d:
7021  case Intrinsic::x86_mmx_pslli_q:
7022  case Intrinsic::x86_mmx_psrli_w:
7023  case Intrinsic::x86_mmx_psrli_d:
7024  case Intrinsic::x86_mmx_psrli_q:
7025  case Intrinsic::x86_mmx_psrai_w:
7026  case Intrinsic::x86_mmx_psrai_d: {
7027    SDValue ShAmt = Op.getOperand(2);
7028    if (isa<ConstantSDNode>(ShAmt))
7029      return SDValue();
7030
7031    unsigned NewIntNo = 0;
7032    EVT ShAmtVT = MVT::v4i32;
7033    switch (IntNo) {
7034    case Intrinsic::x86_sse2_pslli_w:
7035      NewIntNo = Intrinsic::x86_sse2_psll_w;
7036      break;
7037    case Intrinsic::x86_sse2_pslli_d:
7038      NewIntNo = Intrinsic::x86_sse2_psll_d;
7039      break;
7040    case Intrinsic::x86_sse2_pslli_q:
7041      NewIntNo = Intrinsic::x86_sse2_psll_q;
7042      break;
7043    case Intrinsic::x86_sse2_psrli_w:
7044      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7045      break;
7046    case Intrinsic::x86_sse2_psrli_d:
7047      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7048      break;
7049    case Intrinsic::x86_sse2_psrli_q:
7050      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7051      break;
7052    case Intrinsic::x86_sse2_psrai_w:
7053      NewIntNo = Intrinsic::x86_sse2_psra_w;
7054      break;
7055    case Intrinsic::x86_sse2_psrai_d:
7056      NewIntNo = Intrinsic::x86_sse2_psra_d;
7057      break;
7058    default: {
7059      ShAmtVT = MVT::v2i32;
7060      switch (IntNo) {
7061      case Intrinsic::x86_mmx_pslli_w:
7062        NewIntNo = Intrinsic::x86_mmx_psll_w;
7063        break;
7064      case Intrinsic::x86_mmx_pslli_d:
7065        NewIntNo = Intrinsic::x86_mmx_psll_d;
7066        break;
7067      case Intrinsic::x86_mmx_pslli_q:
7068        NewIntNo = Intrinsic::x86_mmx_psll_q;
7069        break;
7070      case Intrinsic::x86_mmx_psrli_w:
7071        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7072        break;
7073      case Intrinsic::x86_mmx_psrli_d:
7074        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7075        break;
7076      case Intrinsic::x86_mmx_psrli_q:
7077        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7078        break;
7079      case Intrinsic::x86_mmx_psrai_w:
7080        NewIntNo = Intrinsic::x86_mmx_psra_w;
7081        break;
7082      case Intrinsic::x86_mmx_psrai_d:
7083        NewIntNo = Intrinsic::x86_mmx_psra_d;
7084        break;
7085      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7086      }
7087      break;
7088    }
7089    }
7090
7091    // The vector shift intrinsics with scalars uses 32b shift amounts but
7092    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7093    // to be zero.
7094    SDValue ShOps[4];
7095    ShOps[0] = ShAmt;
7096    ShOps[1] = DAG.getConstant(0, MVT::i32);
7097    if (ShAmtVT == MVT::v4i32) {
7098      ShOps[2] = DAG.getUNDEF(MVT::i32);
7099      ShOps[3] = DAG.getUNDEF(MVT::i32);
7100      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7101    } else {
7102      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7103    }
7104
7105    EVT VT = Op.getValueType();
7106    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7107    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7108                       DAG.getConstant(NewIntNo, MVT::i32),
7109                       Op.getOperand(1), ShAmt);
7110  }
7111  }
7112}
7113
7114SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
7115  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7116  DebugLoc dl = Op.getDebugLoc();
7117
7118  if (Depth > 0) {
7119    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7120    SDValue Offset =
7121      DAG.getConstant(TD->getPointerSize(),
7122                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7123    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7124                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7125                                   FrameAddr, Offset),
7126                       NULL, 0, false, false, 0);
7127  }
7128
7129  // Just load the return address.
7130  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7131  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7132                     RetAddrFI, NULL, 0, false, false, 0);
7133}
7134
7135SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
7136  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7137  MFI->setFrameAddressIsTaken(true);
7138  EVT VT = Op.getValueType();
7139  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7140  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7141  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7142  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7143  while (Depth--)
7144    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
7145                            false, false, 0);
7146  return FrameAddr;
7147}
7148
7149SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7150                                                     SelectionDAG &DAG) {
7151  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7152}
7153
7154SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
7155{
7156  MachineFunction &MF = DAG.getMachineFunction();
7157  SDValue Chain     = Op.getOperand(0);
7158  SDValue Offset    = Op.getOperand(1);
7159  SDValue Handler   = Op.getOperand(2);
7160  DebugLoc dl       = Op.getDebugLoc();
7161
7162  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7163                                  getPointerTy());
7164  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7165
7166  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
7167                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
7168  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7169  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7170  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7171  MF.getRegInfo().addLiveOut(StoreAddrReg);
7172
7173  return DAG.getNode(X86ISD::EH_RETURN, dl,
7174                     MVT::Other,
7175                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7176}
7177
7178SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7179                                             SelectionDAG &DAG) {
7180  SDValue Root = Op.getOperand(0);
7181  SDValue Trmp = Op.getOperand(1); // trampoline
7182  SDValue FPtr = Op.getOperand(2); // nested function
7183  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7184  DebugLoc dl  = Op.getDebugLoc();
7185
7186  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7187
7188  if (Subtarget->is64Bit()) {
7189    SDValue OutChains[6];
7190
7191    // Large code-model.
7192    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7193    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7194
7195    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7196    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7197
7198    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7199
7200    // Load the pointer to the nested function into R11.
7201    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7202    SDValue Addr = Trmp;
7203    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7204                                Addr, TrmpAddr, 0, false, false, 0);
7205
7206    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7207                       DAG.getConstant(2, MVT::i64));
7208    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7209                                false, false, 2);
7210
7211    // Load the 'nest' parameter value into R10.
7212    // R10 is specified in X86CallingConv.td
7213    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7214    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7215                       DAG.getConstant(10, MVT::i64));
7216    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7217                                Addr, TrmpAddr, 10, false, false, 0);
7218
7219    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7220                       DAG.getConstant(12, MVT::i64));
7221    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7222                                false, false, 2);
7223
7224    // Jump to the nested function.
7225    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7226    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7227                       DAG.getConstant(20, MVT::i64));
7228    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7229                                Addr, TrmpAddr, 20, false, false, 0);
7230
7231    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7232    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7233                       DAG.getConstant(22, MVT::i64));
7234    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7235                                TrmpAddr, 22, false, false, 0);
7236
7237    SDValue Ops[] =
7238      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7239    return DAG.getMergeValues(Ops, 2, dl);
7240  } else {
7241    const Function *Func =
7242      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7243    CallingConv::ID CC = Func->getCallingConv();
7244    unsigned NestReg;
7245
7246    switch (CC) {
7247    default:
7248      llvm_unreachable("Unsupported calling convention");
7249    case CallingConv::C:
7250    case CallingConv::X86_StdCall: {
7251      // Pass 'nest' parameter in ECX.
7252      // Must be kept in sync with X86CallingConv.td
7253      NestReg = X86::ECX;
7254
7255      // Check that ECX wasn't needed by an 'inreg' parameter.
7256      const FunctionType *FTy = Func->getFunctionType();
7257      const AttrListPtr &Attrs = Func->getAttributes();
7258
7259      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7260        unsigned InRegCount = 0;
7261        unsigned Idx = 1;
7262
7263        for (FunctionType::param_iterator I = FTy->param_begin(),
7264             E = FTy->param_end(); I != E; ++I, ++Idx)
7265          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7266            // FIXME: should only count parameters that are lowered to integers.
7267            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7268
7269        if (InRegCount > 2) {
7270          report_fatal_error("Nest register in use - reduce number of inreg parameters!");
7271        }
7272      }
7273      break;
7274    }
7275    case CallingConv::X86_FastCall:
7276    case CallingConv::Fast:
7277      // Pass 'nest' parameter in EAX.
7278      // Must be kept in sync with X86CallingConv.td
7279      NestReg = X86::EAX;
7280      break;
7281    }
7282
7283    SDValue OutChains[4];
7284    SDValue Addr, Disp;
7285
7286    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7287                       DAG.getConstant(10, MVT::i32));
7288    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7289
7290    // This is storing the opcode for MOV32ri.
7291    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7292    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7293    OutChains[0] = DAG.getStore(Root, dl,
7294                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7295                                Trmp, TrmpAddr, 0, false, false, 0);
7296
7297    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7298                       DAG.getConstant(1, MVT::i32));
7299    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7300                                false, false, 1);
7301
7302    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7303    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7304                       DAG.getConstant(5, MVT::i32));
7305    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7306                                TrmpAddr, 5, false, false, 1);
7307
7308    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7309                       DAG.getConstant(6, MVT::i32));
7310    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7311                                false, false, 1);
7312
7313    SDValue Ops[] =
7314      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7315    return DAG.getMergeValues(Ops, 2, dl);
7316  }
7317}
7318
7319SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
7320  /*
7321   The rounding mode is in bits 11:10 of FPSR, and has the following
7322   settings:
7323     00 Round to nearest
7324     01 Round to -inf
7325     10 Round to +inf
7326     11 Round to 0
7327
7328  FLT_ROUNDS, on the other hand, expects the following:
7329    -1 Undefined
7330     0 Round to 0
7331     1 Round to nearest
7332     2 Round to +inf
7333     3 Round to -inf
7334
7335  To perform the conversion, we do:
7336    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7337  */
7338
7339  MachineFunction &MF = DAG.getMachineFunction();
7340  const TargetMachine &TM = MF.getTarget();
7341  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7342  unsigned StackAlignment = TFI.getStackAlignment();
7343  EVT VT = Op.getValueType();
7344  DebugLoc dl = Op.getDebugLoc();
7345
7346  // Save FP Control Word to stack slot
7347  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7348  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7349
7350  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7351                              DAG.getEntryNode(), StackSlot);
7352
7353  // Load FP Control Word from stack slot
7354  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7355                            false, false, 0);
7356
7357  // Transform as necessary
7358  SDValue CWD1 =
7359    DAG.getNode(ISD::SRL, dl, MVT::i16,
7360                DAG.getNode(ISD::AND, dl, MVT::i16,
7361                            CWD, DAG.getConstant(0x800, MVT::i16)),
7362                DAG.getConstant(11, MVT::i8));
7363  SDValue CWD2 =
7364    DAG.getNode(ISD::SRL, dl, MVT::i16,
7365                DAG.getNode(ISD::AND, dl, MVT::i16,
7366                            CWD, DAG.getConstant(0x400, MVT::i16)),
7367                DAG.getConstant(9, MVT::i8));
7368
7369  SDValue RetVal =
7370    DAG.getNode(ISD::AND, dl, MVT::i16,
7371                DAG.getNode(ISD::ADD, dl, MVT::i16,
7372                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7373                            DAG.getConstant(1, MVT::i16)),
7374                DAG.getConstant(3, MVT::i16));
7375
7376
7377  return DAG.getNode((VT.getSizeInBits() < 16 ?
7378                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7379}
7380
7381SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
7382  EVT VT = Op.getValueType();
7383  EVT OpVT = VT;
7384  unsigned NumBits = VT.getSizeInBits();
7385  DebugLoc dl = Op.getDebugLoc();
7386
7387  Op = Op.getOperand(0);
7388  if (VT == MVT::i8) {
7389    // Zero extend to i32 since there is not an i8 bsr.
7390    OpVT = MVT::i32;
7391    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7392  }
7393
7394  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7395  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7396  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7397
7398  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7399  SDValue Ops[] = {
7400    Op,
7401    DAG.getConstant(NumBits+NumBits-1, OpVT),
7402    DAG.getConstant(X86::COND_E, MVT::i8),
7403    Op.getValue(1)
7404  };
7405  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7406
7407  // Finally xor with NumBits-1.
7408  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7409
7410  if (VT == MVT::i8)
7411    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7412  return Op;
7413}
7414
7415SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
7416  EVT VT = Op.getValueType();
7417  EVT OpVT = VT;
7418  unsigned NumBits = VT.getSizeInBits();
7419  DebugLoc dl = Op.getDebugLoc();
7420
7421  Op = Op.getOperand(0);
7422  if (VT == MVT::i8) {
7423    OpVT = MVT::i32;
7424    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7425  }
7426
7427  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7428  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7429  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7430
7431  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7432  SDValue Ops[] = {
7433    Op,
7434    DAG.getConstant(NumBits, OpVT),
7435    DAG.getConstant(X86::COND_E, MVT::i8),
7436    Op.getValue(1)
7437  };
7438  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7439
7440  if (VT == MVT::i8)
7441    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7442  return Op;
7443}
7444
7445SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
7446  EVT VT = Op.getValueType();
7447  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7448  DebugLoc dl = Op.getDebugLoc();
7449
7450  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7451  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7452  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7453  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7454  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7455  //
7456  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7457  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7458  //  return AloBlo + AloBhi + AhiBlo;
7459
7460  SDValue A = Op.getOperand(0);
7461  SDValue B = Op.getOperand(1);
7462
7463  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7464                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7465                       A, DAG.getConstant(32, MVT::i32));
7466  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7467                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7468                       B, DAG.getConstant(32, MVT::i32));
7469  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7470                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7471                       A, B);
7472  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7473                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7474                       A, Bhi);
7475  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7476                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7477                       Ahi, B);
7478  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7479                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7480                       AloBhi, DAG.getConstant(32, MVT::i32));
7481  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7482                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7483                       AhiBlo, DAG.getConstant(32, MVT::i32));
7484  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7485  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7486  return Res;
7487}
7488
7489
7490SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
7491  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7492  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7493  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7494  // has only one use.
7495  SDNode *N = Op.getNode();
7496  SDValue LHS = N->getOperand(0);
7497  SDValue RHS = N->getOperand(1);
7498  unsigned BaseOp = 0;
7499  unsigned Cond = 0;
7500  DebugLoc dl = Op.getDebugLoc();
7501
7502  switch (Op.getOpcode()) {
7503  default: llvm_unreachable("Unknown ovf instruction!");
7504  case ISD::SADDO:
7505    // A subtract of one will be selected as a INC. Note that INC doesn't
7506    // set CF, so we can't do this for UADDO.
7507    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7508      if (C->getAPIntValue() == 1) {
7509        BaseOp = X86ISD::INC;
7510        Cond = X86::COND_O;
7511        break;
7512      }
7513    BaseOp = X86ISD::ADD;
7514    Cond = X86::COND_O;
7515    break;
7516  case ISD::UADDO:
7517    BaseOp = X86ISD::ADD;
7518    Cond = X86::COND_B;
7519    break;
7520  case ISD::SSUBO:
7521    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7522    // set CF, so we can't do this for USUBO.
7523    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7524      if (C->getAPIntValue() == 1) {
7525        BaseOp = X86ISD::DEC;
7526        Cond = X86::COND_O;
7527        break;
7528      }
7529    BaseOp = X86ISD::SUB;
7530    Cond = X86::COND_O;
7531    break;
7532  case ISD::USUBO:
7533    BaseOp = X86ISD::SUB;
7534    Cond = X86::COND_B;
7535    break;
7536  case ISD::SMULO:
7537    BaseOp = X86ISD::SMUL;
7538    Cond = X86::COND_O;
7539    break;
7540  case ISD::UMULO:
7541    BaseOp = X86ISD::UMUL;
7542    Cond = X86::COND_B;
7543    break;
7544  }
7545
7546  // Also sets EFLAGS.
7547  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7548  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7549
7550  SDValue SetCC =
7551    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7552                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7553
7554  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7555  return Sum;
7556}
7557
7558SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
7559  EVT T = Op.getValueType();
7560  DebugLoc dl = Op.getDebugLoc();
7561  unsigned Reg = 0;
7562  unsigned size = 0;
7563  switch(T.getSimpleVT().SimpleTy) {
7564  default:
7565    assert(false && "Invalid value type!");
7566  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7567  case MVT::i16: Reg = X86::AX;  size = 2; break;
7568  case MVT::i32: Reg = X86::EAX; size = 4; break;
7569  case MVT::i64:
7570    assert(Subtarget->is64Bit() && "Node not type legal!");
7571    Reg = X86::RAX; size = 8;
7572    break;
7573  }
7574  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7575                                    Op.getOperand(2), SDValue());
7576  SDValue Ops[] = { cpIn.getValue(0),
7577                    Op.getOperand(1),
7578                    Op.getOperand(3),
7579                    DAG.getTargetConstant(size, MVT::i8),
7580                    cpIn.getValue(1) };
7581  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7582  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7583  SDValue cpOut =
7584    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7585  return cpOut;
7586}
7587
7588SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7589                                                 SelectionDAG &DAG) {
7590  assert(Subtarget->is64Bit() && "Result not type legalized?");
7591  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7592  SDValue TheChain = Op.getOperand(0);
7593  DebugLoc dl = Op.getDebugLoc();
7594  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7595  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7596  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7597                                   rax.getValue(2));
7598  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7599                            DAG.getConstant(32, MVT::i8));
7600  SDValue Ops[] = {
7601    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7602    rdx.getValue(1)
7603  };
7604  return DAG.getMergeValues(Ops, 2, dl);
7605}
7606
7607SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
7608  SDNode *Node = Op.getNode();
7609  DebugLoc dl = Node->getDebugLoc();
7610  EVT T = Node->getValueType(0);
7611  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7612                              DAG.getConstant(0, T), Node->getOperand(2));
7613  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7614                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7615                       Node->getOperand(0),
7616                       Node->getOperand(1), negOp,
7617                       cast<AtomicSDNode>(Node)->getSrcValue(),
7618                       cast<AtomicSDNode>(Node)->getAlignment());
7619}
7620
7621/// LowerOperation - Provide custom lowering hooks for some operations.
7622///
7623SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
7624  switch (Op.getOpcode()) {
7625  default: llvm_unreachable("Should not custom lower this!");
7626  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7627  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7628  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7629  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
7630  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7631  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7632  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7633  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7634  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7635  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7636  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7637  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7638  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7639  case ISD::SHL_PARTS:
7640  case ISD::SRA_PARTS:
7641  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7642  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7643  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7644  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7645  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7646  case ISD::FABS:               return LowerFABS(Op, DAG);
7647  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7648  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7649  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7650  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7651  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7652  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7653  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7654  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7655  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7656  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7657  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7658  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7659  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7660  case ISD::FRAME_TO_ARGS_OFFSET:
7661                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7662  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7663  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7664  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7665  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7666  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7667  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7668  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7669  case ISD::SADDO:
7670  case ISD::UADDO:
7671  case ISD::SSUBO:
7672  case ISD::USUBO:
7673  case ISD::SMULO:
7674  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7675  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7676  }
7677}
7678
7679void X86TargetLowering::
7680ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7681                        SelectionDAG &DAG, unsigned NewOp) {
7682  EVT T = Node->getValueType(0);
7683  DebugLoc dl = Node->getDebugLoc();
7684  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7685
7686  SDValue Chain = Node->getOperand(0);
7687  SDValue In1 = Node->getOperand(1);
7688  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7689                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7690  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7691                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7692  SDValue Ops[] = { Chain, In1, In2L, In2H };
7693  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7694  SDValue Result =
7695    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7696                            cast<MemSDNode>(Node)->getMemOperand());
7697  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7698  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7699  Results.push_back(Result.getValue(2));
7700}
7701
7702/// ReplaceNodeResults - Replace a node with an illegal result type
7703/// with a new node built out of custom code.
7704void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7705                                           SmallVectorImpl<SDValue>&Results,
7706                                           SelectionDAG &DAG) {
7707  DebugLoc dl = N->getDebugLoc();
7708  switch (N->getOpcode()) {
7709  default:
7710    assert(false && "Do not know how to custom type legalize this operation!");
7711    return;
7712  case ISD::FP_TO_SINT: {
7713    std::pair<SDValue,SDValue> Vals =
7714        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7715    SDValue FIST = Vals.first, StackSlot = Vals.second;
7716    if (FIST.getNode() != 0) {
7717      EVT VT = N->getValueType(0);
7718      // Return a load from the stack slot.
7719      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
7720                                    false, false, 0));
7721    }
7722    return;
7723  }
7724  case ISD::READCYCLECOUNTER: {
7725    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7726    SDValue TheChain = N->getOperand(0);
7727    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7728    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7729                                     rd.getValue(1));
7730    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7731                                     eax.getValue(2));
7732    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7733    SDValue Ops[] = { eax, edx };
7734    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7735    Results.push_back(edx.getValue(1));
7736    return;
7737  }
7738  case ISD::ATOMIC_CMP_SWAP: {
7739    EVT T = N->getValueType(0);
7740    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7741    SDValue cpInL, cpInH;
7742    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7743                        DAG.getConstant(0, MVT::i32));
7744    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7745                        DAG.getConstant(1, MVT::i32));
7746    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7747    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7748                             cpInL.getValue(1));
7749    SDValue swapInL, swapInH;
7750    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7751                          DAG.getConstant(0, MVT::i32));
7752    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7753                          DAG.getConstant(1, MVT::i32));
7754    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7755                               cpInH.getValue(1));
7756    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7757                               swapInL.getValue(1));
7758    SDValue Ops[] = { swapInH.getValue(0),
7759                      N->getOperand(1),
7760                      swapInH.getValue(1) };
7761    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7762    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7763    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7764                                        MVT::i32, Result.getValue(1));
7765    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7766                                        MVT::i32, cpOutL.getValue(2));
7767    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7768    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7769    Results.push_back(cpOutH.getValue(1));
7770    return;
7771  }
7772  case ISD::ATOMIC_LOAD_ADD:
7773    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7774    return;
7775  case ISD::ATOMIC_LOAD_AND:
7776    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7777    return;
7778  case ISD::ATOMIC_LOAD_NAND:
7779    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7780    return;
7781  case ISD::ATOMIC_LOAD_OR:
7782    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7783    return;
7784  case ISD::ATOMIC_LOAD_SUB:
7785    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7786    return;
7787  case ISD::ATOMIC_LOAD_XOR:
7788    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7789    return;
7790  case ISD::ATOMIC_SWAP:
7791    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7792    return;
7793  }
7794}
7795
7796const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7797  switch (Opcode) {
7798  default: return NULL;
7799  case X86ISD::BSF:                return "X86ISD::BSF";
7800  case X86ISD::BSR:                return "X86ISD::BSR";
7801  case X86ISD::SHLD:               return "X86ISD::SHLD";
7802  case X86ISD::SHRD:               return "X86ISD::SHRD";
7803  case X86ISD::FAND:               return "X86ISD::FAND";
7804  case X86ISD::FOR:                return "X86ISD::FOR";
7805  case X86ISD::FXOR:               return "X86ISD::FXOR";
7806  case X86ISD::FSRL:               return "X86ISD::FSRL";
7807  case X86ISD::FILD:               return "X86ISD::FILD";
7808  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7809  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7810  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7811  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7812  case X86ISD::FLD:                return "X86ISD::FLD";
7813  case X86ISD::FST:                return "X86ISD::FST";
7814  case X86ISD::CALL:               return "X86ISD::CALL";
7815  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7816  case X86ISD::BT:                 return "X86ISD::BT";
7817  case X86ISD::CMP:                return "X86ISD::CMP";
7818  case X86ISD::COMI:               return "X86ISD::COMI";
7819  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7820  case X86ISD::SETCC:              return "X86ISD::SETCC";
7821  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
7822  case X86ISD::CMOV:               return "X86ISD::CMOV";
7823  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7824  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7825  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7826  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7827  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7828  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7829  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7830  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7831  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7832  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7833  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7834  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7835  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
7836  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7837  case X86ISD::FMAX:               return "X86ISD::FMAX";
7838  case X86ISD::FMIN:               return "X86ISD::FMIN";
7839  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7840  case X86ISD::FRCP:               return "X86ISD::FRCP";
7841  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7842  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7843  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7844  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7845  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7846  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7847  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7848  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7849  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7850  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7851  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7852  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7853  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7854  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7855  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7856  case X86ISD::VSHL:               return "X86ISD::VSHL";
7857  case X86ISD::VSRL:               return "X86ISD::VSRL";
7858  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7859  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7860  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7861  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7862  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7863  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7864  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7865  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7866  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7867  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7868  case X86ISD::ADD:                return "X86ISD::ADD";
7869  case X86ISD::SUB:                return "X86ISD::SUB";
7870  case X86ISD::SMUL:               return "X86ISD::SMUL";
7871  case X86ISD::UMUL:               return "X86ISD::UMUL";
7872  case X86ISD::INC:                return "X86ISD::INC";
7873  case X86ISD::DEC:                return "X86ISD::DEC";
7874  case X86ISD::OR:                 return "X86ISD::OR";
7875  case X86ISD::XOR:                return "X86ISD::XOR";
7876  case X86ISD::AND:                return "X86ISD::AND";
7877  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7878  case X86ISD::PTEST:              return "X86ISD::PTEST";
7879  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7880  case X86ISD::MINGW_ALLOCA:       return "X86ISD::MINGW_ALLOCA";
7881  }
7882}
7883
7884// isLegalAddressingMode - Return true if the addressing mode represented
7885// by AM is legal for this target, for a load/store of the specified type.
7886bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7887                                              const Type *Ty) const {
7888  // X86 supports extremely general addressing modes.
7889  CodeModel::Model M = getTargetMachine().getCodeModel();
7890
7891  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7892  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7893    return false;
7894
7895  if (AM.BaseGV) {
7896    unsigned GVFlags =
7897      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7898
7899    // If a reference to this global requires an extra load, we can't fold it.
7900    if (isGlobalStubReference(GVFlags))
7901      return false;
7902
7903    // If BaseGV requires a register for the PIC base, we cannot also have a
7904    // BaseReg specified.
7905    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7906      return false;
7907
7908    // If lower 4G is not available, then we must use rip-relative addressing.
7909    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7910      return false;
7911  }
7912
7913  switch (AM.Scale) {
7914  case 0:
7915  case 1:
7916  case 2:
7917  case 4:
7918  case 8:
7919    // These scales always work.
7920    break;
7921  case 3:
7922  case 5:
7923  case 9:
7924    // These scales are formed with basereg+scalereg.  Only accept if there is
7925    // no basereg yet.
7926    if (AM.HasBaseReg)
7927      return false;
7928    break;
7929  default:  // Other stuff never works.
7930    return false;
7931  }
7932
7933  return true;
7934}
7935
7936
7937bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7938  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
7939    return false;
7940  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7941  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7942  if (NumBits1 <= NumBits2)
7943    return false;
7944  return true;
7945}
7946
7947bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7948  if (!VT1.isInteger() || !VT2.isInteger())
7949    return false;
7950  unsigned NumBits1 = VT1.getSizeInBits();
7951  unsigned NumBits2 = VT2.getSizeInBits();
7952  if (NumBits1 <= NumBits2)
7953    return false;
7954  return true;
7955}
7956
7957bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7958  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7959  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
7960}
7961
7962bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7963  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7964  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7965}
7966
7967bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7968  // i16 instructions are longer (0x66 prefix) and potentially slower.
7969  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7970}
7971
7972/// isShuffleMaskLegal - Targets can use this to indicate that they only
7973/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7974/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7975/// are assumed to be legal.
7976bool
7977X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7978                                      EVT VT) const {
7979  // Very little shuffling can be done for 64-bit vectors right now.
7980  if (VT.getSizeInBits() == 64)
7981    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
7982
7983  // FIXME: pshufb, blends, shifts.
7984  return (VT.getVectorNumElements() == 2 ||
7985          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7986          isMOVLMask(M, VT) ||
7987          isSHUFPMask(M, VT) ||
7988          isPSHUFDMask(M, VT) ||
7989          isPSHUFHWMask(M, VT) ||
7990          isPSHUFLWMask(M, VT) ||
7991          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
7992          isUNPCKLMask(M, VT) ||
7993          isUNPCKHMask(M, VT) ||
7994          isUNPCKL_v_undef_Mask(M, VT) ||
7995          isUNPCKH_v_undef_Mask(M, VT));
7996}
7997
7998bool
7999X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
8000                                          EVT VT) const {
8001  unsigned NumElts = VT.getVectorNumElements();
8002  // FIXME: This collection of masks seems suspect.
8003  if (NumElts == 2)
8004    return true;
8005  if (NumElts == 4 && VT.getSizeInBits() == 128) {
8006    return (isMOVLMask(Mask, VT)  ||
8007            isCommutedMOVLMask(Mask, VT, true) ||
8008            isSHUFPMask(Mask, VT) ||
8009            isCommutedSHUFPMask(Mask, VT));
8010  }
8011  return false;
8012}
8013
8014//===----------------------------------------------------------------------===//
8015//                           X86 Scheduler Hooks
8016//===----------------------------------------------------------------------===//
8017
8018// private utility function
8019MachineBasicBlock *
8020X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
8021                                                       MachineBasicBlock *MBB,
8022                                                       unsigned regOpc,
8023                                                       unsigned immOpc,
8024                                                       unsigned LoadOpc,
8025                                                       unsigned CXchgOpc,
8026                                                       unsigned copyOpc,
8027                                                       unsigned notOpc,
8028                                                       unsigned EAXreg,
8029                                                       TargetRegisterClass *RC,
8030                                                       bool invSrc) const {
8031  // For the atomic bitwise operator, we generate
8032  //   thisMBB:
8033  //   newMBB:
8034  //     ld  t1 = [bitinstr.addr]
8035  //     op  t2 = t1, [bitinstr.val]
8036  //     mov EAX = t1
8037  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8038  //     bz  newMBB
8039  //     fallthrough -->nextMBB
8040  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8041  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8042  MachineFunction::iterator MBBIter = MBB;
8043  ++MBBIter;
8044
8045  /// First build the CFG
8046  MachineFunction *F = MBB->getParent();
8047  MachineBasicBlock *thisMBB = MBB;
8048  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8049  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8050  F->insert(MBBIter, newMBB);
8051  F->insert(MBBIter, nextMBB);
8052
8053  // Move all successors to thisMBB to nextMBB
8054  nextMBB->transferSuccessors(thisMBB);
8055
8056  // Update thisMBB to fall through to newMBB
8057  thisMBB->addSuccessor(newMBB);
8058
8059  // newMBB jumps to itself and fall through to nextMBB
8060  newMBB->addSuccessor(nextMBB);
8061  newMBB->addSuccessor(newMBB);
8062
8063  // Insert instructions into newMBB based on incoming instruction
8064  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
8065         "unexpected number of operands");
8066  DebugLoc dl = bInstr->getDebugLoc();
8067  MachineOperand& destOper = bInstr->getOperand(0);
8068  MachineOperand* argOpers[2 + X86AddrNumOperands];
8069  int numArgs = bInstr->getNumOperands() - 1;
8070  for (int i=0; i < numArgs; ++i)
8071    argOpers[i] = &bInstr->getOperand(i+1);
8072
8073  // x86 address has 4 operands: base, index, scale, and displacement
8074  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8075  int valArgIndx = lastAddrIndx + 1;
8076
8077  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8078  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
8079  for (int i=0; i <= lastAddrIndx; ++i)
8080    (*MIB).addOperand(*argOpers[i]);
8081
8082  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
8083  if (invSrc) {
8084    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
8085  }
8086  else
8087    tt = t1;
8088
8089  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8090  assert((argOpers[valArgIndx]->isReg() ||
8091          argOpers[valArgIndx]->isImm()) &&
8092         "invalid operand");
8093  if (argOpers[valArgIndx]->isReg())
8094    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
8095  else
8096    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
8097  MIB.addReg(tt);
8098  (*MIB).addOperand(*argOpers[valArgIndx]);
8099
8100  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
8101  MIB.addReg(t1);
8102
8103  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
8104  for (int i=0; i <= lastAddrIndx; ++i)
8105    (*MIB).addOperand(*argOpers[i]);
8106  MIB.addReg(t2);
8107  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8108  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8109                    bInstr->memoperands_end());
8110
8111  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
8112  MIB.addReg(EAXreg);
8113
8114  // insert branch
8115  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8116
8117  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
8118  return nextMBB;
8119}
8120
8121// private utility function:  64 bit atomics on 32 bit host.
8122MachineBasicBlock *
8123X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
8124                                                       MachineBasicBlock *MBB,
8125                                                       unsigned regOpcL,
8126                                                       unsigned regOpcH,
8127                                                       unsigned immOpcL,
8128                                                       unsigned immOpcH,
8129                                                       bool invSrc) const {
8130  // For the atomic bitwise operator, we generate
8131  //   thisMBB (instructions are in pairs, except cmpxchg8b)
8132  //     ld t1,t2 = [bitinstr.addr]
8133  //   newMBB:
8134  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
8135  //     op  t5, t6 <- out1, out2, [bitinstr.val]
8136  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
8137  //     mov ECX, EBX <- t5, t6
8138  //     mov EAX, EDX <- t1, t2
8139  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
8140  //     mov t3, t4 <- EAX, EDX
8141  //     bz  newMBB
8142  //     result in out1, out2
8143  //     fallthrough -->nextMBB
8144
8145  const TargetRegisterClass *RC = X86::GR32RegisterClass;
8146  const unsigned LoadOpc = X86::MOV32rm;
8147  const unsigned copyOpc = X86::MOV32rr;
8148  const unsigned NotOpc = X86::NOT32r;
8149  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8150  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8151  MachineFunction::iterator MBBIter = MBB;
8152  ++MBBIter;
8153
8154  /// First build the CFG
8155  MachineFunction *F = MBB->getParent();
8156  MachineBasicBlock *thisMBB = MBB;
8157  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8158  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8159  F->insert(MBBIter, newMBB);
8160  F->insert(MBBIter, nextMBB);
8161
8162  // Move all successors to thisMBB to nextMBB
8163  nextMBB->transferSuccessors(thisMBB);
8164
8165  // Update thisMBB to fall through to newMBB
8166  thisMBB->addSuccessor(newMBB);
8167
8168  // newMBB jumps to itself and fall through to nextMBB
8169  newMBB->addSuccessor(nextMBB);
8170  newMBB->addSuccessor(newMBB);
8171
8172  DebugLoc dl = bInstr->getDebugLoc();
8173  // Insert instructions into newMBB based on incoming instruction
8174  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8175  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
8176         "unexpected number of operands");
8177  MachineOperand& dest1Oper = bInstr->getOperand(0);
8178  MachineOperand& dest2Oper = bInstr->getOperand(1);
8179  MachineOperand* argOpers[2 + X86AddrNumOperands];
8180  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
8181    argOpers[i] = &bInstr->getOperand(i+2);
8182
8183  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8184  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8185
8186  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8187  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8188  for (int i=0; i <= lastAddrIndx; ++i)
8189    (*MIB).addOperand(*argOpers[i]);
8190  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8191  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8192  // add 4 to displacement.
8193  for (int i=0; i <= lastAddrIndx-2; ++i)
8194    (*MIB).addOperand(*argOpers[i]);
8195  MachineOperand newOp3 = *(argOpers[3]);
8196  if (newOp3.isImm())
8197    newOp3.setImm(newOp3.getImm()+4);
8198  else
8199    newOp3.setOffset(newOp3.getOffset()+4);
8200  (*MIB).addOperand(newOp3);
8201  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8202
8203  // t3/4 are defined later, at the bottom of the loop
8204  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8205  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8206  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8207    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8208  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8209    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8210
8211  // The subsequent operations should be using the destination registers of
8212  //the PHI instructions.
8213  if (invSrc) {
8214    t1 = F->getRegInfo().createVirtualRegister(RC);
8215    t2 = F->getRegInfo().createVirtualRegister(RC);
8216    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8217    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8218  } else {
8219    t1 = dest1Oper.getReg();
8220    t2 = dest2Oper.getReg();
8221  }
8222
8223  int valArgIndx = lastAddrIndx + 1;
8224  assert((argOpers[valArgIndx]->isReg() ||
8225          argOpers[valArgIndx]->isImm()) &&
8226         "invalid operand");
8227  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8228  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8229  if (argOpers[valArgIndx]->isReg())
8230    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8231  else
8232    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8233  if (regOpcL != X86::MOV32rr)
8234    MIB.addReg(t1);
8235  (*MIB).addOperand(*argOpers[valArgIndx]);
8236  assert(argOpers[valArgIndx + 1]->isReg() ==
8237         argOpers[valArgIndx]->isReg());
8238  assert(argOpers[valArgIndx + 1]->isImm() ==
8239         argOpers[valArgIndx]->isImm());
8240  if (argOpers[valArgIndx + 1]->isReg())
8241    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8242  else
8243    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8244  if (regOpcH != X86::MOV32rr)
8245    MIB.addReg(t2);
8246  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8247
8248  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
8249  MIB.addReg(t1);
8250  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
8251  MIB.addReg(t2);
8252
8253  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
8254  MIB.addReg(t5);
8255  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
8256  MIB.addReg(t6);
8257
8258  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8259  for (int i=0; i <= lastAddrIndx; ++i)
8260    (*MIB).addOperand(*argOpers[i]);
8261
8262  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8263  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8264                    bInstr->memoperands_end());
8265
8266  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
8267  MIB.addReg(X86::EAX);
8268  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
8269  MIB.addReg(X86::EDX);
8270
8271  // insert branch
8272  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8273
8274  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
8275  return nextMBB;
8276}
8277
8278// private utility function
8279MachineBasicBlock *
8280X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8281                                                      MachineBasicBlock *MBB,
8282                                                      unsigned cmovOpc) const {
8283  // For the atomic min/max operator, we generate
8284  //   thisMBB:
8285  //   newMBB:
8286  //     ld t1 = [min/max.addr]
8287  //     mov t2 = [min/max.val]
8288  //     cmp  t1, t2
8289  //     cmov[cond] t2 = t1
8290  //     mov EAX = t1
8291  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8292  //     bz   newMBB
8293  //     fallthrough -->nextMBB
8294  //
8295  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8296  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8297  MachineFunction::iterator MBBIter = MBB;
8298  ++MBBIter;
8299
8300  /// First build the CFG
8301  MachineFunction *F = MBB->getParent();
8302  MachineBasicBlock *thisMBB = MBB;
8303  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8304  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8305  F->insert(MBBIter, newMBB);
8306  F->insert(MBBIter, nextMBB);
8307
8308  // Move all successors of thisMBB to nextMBB
8309  nextMBB->transferSuccessors(thisMBB);
8310
8311  // Update thisMBB to fall through to newMBB
8312  thisMBB->addSuccessor(newMBB);
8313
8314  // newMBB jumps to newMBB and fall through to nextMBB
8315  newMBB->addSuccessor(nextMBB);
8316  newMBB->addSuccessor(newMBB);
8317
8318  DebugLoc dl = mInstr->getDebugLoc();
8319  // Insert instructions into newMBB based on incoming instruction
8320  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
8321         "unexpected number of operands");
8322  MachineOperand& destOper = mInstr->getOperand(0);
8323  MachineOperand* argOpers[2 + X86AddrNumOperands];
8324  int numArgs = mInstr->getNumOperands() - 1;
8325  for (int i=0; i < numArgs; ++i)
8326    argOpers[i] = &mInstr->getOperand(i+1);
8327
8328  // x86 address has 4 operands: base, index, scale, and displacement
8329  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8330  int valArgIndx = lastAddrIndx + 1;
8331
8332  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8333  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8334  for (int i=0; i <= lastAddrIndx; ++i)
8335    (*MIB).addOperand(*argOpers[i]);
8336
8337  // We only support register and immediate values
8338  assert((argOpers[valArgIndx]->isReg() ||
8339          argOpers[valArgIndx]->isImm()) &&
8340         "invalid operand");
8341
8342  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8343  if (argOpers[valArgIndx]->isReg())
8344    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8345  else
8346    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8347  (*MIB).addOperand(*argOpers[valArgIndx]);
8348
8349  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
8350  MIB.addReg(t1);
8351
8352  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8353  MIB.addReg(t1);
8354  MIB.addReg(t2);
8355
8356  // Generate movc
8357  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8358  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8359  MIB.addReg(t2);
8360  MIB.addReg(t1);
8361
8362  // Cmp and exchange if none has modified the memory location
8363  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8364  for (int i=0; i <= lastAddrIndx; ++i)
8365    (*MIB).addOperand(*argOpers[i]);
8366  MIB.addReg(t3);
8367  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8368  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8369                    mInstr->memoperands_end());
8370
8371  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
8372  MIB.addReg(X86::EAX);
8373
8374  // insert branch
8375  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8376
8377  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
8378  return nextMBB;
8379}
8380
8381// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8382// all of this code can be replaced with that in the .td file.
8383MachineBasicBlock *
8384X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8385                            unsigned numArgs, bool memArg) const {
8386
8387  MachineFunction *F = BB->getParent();
8388  DebugLoc dl = MI->getDebugLoc();
8389  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8390
8391  unsigned Opc;
8392  if (memArg)
8393    Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8394  else
8395    Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8396
8397  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8398
8399  for (unsigned i = 0; i < numArgs; ++i) {
8400    MachineOperand &Op = MI->getOperand(i+1);
8401
8402    if (!(Op.isReg() && Op.isImplicit()))
8403      MIB.addOperand(Op);
8404  }
8405
8406  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8407    .addReg(X86::XMM0);
8408
8409  F->DeleteMachineInstr(MI);
8410
8411  return BB;
8412}
8413
8414MachineBasicBlock *
8415X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8416                                                 MachineInstr *MI,
8417                                                 MachineBasicBlock *MBB) const {
8418  // Emit code to save XMM registers to the stack. The ABI says that the
8419  // number of registers to save is given in %al, so it's theoretically
8420  // possible to do an indirect jump trick to avoid saving all of them,
8421  // however this code takes a simpler approach and just executes all
8422  // of the stores if %al is non-zero. It's less code, and it's probably
8423  // easier on the hardware branch predictor, and stores aren't all that
8424  // expensive anyway.
8425
8426  // Create the new basic blocks. One block contains all the XMM stores,
8427  // and one block is the final destination regardless of whether any
8428  // stores were performed.
8429  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8430  MachineFunction *F = MBB->getParent();
8431  MachineFunction::iterator MBBIter = MBB;
8432  ++MBBIter;
8433  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8434  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8435  F->insert(MBBIter, XMMSaveMBB);
8436  F->insert(MBBIter, EndMBB);
8437
8438  // Set up the CFG.
8439  // Move any original successors of MBB to the end block.
8440  EndMBB->transferSuccessors(MBB);
8441  // The original block will now fall through to the XMM save block.
8442  MBB->addSuccessor(XMMSaveMBB);
8443  // The XMMSaveMBB will fall through to the end block.
8444  XMMSaveMBB->addSuccessor(EndMBB);
8445
8446  // Now add the instructions.
8447  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8448  DebugLoc DL = MI->getDebugLoc();
8449
8450  unsigned CountReg = MI->getOperand(0).getReg();
8451  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
8452  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
8453
8454  if (!Subtarget->isTargetWin64()) {
8455    // If %al is 0, branch around the XMM save block.
8456    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
8457    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
8458    MBB->addSuccessor(EndMBB);
8459  }
8460
8461  // In the XMM save block, save all the XMM argument registers.
8462  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
8463    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
8464    MachineMemOperand *MMO =
8465      F->getMachineMemOperand(
8466        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
8467        MachineMemOperand::MOStore, Offset,
8468        /*Size=*/16, /*Align=*/16);
8469    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
8470      .addFrameIndex(RegSaveFrameIndex)
8471      .addImm(/*Scale=*/1)
8472      .addReg(/*IndexReg=*/0)
8473      .addImm(/*Disp=*/Offset)
8474      .addReg(/*Segment=*/0)
8475      .addReg(MI->getOperand(i).getReg())
8476      .addMemOperand(MMO);
8477  }
8478
8479  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8480
8481  return EndMBB;
8482}
8483
8484MachineBasicBlock *
8485X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
8486                                     MachineBasicBlock *BB,
8487                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8488  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8489  DebugLoc DL = MI->getDebugLoc();
8490
8491  // To "insert" a SELECT_CC instruction, we actually have to insert the
8492  // diamond control-flow pattern.  The incoming instruction knows the
8493  // destination vreg to set, the condition code register to branch on, the
8494  // true/false values to select between, and a branch opcode to use.
8495  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8496  MachineFunction::iterator It = BB;
8497  ++It;
8498
8499  //  thisMBB:
8500  //  ...
8501  //   TrueVal = ...
8502  //   cmpTY ccX, r1, r2
8503  //   bCC copy1MBB
8504  //   fallthrough --> copy0MBB
8505  MachineBasicBlock *thisMBB = BB;
8506  MachineFunction *F = BB->getParent();
8507  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8508  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8509  unsigned Opc =
8510    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
8511  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
8512  F->insert(It, copy0MBB);
8513  F->insert(It, sinkMBB);
8514  // Update machine-CFG edges by first adding all successors of the current
8515  // block to the new block which will contain the Phi node for the select.
8516  // Also inform sdisel of the edge changes.
8517  for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
8518         E = BB->succ_end(); I != E; ++I) {
8519    EM->insert(std::make_pair(*I, sinkMBB));
8520    sinkMBB->addSuccessor(*I);
8521  }
8522  // Next, remove all successors of the current block, and add the true
8523  // and fallthrough blocks as its successors.
8524  while (!BB->succ_empty())
8525    BB->removeSuccessor(BB->succ_begin());
8526  // Add the true and fallthrough blocks as its successors.
8527  BB->addSuccessor(copy0MBB);
8528  BB->addSuccessor(sinkMBB);
8529
8530  //  copy0MBB:
8531  //   %FalseValue = ...
8532  //   # fallthrough to sinkMBB
8533  BB = copy0MBB;
8534
8535  // Update machine-CFG edges
8536  BB->addSuccessor(sinkMBB);
8537
8538  //  sinkMBB:
8539  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8540  //  ...
8541  BB = sinkMBB;
8542  BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
8543    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8544    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8545
8546  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8547  return BB;
8548}
8549
8550MachineBasicBlock *
8551X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
8552                                          MachineBasicBlock *BB,
8553                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8554  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8555  DebugLoc DL = MI->getDebugLoc();
8556  MachineFunction *F = BB->getParent();
8557
8558  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
8559  // non-trivial part is impdef of ESP.
8560  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
8561  // mingw-w64.
8562
8563  BuildMI(BB, DL, TII->get(X86::CALLpcrel32))
8564    .addExternalSymbol("_alloca")
8565    .addReg(X86::EAX, RegState::Implicit)
8566    .addReg(X86::ESP, RegState::Implicit)
8567    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
8568    .addReg(X86::ESP, RegState::Define | RegState::Implicit);
8569
8570  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8571  return BB;
8572}
8573
8574MachineBasicBlock *
8575X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8576                                               MachineBasicBlock *BB,
8577                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8578  switch (MI->getOpcode()) {
8579  default: assert(false && "Unexpected instr type to insert");
8580  case X86::MINGW_ALLOCA:
8581    return EmitLoweredMingwAlloca(MI, BB, EM);
8582  case X86::CMOV_GR8:
8583  case X86::CMOV_V1I64:
8584  case X86::CMOV_FR32:
8585  case X86::CMOV_FR64:
8586  case X86::CMOV_V4F32:
8587  case X86::CMOV_V2F64:
8588  case X86::CMOV_V2I64:
8589  case X86::CMOV_GR16:
8590  case X86::CMOV_GR32:
8591  case X86::CMOV_RFP32:
8592  case X86::CMOV_RFP64:
8593  case X86::CMOV_RFP80:
8594    return EmitLoweredSelect(MI, BB, EM);
8595
8596  case X86::FP32_TO_INT16_IN_MEM:
8597  case X86::FP32_TO_INT32_IN_MEM:
8598  case X86::FP32_TO_INT64_IN_MEM:
8599  case X86::FP64_TO_INT16_IN_MEM:
8600  case X86::FP64_TO_INT32_IN_MEM:
8601  case X86::FP64_TO_INT64_IN_MEM:
8602  case X86::FP80_TO_INT16_IN_MEM:
8603  case X86::FP80_TO_INT32_IN_MEM:
8604  case X86::FP80_TO_INT64_IN_MEM: {
8605    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8606    DebugLoc DL = MI->getDebugLoc();
8607
8608    // Change the floating point control register to use "round towards zero"
8609    // mode when truncating to an integer value.
8610    MachineFunction *F = BB->getParent();
8611    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
8612    addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
8613
8614    // Load the old value of the high byte of the control word...
8615    unsigned OldCW =
8616      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
8617    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
8618                      CWFrameIdx);
8619
8620    // Set the high part to be round to zero...
8621    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8622      .addImm(0xC7F);
8623
8624    // Reload the modified control word now...
8625    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8626
8627    // Restore the memory image of control word to original value
8628    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8629      .addReg(OldCW);
8630
8631    // Get the X86 opcode to use.
8632    unsigned Opc;
8633    switch (MI->getOpcode()) {
8634    default: llvm_unreachable("illegal opcode!");
8635    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8636    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8637    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8638    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8639    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
8640    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
8641    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
8642    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
8643    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
8644    }
8645
8646    X86AddressMode AM;
8647    MachineOperand &Op = MI->getOperand(0);
8648    if (Op.isReg()) {
8649      AM.BaseType = X86AddressMode::RegBase;
8650      AM.Base.Reg = Op.getReg();
8651    } else {
8652      AM.BaseType = X86AddressMode::FrameIndexBase;
8653      AM.Base.FrameIndex = Op.getIndex();
8654    }
8655    Op = MI->getOperand(1);
8656    if (Op.isImm())
8657      AM.Scale = Op.getImm();
8658    Op = MI->getOperand(2);
8659    if (Op.isImm())
8660      AM.IndexReg = Op.getImm();
8661    Op = MI->getOperand(3);
8662    if (Op.isGlobal()) {
8663      AM.GV = Op.getGlobal();
8664    } else {
8665      AM.Disp = Op.getImm();
8666    }
8667    addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
8668                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
8669
8670    // Reload the original control word now.
8671    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8672
8673    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8674    return BB;
8675  }
8676    // DBG_VALUE.  Only the frame index case is done here.
8677  case X86::DBG_VALUE: {
8678    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8679    DebugLoc DL = MI->getDebugLoc();
8680    X86AddressMode AM;
8681    MachineFunction *F = BB->getParent();
8682    AM.BaseType = X86AddressMode::FrameIndexBase;
8683    AM.Base.FrameIndex = MI->getOperand(0).getImm();
8684    addFullAddress(BuildMI(BB, DL, TII->get(X86::DBG_VALUE)), AM).
8685      addImm(MI->getOperand(1).getImm()).
8686      addMetadata(MI->getOperand(2).getMetadata());
8687    F->DeleteMachineInstr(MI);      // Remove pseudo.
8688    return BB;
8689  }
8690
8691    // String/text processing lowering.
8692  case X86::PCMPISTRM128REG:
8693    return EmitPCMP(MI, BB, 3, false /* in-mem */);
8694  case X86::PCMPISTRM128MEM:
8695    return EmitPCMP(MI, BB, 3, true /* in-mem */);
8696  case X86::PCMPESTRM128REG:
8697    return EmitPCMP(MI, BB, 5, false /* in mem */);
8698  case X86::PCMPESTRM128MEM:
8699    return EmitPCMP(MI, BB, 5, true /* in mem */);
8700
8701    // Atomic Lowering.
8702  case X86::ATOMAND32:
8703    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8704                                               X86::AND32ri, X86::MOV32rm,
8705                                               X86::LCMPXCHG32, X86::MOV32rr,
8706                                               X86::NOT32r, X86::EAX,
8707                                               X86::GR32RegisterClass);
8708  case X86::ATOMOR32:
8709    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
8710                                               X86::OR32ri, X86::MOV32rm,
8711                                               X86::LCMPXCHG32, X86::MOV32rr,
8712                                               X86::NOT32r, X86::EAX,
8713                                               X86::GR32RegisterClass);
8714  case X86::ATOMXOR32:
8715    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
8716                                               X86::XOR32ri, X86::MOV32rm,
8717                                               X86::LCMPXCHG32, X86::MOV32rr,
8718                                               X86::NOT32r, X86::EAX,
8719                                               X86::GR32RegisterClass);
8720  case X86::ATOMNAND32:
8721    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8722                                               X86::AND32ri, X86::MOV32rm,
8723                                               X86::LCMPXCHG32, X86::MOV32rr,
8724                                               X86::NOT32r, X86::EAX,
8725                                               X86::GR32RegisterClass, true);
8726  case X86::ATOMMIN32:
8727    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
8728  case X86::ATOMMAX32:
8729    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
8730  case X86::ATOMUMIN32:
8731    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
8732  case X86::ATOMUMAX32:
8733    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
8734
8735  case X86::ATOMAND16:
8736    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8737                                               X86::AND16ri, X86::MOV16rm,
8738                                               X86::LCMPXCHG16, X86::MOV16rr,
8739                                               X86::NOT16r, X86::AX,
8740                                               X86::GR16RegisterClass);
8741  case X86::ATOMOR16:
8742    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
8743                                               X86::OR16ri, X86::MOV16rm,
8744                                               X86::LCMPXCHG16, X86::MOV16rr,
8745                                               X86::NOT16r, X86::AX,
8746                                               X86::GR16RegisterClass);
8747  case X86::ATOMXOR16:
8748    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
8749                                               X86::XOR16ri, X86::MOV16rm,
8750                                               X86::LCMPXCHG16, X86::MOV16rr,
8751                                               X86::NOT16r, X86::AX,
8752                                               X86::GR16RegisterClass);
8753  case X86::ATOMNAND16:
8754    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8755                                               X86::AND16ri, X86::MOV16rm,
8756                                               X86::LCMPXCHG16, X86::MOV16rr,
8757                                               X86::NOT16r, X86::AX,
8758                                               X86::GR16RegisterClass, true);
8759  case X86::ATOMMIN16:
8760    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
8761  case X86::ATOMMAX16:
8762    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
8763  case X86::ATOMUMIN16:
8764    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
8765  case X86::ATOMUMAX16:
8766    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
8767
8768  case X86::ATOMAND8:
8769    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8770                                               X86::AND8ri, X86::MOV8rm,
8771                                               X86::LCMPXCHG8, X86::MOV8rr,
8772                                               X86::NOT8r, X86::AL,
8773                                               X86::GR8RegisterClass);
8774  case X86::ATOMOR8:
8775    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
8776                                               X86::OR8ri, X86::MOV8rm,
8777                                               X86::LCMPXCHG8, X86::MOV8rr,
8778                                               X86::NOT8r, X86::AL,
8779                                               X86::GR8RegisterClass);
8780  case X86::ATOMXOR8:
8781    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
8782                                               X86::XOR8ri, X86::MOV8rm,
8783                                               X86::LCMPXCHG8, X86::MOV8rr,
8784                                               X86::NOT8r, X86::AL,
8785                                               X86::GR8RegisterClass);
8786  case X86::ATOMNAND8:
8787    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8788                                               X86::AND8ri, X86::MOV8rm,
8789                                               X86::LCMPXCHG8, X86::MOV8rr,
8790                                               X86::NOT8r, X86::AL,
8791                                               X86::GR8RegisterClass, true);
8792  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
8793  // This group is for 64-bit host.
8794  case X86::ATOMAND64:
8795    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8796                                               X86::AND64ri32, X86::MOV64rm,
8797                                               X86::LCMPXCHG64, X86::MOV64rr,
8798                                               X86::NOT64r, X86::RAX,
8799                                               X86::GR64RegisterClass);
8800  case X86::ATOMOR64:
8801    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8802                                               X86::OR64ri32, X86::MOV64rm,
8803                                               X86::LCMPXCHG64, X86::MOV64rr,
8804                                               X86::NOT64r, X86::RAX,
8805                                               X86::GR64RegisterClass);
8806  case X86::ATOMXOR64:
8807    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8808                                               X86::XOR64ri32, X86::MOV64rm,
8809                                               X86::LCMPXCHG64, X86::MOV64rr,
8810                                               X86::NOT64r, X86::RAX,
8811                                               X86::GR64RegisterClass);
8812  case X86::ATOMNAND64:
8813    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8814                                               X86::AND64ri32, X86::MOV64rm,
8815                                               X86::LCMPXCHG64, X86::MOV64rr,
8816                                               X86::NOT64r, X86::RAX,
8817                                               X86::GR64RegisterClass, true);
8818  case X86::ATOMMIN64:
8819    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8820  case X86::ATOMMAX64:
8821    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8822  case X86::ATOMUMIN64:
8823    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8824  case X86::ATOMUMAX64:
8825    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8826
8827  // This group does 64-bit operations on a 32-bit host.
8828  case X86::ATOMAND6432:
8829    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8830                                               X86::AND32rr, X86::AND32rr,
8831                                               X86::AND32ri, X86::AND32ri,
8832                                               false);
8833  case X86::ATOMOR6432:
8834    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8835                                               X86::OR32rr, X86::OR32rr,
8836                                               X86::OR32ri, X86::OR32ri,
8837                                               false);
8838  case X86::ATOMXOR6432:
8839    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8840                                               X86::XOR32rr, X86::XOR32rr,
8841                                               X86::XOR32ri, X86::XOR32ri,
8842                                               false);
8843  case X86::ATOMNAND6432:
8844    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8845                                               X86::AND32rr, X86::AND32rr,
8846                                               X86::AND32ri, X86::AND32ri,
8847                                               true);
8848  case X86::ATOMADD6432:
8849    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8850                                               X86::ADD32rr, X86::ADC32rr,
8851                                               X86::ADD32ri, X86::ADC32ri,
8852                                               false);
8853  case X86::ATOMSUB6432:
8854    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8855                                               X86::SUB32rr, X86::SBB32rr,
8856                                               X86::SUB32ri, X86::SBB32ri,
8857                                               false);
8858  case X86::ATOMSWAP6432:
8859    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8860                                               X86::MOV32rr, X86::MOV32rr,
8861                                               X86::MOV32ri, X86::MOV32ri,
8862                                               false);
8863  case X86::VASTART_SAVE_XMM_REGS:
8864    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8865  }
8866}
8867
8868//===----------------------------------------------------------------------===//
8869//                           X86 Optimization Hooks
8870//===----------------------------------------------------------------------===//
8871
8872void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8873                                                       const APInt &Mask,
8874                                                       APInt &KnownZero,
8875                                                       APInt &KnownOne,
8876                                                       const SelectionDAG &DAG,
8877                                                       unsigned Depth) const {
8878  unsigned Opc = Op.getOpcode();
8879  assert((Opc >= ISD::BUILTIN_OP_END ||
8880          Opc == ISD::INTRINSIC_WO_CHAIN ||
8881          Opc == ISD::INTRINSIC_W_CHAIN ||
8882          Opc == ISD::INTRINSIC_VOID) &&
8883         "Should use MaskedValueIsZero if you don't know whether Op"
8884         " is a target node!");
8885
8886  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8887  switch (Opc) {
8888  default: break;
8889  case X86ISD::ADD:
8890  case X86ISD::SUB:
8891  case X86ISD::SMUL:
8892  case X86ISD::UMUL:
8893  case X86ISD::INC:
8894  case X86ISD::DEC:
8895  case X86ISD::OR:
8896  case X86ISD::XOR:
8897  case X86ISD::AND:
8898    // These nodes' second result is a boolean.
8899    if (Op.getResNo() == 0)
8900      break;
8901    // Fallthrough
8902  case X86ISD::SETCC:
8903    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8904                                       Mask.getBitWidth() - 1);
8905    break;
8906  }
8907}
8908
8909/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8910/// node is a GlobalAddress + offset.
8911bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8912                                       const GlobalValue* &GA,
8913                                       int64_t &Offset) const {
8914  if (N->getOpcode() == X86ISD::Wrapper) {
8915    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8916      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8917      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8918      return true;
8919    }
8920  }
8921  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8922}
8923
8924/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8925/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8926/// if the load addresses are consecutive, non-overlapping, and in the right
8927/// order.
8928static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8929                                     const TargetLowering &TLI) {
8930  DebugLoc dl = N->getDebugLoc();
8931  EVT VT = N->getValueType(0);
8932  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8933
8934  if (VT.getSizeInBits() != 128)
8935    return SDValue();
8936
8937  SmallVector<SDValue, 16> Elts;
8938  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
8939    Elts.push_back(DAG.getShuffleScalarElt(SVN, i));
8940
8941  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
8942}
8943
8944/// PerformShuffleCombine - Detect vector gather/scatter index generation
8945/// and convert it from being a bunch of shuffles and extracts to a simple
8946/// store and scalar loads to extract the elements.
8947static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
8948                                                const TargetLowering &TLI) {
8949  SDValue InputVector = N->getOperand(0);
8950
8951  // Only operate on vectors of 4 elements, where the alternative shuffling
8952  // gets to be more expensive.
8953  if (InputVector.getValueType() != MVT::v4i32)
8954    return SDValue();
8955
8956  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
8957  // single use which is a sign-extend or zero-extend, and all elements are
8958  // used.
8959  SmallVector<SDNode *, 4> Uses;
8960  unsigned ExtractedElements = 0;
8961  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
8962       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
8963    if (UI.getUse().getResNo() != InputVector.getResNo())
8964      return SDValue();
8965
8966    SDNode *Extract = *UI;
8967    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8968      return SDValue();
8969
8970    if (Extract->getValueType(0) != MVT::i32)
8971      return SDValue();
8972    if (!Extract->hasOneUse())
8973      return SDValue();
8974    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
8975        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
8976      return SDValue();
8977    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
8978      return SDValue();
8979
8980    // Record which element was extracted.
8981    ExtractedElements |=
8982      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
8983
8984    Uses.push_back(Extract);
8985  }
8986
8987  // If not all the elements were used, this may not be worthwhile.
8988  if (ExtractedElements != 15)
8989    return SDValue();
8990
8991  // Ok, we've now decided to do the transformation.
8992  DebugLoc dl = InputVector.getDebugLoc();
8993
8994  // Store the value to a temporary stack slot.
8995  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
8996  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL, 0,
8997                            false, false, 0);
8998
8999  // Replace each use (extract) with a load of the appropriate element.
9000  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
9001       UE = Uses.end(); UI != UE; ++UI) {
9002    SDNode *Extract = *UI;
9003
9004    // Compute the element's address.
9005    SDValue Idx = Extract->getOperand(1);
9006    unsigned EltSize =
9007        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
9008    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
9009    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
9010
9011    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), OffsetVal, StackPtr);
9012
9013    // Load the scalar.
9014    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch, ScalarAddr,
9015                          NULL, 0, false, false, 0);
9016
9017    // Replace the exact with the load.
9018    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
9019  }
9020
9021  // The replacement was made in place; don't return anything.
9022  return SDValue();
9023}
9024
9025/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
9026static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
9027                                    const X86Subtarget *Subtarget) {
9028  DebugLoc DL = N->getDebugLoc();
9029  SDValue Cond = N->getOperand(0);
9030  // Get the LHS/RHS of the select.
9031  SDValue LHS = N->getOperand(1);
9032  SDValue RHS = N->getOperand(2);
9033
9034  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
9035  // instructions match the semantics of the common C idiom x<y?x:y but not
9036  // x<=y?x:y, because of how they handle negative zero (which can be
9037  // ignored in unsafe-math mode).
9038  if (Subtarget->hasSSE2() &&
9039      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
9040      Cond.getOpcode() == ISD::SETCC) {
9041    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
9042
9043    unsigned Opcode = 0;
9044    // Check for x CC y ? x : y.
9045    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
9046        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
9047      switch (CC) {
9048      default: break;
9049      case ISD::SETULT:
9050        // Converting this to a min would handle NaNs incorrectly, and swapping
9051        // the operands would cause it to handle comparisons between positive
9052        // and negative zero incorrectly.
9053        if (!FiniteOnlyFPMath() &&
9054            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) {
9055          if (!UnsafeFPMath &&
9056              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9057            break;
9058          std::swap(LHS, RHS);
9059        }
9060        Opcode = X86ISD::FMIN;
9061        break;
9062      case ISD::SETOLE:
9063        // Converting this to a min would handle comparisons between positive
9064        // and negative zero incorrectly.
9065        if (!UnsafeFPMath &&
9066            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
9067          break;
9068        Opcode = X86ISD::FMIN;
9069        break;
9070      case ISD::SETULE:
9071        // Converting this to a min would handle both negative zeros and NaNs
9072        // incorrectly, but we can swap the operands to fix both.
9073        std::swap(LHS, RHS);
9074      case ISD::SETOLT:
9075      case ISD::SETLT:
9076      case ISD::SETLE:
9077        Opcode = X86ISD::FMIN;
9078        break;
9079
9080      case ISD::SETOGE:
9081        // Converting this to a max would handle comparisons between positive
9082        // and negative zero incorrectly.
9083        if (!UnsafeFPMath &&
9084            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
9085          break;
9086        Opcode = X86ISD::FMAX;
9087        break;
9088      case ISD::SETUGT:
9089        // Converting this to a max would handle NaNs incorrectly, and swapping
9090        // the operands would cause it to handle comparisons between positive
9091        // and negative zero incorrectly.
9092        if (!FiniteOnlyFPMath() &&
9093            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) {
9094          if (!UnsafeFPMath &&
9095              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9096            break;
9097          std::swap(LHS, RHS);
9098        }
9099        Opcode = X86ISD::FMAX;
9100        break;
9101      case ISD::SETUGE:
9102        // Converting this to a max would handle both negative zeros and NaNs
9103        // incorrectly, but we can swap the operands to fix both.
9104        std::swap(LHS, RHS);
9105      case ISD::SETOGT:
9106      case ISD::SETGT:
9107      case ISD::SETGE:
9108        Opcode = X86ISD::FMAX;
9109        break;
9110      }
9111    // Check for x CC y ? y : x -- a min/max with reversed arms.
9112    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
9113               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
9114      switch (CC) {
9115      default: break;
9116      case ISD::SETOGE:
9117        // Converting this to a min would handle comparisons between positive
9118        // and negative zero incorrectly, and swapping the operands would
9119        // cause it to handle NaNs incorrectly.
9120        if (!UnsafeFPMath &&
9121            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
9122          if (!FiniteOnlyFPMath() &&
9123              (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9124            break;
9125          std::swap(LHS, RHS);
9126        }
9127        Opcode = X86ISD::FMIN;
9128        break;
9129      case ISD::SETUGT:
9130        // Converting this to a min would handle NaNs incorrectly.
9131        if (!UnsafeFPMath &&
9132            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9133          break;
9134        Opcode = X86ISD::FMIN;
9135        break;
9136      case ISD::SETUGE:
9137        // Converting this to a min would handle both negative zeros and NaNs
9138        // incorrectly, but we can swap the operands to fix both.
9139        std::swap(LHS, RHS);
9140      case ISD::SETOGT:
9141      case ISD::SETGT:
9142      case ISD::SETGE:
9143        Opcode = X86ISD::FMIN;
9144        break;
9145
9146      case ISD::SETULT:
9147        // Converting this to a max would handle NaNs incorrectly.
9148        if (!FiniteOnlyFPMath() &&
9149            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9150          break;
9151        Opcode = X86ISD::FMAX;
9152        break;
9153      case ISD::SETOLE:
9154        // Converting this to a max would handle comparisons between positive
9155        // and negative zero incorrectly, and swapping the operands would
9156        // cause it to handle NaNs incorrectly.
9157        if (!UnsafeFPMath &&
9158            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
9159          if (!FiniteOnlyFPMath() &&
9160              (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9161            break;
9162          std::swap(LHS, RHS);
9163        }
9164        Opcode = X86ISD::FMAX;
9165        break;
9166      case ISD::SETULE:
9167        // Converting this to a max would handle both negative zeros and NaNs
9168        // incorrectly, but we can swap the operands to fix both.
9169        std::swap(LHS, RHS);
9170      case ISD::SETOLT:
9171      case ISD::SETLT:
9172      case ISD::SETLE:
9173        Opcode = X86ISD::FMAX;
9174        break;
9175      }
9176    }
9177
9178    if (Opcode)
9179      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
9180  }
9181
9182  // If this is a select between two integer constants, try to do some
9183  // optimizations.
9184  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
9185    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
9186      // Don't do this for crazy integer types.
9187      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
9188        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
9189        // so that TrueC (the true value) is larger than FalseC.
9190        bool NeedsCondInvert = false;
9191
9192        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
9193            // Efficiently invertible.
9194            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
9195             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
9196              isa<ConstantSDNode>(Cond.getOperand(1))))) {
9197          NeedsCondInvert = true;
9198          std::swap(TrueC, FalseC);
9199        }
9200
9201        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
9202        if (FalseC->getAPIntValue() == 0 &&
9203            TrueC->getAPIntValue().isPowerOf2()) {
9204          if (NeedsCondInvert) // Invert the condition if needed.
9205            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9206                               DAG.getConstant(1, Cond.getValueType()));
9207
9208          // Zero extend the condition if needed.
9209          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
9210
9211          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9212          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
9213                             DAG.getConstant(ShAmt, MVT::i8));
9214        }
9215
9216        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
9217        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9218          if (NeedsCondInvert) // Invert the condition if needed.
9219            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9220                               DAG.getConstant(1, Cond.getValueType()));
9221
9222          // Zero extend the condition if needed.
9223          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9224                             FalseC->getValueType(0), Cond);
9225          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9226                             SDValue(FalseC, 0));
9227        }
9228
9229        // Optimize cases that will turn into an LEA instruction.  This requires
9230        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9231        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9232          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9233          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9234
9235          bool isFastMultiplier = false;
9236          if (Diff < 10) {
9237            switch ((unsigned char)Diff) {
9238              default: break;
9239              case 1:  // result = add base, cond
9240              case 2:  // result = lea base(    , cond*2)
9241              case 3:  // result = lea base(cond, cond*2)
9242              case 4:  // result = lea base(    , cond*4)
9243              case 5:  // result = lea base(cond, cond*4)
9244              case 8:  // result = lea base(    , cond*8)
9245              case 9:  // result = lea base(cond, cond*8)
9246                isFastMultiplier = true;
9247                break;
9248            }
9249          }
9250
9251          if (isFastMultiplier) {
9252            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9253            if (NeedsCondInvert) // Invert the condition if needed.
9254              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9255                                 DAG.getConstant(1, Cond.getValueType()));
9256
9257            // Zero extend the condition if needed.
9258            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9259                               Cond);
9260            // Scale the condition by the difference.
9261            if (Diff != 1)
9262              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9263                                 DAG.getConstant(Diff, Cond.getValueType()));
9264
9265            // Add the base if non-zero.
9266            if (FalseC->getAPIntValue() != 0)
9267              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9268                                 SDValue(FalseC, 0));
9269            return Cond;
9270          }
9271        }
9272      }
9273  }
9274
9275  return SDValue();
9276}
9277
9278/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9279static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9280                                  TargetLowering::DAGCombinerInfo &DCI) {
9281  DebugLoc DL = N->getDebugLoc();
9282
9283  // If the flag operand isn't dead, don't touch this CMOV.
9284  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9285    return SDValue();
9286
9287  // If this is a select between two integer constants, try to do some
9288  // optimizations.  Note that the operands are ordered the opposite of SELECT
9289  // operands.
9290  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9291    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9292      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9293      // larger than FalseC (the false value).
9294      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9295
9296      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9297        CC = X86::GetOppositeBranchCondition(CC);
9298        std::swap(TrueC, FalseC);
9299      }
9300
9301      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9302      // This is efficient for any integer data type (including i8/i16) and
9303      // shift amount.
9304      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9305        SDValue Cond = N->getOperand(3);
9306        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9307                           DAG.getConstant(CC, MVT::i8), Cond);
9308
9309        // Zero extend the condition if needed.
9310        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9311
9312        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9313        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9314                           DAG.getConstant(ShAmt, MVT::i8));
9315        if (N->getNumValues() == 2)  // Dead flag value?
9316          return DCI.CombineTo(N, Cond, SDValue());
9317        return Cond;
9318      }
9319
9320      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9321      // for any integer data type, including i8/i16.
9322      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9323        SDValue Cond = N->getOperand(3);
9324        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9325                           DAG.getConstant(CC, MVT::i8), Cond);
9326
9327        // Zero extend the condition if needed.
9328        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9329                           FalseC->getValueType(0), Cond);
9330        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9331                           SDValue(FalseC, 0));
9332
9333        if (N->getNumValues() == 2)  // Dead flag value?
9334          return DCI.CombineTo(N, Cond, SDValue());
9335        return Cond;
9336      }
9337
9338      // Optimize cases that will turn into an LEA instruction.  This requires
9339      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9340      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9341        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9342        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9343
9344        bool isFastMultiplier = false;
9345        if (Diff < 10) {
9346          switch ((unsigned char)Diff) {
9347          default: break;
9348          case 1:  // result = add base, cond
9349          case 2:  // result = lea base(    , cond*2)
9350          case 3:  // result = lea base(cond, cond*2)
9351          case 4:  // result = lea base(    , cond*4)
9352          case 5:  // result = lea base(cond, cond*4)
9353          case 8:  // result = lea base(    , cond*8)
9354          case 9:  // result = lea base(cond, cond*8)
9355            isFastMultiplier = true;
9356            break;
9357          }
9358        }
9359
9360        if (isFastMultiplier) {
9361          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9362          SDValue Cond = N->getOperand(3);
9363          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9364                             DAG.getConstant(CC, MVT::i8), Cond);
9365          // Zero extend the condition if needed.
9366          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9367                             Cond);
9368          // Scale the condition by the difference.
9369          if (Diff != 1)
9370            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9371                               DAG.getConstant(Diff, Cond.getValueType()));
9372
9373          // Add the base if non-zero.
9374          if (FalseC->getAPIntValue() != 0)
9375            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9376                               SDValue(FalseC, 0));
9377          if (N->getNumValues() == 2)  // Dead flag value?
9378            return DCI.CombineTo(N, Cond, SDValue());
9379          return Cond;
9380        }
9381      }
9382    }
9383  }
9384  return SDValue();
9385}
9386
9387
9388/// PerformMulCombine - Optimize a single multiply with constant into two
9389/// in order to implement it with two cheaper instructions, e.g.
9390/// LEA + SHL, LEA + LEA.
9391static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9392                                 TargetLowering::DAGCombinerInfo &DCI) {
9393  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9394    return SDValue();
9395
9396  EVT VT = N->getValueType(0);
9397  if (VT != MVT::i64)
9398    return SDValue();
9399
9400  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9401  if (!C)
9402    return SDValue();
9403  uint64_t MulAmt = C->getZExtValue();
9404  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
9405    return SDValue();
9406
9407  uint64_t MulAmt1 = 0;
9408  uint64_t MulAmt2 = 0;
9409  if ((MulAmt % 9) == 0) {
9410    MulAmt1 = 9;
9411    MulAmt2 = MulAmt / 9;
9412  } else if ((MulAmt % 5) == 0) {
9413    MulAmt1 = 5;
9414    MulAmt2 = MulAmt / 5;
9415  } else if ((MulAmt % 3) == 0) {
9416    MulAmt1 = 3;
9417    MulAmt2 = MulAmt / 3;
9418  }
9419  if (MulAmt2 &&
9420      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
9421    DebugLoc DL = N->getDebugLoc();
9422
9423    if (isPowerOf2_64(MulAmt2) &&
9424        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
9425      // If second multiplifer is pow2, issue it first. We want the multiply by
9426      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
9427      // is an add.
9428      std::swap(MulAmt1, MulAmt2);
9429
9430    SDValue NewMul;
9431    if (isPowerOf2_64(MulAmt1))
9432      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
9433                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
9434    else
9435      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
9436                           DAG.getConstant(MulAmt1, VT));
9437
9438    if (isPowerOf2_64(MulAmt2))
9439      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
9440                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
9441    else
9442      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
9443                           DAG.getConstant(MulAmt2, VT));
9444
9445    // Do not add new nodes to DAG combiner worklist.
9446    DCI.CombineTo(N, NewMul, false);
9447  }
9448  return SDValue();
9449}
9450
9451static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
9452  SDValue N0 = N->getOperand(0);
9453  SDValue N1 = N->getOperand(1);
9454  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9455  EVT VT = N0.getValueType();
9456
9457  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
9458  // since the result of setcc_c is all zero's or all ones.
9459  if (N1C && N0.getOpcode() == ISD::AND &&
9460      N0.getOperand(1).getOpcode() == ISD::Constant) {
9461    SDValue N00 = N0.getOperand(0);
9462    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
9463        ((N00.getOpcode() == ISD::ANY_EXTEND ||
9464          N00.getOpcode() == ISD::ZERO_EXTEND) &&
9465         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
9466      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9467      APInt ShAmt = N1C->getAPIntValue();
9468      Mask = Mask.shl(ShAmt);
9469      if (Mask != 0)
9470        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9471                           N00, DAG.getConstant(Mask, VT));
9472    }
9473  }
9474
9475  return SDValue();
9476}
9477
9478/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
9479///                       when possible.
9480static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
9481                                   const X86Subtarget *Subtarget) {
9482  EVT VT = N->getValueType(0);
9483  if (!VT.isVector() && VT.isInteger() &&
9484      N->getOpcode() == ISD::SHL)
9485    return PerformSHLCombine(N, DAG);
9486
9487  // On X86 with SSE2 support, we can transform this to a vector shift if
9488  // all elements are shifted by the same amount.  We can't do this in legalize
9489  // because the a constant vector is typically transformed to a constant pool
9490  // so we have no knowledge of the shift amount.
9491  if (!Subtarget->hasSSE2())
9492    return SDValue();
9493
9494  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
9495    return SDValue();
9496
9497  SDValue ShAmtOp = N->getOperand(1);
9498  EVT EltVT = VT.getVectorElementType();
9499  DebugLoc DL = N->getDebugLoc();
9500  SDValue BaseShAmt = SDValue();
9501  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
9502    unsigned NumElts = VT.getVectorNumElements();
9503    unsigned i = 0;
9504    for (; i != NumElts; ++i) {
9505      SDValue Arg = ShAmtOp.getOperand(i);
9506      if (Arg.getOpcode() == ISD::UNDEF) continue;
9507      BaseShAmt = Arg;
9508      break;
9509    }
9510    for (; i != NumElts; ++i) {
9511      SDValue Arg = ShAmtOp.getOperand(i);
9512      if (Arg.getOpcode() == ISD::UNDEF) continue;
9513      if (Arg != BaseShAmt) {
9514        return SDValue();
9515      }
9516    }
9517  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
9518             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
9519    SDValue InVec = ShAmtOp.getOperand(0);
9520    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
9521      unsigned NumElts = InVec.getValueType().getVectorNumElements();
9522      unsigned i = 0;
9523      for (; i != NumElts; ++i) {
9524        SDValue Arg = InVec.getOperand(i);
9525        if (Arg.getOpcode() == ISD::UNDEF) continue;
9526        BaseShAmt = Arg;
9527        break;
9528      }
9529    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
9530       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
9531         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
9532         if (C->getZExtValue() == SplatIdx)
9533           BaseShAmt = InVec.getOperand(1);
9534       }
9535    }
9536    if (BaseShAmt.getNode() == 0)
9537      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
9538                              DAG.getIntPtrConstant(0));
9539  } else
9540    return SDValue();
9541
9542  // The shift amount is an i32.
9543  if (EltVT.bitsGT(MVT::i32))
9544    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
9545  else if (EltVT.bitsLT(MVT::i32))
9546    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
9547
9548  // The shift amount is identical so we can do a vector shift.
9549  SDValue  ValOp = N->getOperand(0);
9550  switch (N->getOpcode()) {
9551  default:
9552    llvm_unreachable("Unknown shift opcode!");
9553    break;
9554  case ISD::SHL:
9555    if (VT == MVT::v2i64)
9556      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9557                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9558                         ValOp, BaseShAmt);
9559    if (VT == MVT::v4i32)
9560      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9561                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9562                         ValOp, BaseShAmt);
9563    if (VT == MVT::v8i16)
9564      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9565                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9566                         ValOp, BaseShAmt);
9567    break;
9568  case ISD::SRA:
9569    if (VT == MVT::v4i32)
9570      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9571                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9572                         ValOp, BaseShAmt);
9573    if (VT == MVT::v8i16)
9574      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9575                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9576                         ValOp, BaseShAmt);
9577    break;
9578  case ISD::SRL:
9579    if (VT == MVT::v2i64)
9580      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9581                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9582                         ValOp, BaseShAmt);
9583    if (VT == MVT::v4i32)
9584      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9585                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9586                         ValOp, BaseShAmt);
9587    if (VT ==  MVT::v8i16)
9588      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9589                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9590                         ValOp, BaseShAmt);
9591    break;
9592  }
9593  return SDValue();
9594}
9595
9596static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
9597                                const X86Subtarget *Subtarget) {
9598  EVT VT = N->getValueType(0);
9599  if (VT != MVT::i64 || !Subtarget->is64Bit())
9600    return SDValue();
9601
9602  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
9603  SDValue N0 = N->getOperand(0);
9604  SDValue N1 = N->getOperand(1);
9605  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
9606    std::swap(N0, N1);
9607  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
9608    return SDValue();
9609
9610  SDValue ShAmt0 = N0.getOperand(1);
9611  if (ShAmt0.getValueType() != MVT::i8)
9612    return SDValue();
9613  SDValue ShAmt1 = N1.getOperand(1);
9614  if (ShAmt1.getValueType() != MVT::i8)
9615    return SDValue();
9616  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
9617    ShAmt0 = ShAmt0.getOperand(0);
9618  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
9619    ShAmt1 = ShAmt1.getOperand(0);
9620
9621  DebugLoc DL = N->getDebugLoc();
9622  unsigned Opc = X86ISD::SHLD;
9623  SDValue Op0 = N0.getOperand(0);
9624  SDValue Op1 = N1.getOperand(0);
9625  if (ShAmt0.getOpcode() == ISD::SUB) {
9626    Opc = X86ISD::SHRD;
9627    std::swap(Op0, Op1);
9628    std::swap(ShAmt0, ShAmt1);
9629  }
9630
9631  if (ShAmt1.getOpcode() == ISD::SUB) {
9632    SDValue Sum = ShAmt1.getOperand(0);
9633    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
9634      if (SumC->getSExtValue() == 64 &&
9635          ShAmt1.getOperand(1) == ShAmt0)
9636        return DAG.getNode(Opc, DL, VT,
9637                           Op0, Op1,
9638                           DAG.getNode(ISD::TRUNCATE, DL,
9639                                       MVT::i8, ShAmt0));
9640    }
9641  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
9642    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
9643    if (ShAmt0C &&
9644        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == 64)
9645      return DAG.getNode(Opc, DL, VT,
9646                         N0.getOperand(0), N1.getOperand(0),
9647                         DAG.getNode(ISD::TRUNCATE, DL,
9648                                       MVT::i8, ShAmt0));
9649  }
9650
9651  return SDValue();
9652}
9653
9654/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
9655static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
9656                                   const X86Subtarget *Subtarget) {
9657  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
9658  // the FP state in cases where an emms may be missing.
9659  // A preferable solution to the general problem is to figure out the right
9660  // places to insert EMMS.  This qualifies as a quick hack.
9661
9662  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
9663  StoreSDNode *St = cast<StoreSDNode>(N);
9664  EVT VT = St->getValue().getValueType();
9665  if (VT.getSizeInBits() != 64)
9666    return SDValue();
9667
9668  const Function *F = DAG.getMachineFunction().getFunction();
9669  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
9670  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
9671    && Subtarget->hasSSE2();
9672  if ((VT.isVector() ||
9673       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
9674      isa<LoadSDNode>(St->getValue()) &&
9675      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
9676      St->getChain().hasOneUse() && !St->isVolatile()) {
9677    SDNode* LdVal = St->getValue().getNode();
9678    LoadSDNode *Ld = 0;
9679    int TokenFactorIndex = -1;
9680    SmallVector<SDValue, 8> Ops;
9681    SDNode* ChainVal = St->getChain().getNode();
9682    // Must be a store of a load.  We currently handle two cases:  the load
9683    // is a direct child, and it's under an intervening TokenFactor.  It is
9684    // possible to dig deeper under nested TokenFactors.
9685    if (ChainVal == LdVal)
9686      Ld = cast<LoadSDNode>(St->getChain());
9687    else if (St->getValue().hasOneUse() &&
9688             ChainVal->getOpcode() == ISD::TokenFactor) {
9689      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
9690        if (ChainVal->getOperand(i).getNode() == LdVal) {
9691          TokenFactorIndex = i;
9692          Ld = cast<LoadSDNode>(St->getValue());
9693        } else
9694          Ops.push_back(ChainVal->getOperand(i));
9695      }
9696    }
9697
9698    if (!Ld || !ISD::isNormalLoad(Ld))
9699      return SDValue();
9700
9701    // If this is not the MMX case, i.e. we are just turning i64 load/store
9702    // into f64 load/store, avoid the transformation if there are multiple
9703    // uses of the loaded value.
9704    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
9705      return SDValue();
9706
9707    DebugLoc LdDL = Ld->getDebugLoc();
9708    DebugLoc StDL = N->getDebugLoc();
9709    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
9710    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
9711    // pair instead.
9712    if (Subtarget->is64Bit() || F64IsLegal) {
9713      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
9714      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
9715                                  Ld->getBasePtr(), Ld->getSrcValue(),
9716                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
9717                                  Ld->isNonTemporal(), Ld->getAlignment());
9718      SDValue NewChain = NewLd.getValue(1);
9719      if (TokenFactorIndex != -1) {
9720        Ops.push_back(NewChain);
9721        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9722                               Ops.size());
9723      }
9724      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
9725                          St->getSrcValue(), St->getSrcValueOffset(),
9726                          St->isVolatile(), St->isNonTemporal(),
9727                          St->getAlignment());
9728    }
9729
9730    // Otherwise, lower to two pairs of 32-bit loads / stores.
9731    SDValue LoAddr = Ld->getBasePtr();
9732    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
9733                                 DAG.getConstant(4, MVT::i32));
9734
9735    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
9736                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
9737                               Ld->isVolatile(), Ld->isNonTemporal(),
9738                               Ld->getAlignment());
9739    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
9740                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
9741                               Ld->isVolatile(), Ld->isNonTemporal(),
9742                               MinAlign(Ld->getAlignment(), 4));
9743
9744    SDValue NewChain = LoLd.getValue(1);
9745    if (TokenFactorIndex != -1) {
9746      Ops.push_back(LoLd);
9747      Ops.push_back(HiLd);
9748      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9749                             Ops.size());
9750    }
9751
9752    LoAddr = St->getBasePtr();
9753    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
9754                         DAG.getConstant(4, MVT::i32));
9755
9756    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
9757                                St->getSrcValue(), St->getSrcValueOffset(),
9758                                St->isVolatile(), St->isNonTemporal(),
9759                                St->getAlignment());
9760    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
9761                                St->getSrcValue(),
9762                                St->getSrcValueOffset() + 4,
9763                                St->isVolatile(),
9764                                St->isNonTemporal(),
9765                                MinAlign(St->getAlignment(), 4));
9766    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
9767  }
9768  return SDValue();
9769}
9770
9771/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
9772/// X86ISD::FXOR nodes.
9773static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
9774  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
9775  // F[X]OR(0.0, x) -> x
9776  // F[X]OR(x, 0.0) -> x
9777  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9778    if (C->getValueAPF().isPosZero())
9779      return N->getOperand(1);
9780  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9781    if (C->getValueAPF().isPosZero())
9782      return N->getOperand(0);
9783  return SDValue();
9784}
9785
9786/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
9787static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
9788  // FAND(0.0, x) -> 0.0
9789  // FAND(x, 0.0) -> 0.0
9790  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9791    if (C->getValueAPF().isPosZero())
9792      return N->getOperand(0);
9793  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9794    if (C->getValueAPF().isPosZero())
9795      return N->getOperand(1);
9796  return SDValue();
9797}
9798
9799static SDValue PerformBTCombine(SDNode *N,
9800                                SelectionDAG &DAG,
9801                                TargetLowering::DAGCombinerInfo &DCI) {
9802  // BT ignores high bits in the bit index operand.
9803  SDValue Op1 = N->getOperand(1);
9804  if (Op1.hasOneUse()) {
9805    unsigned BitWidth = Op1.getValueSizeInBits();
9806    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
9807    APInt KnownZero, KnownOne;
9808    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
9809                                          !DCI.isBeforeLegalizeOps());
9810    TargetLowering &TLI = DAG.getTargetLoweringInfo();
9811    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
9812        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
9813      DCI.CommitTargetLoweringOpt(TLO);
9814  }
9815  return SDValue();
9816}
9817
9818static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
9819  SDValue Op = N->getOperand(0);
9820  if (Op.getOpcode() == ISD::BIT_CONVERT)
9821    Op = Op.getOperand(0);
9822  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
9823  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
9824      VT.getVectorElementType().getSizeInBits() ==
9825      OpVT.getVectorElementType().getSizeInBits()) {
9826    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
9827  }
9828  return SDValue();
9829}
9830
9831// On X86 and X86-64, atomic operations are lowered to locked instructions.
9832// Locked instructions, in turn, have implicit fence semantics (all memory
9833// operations are flushed before issuing the locked instruction, and the
9834// are not buffered), so we can fold away the common pattern of
9835// fence-atomic-fence.
9836static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
9837  SDValue atomic = N->getOperand(0);
9838  switch (atomic.getOpcode()) {
9839    case ISD::ATOMIC_CMP_SWAP:
9840    case ISD::ATOMIC_SWAP:
9841    case ISD::ATOMIC_LOAD_ADD:
9842    case ISD::ATOMIC_LOAD_SUB:
9843    case ISD::ATOMIC_LOAD_AND:
9844    case ISD::ATOMIC_LOAD_OR:
9845    case ISD::ATOMIC_LOAD_XOR:
9846    case ISD::ATOMIC_LOAD_NAND:
9847    case ISD::ATOMIC_LOAD_MIN:
9848    case ISD::ATOMIC_LOAD_MAX:
9849    case ISD::ATOMIC_LOAD_UMIN:
9850    case ISD::ATOMIC_LOAD_UMAX:
9851      break;
9852    default:
9853      return SDValue();
9854  }
9855
9856  SDValue fence = atomic.getOperand(0);
9857  if (fence.getOpcode() != ISD::MEMBARRIER)
9858    return SDValue();
9859
9860  switch (atomic.getOpcode()) {
9861    case ISD::ATOMIC_CMP_SWAP:
9862      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9863                                    atomic.getOperand(1), atomic.getOperand(2),
9864                                    atomic.getOperand(3));
9865    case ISD::ATOMIC_SWAP:
9866    case ISD::ATOMIC_LOAD_ADD:
9867    case ISD::ATOMIC_LOAD_SUB:
9868    case ISD::ATOMIC_LOAD_AND:
9869    case ISD::ATOMIC_LOAD_OR:
9870    case ISD::ATOMIC_LOAD_XOR:
9871    case ISD::ATOMIC_LOAD_NAND:
9872    case ISD::ATOMIC_LOAD_MIN:
9873    case ISD::ATOMIC_LOAD_MAX:
9874    case ISD::ATOMIC_LOAD_UMIN:
9875    case ISD::ATOMIC_LOAD_UMAX:
9876      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9877                                    atomic.getOperand(1), atomic.getOperand(2));
9878    default:
9879      return SDValue();
9880  }
9881}
9882
9883static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
9884  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
9885  //           (and (i32 x86isd::setcc_carry), 1)
9886  // This eliminates the zext. This transformation is necessary because
9887  // ISD::SETCC is always legalized to i8.
9888  DebugLoc dl = N->getDebugLoc();
9889  SDValue N0 = N->getOperand(0);
9890  EVT VT = N->getValueType(0);
9891  if (N0.getOpcode() == ISD::AND &&
9892      N0.hasOneUse() &&
9893      N0.getOperand(0).hasOneUse()) {
9894    SDValue N00 = N0.getOperand(0);
9895    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
9896      return SDValue();
9897    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9898    if (!C || C->getZExtValue() != 1)
9899      return SDValue();
9900    return DAG.getNode(ISD::AND, dl, VT,
9901                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
9902                                   N00.getOperand(0), N00.getOperand(1)),
9903                       DAG.getConstant(1, VT));
9904  }
9905
9906  return SDValue();
9907}
9908
9909SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
9910                                             DAGCombinerInfo &DCI) const {
9911  SelectionDAG &DAG = DCI.DAG;
9912  switch (N->getOpcode()) {
9913  default: break;
9914  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
9915  case ISD::EXTRACT_VECTOR_ELT:
9916                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
9917  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
9918  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
9919  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
9920  case ISD::SHL:
9921  case ISD::SRA:
9922  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
9923  case ISD::OR:             return PerformOrCombine(N, DAG, Subtarget);
9924  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
9925  case X86ISD::FXOR:
9926  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
9927  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
9928  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
9929  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
9930  case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
9931  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
9932  }
9933
9934  return SDValue();
9935}
9936
9937/// isTypeDesirableForOp - Return true if the target has native support for
9938/// the specified value type and it is 'desirable' to use the type for the
9939/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
9940/// instruction encodings are longer and some i16 instructions are slow.
9941bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
9942  if (!isTypeLegal(VT))
9943    return false;
9944  if (!Promote16Bit || VT != MVT::i16)
9945    return true;
9946
9947  switch (Opc) {
9948  default:
9949    return true;
9950  case ISD::SHL:
9951  case ISD::SRA:
9952  case ISD::SRL:
9953  case ISD::SUB:
9954  case ISD::ADD:
9955  case ISD::MUL:
9956  case ISD::AND:
9957  case ISD::OR:
9958  case ISD::XOR:
9959    return false;
9960  }
9961}
9962
9963/// IsDesirableToPromoteOp - This method query the target whether it is
9964/// beneficial for dag combiner to promote the specified node. If true, it
9965/// should return the desired promotion type by reference.
9966bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
9967  if (!Promote16Bit)
9968    return false;
9969
9970  EVT VT = Op.getValueType();
9971  if (VT != MVT::i16)
9972    return false;
9973
9974  bool Commute = true;
9975  switch (Op.getOpcode()) {
9976  default: return false;
9977  case ISD::SHL:
9978  case ISD::SRA:
9979  case ISD::SRL: {
9980    SDValue N0 = Op.getOperand(0);
9981    // Look out for (store (shl (load), x)).
9982    if (isa<LoadSDNode>(N0) && N0.hasOneUse() &&
9983        Op.hasOneUse() && Op.getNode()->use_begin()->getOpcode() == ISD::STORE)
9984      return false;
9985    break;
9986  }
9987  case ISD::SUB:
9988    Commute = false;
9989    // fallthrough
9990  case ISD::ADD:
9991  case ISD::MUL:
9992  case ISD::AND:
9993  case ISD::OR:
9994  case ISD::XOR: {
9995    SDValue N0 = Op.getOperand(0);
9996    SDValue N1 = Op.getOperand(1);
9997    if (!Commute && isa<LoadSDNode>(N1))
9998      return false;
9999    // Avoid disabling potential load folding opportunities.
10000    if ((isa<LoadSDNode>(N0) && N0.hasOneUse()) && !isa<ConstantSDNode>(N1))
10001      return false;
10002    if ((isa<LoadSDNode>(N1) && N1.hasOneUse()) && !isa<ConstantSDNode>(N0))
10003      return false;
10004  }
10005  }
10006
10007  PVT = MVT::i32;
10008  return true;
10009}
10010
10011//===----------------------------------------------------------------------===//
10012//                           X86 Inline Assembly Support
10013//===----------------------------------------------------------------------===//
10014
10015static bool LowerToBSwap(CallInst *CI) {
10016  // FIXME: this should verify that we are targetting a 486 or better.  If not,
10017  // we will turn this bswap into something that will be lowered to logical ops
10018  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
10019  // so don't worry about this.
10020
10021  // Verify this is a simple bswap.
10022  if (CI->getNumOperands() != 2 ||
10023      CI->getType() != CI->getOperand(1)->getType() ||
10024      !CI->getType()->isIntegerTy())
10025    return false;
10026
10027  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
10028  if (!Ty || Ty->getBitWidth() % 16 != 0)
10029    return false;
10030
10031  // Okay, we can do this xform, do so now.
10032  const Type *Tys[] = { Ty };
10033  Module *M = CI->getParent()->getParent()->getParent();
10034  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
10035
10036  Value *Op = CI->getOperand(1);
10037  Op = CallInst::Create(Int, Op, CI->getName(), CI);
10038
10039  CI->replaceAllUsesWith(Op);
10040  CI->eraseFromParent();
10041  return true;
10042}
10043
10044bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
10045  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
10046  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
10047
10048  std::string AsmStr = IA->getAsmString();
10049
10050  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
10051  SmallVector<StringRef, 4> AsmPieces;
10052  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
10053
10054  switch (AsmPieces.size()) {
10055  default: return false;
10056  case 1:
10057    AsmStr = AsmPieces[0];
10058    AsmPieces.clear();
10059    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
10060
10061    // bswap $0
10062    if (AsmPieces.size() == 2 &&
10063        (AsmPieces[0] == "bswap" ||
10064         AsmPieces[0] == "bswapq" ||
10065         AsmPieces[0] == "bswapl") &&
10066        (AsmPieces[1] == "$0" ||
10067         AsmPieces[1] == "${0:q}")) {
10068      // No need to check constraints, nothing other than the equivalent of
10069      // "=r,0" would be valid here.
10070      return LowerToBSwap(CI);
10071    }
10072    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
10073    if (CI->getType()->isIntegerTy(16) &&
10074        AsmPieces.size() == 3 &&
10075        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
10076        AsmPieces[1] == "$$8," &&
10077        AsmPieces[2] == "${0:w}" &&
10078        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
10079      AsmPieces.clear();
10080      const std::string &Constraints = IA->getConstraintString();
10081      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
10082      std::sort(AsmPieces.begin(), AsmPieces.end());
10083      if (AsmPieces.size() == 4 &&
10084          AsmPieces[0] == "~{cc}" &&
10085          AsmPieces[1] == "~{dirflag}" &&
10086          AsmPieces[2] == "~{flags}" &&
10087          AsmPieces[3] == "~{fpsr}") {
10088        return LowerToBSwap(CI);
10089      }
10090    }
10091    break;
10092  case 3:
10093    if (CI->getType()->isIntegerTy(64) &&
10094        Constraints.size() >= 2 &&
10095        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
10096        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
10097      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
10098      SmallVector<StringRef, 4> Words;
10099      SplitString(AsmPieces[0], Words, " \t");
10100      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
10101        Words.clear();
10102        SplitString(AsmPieces[1], Words, " \t");
10103        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
10104          Words.clear();
10105          SplitString(AsmPieces[2], Words, " \t,");
10106          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
10107              Words[2] == "%edx") {
10108            return LowerToBSwap(CI);
10109          }
10110        }
10111      }
10112    }
10113    break;
10114  }
10115  return false;
10116}
10117
10118
10119
10120/// getConstraintType - Given a constraint letter, return the type of
10121/// constraint it is for this target.
10122X86TargetLowering::ConstraintType
10123X86TargetLowering::getConstraintType(const std::string &Constraint) const {
10124  if (Constraint.size() == 1) {
10125    switch (Constraint[0]) {
10126    case 'A':
10127      return C_Register;
10128    case 'f':
10129    case 'r':
10130    case 'R':
10131    case 'l':
10132    case 'q':
10133    case 'Q':
10134    case 'x':
10135    case 'y':
10136    case 'Y':
10137      return C_RegisterClass;
10138    case 'e':
10139    case 'Z':
10140      return C_Other;
10141    default:
10142      break;
10143    }
10144  }
10145  return TargetLowering::getConstraintType(Constraint);
10146}
10147
10148/// LowerXConstraint - try to replace an X constraint, which matches anything,
10149/// with another that has more specific requirements based on the type of the
10150/// corresponding operand.
10151const char *X86TargetLowering::
10152LowerXConstraint(EVT ConstraintVT) const {
10153  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
10154  // 'f' like normal targets.
10155  if (ConstraintVT.isFloatingPoint()) {
10156    if (Subtarget->hasSSE2())
10157      return "Y";
10158    if (Subtarget->hasSSE1())
10159      return "x";
10160  }
10161
10162  return TargetLowering::LowerXConstraint(ConstraintVT);
10163}
10164
10165/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10166/// vector.  If it is invalid, don't add anything to Ops.
10167void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10168                                                     char Constraint,
10169                                                     bool hasMemory,
10170                                                     std::vector<SDValue>&Ops,
10171                                                     SelectionDAG &DAG) const {
10172  SDValue Result(0, 0);
10173
10174  switch (Constraint) {
10175  default: break;
10176  case 'I':
10177    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10178      if (C->getZExtValue() <= 31) {
10179        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10180        break;
10181      }
10182    }
10183    return;
10184  case 'J':
10185    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10186      if (C->getZExtValue() <= 63) {
10187        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10188        break;
10189      }
10190    }
10191    return;
10192  case 'K':
10193    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10194      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
10195        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10196        break;
10197      }
10198    }
10199    return;
10200  case 'N':
10201    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10202      if (C->getZExtValue() <= 255) {
10203        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10204        break;
10205      }
10206    }
10207    return;
10208  case 'e': {
10209    // 32-bit signed value
10210    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10211      const ConstantInt *CI = C->getConstantIntValue();
10212      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10213                                  C->getSExtValue())) {
10214        // Widen to 64 bits here to get it sign extended.
10215        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
10216        break;
10217      }
10218    // FIXME gcc accepts some relocatable values here too, but only in certain
10219    // memory models; it's complicated.
10220    }
10221    return;
10222  }
10223  case 'Z': {
10224    // 32-bit unsigned value
10225    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10226      const ConstantInt *CI = C->getConstantIntValue();
10227      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10228                                  C->getZExtValue())) {
10229        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10230        break;
10231      }
10232    }
10233    // FIXME gcc accepts some relocatable values here too, but only in certain
10234    // memory models; it's complicated.
10235    return;
10236  }
10237  case 'i': {
10238    // Literal immediates are always ok.
10239    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
10240      // Widen to 64 bits here to get it sign extended.
10241      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
10242      break;
10243    }
10244
10245    // If we are in non-pic codegen mode, we allow the address of a global (with
10246    // an optional displacement) to be used with 'i'.
10247    GlobalAddressSDNode *GA = 0;
10248    int64_t Offset = 0;
10249
10250    // Match either (GA), (GA+C), (GA+C1+C2), etc.
10251    while (1) {
10252      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
10253        Offset += GA->getOffset();
10254        break;
10255      } else if (Op.getOpcode() == ISD::ADD) {
10256        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10257          Offset += C->getZExtValue();
10258          Op = Op.getOperand(0);
10259          continue;
10260        }
10261      } else if (Op.getOpcode() == ISD::SUB) {
10262        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10263          Offset += -C->getZExtValue();
10264          Op = Op.getOperand(0);
10265          continue;
10266        }
10267      }
10268
10269      // Otherwise, this isn't something we can handle, reject it.
10270      return;
10271    }
10272
10273    const GlobalValue *GV = GA->getGlobal();
10274    // If we require an extra load to get this address, as in PIC mode, we
10275    // can't accept it.
10276    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
10277                                                        getTargetMachine())))
10278      return;
10279
10280    if (hasMemory)
10281      Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
10282    else
10283      Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
10284    Result = Op;
10285    break;
10286  }
10287  }
10288
10289  if (Result.getNode()) {
10290    Ops.push_back(Result);
10291    return;
10292  }
10293  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
10294                                                      Ops, DAG);
10295}
10296
10297std::vector<unsigned> X86TargetLowering::
10298getRegClassForInlineAsmConstraint(const std::string &Constraint,
10299                                  EVT VT) const {
10300  if (Constraint.size() == 1) {
10301    // FIXME: not handling fp-stack yet!
10302    switch (Constraint[0]) {      // GCC X86 Constraint Letters
10303    default: break;  // Unknown constraint letter
10304    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
10305      if (Subtarget->is64Bit()) {
10306        if (VT == MVT::i32)
10307          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
10308                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
10309                                       X86::R10D,X86::R11D,X86::R12D,
10310                                       X86::R13D,X86::R14D,X86::R15D,
10311                                       X86::EBP, X86::ESP, 0);
10312        else if (VT == MVT::i16)
10313          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
10314                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
10315                                       X86::R10W,X86::R11W,X86::R12W,
10316                                       X86::R13W,X86::R14W,X86::R15W,
10317                                       X86::BP,  X86::SP, 0);
10318        else if (VT == MVT::i8)
10319          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
10320                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10321                                       X86::R10B,X86::R11B,X86::R12B,
10322                                       X86::R13B,X86::R14B,X86::R15B,
10323                                       X86::BPL, X86::SPL, 0);
10324
10325        else if (VT == MVT::i64)
10326          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10327                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10328                                       X86::R10, X86::R11, X86::R12,
10329                                       X86::R13, X86::R14, X86::R15,
10330                                       X86::RBP, X86::RSP, 0);
10331
10332        break;
10333      }
10334      // 32-bit fallthrough
10335    case 'Q':   // Q_REGS
10336      if (VT == MVT::i32)
10337        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10338      else if (VT == MVT::i16)
10339        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10340      else if (VT == MVT::i8)
10341        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10342      else if (VT == MVT::i64)
10343        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10344      break;
10345    }
10346  }
10347
10348  return std::vector<unsigned>();
10349}
10350
10351std::pair<unsigned, const TargetRegisterClass*>
10352X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10353                                                EVT VT) const {
10354  // First, see if this is a constraint that directly corresponds to an LLVM
10355  // register class.
10356  if (Constraint.size() == 1) {
10357    // GCC Constraint Letters
10358    switch (Constraint[0]) {
10359    default: break;
10360    case 'r':   // GENERAL_REGS
10361    case 'l':   // INDEX_REGS
10362      if (VT == MVT::i8)
10363        return std::make_pair(0U, X86::GR8RegisterClass);
10364      if (VT == MVT::i16)
10365        return std::make_pair(0U, X86::GR16RegisterClass);
10366      if (VT == MVT::i32 || !Subtarget->is64Bit())
10367        return std::make_pair(0U, X86::GR32RegisterClass);
10368      return std::make_pair(0U, X86::GR64RegisterClass);
10369    case 'R':   // LEGACY_REGS
10370      if (VT == MVT::i8)
10371        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10372      if (VT == MVT::i16)
10373        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10374      if (VT == MVT::i32 || !Subtarget->is64Bit())
10375        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10376      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10377    case 'f':  // FP Stack registers.
10378      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10379      // value to the correct fpstack register class.
10380      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10381        return std::make_pair(0U, X86::RFP32RegisterClass);
10382      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10383        return std::make_pair(0U, X86::RFP64RegisterClass);
10384      return std::make_pair(0U, X86::RFP80RegisterClass);
10385    case 'y':   // MMX_REGS if MMX allowed.
10386      if (!Subtarget->hasMMX()) break;
10387      return std::make_pair(0U, X86::VR64RegisterClass);
10388    case 'Y':   // SSE_REGS if SSE2 allowed
10389      if (!Subtarget->hasSSE2()) break;
10390      // FALL THROUGH.
10391    case 'x':   // SSE_REGS if SSE1 allowed
10392      if (!Subtarget->hasSSE1()) break;
10393
10394      switch (VT.getSimpleVT().SimpleTy) {
10395      default: break;
10396      // Scalar SSE types.
10397      case MVT::f32:
10398      case MVT::i32:
10399        return std::make_pair(0U, X86::FR32RegisterClass);
10400      case MVT::f64:
10401      case MVT::i64:
10402        return std::make_pair(0U, X86::FR64RegisterClass);
10403      // Vector types.
10404      case MVT::v16i8:
10405      case MVT::v8i16:
10406      case MVT::v4i32:
10407      case MVT::v2i64:
10408      case MVT::v4f32:
10409      case MVT::v2f64:
10410        return std::make_pair(0U, X86::VR128RegisterClass);
10411      }
10412      break;
10413    }
10414  }
10415
10416  // Use the default implementation in TargetLowering to convert the register
10417  // constraint into a member of a register class.
10418  std::pair<unsigned, const TargetRegisterClass*> Res;
10419  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10420
10421  // Not found as a standard register?
10422  if (Res.second == 0) {
10423    // Map st(0) -> st(7) -> ST0
10424    if (Constraint.size() == 7 && Constraint[0] == '{' &&
10425        tolower(Constraint[1]) == 's' &&
10426        tolower(Constraint[2]) == 't' &&
10427        Constraint[3] == '(' &&
10428        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
10429        Constraint[5] == ')' &&
10430        Constraint[6] == '}') {
10431
10432      Res.first = X86::ST0+Constraint[4]-'0';
10433      Res.second = X86::RFP80RegisterClass;
10434      return Res;
10435    }
10436
10437    // GCC allows "st(0)" to be called just plain "st".
10438    if (StringRef("{st}").equals_lower(Constraint)) {
10439      Res.first = X86::ST0;
10440      Res.second = X86::RFP80RegisterClass;
10441      return Res;
10442    }
10443
10444    // flags -> EFLAGS
10445    if (StringRef("{flags}").equals_lower(Constraint)) {
10446      Res.first = X86::EFLAGS;
10447      Res.second = X86::CCRRegisterClass;
10448      return Res;
10449    }
10450
10451    // 'A' means EAX + EDX.
10452    if (Constraint == "A") {
10453      Res.first = X86::EAX;
10454      Res.second = X86::GR32_ADRegisterClass;
10455      return Res;
10456    }
10457    return Res;
10458  }
10459
10460  // Otherwise, check to see if this is a register class of the wrong value
10461  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
10462  // turn into {ax},{dx}.
10463  if (Res.second->hasType(VT))
10464    return Res;   // Correct type already, nothing to do.
10465
10466  // All of the single-register GCC register classes map their values onto
10467  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
10468  // really want an 8-bit or 32-bit register, map to the appropriate register
10469  // class and return the appropriate register.
10470  if (Res.second == X86::GR16RegisterClass) {
10471    if (VT == MVT::i8) {
10472      unsigned DestReg = 0;
10473      switch (Res.first) {
10474      default: break;
10475      case X86::AX: DestReg = X86::AL; break;
10476      case X86::DX: DestReg = X86::DL; break;
10477      case X86::CX: DestReg = X86::CL; break;
10478      case X86::BX: DestReg = X86::BL; break;
10479      }
10480      if (DestReg) {
10481        Res.first = DestReg;
10482        Res.second = X86::GR8RegisterClass;
10483      }
10484    } else if (VT == MVT::i32) {
10485      unsigned DestReg = 0;
10486      switch (Res.first) {
10487      default: break;
10488      case X86::AX: DestReg = X86::EAX; break;
10489      case X86::DX: DestReg = X86::EDX; break;
10490      case X86::CX: DestReg = X86::ECX; break;
10491      case X86::BX: DestReg = X86::EBX; break;
10492      case X86::SI: DestReg = X86::ESI; break;
10493      case X86::DI: DestReg = X86::EDI; break;
10494      case X86::BP: DestReg = X86::EBP; break;
10495      case X86::SP: DestReg = X86::ESP; break;
10496      }
10497      if (DestReg) {
10498        Res.first = DestReg;
10499        Res.second = X86::GR32RegisterClass;
10500      }
10501    } else if (VT == MVT::i64) {
10502      unsigned DestReg = 0;
10503      switch (Res.first) {
10504      default: break;
10505      case X86::AX: DestReg = X86::RAX; break;
10506      case X86::DX: DestReg = X86::RDX; break;
10507      case X86::CX: DestReg = X86::RCX; break;
10508      case X86::BX: DestReg = X86::RBX; break;
10509      case X86::SI: DestReg = X86::RSI; break;
10510      case X86::DI: DestReg = X86::RDI; break;
10511      case X86::BP: DestReg = X86::RBP; break;
10512      case X86::SP: DestReg = X86::RSP; break;
10513      }
10514      if (DestReg) {
10515        Res.first = DestReg;
10516        Res.second = X86::GR64RegisterClass;
10517      }
10518    }
10519  } else if (Res.second == X86::FR32RegisterClass ||
10520             Res.second == X86::FR64RegisterClass ||
10521             Res.second == X86::VR128RegisterClass) {
10522    // Handle references to XMM physical registers that got mapped into the
10523    // wrong class.  This can happen with constraints like {xmm0} where the
10524    // target independent register mapper will just pick the first match it can
10525    // find, ignoring the required type.
10526    if (VT == MVT::f32)
10527      Res.second = X86::FR32RegisterClass;
10528    else if (VT == MVT::f64)
10529      Res.second = X86::FR64RegisterClass;
10530    else if (X86::VR128RegisterClass->hasType(VT))
10531      Res.second = X86::VR128RegisterClass;
10532  }
10533
10534  return Res;
10535}
10536