X86ISelLowering.cpp revision 24f20e083280d979e8fa1bc88959ae9e8339ee99
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86TargetMachine.h"
19#include "llvm/CallingConv.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/GlobalAlias.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/ADT/BitVector.h"
29#include "llvm/ADT/VectorExtras.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/PseudoSourceValue.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Target/TargetLoweringObjectFile.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/ADT/SmallSet.h"
42#include "llvm/ADT/StringExtras.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/raw_ostream.h"
45using namespace llvm;
46
47static cl::opt<bool>
48DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
49
50// Forward declarations.
51static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
52                       SDValue V2);
53
54static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
55  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
56  default: llvm_unreachable("unknown subtarget type");
57  case X86Subtarget::isDarwin:
58    return new TargetLoweringObjectFileMachO();
59  case X86Subtarget::isELF:
60    return new TargetLoweringObjectFileELF();
61  case X86Subtarget::isMingw:
62  case X86Subtarget::isCygwin:
63  case X86Subtarget::isWindows:
64    return new TargetLoweringObjectFileCOFF();
65  }
66
67}
68
69X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
70  : TargetLowering(TM, createTLOF(TM)) {
71  Subtarget = &TM.getSubtarget<X86Subtarget>();
72  X86ScalarSSEf64 = Subtarget->hasSSE2();
73  X86ScalarSSEf32 = Subtarget->hasSSE1();
74  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
75
76  RegInfo = TM.getRegisterInfo();
77  TD = getTargetData();
78
79  // Set up the TargetLowering object.
80
81  // X86 is weird, it always uses i8 for shift amounts and setcc results.
82  setShiftAmountType(MVT::i8);
83  setBooleanContents(ZeroOrOneBooleanContent);
84  setSchedulingPreference(SchedulingForRegPressure);
85  setStackPointerRegisterToSaveRestore(X86StackPtr);
86
87  if (Subtarget->isTargetDarwin()) {
88    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
89    setUseUnderscoreSetJmp(false);
90    setUseUnderscoreLongJmp(false);
91  } else if (Subtarget->isTargetMingw()) {
92    // MS runtime is weird: it exports _setjmp, but longjmp!
93    setUseUnderscoreSetJmp(true);
94    setUseUnderscoreLongJmp(false);
95  } else {
96    setUseUnderscoreSetJmp(true);
97    setUseUnderscoreLongJmp(true);
98  }
99
100  // Set up the register classes.
101  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
102  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
103  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
104  if (Subtarget->is64Bit())
105    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
106
107  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
108
109  // We don't accept any truncstore of integer registers.
110  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
111  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
112  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
113  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
114  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
115  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
116
117  // SETOEQ and SETUNE require checking two conditions.
118  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
119  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
120  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
121  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
122  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
123  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
124
125  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
126  // operation.
127  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
128  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
129  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
130
131  if (Subtarget->is64Bit()) {
132    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
133    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
134  } else if (!UseSoftFloat) {
135    if (X86ScalarSSEf64) {
136      // We have an impenetrably clever algorithm for ui64->double only.
137      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
138    }
139    // We have an algorithm for SSE2, and we turn this into a 64-bit
140    // FILD for other targets.
141    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
142  }
143
144  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
145  // this operation.
146  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
147  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
148
149  if (!UseSoftFloat) {
150    // SSE has no i16 to fp conversion, only i32
151    if (X86ScalarSSEf32) {
152      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
153      // f32 and f64 cases are Legal, f80 case is not
154      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
155    } else {
156      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
157      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
158    }
159  } else {
160    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
161    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
162  }
163
164  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
165  // are Legal, f80 is custom lowered.
166  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
167  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
168
169  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
170  // this operation.
171  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
172  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
173
174  if (X86ScalarSSEf32) {
175    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
176    // f32 and f64 cases are Legal, f80 case is not
177    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
178  } else {
179    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
180    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
181  }
182
183  // Handle FP_TO_UINT by promoting the destination to a larger signed
184  // conversion.
185  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
186  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
187  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
188
189  if (Subtarget->is64Bit()) {
190    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
191    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
192  } else if (!UseSoftFloat) {
193    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
194      // Expand FP_TO_UINT into a select.
195      // FIXME: We would like to use a Custom expander here eventually to do
196      // the optimal thing for SSE vs. the default expansion in the legalizer.
197      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
198    else
199      // With SSE3 we can use fisttpll to convert to a signed i64; without
200      // SSE, we're stuck with a fistpll.
201      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
202  }
203
204  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
205  if (!X86ScalarSSEf64) {
206    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
207    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
208  }
209
210  // Scalar integer divide and remainder are lowered to use operations that
211  // produce two results, to match the available instructions. This exposes
212  // the two-result form to trivial CSE, which is able to combine x/y and x%y
213  // into a single instruction.
214  //
215  // Scalar integer multiply-high is also lowered to use two-result
216  // operations, to match the available instructions. However, plain multiply
217  // (low) operations are left as Legal, as there are single-result
218  // instructions for this in x86. Using the two-result multiply instructions
219  // when both high and low results are needed must be arranged by dagcombine.
220  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
221  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
222  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
223  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
224  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
225  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
226  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
227  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
228  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
229  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
230  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
231  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
232  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
233  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
234  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
235  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
236  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
237  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
238  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
239  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
240  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
241  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
242  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
243  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
244
245  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
246  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
247  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
248  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
249  if (Subtarget->is64Bit())
250    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
251  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
252  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
253  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
254  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
255  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
256  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
257  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
258  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
259
260  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
261  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
262  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
263  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
264  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
265  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
266  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
267  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
268  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
269  if (Subtarget->is64Bit()) {
270    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
271    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
272    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
273  }
274
275  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
276  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
277
278  // These should be promoted to a larger select which is supported.
279  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
280  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
281  // X86 wants to expand cmov itself.
282  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
283  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
284  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
285  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
286  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
287  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
288  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
289  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
290  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
291  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
292  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
293  if (Subtarget->is64Bit()) {
294    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
295    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
296  }
297  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
298
299  // Darwin ABI issue.
300  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
301  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
302  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
303  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
304  if (Subtarget->is64Bit())
305    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
306  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
307  if (Subtarget->is64Bit()) {
308    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
309    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
310    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
311    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
312  }
313  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
314  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
315  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
316  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
317  if (Subtarget->is64Bit()) {
318    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
319    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
320    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
321  }
322
323  if (Subtarget->hasSSE1())
324    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
325
326  if (!Subtarget->hasSSE2())
327    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
328
329  // Expand certain atomics
330  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
331  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
332  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
333  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
334
335  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
336  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
337  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
338  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
339
340  if (!Subtarget->is64Bit()) {
341    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
342    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
343    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
344    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
345    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
346    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
347    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
348  }
349
350  // Use the default ISD::DBG_STOPPOINT.
351  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
352  // FIXME - use subtarget debug flags
353  if (!Subtarget->isTargetDarwin() &&
354      !Subtarget->isTargetELF() &&
355      !Subtarget->isTargetCygMing()) {
356    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
357    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
358  }
359
360  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
361  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
362  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
363  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
364  if (Subtarget->is64Bit()) {
365    setExceptionPointerRegister(X86::RAX);
366    setExceptionSelectorRegister(X86::RDX);
367  } else {
368    setExceptionPointerRegister(X86::EAX);
369    setExceptionSelectorRegister(X86::EDX);
370  }
371  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
372  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
373
374  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
375
376  setOperationAction(ISD::TRAP, MVT::Other, Legal);
377
378  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
379  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
380  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
381  if (Subtarget->is64Bit()) {
382    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
383    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
384  } else {
385    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
386    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
387  }
388
389  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
390  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
391  if (Subtarget->is64Bit())
392    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
393  if (Subtarget->isTargetCygMing())
394    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
395  else
396    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
397
398  if (!UseSoftFloat && X86ScalarSSEf64) {
399    // f32 and f64 use SSE.
400    // Set up the FP register classes.
401    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
402    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
403
404    // Use ANDPD to simulate FABS.
405    setOperationAction(ISD::FABS , MVT::f64, Custom);
406    setOperationAction(ISD::FABS , MVT::f32, Custom);
407
408    // Use XORP to simulate FNEG.
409    setOperationAction(ISD::FNEG , MVT::f64, Custom);
410    setOperationAction(ISD::FNEG , MVT::f32, Custom);
411
412    // Use ANDPD and ORPD to simulate FCOPYSIGN.
413    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
414    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
415
416    // We don't support sin/cos/fmod
417    setOperationAction(ISD::FSIN , MVT::f64, Expand);
418    setOperationAction(ISD::FCOS , MVT::f64, Expand);
419    setOperationAction(ISD::FSIN , MVT::f32, Expand);
420    setOperationAction(ISD::FCOS , MVT::f32, Expand);
421
422    // Expand FP immediates into loads from the stack, except for the special
423    // cases we handle.
424    addLegalFPImmediate(APFloat(+0.0)); // xorpd
425    addLegalFPImmediate(APFloat(+0.0f)); // xorps
426  } else if (!UseSoftFloat && X86ScalarSSEf32) {
427    // Use SSE for f32, x87 for f64.
428    // Set up the FP register classes.
429    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
430    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
431
432    // Use ANDPS to simulate FABS.
433    setOperationAction(ISD::FABS , MVT::f32, Custom);
434
435    // Use XORP to simulate FNEG.
436    setOperationAction(ISD::FNEG , MVT::f32, Custom);
437
438    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
439
440    // Use ANDPS and ORPS to simulate FCOPYSIGN.
441    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
442    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
443
444    // We don't support sin/cos/fmod
445    setOperationAction(ISD::FSIN , MVT::f32, Expand);
446    setOperationAction(ISD::FCOS , MVT::f32, Expand);
447
448    // Special cases we handle for FP constants.
449    addLegalFPImmediate(APFloat(+0.0f)); // xorps
450    addLegalFPImmediate(APFloat(+0.0)); // FLD0
451    addLegalFPImmediate(APFloat(+1.0)); // FLD1
452    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
453    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
454
455    if (!UnsafeFPMath) {
456      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
457      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
458    }
459  } else if (!UseSoftFloat) {
460    // f32 and f64 in x87.
461    // Set up the FP register classes.
462    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
463    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
464
465    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
466    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
467    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
468    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
469
470    if (!UnsafeFPMath) {
471      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
472      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
473    }
474    addLegalFPImmediate(APFloat(+0.0)); // FLD0
475    addLegalFPImmediate(APFloat(+1.0)); // FLD1
476    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
477    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
478    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
479    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
480    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
481    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
482  }
483
484  // Long double always uses X87.
485  if (!UseSoftFloat) {
486    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
487    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
488    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
489    {
490      bool ignored;
491      APFloat TmpFlt(+0.0);
492      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
493                     &ignored);
494      addLegalFPImmediate(TmpFlt);  // FLD0
495      TmpFlt.changeSign();
496      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
497      APFloat TmpFlt2(+1.0);
498      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
499                      &ignored);
500      addLegalFPImmediate(TmpFlt2);  // FLD1
501      TmpFlt2.changeSign();
502      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
503    }
504
505    if (!UnsafeFPMath) {
506      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
507      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
508    }
509  }
510
511  // Always use a library call for pow.
512  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
513  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
514  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
515
516  setOperationAction(ISD::FLOG, MVT::f80, Expand);
517  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
518  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
519  setOperationAction(ISD::FEXP, MVT::f80, Expand);
520  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
521
522  // First set operation action for all vector types to either promote
523  // (for widening) or expand (for scalarization). Then we will selectively
524  // turn on ones that can be effectively codegen'd.
525  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
526       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
527    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
528    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
529    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
530    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
531    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
532    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
533    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
534    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
535    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
536    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
537    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
538    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
539    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
540    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
541    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
542    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
543    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
544    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
545    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
546    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
547    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
548    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
549    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
550    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
551    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
575  }
576
577  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
578  // with -msoft-float, disable use of MMX as well.
579  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
580    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
581    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
582    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
583    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
584    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
585
586    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
587    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
588    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
589    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
590
591    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
592    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
593    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
594    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
595
596    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
597    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
598
599    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
600    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
601    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
602    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
603    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
604    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
605    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
606
607    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
608    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
609    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
610    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
611    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
612    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
613    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
614
615    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
616    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
617    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
618    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
619    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
620    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
621    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
622
623    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
624    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
625    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
626    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
627    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
628    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
629    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
630    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
631    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
632
633    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
634    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
635    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
636    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
637    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
638
639    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
640    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
641    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
642    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
643
644    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
645    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
646    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
647    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
648
649    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
650
651    setTruncStoreAction(MVT::v8i16,             MVT::v8i8, Expand);
652    setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand);
653    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
654    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
655    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
656    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
657    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
658    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
659    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
660  }
661
662  if (!UseSoftFloat && Subtarget->hasSSE1()) {
663    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
664
665    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
666    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
667    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
668    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
669    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
670    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
671    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
672    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
673    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
674    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
675    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
676    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
677  }
678
679  if (!UseSoftFloat && Subtarget->hasSSE2()) {
680    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
681
682    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
683    // registers cannot be used even for integer operations.
684    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
685    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
686    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
687    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
688
689    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
690    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
691    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
692    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
693    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
694    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
695    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
696    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
697    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
698    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
699    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
700    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
701    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
702    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
703    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
704    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
705
706    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
707    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
708    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
709    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
710
711    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
712    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
713    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
714    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
715    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
716
717    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
718    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
719      EVT VT = (MVT::SimpleValueType)i;
720      // Do not attempt to custom lower non-power-of-2 vectors
721      if (!isPowerOf2_32(VT.getVectorNumElements()))
722        continue;
723      // Do not attempt to custom lower non-128-bit vectors
724      if (!VT.is128BitVector())
725        continue;
726      setOperationAction(ISD::BUILD_VECTOR,
727                         VT.getSimpleVT().SimpleTy, Custom);
728      setOperationAction(ISD::VECTOR_SHUFFLE,
729                         VT.getSimpleVT().SimpleTy, Custom);
730      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
731                         VT.getSimpleVT().SimpleTy, Custom);
732    }
733
734    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
735    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
736    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
737    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
738    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
739    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
740
741    if (Subtarget->is64Bit()) {
742      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
743      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
744    }
745
746    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
747    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
748      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
749      EVT VT = SVT;
750
751      // Do not attempt to promote non-128-bit vectors
752      if (!VT.is128BitVector()) {
753        continue;
754      }
755      setOperationAction(ISD::AND,    SVT, Promote);
756      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
757      setOperationAction(ISD::OR,     SVT, Promote);
758      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
759      setOperationAction(ISD::XOR,    SVT, Promote);
760      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
761      setOperationAction(ISD::LOAD,   SVT, Promote);
762      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
763      setOperationAction(ISD::SELECT, SVT, Promote);
764      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
765    }
766
767    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
768
769    // Custom lower v2i64 and v2f64 selects.
770    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
771    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
772    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
773    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
774
775    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
776    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
777    if (!DisableMMX && Subtarget->hasMMX()) {
778      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
779      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
780    }
781  }
782
783  if (Subtarget->hasSSE41()) {
784    // FIXME: Do we need to handle scalar-to-vector here?
785    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
786
787    // i8 and i16 vectors are custom , because the source register and source
788    // source memory operand types are not the same width.  f32 vectors are
789    // custom since the immediate controlling the insert encodes additional
790    // information.
791    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
792    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
793    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
794    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
795
796    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
797    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
798    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
799    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
800
801    if (Subtarget->is64Bit()) {
802      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
803      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
804    }
805  }
806
807  if (Subtarget->hasSSE42()) {
808    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
809  }
810
811  if (!UseSoftFloat && Subtarget->hasAVX()) {
812    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
813    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
814    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
815    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
816
817    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
818    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
819    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
820    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
821    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
822    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
823    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
824    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
825    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
826    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
827    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
828    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
829    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
830    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
831    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
832
833    // Operations to consider commented out -v16i16 v32i8
834    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
835    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
836    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
837    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
838    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
839    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
840    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
841    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
842    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
843    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
844    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
845    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
846    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
847    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
848
849    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
850    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
851    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
852    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
853
854    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
855    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
856    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
857    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
858    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
859
860    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
861    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
862    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
863    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
864    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
865    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
866
867#if 0
868    // Not sure we want to do this since there are no 256-bit integer
869    // operations in AVX
870
871    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
872    // This includes 256-bit vectors
873    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
874      EVT VT = (MVT::SimpleValueType)i;
875
876      // Do not attempt to custom lower non-power-of-2 vectors
877      if (!isPowerOf2_32(VT.getVectorNumElements()))
878        continue;
879
880      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
881      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
882      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
883    }
884
885    if (Subtarget->is64Bit()) {
886      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
887      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
888    }
889#endif
890
891#if 0
892    // Not sure we want to do this since there are no 256-bit integer
893    // operations in AVX
894
895    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
896    // Including 256-bit vectors
897    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
898      EVT VT = (MVT::SimpleValueType)i;
899
900      if (!VT.is256BitVector()) {
901        continue;
902      }
903      setOperationAction(ISD::AND,    VT, Promote);
904      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
905      setOperationAction(ISD::OR,     VT, Promote);
906      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
907      setOperationAction(ISD::XOR,    VT, Promote);
908      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
909      setOperationAction(ISD::LOAD,   VT, Promote);
910      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
911      setOperationAction(ISD::SELECT, VT, Promote);
912      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
913    }
914
915    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
916#endif
917  }
918
919  // We want to custom lower some of our intrinsics.
920  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
921
922  // Add/Sub/Mul with overflow operations are custom lowered.
923  setOperationAction(ISD::SADDO, MVT::i32, Custom);
924  setOperationAction(ISD::SADDO, MVT::i64, Custom);
925  setOperationAction(ISD::UADDO, MVT::i32, Custom);
926  setOperationAction(ISD::UADDO, MVT::i64, Custom);
927  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
928  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
929  setOperationAction(ISD::USUBO, MVT::i32, Custom);
930  setOperationAction(ISD::USUBO, MVT::i64, Custom);
931  setOperationAction(ISD::SMULO, MVT::i32, Custom);
932  setOperationAction(ISD::SMULO, MVT::i64, Custom);
933
934  if (!Subtarget->is64Bit()) {
935    // These libcalls are not available in 32-bit.
936    setLibcallName(RTLIB::SHL_I128, 0);
937    setLibcallName(RTLIB::SRL_I128, 0);
938    setLibcallName(RTLIB::SRA_I128, 0);
939  }
940
941  // We have target-specific dag combine patterns for the following nodes:
942  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
943  setTargetDAGCombine(ISD::BUILD_VECTOR);
944  setTargetDAGCombine(ISD::SELECT);
945  setTargetDAGCombine(ISD::SHL);
946  setTargetDAGCombine(ISD::SRA);
947  setTargetDAGCombine(ISD::SRL);
948  setTargetDAGCombine(ISD::STORE);
949  setTargetDAGCombine(ISD::MEMBARRIER);
950  if (Subtarget->is64Bit())
951    setTargetDAGCombine(ISD::MUL);
952
953  computeRegisterProperties();
954
955  // FIXME: These should be based on subtarget info. Plus, the values should
956  // be smaller when we are in optimizing for size mode.
957  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
958  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
959  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
960  setPrefLoopAlignment(16);
961  benefitFromCodePlacementOpt = true;
962}
963
964
965MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
966  return MVT::i8;
967}
968
969
970/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
971/// the desired ByVal argument alignment.
972static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
973  if (MaxAlign == 16)
974    return;
975  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
976    if (VTy->getBitWidth() == 128)
977      MaxAlign = 16;
978  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
979    unsigned EltAlign = 0;
980    getMaxByValAlign(ATy->getElementType(), EltAlign);
981    if (EltAlign > MaxAlign)
982      MaxAlign = EltAlign;
983  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
984    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
985      unsigned EltAlign = 0;
986      getMaxByValAlign(STy->getElementType(i), EltAlign);
987      if (EltAlign > MaxAlign)
988        MaxAlign = EltAlign;
989      if (MaxAlign == 16)
990        break;
991    }
992  }
993  return;
994}
995
996/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
997/// function arguments in the caller parameter area. For X86, aggregates
998/// that contain SSE vectors are placed at 16-byte boundaries while the rest
999/// are at 4-byte boundaries.
1000unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1001  if (Subtarget->is64Bit()) {
1002    // Max of 8 and alignment of type.
1003    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1004    if (TyAlign > 8)
1005      return TyAlign;
1006    return 8;
1007  }
1008
1009  unsigned Align = 4;
1010  if (Subtarget->hasSSE1())
1011    getMaxByValAlign(Ty, Align);
1012  return Align;
1013}
1014
1015/// getOptimalMemOpType - Returns the target specific optimal type for load
1016/// and store operations as a result of memset, memcpy, and memmove
1017/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
1018/// determining it.
1019EVT
1020X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
1021                                       bool isSrcConst, bool isSrcStr,
1022                                       SelectionDAG &DAG) const {
1023  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1024  // linux.  This is because the stack realignment code can't handle certain
1025  // cases like PR2962.  This should be removed when PR2962 is fixed.
1026  const Function *F = DAG.getMachineFunction().getFunction();
1027  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
1028  if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
1029    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
1030      return MVT::v4i32;
1031    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
1032      return MVT::v4f32;
1033  }
1034  if (Subtarget->is64Bit() && Size >= 8)
1035    return MVT::i64;
1036  return MVT::i32;
1037}
1038
1039/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1040/// jumptable.
1041SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1042                                                      SelectionDAG &DAG) const {
1043  if (usesGlobalOffsetTable())
1044    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1045  if (!Subtarget->is64Bit())
1046    // This doesn't have DebugLoc associated with it, but is not really the
1047    // same as a Register.
1048    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1049                       getPointerTy());
1050  return Table;
1051}
1052
1053/// getFunctionAlignment - Return the Log2 alignment of this function.
1054unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1055  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1056}
1057
1058//===----------------------------------------------------------------------===//
1059//               Return Value Calling Convention Implementation
1060//===----------------------------------------------------------------------===//
1061
1062#include "X86GenCallingConv.inc"
1063
1064SDValue
1065X86TargetLowering::LowerReturn(SDValue Chain,
1066                               unsigned CallConv, bool isVarArg,
1067                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1068                               DebugLoc dl, SelectionDAG &DAG) {
1069
1070  SmallVector<CCValAssign, 16> RVLocs;
1071  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1072                 RVLocs, *DAG.getContext());
1073  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1074
1075  // If this is the first return lowered for this function, add the regs to the
1076  // liveout set for the function.
1077  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1078    for (unsigned i = 0; i != RVLocs.size(); ++i)
1079      if (RVLocs[i].isRegLoc())
1080        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1081  }
1082
1083  SDValue Flag;
1084
1085  SmallVector<SDValue, 6> RetOps;
1086  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1087  // Operand #1 = Bytes To Pop
1088  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
1089
1090  // Copy the result values into the output registers.
1091  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1092    CCValAssign &VA = RVLocs[i];
1093    assert(VA.isRegLoc() && "Can only return in registers!");
1094    SDValue ValToCopy = Outs[i].Val;
1095
1096    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1097    // the RET instruction and handled by the FP Stackifier.
1098    if (VA.getLocReg() == X86::ST0 ||
1099        VA.getLocReg() == X86::ST1) {
1100      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1101      // change the value to the FP stack register class.
1102      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1103        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1104      RetOps.push_back(ValToCopy);
1105      // Don't emit a copytoreg.
1106      continue;
1107    }
1108
1109    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1110    // which is returned in RAX / RDX.
1111    if (Subtarget->is64Bit()) {
1112      EVT ValVT = ValToCopy.getValueType();
1113      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1114        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1115        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1116          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1117      }
1118    }
1119
1120    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1121    Flag = Chain.getValue(1);
1122  }
1123
1124  // The x86-64 ABI for returning structs by value requires that we copy
1125  // the sret argument into %rax for the return. We saved the argument into
1126  // a virtual register in the entry block, so now we copy the value out
1127  // and into %rax.
1128  if (Subtarget->is64Bit() &&
1129      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1130    MachineFunction &MF = DAG.getMachineFunction();
1131    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1132    unsigned Reg = FuncInfo->getSRetReturnReg();
1133    if (!Reg) {
1134      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1135      FuncInfo->setSRetReturnReg(Reg);
1136    }
1137    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1138
1139    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1140    Flag = Chain.getValue(1);
1141  }
1142
1143  RetOps[0] = Chain;  // Update chain.
1144
1145  // Add the flag if we have it.
1146  if (Flag.getNode())
1147    RetOps.push_back(Flag);
1148
1149  return DAG.getNode(X86ISD::RET_FLAG, dl,
1150                     MVT::Other, &RetOps[0], RetOps.size());
1151}
1152
1153/// LowerCallResult - Lower the result values of a call into the
1154/// appropriate copies out of appropriate physical registers.
1155///
1156SDValue
1157X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1158                                   unsigned CallConv, bool isVarArg,
1159                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1160                                   DebugLoc dl, SelectionDAG &DAG,
1161                                   SmallVectorImpl<SDValue> &InVals) {
1162
1163  // Assign locations to each value returned by this call.
1164  SmallVector<CCValAssign, 16> RVLocs;
1165  bool Is64Bit = Subtarget->is64Bit();
1166  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1167                 RVLocs, *DAG.getContext());
1168  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1169
1170  // Copy all of the result registers out of their specified physreg.
1171  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1172    CCValAssign &VA = RVLocs[i];
1173    EVT CopyVT = VA.getValVT();
1174
1175    // If this is x86-64, and we disabled SSE, we can't return FP values
1176    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1177        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1178      llvm_report_error("SSE register return with SSE disabled");
1179    }
1180
1181    // If this is a call to a function that returns an fp value on the floating
1182    // point stack, but where we prefer to use the value in xmm registers, copy
1183    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1184    if ((VA.getLocReg() == X86::ST0 ||
1185         VA.getLocReg() == X86::ST1) &&
1186        isScalarFPTypeInSSEReg(VA.getValVT())) {
1187      CopyVT = MVT::f80;
1188    }
1189
1190    SDValue Val;
1191    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1192      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1193      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1194        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1195                                   MVT::v2i64, InFlag).getValue(1);
1196        Val = Chain.getValue(0);
1197        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1198                          Val, DAG.getConstant(0, MVT::i64));
1199      } else {
1200        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1201                                   MVT::i64, InFlag).getValue(1);
1202        Val = Chain.getValue(0);
1203      }
1204      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1205    } else {
1206      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1207                                 CopyVT, InFlag).getValue(1);
1208      Val = Chain.getValue(0);
1209    }
1210    InFlag = Chain.getValue(2);
1211
1212    if (CopyVT != VA.getValVT()) {
1213      // Round the F80 the right size, which also moves to the appropriate xmm
1214      // register.
1215      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1216                        // This truncation won't change the value.
1217                        DAG.getIntPtrConstant(1));
1218    }
1219
1220    InVals.push_back(Val);
1221  }
1222
1223  return Chain;
1224}
1225
1226
1227//===----------------------------------------------------------------------===//
1228//                C & StdCall & Fast Calling Convention implementation
1229//===----------------------------------------------------------------------===//
1230//  StdCall calling convention seems to be standard for many Windows' API
1231//  routines and around. It differs from C calling convention just a little:
1232//  callee should clean up the stack, not caller. Symbols should be also
1233//  decorated in some fancy way :) It doesn't support any vector arguments.
1234//  For info on fast calling convention see Fast Calling Convention (tail call)
1235//  implementation LowerX86_32FastCCCallTo.
1236
1237/// CallIsStructReturn - Determines whether a call uses struct return
1238/// semantics.
1239static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1240  if (Outs.empty())
1241    return false;
1242
1243  return Outs[0].Flags.isSRet();
1244}
1245
1246/// ArgsAreStructReturn - Determines whether a function uses struct
1247/// return semantics.
1248static bool
1249ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1250  if (Ins.empty())
1251    return false;
1252
1253  return Ins[0].Flags.isSRet();
1254}
1255
1256/// IsCalleePop - Determines whether the callee is required to pop its
1257/// own arguments. Callee pop is necessary to support tail calls.
1258bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
1259  if (IsVarArg)
1260    return false;
1261
1262  switch (CallingConv) {
1263  default:
1264    return false;
1265  case CallingConv::X86_StdCall:
1266    return !Subtarget->is64Bit();
1267  case CallingConv::X86_FastCall:
1268    return !Subtarget->is64Bit();
1269  case CallingConv::Fast:
1270    return PerformTailCallOpt;
1271  }
1272}
1273
1274/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1275/// given CallingConvention value.
1276CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
1277  if (Subtarget->is64Bit()) {
1278    if (Subtarget->isTargetWin64())
1279      return CC_X86_Win64_C;
1280    else
1281      return CC_X86_64_C;
1282  }
1283
1284  if (CC == CallingConv::X86_FastCall)
1285    return CC_X86_32_FastCall;
1286  else if (CC == CallingConv::Fast)
1287    return CC_X86_32_FastCC;
1288  else
1289    return CC_X86_32_C;
1290}
1291
1292/// NameDecorationForCallConv - Selects the appropriate decoration to
1293/// apply to a MachineFunction containing a given calling convention.
1294NameDecorationStyle
1295X86TargetLowering::NameDecorationForCallConv(unsigned CallConv) {
1296  if (CallConv == CallingConv::X86_FastCall)
1297    return FastCall;
1298  else if (CallConv == CallingConv::X86_StdCall)
1299    return StdCall;
1300  return None;
1301}
1302
1303
1304/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1305/// by "Src" to address "Dst" with size and alignment information specified by
1306/// the specific parameter attribute. The copy will be passed as a byval
1307/// function parameter.
1308static SDValue
1309CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1310                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1311                          DebugLoc dl) {
1312  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1313  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1314                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1315}
1316
1317SDValue
1318X86TargetLowering::LowerMemArgument(SDValue Chain,
1319                                    unsigned CallConv,
1320                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1321                                    DebugLoc dl, SelectionDAG &DAG,
1322                                    const CCValAssign &VA,
1323                                    MachineFrameInfo *MFI,
1324                                    unsigned i) {
1325
1326  // Create the nodes corresponding to a load from this parameter slot.
1327  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1328  bool AlwaysUseMutable = (CallConv==CallingConv::Fast) && PerformTailCallOpt;
1329  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1330  EVT ValVT;
1331
1332  // If value is passed by pointer we have address passed instead of the value
1333  // itself.
1334  if (VA.getLocInfo() == CCValAssign::Indirect)
1335    ValVT = VA.getLocVT();
1336  else
1337    ValVT = VA.getValVT();
1338
1339  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1340  // changed with more analysis.
1341  // In case of tail call optimization mark all arguments mutable. Since they
1342  // could be overwritten by lowering of arguments in case of a tail call.
1343  int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1344                                  VA.getLocMemOffset(), isImmutable);
1345  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1346  if (Flags.isByVal())
1347    return FIN;
1348  return DAG.getLoad(ValVT, dl, Chain, FIN,
1349                     PseudoSourceValue::getFixedStack(FI), 0);
1350}
1351
1352SDValue
1353X86TargetLowering::LowerFormalArguments(SDValue Chain,
1354                                        unsigned CallConv,
1355                                        bool isVarArg,
1356                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1357                                        DebugLoc dl,
1358                                        SelectionDAG &DAG,
1359                                        SmallVectorImpl<SDValue> &InVals) {
1360
1361  MachineFunction &MF = DAG.getMachineFunction();
1362  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1363
1364  const Function* Fn = MF.getFunction();
1365  if (Fn->hasExternalLinkage() &&
1366      Subtarget->isTargetCygMing() &&
1367      Fn->getName() == "main")
1368    FuncInfo->setForceFramePointer(true);
1369
1370  // Decorate the function name.
1371  FuncInfo->setDecorationStyle(NameDecorationForCallConv(CallConv));
1372
1373  MachineFrameInfo *MFI = MF.getFrameInfo();
1374  bool Is64Bit = Subtarget->is64Bit();
1375  bool IsWin64 = Subtarget->isTargetWin64();
1376
1377  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1378         "Var args not supported with calling convention fastcc");
1379
1380  // Assign locations to all of the incoming arguments.
1381  SmallVector<CCValAssign, 16> ArgLocs;
1382  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1383                 ArgLocs, *DAG.getContext());
1384  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1385
1386  unsigned LastVal = ~0U;
1387  SDValue ArgValue;
1388  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1389    CCValAssign &VA = ArgLocs[i];
1390    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1391    // places.
1392    assert(VA.getValNo() != LastVal &&
1393           "Don't support value assigned to multiple locs yet");
1394    LastVal = VA.getValNo();
1395
1396    if (VA.isRegLoc()) {
1397      EVT RegVT = VA.getLocVT();
1398      TargetRegisterClass *RC = NULL;
1399      if (RegVT == MVT::i32)
1400        RC = X86::GR32RegisterClass;
1401      else if (Is64Bit && RegVT == MVT::i64)
1402        RC = X86::GR64RegisterClass;
1403      else if (RegVT == MVT::f32)
1404        RC = X86::FR32RegisterClass;
1405      else if (RegVT == MVT::f64)
1406        RC = X86::FR64RegisterClass;
1407      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1408        RC = X86::VR128RegisterClass;
1409      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1410        RC = X86::VR64RegisterClass;
1411      else
1412        llvm_unreachable("Unknown argument type!");
1413
1414      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1415      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1416
1417      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1418      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1419      // right size.
1420      if (VA.getLocInfo() == CCValAssign::SExt)
1421        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1422                               DAG.getValueType(VA.getValVT()));
1423      else if (VA.getLocInfo() == CCValAssign::ZExt)
1424        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1425                               DAG.getValueType(VA.getValVT()));
1426      else if (VA.getLocInfo() == CCValAssign::BCvt)
1427        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1428
1429      if (VA.isExtInLoc()) {
1430        // Handle MMX values passed in XMM regs.
1431        if (RegVT.isVector()) {
1432          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1433                                 ArgValue, DAG.getConstant(0, MVT::i64));
1434          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1435        } else
1436          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1437      }
1438    } else {
1439      assert(VA.isMemLoc());
1440      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1441    }
1442
1443    // If value is passed via pointer - do a load.
1444    if (VA.getLocInfo() == CCValAssign::Indirect)
1445      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0);
1446
1447    InVals.push_back(ArgValue);
1448  }
1449
1450  // The x86-64 ABI for returning structs by value requires that we copy
1451  // the sret argument into %rax for the return. Save the argument into
1452  // a virtual register so that we can access it from the return points.
1453  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1454    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1455    unsigned Reg = FuncInfo->getSRetReturnReg();
1456    if (!Reg) {
1457      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1458      FuncInfo->setSRetReturnReg(Reg);
1459    }
1460    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1461    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1462  }
1463
1464  unsigned StackSize = CCInfo.getNextStackOffset();
1465  // align stack specially for tail calls
1466  if (PerformTailCallOpt && CallConv == CallingConv::Fast)
1467    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1468
1469  // If the function takes variable number of arguments, make a frame index for
1470  // the start of the first vararg value... for expansion of llvm.va_start.
1471  if (isVarArg) {
1472    if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1473      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1474    }
1475    if (Is64Bit) {
1476      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1477
1478      // FIXME: We should really autogenerate these arrays
1479      static const unsigned GPR64ArgRegsWin64[] = {
1480        X86::RCX, X86::RDX, X86::R8,  X86::R9
1481      };
1482      static const unsigned XMMArgRegsWin64[] = {
1483        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1484      };
1485      static const unsigned GPR64ArgRegs64Bit[] = {
1486        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1487      };
1488      static const unsigned XMMArgRegs64Bit[] = {
1489        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1490        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1491      };
1492      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1493
1494      if (IsWin64) {
1495        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1496        GPR64ArgRegs = GPR64ArgRegsWin64;
1497        XMMArgRegs = XMMArgRegsWin64;
1498      } else {
1499        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1500        GPR64ArgRegs = GPR64ArgRegs64Bit;
1501        XMMArgRegs = XMMArgRegs64Bit;
1502      }
1503      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1504                                                       TotalNumIntRegs);
1505      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1506                                                       TotalNumXMMRegs);
1507
1508      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1509      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1510             "SSE register cannot be used when SSE is disabled!");
1511      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1512             "SSE register cannot be used when SSE is disabled!");
1513      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1514        // Kernel mode asks for SSE to be disabled, so don't push them
1515        // on the stack.
1516        TotalNumXMMRegs = 0;
1517
1518      // For X86-64, if there are vararg parameters that are passed via
1519      // registers, then we must store them to their spots on the stack so they
1520      // may be loaded by deferencing the result of va_next.
1521      VarArgsGPOffset = NumIntRegs * 8;
1522      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1523      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1524                                                 TotalNumXMMRegs * 16, 16);
1525
1526      // Store the integer parameter registers.
1527      SmallVector<SDValue, 8> MemOps;
1528      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1529      unsigned Offset = VarArgsGPOffset;
1530      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1531        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1532                                  DAG.getIntPtrConstant(Offset));
1533        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1534                                     X86::GR64RegisterClass);
1535        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1536        SDValue Store =
1537          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1538                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
1539                       Offset);
1540        MemOps.push_back(Store);
1541        Offset += 8;
1542      }
1543
1544      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1545        // Now store the XMM (fp + vector) parameter registers.
1546        SmallVector<SDValue, 11> SaveXMMOps;
1547        SaveXMMOps.push_back(Chain);
1548
1549        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1550        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1551        SaveXMMOps.push_back(ALVal);
1552
1553        SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
1554        SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
1555
1556        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1557          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1558                                       X86::VR128RegisterClass);
1559          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1560          SaveXMMOps.push_back(Val);
1561        }
1562        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1563                                     MVT::Other,
1564                                     &SaveXMMOps[0], SaveXMMOps.size()));
1565      }
1566
1567      if (!MemOps.empty())
1568        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1569                            &MemOps[0], MemOps.size());
1570    }
1571  }
1572
1573  // Some CCs need callee pop.
1574  if (IsCalleePop(isVarArg, CallConv)) {
1575    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1576    BytesCallerReserves = 0;
1577  } else {
1578    BytesToPopOnReturn  = 0; // Callee pops nothing.
1579    // If this is an sret function, the return should pop the hidden pointer.
1580    if (!Is64Bit && CallConv != CallingConv::Fast && ArgsAreStructReturn(Ins))
1581      BytesToPopOnReturn = 4;
1582    BytesCallerReserves = StackSize;
1583  }
1584
1585  if (!Is64Bit) {
1586    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1587    if (CallConv == CallingConv::X86_FastCall)
1588      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1589  }
1590
1591  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1592
1593  return Chain;
1594}
1595
1596SDValue
1597X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1598                                    SDValue StackPtr, SDValue Arg,
1599                                    DebugLoc dl, SelectionDAG &DAG,
1600                                    const CCValAssign &VA,
1601                                    ISD::ArgFlagsTy Flags) {
1602  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1603  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1604  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1605  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1606  if (Flags.isByVal()) {
1607    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1608  }
1609  return DAG.getStore(Chain, dl, Arg, PtrOff,
1610                      PseudoSourceValue::getStack(), LocMemOffset);
1611}
1612
1613/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1614/// optimization is performed and it is required.
1615SDValue
1616X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1617                                           SDValue &OutRetAddr,
1618                                           SDValue Chain,
1619                                           bool IsTailCall,
1620                                           bool Is64Bit,
1621                                           int FPDiff,
1622                                           DebugLoc dl) {
1623  if (!IsTailCall || FPDiff==0) return Chain;
1624
1625  // Adjust the Return address stack slot.
1626  EVT VT = getPointerTy();
1627  OutRetAddr = getReturnAddressFrameIndex(DAG);
1628
1629  // Load the "old" Return address.
1630  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
1631  return SDValue(OutRetAddr.getNode(), 1);
1632}
1633
1634/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1635/// optimization is performed and it is required (FPDiff!=0).
1636static SDValue
1637EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1638                         SDValue Chain, SDValue RetAddrFrIdx,
1639                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1640  // Store the return address to the appropriate stack slot.
1641  if (!FPDiff) return Chain;
1642  // Calculate the new stack slot for the return address.
1643  int SlotSize = Is64Bit ? 8 : 4;
1644  int NewReturnAddrFI =
1645    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1646  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1647  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1648  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1649                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1650  return Chain;
1651}
1652
1653SDValue
1654X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1655                             unsigned CallConv, bool isVarArg, bool isTailCall,
1656                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1657                             const SmallVectorImpl<ISD::InputArg> &Ins,
1658                             DebugLoc dl, SelectionDAG &DAG,
1659                             SmallVectorImpl<SDValue> &InVals) {
1660
1661  MachineFunction &MF = DAG.getMachineFunction();
1662  bool Is64Bit        = Subtarget->is64Bit();
1663  bool IsStructRet    = CallIsStructReturn(Outs);
1664
1665  assert((!isTailCall ||
1666          (CallConv == CallingConv::Fast && PerformTailCallOpt)) &&
1667         "IsEligibleForTailCallOptimization missed a case!");
1668  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1669         "Var args not supported with calling convention fastcc");
1670
1671  // Analyze operands of the call, assigning locations to each operand.
1672  SmallVector<CCValAssign, 16> ArgLocs;
1673  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1674                 ArgLocs, *DAG.getContext());
1675  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1676
1677  // Get a count of how many bytes are to be pushed on the stack.
1678  unsigned NumBytes = CCInfo.getNextStackOffset();
1679  if (PerformTailCallOpt && CallConv == CallingConv::Fast)
1680    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1681
1682  int FPDiff = 0;
1683  if (isTailCall) {
1684    // Lower arguments at fp - stackoffset + fpdiff.
1685    unsigned NumBytesCallerPushed =
1686      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1687    FPDiff = NumBytesCallerPushed - NumBytes;
1688
1689    // Set the delta of movement of the returnaddr stackslot.
1690    // But only set if delta is greater than previous delta.
1691    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1692      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1693  }
1694
1695  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1696
1697  SDValue RetAddrFrIdx;
1698  // Load return adress for tail calls.
1699  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, Is64Bit,
1700                                  FPDiff, dl);
1701
1702  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1703  SmallVector<SDValue, 8> MemOpChains;
1704  SDValue StackPtr;
1705
1706  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1707  // of tail call optimization arguments are handle later.
1708  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1709    CCValAssign &VA = ArgLocs[i];
1710    EVT RegVT = VA.getLocVT();
1711    SDValue Arg = Outs[i].Val;
1712    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1713    bool isByVal = Flags.isByVal();
1714
1715    // Promote the value if needed.
1716    switch (VA.getLocInfo()) {
1717    default: llvm_unreachable("Unknown loc info!");
1718    case CCValAssign::Full: break;
1719    case CCValAssign::SExt:
1720      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1721      break;
1722    case CCValAssign::ZExt:
1723      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1724      break;
1725    case CCValAssign::AExt:
1726      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1727        // Special case: passing MMX values in XMM registers.
1728        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1729        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1730        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1731      } else
1732        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1733      break;
1734    case CCValAssign::BCvt:
1735      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1736      break;
1737    case CCValAssign::Indirect: {
1738      // Store the argument.
1739      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1740      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1741      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1742                           PseudoSourceValue::getFixedStack(FI), 0);
1743      Arg = SpillSlot;
1744      break;
1745    }
1746    }
1747
1748    if (VA.isRegLoc()) {
1749      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1750    } else {
1751      if (!isTailCall || (isTailCall && isByVal)) {
1752        assert(VA.isMemLoc());
1753        if (StackPtr.getNode() == 0)
1754          StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1755
1756        MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1757                                               dl, DAG, VA, Flags));
1758      }
1759    }
1760  }
1761
1762  if (!MemOpChains.empty())
1763    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1764                        &MemOpChains[0], MemOpChains.size());
1765
1766  // Build a sequence of copy-to-reg nodes chained together with token chain
1767  // and flag operands which copy the outgoing args into registers.
1768  SDValue InFlag;
1769  // Tail call byval lowering might overwrite argument registers so in case of
1770  // tail call optimization the copies to registers are lowered later.
1771  if (!isTailCall)
1772    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1773      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1774                               RegsToPass[i].second, InFlag);
1775      InFlag = Chain.getValue(1);
1776    }
1777
1778
1779  if (Subtarget->isPICStyleGOT()) {
1780    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1781    // GOT pointer.
1782    if (!isTailCall) {
1783      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1784                               DAG.getNode(X86ISD::GlobalBaseReg,
1785                                           DebugLoc::getUnknownLoc(),
1786                                           getPointerTy()),
1787                               InFlag);
1788      InFlag = Chain.getValue(1);
1789    } else {
1790      // If we are tail calling and generating PIC/GOT style code load the
1791      // address of the callee into ECX. The value in ecx is used as target of
1792      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1793      // for tail calls on PIC/GOT architectures. Normally we would just put the
1794      // address of GOT into ebx and then call target@PLT. But for tail calls
1795      // ebx would be restored (since ebx is callee saved) before jumping to the
1796      // target@PLT.
1797
1798      // Note: The actual moving to ECX is done further down.
1799      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1800      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1801          !G->getGlobal()->hasProtectedVisibility())
1802        Callee = LowerGlobalAddress(Callee, DAG);
1803      else if (isa<ExternalSymbolSDNode>(Callee))
1804        Callee = LowerExternalSymbol(Callee, DAG);
1805    }
1806  }
1807
1808  if (Is64Bit && isVarArg) {
1809    // From AMD64 ABI document:
1810    // For calls that may call functions that use varargs or stdargs
1811    // (prototype-less calls or calls to functions containing ellipsis (...) in
1812    // the declaration) %al is used as hidden argument to specify the number
1813    // of SSE registers used. The contents of %al do not need to match exactly
1814    // the number of registers, but must be an ubound on the number of SSE
1815    // registers used and is in the range 0 - 8 inclusive.
1816
1817    // FIXME: Verify this on Win64
1818    // Count the number of XMM registers allocated.
1819    static const unsigned XMMArgRegs[] = {
1820      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1821      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1822    };
1823    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1824    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1825           && "SSE registers cannot be used when SSE is disabled");
1826
1827    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1828                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1829    InFlag = Chain.getValue(1);
1830  }
1831
1832
1833  // For tail calls lower the arguments to the 'real' stack slot.
1834  if (isTailCall) {
1835    // Force all the incoming stack arguments to be loaded from the stack
1836    // before any new outgoing arguments are stored to the stack, because the
1837    // outgoing stack slots may alias the incoming argument stack slots, and
1838    // the alias isn't otherwise explicit. This is slightly more conservative
1839    // than necessary, because it means that each store effectively depends
1840    // on every argument instead of just those arguments it would clobber.
1841    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
1842
1843    SmallVector<SDValue, 8> MemOpChains2;
1844    SDValue FIN;
1845    int FI = 0;
1846    // Do not flag preceeding copytoreg stuff together with the following stuff.
1847    InFlag = SDValue();
1848    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1849      CCValAssign &VA = ArgLocs[i];
1850      if (!VA.isRegLoc()) {
1851        assert(VA.isMemLoc());
1852        SDValue Arg = Outs[i].Val;
1853        ISD::ArgFlagsTy Flags = Outs[i].Flags;
1854        // Create frame index.
1855        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1856        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1857        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1858        FIN = DAG.getFrameIndex(FI, getPointerTy());
1859
1860        if (Flags.isByVal()) {
1861          // Copy relative to framepointer.
1862          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1863          if (StackPtr.getNode() == 0)
1864            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1865                                          getPointerTy());
1866          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1867
1868          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
1869                                                           ArgChain,
1870                                                           Flags, DAG, dl));
1871        } else {
1872          // Store relative to framepointer.
1873          MemOpChains2.push_back(
1874            DAG.getStore(ArgChain, dl, Arg, FIN,
1875                         PseudoSourceValue::getFixedStack(FI), 0));
1876        }
1877      }
1878    }
1879
1880    if (!MemOpChains2.empty())
1881      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1882                          &MemOpChains2[0], MemOpChains2.size());
1883
1884    // Copy arguments to their registers.
1885    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1886      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1887                               RegsToPass[i].second, InFlag);
1888      InFlag = Chain.getValue(1);
1889    }
1890    InFlag =SDValue();
1891
1892    // Store the return address to the appropriate stack slot.
1893    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1894                                     FPDiff, dl);
1895  }
1896
1897  // If the callee is a GlobalAddress node (quite common, every direct call is)
1898  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1899  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1900    // We should use extra load for direct calls to dllimported functions in
1901    // non-JIT mode.
1902    GlobalValue *GV = G->getGlobal();
1903    if (!GV->hasDLLImportLinkage()) {
1904      unsigned char OpFlags = 0;
1905
1906      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1907      // external symbols most go through the PLT in PIC mode.  If the symbol
1908      // has hidden or protected visibility, or if it is static or local, then
1909      // we don't need to use the PLT - we can directly call it.
1910      if (Subtarget->isTargetELF() &&
1911          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1912          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1913        OpFlags = X86II::MO_PLT;
1914      } else if (Subtarget->isPICStyleStubAny() &&
1915               (GV->isDeclaration() || GV->isWeakForLinker()) &&
1916               Subtarget->getDarwinVers() < 9) {
1917        // PC-relative references to external symbols should go through $stub,
1918        // unless we're building with the leopard linker or later, which
1919        // automatically synthesizes these stubs.
1920        OpFlags = X86II::MO_DARWIN_STUB;
1921      }
1922
1923      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
1924                                          G->getOffset(), OpFlags);
1925    }
1926  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1927    unsigned char OpFlags = 0;
1928
1929    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
1930    // symbols should go through the PLT.
1931    if (Subtarget->isTargetELF() &&
1932        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1933      OpFlags = X86II::MO_PLT;
1934    } else if (Subtarget->isPICStyleStubAny() &&
1935             Subtarget->getDarwinVers() < 9) {
1936      // PC-relative references to external symbols should go through $stub,
1937      // unless we're building with the leopard linker or later, which
1938      // automatically synthesizes these stubs.
1939      OpFlags = X86II::MO_DARWIN_STUB;
1940    }
1941
1942    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
1943                                         OpFlags);
1944  } else if (isTailCall) {
1945    unsigned Opc = Is64Bit ? X86::R11 : X86::EAX;
1946
1947    Chain = DAG.getCopyToReg(Chain,  dl,
1948                             DAG.getRegister(Opc, getPointerTy()),
1949                             Callee,InFlag);
1950    Callee = DAG.getRegister(Opc, getPointerTy());
1951    // Add register as live out.
1952    MF.getRegInfo().addLiveOut(Opc);
1953  }
1954
1955  // Returns a chain & a flag for retval copy to use.
1956  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1957  SmallVector<SDValue, 8> Ops;
1958
1959  if (isTailCall) {
1960    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1961                           DAG.getIntPtrConstant(0, true), InFlag);
1962    InFlag = Chain.getValue(1);
1963  }
1964
1965  Ops.push_back(Chain);
1966  Ops.push_back(Callee);
1967
1968  if (isTailCall)
1969    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1970
1971  // Add argument registers to the end of the list so that they are known live
1972  // into the call.
1973  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1974    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1975                                  RegsToPass[i].second.getValueType()));
1976
1977  // Add an implicit use GOT pointer in EBX.
1978  if (!isTailCall && Subtarget->isPICStyleGOT())
1979    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1980
1981  // Add an implicit use of AL for x86 vararg functions.
1982  if (Is64Bit && isVarArg)
1983    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1984
1985  if (InFlag.getNode())
1986    Ops.push_back(InFlag);
1987
1988  if (isTailCall) {
1989    // If this is the first return lowered for this function, add the regs
1990    // to the liveout set for the function.
1991    if (MF.getRegInfo().liveout_empty()) {
1992      SmallVector<CCValAssign, 16> RVLocs;
1993      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1994                     *DAG.getContext());
1995      CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1996      for (unsigned i = 0; i != RVLocs.size(); ++i)
1997        if (RVLocs[i].isRegLoc())
1998          MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1999    }
2000
2001    assert(((Callee.getOpcode() == ISD::Register &&
2002               (cast<RegisterSDNode>(Callee)->getReg() == X86::EAX ||
2003                cast<RegisterSDNode>(Callee)->getReg() == X86::R9)) ||
2004              Callee.getOpcode() == ISD::TargetExternalSymbol ||
2005              Callee.getOpcode() == ISD::TargetGlobalAddress) &&
2006             "Expecting an global address, external symbol, or register");
2007
2008    return DAG.getNode(X86ISD::TC_RETURN, dl,
2009                       NodeTys, &Ops[0], Ops.size());
2010  }
2011
2012  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2013  InFlag = Chain.getValue(1);
2014
2015  // Create the CALLSEQ_END node.
2016  unsigned NumBytesForCalleeToPush;
2017  if (IsCalleePop(isVarArg, CallConv))
2018    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2019  else if (!Is64Bit && CallConv != CallingConv::Fast && IsStructRet)
2020    // If this is is a call to a struct-return function, the callee
2021    // pops the hidden struct pointer, so we have to push it back.
2022    // This is common for Darwin/X86, Linux & Mingw32 targets.
2023    NumBytesForCalleeToPush = 4;
2024  else
2025    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2026
2027  // Returns a flag for retval copy to use.
2028  Chain = DAG.getCALLSEQ_END(Chain,
2029                             DAG.getIntPtrConstant(NumBytes, true),
2030                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2031                                                   true),
2032                             InFlag);
2033  InFlag = Chain.getValue(1);
2034
2035  // Handle result values, copying them out of physregs into vregs that we
2036  // return.
2037  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2038                         Ins, dl, DAG, InVals);
2039}
2040
2041
2042//===----------------------------------------------------------------------===//
2043//                Fast Calling Convention (tail call) implementation
2044//===----------------------------------------------------------------------===//
2045
2046//  Like std call, callee cleans arguments, convention except that ECX is
2047//  reserved for storing the tail called function address. Only 2 registers are
2048//  free for argument passing (inreg). Tail call optimization is performed
2049//  provided:
2050//                * tailcallopt is enabled
2051//                * caller/callee are fastcc
2052//  On X86_64 architecture with GOT-style position independent code only local
2053//  (within module) calls are supported at the moment.
2054//  To keep the stack aligned according to platform abi the function
2055//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2056//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2057//  If a tail called function callee has more arguments than the caller the
2058//  caller needs to make sure that there is room to move the RETADDR to. This is
2059//  achieved by reserving an area the size of the argument delta right after the
2060//  original REtADDR, but before the saved framepointer or the spilled registers
2061//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2062//  stack layout:
2063//    arg1
2064//    arg2
2065//    RETADDR
2066//    [ new RETADDR
2067//      move area ]
2068//    (possible EBP)
2069//    ESI
2070//    EDI
2071//    local1 ..
2072
2073/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2074/// for a 16 byte align requirement.
2075unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2076                                                        SelectionDAG& DAG) {
2077  MachineFunction &MF = DAG.getMachineFunction();
2078  const TargetMachine &TM = MF.getTarget();
2079  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2080  unsigned StackAlignment = TFI.getStackAlignment();
2081  uint64_t AlignMask = StackAlignment - 1;
2082  int64_t Offset = StackSize;
2083  uint64_t SlotSize = TD->getPointerSize();
2084  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2085    // Number smaller than 12 so just add the difference.
2086    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2087  } else {
2088    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2089    Offset = ((~AlignMask) & Offset) + StackAlignment +
2090      (StackAlignment-SlotSize);
2091  }
2092  return Offset;
2093}
2094
2095/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2096/// for tail call optimization. Targets which want to do tail call
2097/// optimization should implement this function.
2098bool
2099X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2100                                                     unsigned CalleeCC,
2101                                                     bool isVarArg,
2102                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2103                                                     SelectionDAG& DAG) const {
2104  MachineFunction &MF = DAG.getMachineFunction();
2105  unsigned CallerCC = MF.getFunction()->getCallingConv();
2106  return CalleeCC == CallingConv::Fast && CallerCC == CalleeCC;
2107}
2108
2109FastISel *
2110X86TargetLowering::createFastISel(MachineFunction &mf,
2111                                  MachineModuleInfo *mmo,
2112                                  DwarfWriter *dw,
2113                                  DenseMap<const Value *, unsigned> &vm,
2114                                  DenseMap<const BasicBlock *,
2115                                           MachineBasicBlock *> &bm,
2116                                  DenseMap<const AllocaInst *, int> &am
2117#ifndef NDEBUG
2118                                  , SmallSet<Instruction*, 8> &cil
2119#endif
2120                                  ) {
2121  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2122#ifndef NDEBUG
2123                             , cil
2124#endif
2125                             );
2126}
2127
2128
2129//===----------------------------------------------------------------------===//
2130//                           Other Lowering Hooks
2131//===----------------------------------------------------------------------===//
2132
2133
2134SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2135  MachineFunction &MF = DAG.getMachineFunction();
2136  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2137  int ReturnAddrIndex = FuncInfo->getRAIndex();
2138
2139  if (ReturnAddrIndex == 0) {
2140    // Set up a frame object for the return address.
2141    uint64_t SlotSize = TD->getPointerSize();
2142    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
2143    FuncInfo->setRAIndex(ReturnAddrIndex);
2144  }
2145
2146  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2147}
2148
2149
2150bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2151                                       bool hasSymbolicDisplacement) {
2152  // Offset should fit into 32 bit immediate field.
2153  if (!isInt32(Offset))
2154    return false;
2155
2156  // If we don't have a symbolic displacement - we don't have any extra
2157  // restrictions.
2158  if (!hasSymbolicDisplacement)
2159    return true;
2160
2161  // FIXME: Some tweaks might be needed for medium code model.
2162  if (M != CodeModel::Small && M != CodeModel::Kernel)
2163    return false;
2164
2165  // For small code model we assume that latest object is 16MB before end of 31
2166  // bits boundary. We may also accept pretty large negative constants knowing
2167  // that all objects are in the positive half of address space.
2168  if (M == CodeModel::Small && Offset < 16*1024*1024)
2169    return true;
2170
2171  // For kernel code model we know that all object resist in the negative half
2172  // of 32bits address space. We may not accept negative offsets, since they may
2173  // be just off and we may accept pretty large positive ones.
2174  if (M == CodeModel::Kernel && Offset > 0)
2175    return true;
2176
2177  return false;
2178}
2179
2180/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2181/// specific condition code, returning the condition code and the LHS/RHS of the
2182/// comparison to make.
2183static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2184                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2185  if (!isFP) {
2186    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2187      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2188        // X > -1   -> X == 0, jump !sign.
2189        RHS = DAG.getConstant(0, RHS.getValueType());
2190        return X86::COND_NS;
2191      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2192        // X < 0   -> X == 0, jump on sign.
2193        return X86::COND_S;
2194      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2195        // X < 1   -> X <= 0
2196        RHS = DAG.getConstant(0, RHS.getValueType());
2197        return X86::COND_LE;
2198      }
2199    }
2200
2201    switch (SetCCOpcode) {
2202    default: llvm_unreachable("Invalid integer condition!");
2203    case ISD::SETEQ:  return X86::COND_E;
2204    case ISD::SETGT:  return X86::COND_G;
2205    case ISD::SETGE:  return X86::COND_GE;
2206    case ISD::SETLT:  return X86::COND_L;
2207    case ISD::SETLE:  return X86::COND_LE;
2208    case ISD::SETNE:  return X86::COND_NE;
2209    case ISD::SETULT: return X86::COND_B;
2210    case ISD::SETUGT: return X86::COND_A;
2211    case ISD::SETULE: return X86::COND_BE;
2212    case ISD::SETUGE: return X86::COND_AE;
2213    }
2214  }
2215
2216  // First determine if it is required or is profitable to flip the operands.
2217
2218  // If LHS is a foldable load, but RHS is not, flip the condition.
2219  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2220      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2221    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2222    std::swap(LHS, RHS);
2223  }
2224
2225  switch (SetCCOpcode) {
2226  default: break;
2227  case ISD::SETOLT:
2228  case ISD::SETOLE:
2229  case ISD::SETUGT:
2230  case ISD::SETUGE:
2231    std::swap(LHS, RHS);
2232    break;
2233  }
2234
2235  // On a floating point condition, the flags are set as follows:
2236  // ZF  PF  CF   op
2237  //  0 | 0 | 0 | X > Y
2238  //  0 | 0 | 1 | X < Y
2239  //  1 | 0 | 0 | X == Y
2240  //  1 | 1 | 1 | unordered
2241  switch (SetCCOpcode) {
2242  default: llvm_unreachable("Condcode should be pre-legalized away");
2243  case ISD::SETUEQ:
2244  case ISD::SETEQ:   return X86::COND_E;
2245  case ISD::SETOLT:              // flipped
2246  case ISD::SETOGT:
2247  case ISD::SETGT:   return X86::COND_A;
2248  case ISD::SETOLE:              // flipped
2249  case ISD::SETOGE:
2250  case ISD::SETGE:   return X86::COND_AE;
2251  case ISD::SETUGT:              // flipped
2252  case ISD::SETULT:
2253  case ISD::SETLT:   return X86::COND_B;
2254  case ISD::SETUGE:              // flipped
2255  case ISD::SETULE:
2256  case ISD::SETLE:   return X86::COND_BE;
2257  case ISD::SETONE:
2258  case ISD::SETNE:   return X86::COND_NE;
2259  case ISD::SETUO:   return X86::COND_P;
2260  case ISD::SETO:    return X86::COND_NP;
2261  }
2262}
2263
2264/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2265/// code. Current x86 isa includes the following FP cmov instructions:
2266/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2267static bool hasFPCMov(unsigned X86CC) {
2268  switch (X86CC) {
2269  default:
2270    return false;
2271  case X86::COND_B:
2272  case X86::COND_BE:
2273  case X86::COND_E:
2274  case X86::COND_P:
2275  case X86::COND_A:
2276  case X86::COND_AE:
2277  case X86::COND_NE:
2278  case X86::COND_NP:
2279    return true;
2280  }
2281}
2282
2283/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2284/// the specified range (L, H].
2285static bool isUndefOrInRange(int Val, int Low, int Hi) {
2286  return (Val < 0) || (Val >= Low && Val < Hi);
2287}
2288
2289/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2290/// specified value.
2291static bool isUndefOrEqual(int Val, int CmpVal) {
2292  if (Val < 0 || Val == CmpVal)
2293    return true;
2294  return false;
2295}
2296
2297/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2298/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2299/// the second operand.
2300static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2301  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2302    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2303  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2304    return (Mask[0] < 2 && Mask[1] < 2);
2305  return false;
2306}
2307
2308bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2309  SmallVector<int, 8> M;
2310  N->getMask(M);
2311  return ::isPSHUFDMask(M, N->getValueType(0));
2312}
2313
2314/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2315/// is suitable for input to PSHUFHW.
2316static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2317  if (VT != MVT::v8i16)
2318    return false;
2319
2320  // Lower quadword copied in order or undef.
2321  for (int i = 0; i != 4; ++i)
2322    if (Mask[i] >= 0 && Mask[i] != i)
2323      return false;
2324
2325  // Upper quadword shuffled.
2326  for (int i = 4; i != 8; ++i)
2327    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2328      return false;
2329
2330  return true;
2331}
2332
2333bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2334  SmallVector<int, 8> M;
2335  N->getMask(M);
2336  return ::isPSHUFHWMask(M, N->getValueType(0));
2337}
2338
2339/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2340/// is suitable for input to PSHUFLW.
2341static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2342  if (VT != MVT::v8i16)
2343    return false;
2344
2345  // Upper quadword copied in order.
2346  for (int i = 4; i != 8; ++i)
2347    if (Mask[i] >= 0 && Mask[i] != i)
2348      return false;
2349
2350  // Lower quadword shuffled.
2351  for (int i = 0; i != 4; ++i)
2352    if (Mask[i] >= 4)
2353      return false;
2354
2355  return true;
2356}
2357
2358bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2359  SmallVector<int, 8> M;
2360  N->getMask(M);
2361  return ::isPSHUFLWMask(M, N->getValueType(0));
2362}
2363
2364/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2365/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2366static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2367  int NumElems = VT.getVectorNumElements();
2368  if (NumElems != 2 && NumElems != 4)
2369    return false;
2370
2371  int Half = NumElems / 2;
2372  for (int i = 0; i < Half; ++i)
2373    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2374      return false;
2375  for (int i = Half; i < NumElems; ++i)
2376    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2377      return false;
2378
2379  return true;
2380}
2381
2382bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2383  SmallVector<int, 8> M;
2384  N->getMask(M);
2385  return ::isSHUFPMask(M, N->getValueType(0));
2386}
2387
2388/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2389/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2390/// half elements to come from vector 1 (which would equal the dest.) and
2391/// the upper half to come from vector 2.
2392static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2393  int NumElems = VT.getVectorNumElements();
2394
2395  if (NumElems != 2 && NumElems != 4)
2396    return false;
2397
2398  int Half = NumElems / 2;
2399  for (int i = 0; i < Half; ++i)
2400    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2401      return false;
2402  for (int i = Half; i < NumElems; ++i)
2403    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2404      return false;
2405  return true;
2406}
2407
2408static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2409  SmallVector<int, 8> M;
2410  N->getMask(M);
2411  return isCommutedSHUFPMask(M, N->getValueType(0));
2412}
2413
2414/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2415/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2416bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2417  if (N->getValueType(0).getVectorNumElements() != 4)
2418    return false;
2419
2420  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2421  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2422         isUndefOrEqual(N->getMaskElt(1), 7) &&
2423         isUndefOrEqual(N->getMaskElt(2), 2) &&
2424         isUndefOrEqual(N->getMaskElt(3), 3);
2425}
2426
2427/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2428/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2429bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2430  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2431
2432  if (NumElems != 2 && NumElems != 4)
2433    return false;
2434
2435  for (unsigned i = 0; i < NumElems/2; ++i)
2436    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2437      return false;
2438
2439  for (unsigned i = NumElems/2; i < NumElems; ++i)
2440    if (!isUndefOrEqual(N->getMaskElt(i), i))
2441      return false;
2442
2443  return true;
2444}
2445
2446/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2447/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2448/// and MOVLHPS.
2449bool X86::isMOVHPMask(ShuffleVectorSDNode *N) {
2450  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2451
2452  if (NumElems != 2 && NumElems != 4)
2453    return false;
2454
2455  for (unsigned i = 0; i < NumElems/2; ++i)
2456    if (!isUndefOrEqual(N->getMaskElt(i), i))
2457      return false;
2458
2459  for (unsigned i = 0; i < NumElems/2; ++i)
2460    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2461      return false;
2462
2463  return true;
2464}
2465
2466/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2467/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2468/// <2, 3, 2, 3>
2469bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2470  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2471
2472  if (NumElems != 4)
2473    return false;
2474
2475  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2476         isUndefOrEqual(N->getMaskElt(1), 3) &&
2477         isUndefOrEqual(N->getMaskElt(2), 2) &&
2478         isUndefOrEqual(N->getMaskElt(3), 3);
2479}
2480
2481/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2482/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2483static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2484                         bool V2IsSplat = false) {
2485  int NumElts = VT.getVectorNumElements();
2486  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2487    return false;
2488
2489  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2490    int BitI  = Mask[i];
2491    int BitI1 = Mask[i+1];
2492    if (!isUndefOrEqual(BitI, j))
2493      return false;
2494    if (V2IsSplat) {
2495      if (!isUndefOrEqual(BitI1, NumElts))
2496        return false;
2497    } else {
2498      if (!isUndefOrEqual(BitI1, j + NumElts))
2499        return false;
2500    }
2501  }
2502  return true;
2503}
2504
2505bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2506  SmallVector<int, 8> M;
2507  N->getMask(M);
2508  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2509}
2510
2511/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2512/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2513static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2514                         bool V2IsSplat = false) {
2515  int NumElts = VT.getVectorNumElements();
2516  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2517    return false;
2518
2519  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2520    int BitI  = Mask[i];
2521    int BitI1 = Mask[i+1];
2522    if (!isUndefOrEqual(BitI, j + NumElts/2))
2523      return false;
2524    if (V2IsSplat) {
2525      if (isUndefOrEqual(BitI1, NumElts))
2526        return false;
2527    } else {
2528      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2529        return false;
2530    }
2531  }
2532  return true;
2533}
2534
2535bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2536  SmallVector<int, 8> M;
2537  N->getMask(M);
2538  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2539}
2540
2541/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2542/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2543/// <0, 0, 1, 1>
2544static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2545  int NumElems = VT.getVectorNumElements();
2546  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2547    return false;
2548
2549  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2550    int BitI  = Mask[i];
2551    int BitI1 = Mask[i+1];
2552    if (!isUndefOrEqual(BitI, j))
2553      return false;
2554    if (!isUndefOrEqual(BitI1, j))
2555      return false;
2556  }
2557  return true;
2558}
2559
2560bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2561  SmallVector<int, 8> M;
2562  N->getMask(M);
2563  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2564}
2565
2566/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2567/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2568/// <2, 2, 3, 3>
2569static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2570  int NumElems = VT.getVectorNumElements();
2571  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2572    return false;
2573
2574  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2575    int BitI  = Mask[i];
2576    int BitI1 = Mask[i+1];
2577    if (!isUndefOrEqual(BitI, j))
2578      return false;
2579    if (!isUndefOrEqual(BitI1, j))
2580      return false;
2581  }
2582  return true;
2583}
2584
2585bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2586  SmallVector<int, 8> M;
2587  N->getMask(M);
2588  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2589}
2590
2591/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2592/// specifies a shuffle of elements that is suitable for input to MOVSS,
2593/// MOVSD, and MOVD, i.e. setting the lowest element.
2594static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2595  if (VT.getVectorElementType().getSizeInBits() < 32)
2596    return false;
2597
2598  int NumElts = VT.getVectorNumElements();
2599
2600  if (!isUndefOrEqual(Mask[0], NumElts))
2601    return false;
2602
2603  for (int i = 1; i < NumElts; ++i)
2604    if (!isUndefOrEqual(Mask[i], i))
2605      return false;
2606
2607  return true;
2608}
2609
2610bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2611  SmallVector<int, 8> M;
2612  N->getMask(M);
2613  return ::isMOVLMask(M, N->getValueType(0));
2614}
2615
2616/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2617/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2618/// element of vector 2 and the other elements to come from vector 1 in order.
2619static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2620                               bool V2IsSplat = false, bool V2IsUndef = false) {
2621  int NumOps = VT.getVectorNumElements();
2622  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2623    return false;
2624
2625  if (!isUndefOrEqual(Mask[0], 0))
2626    return false;
2627
2628  for (int i = 1; i < NumOps; ++i)
2629    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2630          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2631          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2632      return false;
2633
2634  return true;
2635}
2636
2637static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2638                           bool V2IsUndef = false) {
2639  SmallVector<int, 8> M;
2640  N->getMask(M);
2641  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2642}
2643
2644/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2645/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2646bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2647  if (N->getValueType(0).getVectorNumElements() != 4)
2648    return false;
2649
2650  // Expect 1, 1, 3, 3
2651  for (unsigned i = 0; i < 2; ++i) {
2652    int Elt = N->getMaskElt(i);
2653    if (Elt >= 0 && Elt != 1)
2654      return false;
2655  }
2656
2657  bool HasHi = false;
2658  for (unsigned i = 2; i < 4; ++i) {
2659    int Elt = N->getMaskElt(i);
2660    if (Elt >= 0 && Elt != 3)
2661      return false;
2662    if (Elt == 3)
2663      HasHi = true;
2664  }
2665  // Don't use movshdup if it can be done with a shufps.
2666  // FIXME: verify that matching u, u, 3, 3 is what we want.
2667  return HasHi;
2668}
2669
2670/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2671/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2672bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2673  if (N->getValueType(0).getVectorNumElements() != 4)
2674    return false;
2675
2676  // Expect 0, 0, 2, 2
2677  for (unsigned i = 0; i < 2; ++i)
2678    if (N->getMaskElt(i) > 0)
2679      return false;
2680
2681  bool HasHi = false;
2682  for (unsigned i = 2; i < 4; ++i) {
2683    int Elt = N->getMaskElt(i);
2684    if (Elt >= 0 && Elt != 2)
2685      return false;
2686    if (Elt == 2)
2687      HasHi = true;
2688  }
2689  // Don't use movsldup if it can be done with a shufps.
2690  return HasHi;
2691}
2692
2693/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2694/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2695bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
2696  int e = N->getValueType(0).getVectorNumElements() / 2;
2697
2698  for (int i = 0; i < e; ++i)
2699    if (!isUndefOrEqual(N->getMaskElt(i), i))
2700      return false;
2701  for (int i = 0; i < e; ++i)
2702    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
2703      return false;
2704  return true;
2705}
2706
2707/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2708/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2709/// instructions.
2710unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2711  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2712  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
2713
2714  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2715  unsigned Mask = 0;
2716  for (int i = 0; i < NumOperands; ++i) {
2717    int Val = SVOp->getMaskElt(NumOperands-i-1);
2718    if (Val < 0) Val = 0;
2719    if (Val >= NumOperands) Val -= NumOperands;
2720    Mask |= Val;
2721    if (i != NumOperands - 1)
2722      Mask <<= Shift;
2723  }
2724  return Mask;
2725}
2726
2727/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2728/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2729/// instructions.
2730unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2731  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2732  unsigned Mask = 0;
2733  // 8 nodes, but we only care about the last 4.
2734  for (unsigned i = 7; i >= 4; --i) {
2735    int Val = SVOp->getMaskElt(i);
2736    if (Val >= 0)
2737      Mask |= (Val - 4);
2738    if (i != 4)
2739      Mask <<= 2;
2740  }
2741  return Mask;
2742}
2743
2744/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2745/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2746/// instructions.
2747unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2748  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2749  unsigned Mask = 0;
2750  // 8 nodes, but we only care about the first 4.
2751  for (int i = 3; i >= 0; --i) {
2752    int Val = SVOp->getMaskElt(i);
2753    if (Val >= 0)
2754      Mask |= Val;
2755    if (i != 0)
2756      Mask <<= 2;
2757  }
2758  return Mask;
2759}
2760
2761/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2762/// constant +0.0.
2763bool X86::isZeroNode(SDValue Elt) {
2764  return ((isa<ConstantSDNode>(Elt) &&
2765           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2766          (isa<ConstantFPSDNode>(Elt) &&
2767           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2768}
2769
2770/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2771/// their permute mask.
2772static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
2773                                    SelectionDAG &DAG) {
2774  EVT VT = SVOp->getValueType(0);
2775  unsigned NumElems = VT.getVectorNumElements();
2776  SmallVector<int, 8> MaskVec;
2777
2778  for (unsigned i = 0; i != NumElems; ++i) {
2779    int idx = SVOp->getMaskElt(i);
2780    if (idx < 0)
2781      MaskVec.push_back(idx);
2782    else if (idx < (int)NumElems)
2783      MaskVec.push_back(idx + NumElems);
2784    else
2785      MaskVec.push_back(idx - NumElems);
2786  }
2787  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
2788                              SVOp->getOperand(0), &MaskVec[0]);
2789}
2790
2791/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2792/// the two vector operands have swapped position.
2793static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
2794  unsigned NumElems = VT.getVectorNumElements();
2795  for (unsigned i = 0; i != NumElems; ++i) {
2796    int idx = Mask[i];
2797    if (idx < 0)
2798      continue;
2799    else if (idx < (int)NumElems)
2800      Mask[i] = idx + NumElems;
2801    else
2802      Mask[i] = idx - NumElems;
2803  }
2804}
2805
2806/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2807/// match movhlps. The lower half elements should come from upper half of
2808/// V1 (and in order), and the upper half elements should come from the upper
2809/// half of V2 (and in order).
2810static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
2811  if (Op->getValueType(0).getVectorNumElements() != 4)
2812    return false;
2813  for (unsigned i = 0, e = 2; i != e; ++i)
2814    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
2815      return false;
2816  for (unsigned i = 2; i != 4; ++i)
2817    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
2818      return false;
2819  return true;
2820}
2821
2822/// isScalarLoadToVector - Returns true if the node is a scalar load that
2823/// is promoted to a vector. It also returns the LoadSDNode by reference if
2824/// required.
2825static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2826  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2827    return false;
2828  N = N->getOperand(0).getNode();
2829  if (!ISD::isNON_EXTLoad(N))
2830    return false;
2831  if (LD)
2832    *LD = cast<LoadSDNode>(N);
2833  return true;
2834}
2835
2836/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2837/// match movlp{s|d}. The lower half elements should come from lower half of
2838/// V1 (and in order), and the upper half elements should come from the upper
2839/// half of V2 (and in order). And since V1 will become the source of the
2840/// MOVLP, it must be either a vector load or a scalar load to vector.
2841static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
2842                               ShuffleVectorSDNode *Op) {
2843  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2844    return false;
2845  // Is V2 is a vector load, don't do this transformation. We will try to use
2846  // load folding shufps op.
2847  if (ISD::isNON_EXTLoad(V2))
2848    return false;
2849
2850  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
2851
2852  if (NumElems != 2 && NumElems != 4)
2853    return false;
2854  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2855    if (!isUndefOrEqual(Op->getMaskElt(i), i))
2856      return false;
2857  for (unsigned i = NumElems/2; i != NumElems; ++i)
2858    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
2859      return false;
2860  return true;
2861}
2862
2863/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2864/// all the same.
2865static bool isSplatVector(SDNode *N) {
2866  if (N->getOpcode() != ISD::BUILD_VECTOR)
2867    return false;
2868
2869  SDValue SplatValue = N->getOperand(0);
2870  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2871    if (N->getOperand(i) != SplatValue)
2872      return false;
2873  return true;
2874}
2875
2876/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2877/// to an zero vector.
2878/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
2879static bool isZeroShuffle(ShuffleVectorSDNode *N) {
2880  SDValue V1 = N->getOperand(0);
2881  SDValue V2 = N->getOperand(1);
2882  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2883  for (unsigned i = 0; i != NumElems; ++i) {
2884    int Idx = N->getMaskElt(i);
2885    if (Idx >= (int)NumElems) {
2886      unsigned Opc = V2.getOpcode();
2887      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2888        continue;
2889      if (Opc != ISD::BUILD_VECTOR ||
2890          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
2891        return false;
2892    } else if (Idx >= 0) {
2893      unsigned Opc = V1.getOpcode();
2894      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2895        continue;
2896      if (Opc != ISD::BUILD_VECTOR ||
2897          !X86::isZeroNode(V1.getOperand(Idx)))
2898        return false;
2899    }
2900  }
2901  return true;
2902}
2903
2904/// getZeroVector - Returns a vector of specified type with all zero elements.
2905///
2906static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
2907                             DebugLoc dl) {
2908  assert(VT.isVector() && "Expected a vector type");
2909
2910  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2911  // type.  This ensures they get CSE'd.
2912  SDValue Vec;
2913  if (VT.getSizeInBits() == 64) { // MMX
2914    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2915    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2916  } else if (HasSSE2) {  // SSE2
2917    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2918    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2919  } else { // SSE1
2920    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2921    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
2922  }
2923  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2924}
2925
2926/// getOnesVector - Returns a vector of specified type with all bits set.
2927///
2928static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2929  assert(VT.isVector() && "Expected a vector type");
2930
2931  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2932  // type.  This ensures they get CSE'd.
2933  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2934  SDValue Vec;
2935  if (VT.getSizeInBits() == 64)  // MMX
2936    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2937  else                                              // SSE
2938    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2939  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2940}
2941
2942
2943/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2944/// that point to V2 points to its first element.
2945static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
2946  EVT VT = SVOp->getValueType(0);
2947  unsigned NumElems = VT.getVectorNumElements();
2948
2949  bool Changed = false;
2950  SmallVector<int, 8> MaskVec;
2951  SVOp->getMask(MaskVec);
2952
2953  for (unsigned i = 0; i != NumElems; ++i) {
2954    if (MaskVec[i] > (int)NumElems) {
2955      MaskVec[i] = NumElems;
2956      Changed = true;
2957    }
2958  }
2959  if (Changed)
2960    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
2961                                SVOp->getOperand(1), &MaskVec[0]);
2962  return SDValue(SVOp, 0);
2963}
2964
2965/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2966/// operation of specified width.
2967static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
2968                       SDValue V2) {
2969  unsigned NumElems = VT.getVectorNumElements();
2970  SmallVector<int, 8> Mask;
2971  Mask.push_back(NumElems);
2972  for (unsigned i = 1; i != NumElems; ++i)
2973    Mask.push_back(i);
2974  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2975}
2976
2977/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
2978static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
2979                          SDValue V2) {
2980  unsigned NumElems = VT.getVectorNumElements();
2981  SmallVector<int, 8> Mask;
2982  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2983    Mask.push_back(i);
2984    Mask.push_back(i + NumElems);
2985  }
2986  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2987}
2988
2989/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
2990static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
2991                          SDValue V2) {
2992  unsigned NumElems = VT.getVectorNumElements();
2993  unsigned Half = NumElems/2;
2994  SmallVector<int, 8> Mask;
2995  for (unsigned i = 0; i != Half; ++i) {
2996    Mask.push_back(i + Half);
2997    Mask.push_back(i + NumElems + Half);
2998  }
2999  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3000}
3001
3002/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3003static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3004                            bool HasSSE2) {
3005  if (SV->getValueType(0).getVectorNumElements() <= 4)
3006    return SDValue(SV, 0);
3007
3008  EVT PVT = MVT::v4f32;
3009  EVT VT = SV->getValueType(0);
3010  DebugLoc dl = SV->getDebugLoc();
3011  SDValue V1 = SV->getOperand(0);
3012  int NumElems = VT.getVectorNumElements();
3013  int EltNo = SV->getSplatIndex();
3014
3015  // unpack elements to the correct location
3016  while (NumElems > 4) {
3017    if (EltNo < NumElems/2) {
3018      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3019    } else {
3020      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3021      EltNo -= NumElems/2;
3022    }
3023    NumElems >>= 1;
3024  }
3025
3026  // Perform the splat.
3027  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3028  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3029  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3030  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3031}
3032
3033/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3034/// vector of zero or undef vector.  This produces a shuffle where the low
3035/// element of V2 is swizzled into the zero/undef vector, landing at element
3036/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3037static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3038                                             bool isZero, bool HasSSE2,
3039                                             SelectionDAG &DAG) {
3040  EVT VT = V2.getValueType();
3041  SDValue V1 = isZero
3042    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3043  unsigned NumElems = VT.getVectorNumElements();
3044  SmallVector<int, 16> MaskVec;
3045  for (unsigned i = 0; i != NumElems; ++i)
3046    // If this is the insertion idx, put the low elt of V2 here.
3047    MaskVec.push_back(i == Idx ? NumElems : i);
3048  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3049}
3050
3051/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3052/// a shuffle that is zero.
3053static
3054unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3055                                  bool Low, SelectionDAG &DAG) {
3056  unsigned NumZeros = 0;
3057  for (int i = 0; i < NumElems; ++i) {
3058    unsigned Index = Low ? i : NumElems-i-1;
3059    int Idx = SVOp->getMaskElt(Index);
3060    if (Idx < 0) {
3061      ++NumZeros;
3062      continue;
3063    }
3064    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3065    if (Elt.getNode() && X86::isZeroNode(Elt))
3066      ++NumZeros;
3067    else
3068      break;
3069  }
3070  return NumZeros;
3071}
3072
3073/// isVectorShift - Returns true if the shuffle can be implemented as a
3074/// logical left or right shift of a vector.
3075/// FIXME: split into pslldqi, psrldqi, palignr variants.
3076static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3077                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3078  int NumElems = SVOp->getValueType(0).getVectorNumElements();
3079
3080  isLeft = true;
3081  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3082  if (!NumZeros) {
3083    isLeft = false;
3084    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3085    if (!NumZeros)
3086      return false;
3087  }
3088  bool SeenV1 = false;
3089  bool SeenV2 = false;
3090  for (int i = NumZeros; i < NumElems; ++i) {
3091    int Val = isLeft ? (i - NumZeros) : i;
3092    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3093    if (Idx < 0)
3094      continue;
3095    if (Idx < NumElems)
3096      SeenV1 = true;
3097    else {
3098      Idx -= NumElems;
3099      SeenV2 = true;
3100    }
3101    if (Idx != Val)
3102      return false;
3103  }
3104  if (SeenV1 && SeenV2)
3105    return false;
3106
3107  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3108  ShAmt = NumZeros;
3109  return true;
3110}
3111
3112
3113/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3114///
3115static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3116                                       unsigned NumNonZero, unsigned NumZero,
3117                                       SelectionDAG &DAG, TargetLowering &TLI) {
3118  if (NumNonZero > 8)
3119    return SDValue();
3120
3121  DebugLoc dl = Op.getDebugLoc();
3122  SDValue V(0, 0);
3123  bool First = true;
3124  for (unsigned i = 0; i < 16; ++i) {
3125    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3126    if (ThisIsNonZero && First) {
3127      if (NumZero)
3128        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3129      else
3130        V = DAG.getUNDEF(MVT::v8i16);
3131      First = false;
3132    }
3133
3134    if ((i & 1) != 0) {
3135      SDValue ThisElt(0, 0), LastElt(0, 0);
3136      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3137      if (LastIsNonZero) {
3138        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3139                              MVT::i16, Op.getOperand(i-1));
3140      }
3141      if (ThisIsNonZero) {
3142        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3143        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3144                              ThisElt, DAG.getConstant(8, MVT::i8));
3145        if (LastIsNonZero)
3146          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3147      } else
3148        ThisElt = LastElt;
3149
3150      if (ThisElt.getNode())
3151        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3152                        DAG.getIntPtrConstant(i/2));
3153    }
3154  }
3155
3156  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3157}
3158
3159/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3160///
3161static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3162                                       unsigned NumNonZero, unsigned NumZero,
3163                                       SelectionDAG &DAG, TargetLowering &TLI) {
3164  if (NumNonZero > 4)
3165    return SDValue();
3166
3167  DebugLoc dl = Op.getDebugLoc();
3168  SDValue V(0, 0);
3169  bool First = true;
3170  for (unsigned i = 0; i < 8; ++i) {
3171    bool isNonZero = (NonZeros & (1 << i)) != 0;
3172    if (isNonZero) {
3173      if (First) {
3174        if (NumZero)
3175          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3176        else
3177          V = DAG.getUNDEF(MVT::v8i16);
3178        First = false;
3179      }
3180      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3181                      MVT::v8i16, V, Op.getOperand(i),
3182                      DAG.getIntPtrConstant(i));
3183    }
3184  }
3185
3186  return V;
3187}
3188
3189/// getVShift - Return a vector logical shift node.
3190///
3191static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3192                         unsigned NumBits, SelectionDAG &DAG,
3193                         const TargetLowering &TLI, DebugLoc dl) {
3194  bool isMMX = VT.getSizeInBits() == 64;
3195  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3196  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3197  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3198  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3199                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3200                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3201}
3202
3203SDValue
3204X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3205  DebugLoc dl = Op.getDebugLoc();
3206  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3207  if (ISD::isBuildVectorAllZeros(Op.getNode())
3208      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3209    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3210    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3211    // eliminated on x86-32 hosts.
3212    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3213      return Op;
3214
3215    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3216      return getOnesVector(Op.getValueType(), DAG, dl);
3217    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3218  }
3219
3220  EVT VT = Op.getValueType();
3221  EVT ExtVT = VT.getVectorElementType();
3222  unsigned EVTBits = ExtVT.getSizeInBits();
3223
3224  unsigned NumElems = Op.getNumOperands();
3225  unsigned NumZero  = 0;
3226  unsigned NumNonZero = 0;
3227  unsigned NonZeros = 0;
3228  bool IsAllConstants = true;
3229  SmallSet<SDValue, 8> Values;
3230  for (unsigned i = 0; i < NumElems; ++i) {
3231    SDValue Elt = Op.getOperand(i);
3232    if (Elt.getOpcode() == ISD::UNDEF)
3233      continue;
3234    Values.insert(Elt);
3235    if (Elt.getOpcode() != ISD::Constant &&
3236        Elt.getOpcode() != ISD::ConstantFP)
3237      IsAllConstants = false;
3238    if (X86::isZeroNode(Elt))
3239      NumZero++;
3240    else {
3241      NonZeros |= (1 << i);
3242      NumNonZero++;
3243    }
3244  }
3245
3246  if (NumNonZero == 0) {
3247    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3248    return DAG.getUNDEF(VT);
3249  }
3250
3251  // Special case for single non-zero, non-undef, element.
3252  if (NumNonZero == 1) {
3253    unsigned Idx = CountTrailingZeros_32(NonZeros);
3254    SDValue Item = Op.getOperand(Idx);
3255
3256    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3257    // the value are obviously zero, truncate the value to i32 and do the
3258    // insertion that way.  Only do this if the value is non-constant or if the
3259    // value is a constant being inserted into element 0.  It is cheaper to do
3260    // a constant pool load than it is to do a movd + shuffle.
3261    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3262        (!IsAllConstants || Idx == 0)) {
3263      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3264        // Handle MMX and SSE both.
3265        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3266        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3267
3268        // Truncate the value (which may itself be a constant) to i32, and
3269        // convert it to a vector with movd (S2V+shuffle to zero extend).
3270        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3271        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3272        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3273                                           Subtarget->hasSSE2(), DAG);
3274
3275        // Now we have our 32-bit value zero extended in the low element of
3276        // a vector.  If Idx != 0, swizzle it into place.
3277        if (Idx != 0) {
3278          SmallVector<int, 4> Mask;
3279          Mask.push_back(Idx);
3280          for (unsigned i = 1; i != VecElts; ++i)
3281            Mask.push_back(i);
3282          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3283                                      DAG.getUNDEF(Item.getValueType()),
3284                                      &Mask[0]);
3285        }
3286        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3287      }
3288    }
3289
3290    // If we have a constant or non-constant insertion into the low element of
3291    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3292    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3293    // depending on what the source datatype is.
3294    if (Idx == 0) {
3295      if (NumZero == 0) {
3296        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3297      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3298          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3299        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3300        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3301        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3302                                           DAG);
3303      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3304        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3305        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3306        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3307        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3308                                           Subtarget->hasSSE2(), DAG);
3309        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3310      }
3311    }
3312
3313    // Is it a vector logical left shift?
3314    if (NumElems == 2 && Idx == 1 &&
3315        X86::isZeroNode(Op.getOperand(0)) &&
3316        !X86::isZeroNode(Op.getOperand(1))) {
3317      unsigned NumBits = VT.getSizeInBits();
3318      return getVShift(true, VT,
3319                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3320                                   VT, Op.getOperand(1)),
3321                       NumBits/2, DAG, *this, dl);
3322    }
3323
3324    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3325      return SDValue();
3326
3327    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3328    // is a non-constant being inserted into an element other than the low one,
3329    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3330    // movd/movss) to move this into the low element, then shuffle it into
3331    // place.
3332    if (EVTBits == 32) {
3333      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3334
3335      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3336      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3337                                         Subtarget->hasSSE2(), DAG);
3338      SmallVector<int, 8> MaskVec;
3339      for (unsigned i = 0; i < NumElems; i++)
3340        MaskVec.push_back(i == Idx ? 0 : 1);
3341      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3342    }
3343  }
3344
3345  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3346  if (Values.size() == 1)
3347    return SDValue();
3348
3349  // A vector full of immediates; various special cases are already
3350  // handled, so this is best done with a single constant-pool load.
3351  if (IsAllConstants)
3352    return SDValue();
3353
3354  // Let legalizer expand 2-wide build_vectors.
3355  if (EVTBits == 64) {
3356    if (NumNonZero == 1) {
3357      // One half is zero or undef.
3358      unsigned Idx = CountTrailingZeros_32(NonZeros);
3359      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3360                                 Op.getOperand(Idx));
3361      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3362                                         Subtarget->hasSSE2(), DAG);
3363    }
3364    return SDValue();
3365  }
3366
3367  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3368  if (EVTBits == 8 && NumElems == 16) {
3369    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3370                                        *this);
3371    if (V.getNode()) return V;
3372  }
3373
3374  if (EVTBits == 16 && NumElems == 8) {
3375    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3376                                        *this);
3377    if (V.getNode()) return V;
3378  }
3379
3380  // If element VT is == 32 bits, turn it into a number of shuffles.
3381  SmallVector<SDValue, 8> V;
3382  V.resize(NumElems);
3383  if (NumElems == 4 && NumZero > 0) {
3384    for (unsigned i = 0; i < 4; ++i) {
3385      bool isZero = !(NonZeros & (1 << i));
3386      if (isZero)
3387        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3388      else
3389        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3390    }
3391
3392    for (unsigned i = 0; i < 2; ++i) {
3393      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3394        default: break;
3395        case 0:
3396          V[i] = V[i*2];  // Must be a zero vector.
3397          break;
3398        case 1:
3399          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3400          break;
3401        case 2:
3402          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3403          break;
3404        case 3:
3405          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3406          break;
3407      }
3408    }
3409
3410    SmallVector<int, 8> MaskVec;
3411    bool Reverse = (NonZeros & 0x3) == 2;
3412    for (unsigned i = 0; i < 2; ++i)
3413      MaskVec.push_back(Reverse ? 1-i : i);
3414    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3415    for (unsigned i = 0; i < 2; ++i)
3416      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3417    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3418  }
3419
3420  if (Values.size() > 2) {
3421    // If we have SSE 4.1, Expand into a number of inserts unless the number of
3422    // values to be inserted is equal to the number of elements, in which case
3423    // use the unpack code below in the hopes of matching the consecutive elts
3424    // load merge pattern for shuffles.
3425    // FIXME: We could probably just check that here directly.
3426    if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3427        getSubtarget()->hasSSE41()) {
3428      V[0] = DAG.getUNDEF(VT);
3429      for (unsigned i = 0; i < NumElems; ++i)
3430        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3431          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3432                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3433      return V[0];
3434    }
3435    // Expand into a number of unpckl*.
3436    // e.g. for v4f32
3437    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3438    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3439    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3440    for (unsigned i = 0; i < NumElems; ++i)
3441      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3442    NumElems >>= 1;
3443    while (NumElems != 0) {
3444      for (unsigned i = 0; i < NumElems; ++i)
3445        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3446      NumElems >>= 1;
3447    }
3448    return V[0];
3449  }
3450
3451  return SDValue();
3452}
3453
3454// v8i16 shuffles - Prefer shuffles in the following order:
3455// 1. [all]   pshuflw, pshufhw, optional move
3456// 2. [ssse3] 1 x pshufb
3457// 3. [ssse3] 2 x pshufb + 1 x por
3458// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3459static
3460SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3461                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3462  SDValue V1 = SVOp->getOperand(0);
3463  SDValue V2 = SVOp->getOperand(1);
3464  DebugLoc dl = SVOp->getDebugLoc();
3465  SmallVector<int, 8> MaskVals;
3466
3467  // Determine if more than 1 of the words in each of the low and high quadwords
3468  // of the result come from the same quadword of one of the two inputs.  Undef
3469  // mask values count as coming from any quadword, for better codegen.
3470  SmallVector<unsigned, 4> LoQuad(4);
3471  SmallVector<unsigned, 4> HiQuad(4);
3472  BitVector InputQuads(4);
3473  for (unsigned i = 0; i < 8; ++i) {
3474    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3475    int EltIdx = SVOp->getMaskElt(i);
3476    MaskVals.push_back(EltIdx);
3477    if (EltIdx < 0) {
3478      ++Quad[0];
3479      ++Quad[1];
3480      ++Quad[2];
3481      ++Quad[3];
3482      continue;
3483    }
3484    ++Quad[EltIdx / 4];
3485    InputQuads.set(EltIdx / 4);
3486  }
3487
3488  int BestLoQuad = -1;
3489  unsigned MaxQuad = 1;
3490  for (unsigned i = 0; i < 4; ++i) {
3491    if (LoQuad[i] > MaxQuad) {
3492      BestLoQuad = i;
3493      MaxQuad = LoQuad[i];
3494    }
3495  }
3496
3497  int BestHiQuad = -1;
3498  MaxQuad = 1;
3499  for (unsigned i = 0; i < 4; ++i) {
3500    if (HiQuad[i] > MaxQuad) {
3501      BestHiQuad = i;
3502      MaxQuad = HiQuad[i];
3503    }
3504  }
3505
3506  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3507  // of the two input vectors, shuffle them into one input vector so only a
3508  // single pshufb instruction is necessary. If There are more than 2 input
3509  // quads, disable the next transformation since it does not help SSSE3.
3510  bool V1Used = InputQuads[0] || InputQuads[1];
3511  bool V2Used = InputQuads[2] || InputQuads[3];
3512  if (TLI.getSubtarget()->hasSSSE3()) {
3513    if (InputQuads.count() == 2 && V1Used && V2Used) {
3514      BestLoQuad = InputQuads.find_first();
3515      BestHiQuad = InputQuads.find_next(BestLoQuad);
3516    }
3517    if (InputQuads.count() > 2) {
3518      BestLoQuad = -1;
3519      BestHiQuad = -1;
3520    }
3521  }
3522
3523  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3524  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3525  // words from all 4 input quadwords.
3526  SDValue NewV;
3527  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3528    SmallVector<int, 8> MaskV;
3529    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3530    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3531    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3532                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3533                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3534    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3535
3536    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3537    // source words for the shuffle, to aid later transformations.
3538    bool AllWordsInNewV = true;
3539    bool InOrder[2] = { true, true };
3540    for (unsigned i = 0; i != 8; ++i) {
3541      int idx = MaskVals[i];
3542      if (idx != (int)i)
3543        InOrder[i/4] = false;
3544      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3545        continue;
3546      AllWordsInNewV = false;
3547      break;
3548    }
3549
3550    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3551    if (AllWordsInNewV) {
3552      for (int i = 0; i != 8; ++i) {
3553        int idx = MaskVals[i];
3554        if (idx < 0)
3555          continue;
3556        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3557        if ((idx != i) && idx < 4)
3558          pshufhw = false;
3559        if ((idx != i) && idx > 3)
3560          pshuflw = false;
3561      }
3562      V1 = NewV;
3563      V2Used = false;
3564      BestLoQuad = 0;
3565      BestHiQuad = 1;
3566    }
3567
3568    // If we've eliminated the use of V2, and the new mask is a pshuflw or
3569    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
3570    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3571      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
3572                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
3573    }
3574  }
3575
3576  // If we have SSSE3, and all words of the result are from 1 input vector,
3577  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
3578  // is present, fall back to case 4.
3579  if (TLI.getSubtarget()->hasSSSE3()) {
3580    SmallVector<SDValue,16> pshufbMask;
3581
3582    // If we have elements from both input vectors, set the high bit of the
3583    // shuffle mask element to zero out elements that come from V2 in the V1
3584    // mask, and elements that come from V1 in the V2 mask, so that the two
3585    // results can be OR'd together.
3586    bool TwoInputs = V1Used && V2Used;
3587    for (unsigned i = 0; i != 8; ++i) {
3588      int EltIdx = MaskVals[i] * 2;
3589      if (TwoInputs && (EltIdx >= 16)) {
3590        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3591        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3592        continue;
3593      }
3594      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
3595      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
3596    }
3597    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
3598    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3599                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3600                                 MVT::v16i8, &pshufbMask[0], 16));
3601    if (!TwoInputs)
3602      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3603
3604    // Calculate the shuffle mask for the second input, shuffle it, and
3605    // OR it with the first shuffled input.
3606    pshufbMask.clear();
3607    for (unsigned i = 0; i != 8; ++i) {
3608      int EltIdx = MaskVals[i] * 2;
3609      if (EltIdx < 16) {
3610        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3611        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3612        continue;
3613      }
3614      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3615      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
3616    }
3617    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
3618    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3619                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3620                                 MVT::v16i8, &pshufbMask[0], 16));
3621    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3622    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3623  }
3624
3625  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3626  // and update MaskVals with new element order.
3627  BitVector InOrder(8);
3628  if (BestLoQuad >= 0) {
3629    SmallVector<int, 8> MaskV;
3630    for (int i = 0; i != 4; ++i) {
3631      int idx = MaskVals[i];
3632      if (idx < 0) {
3633        MaskV.push_back(-1);
3634        InOrder.set(i);
3635      } else if ((idx / 4) == BestLoQuad) {
3636        MaskV.push_back(idx & 3);
3637        InOrder.set(i);
3638      } else {
3639        MaskV.push_back(-1);
3640      }
3641    }
3642    for (unsigned i = 4; i != 8; ++i)
3643      MaskV.push_back(i);
3644    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3645                                &MaskV[0]);
3646  }
3647
3648  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3649  // and update MaskVals with the new element order.
3650  if (BestHiQuad >= 0) {
3651    SmallVector<int, 8> MaskV;
3652    for (unsigned i = 0; i != 4; ++i)
3653      MaskV.push_back(i);
3654    for (unsigned i = 4; i != 8; ++i) {
3655      int idx = MaskVals[i];
3656      if (idx < 0) {
3657        MaskV.push_back(-1);
3658        InOrder.set(i);
3659      } else if ((idx / 4) == BestHiQuad) {
3660        MaskV.push_back((idx & 3) + 4);
3661        InOrder.set(i);
3662      } else {
3663        MaskV.push_back(-1);
3664      }
3665    }
3666    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3667                                &MaskV[0]);
3668  }
3669
3670  // In case BestHi & BestLo were both -1, which means each quadword has a word
3671  // from each of the four input quadwords, calculate the InOrder bitvector now
3672  // before falling through to the insert/extract cleanup.
3673  if (BestLoQuad == -1 && BestHiQuad == -1) {
3674    NewV = V1;
3675    for (int i = 0; i != 8; ++i)
3676      if (MaskVals[i] < 0 || MaskVals[i] == i)
3677        InOrder.set(i);
3678  }
3679
3680  // The other elements are put in the right place using pextrw and pinsrw.
3681  for (unsigned i = 0; i != 8; ++i) {
3682    if (InOrder[i])
3683      continue;
3684    int EltIdx = MaskVals[i];
3685    if (EltIdx < 0)
3686      continue;
3687    SDValue ExtOp = (EltIdx < 8)
3688    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
3689                  DAG.getIntPtrConstant(EltIdx))
3690    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
3691                  DAG.getIntPtrConstant(EltIdx - 8));
3692    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
3693                       DAG.getIntPtrConstant(i));
3694  }
3695  return NewV;
3696}
3697
3698// v16i8 shuffles - Prefer shuffles in the following order:
3699// 1. [ssse3] 1 x pshufb
3700// 2. [ssse3] 2 x pshufb + 1 x por
3701// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
3702static
3703SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
3704                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3705  SDValue V1 = SVOp->getOperand(0);
3706  SDValue V2 = SVOp->getOperand(1);
3707  DebugLoc dl = SVOp->getDebugLoc();
3708  SmallVector<int, 16> MaskVals;
3709  SVOp->getMask(MaskVals);
3710
3711  // If we have SSSE3, case 1 is generated when all result bytes come from
3712  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
3713  // present, fall back to case 3.
3714  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3715  bool V1Only = true;
3716  bool V2Only = true;
3717  for (unsigned i = 0; i < 16; ++i) {
3718    int EltIdx = MaskVals[i];
3719    if (EltIdx < 0)
3720      continue;
3721    if (EltIdx < 16)
3722      V2Only = false;
3723    else
3724      V1Only = false;
3725  }
3726
3727  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3728  if (TLI.getSubtarget()->hasSSSE3()) {
3729    SmallVector<SDValue,16> pshufbMask;
3730
3731    // If all result elements are from one input vector, then only translate
3732    // undef mask values to 0x80 (zero out result) in the pshufb mask.
3733    //
3734    // Otherwise, we have elements from both input vectors, and must zero out
3735    // elements that come from V2 in the first mask, and V1 in the second mask
3736    // so that we can OR them together.
3737    bool TwoInputs = !(V1Only || V2Only);
3738    for (unsigned i = 0; i != 16; ++i) {
3739      int EltIdx = MaskVals[i];
3740      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
3741        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3742        continue;
3743      }
3744      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3745    }
3746    // If all the elements are from V2, assign it to V1 and return after
3747    // building the first pshufb.
3748    if (V2Only)
3749      V1 = V2;
3750    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3751                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3752                                 MVT::v16i8, &pshufbMask[0], 16));
3753    if (!TwoInputs)
3754      return V1;
3755
3756    // Calculate the shuffle mask for the second input, shuffle it, and
3757    // OR it with the first shuffled input.
3758    pshufbMask.clear();
3759    for (unsigned i = 0; i != 16; ++i) {
3760      int EltIdx = MaskVals[i];
3761      if (EltIdx < 16) {
3762        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3763        continue;
3764      }
3765      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3766    }
3767    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3768                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3769                                 MVT::v16i8, &pshufbMask[0], 16));
3770    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3771  }
3772
3773  // No SSSE3 - Calculate in place words and then fix all out of place words
3774  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
3775  // the 16 different words that comprise the two doublequadword input vectors.
3776  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3777  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
3778  SDValue NewV = V2Only ? V2 : V1;
3779  for (int i = 0; i != 8; ++i) {
3780    int Elt0 = MaskVals[i*2];
3781    int Elt1 = MaskVals[i*2+1];
3782
3783    // This word of the result is all undef, skip it.
3784    if (Elt0 < 0 && Elt1 < 0)
3785      continue;
3786
3787    // This word of the result is already in the correct place, skip it.
3788    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
3789      continue;
3790    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
3791      continue;
3792
3793    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
3794    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
3795    SDValue InsElt;
3796
3797    // If Elt0 and Elt1 are defined, are consecutive, and can be load
3798    // using a single extract together, load it and store it.
3799    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
3800      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3801                           DAG.getIntPtrConstant(Elt1 / 2));
3802      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3803                        DAG.getIntPtrConstant(i));
3804      continue;
3805    }
3806
3807    // If Elt1 is defined, extract it from the appropriate source.  If the
3808    // source byte is not also odd, shift the extracted word left 8 bits
3809    // otherwise clear the bottom 8 bits if we need to do an or.
3810    if (Elt1 >= 0) {
3811      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3812                           DAG.getIntPtrConstant(Elt1 / 2));
3813      if ((Elt1 & 1) == 0)
3814        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
3815                             DAG.getConstant(8, TLI.getShiftAmountTy()));
3816      else if (Elt0 >= 0)
3817        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
3818                             DAG.getConstant(0xFF00, MVT::i16));
3819    }
3820    // If Elt0 is defined, extract it from the appropriate source.  If the
3821    // source byte is not also even, shift the extracted word right 8 bits. If
3822    // Elt1 was also defined, OR the extracted values together before
3823    // inserting them in the result.
3824    if (Elt0 >= 0) {
3825      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
3826                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
3827      if ((Elt0 & 1) != 0)
3828        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
3829                              DAG.getConstant(8, TLI.getShiftAmountTy()));
3830      else if (Elt1 >= 0)
3831        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
3832                             DAG.getConstant(0x00FF, MVT::i16));
3833      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
3834                         : InsElt0;
3835    }
3836    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3837                       DAG.getIntPtrConstant(i));
3838  }
3839  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
3840}
3841
3842/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3843/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3844/// done when every pair / quad of shuffle mask elements point to elements in
3845/// the right sequence. e.g.
3846/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3847static
3848SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
3849                                 SelectionDAG &DAG,
3850                                 TargetLowering &TLI, DebugLoc dl) {
3851  EVT VT = SVOp->getValueType(0);
3852  SDValue V1 = SVOp->getOperand(0);
3853  SDValue V2 = SVOp->getOperand(1);
3854  unsigned NumElems = VT.getVectorNumElements();
3855  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3856  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3857  EVT MaskEltVT = MaskVT.getVectorElementType();
3858  EVT NewVT = MaskVT;
3859  switch (VT.getSimpleVT().SimpleTy) {
3860  default: assert(false && "Unexpected!");
3861  case MVT::v4f32: NewVT = MVT::v2f64; break;
3862  case MVT::v4i32: NewVT = MVT::v2i64; break;
3863  case MVT::v8i16: NewVT = MVT::v4i32; break;
3864  case MVT::v16i8: NewVT = MVT::v4i32; break;
3865  }
3866
3867  if (NewWidth == 2) {
3868    if (VT.isInteger())
3869      NewVT = MVT::v2i64;
3870    else
3871      NewVT = MVT::v2f64;
3872  }
3873  int Scale = NumElems / NewWidth;
3874  SmallVector<int, 8> MaskVec;
3875  for (unsigned i = 0; i < NumElems; i += Scale) {
3876    int StartIdx = -1;
3877    for (int j = 0; j < Scale; ++j) {
3878      int EltIdx = SVOp->getMaskElt(i+j);
3879      if (EltIdx < 0)
3880        continue;
3881      if (StartIdx == -1)
3882        StartIdx = EltIdx - (EltIdx % Scale);
3883      if (EltIdx != StartIdx + j)
3884        return SDValue();
3885    }
3886    if (StartIdx == -1)
3887      MaskVec.push_back(-1);
3888    else
3889      MaskVec.push_back(StartIdx / Scale);
3890  }
3891
3892  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
3893  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
3894  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
3895}
3896
3897/// getVZextMovL - Return a zero-extending vector move low node.
3898///
3899static SDValue getVZextMovL(EVT VT, EVT OpVT,
3900                            SDValue SrcOp, SelectionDAG &DAG,
3901                            const X86Subtarget *Subtarget, DebugLoc dl) {
3902  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3903    LoadSDNode *LD = NULL;
3904    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
3905      LD = dyn_cast<LoadSDNode>(SrcOp);
3906    if (!LD) {
3907      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3908      // instead.
3909      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3910      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
3911          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3912          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3913          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
3914        // PR2108
3915        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3916        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3917                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3918                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3919                                                   OpVT,
3920                                                   SrcOp.getOperand(0)
3921                                                          .getOperand(0))));
3922      }
3923    }
3924  }
3925
3926  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3927                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3928                                 DAG.getNode(ISD::BIT_CONVERT, dl,
3929                                             OpVT, SrcOp)));
3930}
3931
3932/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3933/// shuffles.
3934static SDValue
3935LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3936  SDValue V1 = SVOp->getOperand(0);
3937  SDValue V2 = SVOp->getOperand(1);
3938  DebugLoc dl = SVOp->getDebugLoc();
3939  EVT VT = SVOp->getValueType(0);
3940
3941  SmallVector<std::pair<int, int>, 8> Locs;
3942  Locs.resize(4);
3943  SmallVector<int, 8> Mask1(4U, -1);
3944  SmallVector<int, 8> PermMask;
3945  SVOp->getMask(PermMask);
3946
3947  unsigned NumHi = 0;
3948  unsigned NumLo = 0;
3949  for (unsigned i = 0; i != 4; ++i) {
3950    int Idx = PermMask[i];
3951    if (Idx < 0) {
3952      Locs[i] = std::make_pair(-1, -1);
3953    } else {
3954      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
3955      if (Idx < 4) {
3956        Locs[i] = std::make_pair(0, NumLo);
3957        Mask1[NumLo] = Idx;
3958        NumLo++;
3959      } else {
3960        Locs[i] = std::make_pair(1, NumHi);
3961        if (2+NumHi < 4)
3962          Mask1[2+NumHi] = Idx;
3963        NumHi++;
3964      }
3965    }
3966  }
3967
3968  if (NumLo <= 2 && NumHi <= 2) {
3969    // If no more than two elements come from either vector. This can be
3970    // implemented with two shuffles. First shuffle gather the elements.
3971    // The second shuffle, which takes the first shuffle as both of its
3972    // vector operands, put the elements into the right order.
3973    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3974
3975    SmallVector<int, 8> Mask2(4U, -1);
3976
3977    for (unsigned i = 0; i != 4; ++i) {
3978      if (Locs[i].first == -1)
3979        continue;
3980      else {
3981        unsigned Idx = (i < 2) ? 0 : 4;
3982        Idx += Locs[i].first * 2 + Locs[i].second;
3983        Mask2[i] = Idx;
3984      }
3985    }
3986
3987    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
3988  } else if (NumLo == 3 || NumHi == 3) {
3989    // Otherwise, we must have three elements from one vector, call it X, and
3990    // one element from the other, call it Y.  First, use a shufps to build an
3991    // intermediate vector with the one element from Y and the element from X
3992    // that will be in the same half in the final destination (the indexes don't
3993    // matter). Then, use a shufps to build the final vector, taking the half
3994    // containing the element from Y from the intermediate, and the other half
3995    // from X.
3996    if (NumHi == 3) {
3997      // Normalize it so the 3 elements come from V1.
3998      CommuteVectorShuffleMask(PermMask, VT);
3999      std::swap(V1, V2);
4000    }
4001
4002    // Find the element from V2.
4003    unsigned HiIndex;
4004    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4005      int Val = PermMask[HiIndex];
4006      if (Val < 0)
4007        continue;
4008      if (Val >= 4)
4009        break;
4010    }
4011
4012    Mask1[0] = PermMask[HiIndex];
4013    Mask1[1] = -1;
4014    Mask1[2] = PermMask[HiIndex^1];
4015    Mask1[3] = -1;
4016    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4017
4018    if (HiIndex >= 2) {
4019      Mask1[0] = PermMask[0];
4020      Mask1[1] = PermMask[1];
4021      Mask1[2] = HiIndex & 1 ? 6 : 4;
4022      Mask1[3] = HiIndex & 1 ? 4 : 6;
4023      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4024    } else {
4025      Mask1[0] = HiIndex & 1 ? 2 : 0;
4026      Mask1[1] = HiIndex & 1 ? 0 : 2;
4027      Mask1[2] = PermMask[2];
4028      Mask1[3] = PermMask[3];
4029      if (Mask1[2] >= 0)
4030        Mask1[2] += 4;
4031      if (Mask1[3] >= 0)
4032        Mask1[3] += 4;
4033      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4034    }
4035  }
4036
4037  // Break it into (shuffle shuffle_hi, shuffle_lo).
4038  Locs.clear();
4039  SmallVector<int,8> LoMask(4U, -1);
4040  SmallVector<int,8> HiMask(4U, -1);
4041
4042  SmallVector<int,8> *MaskPtr = &LoMask;
4043  unsigned MaskIdx = 0;
4044  unsigned LoIdx = 0;
4045  unsigned HiIdx = 2;
4046  for (unsigned i = 0; i != 4; ++i) {
4047    if (i == 2) {
4048      MaskPtr = &HiMask;
4049      MaskIdx = 1;
4050      LoIdx = 0;
4051      HiIdx = 2;
4052    }
4053    int Idx = PermMask[i];
4054    if (Idx < 0) {
4055      Locs[i] = std::make_pair(-1, -1);
4056    } else if (Idx < 4) {
4057      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4058      (*MaskPtr)[LoIdx] = Idx;
4059      LoIdx++;
4060    } else {
4061      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4062      (*MaskPtr)[HiIdx] = Idx;
4063      HiIdx++;
4064    }
4065  }
4066
4067  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4068  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4069  SmallVector<int, 8> MaskOps;
4070  for (unsigned i = 0; i != 4; ++i) {
4071    if (Locs[i].first == -1) {
4072      MaskOps.push_back(-1);
4073    } else {
4074      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4075      MaskOps.push_back(Idx);
4076    }
4077  }
4078  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4079}
4080
4081SDValue
4082X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4083  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4084  SDValue V1 = Op.getOperand(0);
4085  SDValue V2 = Op.getOperand(1);
4086  EVT VT = Op.getValueType();
4087  DebugLoc dl = Op.getDebugLoc();
4088  unsigned NumElems = VT.getVectorNumElements();
4089  bool isMMX = VT.getSizeInBits() == 64;
4090  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4091  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4092  bool V1IsSplat = false;
4093  bool V2IsSplat = false;
4094
4095  if (isZeroShuffle(SVOp))
4096    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4097
4098  // Promote splats to v4f32.
4099  if (SVOp->isSplat()) {
4100    if (isMMX || NumElems < 4)
4101      return Op;
4102    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4103  }
4104
4105  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4106  // do it!
4107  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4108    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4109    if (NewOp.getNode())
4110      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4111                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4112  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4113    // FIXME: Figure out a cleaner way to do this.
4114    // Try to make use of movq to zero out the top part.
4115    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4116      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4117      if (NewOp.getNode()) {
4118        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4119          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4120                              DAG, Subtarget, dl);
4121      }
4122    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4123      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4124      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4125        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4126                            DAG, Subtarget, dl);
4127    }
4128  }
4129
4130  if (X86::isPSHUFDMask(SVOp))
4131    return Op;
4132
4133  // Check if this can be converted into a logical shift.
4134  bool isLeft = false;
4135  unsigned ShAmt = 0;
4136  SDValue ShVal;
4137  bool isShift = getSubtarget()->hasSSE2() &&
4138  isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4139  if (isShift && ShVal.hasOneUse()) {
4140    // If the shifted value has multiple uses, it may be cheaper to use
4141    // v_set0 + movlhps or movhlps, etc.
4142    EVT EVT = VT.getVectorElementType();
4143    ShAmt *= EVT.getSizeInBits();
4144    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4145  }
4146
4147  if (X86::isMOVLMask(SVOp)) {
4148    if (V1IsUndef)
4149      return V2;
4150    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4151      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4152    if (!isMMX)
4153      return Op;
4154  }
4155
4156  // FIXME: fold these into legal mask.
4157  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4158                 X86::isMOVSLDUPMask(SVOp) ||
4159                 X86::isMOVHLPSMask(SVOp) ||
4160                 X86::isMOVHPMask(SVOp) ||
4161                 X86::isMOVLPMask(SVOp)))
4162    return Op;
4163
4164  if (ShouldXformToMOVHLPS(SVOp) ||
4165      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4166    return CommuteVectorShuffle(SVOp, DAG);
4167
4168  if (isShift) {
4169    // No better options. Use a vshl / vsrl.
4170    EVT EVT = VT.getVectorElementType();
4171    ShAmt *= EVT.getSizeInBits();
4172    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4173  }
4174
4175  bool Commuted = false;
4176  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4177  // 1,1,1,1 -> v8i16 though.
4178  V1IsSplat = isSplatVector(V1.getNode());
4179  V2IsSplat = isSplatVector(V2.getNode());
4180
4181  // Canonicalize the splat or undef, if present, to be on the RHS.
4182  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4183    Op = CommuteVectorShuffle(SVOp, DAG);
4184    SVOp = cast<ShuffleVectorSDNode>(Op);
4185    V1 = SVOp->getOperand(0);
4186    V2 = SVOp->getOperand(1);
4187    std::swap(V1IsSplat, V2IsSplat);
4188    std::swap(V1IsUndef, V2IsUndef);
4189    Commuted = true;
4190  }
4191
4192  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4193    // Shuffling low element of v1 into undef, just return v1.
4194    if (V2IsUndef)
4195      return V1;
4196    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4197    // the instruction selector will not match, so get a canonical MOVL with
4198    // swapped operands to undo the commute.
4199    return getMOVL(DAG, dl, VT, V2, V1);
4200  }
4201
4202  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4203      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4204      X86::isUNPCKLMask(SVOp) ||
4205      X86::isUNPCKHMask(SVOp))
4206    return Op;
4207
4208  if (V2IsSplat) {
4209    // Normalize mask so all entries that point to V2 points to its first
4210    // element then try to match unpck{h|l} again. If match, return a
4211    // new vector_shuffle with the corrected mask.
4212    SDValue NewMask = NormalizeMask(SVOp, DAG);
4213    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4214    if (NSVOp != SVOp) {
4215      if (X86::isUNPCKLMask(NSVOp, true)) {
4216        return NewMask;
4217      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4218        return NewMask;
4219      }
4220    }
4221  }
4222
4223  if (Commuted) {
4224    // Commute is back and try unpck* again.
4225    // FIXME: this seems wrong.
4226    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4227    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4228    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4229        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4230        X86::isUNPCKLMask(NewSVOp) ||
4231        X86::isUNPCKHMask(NewSVOp))
4232      return NewOp;
4233  }
4234
4235  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4236
4237  // Normalize the node to match x86 shuffle ops if needed
4238  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4239    return CommuteVectorShuffle(SVOp, DAG);
4240
4241  // Check for legal shuffle and return?
4242  SmallVector<int, 16> PermMask;
4243  SVOp->getMask(PermMask);
4244  if (isShuffleMaskLegal(PermMask, VT))
4245    return Op;
4246
4247  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4248  if (VT == MVT::v8i16) {
4249    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4250    if (NewOp.getNode())
4251      return NewOp;
4252  }
4253
4254  if (VT == MVT::v16i8) {
4255    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4256    if (NewOp.getNode())
4257      return NewOp;
4258  }
4259
4260  // Handle all 4 wide cases with a number of shuffles except for MMX.
4261  if (NumElems == 4 && !isMMX)
4262    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4263
4264  return SDValue();
4265}
4266
4267SDValue
4268X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4269                                                SelectionDAG &DAG) {
4270  EVT VT = Op.getValueType();
4271  DebugLoc dl = Op.getDebugLoc();
4272  if (VT.getSizeInBits() == 8) {
4273    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4274                                    Op.getOperand(0), Op.getOperand(1));
4275    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4276                                    DAG.getValueType(VT));
4277    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4278  } else if (VT.getSizeInBits() == 16) {
4279    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4280    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4281    if (Idx == 0)
4282      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4283                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4284                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4285                                                 MVT::v4i32,
4286                                                 Op.getOperand(0)),
4287                                     Op.getOperand(1)));
4288    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4289                                    Op.getOperand(0), Op.getOperand(1));
4290    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4291                                    DAG.getValueType(VT));
4292    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4293  } else if (VT == MVT::f32) {
4294    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4295    // the result back to FR32 register. It's only worth matching if the
4296    // result has a single use which is a store or a bitcast to i32.  And in
4297    // the case of a store, it's not worth it if the index is a constant 0,
4298    // because a MOVSSmr can be used instead, which is smaller and faster.
4299    if (!Op.hasOneUse())
4300      return SDValue();
4301    SDNode *User = *Op.getNode()->use_begin();
4302    if ((User->getOpcode() != ISD::STORE ||
4303         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4304          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4305        (User->getOpcode() != ISD::BIT_CONVERT ||
4306         User->getValueType(0) != MVT::i32))
4307      return SDValue();
4308    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4309                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4310                                              Op.getOperand(0)),
4311                                              Op.getOperand(1));
4312    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4313  } else if (VT == MVT::i32) {
4314    // ExtractPS works with constant index.
4315    if (isa<ConstantSDNode>(Op.getOperand(1)))
4316      return Op;
4317  }
4318  return SDValue();
4319}
4320
4321
4322SDValue
4323X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4324  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4325    return SDValue();
4326
4327  if (Subtarget->hasSSE41()) {
4328    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4329    if (Res.getNode())
4330      return Res;
4331  }
4332
4333  EVT VT = Op.getValueType();
4334  DebugLoc dl = Op.getDebugLoc();
4335  // TODO: handle v16i8.
4336  if (VT.getSizeInBits() == 16) {
4337    SDValue Vec = Op.getOperand(0);
4338    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4339    if (Idx == 0)
4340      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4341                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4342                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4343                                                 MVT::v4i32, Vec),
4344                                     Op.getOperand(1)));
4345    // Transform it so it match pextrw which produces a 32-bit result.
4346    EVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy+1);
4347    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EVT,
4348                                    Op.getOperand(0), Op.getOperand(1));
4349    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EVT, Extract,
4350                                    DAG.getValueType(VT));
4351    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4352  } else if (VT.getSizeInBits() == 32) {
4353    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4354    if (Idx == 0)
4355      return Op;
4356
4357    // SHUFPS the element to the lowest double word, then movss.
4358    int Mask[4] = { Idx, -1, -1, -1 };
4359    EVT VVT = Op.getOperand(0).getValueType();
4360    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4361                                       DAG.getUNDEF(VVT), Mask);
4362    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4363                       DAG.getIntPtrConstant(0));
4364  } else if (VT.getSizeInBits() == 64) {
4365    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4366    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4367    //        to match extract_elt for f64.
4368    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4369    if (Idx == 0)
4370      return Op;
4371
4372    // UNPCKHPD the element to the lowest double word, then movsd.
4373    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4374    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4375    int Mask[2] = { 1, -1 };
4376    EVT VVT = Op.getOperand(0).getValueType();
4377    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4378                                       DAG.getUNDEF(VVT), Mask);
4379    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4380                       DAG.getIntPtrConstant(0));
4381  }
4382
4383  return SDValue();
4384}
4385
4386SDValue
4387X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4388  EVT VT = Op.getValueType();
4389  EVT EVT = VT.getVectorElementType();
4390  DebugLoc dl = Op.getDebugLoc();
4391
4392  SDValue N0 = Op.getOperand(0);
4393  SDValue N1 = Op.getOperand(1);
4394  SDValue N2 = Op.getOperand(2);
4395
4396  if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4397      isa<ConstantSDNode>(N2)) {
4398    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4399                                              : X86ISD::PINSRW;
4400    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4401    // argument.
4402    if (N1.getValueType() != MVT::i32)
4403      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4404    if (N2.getValueType() != MVT::i32)
4405      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4406    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4407  } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4408    // Bits [7:6] of the constant are the source select.  This will always be
4409    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4410    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4411    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4412    // Bits [5:4] of the constant are the destination select.  This is the
4413    //  value of the incoming immediate.
4414    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4415    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4416    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4417    // Create this as a scalar to vector..
4418    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4419    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4420  } else if (EVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4421    // PINSR* works with constant index.
4422    return Op;
4423  }
4424  return SDValue();
4425}
4426
4427SDValue
4428X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4429  EVT VT = Op.getValueType();
4430  EVT EVT = VT.getVectorElementType();
4431
4432  if (Subtarget->hasSSE41())
4433    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4434
4435  if (EVT == MVT::i8)
4436    return SDValue();
4437
4438  DebugLoc dl = Op.getDebugLoc();
4439  SDValue N0 = Op.getOperand(0);
4440  SDValue N1 = Op.getOperand(1);
4441  SDValue N2 = Op.getOperand(2);
4442
4443  if (EVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4444    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4445    // as its second argument.
4446    if (N1.getValueType() != MVT::i32)
4447      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4448    if (N2.getValueType() != MVT::i32)
4449      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4450    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4451  }
4452  return SDValue();
4453}
4454
4455SDValue
4456X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4457  DebugLoc dl = Op.getDebugLoc();
4458  if (Op.getValueType() == MVT::v2f32)
4459    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4460                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4461                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4462                                               Op.getOperand(0))));
4463
4464  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
4465    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
4466
4467  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4468  EVT VT = MVT::v2i32;
4469  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4470  default: break;
4471  case MVT::v16i8:
4472  case MVT::v8i16:
4473    VT = MVT::v4i32;
4474    break;
4475  }
4476  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4477                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4478}
4479
4480// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4481// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4482// one of the above mentioned nodes. It has to be wrapped because otherwise
4483// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4484// be used to form addressing mode. These wrapped nodes will be selected
4485// into MOV32ri.
4486SDValue
4487X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4488  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4489
4490  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4491  // global base reg.
4492  unsigned char OpFlag = 0;
4493  unsigned WrapperKind = X86ISD::Wrapper;
4494  CodeModel::Model M = getTargetMachine().getCodeModel();
4495
4496  if (Subtarget->isPICStyleRIPRel() &&
4497      (M == CodeModel::Small || M == CodeModel::Kernel))
4498    WrapperKind = X86ISD::WrapperRIP;
4499  else if (Subtarget->isPICStyleGOT())
4500    OpFlag = X86II::MO_GOTOFF;
4501  else if (Subtarget->isPICStyleStubPIC())
4502    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4503
4504  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4505                                             CP->getAlignment(),
4506                                             CP->getOffset(), OpFlag);
4507  DebugLoc DL = CP->getDebugLoc();
4508  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4509  // With PIC, the address is actually $g + Offset.
4510  if (OpFlag) {
4511    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4512                         DAG.getNode(X86ISD::GlobalBaseReg,
4513                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4514                         Result);
4515  }
4516
4517  return Result;
4518}
4519
4520SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4521  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4522
4523  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4524  // global base reg.
4525  unsigned char OpFlag = 0;
4526  unsigned WrapperKind = X86ISD::Wrapper;
4527  CodeModel::Model M = getTargetMachine().getCodeModel();
4528
4529  if (Subtarget->isPICStyleRIPRel() &&
4530      (M == CodeModel::Small || M == CodeModel::Kernel))
4531    WrapperKind = X86ISD::WrapperRIP;
4532  else if (Subtarget->isPICStyleGOT())
4533    OpFlag = X86II::MO_GOTOFF;
4534  else if (Subtarget->isPICStyleStubPIC())
4535    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4536
4537  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
4538                                          OpFlag);
4539  DebugLoc DL = JT->getDebugLoc();
4540  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4541
4542  // With PIC, the address is actually $g + Offset.
4543  if (OpFlag) {
4544    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4545                         DAG.getNode(X86ISD::GlobalBaseReg,
4546                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4547                         Result);
4548  }
4549
4550  return Result;
4551}
4552
4553SDValue
4554X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4555  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4556
4557  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4558  // global base reg.
4559  unsigned char OpFlag = 0;
4560  unsigned WrapperKind = X86ISD::Wrapper;
4561  CodeModel::Model M = getTargetMachine().getCodeModel();
4562
4563  if (Subtarget->isPICStyleRIPRel() &&
4564      (M == CodeModel::Small || M == CodeModel::Kernel))
4565    WrapperKind = X86ISD::WrapperRIP;
4566  else if (Subtarget->isPICStyleGOT())
4567    OpFlag = X86II::MO_GOTOFF;
4568  else if (Subtarget->isPICStyleStubPIC())
4569    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4570
4571  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
4572
4573  DebugLoc DL = Op.getDebugLoc();
4574  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4575
4576
4577  // With PIC, the address is actually $g + Offset.
4578  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4579      !Subtarget->is64Bit()) {
4580    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4581                         DAG.getNode(X86ISD::GlobalBaseReg,
4582                                     DebugLoc::getUnknownLoc(),
4583                                     getPointerTy()),
4584                         Result);
4585  }
4586
4587  return Result;
4588}
4589
4590SDValue
4591X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
4592                                      int64_t Offset,
4593                                      SelectionDAG &DAG) const {
4594  // Create the TargetGlobalAddress node, folding in the constant
4595  // offset if it is legal.
4596  unsigned char OpFlags =
4597    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
4598  CodeModel::Model M = getTargetMachine().getCodeModel();
4599  SDValue Result;
4600  if (OpFlags == X86II::MO_NO_FLAG &&
4601      X86::isOffsetSuitableForCodeModel(Offset, M)) {
4602    // A direct static reference to a global.
4603    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4604    Offset = 0;
4605  } else {
4606    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
4607  }
4608
4609  if (Subtarget->isPICStyleRIPRel() &&
4610      (M == CodeModel::Small || M == CodeModel::Kernel))
4611    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
4612  else
4613    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4614
4615  // With PIC, the address is actually $g + Offset.
4616  if (isGlobalRelativeToPICBase(OpFlags)) {
4617    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4618                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
4619                         Result);
4620  }
4621
4622  // For globals that require a load from a stub to get the address, emit the
4623  // load.
4624  if (isGlobalStubReference(OpFlags))
4625    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
4626                         PseudoSourceValue::getGOT(), 0);
4627
4628  // If there was a non-zero offset that we didn't fold, create an explicit
4629  // addition for it.
4630  if (Offset != 0)
4631    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
4632                         DAG.getConstant(Offset, getPointerTy()));
4633
4634  return Result;
4635}
4636
4637SDValue
4638X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4639  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4640  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4641  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
4642}
4643
4644static SDValue
4645GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
4646           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
4647           unsigned char OperandFlags) {
4648  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4649  DebugLoc dl = GA->getDebugLoc();
4650  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4651                                           GA->getValueType(0),
4652                                           GA->getOffset(),
4653                                           OperandFlags);
4654  if (InFlag) {
4655    SDValue Ops[] = { Chain,  TGA, *InFlag };
4656    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
4657  } else {
4658    SDValue Ops[]  = { Chain, TGA };
4659    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
4660  }
4661  SDValue Flag = Chain.getValue(1);
4662  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
4663}
4664
4665// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4666static SDValue
4667LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4668                                const EVT PtrVT) {
4669  SDValue InFlag;
4670  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
4671  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
4672                                     DAG.getNode(X86ISD::GlobalBaseReg,
4673                                                 DebugLoc::getUnknownLoc(),
4674                                                 PtrVT), InFlag);
4675  InFlag = Chain.getValue(1);
4676
4677  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
4678}
4679
4680// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4681static SDValue
4682LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4683                                const EVT PtrVT) {
4684  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
4685                    X86::RAX, X86II::MO_TLSGD);
4686}
4687
4688// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4689// "local exec" model.
4690static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4691                                   const EVT PtrVT, TLSModel::Model model,
4692                                   bool is64Bit) {
4693  DebugLoc dl = GA->getDebugLoc();
4694  // Get the Thread Pointer
4695  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
4696                             DebugLoc::getUnknownLoc(), PtrVT,
4697                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
4698                                             MVT::i32));
4699
4700  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
4701                                      NULL, 0);
4702
4703  unsigned char OperandFlags = 0;
4704  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
4705  // initialexec.
4706  unsigned WrapperKind = X86ISD::Wrapper;
4707  if (model == TLSModel::LocalExec) {
4708    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
4709  } else if (is64Bit) {
4710    assert(model == TLSModel::InitialExec);
4711    OperandFlags = X86II::MO_GOTTPOFF;
4712    WrapperKind = X86ISD::WrapperRIP;
4713  } else {
4714    assert(model == TLSModel::InitialExec);
4715    OperandFlags = X86II::MO_INDNTPOFF;
4716  }
4717
4718  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4719  // exec)
4720  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4721                                           GA->getOffset(), OperandFlags);
4722  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
4723
4724  if (model == TLSModel::InitialExec)
4725    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
4726                         PseudoSourceValue::getGOT(), 0);
4727
4728  // The address of the thread local variable is the add of the thread
4729  // pointer with the offset of the variable.
4730  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
4731}
4732
4733SDValue
4734X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4735  // TODO: implement the "local dynamic" model
4736  // TODO: implement the "initial exec"model for pic executables
4737  assert(Subtarget->isTargetELF() &&
4738         "TLS not implemented for non-ELF targets");
4739  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4740  const GlobalValue *GV = GA->getGlobal();
4741
4742  // If GV is an alias then use the aliasee for determining
4743  // thread-localness.
4744  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
4745    GV = GA->resolveAliasedGlobal(false);
4746
4747  TLSModel::Model model = getTLSModel(GV,
4748                                      getTargetMachine().getRelocationModel());
4749
4750  switch (model) {
4751  case TLSModel::GeneralDynamic:
4752  case TLSModel::LocalDynamic: // not implemented
4753    if (Subtarget->is64Bit())
4754      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4755    return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4756
4757  case TLSModel::InitialExec:
4758  case TLSModel::LocalExec:
4759    return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
4760                               Subtarget->is64Bit());
4761  }
4762
4763  llvm_unreachable("Unreachable");
4764  return SDValue();
4765}
4766
4767
4768/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4769/// take a 2 x i32 value to shift plus a shift amount.
4770SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4771  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4772  EVT VT = Op.getValueType();
4773  unsigned VTBits = VT.getSizeInBits();
4774  DebugLoc dl = Op.getDebugLoc();
4775  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4776  SDValue ShOpLo = Op.getOperand(0);
4777  SDValue ShOpHi = Op.getOperand(1);
4778  SDValue ShAmt  = Op.getOperand(2);
4779  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
4780                                     DAG.getConstant(VTBits - 1, MVT::i8))
4781                       : DAG.getConstant(0, VT);
4782
4783  SDValue Tmp2, Tmp3;
4784  if (Op.getOpcode() == ISD::SHL_PARTS) {
4785    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
4786    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4787  } else {
4788    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
4789    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
4790  }
4791
4792  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
4793                                DAG.getConstant(VTBits, MVT::i8));
4794  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
4795                             AndNode, DAG.getConstant(0, MVT::i8));
4796
4797  SDValue Hi, Lo;
4798  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4799  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4800  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4801
4802  if (Op.getOpcode() == ISD::SHL_PARTS) {
4803    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4804    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4805  } else {
4806    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4807    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4808  }
4809
4810  SDValue Ops[2] = { Lo, Hi };
4811  return DAG.getMergeValues(Ops, 2, dl);
4812}
4813
4814SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4815  EVT SrcVT = Op.getOperand(0).getValueType();
4816
4817  if (SrcVT.isVector()) {
4818    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
4819      return Op;
4820    }
4821    return SDValue();
4822  }
4823
4824  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4825         "Unknown SINT_TO_FP to lower!");
4826
4827  // These are really Legal; return the operand so the caller accepts it as
4828  // Legal.
4829  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4830    return Op;
4831  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
4832      Subtarget->is64Bit()) {
4833    return Op;
4834  }
4835
4836  DebugLoc dl = Op.getDebugLoc();
4837  unsigned Size = SrcVT.getSizeInBits()/8;
4838  MachineFunction &MF = DAG.getMachineFunction();
4839  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4840  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4841  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4842                               StackSlot,
4843                               PseudoSourceValue::getFixedStack(SSFI), 0);
4844  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
4845}
4846
4847SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
4848                                     SDValue StackSlot,
4849                                     SelectionDAG &DAG) {
4850  // Build the FILD
4851  DebugLoc dl = Op.getDebugLoc();
4852  SDVTList Tys;
4853  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4854  if (useSSE)
4855    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4856  else
4857    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4858  SmallVector<SDValue, 8> Ops;
4859  Ops.push_back(Chain);
4860  Ops.push_back(StackSlot);
4861  Ops.push_back(DAG.getValueType(SrcVT));
4862  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
4863                                 Tys, &Ops[0], Ops.size());
4864
4865  if (useSSE) {
4866    Chain = Result.getValue(1);
4867    SDValue InFlag = Result.getValue(2);
4868
4869    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4870    // shouldn't be necessary except that RFP cannot be live across
4871    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4872    MachineFunction &MF = DAG.getMachineFunction();
4873    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4874    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4875    Tys = DAG.getVTList(MVT::Other);
4876    SmallVector<SDValue, 8> Ops;
4877    Ops.push_back(Chain);
4878    Ops.push_back(Result);
4879    Ops.push_back(StackSlot);
4880    Ops.push_back(DAG.getValueType(Op.getValueType()));
4881    Ops.push_back(InFlag);
4882    Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
4883    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
4884                         PseudoSourceValue::getFixedStack(SSFI), 0);
4885  }
4886
4887  return Result;
4888}
4889
4890// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4891SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
4892  // This algorithm is not obvious. Here it is in C code, more or less:
4893  /*
4894    double uint64_to_double( uint32_t hi, uint32_t lo ) {
4895      static const __m128i exp = { 0x4330000045300000ULL, 0 };
4896      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4897
4898      // Copy ints to xmm registers.
4899      __m128i xh = _mm_cvtsi32_si128( hi );
4900      __m128i xl = _mm_cvtsi32_si128( lo );
4901
4902      // Combine into low half of a single xmm register.
4903      __m128i x = _mm_unpacklo_epi32( xh, xl );
4904      __m128d d;
4905      double sd;
4906
4907      // Merge in appropriate exponents to give the integer bits the right
4908      // magnitude.
4909      x = _mm_unpacklo_epi32( x, exp );
4910
4911      // Subtract away the biases to deal with the IEEE-754 double precision
4912      // implicit 1.
4913      d = _mm_sub_pd( (__m128d) x, bias );
4914
4915      // All conversions up to here are exact. The correctly rounded result is
4916      // calculated using the current rounding mode using the following
4917      // horizontal add.
4918      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4919      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
4920                                // store doesn't really need to be here (except
4921                                // maybe to zero the other double)
4922      return sd;
4923    }
4924  */
4925
4926  DebugLoc dl = Op.getDebugLoc();
4927  LLVMContext *Context = DAG.getContext();
4928
4929  // Build some magic constants.
4930  std::vector<Constant*> CV0;
4931  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
4932  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
4933  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
4934  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
4935  Constant *C0 = ConstantVector::get(CV0);
4936  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
4937
4938  std::vector<Constant*> CV1;
4939  CV1.push_back(
4940    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
4941  CV1.push_back(
4942    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
4943  Constant *C1 = ConstantVector::get(CV1);
4944  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
4945
4946  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4947                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4948                                        Op.getOperand(0),
4949                                        DAG.getIntPtrConstant(1)));
4950  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4951                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4952                                        Op.getOperand(0),
4953                                        DAG.getIntPtrConstant(0)));
4954  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
4955  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
4956                              PseudoSourceValue::getConstantPool(), 0,
4957                              false, 16);
4958  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
4959  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
4960  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
4961                              PseudoSourceValue::getConstantPool(), 0,
4962                              false, 16);
4963  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
4964
4965  // Add the halves; easiest way is to swap them into another reg first.
4966  int ShufMask[2] = { 1, -1 };
4967  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
4968                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
4969  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
4970  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
4971                     DAG.getIntPtrConstant(0));
4972}
4973
4974// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
4975SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
4976  DebugLoc dl = Op.getDebugLoc();
4977  // FP constant to bias correct the final result.
4978  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
4979                                   MVT::f64);
4980
4981  // Load the 32-bit value into an XMM register.
4982  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4983                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4984                                         Op.getOperand(0),
4985                                         DAG.getIntPtrConstant(0)));
4986
4987  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
4988                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
4989                     DAG.getIntPtrConstant(0));
4990
4991  // Or the load with the bias.
4992  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
4993                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4994                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4995                                                   MVT::v2f64, Load)),
4996                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4997                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4998                                                   MVT::v2f64, Bias)));
4999  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5000                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5001                   DAG.getIntPtrConstant(0));
5002
5003  // Subtract the bias.
5004  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5005
5006  // Handle final rounding.
5007  EVT DestVT = Op.getValueType();
5008
5009  if (DestVT.bitsLT(MVT::f64)) {
5010    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5011                       DAG.getIntPtrConstant(0));
5012  } else if (DestVT.bitsGT(MVT::f64)) {
5013    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5014  }
5015
5016  // Handle final rounding.
5017  return Sub;
5018}
5019
5020SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5021  SDValue N0 = Op.getOperand(0);
5022  DebugLoc dl = Op.getDebugLoc();
5023
5024  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5025  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5026  // the optimization here.
5027  if (DAG.SignBitIsZero(N0))
5028    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5029
5030  EVT SrcVT = N0.getValueType();
5031  if (SrcVT == MVT::i64) {
5032    // We only handle SSE2 f64 target here; caller can expand the rest.
5033    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5034      return SDValue();
5035
5036    return LowerUINT_TO_FP_i64(Op, DAG);
5037  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5038    return LowerUINT_TO_FP_i32(Op, DAG);
5039  }
5040
5041  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5042
5043  // Make a 64-bit buffer, and use it to build an FILD.
5044  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5045  SDValue WordOff = DAG.getConstant(4, getPointerTy());
5046  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5047                                   getPointerTy(), StackSlot, WordOff);
5048  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5049                                StackSlot, NULL, 0);
5050  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5051                                OffsetSlot, NULL, 0);
5052  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5053}
5054
5055std::pair<SDValue,SDValue> X86TargetLowering::
5056FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5057  DebugLoc dl = Op.getDebugLoc();
5058
5059  EVT DstTy = Op.getValueType();
5060
5061  if (!IsSigned) {
5062    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5063    DstTy = MVT::i64;
5064  }
5065
5066  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5067         DstTy.getSimpleVT() >= MVT::i16 &&
5068         "Unknown FP_TO_SINT to lower!");
5069
5070  // These are really Legal.
5071  if (DstTy == MVT::i32 &&
5072      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5073    return std::make_pair(SDValue(), SDValue());
5074  if (Subtarget->is64Bit() &&
5075      DstTy == MVT::i64 &&
5076      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5077    return std::make_pair(SDValue(), SDValue());
5078
5079  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5080  // stack slot.
5081  MachineFunction &MF = DAG.getMachineFunction();
5082  unsigned MemSize = DstTy.getSizeInBits()/8;
5083  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5084  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5085
5086  unsigned Opc;
5087  switch (DstTy.getSimpleVT().SimpleTy) {
5088  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5089  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5090  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5091  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5092  }
5093
5094  SDValue Chain = DAG.getEntryNode();
5095  SDValue Value = Op.getOperand(0);
5096  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5097    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5098    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5099                         PseudoSourceValue::getFixedStack(SSFI), 0);
5100    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5101    SDValue Ops[] = {
5102      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5103    };
5104    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5105    Chain = Value.getValue(1);
5106    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5107    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5108  }
5109
5110  // Build the FP_TO_INT*_IN_MEM
5111  SDValue Ops[] = { Chain, Value, StackSlot };
5112  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5113
5114  return std::make_pair(FIST, StackSlot);
5115}
5116
5117SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5118  if (Op.getValueType().isVector()) {
5119    if (Op.getValueType() == MVT::v2i32 &&
5120        Op.getOperand(0).getValueType() == MVT::v2f64) {
5121      return Op;
5122    }
5123    return SDValue();
5124  }
5125
5126  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5127  SDValue FIST = Vals.first, StackSlot = Vals.second;
5128  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5129  if (FIST.getNode() == 0) return Op;
5130
5131  // Load the result.
5132  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5133                     FIST, StackSlot, NULL, 0);
5134}
5135
5136SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5137  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5138  SDValue FIST = Vals.first, StackSlot = Vals.second;
5139  assert(FIST.getNode() && "Unexpected failure");
5140
5141  // Load the result.
5142  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5143                     FIST, StackSlot, NULL, 0);
5144}
5145
5146SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5147  LLVMContext *Context = DAG.getContext();
5148  DebugLoc dl = Op.getDebugLoc();
5149  EVT VT = Op.getValueType();
5150  EVT EltVT = VT;
5151  if (VT.isVector())
5152    EltVT = VT.getVectorElementType();
5153  std::vector<Constant*> CV;
5154  if (EltVT == MVT::f64) {
5155    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5156    CV.push_back(C);
5157    CV.push_back(C);
5158  } else {
5159    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5160    CV.push_back(C);
5161    CV.push_back(C);
5162    CV.push_back(C);
5163    CV.push_back(C);
5164  }
5165  Constant *C = ConstantVector::get(CV);
5166  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5167  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5168                               PseudoSourceValue::getConstantPool(), 0,
5169                               false, 16);
5170  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5171}
5172
5173SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5174  LLVMContext *Context = DAG.getContext();
5175  DebugLoc dl = Op.getDebugLoc();
5176  EVT VT = Op.getValueType();
5177  EVT EltVT = VT;
5178  unsigned EltNum = 1;
5179  if (VT.isVector()) {
5180    EltVT = VT.getVectorElementType();
5181    EltNum = VT.getVectorNumElements();
5182  }
5183  std::vector<Constant*> CV;
5184  if (EltVT == MVT::f64) {
5185    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5186    CV.push_back(C);
5187    CV.push_back(C);
5188  } else {
5189    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5190    CV.push_back(C);
5191    CV.push_back(C);
5192    CV.push_back(C);
5193    CV.push_back(C);
5194  }
5195  Constant *C = ConstantVector::get(CV);
5196  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5197  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5198                               PseudoSourceValue::getConstantPool(), 0,
5199                               false, 16);
5200  if (VT.isVector()) {
5201    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5202                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5203                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5204                                Op.getOperand(0)),
5205                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5206  } else {
5207    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5208  }
5209}
5210
5211SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5212  LLVMContext *Context = DAG.getContext();
5213  SDValue Op0 = Op.getOperand(0);
5214  SDValue Op1 = Op.getOperand(1);
5215  DebugLoc dl = Op.getDebugLoc();
5216  EVT VT = Op.getValueType();
5217  EVT SrcVT = Op1.getValueType();
5218
5219  // If second operand is smaller, extend it first.
5220  if (SrcVT.bitsLT(VT)) {
5221    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5222    SrcVT = VT;
5223  }
5224  // And if it is bigger, shrink it first.
5225  if (SrcVT.bitsGT(VT)) {
5226    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5227    SrcVT = VT;
5228  }
5229
5230  // At this point the operands and the result should have the same
5231  // type, and that won't be f80 since that is not custom lowered.
5232
5233  // First get the sign bit of second operand.
5234  std::vector<Constant*> CV;
5235  if (SrcVT == MVT::f64) {
5236    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5237    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5238  } else {
5239    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5240    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5241    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5242    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5243  }
5244  Constant *C = ConstantVector::get(CV);
5245  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5246  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5247                                PseudoSourceValue::getConstantPool(), 0,
5248                                false, 16);
5249  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5250
5251  // Shift sign bit right or left if the two operands have different types.
5252  if (SrcVT.bitsGT(VT)) {
5253    // Op0 is MVT::f32, Op1 is MVT::f64.
5254    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5255    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5256                          DAG.getConstant(32, MVT::i32));
5257    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5258    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5259                          DAG.getIntPtrConstant(0));
5260  }
5261
5262  // Clear first operand sign bit.
5263  CV.clear();
5264  if (VT == MVT::f64) {
5265    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5266    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5267  } else {
5268    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5269    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5270    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5271    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5272  }
5273  C = ConstantVector::get(CV);
5274  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5275  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5276                                PseudoSourceValue::getConstantPool(), 0,
5277                                false, 16);
5278  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5279
5280  // Or the value with the sign bit.
5281  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5282}
5283
5284/// Emit nodes that will be selected as "test Op0,Op0", or something
5285/// equivalent.
5286SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5287                                    SelectionDAG &DAG) {
5288  DebugLoc dl = Op.getDebugLoc();
5289
5290  // CF and OF aren't always set the way we want. Determine which
5291  // of these we need.
5292  bool NeedCF = false;
5293  bool NeedOF = false;
5294  switch (X86CC) {
5295  case X86::COND_A: case X86::COND_AE:
5296  case X86::COND_B: case X86::COND_BE:
5297    NeedCF = true;
5298    break;
5299  case X86::COND_G: case X86::COND_GE:
5300  case X86::COND_L: case X86::COND_LE:
5301  case X86::COND_O: case X86::COND_NO:
5302    NeedOF = true;
5303    break;
5304  default: break;
5305  }
5306
5307  // See if we can use the EFLAGS value from the operand instead of
5308  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5309  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5310  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5311    unsigned Opcode = 0;
5312    unsigned NumOperands = 0;
5313    switch (Op.getNode()->getOpcode()) {
5314    case ISD::ADD:
5315      // Due to an isel shortcoming, be conservative if this add is likely to
5316      // be selected as part of a load-modify-store instruction. When the root
5317      // node in a match is a store, isel doesn't know how to remap non-chain
5318      // non-flag uses of other nodes in the match, such as the ADD in this
5319      // case. This leads to the ADD being left around and reselected, with
5320      // the result being two adds in the output.
5321      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5322           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5323        if (UI->getOpcode() == ISD::STORE)
5324          goto default_case;
5325      if (ConstantSDNode *C =
5326            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5327        // An add of one will be selected as an INC.
5328        if (C->getAPIntValue() == 1) {
5329          Opcode = X86ISD::INC;
5330          NumOperands = 1;
5331          break;
5332        }
5333        // An add of negative one (subtract of one) will be selected as a DEC.
5334        if (C->getAPIntValue().isAllOnesValue()) {
5335          Opcode = X86ISD::DEC;
5336          NumOperands = 1;
5337          break;
5338        }
5339      }
5340      // Otherwise use a regular EFLAGS-setting add.
5341      Opcode = X86ISD::ADD;
5342      NumOperands = 2;
5343      break;
5344    case ISD::SUB:
5345      // Due to the ISEL shortcoming noted above, be conservative if this sub is
5346      // likely to be selected as part of a load-modify-store instruction.
5347      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5348           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5349        if (UI->getOpcode() == ISD::STORE)
5350          goto default_case;
5351      // Otherwise use a regular EFLAGS-setting sub.
5352      Opcode = X86ISD::SUB;
5353      NumOperands = 2;
5354      break;
5355    case X86ISD::ADD:
5356    case X86ISD::SUB:
5357    case X86ISD::INC:
5358    case X86ISD::DEC:
5359      return SDValue(Op.getNode(), 1);
5360    default:
5361    default_case:
5362      break;
5363    }
5364    if (Opcode != 0) {
5365      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5366      SmallVector<SDValue, 4> Ops;
5367      for (unsigned i = 0; i != NumOperands; ++i)
5368        Ops.push_back(Op.getOperand(i));
5369      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5370      DAG.ReplaceAllUsesWith(Op, New);
5371      return SDValue(New.getNode(), 1);
5372    }
5373  }
5374
5375  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5376  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5377                     DAG.getConstant(0, Op.getValueType()));
5378}
5379
5380/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5381/// equivalent.
5382SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5383                                   SelectionDAG &DAG) {
5384  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5385    if (C->getAPIntValue() == 0)
5386      return EmitTest(Op0, X86CC, DAG);
5387
5388  DebugLoc dl = Op0.getDebugLoc();
5389  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5390}
5391
5392SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5393  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5394  SDValue Op0 = Op.getOperand(0);
5395  SDValue Op1 = Op.getOperand(1);
5396  DebugLoc dl = Op.getDebugLoc();
5397  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5398
5399  // Lower (X & (1 << N)) == 0 to BT(X, N).
5400  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5401  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5402  if (Op0.getOpcode() == ISD::AND &&
5403      Op0.hasOneUse() &&
5404      Op1.getOpcode() == ISD::Constant &&
5405      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5406      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5407    SDValue LHS, RHS;
5408    if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5409      if (ConstantSDNode *Op010C =
5410            dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5411        if (Op010C->getZExtValue() == 1) {
5412          LHS = Op0.getOperand(0);
5413          RHS = Op0.getOperand(1).getOperand(1);
5414        }
5415    } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5416      if (ConstantSDNode *Op000C =
5417            dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5418        if (Op000C->getZExtValue() == 1) {
5419          LHS = Op0.getOperand(1);
5420          RHS = Op0.getOperand(0).getOperand(1);
5421        }
5422    } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5423      ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5424      SDValue AndLHS = Op0.getOperand(0);
5425      if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5426        LHS = AndLHS.getOperand(0);
5427        RHS = AndLHS.getOperand(1);
5428      }
5429    }
5430
5431    if (LHS.getNode()) {
5432      // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5433      // instruction.  Since the shift amount is in-range-or-undefined, we know
5434      // that doing a bittest on the i16 value is ok.  We extend to i32 because
5435      // the encoding for the i16 version is larger than the i32 version.
5436      if (LHS.getValueType() == MVT::i8)
5437        LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5438
5439      // If the operand types disagree, extend the shift amount to match.  Since
5440      // BT ignores high bits (like shifts) we can use anyextend.
5441      if (LHS.getValueType() != RHS.getValueType())
5442        RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5443
5444      SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5445      unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5446      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5447                         DAG.getConstant(Cond, MVT::i8), BT);
5448    }
5449  }
5450
5451  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5452  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5453
5454  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5455  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5456                     DAG.getConstant(X86CC, MVT::i8), Cond);
5457}
5458
5459SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5460  SDValue Cond;
5461  SDValue Op0 = Op.getOperand(0);
5462  SDValue Op1 = Op.getOperand(1);
5463  SDValue CC = Op.getOperand(2);
5464  EVT VT = Op.getValueType();
5465  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5466  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5467  DebugLoc dl = Op.getDebugLoc();
5468
5469  if (isFP) {
5470    unsigned SSECC = 8;
5471    EVT VT0 = Op0.getValueType();
5472    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5473    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5474    bool Swap = false;
5475
5476    switch (SetCCOpcode) {
5477    default: break;
5478    case ISD::SETOEQ:
5479    case ISD::SETEQ:  SSECC = 0; break;
5480    case ISD::SETOGT:
5481    case ISD::SETGT: Swap = true; // Fallthrough
5482    case ISD::SETLT:
5483    case ISD::SETOLT: SSECC = 1; break;
5484    case ISD::SETOGE:
5485    case ISD::SETGE: Swap = true; // Fallthrough
5486    case ISD::SETLE:
5487    case ISD::SETOLE: SSECC = 2; break;
5488    case ISD::SETUO:  SSECC = 3; break;
5489    case ISD::SETUNE:
5490    case ISD::SETNE:  SSECC = 4; break;
5491    case ISD::SETULE: Swap = true;
5492    case ISD::SETUGE: SSECC = 5; break;
5493    case ISD::SETULT: Swap = true;
5494    case ISD::SETUGT: SSECC = 6; break;
5495    case ISD::SETO:   SSECC = 7; break;
5496    }
5497    if (Swap)
5498      std::swap(Op0, Op1);
5499
5500    // In the two special cases we can't handle, emit two comparisons.
5501    if (SSECC == 8) {
5502      if (SetCCOpcode == ISD::SETUEQ) {
5503        SDValue UNORD, EQ;
5504        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5505        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5506        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
5507      }
5508      else if (SetCCOpcode == ISD::SETONE) {
5509        SDValue ORD, NEQ;
5510        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5511        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5512        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
5513      }
5514      llvm_unreachable("Illegal FP comparison");
5515    }
5516    // Handle all other FP comparisons here.
5517    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5518  }
5519
5520  // We are handling one of the integer comparisons here.  Since SSE only has
5521  // GT and EQ comparisons for integer, swapping operands and multiple
5522  // operations may be required for some comparisons.
5523  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5524  bool Swap = false, Invert = false, FlipSigns = false;
5525
5526  switch (VT.getSimpleVT().SimpleTy) {
5527  default: break;
5528  case MVT::v8i8:
5529  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5530  case MVT::v4i16:
5531  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5532  case MVT::v2i32:
5533  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5534  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5535  }
5536
5537  switch (SetCCOpcode) {
5538  default: break;
5539  case ISD::SETNE:  Invert = true;
5540  case ISD::SETEQ:  Opc = EQOpc; break;
5541  case ISD::SETLT:  Swap = true;
5542  case ISD::SETGT:  Opc = GTOpc; break;
5543  case ISD::SETGE:  Swap = true;
5544  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5545  case ISD::SETULT: Swap = true;
5546  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5547  case ISD::SETUGE: Swap = true;
5548  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5549  }
5550  if (Swap)
5551    std::swap(Op0, Op1);
5552
5553  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5554  // bits of the inputs before performing those operations.
5555  if (FlipSigns) {
5556    EVT EltVT = VT.getVectorElementType();
5557    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
5558                                      EltVT);
5559    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5560    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
5561                                    SignBits.size());
5562    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
5563    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
5564  }
5565
5566  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
5567
5568  // If the logical-not of the result is required, perform that now.
5569  if (Invert)
5570    Result = DAG.getNOT(dl, Result, VT);
5571
5572  return Result;
5573}
5574
5575// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5576static bool isX86LogicalCmp(SDValue Op) {
5577  unsigned Opc = Op.getNode()->getOpcode();
5578  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
5579    return true;
5580  if (Op.getResNo() == 1 &&
5581      (Opc == X86ISD::ADD ||
5582       Opc == X86ISD::SUB ||
5583       Opc == X86ISD::SMUL ||
5584       Opc == X86ISD::UMUL ||
5585       Opc == X86ISD::INC ||
5586       Opc == X86ISD::DEC))
5587    return true;
5588
5589  return false;
5590}
5591
5592SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5593  bool addTest = true;
5594  SDValue Cond  = Op.getOperand(0);
5595  DebugLoc dl = Op.getDebugLoc();
5596  SDValue CC;
5597
5598  if (Cond.getOpcode() == ISD::SETCC)
5599    Cond = LowerSETCC(Cond, DAG);
5600
5601  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5602  // setting operand in place of the X86ISD::SETCC.
5603  if (Cond.getOpcode() == X86ISD::SETCC) {
5604    CC = Cond.getOperand(0);
5605
5606    SDValue Cmp = Cond.getOperand(1);
5607    unsigned Opc = Cmp.getOpcode();
5608    EVT VT = Op.getValueType();
5609
5610    bool IllegalFPCMov = false;
5611    if (VT.isFloatingPoint() && !VT.isVector() &&
5612        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5613      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5614
5615    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
5616        Opc == X86ISD::BT) { // FIXME
5617      Cond = Cmp;
5618      addTest = false;
5619    }
5620  }
5621
5622  if (addTest) {
5623    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5624    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5625  }
5626
5627  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
5628  SmallVector<SDValue, 4> Ops;
5629  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5630  // condition is true.
5631  Ops.push_back(Op.getOperand(2));
5632  Ops.push_back(Op.getOperand(1));
5633  Ops.push_back(CC);
5634  Ops.push_back(Cond);
5635  return DAG.getNode(X86ISD::CMOV, dl, VTs, &Ops[0], Ops.size());
5636}
5637
5638// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5639// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5640// from the AND / OR.
5641static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5642  Opc = Op.getOpcode();
5643  if (Opc != ISD::OR && Opc != ISD::AND)
5644    return false;
5645  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5646          Op.getOperand(0).hasOneUse() &&
5647          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5648          Op.getOperand(1).hasOneUse());
5649}
5650
5651// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5652// 1 and that the SETCC node has a single use.
5653static bool isXor1OfSetCC(SDValue Op) {
5654  if (Op.getOpcode() != ISD::XOR)
5655    return false;
5656  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5657  if (N1C && N1C->getAPIntValue() == 1) {
5658    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5659      Op.getOperand(0).hasOneUse();
5660  }
5661  return false;
5662}
5663
5664SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5665  bool addTest = true;
5666  SDValue Chain = Op.getOperand(0);
5667  SDValue Cond  = Op.getOperand(1);
5668  SDValue Dest  = Op.getOperand(2);
5669  DebugLoc dl = Op.getDebugLoc();
5670  SDValue CC;
5671
5672  if (Cond.getOpcode() == ISD::SETCC)
5673    Cond = LowerSETCC(Cond, DAG);
5674#if 0
5675  // FIXME: LowerXALUO doesn't handle these!!
5676  else if (Cond.getOpcode() == X86ISD::ADD  ||
5677           Cond.getOpcode() == X86ISD::SUB  ||
5678           Cond.getOpcode() == X86ISD::SMUL ||
5679           Cond.getOpcode() == X86ISD::UMUL)
5680    Cond = LowerXALUO(Cond, DAG);
5681#endif
5682
5683  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5684  // setting operand in place of the X86ISD::SETCC.
5685  if (Cond.getOpcode() == X86ISD::SETCC) {
5686    CC = Cond.getOperand(0);
5687
5688    SDValue Cmp = Cond.getOperand(1);
5689    unsigned Opc = Cmp.getOpcode();
5690    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5691    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
5692      Cond = Cmp;
5693      addTest = false;
5694    } else {
5695      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5696      default: break;
5697      case X86::COND_O:
5698      case X86::COND_B:
5699        // These can only come from an arithmetic instruction with overflow,
5700        // e.g. SADDO, UADDO.
5701        Cond = Cond.getNode()->getOperand(1);
5702        addTest = false;
5703        break;
5704      }
5705    }
5706  } else {
5707    unsigned CondOpc;
5708    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5709      SDValue Cmp = Cond.getOperand(0).getOperand(1);
5710      if (CondOpc == ISD::OR) {
5711        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5712        // two branches instead of an explicit OR instruction with a
5713        // separate test.
5714        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5715            isX86LogicalCmp(Cmp)) {
5716          CC = Cond.getOperand(0).getOperand(0);
5717          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5718                              Chain, Dest, CC, Cmp);
5719          CC = Cond.getOperand(1).getOperand(0);
5720          Cond = Cmp;
5721          addTest = false;
5722        }
5723      } else { // ISD::AND
5724        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5725        // two branches instead of an explicit AND instruction with a
5726        // separate test. However, we only do this if this block doesn't
5727        // have a fall-through edge, because this requires an explicit
5728        // jmp when the condition is false.
5729        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5730            isX86LogicalCmp(Cmp) &&
5731            Op.getNode()->hasOneUse()) {
5732          X86::CondCode CCode =
5733            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5734          CCode = X86::GetOppositeBranchCondition(CCode);
5735          CC = DAG.getConstant(CCode, MVT::i8);
5736          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5737          // Look for an unconditional branch following this conditional branch.
5738          // We need this because we need to reverse the successors in order
5739          // to implement FCMP_OEQ.
5740          if (User.getOpcode() == ISD::BR) {
5741            SDValue FalseBB = User.getOperand(1);
5742            SDValue NewBR =
5743              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5744            assert(NewBR == User);
5745            Dest = FalseBB;
5746
5747            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5748                                Chain, Dest, CC, Cmp);
5749            X86::CondCode CCode =
5750              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5751            CCode = X86::GetOppositeBranchCondition(CCode);
5752            CC = DAG.getConstant(CCode, MVT::i8);
5753            Cond = Cmp;
5754            addTest = false;
5755          }
5756        }
5757      }
5758    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
5759      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5760      // It should be transformed during dag combiner except when the condition
5761      // is set by a arithmetics with overflow node.
5762      X86::CondCode CCode =
5763        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5764      CCode = X86::GetOppositeBranchCondition(CCode);
5765      CC = DAG.getConstant(CCode, MVT::i8);
5766      Cond = Cond.getOperand(0).getOperand(1);
5767      addTest = false;
5768    }
5769  }
5770
5771  if (addTest) {
5772    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5773    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5774  }
5775  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5776                     Chain, Dest, CC, Cond);
5777}
5778
5779
5780// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5781// Calls to _alloca is needed to probe the stack when allocating more than 4k
5782// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5783// that the guard pages used by the OS virtual memory manager are allocated in
5784// correct sequence.
5785SDValue
5786X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5787                                           SelectionDAG &DAG) {
5788  assert(Subtarget->isTargetCygMing() &&
5789         "This should be used only on Cygwin/Mingw targets");
5790  DebugLoc dl = Op.getDebugLoc();
5791
5792  // Get the inputs.
5793  SDValue Chain = Op.getOperand(0);
5794  SDValue Size  = Op.getOperand(1);
5795  // FIXME: Ensure alignment here
5796
5797  SDValue Flag;
5798
5799  EVT IntPtr = getPointerTy();
5800  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5801
5802  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5803
5804  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
5805  Flag = Chain.getValue(1);
5806
5807  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5808  SDValue Ops[] = { Chain,
5809                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5810                      DAG.getRegister(X86::EAX, IntPtr),
5811                      DAG.getRegister(X86StackPtr, SPTy),
5812                      Flag };
5813  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
5814  Flag = Chain.getValue(1);
5815
5816  Chain = DAG.getCALLSEQ_END(Chain,
5817                             DAG.getIntPtrConstant(0, true),
5818                             DAG.getIntPtrConstant(0, true),
5819                             Flag);
5820
5821  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
5822
5823  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5824  return DAG.getMergeValues(Ops1, 2, dl);
5825}
5826
5827SDValue
5828X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
5829                                           SDValue Chain,
5830                                           SDValue Dst, SDValue Src,
5831                                           SDValue Size, unsigned Align,
5832                                           const Value *DstSV,
5833                                           uint64_t DstSVOff) {
5834  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5835
5836  // If not DWORD aligned or size is more than the threshold, call the library.
5837  // The libc version is likely to be faster for these cases. It can use the
5838  // address value and run time information about the CPU.
5839  if ((Align & 3) != 0 ||
5840      !ConstantSize ||
5841      ConstantSize->getZExtValue() >
5842        getSubtarget()->getMaxInlineSizeThreshold()) {
5843    SDValue InFlag(0, 0);
5844
5845    // Check to see if there is a specialized entry-point for memory zeroing.
5846    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5847
5848    if (const char *bzeroEntry =  V &&
5849        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5850      EVT IntPtr = getPointerTy();
5851      const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
5852      TargetLowering::ArgListTy Args;
5853      TargetLowering::ArgListEntry Entry;
5854      Entry.Node = Dst;
5855      Entry.Ty = IntPtrTy;
5856      Args.push_back(Entry);
5857      Entry.Node = Size;
5858      Args.push_back(Entry);
5859      std::pair<SDValue,SDValue> CallResult =
5860        LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
5861                    false, false, false, false,
5862                    0, CallingConv::C, false, /*isReturnValueUsed=*/false,
5863                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
5864      return CallResult.second;
5865    }
5866
5867    // Otherwise have the target-independent code call memset.
5868    return SDValue();
5869  }
5870
5871  uint64_t SizeVal = ConstantSize->getZExtValue();
5872  SDValue InFlag(0, 0);
5873  EVT AVT;
5874  SDValue Count;
5875  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5876  unsigned BytesLeft = 0;
5877  bool TwoRepStos = false;
5878  if (ValC) {
5879    unsigned ValReg;
5880    uint64_t Val = ValC->getZExtValue() & 255;
5881
5882    // If the value is a constant, then we can potentially use larger sets.
5883    switch (Align & 3) {
5884    case 2:   // WORD aligned
5885      AVT = MVT::i16;
5886      ValReg = X86::AX;
5887      Val = (Val << 8) | Val;
5888      break;
5889    case 0:  // DWORD aligned
5890      AVT = MVT::i32;
5891      ValReg = X86::EAX;
5892      Val = (Val << 8)  | Val;
5893      Val = (Val << 16) | Val;
5894      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
5895        AVT = MVT::i64;
5896        ValReg = X86::RAX;
5897        Val = (Val << 32) | Val;
5898      }
5899      break;
5900    default:  // Byte aligned
5901      AVT = MVT::i8;
5902      ValReg = X86::AL;
5903      Count = DAG.getIntPtrConstant(SizeVal);
5904      break;
5905    }
5906
5907    if (AVT.bitsGT(MVT::i8)) {
5908      unsigned UBytes = AVT.getSizeInBits() / 8;
5909      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5910      BytesLeft = SizeVal % UBytes;
5911    }
5912
5913    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
5914                              InFlag);
5915    InFlag = Chain.getValue(1);
5916  } else {
5917    AVT = MVT::i8;
5918    Count  = DAG.getIntPtrConstant(SizeVal);
5919    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
5920    InFlag = Chain.getValue(1);
5921  }
5922
5923  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5924                                                              X86::ECX,
5925                            Count, InFlag);
5926  InFlag = Chain.getValue(1);
5927  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5928                                                              X86::EDI,
5929                            Dst, InFlag);
5930  InFlag = Chain.getValue(1);
5931
5932  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5933  SmallVector<SDValue, 8> Ops;
5934  Ops.push_back(Chain);
5935  Ops.push_back(DAG.getValueType(AVT));
5936  Ops.push_back(InFlag);
5937  Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5938
5939  if (TwoRepStos) {
5940    InFlag = Chain.getValue(1);
5941    Count  = Size;
5942    EVT CVT = Count.getValueType();
5943    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
5944                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5945    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
5946                                                             X86::ECX,
5947                              Left, InFlag);
5948    InFlag = Chain.getValue(1);
5949    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5950    Ops.clear();
5951    Ops.push_back(Chain);
5952    Ops.push_back(DAG.getValueType(MVT::i8));
5953    Ops.push_back(InFlag);
5954    Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5955  } else if (BytesLeft) {
5956    // Handle the last 1 - 7 bytes.
5957    unsigned Offset = SizeVal - BytesLeft;
5958    EVT AddrVT = Dst.getValueType();
5959    EVT SizeVT = Size.getValueType();
5960
5961    Chain = DAG.getMemset(Chain, dl,
5962                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
5963                                      DAG.getConstant(Offset, AddrVT)),
5964                          Src,
5965                          DAG.getConstant(BytesLeft, SizeVT),
5966                          Align, DstSV, DstSVOff + Offset);
5967  }
5968
5969  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5970  return Chain;
5971}
5972
5973SDValue
5974X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
5975                                      SDValue Chain, SDValue Dst, SDValue Src,
5976                                      SDValue Size, unsigned Align,
5977                                      bool AlwaysInline,
5978                                      const Value *DstSV, uint64_t DstSVOff,
5979                                      const Value *SrcSV, uint64_t SrcSVOff) {
5980  // This requires the copy size to be a constant, preferrably
5981  // within a subtarget-specific limit.
5982  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5983  if (!ConstantSize)
5984    return SDValue();
5985  uint64_t SizeVal = ConstantSize->getZExtValue();
5986  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
5987    return SDValue();
5988
5989  /// If not DWORD aligned, call the library.
5990  if ((Align & 3) != 0)
5991    return SDValue();
5992
5993  // DWORD aligned
5994  EVT AVT = MVT::i32;
5995  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
5996    AVT = MVT::i64;
5997
5998  unsigned UBytes = AVT.getSizeInBits() / 8;
5999  unsigned CountVal = SizeVal / UBytes;
6000  SDValue Count = DAG.getIntPtrConstant(CountVal);
6001  unsigned BytesLeft = SizeVal % UBytes;
6002
6003  SDValue InFlag(0, 0);
6004  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6005                                                              X86::ECX,
6006                            Count, InFlag);
6007  InFlag = Chain.getValue(1);
6008  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6009                                                             X86::EDI,
6010                            Dst, InFlag);
6011  InFlag = Chain.getValue(1);
6012  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6013                                                              X86::ESI,
6014                            Src, InFlag);
6015  InFlag = Chain.getValue(1);
6016
6017  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6018  SmallVector<SDValue, 8> Ops;
6019  Ops.push_back(Chain);
6020  Ops.push_back(DAG.getValueType(AVT));
6021  Ops.push_back(InFlag);
6022  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size());
6023
6024  SmallVector<SDValue, 4> Results;
6025  Results.push_back(RepMovs);
6026  if (BytesLeft) {
6027    // Handle the last 1 - 7 bytes.
6028    unsigned Offset = SizeVal - BytesLeft;
6029    EVT DstVT = Dst.getValueType();
6030    EVT SrcVT = Src.getValueType();
6031    EVT SizeVT = Size.getValueType();
6032    Results.push_back(DAG.getMemcpy(Chain, dl,
6033                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6034                                                DAG.getConstant(Offset, DstVT)),
6035                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6036                                                DAG.getConstant(Offset, SrcVT)),
6037                                    DAG.getConstant(BytesLeft, SizeVT),
6038                                    Align, AlwaysInline,
6039                                    DstSV, DstSVOff + Offset,
6040                                    SrcSV, SrcSVOff + Offset));
6041  }
6042
6043  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6044                     &Results[0], Results.size());
6045}
6046
6047SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6048  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6049  DebugLoc dl = Op.getDebugLoc();
6050
6051  if (!Subtarget->is64Bit()) {
6052    // vastart just stores the address of the VarArgsFrameIndex slot into the
6053    // memory location argument.
6054    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6055    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
6056  }
6057
6058  // __va_list_tag:
6059  //   gp_offset         (0 - 6 * 8)
6060  //   fp_offset         (48 - 48 + 8 * 16)
6061  //   overflow_arg_area (point to parameters coming in memory).
6062  //   reg_save_area
6063  SmallVector<SDValue, 8> MemOps;
6064  SDValue FIN = Op.getOperand(1);
6065  // Store gp_offset
6066  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6067                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
6068                                 FIN, SV, 0);
6069  MemOps.push_back(Store);
6070
6071  // Store fp_offset
6072  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6073                    FIN, DAG.getIntPtrConstant(4));
6074  Store = DAG.getStore(Op.getOperand(0), dl,
6075                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6076                       FIN, SV, 0);
6077  MemOps.push_back(Store);
6078
6079  // Store ptr to overflow_arg_area
6080  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6081                    FIN, DAG.getIntPtrConstant(4));
6082  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6083  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
6084  MemOps.push_back(Store);
6085
6086  // Store ptr to reg_save_area.
6087  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6088                    FIN, DAG.getIntPtrConstant(8));
6089  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6090  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
6091  MemOps.push_back(Store);
6092  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6093                     &MemOps[0], MemOps.size());
6094}
6095
6096SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6097  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6098  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6099  SDValue Chain = Op.getOperand(0);
6100  SDValue SrcPtr = Op.getOperand(1);
6101  SDValue SrcSV = Op.getOperand(2);
6102
6103  llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6104  return SDValue();
6105}
6106
6107SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6108  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6109  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6110  SDValue Chain = Op.getOperand(0);
6111  SDValue DstPtr = Op.getOperand(1);
6112  SDValue SrcPtr = Op.getOperand(2);
6113  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6114  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6115  DebugLoc dl = Op.getDebugLoc();
6116
6117  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6118                       DAG.getIntPtrConstant(24), 8, false,
6119                       DstSV, 0, SrcSV, 0);
6120}
6121
6122SDValue
6123X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6124  DebugLoc dl = Op.getDebugLoc();
6125  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6126  switch (IntNo) {
6127  default: return SDValue();    // Don't custom lower most intrinsics.
6128  // Comparison intrinsics.
6129  case Intrinsic::x86_sse_comieq_ss:
6130  case Intrinsic::x86_sse_comilt_ss:
6131  case Intrinsic::x86_sse_comile_ss:
6132  case Intrinsic::x86_sse_comigt_ss:
6133  case Intrinsic::x86_sse_comige_ss:
6134  case Intrinsic::x86_sse_comineq_ss:
6135  case Intrinsic::x86_sse_ucomieq_ss:
6136  case Intrinsic::x86_sse_ucomilt_ss:
6137  case Intrinsic::x86_sse_ucomile_ss:
6138  case Intrinsic::x86_sse_ucomigt_ss:
6139  case Intrinsic::x86_sse_ucomige_ss:
6140  case Intrinsic::x86_sse_ucomineq_ss:
6141  case Intrinsic::x86_sse2_comieq_sd:
6142  case Intrinsic::x86_sse2_comilt_sd:
6143  case Intrinsic::x86_sse2_comile_sd:
6144  case Intrinsic::x86_sse2_comigt_sd:
6145  case Intrinsic::x86_sse2_comige_sd:
6146  case Intrinsic::x86_sse2_comineq_sd:
6147  case Intrinsic::x86_sse2_ucomieq_sd:
6148  case Intrinsic::x86_sse2_ucomilt_sd:
6149  case Intrinsic::x86_sse2_ucomile_sd:
6150  case Intrinsic::x86_sse2_ucomigt_sd:
6151  case Intrinsic::x86_sse2_ucomige_sd:
6152  case Intrinsic::x86_sse2_ucomineq_sd: {
6153    unsigned Opc = 0;
6154    ISD::CondCode CC = ISD::SETCC_INVALID;
6155    switch (IntNo) {
6156    default: break;
6157    case Intrinsic::x86_sse_comieq_ss:
6158    case Intrinsic::x86_sse2_comieq_sd:
6159      Opc = X86ISD::COMI;
6160      CC = ISD::SETEQ;
6161      break;
6162    case Intrinsic::x86_sse_comilt_ss:
6163    case Intrinsic::x86_sse2_comilt_sd:
6164      Opc = X86ISD::COMI;
6165      CC = ISD::SETLT;
6166      break;
6167    case Intrinsic::x86_sse_comile_ss:
6168    case Intrinsic::x86_sse2_comile_sd:
6169      Opc = X86ISD::COMI;
6170      CC = ISD::SETLE;
6171      break;
6172    case Intrinsic::x86_sse_comigt_ss:
6173    case Intrinsic::x86_sse2_comigt_sd:
6174      Opc = X86ISD::COMI;
6175      CC = ISD::SETGT;
6176      break;
6177    case Intrinsic::x86_sse_comige_ss:
6178    case Intrinsic::x86_sse2_comige_sd:
6179      Opc = X86ISD::COMI;
6180      CC = ISD::SETGE;
6181      break;
6182    case Intrinsic::x86_sse_comineq_ss:
6183    case Intrinsic::x86_sse2_comineq_sd:
6184      Opc = X86ISD::COMI;
6185      CC = ISD::SETNE;
6186      break;
6187    case Intrinsic::x86_sse_ucomieq_ss:
6188    case Intrinsic::x86_sse2_ucomieq_sd:
6189      Opc = X86ISD::UCOMI;
6190      CC = ISD::SETEQ;
6191      break;
6192    case Intrinsic::x86_sse_ucomilt_ss:
6193    case Intrinsic::x86_sse2_ucomilt_sd:
6194      Opc = X86ISD::UCOMI;
6195      CC = ISD::SETLT;
6196      break;
6197    case Intrinsic::x86_sse_ucomile_ss:
6198    case Intrinsic::x86_sse2_ucomile_sd:
6199      Opc = X86ISD::UCOMI;
6200      CC = ISD::SETLE;
6201      break;
6202    case Intrinsic::x86_sse_ucomigt_ss:
6203    case Intrinsic::x86_sse2_ucomigt_sd:
6204      Opc = X86ISD::UCOMI;
6205      CC = ISD::SETGT;
6206      break;
6207    case Intrinsic::x86_sse_ucomige_ss:
6208    case Intrinsic::x86_sse2_ucomige_sd:
6209      Opc = X86ISD::UCOMI;
6210      CC = ISD::SETGE;
6211      break;
6212    case Intrinsic::x86_sse_ucomineq_ss:
6213    case Intrinsic::x86_sse2_ucomineq_sd:
6214      Opc = X86ISD::UCOMI;
6215      CC = ISD::SETNE;
6216      break;
6217    }
6218
6219    SDValue LHS = Op.getOperand(1);
6220    SDValue RHS = Op.getOperand(2);
6221    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6222    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6223    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6224                                DAG.getConstant(X86CC, MVT::i8), Cond);
6225    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6226  }
6227  // ptest intrinsics. The intrinsic these come from are designed to return
6228  // an integer value, not just an instruction so lower it to the ptest
6229  // pattern and a setcc for the result.
6230  case Intrinsic::x86_sse41_ptestz:
6231  case Intrinsic::x86_sse41_ptestc:
6232  case Intrinsic::x86_sse41_ptestnzc:{
6233    unsigned X86CC = 0;
6234    switch (IntNo) {
6235    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6236    case Intrinsic::x86_sse41_ptestz:
6237      // ZF = 1
6238      X86CC = X86::COND_E;
6239      break;
6240    case Intrinsic::x86_sse41_ptestc:
6241      // CF = 1
6242      X86CC = X86::COND_B;
6243      break;
6244    case Intrinsic::x86_sse41_ptestnzc:
6245      // ZF and CF = 0
6246      X86CC = X86::COND_A;
6247      break;
6248    }
6249
6250    SDValue LHS = Op.getOperand(1);
6251    SDValue RHS = Op.getOperand(2);
6252    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6253    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6254    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6255    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6256  }
6257
6258  // Fix vector shift instructions where the last operand is a non-immediate
6259  // i32 value.
6260  case Intrinsic::x86_sse2_pslli_w:
6261  case Intrinsic::x86_sse2_pslli_d:
6262  case Intrinsic::x86_sse2_pslli_q:
6263  case Intrinsic::x86_sse2_psrli_w:
6264  case Intrinsic::x86_sse2_psrli_d:
6265  case Intrinsic::x86_sse2_psrli_q:
6266  case Intrinsic::x86_sse2_psrai_w:
6267  case Intrinsic::x86_sse2_psrai_d:
6268  case Intrinsic::x86_mmx_pslli_w:
6269  case Intrinsic::x86_mmx_pslli_d:
6270  case Intrinsic::x86_mmx_pslli_q:
6271  case Intrinsic::x86_mmx_psrli_w:
6272  case Intrinsic::x86_mmx_psrli_d:
6273  case Intrinsic::x86_mmx_psrli_q:
6274  case Intrinsic::x86_mmx_psrai_w:
6275  case Intrinsic::x86_mmx_psrai_d: {
6276    SDValue ShAmt = Op.getOperand(2);
6277    if (isa<ConstantSDNode>(ShAmt))
6278      return SDValue();
6279
6280    unsigned NewIntNo = 0;
6281    EVT ShAmtVT = MVT::v4i32;
6282    switch (IntNo) {
6283    case Intrinsic::x86_sse2_pslli_w:
6284      NewIntNo = Intrinsic::x86_sse2_psll_w;
6285      break;
6286    case Intrinsic::x86_sse2_pslli_d:
6287      NewIntNo = Intrinsic::x86_sse2_psll_d;
6288      break;
6289    case Intrinsic::x86_sse2_pslli_q:
6290      NewIntNo = Intrinsic::x86_sse2_psll_q;
6291      break;
6292    case Intrinsic::x86_sse2_psrli_w:
6293      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6294      break;
6295    case Intrinsic::x86_sse2_psrli_d:
6296      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6297      break;
6298    case Intrinsic::x86_sse2_psrli_q:
6299      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6300      break;
6301    case Intrinsic::x86_sse2_psrai_w:
6302      NewIntNo = Intrinsic::x86_sse2_psra_w;
6303      break;
6304    case Intrinsic::x86_sse2_psrai_d:
6305      NewIntNo = Intrinsic::x86_sse2_psra_d;
6306      break;
6307    default: {
6308      ShAmtVT = MVT::v2i32;
6309      switch (IntNo) {
6310      case Intrinsic::x86_mmx_pslli_w:
6311        NewIntNo = Intrinsic::x86_mmx_psll_w;
6312        break;
6313      case Intrinsic::x86_mmx_pslli_d:
6314        NewIntNo = Intrinsic::x86_mmx_psll_d;
6315        break;
6316      case Intrinsic::x86_mmx_pslli_q:
6317        NewIntNo = Intrinsic::x86_mmx_psll_q;
6318        break;
6319      case Intrinsic::x86_mmx_psrli_w:
6320        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6321        break;
6322      case Intrinsic::x86_mmx_psrli_d:
6323        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6324        break;
6325      case Intrinsic::x86_mmx_psrli_q:
6326        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6327        break;
6328      case Intrinsic::x86_mmx_psrai_w:
6329        NewIntNo = Intrinsic::x86_mmx_psra_w;
6330        break;
6331      case Intrinsic::x86_mmx_psrai_d:
6332        NewIntNo = Intrinsic::x86_mmx_psra_d;
6333        break;
6334      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6335      }
6336      break;
6337    }
6338    }
6339    EVT VT = Op.getValueType();
6340    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6341                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShAmtVT, ShAmt));
6342    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6343                       DAG.getConstant(NewIntNo, MVT::i32),
6344                       Op.getOperand(1), ShAmt);
6345  }
6346  }
6347}
6348
6349SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6350  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6351  DebugLoc dl = Op.getDebugLoc();
6352
6353  if (Depth > 0) {
6354    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6355    SDValue Offset =
6356      DAG.getConstant(TD->getPointerSize(),
6357                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6358    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6359                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6360                                   FrameAddr, Offset),
6361                       NULL, 0);
6362  }
6363
6364  // Just load the return address.
6365  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6366  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6367                     RetAddrFI, NULL, 0);
6368}
6369
6370SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6371  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6372  MFI->setFrameAddressIsTaken(true);
6373  EVT VT = Op.getValueType();
6374  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
6375  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6376  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6377  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6378  while (Depth--)
6379    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
6380  return FrameAddr;
6381}
6382
6383SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6384                                                     SelectionDAG &DAG) {
6385  return DAG.getIntPtrConstant(2*TD->getPointerSize());
6386}
6387
6388SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6389{
6390  MachineFunction &MF = DAG.getMachineFunction();
6391  SDValue Chain     = Op.getOperand(0);
6392  SDValue Offset    = Op.getOperand(1);
6393  SDValue Handler   = Op.getOperand(2);
6394  DebugLoc dl       = Op.getDebugLoc();
6395
6396  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6397                                  getPointerTy());
6398  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6399
6400  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6401                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6402  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6403  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
6404  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
6405  MF.getRegInfo().addLiveOut(StoreAddrReg);
6406
6407  return DAG.getNode(X86ISD::EH_RETURN, dl,
6408                     MVT::Other,
6409                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6410}
6411
6412SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6413                                             SelectionDAG &DAG) {
6414  SDValue Root = Op.getOperand(0);
6415  SDValue Trmp = Op.getOperand(1); // trampoline
6416  SDValue FPtr = Op.getOperand(2); // nested function
6417  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6418  DebugLoc dl  = Op.getDebugLoc();
6419
6420  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6421
6422  const X86InstrInfo *TII =
6423    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6424
6425  if (Subtarget->is64Bit()) {
6426    SDValue OutChains[6];
6427
6428    // Large code-model.
6429
6430    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
6431    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6432
6433    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6434    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6435
6436    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6437
6438    // Load the pointer to the nested function into R11.
6439    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6440    SDValue Addr = Trmp;
6441    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6442                                Addr, TrmpAddr, 0);
6443
6444    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6445                       DAG.getConstant(2, MVT::i64));
6446    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
6447
6448    // Load the 'nest' parameter value into R10.
6449    // R10 is specified in X86CallingConv.td
6450    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6451    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6452                       DAG.getConstant(10, MVT::i64));
6453    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6454                                Addr, TrmpAddr, 10);
6455
6456    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6457                       DAG.getConstant(12, MVT::i64));
6458    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
6459
6460    // Jump to the nested function.
6461    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6462    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6463                       DAG.getConstant(20, MVT::i64));
6464    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6465                                Addr, TrmpAddr, 20);
6466
6467    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6468    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6469                       DAG.getConstant(22, MVT::i64));
6470    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
6471                                TrmpAddr, 22);
6472
6473    SDValue Ops[] =
6474      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
6475    return DAG.getMergeValues(Ops, 2, dl);
6476  } else {
6477    const Function *Func =
6478      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6479    unsigned CC = Func->getCallingConv();
6480    unsigned NestReg;
6481
6482    switch (CC) {
6483    default:
6484      llvm_unreachable("Unsupported calling convention");
6485    case CallingConv::C:
6486    case CallingConv::X86_StdCall: {
6487      // Pass 'nest' parameter in ECX.
6488      // Must be kept in sync with X86CallingConv.td
6489      NestReg = X86::ECX;
6490
6491      // Check that ECX wasn't needed by an 'inreg' parameter.
6492      const FunctionType *FTy = Func->getFunctionType();
6493      const AttrListPtr &Attrs = Func->getAttributes();
6494
6495      if (!Attrs.isEmpty() && !Func->isVarArg()) {
6496        unsigned InRegCount = 0;
6497        unsigned Idx = 1;
6498
6499        for (FunctionType::param_iterator I = FTy->param_begin(),
6500             E = FTy->param_end(); I != E; ++I, ++Idx)
6501          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6502            // FIXME: should only count parameters that are lowered to integers.
6503            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6504
6505        if (InRegCount > 2) {
6506          llvm_report_error("Nest register in use - reduce number of inreg parameters!");
6507        }
6508      }
6509      break;
6510    }
6511    case CallingConv::X86_FastCall:
6512    case CallingConv::Fast:
6513      // Pass 'nest' parameter in EAX.
6514      // Must be kept in sync with X86CallingConv.td
6515      NestReg = X86::EAX;
6516      break;
6517    }
6518
6519    SDValue OutChains[4];
6520    SDValue Addr, Disp;
6521
6522    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6523                       DAG.getConstant(10, MVT::i32));
6524    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
6525
6526    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6527    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6528    OutChains[0] = DAG.getStore(Root, dl,
6529                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6530                                Trmp, TrmpAddr, 0);
6531
6532    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6533                       DAG.getConstant(1, MVT::i32));
6534    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
6535
6536    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6537    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6538                       DAG.getConstant(5, MVT::i32));
6539    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
6540                                TrmpAddr, 5, false, 1);
6541
6542    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6543                       DAG.getConstant(6, MVT::i32));
6544    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
6545
6546    SDValue Ops[] =
6547      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
6548    return DAG.getMergeValues(Ops, 2, dl);
6549  }
6550}
6551
6552SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6553  /*
6554   The rounding mode is in bits 11:10 of FPSR, and has the following
6555   settings:
6556     00 Round to nearest
6557     01 Round to -inf
6558     10 Round to +inf
6559     11 Round to 0
6560
6561  FLT_ROUNDS, on the other hand, expects the following:
6562    -1 Undefined
6563     0 Round to 0
6564     1 Round to nearest
6565     2 Round to +inf
6566     3 Round to -inf
6567
6568  To perform the conversion, we do:
6569    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6570  */
6571
6572  MachineFunction &MF = DAG.getMachineFunction();
6573  const TargetMachine &TM = MF.getTarget();
6574  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6575  unsigned StackAlignment = TFI.getStackAlignment();
6576  EVT VT = Op.getValueType();
6577  DebugLoc dl = Op.getDebugLoc();
6578
6579  // Save FP Control Word to stack slot
6580  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6581  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6582
6583  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
6584                              DAG.getEntryNode(), StackSlot);
6585
6586  // Load FP Control Word from stack slot
6587  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
6588
6589  // Transform as necessary
6590  SDValue CWD1 =
6591    DAG.getNode(ISD::SRL, dl, MVT::i16,
6592                DAG.getNode(ISD::AND, dl, MVT::i16,
6593                            CWD, DAG.getConstant(0x800, MVT::i16)),
6594                DAG.getConstant(11, MVT::i8));
6595  SDValue CWD2 =
6596    DAG.getNode(ISD::SRL, dl, MVT::i16,
6597                DAG.getNode(ISD::AND, dl, MVT::i16,
6598                            CWD, DAG.getConstant(0x400, MVT::i16)),
6599                DAG.getConstant(9, MVT::i8));
6600
6601  SDValue RetVal =
6602    DAG.getNode(ISD::AND, dl, MVT::i16,
6603                DAG.getNode(ISD::ADD, dl, MVT::i16,
6604                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
6605                            DAG.getConstant(1, MVT::i16)),
6606                DAG.getConstant(3, MVT::i16));
6607
6608
6609  return DAG.getNode((VT.getSizeInBits() < 16 ?
6610                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6611}
6612
6613SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6614  EVT VT = Op.getValueType();
6615  EVT OpVT = VT;
6616  unsigned NumBits = VT.getSizeInBits();
6617  DebugLoc dl = Op.getDebugLoc();
6618
6619  Op = Op.getOperand(0);
6620  if (VT == MVT::i8) {
6621    // Zero extend to i32 since there is not an i8 bsr.
6622    OpVT = MVT::i32;
6623    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6624  }
6625
6626  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6627  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6628  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
6629
6630  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6631  SmallVector<SDValue, 4> Ops;
6632  Ops.push_back(Op);
6633  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6634  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6635  Ops.push_back(Op.getValue(1));
6636  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6637
6638  // Finally xor with NumBits-1.
6639  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6640
6641  if (VT == MVT::i8)
6642    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6643  return Op;
6644}
6645
6646SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6647  EVT VT = Op.getValueType();
6648  EVT OpVT = VT;
6649  unsigned NumBits = VT.getSizeInBits();
6650  DebugLoc dl = Op.getDebugLoc();
6651
6652  Op = Op.getOperand(0);
6653  if (VT == MVT::i8) {
6654    OpVT = MVT::i32;
6655    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6656  }
6657
6658  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6659  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6660  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
6661
6662  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6663  SmallVector<SDValue, 4> Ops;
6664  Ops.push_back(Op);
6665  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6666  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6667  Ops.push_back(Op.getValue(1));
6668  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6669
6670  if (VT == MVT::i8)
6671    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6672  return Op;
6673}
6674
6675SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6676  EVT VT = Op.getValueType();
6677  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6678  DebugLoc dl = Op.getDebugLoc();
6679
6680  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6681  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6682  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6683  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6684  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6685  //
6686  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6687  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6688  //  return AloBlo + AloBhi + AhiBlo;
6689
6690  SDValue A = Op.getOperand(0);
6691  SDValue B = Op.getOperand(1);
6692
6693  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6694                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6695                       A, DAG.getConstant(32, MVT::i32));
6696  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6697                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6698                       B, DAG.getConstant(32, MVT::i32));
6699  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6700                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6701                       A, B);
6702  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6703                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6704                       A, Bhi);
6705  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6706                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6707                       Ahi, B);
6708  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6709                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6710                       AloBhi, DAG.getConstant(32, MVT::i32));
6711  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6712                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6713                       AhiBlo, DAG.getConstant(32, MVT::i32));
6714  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
6715  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
6716  return Res;
6717}
6718
6719
6720SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6721  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6722  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6723  // looks for this combo and may remove the "setcc" instruction if the "setcc"
6724  // has only one use.
6725  SDNode *N = Op.getNode();
6726  SDValue LHS = N->getOperand(0);
6727  SDValue RHS = N->getOperand(1);
6728  unsigned BaseOp = 0;
6729  unsigned Cond = 0;
6730  DebugLoc dl = Op.getDebugLoc();
6731
6732  switch (Op.getOpcode()) {
6733  default: llvm_unreachable("Unknown ovf instruction!");
6734  case ISD::SADDO:
6735    // A subtract of one will be selected as a INC. Note that INC doesn't
6736    // set CF, so we can't do this for UADDO.
6737    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6738      if (C->getAPIntValue() == 1) {
6739        BaseOp = X86ISD::INC;
6740        Cond = X86::COND_O;
6741        break;
6742      }
6743    BaseOp = X86ISD::ADD;
6744    Cond = X86::COND_O;
6745    break;
6746  case ISD::UADDO:
6747    BaseOp = X86ISD::ADD;
6748    Cond = X86::COND_B;
6749    break;
6750  case ISD::SSUBO:
6751    // A subtract of one will be selected as a DEC. Note that DEC doesn't
6752    // set CF, so we can't do this for USUBO.
6753    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6754      if (C->getAPIntValue() == 1) {
6755        BaseOp = X86ISD::DEC;
6756        Cond = X86::COND_O;
6757        break;
6758      }
6759    BaseOp = X86ISD::SUB;
6760    Cond = X86::COND_O;
6761    break;
6762  case ISD::USUBO:
6763    BaseOp = X86ISD::SUB;
6764    Cond = X86::COND_B;
6765    break;
6766  case ISD::SMULO:
6767    BaseOp = X86ISD::SMUL;
6768    Cond = X86::COND_O;
6769    break;
6770  case ISD::UMULO:
6771    BaseOp = X86ISD::UMUL;
6772    Cond = X86::COND_B;
6773    break;
6774  }
6775
6776  // Also sets EFLAGS.
6777  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6778  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
6779
6780  SDValue SetCC =
6781    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
6782                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6783
6784  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6785  return Sum;
6786}
6787
6788SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6789  EVT T = Op.getValueType();
6790  DebugLoc dl = Op.getDebugLoc();
6791  unsigned Reg = 0;
6792  unsigned size = 0;
6793  switch(T.getSimpleVT().SimpleTy) {
6794  default:
6795    assert(false && "Invalid value type!");
6796  case MVT::i8:  Reg = X86::AL;  size = 1; break;
6797  case MVT::i16: Reg = X86::AX;  size = 2; break;
6798  case MVT::i32: Reg = X86::EAX; size = 4; break;
6799  case MVT::i64:
6800    assert(Subtarget->is64Bit() && "Node not type legal!");
6801    Reg = X86::RAX; size = 8;
6802    break;
6803  }
6804  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
6805                                    Op.getOperand(2), SDValue());
6806  SDValue Ops[] = { cpIn.getValue(0),
6807                    Op.getOperand(1),
6808                    Op.getOperand(3),
6809                    DAG.getTargetConstant(size, MVT::i8),
6810                    cpIn.getValue(1) };
6811  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6812  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
6813  SDValue cpOut =
6814    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
6815  return cpOut;
6816}
6817
6818SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
6819                                                 SelectionDAG &DAG) {
6820  assert(Subtarget->is64Bit() && "Result not type legalized?");
6821  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6822  SDValue TheChain = Op.getOperand(0);
6823  DebugLoc dl = Op.getDebugLoc();
6824  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6825  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
6826  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
6827                                   rax.getValue(2));
6828  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
6829                            DAG.getConstant(32, MVT::i8));
6830  SDValue Ops[] = {
6831    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
6832    rdx.getValue(1)
6833  };
6834  return DAG.getMergeValues(Ops, 2, dl);
6835}
6836
6837SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6838  SDNode *Node = Op.getNode();
6839  DebugLoc dl = Node->getDebugLoc();
6840  EVT T = Node->getValueType(0);
6841  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
6842                              DAG.getConstant(0, T), Node->getOperand(2));
6843  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
6844                       cast<AtomicSDNode>(Node)->getMemoryVT(),
6845                       Node->getOperand(0),
6846                       Node->getOperand(1), negOp,
6847                       cast<AtomicSDNode>(Node)->getSrcValue(),
6848                       cast<AtomicSDNode>(Node)->getAlignment());
6849}
6850
6851/// LowerOperation - Provide custom lowering hooks for some operations.
6852///
6853SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6854  switch (Op.getOpcode()) {
6855  default: llvm_unreachable("Should not custom lower this!");
6856  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
6857  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
6858  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
6859  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
6860  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6861  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
6862  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
6863  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
6864  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
6865  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
6866  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
6867  case ISD::SHL_PARTS:
6868  case ISD::SRA_PARTS:
6869  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
6870  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
6871  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
6872  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
6873  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
6874  case ISD::FABS:               return LowerFABS(Op, DAG);
6875  case ISD::FNEG:               return LowerFNEG(Op, DAG);
6876  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
6877  case ISD::SETCC:              return LowerSETCC(Op, DAG);
6878  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
6879  case ISD::SELECT:             return LowerSELECT(Op, DAG);
6880  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
6881  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
6882  case ISD::VASTART:            return LowerVASTART(Op, DAG);
6883  case ISD::VAARG:              return LowerVAARG(Op, DAG);
6884  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
6885  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6886  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
6887  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
6888  case ISD::FRAME_TO_ARGS_OFFSET:
6889                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6890  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6891  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
6892  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
6893  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
6894  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
6895  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
6896  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
6897  case ISD::SADDO:
6898  case ISD::UADDO:
6899  case ISD::SSUBO:
6900  case ISD::USUBO:
6901  case ISD::SMULO:
6902  case ISD::UMULO:              return LowerXALUO(Op, DAG);
6903  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
6904  }
6905}
6906
6907void X86TargetLowering::
6908ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
6909                        SelectionDAG &DAG, unsigned NewOp) {
6910  EVT T = Node->getValueType(0);
6911  DebugLoc dl = Node->getDebugLoc();
6912  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
6913
6914  SDValue Chain = Node->getOperand(0);
6915  SDValue In1 = Node->getOperand(1);
6916  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6917                             Node->getOperand(2), DAG.getIntPtrConstant(0));
6918  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6919                             Node->getOperand(2), DAG.getIntPtrConstant(1));
6920  // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6921  // have a MemOperand.  Pass the info through as a normal operand.
6922  SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
6923  SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
6924  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6925  SDValue Result = DAG.getNode(NewOp, dl, Tys, Ops, 5);
6926  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
6927  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6928  Results.push_back(Result.getValue(2));
6929}
6930
6931/// ReplaceNodeResults - Replace a node with an illegal result type
6932/// with a new node built out of custom code.
6933void X86TargetLowering::ReplaceNodeResults(SDNode *N,
6934                                           SmallVectorImpl<SDValue>&Results,
6935                                           SelectionDAG &DAG) {
6936  DebugLoc dl = N->getDebugLoc();
6937  switch (N->getOpcode()) {
6938  default:
6939    assert(false && "Do not know how to custom type legalize this operation!");
6940    return;
6941  case ISD::FP_TO_SINT: {
6942    std::pair<SDValue,SDValue> Vals =
6943        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
6944    SDValue FIST = Vals.first, StackSlot = Vals.second;
6945    if (FIST.getNode() != 0) {
6946      EVT VT = N->getValueType(0);
6947      // Return a load from the stack slot.
6948      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
6949    }
6950    return;
6951  }
6952  case ISD::READCYCLECOUNTER: {
6953    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6954    SDValue TheChain = N->getOperand(0);
6955    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6956    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
6957                                     rd.getValue(1));
6958    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
6959                                     eax.getValue(2));
6960    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6961    SDValue Ops[] = { eax, edx };
6962    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
6963    Results.push_back(edx.getValue(1));
6964    return;
6965  }
6966  case ISD::ATOMIC_CMP_SWAP: {
6967    EVT T = N->getValueType(0);
6968    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
6969    SDValue cpInL, cpInH;
6970    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
6971                        DAG.getConstant(0, MVT::i32));
6972    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
6973                        DAG.getConstant(1, MVT::i32));
6974    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
6975    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
6976                             cpInL.getValue(1));
6977    SDValue swapInL, swapInH;
6978    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
6979                          DAG.getConstant(0, MVT::i32));
6980    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
6981                          DAG.getConstant(1, MVT::i32));
6982    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
6983                               cpInH.getValue(1));
6984    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
6985                               swapInL.getValue(1));
6986    SDValue Ops[] = { swapInH.getValue(0),
6987                      N->getOperand(1),
6988                      swapInH.getValue(1) };
6989    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6990    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
6991    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
6992                                        MVT::i32, Result.getValue(1));
6993    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
6994                                        MVT::i32, cpOutL.getValue(2));
6995    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
6996    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6997    Results.push_back(cpOutH.getValue(1));
6998    return;
6999  }
7000  case ISD::ATOMIC_LOAD_ADD:
7001    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7002    return;
7003  case ISD::ATOMIC_LOAD_AND:
7004    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7005    return;
7006  case ISD::ATOMIC_LOAD_NAND:
7007    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7008    return;
7009  case ISD::ATOMIC_LOAD_OR:
7010    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7011    return;
7012  case ISD::ATOMIC_LOAD_SUB:
7013    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7014    return;
7015  case ISD::ATOMIC_LOAD_XOR:
7016    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7017    return;
7018  case ISD::ATOMIC_SWAP:
7019    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7020    return;
7021  }
7022}
7023
7024const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7025  switch (Opcode) {
7026  default: return NULL;
7027  case X86ISD::BSF:                return "X86ISD::BSF";
7028  case X86ISD::BSR:                return "X86ISD::BSR";
7029  case X86ISD::SHLD:               return "X86ISD::SHLD";
7030  case X86ISD::SHRD:               return "X86ISD::SHRD";
7031  case X86ISD::FAND:               return "X86ISD::FAND";
7032  case X86ISD::FOR:                return "X86ISD::FOR";
7033  case X86ISD::FXOR:               return "X86ISD::FXOR";
7034  case X86ISD::FSRL:               return "X86ISD::FSRL";
7035  case X86ISD::FILD:               return "X86ISD::FILD";
7036  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7037  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7038  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7039  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7040  case X86ISD::FLD:                return "X86ISD::FLD";
7041  case X86ISD::FST:                return "X86ISD::FST";
7042  case X86ISD::CALL:               return "X86ISD::CALL";
7043  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7044  case X86ISD::BT:                 return "X86ISD::BT";
7045  case X86ISD::CMP:                return "X86ISD::CMP";
7046  case X86ISD::COMI:               return "X86ISD::COMI";
7047  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7048  case X86ISD::SETCC:              return "X86ISD::SETCC";
7049  case X86ISD::CMOV:               return "X86ISD::CMOV";
7050  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7051  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7052  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7053  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7054  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7055  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7056  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7057  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7058  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7059  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7060  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7061  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7062  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7063  case X86ISD::FMAX:               return "X86ISD::FMAX";
7064  case X86ISD::FMIN:               return "X86ISD::FMIN";
7065  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7066  case X86ISD::FRCP:               return "X86ISD::FRCP";
7067  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7068  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7069  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7070  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7071  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7072  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7073  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7074  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7075  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7076  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7077  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7078  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7079  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7080  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7081  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7082  case X86ISD::VSHL:               return "X86ISD::VSHL";
7083  case X86ISD::VSRL:               return "X86ISD::VSRL";
7084  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7085  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7086  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7087  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7088  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7089  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7090  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7091  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7092  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7093  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7094  case X86ISD::ADD:                return "X86ISD::ADD";
7095  case X86ISD::SUB:                return "X86ISD::SUB";
7096  case X86ISD::SMUL:               return "X86ISD::SMUL";
7097  case X86ISD::UMUL:               return "X86ISD::UMUL";
7098  case X86ISD::INC:                return "X86ISD::INC";
7099  case X86ISD::DEC:                return "X86ISD::DEC";
7100  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7101  case X86ISD::PTEST:              return "X86ISD::PTEST";
7102  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7103  }
7104}
7105
7106// isLegalAddressingMode - Return true if the addressing mode represented
7107// by AM is legal for this target, for a load/store of the specified type.
7108bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7109                                              const Type *Ty) const {
7110  // X86 supports extremely general addressing modes.
7111  CodeModel::Model M = getTargetMachine().getCodeModel();
7112
7113  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7114  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7115    return false;
7116
7117  if (AM.BaseGV) {
7118    unsigned GVFlags =
7119      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7120
7121    // If a reference to this global requires an extra load, we can't fold it.
7122    if (isGlobalStubReference(GVFlags))
7123      return false;
7124
7125    // If BaseGV requires a register for the PIC base, we cannot also have a
7126    // BaseReg specified.
7127    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7128      return false;
7129
7130    // If lower 4G is not available, then we must use rip-relative addressing.
7131    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7132      return false;
7133  }
7134
7135  switch (AM.Scale) {
7136  case 0:
7137  case 1:
7138  case 2:
7139  case 4:
7140  case 8:
7141    // These scales always work.
7142    break;
7143  case 3:
7144  case 5:
7145  case 9:
7146    // These scales are formed with basereg+scalereg.  Only accept if there is
7147    // no basereg yet.
7148    if (AM.HasBaseReg)
7149      return false;
7150    break;
7151  default:  // Other stuff never works.
7152    return false;
7153  }
7154
7155  return true;
7156}
7157
7158
7159bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7160  if (!Ty1->isInteger() || !Ty2->isInteger())
7161    return false;
7162  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7163  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7164  if (NumBits1 <= NumBits2)
7165    return false;
7166  return Subtarget->is64Bit() || NumBits1 < 64;
7167}
7168
7169bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7170  if (!VT1.isInteger() || !VT2.isInteger())
7171    return false;
7172  unsigned NumBits1 = VT1.getSizeInBits();
7173  unsigned NumBits2 = VT2.getSizeInBits();
7174  if (NumBits1 <= NumBits2)
7175    return false;
7176  return Subtarget->is64Bit() || NumBits1 < 64;
7177}
7178
7179bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7180  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7181  return Ty1 == Type::getInt32Ty(Ty1->getContext()) &&
7182         Ty2 == Type::getInt64Ty(Ty1->getContext()) && Subtarget->is64Bit();
7183}
7184
7185bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7186  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7187  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7188}
7189
7190bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7191  // i16 instructions are longer (0x66 prefix) and potentially slower.
7192  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7193}
7194
7195/// isShuffleMaskLegal - Targets can use this to indicate that they only
7196/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7197/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7198/// are assumed to be legal.
7199bool
7200X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7201                                      EVT VT) const {
7202  // Only do shuffles on 128-bit vector types for now.
7203  if (VT.getSizeInBits() == 64)
7204    return false;
7205
7206  // FIXME: pshufb, blends, palignr, shifts.
7207  return (VT.getVectorNumElements() == 2 ||
7208          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7209          isMOVLMask(M, VT) ||
7210          isSHUFPMask(M, VT) ||
7211          isPSHUFDMask(M, VT) ||
7212          isPSHUFHWMask(M, VT) ||
7213          isPSHUFLWMask(M, VT) ||
7214          isUNPCKLMask(M, VT) ||
7215          isUNPCKHMask(M, VT) ||
7216          isUNPCKL_v_undef_Mask(M, VT) ||
7217          isUNPCKH_v_undef_Mask(M, VT));
7218}
7219
7220bool
7221X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7222                                          EVT VT) const {
7223  unsigned NumElts = VT.getVectorNumElements();
7224  // FIXME: This collection of masks seems suspect.
7225  if (NumElts == 2)
7226    return true;
7227  if (NumElts == 4 && VT.getSizeInBits() == 128) {
7228    return (isMOVLMask(Mask, VT)  ||
7229            isCommutedMOVLMask(Mask, VT, true) ||
7230            isSHUFPMask(Mask, VT) ||
7231            isCommutedSHUFPMask(Mask, VT));
7232  }
7233  return false;
7234}
7235
7236//===----------------------------------------------------------------------===//
7237//                           X86 Scheduler Hooks
7238//===----------------------------------------------------------------------===//
7239
7240// private utility function
7241MachineBasicBlock *
7242X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7243                                                       MachineBasicBlock *MBB,
7244                                                       unsigned regOpc,
7245                                                       unsigned immOpc,
7246                                                       unsigned LoadOpc,
7247                                                       unsigned CXchgOpc,
7248                                                       unsigned copyOpc,
7249                                                       unsigned notOpc,
7250                                                       unsigned EAXreg,
7251                                                       TargetRegisterClass *RC,
7252                                                       bool invSrc) const {
7253  // For the atomic bitwise operator, we generate
7254  //   thisMBB:
7255  //   newMBB:
7256  //     ld  t1 = [bitinstr.addr]
7257  //     op  t2 = t1, [bitinstr.val]
7258  //     mov EAX = t1
7259  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7260  //     bz  newMBB
7261  //     fallthrough -->nextMBB
7262  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7263  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7264  MachineFunction::iterator MBBIter = MBB;
7265  ++MBBIter;
7266
7267  /// First build the CFG
7268  MachineFunction *F = MBB->getParent();
7269  MachineBasicBlock *thisMBB = MBB;
7270  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7271  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7272  F->insert(MBBIter, newMBB);
7273  F->insert(MBBIter, nextMBB);
7274
7275  // Move all successors to thisMBB to nextMBB
7276  nextMBB->transferSuccessors(thisMBB);
7277
7278  // Update thisMBB to fall through to newMBB
7279  thisMBB->addSuccessor(newMBB);
7280
7281  // newMBB jumps to itself and fall through to nextMBB
7282  newMBB->addSuccessor(nextMBB);
7283  newMBB->addSuccessor(newMBB);
7284
7285  // Insert instructions into newMBB based on incoming instruction
7286  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7287         "unexpected number of operands");
7288  DebugLoc dl = bInstr->getDebugLoc();
7289  MachineOperand& destOper = bInstr->getOperand(0);
7290  MachineOperand* argOpers[2 + X86AddrNumOperands];
7291  int numArgs = bInstr->getNumOperands() - 1;
7292  for (int i=0; i < numArgs; ++i)
7293    argOpers[i] = &bInstr->getOperand(i+1);
7294
7295  // x86 address has 4 operands: base, index, scale, and displacement
7296  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7297  int valArgIndx = lastAddrIndx + 1;
7298
7299  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7300  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7301  for (int i=0; i <= lastAddrIndx; ++i)
7302    (*MIB).addOperand(*argOpers[i]);
7303
7304  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7305  if (invSrc) {
7306    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7307  }
7308  else
7309    tt = t1;
7310
7311  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7312  assert((argOpers[valArgIndx]->isReg() ||
7313          argOpers[valArgIndx]->isImm()) &&
7314         "invalid operand");
7315  if (argOpers[valArgIndx]->isReg())
7316    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7317  else
7318    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7319  MIB.addReg(tt);
7320  (*MIB).addOperand(*argOpers[valArgIndx]);
7321
7322  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7323  MIB.addReg(t1);
7324
7325  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7326  for (int i=0; i <= lastAddrIndx; ++i)
7327    (*MIB).addOperand(*argOpers[i]);
7328  MIB.addReg(t2);
7329  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7330  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7331
7332  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7333  MIB.addReg(EAXreg);
7334
7335  // insert branch
7336  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7337
7338  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7339  return nextMBB;
7340}
7341
7342// private utility function:  64 bit atomics on 32 bit host.
7343MachineBasicBlock *
7344X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7345                                                       MachineBasicBlock *MBB,
7346                                                       unsigned regOpcL,
7347                                                       unsigned regOpcH,
7348                                                       unsigned immOpcL,
7349                                                       unsigned immOpcH,
7350                                                       bool invSrc) const {
7351  // For the atomic bitwise operator, we generate
7352  //   thisMBB (instructions are in pairs, except cmpxchg8b)
7353  //     ld t1,t2 = [bitinstr.addr]
7354  //   newMBB:
7355  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7356  //     op  t5, t6 <- out1, out2, [bitinstr.val]
7357  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
7358  //     mov ECX, EBX <- t5, t6
7359  //     mov EAX, EDX <- t1, t2
7360  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
7361  //     mov t3, t4 <- EAX, EDX
7362  //     bz  newMBB
7363  //     result in out1, out2
7364  //     fallthrough -->nextMBB
7365
7366  const TargetRegisterClass *RC = X86::GR32RegisterClass;
7367  const unsigned LoadOpc = X86::MOV32rm;
7368  const unsigned copyOpc = X86::MOV32rr;
7369  const unsigned NotOpc = X86::NOT32r;
7370  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7371  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7372  MachineFunction::iterator MBBIter = MBB;
7373  ++MBBIter;
7374
7375  /// First build the CFG
7376  MachineFunction *F = MBB->getParent();
7377  MachineBasicBlock *thisMBB = MBB;
7378  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7379  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7380  F->insert(MBBIter, newMBB);
7381  F->insert(MBBIter, nextMBB);
7382
7383  // Move all successors to thisMBB to nextMBB
7384  nextMBB->transferSuccessors(thisMBB);
7385
7386  // Update thisMBB to fall through to newMBB
7387  thisMBB->addSuccessor(newMBB);
7388
7389  // newMBB jumps to itself and fall through to nextMBB
7390  newMBB->addSuccessor(nextMBB);
7391  newMBB->addSuccessor(newMBB);
7392
7393  DebugLoc dl = bInstr->getDebugLoc();
7394  // Insert instructions into newMBB based on incoming instruction
7395  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7396  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
7397         "unexpected number of operands");
7398  MachineOperand& dest1Oper = bInstr->getOperand(0);
7399  MachineOperand& dest2Oper = bInstr->getOperand(1);
7400  MachineOperand* argOpers[2 + X86AddrNumOperands];
7401  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
7402    argOpers[i] = &bInstr->getOperand(i+2);
7403
7404  // x86 address has 4 operands: base, index, scale, and displacement
7405  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7406
7407  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7408  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
7409  for (int i=0; i <= lastAddrIndx; ++i)
7410    (*MIB).addOperand(*argOpers[i]);
7411  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7412  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
7413  // add 4 to displacement.
7414  for (int i=0; i <= lastAddrIndx-2; ++i)
7415    (*MIB).addOperand(*argOpers[i]);
7416  MachineOperand newOp3 = *(argOpers[3]);
7417  if (newOp3.isImm())
7418    newOp3.setImm(newOp3.getImm()+4);
7419  else
7420    newOp3.setOffset(newOp3.getOffset()+4);
7421  (*MIB).addOperand(newOp3);
7422  (*MIB).addOperand(*argOpers[lastAddrIndx]);
7423
7424  // t3/4 are defined later, at the bottom of the loop
7425  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
7426  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
7427  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
7428    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
7429  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
7430    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
7431
7432  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
7433  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
7434  if (invSrc) {
7435    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
7436    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
7437  } else {
7438    tt1 = t1;
7439    tt2 = t2;
7440  }
7441
7442  int valArgIndx = lastAddrIndx + 1;
7443  assert((argOpers[valArgIndx]->isReg() ||
7444          argOpers[valArgIndx]->isImm()) &&
7445         "invalid operand");
7446  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
7447  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
7448  if (argOpers[valArgIndx]->isReg())
7449    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
7450  else
7451    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
7452  if (regOpcL != X86::MOV32rr)
7453    MIB.addReg(tt1);
7454  (*MIB).addOperand(*argOpers[valArgIndx]);
7455  assert(argOpers[valArgIndx + 1]->isReg() ==
7456         argOpers[valArgIndx]->isReg());
7457  assert(argOpers[valArgIndx + 1]->isImm() ==
7458         argOpers[valArgIndx]->isImm());
7459  if (argOpers[valArgIndx + 1]->isReg())
7460    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
7461  else
7462    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
7463  if (regOpcH != X86::MOV32rr)
7464    MIB.addReg(tt2);
7465  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
7466
7467  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
7468  MIB.addReg(t1);
7469  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
7470  MIB.addReg(t2);
7471
7472  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
7473  MIB.addReg(t5);
7474  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
7475  MIB.addReg(t6);
7476
7477  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
7478  for (int i=0; i <= lastAddrIndx; ++i)
7479    (*MIB).addOperand(*argOpers[i]);
7480
7481  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7482  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7483
7484  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
7485  MIB.addReg(X86::EAX);
7486  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
7487  MIB.addReg(X86::EDX);
7488
7489  // insert branch
7490  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7491
7492  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7493  return nextMBB;
7494}
7495
7496// private utility function
7497MachineBasicBlock *
7498X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7499                                                      MachineBasicBlock *MBB,
7500                                                      unsigned cmovOpc) const {
7501  // For the atomic min/max operator, we generate
7502  //   thisMBB:
7503  //   newMBB:
7504  //     ld t1 = [min/max.addr]
7505  //     mov t2 = [min/max.val]
7506  //     cmp  t1, t2
7507  //     cmov[cond] t2 = t1
7508  //     mov EAX = t1
7509  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7510  //     bz   newMBB
7511  //     fallthrough -->nextMBB
7512  //
7513  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7514  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7515  MachineFunction::iterator MBBIter = MBB;
7516  ++MBBIter;
7517
7518  /// First build the CFG
7519  MachineFunction *F = MBB->getParent();
7520  MachineBasicBlock *thisMBB = MBB;
7521  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7522  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7523  F->insert(MBBIter, newMBB);
7524  F->insert(MBBIter, nextMBB);
7525
7526  // Move all successors of thisMBB to nextMBB
7527  nextMBB->transferSuccessors(thisMBB);
7528
7529  // Update thisMBB to fall through to newMBB
7530  thisMBB->addSuccessor(newMBB);
7531
7532  // newMBB jumps to newMBB and fall through to nextMBB
7533  newMBB->addSuccessor(nextMBB);
7534  newMBB->addSuccessor(newMBB);
7535
7536  DebugLoc dl = mInstr->getDebugLoc();
7537  // Insert instructions into newMBB based on incoming instruction
7538  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7539         "unexpected number of operands");
7540  MachineOperand& destOper = mInstr->getOperand(0);
7541  MachineOperand* argOpers[2 + X86AddrNumOperands];
7542  int numArgs = mInstr->getNumOperands() - 1;
7543  for (int i=0; i < numArgs; ++i)
7544    argOpers[i] = &mInstr->getOperand(i+1);
7545
7546  // x86 address has 4 operands: base, index, scale, and displacement
7547  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7548  int valArgIndx = lastAddrIndx + 1;
7549
7550  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7551  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
7552  for (int i=0; i <= lastAddrIndx; ++i)
7553    (*MIB).addOperand(*argOpers[i]);
7554
7555  // We only support register and immediate values
7556  assert((argOpers[valArgIndx]->isReg() ||
7557          argOpers[valArgIndx]->isImm()) &&
7558         "invalid operand");
7559
7560  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7561  if (argOpers[valArgIndx]->isReg())
7562    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7563  else
7564    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7565  (*MIB).addOperand(*argOpers[valArgIndx]);
7566
7567  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
7568  MIB.addReg(t1);
7569
7570  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
7571  MIB.addReg(t1);
7572  MIB.addReg(t2);
7573
7574  // Generate movc
7575  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7576  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
7577  MIB.addReg(t2);
7578  MIB.addReg(t1);
7579
7580  // Cmp and exchange if none has modified the memory location
7581  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
7582  for (int i=0; i <= lastAddrIndx; ++i)
7583    (*MIB).addOperand(*argOpers[i]);
7584  MIB.addReg(t3);
7585  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7586  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
7587
7588  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
7589  MIB.addReg(X86::EAX);
7590
7591  // insert branch
7592  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7593
7594  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
7595  return nextMBB;
7596}
7597
7598MachineBasicBlock *
7599X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
7600			    unsigned numArgs, bool memArg) const {
7601
7602  MachineFunction *F = BB->getParent();
7603  DebugLoc dl = MI->getDebugLoc();
7604  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7605
7606  unsigned Opc;
7607
7608  if (memArg) {
7609    Opc = numArgs == 3 ?
7610      X86::PCMPISTRM128rm :
7611      X86::PCMPESTRM128rm;
7612  } else {
7613    Opc = numArgs == 3 ?
7614      X86::PCMPISTRM128rr :
7615      X86::PCMPESTRM128rr;
7616  }
7617
7618  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
7619
7620  for (unsigned i = 0; i < numArgs; ++i) {
7621    MachineOperand &Op = MI->getOperand(i+1);
7622
7623    if (!(Op.isReg() && Op.isImplicit()))
7624      MIB.addOperand(Op);
7625  }
7626
7627  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
7628    .addReg(X86::XMM0);
7629
7630  F->DeleteMachineInstr(MI);
7631
7632  return BB;
7633}
7634
7635MachineBasicBlock *
7636X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
7637                                                 MachineInstr *MI,
7638                                                 MachineBasicBlock *MBB) const {
7639  // Emit code to save XMM registers to the stack. The ABI says that the
7640  // number of registers to save is given in %al, so it's theoretically
7641  // possible to do an indirect jump trick to avoid saving all of them,
7642  // however this code takes a simpler approach and just executes all
7643  // of the stores if %al is non-zero. It's less code, and it's probably
7644  // easier on the hardware branch predictor, and stores aren't all that
7645  // expensive anyway.
7646
7647  // Create the new basic blocks. One block contains all the XMM stores,
7648  // and one block is the final destination regardless of whether any
7649  // stores were performed.
7650  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7651  MachineFunction *F = MBB->getParent();
7652  MachineFunction::iterator MBBIter = MBB;
7653  ++MBBIter;
7654  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
7655  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
7656  F->insert(MBBIter, XMMSaveMBB);
7657  F->insert(MBBIter, EndMBB);
7658
7659  // Set up the CFG.
7660  // Move any original successors of MBB to the end block.
7661  EndMBB->transferSuccessors(MBB);
7662  // The original block will now fall through to the XMM save block.
7663  MBB->addSuccessor(XMMSaveMBB);
7664  // The XMMSaveMBB will fall through to the end block.
7665  XMMSaveMBB->addSuccessor(EndMBB);
7666
7667  // Now add the instructions.
7668  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7669  DebugLoc DL = MI->getDebugLoc();
7670
7671  unsigned CountReg = MI->getOperand(0).getReg();
7672  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
7673  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
7674
7675  if (!Subtarget->isTargetWin64()) {
7676    // If %al is 0, branch around the XMM save block.
7677    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
7678    BuildMI(MBB, DL, TII->get(X86::JE)).addMBB(EndMBB);
7679    MBB->addSuccessor(EndMBB);
7680  }
7681
7682  // In the XMM save block, save all the XMM argument registers.
7683  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
7684    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
7685    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
7686      .addFrameIndex(RegSaveFrameIndex)
7687      .addImm(/*Scale=*/1)
7688      .addReg(/*IndexReg=*/0)
7689      .addImm(/*Disp=*/Offset)
7690      .addReg(/*Segment=*/0)
7691      .addReg(MI->getOperand(i).getReg())
7692      .addMemOperand(MachineMemOperand(
7693                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
7694                       MachineMemOperand::MOStore, Offset,
7695                       /*Size=*/16, /*Align=*/16));
7696  }
7697
7698  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7699
7700  return EndMBB;
7701}
7702
7703MachineBasicBlock *
7704X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7705                                               MachineBasicBlock *BB) const {
7706  DebugLoc dl = MI->getDebugLoc();
7707  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7708  switch (MI->getOpcode()) {
7709  default: assert(false && "Unexpected instr type to insert");
7710  case X86::CMOV_V1I64:
7711  case X86::CMOV_FR32:
7712  case X86::CMOV_FR64:
7713  case X86::CMOV_V4F32:
7714  case X86::CMOV_V2F64:
7715  case X86::CMOV_V2I64: {
7716    // To "insert" a SELECT_CC instruction, we actually have to insert the
7717    // diamond control-flow pattern.  The incoming instruction knows the
7718    // destination vreg to set, the condition code register to branch on, the
7719    // true/false values to select between, and a branch opcode to use.
7720    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7721    MachineFunction::iterator It = BB;
7722    ++It;
7723
7724    //  thisMBB:
7725    //  ...
7726    //   TrueVal = ...
7727    //   cmpTY ccX, r1, r2
7728    //   bCC copy1MBB
7729    //   fallthrough --> copy0MBB
7730    MachineBasicBlock *thisMBB = BB;
7731    MachineFunction *F = BB->getParent();
7732    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7733    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7734    unsigned Opc =
7735      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7736    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
7737    F->insert(It, copy0MBB);
7738    F->insert(It, sinkMBB);
7739    // Update machine-CFG edges by transferring all successors of the current
7740    // block to the new block which will contain the Phi node for the select.
7741    sinkMBB->transferSuccessors(BB);
7742
7743    // Add the true and fallthrough blocks as its successors.
7744    BB->addSuccessor(copy0MBB);
7745    BB->addSuccessor(sinkMBB);
7746
7747    //  copy0MBB:
7748    //   %FalseValue = ...
7749    //   # fallthrough to sinkMBB
7750    BB = copy0MBB;
7751
7752    // Update machine-CFG edges
7753    BB->addSuccessor(sinkMBB);
7754
7755    //  sinkMBB:
7756    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7757    //  ...
7758    BB = sinkMBB;
7759    BuildMI(BB, dl, TII->get(X86::PHI), MI->getOperand(0).getReg())
7760      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7761      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7762
7763    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7764    return BB;
7765  }
7766
7767  case X86::FP32_TO_INT16_IN_MEM:
7768  case X86::FP32_TO_INT32_IN_MEM:
7769  case X86::FP32_TO_INT64_IN_MEM:
7770  case X86::FP64_TO_INT16_IN_MEM:
7771  case X86::FP64_TO_INT32_IN_MEM:
7772  case X86::FP64_TO_INT64_IN_MEM:
7773  case X86::FP80_TO_INT16_IN_MEM:
7774  case X86::FP80_TO_INT32_IN_MEM:
7775  case X86::FP80_TO_INT64_IN_MEM: {
7776    // Change the floating point control register to use "round towards zero"
7777    // mode when truncating to an integer value.
7778    MachineFunction *F = BB->getParent();
7779    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
7780    addFrameReference(BuildMI(BB, dl, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7781
7782    // Load the old value of the high byte of the control word...
7783    unsigned OldCW =
7784      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7785    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16rm), OldCW),
7786                      CWFrameIdx);
7787
7788    // Set the high part to be round to zero...
7789    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mi)), CWFrameIdx)
7790      .addImm(0xC7F);
7791
7792    // Reload the modified control word now...
7793    addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7794
7795    // Restore the memory image of control word to original value
7796    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mr)), CWFrameIdx)
7797      .addReg(OldCW);
7798
7799    // Get the X86 opcode to use.
7800    unsigned Opc;
7801    switch (MI->getOpcode()) {
7802    default: llvm_unreachable("illegal opcode!");
7803    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
7804    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
7805    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
7806    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
7807    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
7808    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
7809    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
7810    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
7811    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
7812    }
7813
7814    X86AddressMode AM;
7815    MachineOperand &Op = MI->getOperand(0);
7816    if (Op.isReg()) {
7817      AM.BaseType = X86AddressMode::RegBase;
7818      AM.Base.Reg = Op.getReg();
7819    } else {
7820      AM.BaseType = X86AddressMode::FrameIndexBase;
7821      AM.Base.FrameIndex = Op.getIndex();
7822    }
7823    Op = MI->getOperand(1);
7824    if (Op.isImm())
7825      AM.Scale = Op.getImm();
7826    Op = MI->getOperand(2);
7827    if (Op.isImm())
7828      AM.IndexReg = Op.getImm();
7829    Op = MI->getOperand(3);
7830    if (Op.isGlobal()) {
7831      AM.GV = Op.getGlobal();
7832    } else {
7833      AM.Disp = Op.getImm();
7834    }
7835    addFullAddress(BuildMI(BB, dl, TII->get(Opc)), AM)
7836                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
7837
7838    // Reload the original control word now.
7839    addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7840
7841    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7842    return BB;
7843  }
7844    // String/text processing lowering.
7845  case X86::PCMPISTRM128REG:
7846    return EmitPCMP(MI, BB, 3, false /* in-mem */);
7847  case X86::PCMPISTRM128MEM:
7848    return EmitPCMP(MI, BB, 3, true /* in-mem */);
7849  case X86::PCMPESTRM128REG:
7850    return EmitPCMP(MI, BB, 5, false /* in mem */);
7851  case X86::PCMPESTRM128MEM:
7852    return EmitPCMP(MI, BB, 5, true /* in mem */);
7853
7854    // Atomic Lowering.
7855  case X86::ATOMAND32:
7856    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7857                                               X86::AND32ri, X86::MOV32rm,
7858                                               X86::LCMPXCHG32, X86::MOV32rr,
7859                                               X86::NOT32r, X86::EAX,
7860                                               X86::GR32RegisterClass);
7861  case X86::ATOMOR32:
7862    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7863                                               X86::OR32ri, X86::MOV32rm,
7864                                               X86::LCMPXCHG32, X86::MOV32rr,
7865                                               X86::NOT32r, X86::EAX,
7866                                               X86::GR32RegisterClass);
7867  case X86::ATOMXOR32:
7868    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7869                                               X86::XOR32ri, X86::MOV32rm,
7870                                               X86::LCMPXCHG32, X86::MOV32rr,
7871                                               X86::NOT32r, X86::EAX,
7872                                               X86::GR32RegisterClass);
7873  case X86::ATOMNAND32:
7874    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7875                                               X86::AND32ri, X86::MOV32rm,
7876                                               X86::LCMPXCHG32, X86::MOV32rr,
7877                                               X86::NOT32r, X86::EAX,
7878                                               X86::GR32RegisterClass, true);
7879  case X86::ATOMMIN32:
7880    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7881  case X86::ATOMMAX32:
7882    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7883  case X86::ATOMUMIN32:
7884    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7885  case X86::ATOMUMAX32:
7886    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7887
7888  case X86::ATOMAND16:
7889    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7890                                               X86::AND16ri, X86::MOV16rm,
7891                                               X86::LCMPXCHG16, X86::MOV16rr,
7892                                               X86::NOT16r, X86::AX,
7893                                               X86::GR16RegisterClass);
7894  case X86::ATOMOR16:
7895    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7896                                               X86::OR16ri, X86::MOV16rm,
7897                                               X86::LCMPXCHG16, X86::MOV16rr,
7898                                               X86::NOT16r, X86::AX,
7899                                               X86::GR16RegisterClass);
7900  case X86::ATOMXOR16:
7901    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7902                                               X86::XOR16ri, X86::MOV16rm,
7903                                               X86::LCMPXCHG16, X86::MOV16rr,
7904                                               X86::NOT16r, X86::AX,
7905                                               X86::GR16RegisterClass);
7906  case X86::ATOMNAND16:
7907    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7908                                               X86::AND16ri, X86::MOV16rm,
7909                                               X86::LCMPXCHG16, X86::MOV16rr,
7910                                               X86::NOT16r, X86::AX,
7911                                               X86::GR16RegisterClass, true);
7912  case X86::ATOMMIN16:
7913    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
7914  case X86::ATOMMAX16:
7915    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
7916  case X86::ATOMUMIN16:
7917    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
7918  case X86::ATOMUMAX16:
7919    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
7920
7921  case X86::ATOMAND8:
7922    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7923                                               X86::AND8ri, X86::MOV8rm,
7924                                               X86::LCMPXCHG8, X86::MOV8rr,
7925                                               X86::NOT8r, X86::AL,
7926                                               X86::GR8RegisterClass);
7927  case X86::ATOMOR8:
7928    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
7929                                               X86::OR8ri, X86::MOV8rm,
7930                                               X86::LCMPXCHG8, X86::MOV8rr,
7931                                               X86::NOT8r, X86::AL,
7932                                               X86::GR8RegisterClass);
7933  case X86::ATOMXOR8:
7934    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
7935                                               X86::XOR8ri, X86::MOV8rm,
7936                                               X86::LCMPXCHG8, X86::MOV8rr,
7937                                               X86::NOT8r, X86::AL,
7938                                               X86::GR8RegisterClass);
7939  case X86::ATOMNAND8:
7940    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7941                                               X86::AND8ri, X86::MOV8rm,
7942                                               X86::LCMPXCHG8, X86::MOV8rr,
7943                                               X86::NOT8r, X86::AL,
7944                                               X86::GR8RegisterClass, true);
7945  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7946  // This group is for 64-bit host.
7947  case X86::ATOMAND64:
7948    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7949                                               X86::AND64ri32, X86::MOV64rm,
7950                                               X86::LCMPXCHG64, X86::MOV64rr,
7951                                               X86::NOT64r, X86::RAX,
7952                                               X86::GR64RegisterClass);
7953  case X86::ATOMOR64:
7954    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
7955                                               X86::OR64ri32, X86::MOV64rm,
7956                                               X86::LCMPXCHG64, X86::MOV64rr,
7957                                               X86::NOT64r, X86::RAX,
7958                                               X86::GR64RegisterClass);
7959  case X86::ATOMXOR64:
7960    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
7961                                               X86::XOR64ri32, X86::MOV64rm,
7962                                               X86::LCMPXCHG64, X86::MOV64rr,
7963                                               X86::NOT64r, X86::RAX,
7964                                               X86::GR64RegisterClass);
7965  case X86::ATOMNAND64:
7966    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7967                                               X86::AND64ri32, X86::MOV64rm,
7968                                               X86::LCMPXCHG64, X86::MOV64rr,
7969                                               X86::NOT64r, X86::RAX,
7970                                               X86::GR64RegisterClass, true);
7971  case X86::ATOMMIN64:
7972    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
7973  case X86::ATOMMAX64:
7974    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
7975  case X86::ATOMUMIN64:
7976    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
7977  case X86::ATOMUMAX64:
7978    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
7979
7980  // This group does 64-bit operations on a 32-bit host.
7981  case X86::ATOMAND6432:
7982    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7983                                               X86::AND32rr, X86::AND32rr,
7984                                               X86::AND32ri, X86::AND32ri,
7985                                               false);
7986  case X86::ATOMOR6432:
7987    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7988                                               X86::OR32rr, X86::OR32rr,
7989                                               X86::OR32ri, X86::OR32ri,
7990                                               false);
7991  case X86::ATOMXOR6432:
7992    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7993                                               X86::XOR32rr, X86::XOR32rr,
7994                                               X86::XOR32ri, X86::XOR32ri,
7995                                               false);
7996  case X86::ATOMNAND6432:
7997    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7998                                               X86::AND32rr, X86::AND32rr,
7999                                               X86::AND32ri, X86::AND32ri,
8000                                               true);
8001  case X86::ATOMADD6432:
8002    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8003                                               X86::ADD32rr, X86::ADC32rr,
8004                                               X86::ADD32ri, X86::ADC32ri,
8005                                               false);
8006  case X86::ATOMSUB6432:
8007    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8008                                               X86::SUB32rr, X86::SBB32rr,
8009                                               X86::SUB32ri, X86::SBB32ri,
8010                                               false);
8011  case X86::ATOMSWAP6432:
8012    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8013                                               X86::MOV32rr, X86::MOV32rr,
8014                                               X86::MOV32ri, X86::MOV32ri,
8015                                               false);
8016  case X86::VASTART_SAVE_XMM_REGS:
8017    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8018  }
8019}
8020
8021//===----------------------------------------------------------------------===//
8022//                           X86 Optimization Hooks
8023//===----------------------------------------------------------------------===//
8024
8025void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8026                                                       const APInt &Mask,
8027                                                       APInt &KnownZero,
8028                                                       APInt &KnownOne,
8029                                                       const SelectionDAG &DAG,
8030                                                       unsigned Depth) const {
8031  unsigned Opc = Op.getOpcode();
8032  assert((Opc >= ISD::BUILTIN_OP_END ||
8033          Opc == ISD::INTRINSIC_WO_CHAIN ||
8034          Opc == ISD::INTRINSIC_W_CHAIN ||
8035          Opc == ISD::INTRINSIC_VOID) &&
8036         "Should use MaskedValueIsZero if you don't know whether Op"
8037         " is a target node!");
8038
8039  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8040  switch (Opc) {
8041  default: break;
8042  case X86ISD::ADD:
8043  case X86ISD::SUB:
8044  case X86ISD::SMUL:
8045  case X86ISD::UMUL:
8046  case X86ISD::INC:
8047  case X86ISD::DEC:
8048    // These nodes' second result is a boolean.
8049    if (Op.getResNo() == 0)
8050      break;
8051    // Fallthrough
8052  case X86ISD::SETCC:
8053    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8054                                       Mask.getBitWidth() - 1);
8055    break;
8056  }
8057}
8058
8059/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8060/// node is a GlobalAddress + offset.
8061bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8062                                       GlobalValue* &GA, int64_t &Offset) const{
8063  if (N->getOpcode() == X86ISD::Wrapper) {
8064    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8065      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8066      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8067      return true;
8068    }
8069  }
8070  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8071}
8072
8073static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
8074                               const TargetLowering &TLI) {
8075  GlobalValue *GV;
8076  int64_t Offset = 0;
8077  if (TLI.isGAPlusOffset(Base, GV, Offset))
8078    return (GV->getAlignment() >= N && (Offset % N) == 0);
8079  // DAG combine handles the stack object case.
8080  return false;
8081}
8082
8083static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
8084                                     EVT EVT, LoadSDNode *&LDBase,
8085                                     unsigned &LastLoadedElt,
8086                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
8087                                     const TargetLowering &TLI) {
8088  LDBase = NULL;
8089  LastLoadedElt = -1U;
8090  for (unsigned i = 0; i < NumElems; ++i) {
8091    if (N->getMaskElt(i) < 0) {
8092      if (!LDBase)
8093        return false;
8094      continue;
8095    }
8096
8097    SDValue Elt = DAG.getShuffleScalarElt(N, i);
8098    if (!Elt.getNode() ||
8099        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
8100      return false;
8101    if (!LDBase) {
8102      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
8103        return false;
8104      LDBase = cast<LoadSDNode>(Elt.getNode());
8105      LastLoadedElt = i;
8106      continue;
8107    }
8108    if (Elt.getOpcode() == ISD::UNDEF)
8109      continue;
8110
8111    LoadSDNode *LD = cast<LoadSDNode>(Elt);
8112    if (!TLI.isConsecutiveLoad(LD, LDBase, EVT.getSizeInBits()/8, i, MFI))
8113      return false;
8114    LastLoadedElt = i;
8115  }
8116  return true;
8117}
8118
8119/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8120/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8121/// if the load addresses are consecutive, non-overlapping, and in the right
8122/// order.  In the case of v2i64, it will see if it can rewrite the
8123/// shuffle to be an appropriate build vector so it can take advantage of
8124// performBuildVectorCombine.
8125static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8126                                     const TargetLowering &TLI) {
8127  DebugLoc dl = N->getDebugLoc();
8128  EVT VT = N->getValueType(0);
8129  EVT EVT = VT.getVectorElementType();
8130  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8131  unsigned NumElems = VT.getVectorNumElements();
8132
8133  if (VT.getSizeInBits() != 128)
8134    return SDValue();
8135
8136  // Try to combine a vector_shuffle into a 128-bit load.
8137  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8138  LoadSDNode *LD = NULL;
8139  unsigned LastLoadedElt;
8140  if (!EltsFromConsecutiveLoads(SVN, NumElems, EVT, LD, LastLoadedElt, DAG,
8141                                MFI, TLI))
8142    return SDValue();
8143
8144  if (LastLoadedElt == NumElems - 1) {
8145    if (isBaseAlignmentOfN(16, LD->getBasePtr().getNode(), TLI))
8146      return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8147                         LD->getSrcValue(), LD->getSrcValueOffset(),
8148                         LD->isVolatile());
8149    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8150                       LD->getSrcValue(), LD->getSrcValueOffset(),
8151                       LD->isVolatile(), LD->getAlignment());
8152  } else if (NumElems == 4 && LastLoadedElt == 1) {
8153    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
8154    SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
8155    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
8156    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
8157  }
8158  return SDValue();
8159}
8160
8161/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8162static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8163                                    const X86Subtarget *Subtarget) {
8164  DebugLoc DL = N->getDebugLoc();
8165  SDValue Cond = N->getOperand(0);
8166  // Get the LHS/RHS of the select.
8167  SDValue LHS = N->getOperand(1);
8168  SDValue RHS = N->getOperand(2);
8169
8170  // If we have SSE[12] support, try to form min/max nodes.
8171  if (Subtarget->hasSSE2() &&
8172      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
8173      Cond.getOpcode() == ISD::SETCC) {
8174    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
8175
8176    unsigned Opcode = 0;
8177    if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
8178      switch (CC) {
8179      default: break;
8180      case ISD::SETOLE: // (X <= Y) ? X : Y -> min
8181      case ISD::SETULE:
8182      case ISD::SETLE:
8183        if (!UnsafeFPMath) break;
8184        // FALL THROUGH.
8185      case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
8186      case ISD::SETLT:
8187        Opcode = X86ISD::FMIN;
8188        break;
8189
8190      case ISD::SETOGT: // (X > Y) ? X : Y -> max
8191      case ISD::SETUGT:
8192      case ISD::SETGT:
8193        if (!UnsafeFPMath) break;
8194        // FALL THROUGH.
8195      case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
8196      case ISD::SETGE:
8197        Opcode = X86ISD::FMAX;
8198        break;
8199      }
8200    } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
8201      switch (CC) {
8202      default: break;
8203      case ISD::SETOGT: // (X > Y) ? Y : X -> min
8204      case ISD::SETUGT:
8205      case ISD::SETGT:
8206        if (!UnsafeFPMath) break;
8207        // FALL THROUGH.
8208      case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
8209      case ISD::SETGE:
8210        Opcode = X86ISD::FMIN;
8211        break;
8212
8213      case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
8214      case ISD::SETULE:
8215      case ISD::SETLE:
8216        if (!UnsafeFPMath) break;
8217        // FALL THROUGH.
8218      case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
8219      case ISD::SETLT:
8220        Opcode = X86ISD::FMAX;
8221        break;
8222      }
8223    }
8224
8225    if (Opcode)
8226      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
8227  }
8228
8229  // If this is a select between two integer constants, try to do some
8230  // optimizations.
8231  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
8232    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
8233      // Don't do this for crazy integer types.
8234      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
8235        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8236        // so that TrueC (the true value) is larger than FalseC.
8237        bool NeedsCondInvert = false;
8238
8239        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
8240            // Efficiently invertible.
8241            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
8242             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
8243              isa<ConstantSDNode>(Cond.getOperand(1))))) {
8244          NeedsCondInvert = true;
8245          std::swap(TrueC, FalseC);
8246        }
8247
8248        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
8249        if (FalseC->getAPIntValue() == 0 &&
8250            TrueC->getAPIntValue().isPowerOf2()) {
8251          if (NeedsCondInvert) // Invert the condition if needed.
8252            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8253                               DAG.getConstant(1, Cond.getValueType()));
8254
8255          // Zero extend the condition if needed.
8256          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
8257
8258          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8259          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
8260                             DAG.getConstant(ShAmt, MVT::i8));
8261        }
8262
8263        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8264        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8265          if (NeedsCondInvert) // Invert the condition if needed.
8266            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8267                               DAG.getConstant(1, Cond.getValueType()));
8268
8269          // Zero extend the condition if needed.
8270          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8271                             FalseC->getValueType(0), Cond);
8272          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8273                             SDValue(FalseC, 0));
8274        }
8275
8276        // Optimize cases that will turn into an LEA instruction.  This requires
8277        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8278        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8279          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8280          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8281
8282          bool isFastMultiplier = false;
8283          if (Diff < 10) {
8284            switch ((unsigned char)Diff) {
8285              default: break;
8286              case 1:  // result = add base, cond
8287              case 2:  // result = lea base(    , cond*2)
8288              case 3:  // result = lea base(cond, cond*2)
8289              case 4:  // result = lea base(    , cond*4)
8290              case 5:  // result = lea base(cond, cond*4)
8291              case 8:  // result = lea base(    , cond*8)
8292              case 9:  // result = lea base(cond, cond*8)
8293                isFastMultiplier = true;
8294                break;
8295            }
8296          }
8297
8298          if (isFastMultiplier) {
8299            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8300            if (NeedsCondInvert) // Invert the condition if needed.
8301              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8302                                 DAG.getConstant(1, Cond.getValueType()));
8303
8304            // Zero extend the condition if needed.
8305            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8306                               Cond);
8307            // Scale the condition by the difference.
8308            if (Diff != 1)
8309              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8310                                 DAG.getConstant(Diff, Cond.getValueType()));
8311
8312            // Add the base if non-zero.
8313            if (FalseC->getAPIntValue() != 0)
8314              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8315                                 SDValue(FalseC, 0));
8316            return Cond;
8317          }
8318        }
8319      }
8320  }
8321
8322  return SDValue();
8323}
8324
8325/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
8326static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
8327                                  TargetLowering::DAGCombinerInfo &DCI) {
8328  DebugLoc DL = N->getDebugLoc();
8329
8330  // If the flag operand isn't dead, don't touch this CMOV.
8331  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
8332    return SDValue();
8333
8334  // If this is a select between two integer constants, try to do some
8335  // optimizations.  Note that the operands are ordered the opposite of SELECT
8336  // operands.
8337  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
8338    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
8339      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
8340      // larger than FalseC (the false value).
8341      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
8342
8343      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
8344        CC = X86::GetOppositeBranchCondition(CC);
8345        std::swap(TrueC, FalseC);
8346      }
8347
8348      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
8349      // This is efficient for any integer data type (including i8/i16) and
8350      // shift amount.
8351      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
8352        SDValue Cond = N->getOperand(3);
8353        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8354                           DAG.getConstant(CC, MVT::i8), Cond);
8355
8356        // Zero extend the condition if needed.
8357        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
8358
8359        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8360        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
8361                           DAG.getConstant(ShAmt, MVT::i8));
8362        if (N->getNumValues() == 2)  // Dead flag value?
8363          return DCI.CombineTo(N, Cond, SDValue());
8364        return Cond;
8365      }
8366
8367      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
8368      // for any integer data type, including i8/i16.
8369      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8370        SDValue Cond = N->getOperand(3);
8371        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8372                           DAG.getConstant(CC, MVT::i8), Cond);
8373
8374        // Zero extend the condition if needed.
8375        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8376                           FalseC->getValueType(0), Cond);
8377        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8378                           SDValue(FalseC, 0));
8379
8380        if (N->getNumValues() == 2)  // Dead flag value?
8381          return DCI.CombineTo(N, Cond, SDValue());
8382        return Cond;
8383      }
8384
8385      // Optimize cases that will turn into an LEA instruction.  This requires
8386      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8387      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8388        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8389        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8390
8391        bool isFastMultiplier = false;
8392        if (Diff < 10) {
8393          switch ((unsigned char)Diff) {
8394          default: break;
8395          case 1:  // result = add base, cond
8396          case 2:  // result = lea base(    , cond*2)
8397          case 3:  // result = lea base(cond, cond*2)
8398          case 4:  // result = lea base(    , cond*4)
8399          case 5:  // result = lea base(cond, cond*4)
8400          case 8:  // result = lea base(    , cond*8)
8401          case 9:  // result = lea base(cond, cond*8)
8402            isFastMultiplier = true;
8403            break;
8404          }
8405        }
8406
8407        if (isFastMultiplier) {
8408          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8409          SDValue Cond = N->getOperand(3);
8410          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8411                             DAG.getConstant(CC, MVT::i8), Cond);
8412          // Zero extend the condition if needed.
8413          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8414                             Cond);
8415          // Scale the condition by the difference.
8416          if (Diff != 1)
8417            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8418                               DAG.getConstant(Diff, Cond.getValueType()));
8419
8420          // Add the base if non-zero.
8421          if (FalseC->getAPIntValue() != 0)
8422            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8423                               SDValue(FalseC, 0));
8424          if (N->getNumValues() == 2)  // Dead flag value?
8425            return DCI.CombineTo(N, Cond, SDValue());
8426          return Cond;
8427        }
8428      }
8429    }
8430  }
8431  return SDValue();
8432}
8433
8434
8435/// PerformMulCombine - Optimize a single multiply with constant into two
8436/// in order to implement it with two cheaper instructions, e.g.
8437/// LEA + SHL, LEA + LEA.
8438static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
8439                                 TargetLowering::DAGCombinerInfo &DCI) {
8440  if (DAG.getMachineFunction().
8441      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
8442    return SDValue();
8443
8444  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8445    return SDValue();
8446
8447  EVT VT = N->getValueType(0);
8448  if (VT != MVT::i64)
8449    return SDValue();
8450
8451  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8452  if (!C)
8453    return SDValue();
8454  uint64_t MulAmt = C->getZExtValue();
8455  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
8456    return SDValue();
8457
8458  uint64_t MulAmt1 = 0;
8459  uint64_t MulAmt2 = 0;
8460  if ((MulAmt % 9) == 0) {
8461    MulAmt1 = 9;
8462    MulAmt2 = MulAmt / 9;
8463  } else if ((MulAmt % 5) == 0) {
8464    MulAmt1 = 5;
8465    MulAmt2 = MulAmt / 5;
8466  } else if ((MulAmt % 3) == 0) {
8467    MulAmt1 = 3;
8468    MulAmt2 = MulAmt / 3;
8469  }
8470  if (MulAmt2 &&
8471      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
8472    DebugLoc DL = N->getDebugLoc();
8473
8474    if (isPowerOf2_64(MulAmt2) &&
8475        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
8476      // If second multiplifer is pow2, issue it first. We want the multiply by
8477      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8478      // is an add.
8479      std::swap(MulAmt1, MulAmt2);
8480
8481    SDValue NewMul;
8482    if (isPowerOf2_64(MulAmt1))
8483      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
8484                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
8485    else
8486      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
8487                           DAG.getConstant(MulAmt1, VT));
8488
8489    if (isPowerOf2_64(MulAmt2))
8490      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
8491                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
8492    else
8493      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
8494                           DAG.getConstant(MulAmt2, VT));
8495
8496    // Do not add new nodes to DAG combiner worklist.
8497    DCI.CombineTo(N, NewMul, false);
8498  }
8499  return SDValue();
8500}
8501
8502
8503/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8504///                       when possible.
8505static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
8506                                   const X86Subtarget *Subtarget) {
8507  // On X86 with SSE2 support, we can transform this to a vector shift if
8508  // all elements are shifted by the same amount.  We can't do this in legalize
8509  // because the a constant vector is typically transformed to a constant pool
8510  // so we have no knowledge of the shift amount.
8511  if (!Subtarget->hasSSE2())
8512    return SDValue();
8513
8514  EVT VT = N->getValueType(0);
8515  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
8516    return SDValue();
8517
8518  SDValue ShAmtOp = N->getOperand(1);
8519  EVT EltVT = VT.getVectorElementType();
8520  DebugLoc DL = N->getDebugLoc();
8521  SDValue BaseShAmt;
8522  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
8523    unsigned NumElts = VT.getVectorNumElements();
8524    unsigned i = 0;
8525    for (; i != NumElts; ++i) {
8526      SDValue Arg = ShAmtOp.getOperand(i);
8527      if (Arg.getOpcode() == ISD::UNDEF) continue;
8528      BaseShAmt = Arg;
8529      break;
8530    }
8531    for (; i != NumElts; ++i) {
8532      SDValue Arg = ShAmtOp.getOperand(i);
8533      if (Arg.getOpcode() == ISD::UNDEF) continue;
8534      if (Arg != BaseShAmt) {
8535        return SDValue();
8536      }
8537    }
8538  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
8539             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
8540    BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
8541                            DAG.getIntPtrConstant(0));
8542  } else
8543    return SDValue();
8544
8545  if (EltVT.bitsGT(MVT::i32))
8546    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
8547  else if (EltVT.bitsLT(MVT::i32))
8548    BaseShAmt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, BaseShAmt);
8549
8550  // The shift amount is identical so we can do a vector shift.
8551  SDValue  ValOp = N->getOperand(0);
8552  switch (N->getOpcode()) {
8553  default:
8554    llvm_unreachable("Unknown shift opcode!");
8555    break;
8556  case ISD::SHL:
8557    if (VT == MVT::v2i64)
8558      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8559                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8560                         ValOp, BaseShAmt);
8561    if (VT == MVT::v4i32)
8562      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8563                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8564                         ValOp, BaseShAmt);
8565    if (VT == MVT::v8i16)
8566      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8567                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8568                         ValOp, BaseShAmt);
8569    break;
8570  case ISD::SRA:
8571    if (VT == MVT::v4i32)
8572      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8573                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8574                         ValOp, BaseShAmt);
8575    if (VT == MVT::v8i16)
8576      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8577                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8578                         ValOp, BaseShAmt);
8579    break;
8580  case ISD::SRL:
8581    if (VT == MVT::v2i64)
8582      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8583                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8584                         ValOp, BaseShAmt);
8585    if (VT == MVT::v4i32)
8586      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8587                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8588                         ValOp, BaseShAmt);
8589    if (VT ==  MVT::v8i16)
8590      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8591                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8592                         ValOp, BaseShAmt);
8593    break;
8594  }
8595  return SDValue();
8596}
8597
8598/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8599static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
8600                                   const X86Subtarget *Subtarget) {
8601  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
8602  // the FP state in cases where an emms may be missing.
8603  // A preferable solution to the general problem is to figure out the right
8604  // places to insert EMMS.  This qualifies as a quick hack.
8605
8606  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8607  StoreSDNode *St = cast<StoreSDNode>(N);
8608  EVT VT = St->getValue().getValueType();
8609  if (VT.getSizeInBits() != 64)
8610    return SDValue();
8611
8612  const Function *F = DAG.getMachineFunction().getFunction();
8613  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
8614  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
8615    && Subtarget->hasSSE2();
8616  if ((VT.isVector() ||
8617       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
8618      isa<LoadSDNode>(St->getValue()) &&
8619      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
8620      St->getChain().hasOneUse() && !St->isVolatile()) {
8621    SDNode* LdVal = St->getValue().getNode();
8622    LoadSDNode *Ld = 0;
8623    int TokenFactorIndex = -1;
8624    SmallVector<SDValue, 8> Ops;
8625    SDNode* ChainVal = St->getChain().getNode();
8626    // Must be a store of a load.  We currently handle two cases:  the load
8627    // is a direct child, and it's under an intervening TokenFactor.  It is
8628    // possible to dig deeper under nested TokenFactors.
8629    if (ChainVal == LdVal)
8630      Ld = cast<LoadSDNode>(St->getChain());
8631    else if (St->getValue().hasOneUse() &&
8632             ChainVal->getOpcode() == ISD::TokenFactor) {
8633      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
8634        if (ChainVal->getOperand(i).getNode() == LdVal) {
8635          TokenFactorIndex = i;
8636          Ld = cast<LoadSDNode>(St->getValue());
8637        } else
8638          Ops.push_back(ChainVal->getOperand(i));
8639      }
8640    }
8641
8642    if (!Ld || !ISD::isNormalLoad(Ld))
8643      return SDValue();
8644
8645    // If this is not the MMX case, i.e. we are just turning i64 load/store
8646    // into f64 load/store, avoid the transformation if there are multiple
8647    // uses of the loaded value.
8648    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
8649      return SDValue();
8650
8651    DebugLoc LdDL = Ld->getDebugLoc();
8652    DebugLoc StDL = N->getDebugLoc();
8653    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8654    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8655    // pair instead.
8656    if (Subtarget->is64Bit() || F64IsLegal) {
8657      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
8658      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
8659                                  Ld->getBasePtr(), Ld->getSrcValue(),
8660                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
8661                                  Ld->getAlignment());
8662      SDValue NewChain = NewLd.getValue(1);
8663      if (TokenFactorIndex != -1) {
8664        Ops.push_back(NewChain);
8665        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8666                               Ops.size());
8667      }
8668      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
8669                          St->getSrcValue(), St->getSrcValueOffset(),
8670                          St->isVolatile(), St->getAlignment());
8671    }
8672
8673    // Otherwise, lower to two pairs of 32-bit loads / stores.
8674    SDValue LoAddr = Ld->getBasePtr();
8675    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
8676                                 DAG.getConstant(4, MVT::i32));
8677
8678    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
8679                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
8680                               Ld->isVolatile(), Ld->getAlignment());
8681    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
8682                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
8683                               Ld->isVolatile(),
8684                               MinAlign(Ld->getAlignment(), 4));
8685
8686    SDValue NewChain = LoLd.getValue(1);
8687    if (TokenFactorIndex != -1) {
8688      Ops.push_back(LoLd);
8689      Ops.push_back(HiLd);
8690      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8691                             Ops.size());
8692    }
8693
8694    LoAddr = St->getBasePtr();
8695    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
8696                         DAG.getConstant(4, MVT::i32));
8697
8698    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
8699                                St->getSrcValue(), St->getSrcValueOffset(),
8700                                St->isVolatile(), St->getAlignment());
8701    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
8702                                St->getSrcValue(),
8703                                St->getSrcValueOffset() + 4,
8704                                St->isVolatile(),
8705                                MinAlign(St->getAlignment(), 4));
8706    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
8707  }
8708  return SDValue();
8709}
8710
8711/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8712/// X86ISD::FXOR nodes.
8713static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
8714  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
8715  // F[X]OR(0.0, x) -> x
8716  // F[X]OR(x, 0.0) -> x
8717  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8718    if (C->getValueAPF().isPosZero())
8719      return N->getOperand(1);
8720  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8721    if (C->getValueAPF().isPosZero())
8722      return N->getOperand(0);
8723  return SDValue();
8724}
8725
8726/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8727static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
8728  // FAND(0.0, x) -> 0.0
8729  // FAND(x, 0.0) -> 0.0
8730  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8731    if (C->getValueAPF().isPosZero())
8732      return N->getOperand(0);
8733  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8734    if (C->getValueAPF().isPosZero())
8735      return N->getOperand(1);
8736  return SDValue();
8737}
8738
8739static SDValue PerformBTCombine(SDNode *N,
8740                                SelectionDAG &DAG,
8741                                TargetLowering::DAGCombinerInfo &DCI) {
8742  // BT ignores high bits in the bit index operand.
8743  SDValue Op1 = N->getOperand(1);
8744  if (Op1.hasOneUse()) {
8745    unsigned BitWidth = Op1.getValueSizeInBits();
8746    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
8747    APInt KnownZero, KnownOne;
8748    TargetLowering::TargetLoweringOpt TLO(DAG);
8749    TargetLowering &TLI = DAG.getTargetLoweringInfo();
8750    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
8751        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
8752      DCI.CommitTargetLoweringOpt(TLO);
8753  }
8754  return SDValue();
8755}
8756
8757static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
8758  SDValue Op = N->getOperand(0);
8759  if (Op.getOpcode() == ISD::BIT_CONVERT)
8760    Op = Op.getOperand(0);
8761  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
8762  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
8763      VT.getVectorElementType().getSizeInBits() ==
8764      OpVT.getVectorElementType().getSizeInBits()) {
8765    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
8766  }
8767  return SDValue();
8768}
8769
8770// On X86 and X86-64, atomic operations are lowered to locked instructions.
8771// Locked instructions, in turn, have implicit fence semantics (all memory
8772// operations are flushed before issuing the locked instruction, and the
8773// are not buffered), so we can fold away the common pattern of
8774// fence-atomic-fence.
8775static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
8776  SDValue atomic = N->getOperand(0);
8777  switch (atomic.getOpcode()) {
8778    case ISD::ATOMIC_CMP_SWAP:
8779    case ISD::ATOMIC_SWAP:
8780    case ISD::ATOMIC_LOAD_ADD:
8781    case ISD::ATOMIC_LOAD_SUB:
8782    case ISD::ATOMIC_LOAD_AND:
8783    case ISD::ATOMIC_LOAD_OR:
8784    case ISD::ATOMIC_LOAD_XOR:
8785    case ISD::ATOMIC_LOAD_NAND:
8786    case ISD::ATOMIC_LOAD_MIN:
8787    case ISD::ATOMIC_LOAD_MAX:
8788    case ISD::ATOMIC_LOAD_UMIN:
8789    case ISD::ATOMIC_LOAD_UMAX:
8790      break;
8791    default:
8792      return SDValue();
8793  }
8794
8795  SDValue fence = atomic.getOperand(0);
8796  if (fence.getOpcode() != ISD::MEMBARRIER)
8797    return SDValue();
8798
8799  switch (atomic.getOpcode()) {
8800    case ISD::ATOMIC_CMP_SWAP:
8801      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
8802                                    atomic.getOperand(1), atomic.getOperand(2),
8803                                    atomic.getOperand(3));
8804    case ISD::ATOMIC_SWAP:
8805    case ISD::ATOMIC_LOAD_ADD:
8806    case ISD::ATOMIC_LOAD_SUB:
8807    case ISD::ATOMIC_LOAD_AND:
8808    case ISD::ATOMIC_LOAD_OR:
8809    case ISD::ATOMIC_LOAD_XOR:
8810    case ISD::ATOMIC_LOAD_NAND:
8811    case ISD::ATOMIC_LOAD_MIN:
8812    case ISD::ATOMIC_LOAD_MAX:
8813    case ISD::ATOMIC_LOAD_UMIN:
8814    case ISD::ATOMIC_LOAD_UMAX:
8815      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
8816                                    atomic.getOperand(1), atomic.getOperand(2));
8817    default:
8818      return SDValue();
8819  }
8820}
8821
8822SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
8823                                             DAGCombinerInfo &DCI) const {
8824  SelectionDAG &DAG = DCI.DAG;
8825  switch (N->getOpcode()) {
8826  default: break;
8827  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
8828  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
8829  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
8830  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
8831  case ISD::SHL:
8832  case ISD::SRA:
8833  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
8834  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
8835  case X86ISD::FXOR:
8836  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
8837  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
8838  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
8839  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
8840  case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
8841  }
8842
8843  return SDValue();
8844}
8845
8846//===----------------------------------------------------------------------===//
8847//                           X86 Inline Assembly Support
8848//===----------------------------------------------------------------------===//
8849
8850static bool LowerToBSwap(CallInst *CI) {
8851  // FIXME: this should verify that we are targetting a 486 or better.  If not,
8852  // we will turn this bswap into something that will be lowered to logical ops
8853  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
8854  // so don't worry about this.
8855
8856  // Verify this is a simple bswap.
8857  if (CI->getNumOperands() != 2 ||
8858      CI->getType() != CI->getOperand(1)->getType() ||
8859      !CI->getType()->isInteger())
8860    return false;
8861
8862  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
8863  if (!Ty || Ty->getBitWidth() % 16 != 0)
8864    return false;
8865
8866  // Okay, we can do this xform, do so now.
8867  const Type *Tys[] = { Ty };
8868  Module *M = CI->getParent()->getParent()->getParent();
8869  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
8870
8871  Value *Op = CI->getOperand(1);
8872  Op = CallInst::Create(Int, Op, CI->getName(), CI);
8873
8874  CI->replaceAllUsesWith(Op);
8875  CI->eraseFromParent();
8876  return true;
8877}
8878
8879bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
8880  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
8881  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
8882
8883  std::string AsmStr = IA->getAsmString();
8884
8885  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
8886  std::vector<std::string> AsmPieces;
8887  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
8888
8889  switch (AsmPieces.size()) {
8890  default: return false;
8891  case 1:
8892    AsmStr = AsmPieces[0];
8893    AsmPieces.clear();
8894    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
8895
8896    // bswap $0
8897    if (AsmPieces.size() == 2 &&
8898        (AsmPieces[0] == "bswap" ||
8899         AsmPieces[0] == "bswapq" ||
8900         AsmPieces[0] == "bswapl") &&
8901        (AsmPieces[1] == "$0" ||
8902         AsmPieces[1] == "${0:q}")) {
8903      // No need to check constraints, nothing other than the equivalent of
8904      // "=r,0" would be valid here.
8905      return LowerToBSwap(CI);
8906    }
8907    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
8908    if (CI->getType() == Type::getInt16Ty(CI->getContext()) &&
8909        AsmPieces.size() == 3 &&
8910        AsmPieces[0] == "rorw" &&
8911        AsmPieces[1] == "$$8," &&
8912        AsmPieces[2] == "${0:w}" &&
8913        IA->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") {
8914      return LowerToBSwap(CI);
8915    }
8916    break;
8917  case 3:
8918    if (CI->getType() == Type::getInt64Ty(CI->getContext()) &&
8919        Constraints.size() >= 2 &&
8920        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
8921        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
8922      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
8923      std::vector<std::string> Words;
8924      SplitString(AsmPieces[0], Words, " \t");
8925      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
8926        Words.clear();
8927        SplitString(AsmPieces[1], Words, " \t");
8928        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
8929          Words.clear();
8930          SplitString(AsmPieces[2], Words, " \t,");
8931          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
8932              Words[2] == "%edx") {
8933            return LowerToBSwap(CI);
8934          }
8935        }
8936      }
8937    }
8938    break;
8939  }
8940  return false;
8941}
8942
8943
8944
8945/// getConstraintType - Given a constraint letter, return the type of
8946/// constraint it is for this target.
8947X86TargetLowering::ConstraintType
8948X86TargetLowering::getConstraintType(const std::string &Constraint) const {
8949  if (Constraint.size() == 1) {
8950    switch (Constraint[0]) {
8951    case 'A':
8952      return C_Register;
8953    case 'f':
8954    case 'r':
8955    case 'R':
8956    case 'l':
8957    case 'q':
8958    case 'Q':
8959    case 'x':
8960    case 'y':
8961    case 'Y':
8962      return C_RegisterClass;
8963    case 'e':
8964    case 'Z':
8965      return C_Other;
8966    default:
8967      break;
8968    }
8969  }
8970  return TargetLowering::getConstraintType(Constraint);
8971}
8972
8973/// LowerXConstraint - try to replace an X constraint, which matches anything,
8974/// with another that has more specific requirements based on the type of the
8975/// corresponding operand.
8976const char *X86TargetLowering::
8977LowerXConstraint(EVT ConstraintVT) const {
8978  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
8979  // 'f' like normal targets.
8980  if (ConstraintVT.isFloatingPoint()) {
8981    if (Subtarget->hasSSE2())
8982      return "Y";
8983    if (Subtarget->hasSSE1())
8984      return "x";
8985  }
8986
8987  return TargetLowering::LowerXConstraint(ConstraintVT);
8988}
8989
8990/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8991/// vector.  If it is invalid, don't add anything to Ops.
8992void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8993                                                     char Constraint,
8994                                                     bool hasMemory,
8995                                                     std::vector<SDValue>&Ops,
8996                                                     SelectionDAG &DAG) const {
8997  SDValue Result(0, 0);
8998
8999  switch (Constraint) {
9000  default: break;
9001  case 'I':
9002    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9003      if (C->getZExtValue() <= 31) {
9004        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9005        break;
9006      }
9007    }
9008    return;
9009  case 'J':
9010    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9011      if (C->getZExtValue() <= 63) {
9012        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9013        break;
9014      }
9015    }
9016    return;
9017  case 'K':
9018    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9019      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
9020        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9021        break;
9022      }
9023    }
9024    return;
9025  case 'N':
9026    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9027      if (C->getZExtValue() <= 255) {
9028        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9029        break;
9030      }
9031    }
9032    return;
9033  case 'e': {
9034    // 32-bit signed value
9035    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9036      const ConstantInt *CI = C->getConstantIntValue();
9037      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9038                                  C->getSExtValue())) {
9039        // Widen to 64 bits here to get it sign extended.
9040        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
9041        break;
9042      }
9043    // FIXME gcc accepts some relocatable values here too, but only in certain
9044    // memory models; it's complicated.
9045    }
9046    return;
9047  }
9048  case 'Z': {
9049    // 32-bit unsigned value
9050    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9051      const ConstantInt *CI = C->getConstantIntValue();
9052      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9053                                  C->getZExtValue())) {
9054        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9055        break;
9056      }
9057    }
9058    // FIXME gcc accepts some relocatable values here too, but only in certain
9059    // memory models; it's complicated.
9060    return;
9061  }
9062  case 'i': {
9063    // Literal immediates are always ok.
9064    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
9065      // Widen to 64 bits here to get it sign extended.
9066      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
9067      break;
9068    }
9069
9070    // If we are in non-pic codegen mode, we allow the address of a global (with
9071    // an optional displacement) to be used with 'i'.
9072    GlobalAddressSDNode *GA = 0;
9073    int64_t Offset = 0;
9074
9075    // Match either (GA), (GA+C), (GA+C1+C2), etc.
9076    while (1) {
9077      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
9078        Offset += GA->getOffset();
9079        break;
9080      } else if (Op.getOpcode() == ISD::ADD) {
9081        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9082          Offset += C->getZExtValue();
9083          Op = Op.getOperand(0);
9084          continue;
9085        }
9086      } else if (Op.getOpcode() == ISD::SUB) {
9087        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9088          Offset += -C->getZExtValue();
9089          Op = Op.getOperand(0);
9090          continue;
9091        }
9092      }
9093
9094      // Otherwise, this isn't something we can handle, reject it.
9095      return;
9096    }
9097
9098    GlobalValue *GV = GA->getGlobal();
9099    // If we require an extra load to get this address, as in PIC mode, we
9100    // can't accept it.
9101    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
9102                                                        getTargetMachine())))
9103      return;
9104
9105    if (hasMemory)
9106      Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
9107    else
9108      Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
9109    Result = Op;
9110    break;
9111  }
9112  }
9113
9114  if (Result.getNode()) {
9115    Ops.push_back(Result);
9116    return;
9117  }
9118  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
9119                                                      Ops, DAG);
9120}
9121
9122std::vector<unsigned> X86TargetLowering::
9123getRegClassForInlineAsmConstraint(const std::string &Constraint,
9124                                  EVT VT) const {
9125  if (Constraint.size() == 1) {
9126    // FIXME: not handling fp-stack yet!
9127    switch (Constraint[0]) {      // GCC X86 Constraint Letters
9128    default: break;  // Unknown constraint letter
9129    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
9130      if (Subtarget->is64Bit()) {
9131        if (VT == MVT::i32)
9132          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
9133                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
9134                                       X86::R10D,X86::R11D,X86::R12D,
9135                                       X86::R13D,X86::R14D,X86::R15D,
9136                                       X86::EBP, X86::ESP, 0);
9137        else if (VT == MVT::i16)
9138          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
9139                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
9140                                       X86::R10W,X86::R11W,X86::R12W,
9141                                       X86::R13W,X86::R14W,X86::R15W,
9142                                       X86::BP,  X86::SP, 0);
9143        else if (VT == MVT::i8)
9144          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
9145                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
9146                                       X86::R10B,X86::R11B,X86::R12B,
9147                                       X86::R13B,X86::R14B,X86::R15B,
9148                                       X86::BPL, X86::SPL, 0);
9149
9150        else if (VT == MVT::i64)
9151          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
9152                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
9153                                       X86::R10, X86::R11, X86::R12,
9154                                       X86::R13, X86::R14, X86::R15,
9155                                       X86::RBP, X86::RSP, 0);
9156
9157        break;
9158      }
9159      // 32-bit fallthrough
9160    case 'Q':   // Q_REGS
9161      if (VT == MVT::i32)
9162        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
9163      else if (VT == MVT::i16)
9164        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
9165      else if (VT == MVT::i8)
9166        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
9167      else if (VT == MVT::i64)
9168        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
9169      break;
9170    }
9171  }
9172
9173  return std::vector<unsigned>();
9174}
9175
9176std::pair<unsigned, const TargetRegisterClass*>
9177X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
9178                                                EVT VT) const {
9179  // First, see if this is a constraint that directly corresponds to an LLVM
9180  // register class.
9181  if (Constraint.size() == 1) {
9182    // GCC Constraint Letters
9183    switch (Constraint[0]) {
9184    default: break;
9185    case 'r':   // GENERAL_REGS
9186    case 'R':   // LEGACY_REGS
9187    case 'l':   // INDEX_REGS
9188      if (VT == MVT::i8)
9189        return std::make_pair(0U, X86::GR8RegisterClass);
9190      if (VT == MVT::i16)
9191        return std::make_pair(0U, X86::GR16RegisterClass);
9192      if (VT == MVT::i32 || !Subtarget->is64Bit())
9193        return std::make_pair(0U, X86::GR32RegisterClass);
9194      return std::make_pair(0U, X86::GR64RegisterClass);
9195    case 'f':  // FP Stack registers.
9196      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
9197      // value to the correct fpstack register class.
9198      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
9199        return std::make_pair(0U, X86::RFP32RegisterClass);
9200      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
9201        return std::make_pair(0U, X86::RFP64RegisterClass);
9202      return std::make_pair(0U, X86::RFP80RegisterClass);
9203    case 'y':   // MMX_REGS if MMX allowed.
9204      if (!Subtarget->hasMMX()) break;
9205      return std::make_pair(0U, X86::VR64RegisterClass);
9206    case 'Y':   // SSE_REGS if SSE2 allowed
9207      if (!Subtarget->hasSSE2()) break;
9208      // FALL THROUGH.
9209    case 'x':   // SSE_REGS if SSE1 allowed
9210      if (!Subtarget->hasSSE1()) break;
9211
9212      switch (VT.getSimpleVT().SimpleTy) {
9213      default: break;
9214      // Scalar SSE types.
9215      case MVT::f32:
9216      case MVT::i32:
9217        return std::make_pair(0U, X86::FR32RegisterClass);
9218      case MVT::f64:
9219      case MVT::i64:
9220        return std::make_pair(0U, X86::FR64RegisterClass);
9221      // Vector types.
9222      case MVT::v16i8:
9223      case MVT::v8i16:
9224      case MVT::v4i32:
9225      case MVT::v2i64:
9226      case MVT::v4f32:
9227      case MVT::v2f64:
9228        return std::make_pair(0U, X86::VR128RegisterClass);
9229      }
9230      break;
9231    }
9232  }
9233
9234  // Use the default implementation in TargetLowering to convert the register
9235  // constraint into a member of a register class.
9236  std::pair<unsigned, const TargetRegisterClass*> Res;
9237  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
9238
9239  // Not found as a standard register?
9240  if (Res.second == 0) {
9241    // GCC calls "st(0)" just plain "st".
9242    if (StringsEqualNoCase("{st}", Constraint)) {
9243      Res.first = X86::ST0;
9244      Res.second = X86::RFP80RegisterClass;
9245    }
9246    // 'A' means EAX + EDX.
9247    if (Constraint == "A") {
9248      Res.first = X86::EAX;
9249      Res.second = X86::GR32_ADRegisterClass;
9250    }
9251    return Res;
9252  }
9253
9254  // Otherwise, check to see if this is a register class of the wrong value
9255  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
9256  // turn into {ax},{dx}.
9257  if (Res.second->hasType(VT))
9258    return Res;   // Correct type already, nothing to do.
9259
9260  // All of the single-register GCC register classes map their values onto
9261  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
9262  // really want an 8-bit or 32-bit register, map to the appropriate register
9263  // class and return the appropriate register.
9264  if (Res.second == X86::GR16RegisterClass) {
9265    if (VT == MVT::i8) {
9266      unsigned DestReg = 0;
9267      switch (Res.first) {
9268      default: break;
9269      case X86::AX: DestReg = X86::AL; break;
9270      case X86::DX: DestReg = X86::DL; break;
9271      case X86::CX: DestReg = X86::CL; break;
9272      case X86::BX: DestReg = X86::BL; break;
9273      }
9274      if (DestReg) {
9275        Res.first = DestReg;
9276        Res.second = X86::GR8RegisterClass;
9277      }
9278    } else if (VT == MVT::i32) {
9279      unsigned DestReg = 0;
9280      switch (Res.first) {
9281      default: break;
9282      case X86::AX: DestReg = X86::EAX; break;
9283      case X86::DX: DestReg = X86::EDX; break;
9284      case X86::CX: DestReg = X86::ECX; break;
9285      case X86::BX: DestReg = X86::EBX; break;
9286      case X86::SI: DestReg = X86::ESI; break;
9287      case X86::DI: DestReg = X86::EDI; break;
9288      case X86::BP: DestReg = X86::EBP; break;
9289      case X86::SP: DestReg = X86::ESP; break;
9290      }
9291      if (DestReg) {
9292        Res.first = DestReg;
9293        Res.second = X86::GR32RegisterClass;
9294      }
9295    } else if (VT == MVT::i64) {
9296      unsigned DestReg = 0;
9297      switch (Res.first) {
9298      default: break;
9299      case X86::AX: DestReg = X86::RAX; break;
9300      case X86::DX: DestReg = X86::RDX; break;
9301      case X86::CX: DestReg = X86::RCX; break;
9302      case X86::BX: DestReg = X86::RBX; break;
9303      case X86::SI: DestReg = X86::RSI; break;
9304      case X86::DI: DestReg = X86::RDI; break;
9305      case X86::BP: DestReg = X86::RBP; break;
9306      case X86::SP: DestReg = X86::RSP; break;
9307      }
9308      if (DestReg) {
9309        Res.first = DestReg;
9310        Res.second = X86::GR64RegisterClass;
9311      }
9312    }
9313  } else if (Res.second == X86::FR32RegisterClass ||
9314             Res.second == X86::FR64RegisterClass ||
9315             Res.second == X86::VR128RegisterClass) {
9316    // Handle references to XMM physical registers that got mapped into the
9317    // wrong class.  This can happen with constraints like {xmm0} where the
9318    // target independent register mapper will just pick the first match it can
9319    // find, ignoring the required type.
9320    if (VT == MVT::f32)
9321      Res.second = X86::FR32RegisterClass;
9322    else if (VT == MVT::f64)
9323      Res.second = X86::FR64RegisterClass;
9324    else if (X86::VR128RegisterClass->hasType(VT))
9325      Res.second = X86::VR128RegisterClass;
9326  }
9327
9328  return Res;
9329}
9330
9331//===----------------------------------------------------------------------===//
9332//                           X86 Widen vector type
9333//===----------------------------------------------------------------------===//
9334
9335/// getWidenVectorType: given a vector type, returns the type to widen
9336/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
9337/// If there is no vector type that we want to widen to, returns MVT::Other
9338/// When and where to widen is target dependent based on the cost of
9339/// scalarizing vs using the wider vector type.
9340
9341EVT X86TargetLowering::getWidenVectorType(EVT VT) const {
9342  assert(VT.isVector());
9343  if (isTypeLegal(VT))
9344    return VT;
9345
9346  // TODO: In computeRegisterProperty, we can compute the list of legal vector
9347  //       type based on element type.  This would speed up our search (though
9348  //       it may not be worth it since the size of the list is relatively
9349  //       small).
9350  EVT EltVT = VT.getVectorElementType();
9351  unsigned NElts = VT.getVectorNumElements();
9352
9353  // On X86, it make sense to widen any vector wider than 1
9354  if (NElts <= 1)
9355    return MVT::Other;
9356
9357  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
9358       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
9359    EVT SVT = (MVT::SimpleValueType)nVT;
9360
9361    if (isTypeLegal(SVT) &&
9362        SVT.getVectorElementType() == EltVT &&
9363        SVT.getVectorNumElements() > NElts)
9364      return SVT;
9365  }
9366  return MVT::Other;
9367}
9368