X86ISelLowering.cpp revision 2aa0f23e1cb5afc96981ecc057980d1958c0be72
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63static SDValue Insert128BitVector(SDValue Result,
64                                  SDValue Vec,
65                                  SDValue Idx,
66                                  SelectionDAG &DAG,
67                                  DebugLoc dl);
68
69static SDValue Extract128BitVector(SDValue Vec,
70                                   SDValue Idx,
71                                   SelectionDAG &DAG,
72                                   DebugLoc dl);
73
74static SDValue ConcatVectors(SDValue Lower, SDValue Upper, SelectionDAG &DAG);
75
76
77/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
78/// sets things up to match to an AVX VEXTRACTF128 instruction or a
79/// simple subregister reference.  Idx is an index in the 128 bits we
80/// want.  It need not be aligned to a 128-bit bounday.  That makes
81/// lowering EXTRACT_VECTOR_ELT operations easier.
82static SDValue Extract128BitVector(SDValue Vec,
83                                   SDValue Idx,
84                                   SelectionDAG &DAG,
85                                   DebugLoc dl) {
86  EVT VT = Vec.getValueType();
87  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
88
89  EVT ElVT = VT.getVectorElementType();
90
91  int Factor = VT.getSizeInBits() / 128;
92
93  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(),
94                                  ElVT,
95                                  VT.getVectorNumElements() / Factor);
96
97  // Extract from UNDEF is UNDEF.
98  if (Vec.getOpcode() == ISD::UNDEF)
99    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
100
101  if (isa<ConstantSDNode>(Idx)) {
102    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
103
104    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
105    // we can match to VEXTRACTF128.
106    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
107
108    // This is the index of the first element of the 128-bit chunk
109    // we want.
110    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
111                                 * ElemsPerChunk);
112
113    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
114
115    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
116                                 VecIdx);
117
118    return Result;
119  }
120
121  return SDValue();
122}
123
124/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
125/// sets things up to match to an AVX VINSERTF128 instruction or a
126/// simple superregister reference.  Idx is an index in the 128 bits
127/// we want.  It need not be aligned to a 128-bit bounday.  That makes
128/// lowering INSERT_VECTOR_ELT operations easier.
129static SDValue Insert128BitVector(SDValue Result,
130                                  SDValue Vec,
131                                  SDValue Idx,
132                                  SelectionDAG &DAG,
133                                  DebugLoc dl) {
134  if (isa<ConstantSDNode>(Idx)) {
135    EVT VT = Vec.getValueType();
136    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
137
138    EVT ElVT = VT.getVectorElementType();
139
140    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
141
142    EVT ResultVT = Result.getValueType();
143
144    // Insert the relevant 128 bits.
145    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
146
147    // This is the index of the first element of the 128-bit chunk
148    // we want.
149    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
150                                 * ElemsPerChunk);
151
152    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
153
154    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
155                         VecIdx);
156    return Result;
157  }
158
159  return SDValue();
160}
161
162/// Given two vectors, concat them.
163static SDValue ConcatVectors(SDValue Lower, SDValue Upper, SelectionDAG &DAG) {
164  DebugLoc dl = Lower.getDebugLoc();
165
166  assert(Lower.getValueType() == Upper.getValueType() && "Mismatched vectors!");
167
168  EVT VT = EVT::getVectorVT(*DAG.getContext(),
169                            Lower.getValueType().getVectorElementType(),
170                            Lower.getValueType().getVectorNumElements() * 2);
171
172  // TODO: Generalize to arbitrary vector length (this assumes 256-bit vectors).
173  assert(VT.getSizeInBits() == 256 && "Unsupported vector concat!");
174
175  // Insert the upper subvector.
176  SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Upper,
177                                   DAG.getConstant(
178                                     // This is half the length of the result
179                                     // vector.  Start inserting the upper 128
180                                     // bits here.
181                                     Lower.getValueType().getVectorNumElements(),
182                                     MVT::i32),
183                                   DAG, dl);
184
185  // Insert the lower subvector.
186  Vec = Insert128BitVector(Vec, Lower, DAG.getConstant(0, MVT::i32), DAG, dl);
187  return Vec;
188}
189
190static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
191  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
192  bool is64Bit = Subtarget->is64Bit();
193
194  if (Subtarget->isTargetEnvMacho()) {
195    if (is64Bit)
196      return new X8664_MachoTargetObjectFile();
197    return new TargetLoweringObjectFileMachO();
198  }
199
200  if (Subtarget->isTargetELF()) {
201    if (is64Bit)
202      return new X8664_ELFTargetObjectFile(TM);
203    return new X8632_ELFTargetObjectFile(TM);
204  }
205  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
206    return new TargetLoweringObjectFileCOFF();
207  llvm_unreachable("unknown subtarget type");
208}
209
210X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
211  : TargetLowering(TM, createTLOF(TM)) {
212  Subtarget = &TM.getSubtarget<X86Subtarget>();
213  X86ScalarSSEf64 = Subtarget->hasXMMInt();
214  X86ScalarSSEf32 = Subtarget->hasXMM();
215  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
216
217  RegInfo = TM.getRegisterInfo();
218  TD = getTargetData();
219
220  // Set up the TargetLowering object.
221  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
222
223  // X86 is weird, it always uses i8 for shift amounts and setcc results.
224  setBooleanContents(ZeroOrOneBooleanContent);
225
226  // For 64-bit since we have so many registers use the ILP scheduler, for
227  // 32-bit code use the register pressure specific scheduling.
228  if (Subtarget->is64Bit())
229    setSchedulingPreference(Sched::ILP);
230  else
231    setSchedulingPreference(Sched::RegPressure);
232  setStackPointerRegisterToSaveRestore(X86StackPtr);
233
234  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
235    // Setup Windows compiler runtime calls.
236    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
237    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
238    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
239    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
240    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
241    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
242    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
243    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
244  }
245
246  if (Subtarget->isTargetDarwin()) {
247    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
248    setUseUnderscoreSetJmp(false);
249    setUseUnderscoreLongJmp(false);
250  } else if (Subtarget->isTargetMingw()) {
251    // MS runtime is weird: it exports _setjmp, but longjmp!
252    setUseUnderscoreSetJmp(true);
253    setUseUnderscoreLongJmp(false);
254  } else {
255    setUseUnderscoreSetJmp(true);
256    setUseUnderscoreLongJmp(true);
257  }
258
259  // Set up the register classes.
260  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
261  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
262  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
263  if (Subtarget->is64Bit())
264    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
265
266  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
267
268  // We don't accept any truncstore of integer registers.
269  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
270  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
271  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
272  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
273  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
274  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
275
276  // SETOEQ and SETUNE require checking two conditions.
277  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
278  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
279  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
280  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
281  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
282  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
283
284  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
285  // operation.
286  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
287  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
288  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
289
290  if (Subtarget->is64Bit()) {
291    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
292    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
293  } else if (!UseSoftFloat) {
294    // We have an algorithm for SSE2->double, and we turn this into a
295    // 64-bit FILD followed by conditional FADD for other targets.
296    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
297    // We have an algorithm for SSE2, and we turn this into a 64-bit
298    // FILD for other targets.
299    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
300  }
301
302  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
303  // this operation.
304  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
305  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
306
307  if (!UseSoftFloat) {
308    // SSE has no i16 to fp conversion, only i32
309    if (X86ScalarSSEf32) {
310      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
311      // f32 and f64 cases are Legal, f80 case is not
312      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
313    } else {
314      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
315      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
316    }
317  } else {
318    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
319    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
320  }
321
322  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
323  // are Legal, f80 is custom lowered.
324  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
325  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
326
327  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
328  // this operation.
329  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
330  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
331
332  if (X86ScalarSSEf32) {
333    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
334    // f32 and f64 cases are Legal, f80 case is not
335    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
336  } else {
337    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
338    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
339  }
340
341  // Handle FP_TO_UINT by promoting the destination to a larger signed
342  // conversion.
343  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
344  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
345  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
346
347  if (Subtarget->is64Bit()) {
348    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
349    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
350  } else if (!UseSoftFloat) {
351    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
352      // Expand FP_TO_UINT into a select.
353      // FIXME: We would like to use a Custom expander here eventually to do
354      // the optimal thing for SSE vs. the default expansion in the legalizer.
355      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
356    else
357      // With SSE3 we can use fisttpll to convert to a signed i64; without
358      // SSE, we're stuck with a fistpll.
359      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
360  }
361
362  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
363  if (!X86ScalarSSEf64) {
364    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
365    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
366    if (Subtarget->is64Bit()) {
367      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
368      // Without SSE, i64->f64 goes through memory.
369      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
370    }
371  }
372
373  // Scalar integer divide and remainder are lowered to use operations that
374  // produce two results, to match the available instructions. This exposes
375  // the two-result form to trivial CSE, which is able to combine x/y and x%y
376  // into a single instruction.
377  //
378  // Scalar integer multiply-high is also lowered to use two-result
379  // operations, to match the available instructions. However, plain multiply
380  // (low) operations are left as Legal, as there are single-result
381  // instructions for this in x86. Using the two-result multiply instructions
382  // when both high and low results are needed must be arranged by dagcombine.
383  for (unsigned i = 0, e = 4; i != e; ++i) {
384    MVT VT = IntVTs[i];
385    setOperationAction(ISD::MULHS, VT, Expand);
386    setOperationAction(ISD::MULHU, VT, Expand);
387    setOperationAction(ISD::SDIV, VT, Expand);
388    setOperationAction(ISD::UDIV, VT, Expand);
389    setOperationAction(ISD::SREM, VT, Expand);
390    setOperationAction(ISD::UREM, VT, Expand);
391
392    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
393    setOperationAction(ISD::ADDC, VT, Custom);
394    setOperationAction(ISD::ADDE, VT, Custom);
395    setOperationAction(ISD::SUBC, VT, Custom);
396    setOperationAction(ISD::SUBE, VT, Custom);
397  }
398
399  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
400  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
401  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
402  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
403  if (Subtarget->is64Bit())
404    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
405  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
406  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
407  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
408  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
409  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
410  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
411  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
412  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
413
414  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
415  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
416  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
417  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
418  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
419  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
420  if (Subtarget->is64Bit()) {
421    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
422    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
423  }
424
425  if (Subtarget->hasPOPCNT()) {
426    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
427  } else {
428    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
429    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
430    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
431    if (Subtarget->is64Bit())
432      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
433  }
434
435  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
436  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
437
438  // These should be promoted to a larger select which is supported.
439  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
440  // X86 wants to expand cmov itself.
441  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
442  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
443  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
444  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
445  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
446  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
448  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
450  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
451  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
452  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
453  if (Subtarget->is64Bit()) {
454    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
455    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
456  }
457  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
458
459  // Darwin ABI issue.
460  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
461  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
462  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
463  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
464  if (Subtarget->is64Bit())
465    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
466  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
467  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
468  if (Subtarget->is64Bit()) {
469    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
470    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
471    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
472    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
473    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
474  }
475  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
476  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
477  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
478  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
479  if (Subtarget->is64Bit()) {
480    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
481    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
482    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
483  }
484
485  if (Subtarget->hasXMM())
486    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
487
488  // We may not have a libcall for MEMBARRIER so we should lower this.
489  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
490
491  // On X86 and X86-64, atomic operations are lowered to locked instructions.
492  // Locked instructions, in turn, have implicit fence semantics (all memory
493  // operations are flushed before issuing the locked instruction, and they
494  // are not buffered), so we can fold away the common pattern of
495  // fence-atomic-fence.
496  setShouldFoldAtomicFences(true);
497
498  // Expand certain atomics
499  for (unsigned i = 0, e = 4; i != e; ++i) {
500    MVT VT = IntVTs[i];
501    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
502    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
503  }
504
505  if (!Subtarget->is64Bit()) {
506    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
511    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
512    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
513  }
514
515  // FIXME - use subtarget debug flags
516  if (!Subtarget->isTargetDarwin() &&
517      !Subtarget->isTargetELF() &&
518      !Subtarget->isTargetCygMing()) {
519    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
520  }
521
522  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
523  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
524  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
525  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
526  if (Subtarget->is64Bit()) {
527    setExceptionPointerRegister(X86::RAX);
528    setExceptionSelectorRegister(X86::RDX);
529  } else {
530    setExceptionPointerRegister(X86::EAX);
531    setExceptionSelectorRegister(X86::EDX);
532  }
533  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
534  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
535
536  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
537
538  setOperationAction(ISD::TRAP, MVT::Other, Legal);
539
540  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
541  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
542  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
543  if (Subtarget->is64Bit()) {
544    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
545    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
546  } else {
547    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
548    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
549  }
550
551  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
552  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
553  setOperationAction(ISD::DYNAMIC_STACKALLOC,
554                     (Subtarget->is64Bit() ? MVT::i64 : MVT::i32),
555                     (Subtarget->isTargetCOFF()
556                      && !Subtarget->isTargetEnvMacho()
557                      ? Custom : Expand));
558
559  if (!UseSoftFloat && X86ScalarSSEf64) {
560    // f32 and f64 use SSE.
561    // Set up the FP register classes.
562    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
563    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
564
565    // Use ANDPD to simulate FABS.
566    setOperationAction(ISD::FABS , MVT::f64, Custom);
567    setOperationAction(ISD::FABS , MVT::f32, Custom);
568
569    // Use XORP to simulate FNEG.
570    setOperationAction(ISD::FNEG , MVT::f64, Custom);
571    setOperationAction(ISD::FNEG , MVT::f32, Custom);
572
573    // Use ANDPD and ORPD to simulate FCOPYSIGN.
574    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
575    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
576
577    // We don't support sin/cos/fmod
578    setOperationAction(ISD::FSIN , MVT::f64, Expand);
579    setOperationAction(ISD::FCOS , MVT::f64, Expand);
580    setOperationAction(ISD::FSIN , MVT::f32, Expand);
581    setOperationAction(ISD::FCOS , MVT::f32, Expand);
582
583    // Expand FP immediates into loads from the stack, except for the special
584    // cases we handle.
585    addLegalFPImmediate(APFloat(+0.0)); // xorpd
586    addLegalFPImmediate(APFloat(+0.0f)); // xorps
587  } else if (!UseSoftFloat && X86ScalarSSEf32) {
588    // Use SSE for f32, x87 for f64.
589    // Set up the FP register classes.
590    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
591    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
592
593    // Use ANDPS to simulate FABS.
594    setOperationAction(ISD::FABS , MVT::f32, Custom);
595
596    // Use XORP to simulate FNEG.
597    setOperationAction(ISD::FNEG , MVT::f32, Custom);
598
599    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
600
601    // Use ANDPS and ORPS to simulate FCOPYSIGN.
602    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
603    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
604
605    // We don't support sin/cos/fmod
606    setOperationAction(ISD::FSIN , MVT::f32, Expand);
607    setOperationAction(ISD::FCOS , MVT::f32, Expand);
608
609    // Special cases we handle for FP constants.
610    addLegalFPImmediate(APFloat(+0.0f)); // xorps
611    addLegalFPImmediate(APFloat(+0.0)); // FLD0
612    addLegalFPImmediate(APFloat(+1.0)); // FLD1
613    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
614    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
615
616    if (!UnsafeFPMath) {
617      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
618      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
619    }
620  } else if (!UseSoftFloat) {
621    // f32 and f64 in x87.
622    // Set up the FP register classes.
623    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
624    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
625
626    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
627    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
628    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
629    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
630
631    if (!UnsafeFPMath) {
632      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
633      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
634    }
635    addLegalFPImmediate(APFloat(+0.0)); // FLD0
636    addLegalFPImmediate(APFloat(+1.0)); // FLD1
637    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
638    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
639    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
640    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
641    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
642    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
643  }
644
645  // Long double always uses X87.
646  if (!UseSoftFloat) {
647    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
648    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
649    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
650    {
651      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
652      addLegalFPImmediate(TmpFlt);  // FLD0
653      TmpFlt.changeSign();
654      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
655
656      bool ignored;
657      APFloat TmpFlt2(+1.0);
658      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
659                      &ignored);
660      addLegalFPImmediate(TmpFlt2);  // FLD1
661      TmpFlt2.changeSign();
662      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
663    }
664
665    if (!UnsafeFPMath) {
666      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
667      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
668    }
669  }
670
671  // Always use a library call for pow.
672  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
673  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
674  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
675
676  setOperationAction(ISD::FLOG, MVT::f80, Expand);
677  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
678  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
679  setOperationAction(ISD::FEXP, MVT::f80, Expand);
680  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
681
682  // First set operation action for all vector types to either promote
683  // (for widening) or expand (for scalarization). Then we will selectively
684  // turn on ones that can be effectively codegen'd.
685  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
686       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
687    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
702    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
704    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
705    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
737    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
741    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
742         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
743      setTruncStoreAction((MVT::SimpleValueType)VT,
744                          (MVT::SimpleValueType)InnerVT, Expand);
745    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
746    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
747    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
748  }
749
750  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
751  // with -msoft-float, disable use of MMX as well.
752  if (!UseSoftFloat && Subtarget->hasMMX()) {
753    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
754    // No operations on x86mmx supported, everything uses intrinsics.
755  }
756
757  // MMX-sized vectors (other than x86mmx) are expected to be expanded
758  // into smaller operations.
759  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
760  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
761  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
762  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
763  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
764  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
765  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
766  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
767  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
768  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
769  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
770  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
771  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
772  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
773  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
774  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
775  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
776  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
777  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
778  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
779  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
780  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
781  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
782  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
783  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
784  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
785  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
786  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
787  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
788
789  if (!UseSoftFloat && Subtarget->hasXMM()) {
790    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
791
792    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
793    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
794    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
795    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
796    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
797    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
798    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
799    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
800    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
801    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
802    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
803    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
804  }
805
806  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
807    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
808
809    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
810    // registers cannot be used even for integer operations.
811    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
812    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
813    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
814    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
815
816    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
817    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
818    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
819    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
820    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
821    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
822    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
823    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
824    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
825    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
826    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
827    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
828    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
829    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
830    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
831    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
832
833    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
834    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
835    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
836    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
837
838    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
839    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
840    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
841    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
842    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
843
844    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
845    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
846    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
847    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
848    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
849
850    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
851    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
852      EVT VT = (MVT::SimpleValueType)i;
853      // Do not attempt to custom lower non-power-of-2 vectors
854      if (!isPowerOf2_32(VT.getVectorNumElements()))
855        continue;
856      // Do not attempt to custom lower non-128-bit vectors
857      if (!VT.is128BitVector())
858        continue;
859      setOperationAction(ISD::BUILD_VECTOR,
860                         VT.getSimpleVT().SimpleTy, Custom);
861      setOperationAction(ISD::VECTOR_SHUFFLE,
862                         VT.getSimpleVT().SimpleTy, Custom);
863      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
864                         VT.getSimpleVT().SimpleTy, Custom);
865    }
866
867    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
868    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
869    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
870    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
871    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
872    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
873
874    if (Subtarget->is64Bit()) {
875      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
876      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
877    }
878
879    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
880    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
881      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
882      EVT VT = SVT;
883
884      // Do not attempt to promote non-128-bit vectors
885      if (!VT.is128BitVector())
886        continue;
887
888      setOperationAction(ISD::AND,    SVT, Promote);
889      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
890      setOperationAction(ISD::OR,     SVT, Promote);
891      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
892      setOperationAction(ISD::XOR,    SVT, Promote);
893      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
894      setOperationAction(ISD::LOAD,   SVT, Promote);
895      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
896      setOperationAction(ISD::SELECT, SVT, Promote);
897      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
898    }
899
900    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
901
902    // Custom lower v2i64 and v2f64 selects.
903    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
904    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
905    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
906    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
907
908    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
909    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
910  }
911
912  if (Subtarget->hasSSE41()) {
913    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
914    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
915    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
916    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
917    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
918    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
919    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
920    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
921    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
922    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
923
924    // FIXME: Do we need to handle scalar-to-vector here?
925    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
926
927    // Can turn SHL into an integer multiply.
928    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
929    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
930
931    // i8 and i16 vectors are custom , because the source register and source
932    // source memory operand types are not the same width.  f32 vectors are
933    // custom since the immediate controlling the insert encodes additional
934    // information.
935    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
936    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
937    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
938    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
939
940    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
941    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
942    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
943    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
944
945    if (Subtarget->is64Bit()) {
946      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
947      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
948    }
949  }
950
951  if (Subtarget->hasSSE2()) {
952    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
953    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
954    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
955
956    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
957    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
958    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
959
960    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
961    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
962  }
963
964  if (Subtarget->hasSSE42())
965    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
966
967  if (!UseSoftFloat && Subtarget->hasAVX()) {
968    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
969    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
970    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
971    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
972    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
973
974    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
975    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
976    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
977    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
978
979    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
980    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
981    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
982    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
983    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
984    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
985
986    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
987    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
988    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
989    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
990    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
991    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
992
993    // Custom lower build_vector, vector_shuffle, scalar_to_vector,
994    // insert_vector_elt extract_subvector and extract_vector_elt for
995    // 256-bit types.
996    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
997         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE;
998         ++i) {
999      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
1000      // Do not attempt to custom lower non-256-bit vectors
1001      if (!isPowerOf2_32(MVT(VT).getVectorNumElements())
1002          || (MVT(VT).getSizeInBits() < 256))
1003        continue;
1004      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1005      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1006      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1007      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1008      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1009    }
1010    // Custom-lower insert_subvector and extract_subvector based on
1011    // the result type.
1012    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1013         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE;
1014         ++i) {
1015      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
1016      // Do not attempt to custom lower non-256-bit vectors
1017      if (!isPowerOf2_32(MVT(VT).getVectorNumElements()))
1018        continue;
1019
1020      if (MVT(VT).getSizeInBits() == 128) {
1021        setOperationAction(ISD::EXTRACT_SUBVECTOR,  VT, Custom);
1022      }
1023      else if (MVT(VT).getSizeInBits() == 256) {
1024        setOperationAction(ISD::INSERT_SUBVECTOR,  VT, Custom);
1025      }
1026    }
1027
1028    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1029    // Don't promote loads because we need them for VPERM vector index versions.
1030
1031    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1032         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE;
1033         VT++) {
1034      if (!isPowerOf2_32(MVT((MVT::SimpleValueType)VT).getVectorNumElements())
1035          || (MVT((MVT::SimpleValueType)VT).getSizeInBits() < 256))
1036        continue;
1037      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
1038      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v4i64);
1039      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
1040      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v4i64);
1041      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
1042      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v4i64);
1043      //setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
1044      //AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v4i64);
1045      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
1046      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v4i64);
1047    }
1048  }
1049
1050  // We want to custom lower some of our intrinsics.
1051  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1052
1053
1054  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1055  // handle type legalization for these operations here.
1056  //
1057  // FIXME: We really should do custom legalization for addition and
1058  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1059  // than generic legalization for 64-bit multiplication-with-overflow, though.
1060  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1061    // Add/Sub/Mul with overflow operations are custom lowered.
1062    MVT VT = IntVTs[i];
1063    setOperationAction(ISD::SADDO, VT, Custom);
1064    setOperationAction(ISD::UADDO, VT, Custom);
1065    setOperationAction(ISD::SSUBO, VT, Custom);
1066    setOperationAction(ISD::USUBO, VT, Custom);
1067    setOperationAction(ISD::SMULO, VT, Custom);
1068    setOperationAction(ISD::UMULO, VT, Custom);
1069  }
1070
1071  // There are no 8-bit 3-address imul/mul instructions
1072  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1073  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1074
1075  if (!Subtarget->is64Bit()) {
1076    // These libcalls are not available in 32-bit.
1077    setLibcallName(RTLIB::SHL_I128, 0);
1078    setLibcallName(RTLIB::SRL_I128, 0);
1079    setLibcallName(RTLIB::SRA_I128, 0);
1080  }
1081
1082  // We have target-specific dag combine patterns for the following nodes:
1083  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1084  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1085  setTargetDAGCombine(ISD::BUILD_VECTOR);
1086  setTargetDAGCombine(ISD::SELECT);
1087  setTargetDAGCombine(ISD::SHL);
1088  setTargetDAGCombine(ISD::SRA);
1089  setTargetDAGCombine(ISD::SRL);
1090  setTargetDAGCombine(ISD::OR);
1091  setTargetDAGCombine(ISD::AND);
1092  setTargetDAGCombine(ISD::ADD);
1093  setTargetDAGCombine(ISD::SUB);
1094  setTargetDAGCombine(ISD::STORE);
1095  setTargetDAGCombine(ISD::ZERO_EXTEND);
1096  if (Subtarget->is64Bit())
1097    setTargetDAGCombine(ISD::MUL);
1098
1099  computeRegisterProperties();
1100
1101  // On Darwin, -Os means optimize for size without hurting performance,
1102  // do not reduce the limit.
1103  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1104  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1105  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1106  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1107  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1108  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1109  setPrefLoopAlignment(16);
1110  benefitFromCodePlacementOpt = true;
1111
1112  setPrefFunctionAlignment(4);
1113}
1114
1115
1116MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1117  return MVT::i8;
1118}
1119
1120
1121/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1122/// the desired ByVal argument alignment.
1123static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1124  if (MaxAlign == 16)
1125    return;
1126  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1127    if (VTy->getBitWidth() == 128)
1128      MaxAlign = 16;
1129  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1130    unsigned EltAlign = 0;
1131    getMaxByValAlign(ATy->getElementType(), EltAlign);
1132    if (EltAlign > MaxAlign)
1133      MaxAlign = EltAlign;
1134  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1135    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1136      unsigned EltAlign = 0;
1137      getMaxByValAlign(STy->getElementType(i), EltAlign);
1138      if (EltAlign > MaxAlign)
1139        MaxAlign = EltAlign;
1140      if (MaxAlign == 16)
1141        break;
1142    }
1143  }
1144  return;
1145}
1146
1147/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1148/// function arguments in the caller parameter area. For X86, aggregates
1149/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1150/// are at 4-byte boundaries.
1151unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1152  if (Subtarget->is64Bit()) {
1153    // Max of 8 and alignment of type.
1154    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1155    if (TyAlign > 8)
1156      return TyAlign;
1157    return 8;
1158  }
1159
1160  unsigned Align = 4;
1161  if (Subtarget->hasXMM())
1162    getMaxByValAlign(Ty, Align);
1163  return Align;
1164}
1165
1166/// getOptimalMemOpType - Returns the target specific optimal type for load
1167/// and store operations as a result of memset, memcpy, and memmove
1168/// lowering. If DstAlign is zero that means it's safe to destination
1169/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1170/// means there isn't a need to check it against alignment requirement,
1171/// probably because the source does not need to be loaded. If
1172/// 'NonScalarIntSafe' is true, that means it's safe to return a
1173/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1174/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1175/// constant so it does not need to be loaded.
1176/// It returns EVT::Other if the type should be determined using generic
1177/// target-independent logic.
1178EVT
1179X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1180                                       unsigned DstAlign, unsigned SrcAlign,
1181                                       bool NonScalarIntSafe,
1182                                       bool MemcpyStrSrc,
1183                                       MachineFunction &MF) const {
1184  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1185  // linux.  This is because the stack realignment code can't handle certain
1186  // cases like PR2962.  This should be removed when PR2962 is fixed.
1187  const Function *F = MF.getFunction();
1188  if (NonScalarIntSafe &&
1189      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1190    if (Size >= 16 &&
1191        (Subtarget->isUnalignedMemAccessFast() ||
1192         ((DstAlign == 0 || DstAlign >= 16) &&
1193          (SrcAlign == 0 || SrcAlign >= 16))) &&
1194        Subtarget->getStackAlignment() >= 16) {
1195      if (Subtarget->hasSSE2())
1196        return MVT::v4i32;
1197      if (Subtarget->hasSSE1())
1198        return MVT::v4f32;
1199    } else if (!MemcpyStrSrc && Size >= 8 &&
1200               !Subtarget->is64Bit() &&
1201               Subtarget->getStackAlignment() >= 8 &&
1202               Subtarget->hasXMMInt()) {
1203      // Do not use f64 to lower memcpy if source is string constant. It's
1204      // better to use i32 to avoid the loads.
1205      return MVT::f64;
1206    }
1207  }
1208  if (Subtarget->is64Bit() && Size >= 8)
1209    return MVT::i64;
1210  return MVT::i32;
1211}
1212
1213/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1214/// current function.  The returned value is a member of the
1215/// MachineJumpTableInfo::JTEntryKind enum.
1216unsigned X86TargetLowering::getJumpTableEncoding() const {
1217  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1218  // symbol.
1219  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1220      Subtarget->isPICStyleGOT())
1221    return MachineJumpTableInfo::EK_Custom32;
1222
1223  // Otherwise, use the normal jump table encoding heuristics.
1224  return TargetLowering::getJumpTableEncoding();
1225}
1226
1227const MCExpr *
1228X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1229                                             const MachineBasicBlock *MBB,
1230                                             unsigned uid,MCContext &Ctx) const{
1231  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1232         Subtarget->isPICStyleGOT());
1233  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1234  // entries.
1235  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1236                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1237}
1238
1239/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1240/// jumptable.
1241SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1242                                                    SelectionDAG &DAG) const {
1243  if (!Subtarget->is64Bit())
1244    // This doesn't have DebugLoc associated with it, but is not really the
1245    // same as a Register.
1246    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1247  return Table;
1248}
1249
1250/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1251/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1252/// MCExpr.
1253const MCExpr *X86TargetLowering::
1254getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1255                             MCContext &Ctx) const {
1256  // X86-64 uses RIP relative addressing based on the jump table label.
1257  if (Subtarget->isPICStyleRIPRel())
1258    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1259
1260  // Otherwise, the reference is relative to the PIC base.
1261  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1262}
1263
1264// FIXME: Why this routine is here? Move to RegInfo!
1265std::pair<const TargetRegisterClass*, uint8_t>
1266X86TargetLowering::findRepresentativeClass(EVT VT) const{
1267  const TargetRegisterClass *RRC = 0;
1268  uint8_t Cost = 1;
1269  switch (VT.getSimpleVT().SimpleTy) {
1270  default:
1271    return TargetLowering::findRepresentativeClass(VT);
1272  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1273    RRC = (Subtarget->is64Bit()
1274           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1275    break;
1276  case MVT::x86mmx:
1277    RRC = X86::VR64RegisterClass;
1278    break;
1279  case MVT::f32: case MVT::f64:
1280  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1281  case MVT::v4f32: case MVT::v2f64:
1282  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1283  case MVT::v4f64:
1284    RRC = X86::VR128RegisterClass;
1285    break;
1286  }
1287  return std::make_pair(RRC, Cost);
1288}
1289
1290bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1291                                               unsigned &Offset) const {
1292  if (!Subtarget->isTargetLinux())
1293    return false;
1294
1295  if (Subtarget->is64Bit()) {
1296    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1297    Offset = 0x28;
1298    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1299      AddressSpace = 256;
1300    else
1301      AddressSpace = 257;
1302  } else {
1303    // %gs:0x14 on i386
1304    Offset = 0x14;
1305    AddressSpace = 256;
1306  }
1307  return true;
1308}
1309
1310
1311//===----------------------------------------------------------------------===//
1312//               Return Value Calling Convention Implementation
1313//===----------------------------------------------------------------------===//
1314
1315#include "X86GenCallingConv.inc"
1316
1317bool
1318X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1319                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1320                        LLVMContext &Context) const {
1321  SmallVector<CCValAssign, 16> RVLocs;
1322  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1323                 RVLocs, Context);
1324  return CCInfo.CheckReturn(Outs, RetCC_X86);
1325}
1326
1327SDValue
1328X86TargetLowering::LowerReturn(SDValue Chain,
1329                               CallingConv::ID CallConv, bool isVarArg,
1330                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1331                               const SmallVectorImpl<SDValue> &OutVals,
1332                               DebugLoc dl, SelectionDAG &DAG) const {
1333  MachineFunction &MF = DAG.getMachineFunction();
1334  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1335
1336  SmallVector<CCValAssign, 16> RVLocs;
1337  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1338                 RVLocs, *DAG.getContext());
1339  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1340
1341  // Add the regs to the liveout set for the function.
1342  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1343  for (unsigned i = 0; i != RVLocs.size(); ++i)
1344    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1345      MRI.addLiveOut(RVLocs[i].getLocReg());
1346
1347  SDValue Flag;
1348
1349  SmallVector<SDValue, 6> RetOps;
1350  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1351  // Operand #1 = Bytes To Pop
1352  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1353                   MVT::i16));
1354
1355  // Copy the result values into the output registers.
1356  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1357    CCValAssign &VA = RVLocs[i];
1358    assert(VA.isRegLoc() && "Can only return in registers!");
1359    SDValue ValToCopy = OutVals[i];
1360    EVT ValVT = ValToCopy.getValueType();
1361
1362    // If this is x86-64, and we disabled SSE, we can't return FP values,
1363    // or SSE or MMX vectors.
1364    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1365         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1366          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1367      report_fatal_error("SSE register return with SSE disabled");
1368    }
1369    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1370    // llvm-gcc has never done it right and no one has noticed, so this
1371    // should be OK for now.
1372    if (ValVT == MVT::f64 &&
1373        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1374      report_fatal_error("SSE2 register return with SSE2 disabled");
1375
1376    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1377    // the RET instruction and handled by the FP Stackifier.
1378    if (VA.getLocReg() == X86::ST0 ||
1379        VA.getLocReg() == X86::ST1) {
1380      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1381      // change the value to the FP stack register class.
1382      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1383        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1384      RetOps.push_back(ValToCopy);
1385      // Don't emit a copytoreg.
1386      continue;
1387    }
1388
1389    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1390    // which is returned in RAX / RDX.
1391    if (Subtarget->is64Bit()) {
1392      if (ValVT == MVT::x86mmx) {
1393        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1394          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1395          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1396                                  ValToCopy);
1397          // If we don't have SSE2 available, convert to v4f32 so the generated
1398          // register is legal.
1399          if (!Subtarget->hasSSE2())
1400            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1401        }
1402      }
1403    }
1404
1405    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1406    Flag = Chain.getValue(1);
1407  }
1408
1409  // The x86-64 ABI for returning structs by value requires that we copy
1410  // the sret argument into %rax for the return. We saved the argument into
1411  // a virtual register in the entry block, so now we copy the value out
1412  // and into %rax.
1413  if (Subtarget->is64Bit() &&
1414      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1415    MachineFunction &MF = DAG.getMachineFunction();
1416    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1417    unsigned Reg = FuncInfo->getSRetReturnReg();
1418    assert(Reg &&
1419           "SRetReturnReg should have been set in LowerFormalArguments().");
1420    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1421
1422    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1423    Flag = Chain.getValue(1);
1424
1425    // RAX now acts like a return value.
1426    MRI.addLiveOut(X86::RAX);
1427  }
1428
1429  RetOps[0] = Chain;  // Update chain.
1430
1431  // Add the flag if we have it.
1432  if (Flag.getNode())
1433    RetOps.push_back(Flag);
1434
1435  return DAG.getNode(X86ISD::RET_FLAG, dl,
1436                     MVT::Other, &RetOps[0], RetOps.size());
1437}
1438
1439bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1440  if (N->getNumValues() != 1)
1441    return false;
1442  if (!N->hasNUsesOfValue(1, 0))
1443    return false;
1444
1445  SDNode *Copy = *N->use_begin();
1446  if (Copy->getOpcode() != ISD::CopyToReg &&
1447      Copy->getOpcode() != ISD::FP_EXTEND)
1448    return false;
1449
1450  bool HasRet = false;
1451  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1452       UI != UE; ++UI) {
1453    if (UI->getOpcode() != X86ISD::RET_FLAG)
1454      return false;
1455    HasRet = true;
1456  }
1457
1458  return HasRet;
1459}
1460
1461EVT
1462X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1463                                            ISD::NodeType ExtendKind) const {
1464  MVT ReturnMVT;
1465  // TODO: Is this also valid on 32-bit?
1466  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1467    ReturnMVT = MVT::i8;
1468  else
1469    ReturnMVT = MVT::i32;
1470
1471  EVT MinVT = getRegisterType(Context, ReturnMVT);
1472  return VT.bitsLT(MinVT) ? MinVT : VT;
1473}
1474
1475/// LowerCallResult - Lower the result values of a call into the
1476/// appropriate copies out of appropriate physical registers.
1477///
1478SDValue
1479X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1480                                   CallingConv::ID CallConv, bool isVarArg,
1481                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1482                                   DebugLoc dl, SelectionDAG &DAG,
1483                                   SmallVectorImpl<SDValue> &InVals) const {
1484
1485  // Assign locations to each value returned by this call.
1486  SmallVector<CCValAssign, 16> RVLocs;
1487  bool Is64Bit = Subtarget->is64Bit();
1488  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1489                 RVLocs, *DAG.getContext());
1490  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1491
1492  // Copy all of the result registers out of their specified physreg.
1493  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1494    CCValAssign &VA = RVLocs[i];
1495    EVT CopyVT = VA.getValVT();
1496
1497    // If this is x86-64, and we disabled SSE, we can't return FP values
1498    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1499        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1500      report_fatal_error("SSE register return with SSE disabled");
1501    }
1502
1503    SDValue Val;
1504
1505    // If this is a call to a function that returns an fp value on the floating
1506    // point stack, we must guarantee the the value is popped from the stack, so
1507    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1508    // if the return value is not used. We use the FpGET_ST0 instructions
1509    // instead.
1510    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1511      // If we prefer to use the value in xmm registers, copy it out as f80 and
1512      // use a truncate to move it from fp stack reg to xmm reg.
1513      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1514      bool isST0 = VA.getLocReg() == X86::ST0;
1515      unsigned Opc = 0;
1516      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1517      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1518      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1519      SDValue Ops[] = { Chain, InFlag };
1520      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Glue,
1521                                         Ops, 2), 1);
1522      Val = Chain.getValue(0);
1523
1524      // Round the f80 to the right size, which also moves it to the appropriate
1525      // xmm register.
1526      if (CopyVT != VA.getValVT())
1527        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1528                          // This truncation won't change the value.
1529                          DAG.getIntPtrConstant(1));
1530    } else {
1531      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1532                                 CopyVT, InFlag).getValue(1);
1533      Val = Chain.getValue(0);
1534    }
1535    InFlag = Chain.getValue(2);
1536    InVals.push_back(Val);
1537  }
1538
1539  return Chain;
1540}
1541
1542
1543//===----------------------------------------------------------------------===//
1544//                C & StdCall & Fast Calling Convention implementation
1545//===----------------------------------------------------------------------===//
1546//  StdCall calling convention seems to be standard for many Windows' API
1547//  routines and around. It differs from C calling convention just a little:
1548//  callee should clean up the stack, not caller. Symbols should be also
1549//  decorated in some fancy way :) It doesn't support any vector arguments.
1550//  For info on fast calling convention see Fast Calling Convention (tail call)
1551//  implementation LowerX86_32FastCCCallTo.
1552
1553/// CallIsStructReturn - Determines whether a call uses struct return
1554/// semantics.
1555static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1556  if (Outs.empty())
1557    return false;
1558
1559  return Outs[0].Flags.isSRet();
1560}
1561
1562/// ArgsAreStructReturn - Determines whether a function uses struct
1563/// return semantics.
1564static bool
1565ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1566  if (Ins.empty())
1567    return false;
1568
1569  return Ins[0].Flags.isSRet();
1570}
1571
1572/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1573/// by "Src" to address "Dst" with size and alignment information specified by
1574/// the specific parameter attribute. The copy will be passed as a byval
1575/// function parameter.
1576static SDValue
1577CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1578                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1579                          DebugLoc dl) {
1580  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1581
1582  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1583                       /*isVolatile*/false, /*AlwaysInline=*/true,
1584                       MachinePointerInfo(), MachinePointerInfo());
1585}
1586
1587/// IsTailCallConvention - Return true if the calling convention is one that
1588/// supports tail call optimization.
1589static bool IsTailCallConvention(CallingConv::ID CC) {
1590  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1591}
1592
1593bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1594  if (!CI->isTailCall())
1595    return false;
1596
1597  CallSite CS(CI);
1598  CallingConv::ID CalleeCC = CS.getCallingConv();
1599  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1600    return false;
1601
1602  return true;
1603}
1604
1605/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1606/// a tailcall target by changing its ABI.
1607static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1608  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1609}
1610
1611SDValue
1612X86TargetLowering::LowerMemArgument(SDValue Chain,
1613                                    CallingConv::ID CallConv,
1614                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1615                                    DebugLoc dl, SelectionDAG &DAG,
1616                                    const CCValAssign &VA,
1617                                    MachineFrameInfo *MFI,
1618                                    unsigned i) const {
1619  // Create the nodes corresponding to a load from this parameter slot.
1620  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1621  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1622  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1623  EVT ValVT;
1624
1625  // If value is passed by pointer we have address passed instead of the value
1626  // itself.
1627  if (VA.getLocInfo() == CCValAssign::Indirect)
1628    ValVT = VA.getLocVT();
1629  else
1630    ValVT = VA.getValVT();
1631
1632  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1633  // changed with more analysis.
1634  // In case of tail call optimization mark all arguments mutable. Since they
1635  // could be overwritten by lowering of arguments in case of a tail call.
1636  if (Flags.isByVal()) {
1637    unsigned Bytes = Flags.getByValSize();
1638    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1639    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1640    return DAG.getFrameIndex(FI, getPointerTy());
1641  } else {
1642    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1643                                    VA.getLocMemOffset(), isImmutable);
1644    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1645    return DAG.getLoad(ValVT, dl, Chain, FIN,
1646                       MachinePointerInfo::getFixedStack(FI),
1647                       false, false, 0);
1648  }
1649}
1650
1651SDValue
1652X86TargetLowering::LowerFormalArguments(SDValue Chain,
1653                                        CallingConv::ID CallConv,
1654                                        bool isVarArg,
1655                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1656                                        DebugLoc dl,
1657                                        SelectionDAG &DAG,
1658                                        SmallVectorImpl<SDValue> &InVals)
1659                                          const {
1660  MachineFunction &MF = DAG.getMachineFunction();
1661  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1662
1663  const Function* Fn = MF.getFunction();
1664  if (Fn->hasExternalLinkage() &&
1665      Subtarget->isTargetCygMing() &&
1666      Fn->getName() == "main")
1667    FuncInfo->setForceFramePointer(true);
1668
1669  MachineFrameInfo *MFI = MF.getFrameInfo();
1670  bool Is64Bit = Subtarget->is64Bit();
1671  bool IsWin64 = Subtarget->isTargetWin64();
1672
1673  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1674         "Var args not supported with calling convention fastcc or ghc");
1675
1676  // Assign locations to all of the incoming arguments.
1677  SmallVector<CCValAssign, 16> ArgLocs;
1678  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1679                 ArgLocs, *DAG.getContext());
1680
1681  // Allocate shadow area for Win64
1682  if (IsWin64) {
1683    CCInfo.AllocateStack(32, 8);
1684  }
1685
1686  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1687
1688  unsigned LastVal = ~0U;
1689  SDValue ArgValue;
1690  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1691    CCValAssign &VA = ArgLocs[i];
1692    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1693    // places.
1694    assert(VA.getValNo() != LastVal &&
1695           "Don't support value assigned to multiple locs yet");
1696    LastVal = VA.getValNo();
1697
1698    if (VA.isRegLoc()) {
1699      EVT RegVT = VA.getLocVT();
1700      TargetRegisterClass *RC = NULL;
1701      if (RegVT == MVT::i32)
1702        RC = X86::GR32RegisterClass;
1703      else if (Is64Bit && RegVT == MVT::i64)
1704        RC = X86::GR64RegisterClass;
1705      else if (RegVT == MVT::f32)
1706        RC = X86::FR32RegisterClass;
1707      else if (RegVT == MVT::f64)
1708        RC = X86::FR64RegisterClass;
1709      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1710        RC = X86::VR256RegisterClass;
1711      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1712        RC = X86::VR128RegisterClass;
1713      else if (RegVT == MVT::x86mmx)
1714        RC = X86::VR64RegisterClass;
1715      else
1716        llvm_unreachable("Unknown argument type!");
1717
1718      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1719      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1720
1721      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1722      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1723      // right size.
1724      if (VA.getLocInfo() == CCValAssign::SExt)
1725        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1726                               DAG.getValueType(VA.getValVT()));
1727      else if (VA.getLocInfo() == CCValAssign::ZExt)
1728        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1729                               DAG.getValueType(VA.getValVT()));
1730      else if (VA.getLocInfo() == CCValAssign::BCvt)
1731        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1732
1733      if (VA.isExtInLoc()) {
1734        // Handle MMX values passed in XMM regs.
1735        if (RegVT.isVector()) {
1736          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1737                                 ArgValue);
1738        } else
1739          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1740      }
1741    } else {
1742      assert(VA.isMemLoc());
1743      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1744    }
1745
1746    // If value is passed via pointer - do a load.
1747    if (VA.getLocInfo() == CCValAssign::Indirect)
1748      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1749                             MachinePointerInfo(), false, false, 0);
1750
1751    InVals.push_back(ArgValue);
1752  }
1753
1754  // The x86-64 ABI for returning structs by value requires that we copy
1755  // the sret argument into %rax for the return. Save the argument into
1756  // a virtual register so that we can access it from the return points.
1757  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1758    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1759    unsigned Reg = FuncInfo->getSRetReturnReg();
1760    if (!Reg) {
1761      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1762      FuncInfo->setSRetReturnReg(Reg);
1763    }
1764    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1765    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1766  }
1767
1768  unsigned StackSize = CCInfo.getNextStackOffset();
1769  // Align stack specially for tail calls.
1770  if (FuncIsMadeTailCallSafe(CallConv))
1771    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1772
1773  // If the function takes variable number of arguments, make a frame index for
1774  // the start of the first vararg value... for expansion of llvm.va_start.
1775  if (isVarArg) {
1776    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1777                    CallConv != CallingConv::X86_ThisCall)) {
1778      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1779    }
1780    if (Is64Bit) {
1781      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1782
1783      // FIXME: We should really autogenerate these arrays
1784      static const unsigned GPR64ArgRegsWin64[] = {
1785        X86::RCX, X86::RDX, X86::R8,  X86::R9
1786      };
1787      static const unsigned GPR64ArgRegs64Bit[] = {
1788        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1789      };
1790      static const unsigned XMMArgRegs64Bit[] = {
1791        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1792        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1793      };
1794      const unsigned *GPR64ArgRegs;
1795      unsigned NumXMMRegs = 0;
1796
1797      if (IsWin64) {
1798        // The XMM registers which might contain var arg parameters are shadowed
1799        // in their paired GPR.  So we only need to save the GPR to their home
1800        // slots.
1801        TotalNumIntRegs = 4;
1802        GPR64ArgRegs = GPR64ArgRegsWin64;
1803      } else {
1804        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1805        GPR64ArgRegs = GPR64ArgRegs64Bit;
1806
1807        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1808      }
1809      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1810                                                       TotalNumIntRegs);
1811
1812      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1813      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1814             "SSE register cannot be used when SSE is disabled!");
1815      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1816             "SSE register cannot be used when SSE is disabled!");
1817      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1818        // Kernel mode asks for SSE to be disabled, so don't push them
1819        // on the stack.
1820        TotalNumXMMRegs = 0;
1821
1822      if (IsWin64) {
1823        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1824        // Get to the caller-allocated home save location.  Add 8 to account
1825        // for the return address.
1826        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1827        FuncInfo->setRegSaveFrameIndex(
1828          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1829        // Fixup to set vararg frame on shadow area (4 x i64).
1830        if (NumIntRegs < 4)
1831          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1832      } else {
1833        // For X86-64, if there are vararg parameters that are passed via
1834        // registers, then we must store them to their spots on the stack so they
1835        // may be loaded by deferencing the result of va_next.
1836        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1837        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1838        FuncInfo->setRegSaveFrameIndex(
1839          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1840                               false));
1841      }
1842
1843      // Store the integer parameter registers.
1844      SmallVector<SDValue, 8> MemOps;
1845      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1846                                        getPointerTy());
1847      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1848      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1849        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1850                                  DAG.getIntPtrConstant(Offset));
1851        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1852                                     X86::GR64RegisterClass);
1853        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1854        SDValue Store =
1855          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1856                       MachinePointerInfo::getFixedStack(
1857                         FuncInfo->getRegSaveFrameIndex(), Offset),
1858                       false, false, 0);
1859        MemOps.push_back(Store);
1860        Offset += 8;
1861      }
1862
1863      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1864        // Now store the XMM (fp + vector) parameter registers.
1865        SmallVector<SDValue, 11> SaveXMMOps;
1866        SaveXMMOps.push_back(Chain);
1867
1868        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1869        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1870        SaveXMMOps.push_back(ALVal);
1871
1872        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1873                               FuncInfo->getRegSaveFrameIndex()));
1874        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1875                               FuncInfo->getVarArgsFPOffset()));
1876
1877        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1878          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1879                                       X86::VR128RegisterClass);
1880          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1881          SaveXMMOps.push_back(Val);
1882        }
1883        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1884                                     MVT::Other,
1885                                     &SaveXMMOps[0], SaveXMMOps.size()));
1886      }
1887
1888      if (!MemOps.empty())
1889        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1890                            &MemOps[0], MemOps.size());
1891    }
1892  }
1893
1894  // Some CCs need callee pop.
1895  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1896    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1897  } else {
1898    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1899    // If this is an sret function, the return should pop the hidden pointer.
1900    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1901      FuncInfo->setBytesToPopOnReturn(4);
1902  }
1903
1904  if (!Is64Bit) {
1905    // RegSaveFrameIndex is X86-64 only.
1906    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1907    if (CallConv == CallingConv::X86_FastCall ||
1908        CallConv == CallingConv::X86_ThisCall)
1909      // fastcc functions can't have varargs.
1910      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1911  }
1912
1913  return Chain;
1914}
1915
1916SDValue
1917X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1918                                    SDValue StackPtr, SDValue Arg,
1919                                    DebugLoc dl, SelectionDAG &DAG,
1920                                    const CCValAssign &VA,
1921                                    ISD::ArgFlagsTy Flags) const {
1922  unsigned LocMemOffset = VA.getLocMemOffset();
1923  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1924  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1925  if (Flags.isByVal())
1926    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1927
1928  return DAG.getStore(Chain, dl, Arg, PtrOff,
1929                      MachinePointerInfo::getStack(LocMemOffset),
1930                      false, false, 0);
1931}
1932
1933/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1934/// optimization is performed and it is required.
1935SDValue
1936X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1937                                           SDValue &OutRetAddr, SDValue Chain,
1938                                           bool IsTailCall, bool Is64Bit,
1939                                           int FPDiff, DebugLoc dl) const {
1940  // Adjust the Return address stack slot.
1941  EVT VT = getPointerTy();
1942  OutRetAddr = getReturnAddressFrameIndex(DAG);
1943
1944  // Load the "old" Return address.
1945  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1946                           false, false, 0);
1947  return SDValue(OutRetAddr.getNode(), 1);
1948}
1949
1950/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
1951/// optimization is performed and it is required (FPDiff!=0).
1952static SDValue
1953EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1954                         SDValue Chain, SDValue RetAddrFrIdx,
1955                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1956  // Store the return address to the appropriate stack slot.
1957  if (!FPDiff) return Chain;
1958  // Calculate the new stack slot for the return address.
1959  int SlotSize = Is64Bit ? 8 : 4;
1960  int NewReturnAddrFI =
1961    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1962  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1963  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1964  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1965                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1966                       false, false, 0);
1967  return Chain;
1968}
1969
1970SDValue
1971X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1972                             CallingConv::ID CallConv, bool isVarArg,
1973                             bool &isTailCall,
1974                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1975                             const SmallVectorImpl<SDValue> &OutVals,
1976                             const SmallVectorImpl<ISD::InputArg> &Ins,
1977                             DebugLoc dl, SelectionDAG &DAG,
1978                             SmallVectorImpl<SDValue> &InVals) const {
1979  MachineFunction &MF = DAG.getMachineFunction();
1980  bool Is64Bit        = Subtarget->is64Bit();
1981  bool IsWin64        = Subtarget->isTargetWin64();
1982  bool IsStructRet    = CallIsStructReturn(Outs);
1983  bool IsSibcall      = false;
1984
1985  if (isTailCall) {
1986    // Check if it's really possible to do a tail call.
1987    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1988                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1989                                                   Outs, OutVals, Ins, DAG);
1990
1991    // Sibcalls are automatically detected tailcalls which do not require
1992    // ABI changes.
1993    if (!GuaranteedTailCallOpt && isTailCall)
1994      IsSibcall = true;
1995
1996    if (isTailCall)
1997      ++NumTailCalls;
1998  }
1999
2000  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2001         "Var args not supported with calling convention fastcc or ghc");
2002
2003  // Analyze operands of the call, assigning locations to each operand.
2004  SmallVector<CCValAssign, 16> ArgLocs;
2005  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2006                 ArgLocs, *DAG.getContext());
2007
2008  // Allocate shadow area for Win64
2009  if (IsWin64) {
2010    CCInfo.AllocateStack(32, 8);
2011  }
2012
2013  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2014
2015  // Get a count of how many bytes are to be pushed on the stack.
2016  unsigned NumBytes = CCInfo.getNextStackOffset();
2017  if (IsSibcall)
2018    // This is a sibcall. The memory operands are available in caller's
2019    // own caller's stack.
2020    NumBytes = 0;
2021  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2022    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2023
2024  int FPDiff = 0;
2025  if (isTailCall && !IsSibcall) {
2026    // Lower arguments at fp - stackoffset + fpdiff.
2027    unsigned NumBytesCallerPushed =
2028      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2029    FPDiff = NumBytesCallerPushed - NumBytes;
2030
2031    // Set the delta of movement of the returnaddr stackslot.
2032    // But only set if delta is greater than previous delta.
2033    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2034      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2035  }
2036
2037  if (!IsSibcall)
2038    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2039
2040  SDValue RetAddrFrIdx;
2041  // Load return address for tail calls.
2042  if (isTailCall && FPDiff)
2043    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2044                                    Is64Bit, FPDiff, dl);
2045
2046  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2047  SmallVector<SDValue, 8> MemOpChains;
2048  SDValue StackPtr;
2049
2050  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2051  // of tail call optimization arguments are handle later.
2052  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2053    CCValAssign &VA = ArgLocs[i];
2054    EVT RegVT = VA.getLocVT();
2055    SDValue Arg = OutVals[i];
2056    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2057    bool isByVal = Flags.isByVal();
2058
2059    // Promote the value if needed.
2060    switch (VA.getLocInfo()) {
2061    default: llvm_unreachable("Unknown loc info!");
2062    case CCValAssign::Full: break;
2063    case CCValAssign::SExt:
2064      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2065      break;
2066    case CCValAssign::ZExt:
2067      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2068      break;
2069    case CCValAssign::AExt:
2070      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2071        // Special case: passing MMX values in XMM registers.
2072        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2073        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2074        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2075      } else
2076        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2077      break;
2078    case CCValAssign::BCvt:
2079      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2080      break;
2081    case CCValAssign::Indirect: {
2082      // Store the argument.
2083      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2084      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2085      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2086                           MachinePointerInfo::getFixedStack(FI),
2087                           false, false, 0);
2088      Arg = SpillSlot;
2089      break;
2090    }
2091    }
2092
2093    if (VA.isRegLoc()) {
2094      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2095      if (isVarArg && IsWin64) {
2096        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2097        // shadow reg if callee is a varargs function.
2098        unsigned ShadowReg = 0;
2099        switch (VA.getLocReg()) {
2100        case X86::XMM0: ShadowReg = X86::RCX; break;
2101        case X86::XMM1: ShadowReg = X86::RDX; break;
2102        case X86::XMM2: ShadowReg = X86::R8; break;
2103        case X86::XMM3: ShadowReg = X86::R9; break;
2104        }
2105        if (ShadowReg)
2106          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2107      }
2108    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2109      assert(VA.isMemLoc());
2110      if (StackPtr.getNode() == 0)
2111        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2112      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2113                                             dl, DAG, VA, Flags));
2114    }
2115  }
2116
2117  if (!MemOpChains.empty())
2118    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2119                        &MemOpChains[0], MemOpChains.size());
2120
2121  // Build a sequence of copy-to-reg nodes chained together with token chain
2122  // and flag operands which copy the outgoing args into registers.
2123  SDValue InFlag;
2124  // Tail call byval lowering might overwrite argument registers so in case of
2125  // tail call optimization the copies to registers are lowered later.
2126  if (!isTailCall)
2127    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2128      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2129                               RegsToPass[i].second, InFlag);
2130      InFlag = Chain.getValue(1);
2131    }
2132
2133  if (Subtarget->isPICStyleGOT()) {
2134    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2135    // GOT pointer.
2136    if (!isTailCall) {
2137      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2138                               DAG.getNode(X86ISD::GlobalBaseReg,
2139                                           DebugLoc(), getPointerTy()),
2140                               InFlag);
2141      InFlag = Chain.getValue(1);
2142    } else {
2143      // If we are tail calling and generating PIC/GOT style code load the
2144      // address of the callee into ECX. The value in ecx is used as target of
2145      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2146      // for tail calls on PIC/GOT architectures. Normally we would just put the
2147      // address of GOT into ebx and then call target@PLT. But for tail calls
2148      // ebx would be restored (since ebx is callee saved) before jumping to the
2149      // target@PLT.
2150
2151      // Note: The actual moving to ECX is done further down.
2152      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2153      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2154          !G->getGlobal()->hasProtectedVisibility())
2155        Callee = LowerGlobalAddress(Callee, DAG);
2156      else if (isa<ExternalSymbolSDNode>(Callee))
2157        Callee = LowerExternalSymbol(Callee, DAG);
2158    }
2159  }
2160
2161  if (Is64Bit && isVarArg && !IsWin64) {
2162    // From AMD64 ABI document:
2163    // For calls that may call functions that use varargs or stdargs
2164    // (prototype-less calls or calls to functions containing ellipsis (...) in
2165    // the declaration) %al is used as hidden argument to specify the number
2166    // of SSE registers used. The contents of %al do not need to match exactly
2167    // the number of registers, but must be an ubound on the number of SSE
2168    // registers used and is in the range 0 - 8 inclusive.
2169
2170    // Count the number of XMM registers allocated.
2171    static const unsigned XMMArgRegs[] = {
2172      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2173      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2174    };
2175    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2176    assert((Subtarget->hasXMM() || !NumXMMRegs)
2177           && "SSE registers cannot be used when SSE is disabled");
2178
2179    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2180                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2181    InFlag = Chain.getValue(1);
2182  }
2183
2184
2185  // For tail calls lower the arguments to the 'real' stack slot.
2186  if (isTailCall) {
2187    // Force all the incoming stack arguments to be loaded from the stack
2188    // before any new outgoing arguments are stored to the stack, because the
2189    // outgoing stack slots may alias the incoming argument stack slots, and
2190    // the alias isn't otherwise explicit. This is slightly more conservative
2191    // than necessary, because it means that each store effectively depends
2192    // on every argument instead of just those arguments it would clobber.
2193    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2194
2195    SmallVector<SDValue, 8> MemOpChains2;
2196    SDValue FIN;
2197    int FI = 0;
2198    // Do not flag preceding copytoreg stuff together with the following stuff.
2199    InFlag = SDValue();
2200    if (GuaranteedTailCallOpt) {
2201      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2202        CCValAssign &VA = ArgLocs[i];
2203        if (VA.isRegLoc())
2204          continue;
2205        assert(VA.isMemLoc());
2206        SDValue Arg = OutVals[i];
2207        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2208        // Create frame index.
2209        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2210        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2211        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2212        FIN = DAG.getFrameIndex(FI, getPointerTy());
2213
2214        if (Flags.isByVal()) {
2215          // Copy relative to framepointer.
2216          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2217          if (StackPtr.getNode() == 0)
2218            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2219                                          getPointerTy());
2220          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2221
2222          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2223                                                           ArgChain,
2224                                                           Flags, DAG, dl));
2225        } else {
2226          // Store relative to framepointer.
2227          MemOpChains2.push_back(
2228            DAG.getStore(ArgChain, dl, Arg, FIN,
2229                         MachinePointerInfo::getFixedStack(FI),
2230                         false, false, 0));
2231        }
2232      }
2233    }
2234
2235    if (!MemOpChains2.empty())
2236      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2237                          &MemOpChains2[0], MemOpChains2.size());
2238
2239    // Copy arguments to their registers.
2240    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2241      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2242                               RegsToPass[i].second, InFlag);
2243      InFlag = Chain.getValue(1);
2244    }
2245    InFlag =SDValue();
2246
2247    // Store the return address to the appropriate stack slot.
2248    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2249                                     FPDiff, dl);
2250  }
2251
2252  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2253    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2254    // In the 64-bit large code model, we have to make all calls
2255    // through a register, since the call instruction's 32-bit
2256    // pc-relative offset may not be large enough to hold the whole
2257    // address.
2258  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2259    // If the callee is a GlobalAddress node (quite common, every direct call
2260    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2261    // it.
2262
2263    // We should use extra load for direct calls to dllimported functions in
2264    // non-JIT mode.
2265    const GlobalValue *GV = G->getGlobal();
2266    if (!GV->hasDLLImportLinkage()) {
2267      unsigned char OpFlags = 0;
2268
2269      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2270      // external symbols most go through the PLT in PIC mode.  If the symbol
2271      // has hidden or protected visibility, or if it is static or local, then
2272      // we don't need to use the PLT - we can directly call it.
2273      if (Subtarget->isTargetELF() &&
2274          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2275          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2276        OpFlags = X86II::MO_PLT;
2277      } else if (Subtarget->isPICStyleStubAny() &&
2278                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2279                 (!Subtarget->getTargetTriple().isMacOSX() ||
2280                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2281        // PC-relative references to external symbols should go through $stub,
2282        // unless we're building with the leopard linker or later, which
2283        // automatically synthesizes these stubs.
2284        OpFlags = X86II::MO_DARWIN_STUB;
2285      }
2286
2287      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2288                                          G->getOffset(), OpFlags);
2289    }
2290  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2291    unsigned char OpFlags = 0;
2292
2293    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2294    // external symbols should go through the PLT.
2295    if (Subtarget->isTargetELF() &&
2296        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2297      OpFlags = X86II::MO_PLT;
2298    } else if (Subtarget->isPICStyleStubAny() &&
2299               (!Subtarget->getTargetTriple().isMacOSX() ||
2300                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2301      // PC-relative references to external symbols should go through $stub,
2302      // unless we're building with the leopard linker or later, which
2303      // automatically synthesizes these stubs.
2304      OpFlags = X86II::MO_DARWIN_STUB;
2305    }
2306
2307    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2308                                         OpFlags);
2309  }
2310
2311  // Returns a chain & a flag for retval copy to use.
2312  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2313  SmallVector<SDValue, 8> Ops;
2314
2315  if (!IsSibcall && isTailCall) {
2316    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2317                           DAG.getIntPtrConstant(0, true), InFlag);
2318    InFlag = Chain.getValue(1);
2319  }
2320
2321  Ops.push_back(Chain);
2322  Ops.push_back(Callee);
2323
2324  if (isTailCall)
2325    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2326
2327  // Add argument registers to the end of the list so that they are known live
2328  // into the call.
2329  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2330    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2331                                  RegsToPass[i].second.getValueType()));
2332
2333  // Add an implicit use GOT pointer in EBX.
2334  if (!isTailCall && Subtarget->isPICStyleGOT())
2335    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2336
2337  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2338  if (Is64Bit && isVarArg && !IsWin64)
2339    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2340
2341  if (InFlag.getNode())
2342    Ops.push_back(InFlag);
2343
2344  if (isTailCall) {
2345    // We used to do:
2346    //// If this is the first return lowered for this function, add the regs
2347    //// to the liveout set for the function.
2348    // This isn't right, although it's probably harmless on x86; liveouts
2349    // should be computed from returns not tail calls.  Consider a void
2350    // function making a tail call to a function returning int.
2351    return DAG.getNode(X86ISD::TC_RETURN, dl,
2352                       NodeTys, &Ops[0], Ops.size());
2353  }
2354
2355  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2356  InFlag = Chain.getValue(1);
2357
2358  // Create the CALLSEQ_END node.
2359  unsigned NumBytesForCalleeToPush;
2360  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2361    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2362  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2363    // If this is a call to a struct-return function, the callee
2364    // pops the hidden struct pointer, so we have to push it back.
2365    // This is common for Darwin/X86, Linux & Mingw32 targets.
2366    NumBytesForCalleeToPush = 4;
2367  else
2368    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2369
2370  // Returns a flag for retval copy to use.
2371  if (!IsSibcall) {
2372    Chain = DAG.getCALLSEQ_END(Chain,
2373                               DAG.getIntPtrConstant(NumBytes, true),
2374                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2375                                                     true),
2376                               InFlag);
2377    InFlag = Chain.getValue(1);
2378  }
2379
2380  // Handle result values, copying them out of physregs into vregs that we
2381  // return.
2382  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2383                         Ins, dl, DAG, InVals);
2384}
2385
2386
2387//===----------------------------------------------------------------------===//
2388//                Fast Calling Convention (tail call) implementation
2389//===----------------------------------------------------------------------===//
2390
2391//  Like std call, callee cleans arguments, convention except that ECX is
2392//  reserved for storing the tail called function address. Only 2 registers are
2393//  free for argument passing (inreg). Tail call optimization is performed
2394//  provided:
2395//                * tailcallopt is enabled
2396//                * caller/callee are fastcc
2397//  On X86_64 architecture with GOT-style position independent code only local
2398//  (within module) calls are supported at the moment.
2399//  To keep the stack aligned according to platform abi the function
2400//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2401//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2402//  If a tail called function callee has more arguments than the caller the
2403//  caller needs to make sure that there is room to move the RETADDR to. This is
2404//  achieved by reserving an area the size of the argument delta right after the
2405//  original REtADDR, but before the saved framepointer or the spilled registers
2406//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2407//  stack layout:
2408//    arg1
2409//    arg2
2410//    RETADDR
2411//    [ new RETADDR
2412//      move area ]
2413//    (possible EBP)
2414//    ESI
2415//    EDI
2416//    local1 ..
2417
2418/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2419/// for a 16 byte align requirement.
2420unsigned
2421X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2422                                               SelectionDAG& DAG) const {
2423  MachineFunction &MF = DAG.getMachineFunction();
2424  const TargetMachine &TM = MF.getTarget();
2425  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2426  unsigned StackAlignment = TFI.getStackAlignment();
2427  uint64_t AlignMask = StackAlignment - 1;
2428  int64_t Offset = StackSize;
2429  uint64_t SlotSize = TD->getPointerSize();
2430  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2431    // Number smaller than 12 so just add the difference.
2432    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2433  } else {
2434    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2435    Offset = ((~AlignMask) & Offset) + StackAlignment +
2436      (StackAlignment-SlotSize);
2437  }
2438  return Offset;
2439}
2440
2441/// MatchingStackOffset - Return true if the given stack call argument is
2442/// already available in the same position (relatively) of the caller's
2443/// incoming argument stack.
2444static
2445bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2446                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2447                         const X86InstrInfo *TII) {
2448  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2449  int FI = INT_MAX;
2450  if (Arg.getOpcode() == ISD::CopyFromReg) {
2451    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2452    if (!TargetRegisterInfo::isVirtualRegister(VR))
2453      return false;
2454    MachineInstr *Def = MRI->getVRegDef(VR);
2455    if (!Def)
2456      return false;
2457    if (!Flags.isByVal()) {
2458      if (!TII->isLoadFromStackSlot(Def, FI))
2459        return false;
2460    } else {
2461      unsigned Opcode = Def->getOpcode();
2462      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2463          Def->getOperand(1).isFI()) {
2464        FI = Def->getOperand(1).getIndex();
2465        Bytes = Flags.getByValSize();
2466      } else
2467        return false;
2468    }
2469  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2470    if (Flags.isByVal())
2471      // ByVal argument is passed in as a pointer but it's now being
2472      // dereferenced. e.g.
2473      // define @foo(%struct.X* %A) {
2474      //   tail call @bar(%struct.X* byval %A)
2475      // }
2476      return false;
2477    SDValue Ptr = Ld->getBasePtr();
2478    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2479    if (!FINode)
2480      return false;
2481    FI = FINode->getIndex();
2482  } else
2483    return false;
2484
2485  assert(FI != INT_MAX);
2486  if (!MFI->isFixedObjectIndex(FI))
2487    return false;
2488  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2489}
2490
2491/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2492/// for tail call optimization. Targets which want to do tail call
2493/// optimization should implement this function.
2494bool
2495X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2496                                                     CallingConv::ID CalleeCC,
2497                                                     bool isVarArg,
2498                                                     bool isCalleeStructRet,
2499                                                     bool isCallerStructRet,
2500                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2501                                    const SmallVectorImpl<SDValue> &OutVals,
2502                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2503                                                     SelectionDAG& DAG) const {
2504  if (!IsTailCallConvention(CalleeCC) &&
2505      CalleeCC != CallingConv::C)
2506    return false;
2507
2508  // If -tailcallopt is specified, make fastcc functions tail-callable.
2509  const MachineFunction &MF = DAG.getMachineFunction();
2510  const Function *CallerF = DAG.getMachineFunction().getFunction();
2511  CallingConv::ID CallerCC = CallerF->getCallingConv();
2512  bool CCMatch = CallerCC == CalleeCC;
2513
2514  if (GuaranteedTailCallOpt) {
2515    if (IsTailCallConvention(CalleeCC) && CCMatch)
2516      return true;
2517    return false;
2518  }
2519
2520  // Look for obvious safe cases to perform tail call optimization that do not
2521  // require ABI changes. This is what gcc calls sibcall.
2522
2523  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2524  // emit a special epilogue.
2525  if (RegInfo->needsStackRealignment(MF))
2526    return false;
2527
2528  // Also avoid sibcall optimization if either caller or callee uses struct
2529  // return semantics.
2530  if (isCalleeStructRet || isCallerStructRet)
2531    return false;
2532
2533  // Do not sibcall optimize vararg calls unless all arguments are passed via
2534  // registers.
2535  if (isVarArg && !Outs.empty()) {
2536
2537    // Optimizing for varargs on Win64 is unlikely to be safe without
2538    // additional testing.
2539    if (Subtarget->isTargetWin64())
2540      return false;
2541
2542    SmallVector<CCValAssign, 16> ArgLocs;
2543    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2544                   ArgLocs, *DAG.getContext());
2545
2546    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2547    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2548      if (!ArgLocs[i].isRegLoc())
2549        return false;
2550  }
2551
2552  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2553  // Therefore if it's not used by the call it is not safe to optimize this into
2554  // a sibcall.
2555  bool Unused = false;
2556  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2557    if (!Ins[i].Used) {
2558      Unused = true;
2559      break;
2560    }
2561  }
2562  if (Unused) {
2563    SmallVector<CCValAssign, 16> RVLocs;
2564    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2565                   RVLocs, *DAG.getContext());
2566    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2567    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2568      CCValAssign &VA = RVLocs[i];
2569      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2570        return false;
2571    }
2572  }
2573
2574  // If the calling conventions do not match, then we'd better make sure the
2575  // results are returned in the same way as what the caller expects.
2576  if (!CCMatch) {
2577    SmallVector<CCValAssign, 16> RVLocs1;
2578    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2579                    RVLocs1, *DAG.getContext());
2580    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2581
2582    SmallVector<CCValAssign, 16> RVLocs2;
2583    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2584                    RVLocs2, *DAG.getContext());
2585    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2586
2587    if (RVLocs1.size() != RVLocs2.size())
2588      return false;
2589    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2590      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2591        return false;
2592      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2593        return false;
2594      if (RVLocs1[i].isRegLoc()) {
2595        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2596          return false;
2597      } else {
2598        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2599          return false;
2600      }
2601    }
2602  }
2603
2604  // If the callee takes no arguments then go on to check the results of the
2605  // call.
2606  if (!Outs.empty()) {
2607    // Check if stack adjustment is needed. For now, do not do this if any
2608    // argument is passed on the stack.
2609    SmallVector<CCValAssign, 16> ArgLocs;
2610    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2611                   ArgLocs, *DAG.getContext());
2612
2613    // Allocate shadow area for Win64
2614    if (Subtarget->isTargetWin64()) {
2615      CCInfo.AllocateStack(32, 8);
2616    }
2617
2618    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2619    if (CCInfo.getNextStackOffset()) {
2620      MachineFunction &MF = DAG.getMachineFunction();
2621      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2622        return false;
2623
2624      // Check if the arguments are already laid out in the right way as
2625      // the caller's fixed stack objects.
2626      MachineFrameInfo *MFI = MF.getFrameInfo();
2627      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2628      const X86InstrInfo *TII =
2629        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2630      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2631        CCValAssign &VA = ArgLocs[i];
2632        SDValue Arg = OutVals[i];
2633        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2634        if (VA.getLocInfo() == CCValAssign::Indirect)
2635          return false;
2636        if (!VA.isRegLoc()) {
2637          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2638                                   MFI, MRI, TII))
2639            return false;
2640        }
2641      }
2642    }
2643
2644    // If the tailcall address may be in a register, then make sure it's
2645    // possible to register allocate for it. In 32-bit, the call address can
2646    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2647    // callee-saved registers are restored. These happen to be the same
2648    // registers used to pass 'inreg' arguments so watch out for those.
2649    if (!Subtarget->is64Bit() &&
2650        !isa<GlobalAddressSDNode>(Callee) &&
2651        !isa<ExternalSymbolSDNode>(Callee)) {
2652      unsigned NumInRegs = 0;
2653      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2654        CCValAssign &VA = ArgLocs[i];
2655        if (!VA.isRegLoc())
2656          continue;
2657        unsigned Reg = VA.getLocReg();
2658        switch (Reg) {
2659        default: break;
2660        case X86::EAX: case X86::EDX: case X86::ECX:
2661          if (++NumInRegs == 3)
2662            return false;
2663          break;
2664        }
2665      }
2666    }
2667  }
2668
2669  // An stdcall caller is expected to clean up its arguments; the callee
2670  // isn't going to do that.
2671  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2672    return false;
2673
2674  return true;
2675}
2676
2677FastISel *
2678X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2679  return X86::createFastISel(funcInfo);
2680}
2681
2682
2683//===----------------------------------------------------------------------===//
2684//                           Other Lowering Hooks
2685//===----------------------------------------------------------------------===//
2686
2687static bool MayFoldLoad(SDValue Op) {
2688  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2689}
2690
2691static bool MayFoldIntoStore(SDValue Op) {
2692  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2693}
2694
2695static bool isTargetShuffle(unsigned Opcode) {
2696  switch(Opcode) {
2697  default: return false;
2698  case X86ISD::PSHUFD:
2699  case X86ISD::PSHUFHW:
2700  case X86ISD::PSHUFLW:
2701  case X86ISD::SHUFPD:
2702  case X86ISD::PALIGN:
2703  case X86ISD::SHUFPS:
2704  case X86ISD::MOVLHPS:
2705  case X86ISD::MOVLHPD:
2706  case X86ISD::MOVHLPS:
2707  case X86ISD::MOVLPS:
2708  case X86ISD::MOVLPD:
2709  case X86ISD::MOVSHDUP:
2710  case X86ISD::MOVSLDUP:
2711  case X86ISD::MOVDDUP:
2712  case X86ISD::MOVSS:
2713  case X86ISD::MOVSD:
2714  case X86ISD::UNPCKLPS:
2715  case X86ISD::UNPCKLPD:
2716  case X86ISD::VUNPCKLPS:
2717  case X86ISD::VUNPCKLPD:
2718  case X86ISD::VUNPCKLPSY:
2719  case X86ISD::VUNPCKLPDY:
2720  case X86ISD::PUNPCKLWD:
2721  case X86ISD::PUNPCKLBW:
2722  case X86ISD::PUNPCKLDQ:
2723  case X86ISD::PUNPCKLQDQ:
2724  case X86ISD::UNPCKHPS:
2725  case X86ISD::UNPCKHPD:
2726  case X86ISD::PUNPCKHWD:
2727  case X86ISD::PUNPCKHBW:
2728  case X86ISD::PUNPCKHDQ:
2729  case X86ISD::PUNPCKHQDQ:
2730    return true;
2731  }
2732  return false;
2733}
2734
2735static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2736                                               SDValue V1, SelectionDAG &DAG) {
2737  switch(Opc) {
2738  default: llvm_unreachable("Unknown x86 shuffle node");
2739  case X86ISD::MOVSHDUP:
2740  case X86ISD::MOVSLDUP:
2741  case X86ISD::MOVDDUP:
2742    return DAG.getNode(Opc, dl, VT, V1);
2743  }
2744
2745  return SDValue();
2746}
2747
2748static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2749                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2750  switch(Opc) {
2751  default: llvm_unreachable("Unknown x86 shuffle node");
2752  case X86ISD::PSHUFD:
2753  case X86ISD::PSHUFHW:
2754  case X86ISD::PSHUFLW:
2755    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2756  }
2757
2758  return SDValue();
2759}
2760
2761static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2762               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2763  switch(Opc) {
2764  default: llvm_unreachable("Unknown x86 shuffle node");
2765  case X86ISD::PALIGN:
2766  case X86ISD::SHUFPD:
2767  case X86ISD::SHUFPS:
2768    return DAG.getNode(Opc, dl, VT, V1, V2,
2769                       DAG.getConstant(TargetMask, MVT::i8));
2770  }
2771  return SDValue();
2772}
2773
2774static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2775                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2776  switch(Opc) {
2777  default: llvm_unreachable("Unknown x86 shuffle node");
2778  case X86ISD::MOVLHPS:
2779  case X86ISD::MOVLHPD:
2780  case X86ISD::MOVHLPS:
2781  case X86ISD::MOVLPS:
2782  case X86ISD::MOVLPD:
2783  case X86ISD::MOVSS:
2784  case X86ISD::MOVSD:
2785  case X86ISD::UNPCKLPS:
2786  case X86ISD::UNPCKLPD:
2787  case X86ISD::VUNPCKLPS:
2788  case X86ISD::VUNPCKLPD:
2789  case X86ISD::VUNPCKLPSY:
2790  case X86ISD::VUNPCKLPDY:
2791  case X86ISD::PUNPCKLWD:
2792  case X86ISD::PUNPCKLBW:
2793  case X86ISD::PUNPCKLDQ:
2794  case X86ISD::PUNPCKLQDQ:
2795  case X86ISD::UNPCKHPS:
2796  case X86ISD::UNPCKHPD:
2797  case X86ISD::PUNPCKHWD:
2798  case X86ISD::PUNPCKHBW:
2799  case X86ISD::PUNPCKHDQ:
2800  case X86ISD::PUNPCKHQDQ:
2801    return DAG.getNode(Opc, dl, VT, V1, V2);
2802  }
2803  return SDValue();
2804}
2805
2806SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2807  MachineFunction &MF = DAG.getMachineFunction();
2808  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2809  int ReturnAddrIndex = FuncInfo->getRAIndex();
2810
2811  if (ReturnAddrIndex == 0) {
2812    // Set up a frame object for the return address.
2813    uint64_t SlotSize = TD->getPointerSize();
2814    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2815                                                           false);
2816    FuncInfo->setRAIndex(ReturnAddrIndex);
2817  }
2818
2819  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2820}
2821
2822
2823bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2824                                       bool hasSymbolicDisplacement) {
2825  // Offset should fit into 32 bit immediate field.
2826  if (!isInt<32>(Offset))
2827    return false;
2828
2829  // If we don't have a symbolic displacement - we don't have any extra
2830  // restrictions.
2831  if (!hasSymbolicDisplacement)
2832    return true;
2833
2834  // FIXME: Some tweaks might be needed for medium code model.
2835  if (M != CodeModel::Small && M != CodeModel::Kernel)
2836    return false;
2837
2838  // For small code model we assume that latest object is 16MB before end of 31
2839  // bits boundary. We may also accept pretty large negative constants knowing
2840  // that all objects are in the positive half of address space.
2841  if (M == CodeModel::Small && Offset < 16*1024*1024)
2842    return true;
2843
2844  // For kernel code model we know that all object resist in the negative half
2845  // of 32bits address space. We may not accept negative offsets, since they may
2846  // be just off and we may accept pretty large positive ones.
2847  if (M == CodeModel::Kernel && Offset > 0)
2848    return true;
2849
2850  return false;
2851}
2852
2853/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2854/// specific condition code, returning the condition code and the LHS/RHS of the
2855/// comparison to make.
2856static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2857                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2858  if (!isFP) {
2859    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2860      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2861        // X > -1   -> X == 0, jump !sign.
2862        RHS = DAG.getConstant(0, RHS.getValueType());
2863        return X86::COND_NS;
2864      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2865        // X < 0   -> X == 0, jump on sign.
2866        return X86::COND_S;
2867      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2868        // X < 1   -> X <= 0
2869        RHS = DAG.getConstant(0, RHS.getValueType());
2870        return X86::COND_LE;
2871      }
2872    }
2873
2874    switch (SetCCOpcode) {
2875    default: llvm_unreachable("Invalid integer condition!");
2876    case ISD::SETEQ:  return X86::COND_E;
2877    case ISD::SETGT:  return X86::COND_G;
2878    case ISD::SETGE:  return X86::COND_GE;
2879    case ISD::SETLT:  return X86::COND_L;
2880    case ISD::SETLE:  return X86::COND_LE;
2881    case ISD::SETNE:  return X86::COND_NE;
2882    case ISD::SETULT: return X86::COND_B;
2883    case ISD::SETUGT: return X86::COND_A;
2884    case ISD::SETULE: return X86::COND_BE;
2885    case ISD::SETUGE: return X86::COND_AE;
2886    }
2887  }
2888
2889  // First determine if it is required or is profitable to flip the operands.
2890
2891  // If LHS is a foldable load, but RHS is not, flip the condition.
2892  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
2893      !ISD::isNON_EXTLoad(RHS.getNode())) {
2894    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2895    std::swap(LHS, RHS);
2896  }
2897
2898  switch (SetCCOpcode) {
2899  default: break;
2900  case ISD::SETOLT:
2901  case ISD::SETOLE:
2902  case ISD::SETUGT:
2903  case ISD::SETUGE:
2904    std::swap(LHS, RHS);
2905    break;
2906  }
2907
2908  // On a floating point condition, the flags are set as follows:
2909  // ZF  PF  CF   op
2910  //  0 | 0 | 0 | X > Y
2911  //  0 | 0 | 1 | X < Y
2912  //  1 | 0 | 0 | X == Y
2913  //  1 | 1 | 1 | unordered
2914  switch (SetCCOpcode) {
2915  default: llvm_unreachable("Condcode should be pre-legalized away");
2916  case ISD::SETUEQ:
2917  case ISD::SETEQ:   return X86::COND_E;
2918  case ISD::SETOLT:              // flipped
2919  case ISD::SETOGT:
2920  case ISD::SETGT:   return X86::COND_A;
2921  case ISD::SETOLE:              // flipped
2922  case ISD::SETOGE:
2923  case ISD::SETGE:   return X86::COND_AE;
2924  case ISD::SETUGT:              // flipped
2925  case ISD::SETULT:
2926  case ISD::SETLT:   return X86::COND_B;
2927  case ISD::SETUGE:              // flipped
2928  case ISD::SETULE:
2929  case ISD::SETLE:   return X86::COND_BE;
2930  case ISD::SETONE:
2931  case ISD::SETNE:   return X86::COND_NE;
2932  case ISD::SETUO:   return X86::COND_P;
2933  case ISD::SETO:    return X86::COND_NP;
2934  case ISD::SETOEQ:
2935  case ISD::SETUNE:  return X86::COND_INVALID;
2936  }
2937}
2938
2939/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2940/// code. Current x86 isa includes the following FP cmov instructions:
2941/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2942static bool hasFPCMov(unsigned X86CC) {
2943  switch (X86CC) {
2944  default:
2945    return false;
2946  case X86::COND_B:
2947  case X86::COND_BE:
2948  case X86::COND_E:
2949  case X86::COND_P:
2950  case X86::COND_A:
2951  case X86::COND_AE:
2952  case X86::COND_NE:
2953  case X86::COND_NP:
2954    return true;
2955  }
2956}
2957
2958/// isFPImmLegal - Returns true if the target can instruction select the
2959/// specified FP immediate natively. If false, the legalizer will
2960/// materialize the FP immediate as a load from a constant pool.
2961bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2962  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2963    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2964      return true;
2965  }
2966  return false;
2967}
2968
2969/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2970/// the specified range (L, H].
2971static bool isUndefOrInRange(int Val, int Low, int Hi) {
2972  return (Val < 0) || (Val >= Low && Val < Hi);
2973}
2974
2975/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2976/// specified value.
2977static bool isUndefOrEqual(int Val, int CmpVal) {
2978  if (Val < 0 || Val == CmpVal)
2979    return true;
2980  return false;
2981}
2982
2983/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2984/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2985/// the second operand.
2986static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2987  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
2988    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2989  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2990    return (Mask[0] < 2 && Mask[1] < 2);
2991  return false;
2992}
2993
2994bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2995  SmallVector<int, 8> M;
2996  N->getMask(M);
2997  return ::isPSHUFDMask(M, N->getValueType(0));
2998}
2999
3000/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3001/// is suitable for input to PSHUFHW.
3002static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3003  if (VT != MVT::v8i16)
3004    return false;
3005
3006  // Lower quadword copied in order or undef.
3007  for (int i = 0; i != 4; ++i)
3008    if (Mask[i] >= 0 && Mask[i] != i)
3009      return false;
3010
3011  // Upper quadword shuffled.
3012  for (int i = 4; i != 8; ++i)
3013    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3014      return false;
3015
3016  return true;
3017}
3018
3019bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3020  SmallVector<int, 8> M;
3021  N->getMask(M);
3022  return ::isPSHUFHWMask(M, N->getValueType(0));
3023}
3024
3025/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3026/// is suitable for input to PSHUFLW.
3027static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3028  if (VT != MVT::v8i16)
3029    return false;
3030
3031  // Upper quadword copied in order.
3032  for (int i = 4; i != 8; ++i)
3033    if (Mask[i] >= 0 && Mask[i] != i)
3034      return false;
3035
3036  // Lower quadword shuffled.
3037  for (int i = 0; i != 4; ++i)
3038    if (Mask[i] >= 4)
3039      return false;
3040
3041  return true;
3042}
3043
3044bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3045  SmallVector<int, 8> M;
3046  N->getMask(M);
3047  return ::isPSHUFLWMask(M, N->getValueType(0));
3048}
3049
3050/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3051/// is suitable for input to PALIGNR.
3052static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3053                          bool hasSSSE3) {
3054  int i, e = VT.getVectorNumElements();
3055
3056  // Do not handle v2i64 / v2f64 shuffles with palignr.
3057  if (e < 4 || !hasSSSE3)
3058    return false;
3059
3060  for (i = 0; i != e; ++i)
3061    if (Mask[i] >= 0)
3062      break;
3063
3064  // All undef, not a palignr.
3065  if (i == e)
3066    return false;
3067
3068  // Determine if it's ok to perform a palignr with only the LHS, since we
3069  // don't have access to the actual shuffle elements to see if RHS is undef.
3070  bool Unary = Mask[i] < (int)e;
3071  bool NeedsUnary = false;
3072
3073  int s = Mask[i] - i;
3074
3075  // Check the rest of the elements to see if they are consecutive.
3076  for (++i; i != e; ++i) {
3077    int m = Mask[i];
3078    if (m < 0)
3079      continue;
3080
3081    Unary = Unary && (m < (int)e);
3082    NeedsUnary = NeedsUnary || (m < s);
3083
3084    if (NeedsUnary && !Unary)
3085      return false;
3086    if (Unary && m != ((s+i) & (e-1)))
3087      return false;
3088    if (!Unary && m != (s+i))
3089      return false;
3090  }
3091  return true;
3092}
3093
3094bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
3095  SmallVector<int, 8> M;
3096  N->getMask(M);
3097  return ::isPALIGNRMask(M, N->getValueType(0), true);
3098}
3099
3100/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3101/// specifies a shuffle of elements that is suitable for input to SHUFP*.
3102static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3103  int NumElems = VT.getVectorNumElements();
3104  if (NumElems != 2 && NumElems != 4)
3105    return false;
3106
3107  int Half = NumElems / 2;
3108  for (int i = 0; i < Half; ++i)
3109    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3110      return false;
3111  for (int i = Half; i < NumElems; ++i)
3112    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3113      return false;
3114
3115  return true;
3116}
3117
3118bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3119  SmallVector<int, 8> M;
3120  N->getMask(M);
3121  return ::isSHUFPMask(M, N->getValueType(0));
3122}
3123
3124/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3125/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3126/// half elements to come from vector 1 (which would equal the dest.) and
3127/// the upper half to come from vector 2.
3128static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3129  int NumElems = VT.getVectorNumElements();
3130
3131  if (NumElems != 2 && NumElems != 4)
3132    return false;
3133
3134  int Half = NumElems / 2;
3135  for (int i = 0; i < Half; ++i)
3136    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3137      return false;
3138  for (int i = Half; i < NumElems; ++i)
3139    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3140      return false;
3141  return true;
3142}
3143
3144static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3145  SmallVector<int, 8> M;
3146  N->getMask(M);
3147  return isCommutedSHUFPMask(M, N->getValueType(0));
3148}
3149
3150/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3151/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3152bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3153  if (N->getValueType(0).getVectorNumElements() != 4)
3154    return false;
3155
3156  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3157  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3158         isUndefOrEqual(N->getMaskElt(1), 7) &&
3159         isUndefOrEqual(N->getMaskElt(2), 2) &&
3160         isUndefOrEqual(N->getMaskElt(3), 3);
3161}
3162
3163/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3164/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3165/// <2, 3, 2, 3>
3166bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3167  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3168
3169  if (NumElems != 4)
3170    return false;
3171
3172  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3173  isUndefOrEqual(N->getMaskElt(1), 3) &&
3174  isUndefOrEqual(N->getMaskElt(2), 2) &&
3175  isUndefOrEqual(N->getMaskElt(3), 3);
3176}
3177
3178/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3179/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3180bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3181  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3182
3183  if (NumElems != 2 && NumElems != 4)
3184    return false;
3185
3186  for (unsigned i = 0; i < NumElems/2; ++i)
3187    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3188      return false;
3189
3190  for (unsigned i = NumElems/2; i < NumElems; ++i)
3191    if (!isUndefOrEqual(N->getMaskElt(i), i))
3192      return false;
3193
3194  return true;
3195}
3196
3197/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3198/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3199bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3200  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3201
3202  if ((NumElems != 2 && NumElems != 4)
3203      || N->getValueType(0).getSizeInBits() > 128)
3204    return false;
3205
3206  for (unsigned i = 0; i < NumElems/2; ++i)
3207    if (!isUndefOrEqual(N->getMaskElt(i), i))
3208      return false;
3209
3210  for (unsigned i = 0; i < NumElems/2; ++i)
3211    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3212      return false;
3213
3214  return true;
3215}
3216
3217/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3218/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3219static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3220                         bool V2IsSplat = false) {
3221  int NumElts = VT.getVectorNumElements();
3222  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3223    return false;
3224
3225  // Handle vector lengths > 128 bits.  Define a "section" as a set of
3226  // 128 bits.  AVX defines UNPCK* to operate independently on 128-bit
3227  // sections.
3228  unsigned NumSections = VT.getSizeInBits() / 128;
3229  if (NumSections == 0 ) NumSections = 1;  // Handle MMX
3230  unsigned NumSectionElts = NumElts / NumSections;
3231
3232  unsigned Start = 0;
3233  unsigned End = NumSectionElts;
3234  for (unsigned s = 0; s < NumSections; ++s) {
3235    for (unsigned i = Start, j = s * NumSectionElts;
3236         i != End;
3237         i += 2, ++j) {
3238      int BitI  = Mask[i];
3239      int BitI1 = Mask[i+1];
3240      if (!isUndefOrEqual(BitI, j))
3241        return false;
3242      if (V2IsSplat) {
3243        if (!isUndefOrEqual(BitI1, NumElts))
3244          return false;
3245      } else {
3246        if (!isUndefOrEqual(BitI1, j + NumElts))
3247          return false;
3248      }
3249    }
3250    // Process the next 128 bits.
3251    Start += NumSectionElts;
3252    End += NumSectionElts;
3253  }
3254
3255  return true;
3256}
3257
3258bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3259  SmallVector<int, 8> M;
3260  N->getMask(M);
3261  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3262}
3263
3264/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3265/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3266static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3267                         bool V2IsSplat = false) {
3268  int NumElts = VT.getVectorNumElements();
3269  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3270    return false;
3271
3272  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3273    int BitI  = Mask[i];
3274    int BitI1 = Mask[i+1];
3275    if (!isUndefOrEqual(BitI, j + NumElts/2))
3276      return false;
3277    if (V2IsSplat) {
3278      if (isUndefOrEqual(BitI1, NumElts))
3279        return false;
3280    } else {
3281      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3282        return false;
3283    }
3284  }
3285  return true;
3286}
3287
3288bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3289  SmallVector<int, 8> M;
3290  N->getMask(M);
3291  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3292}
3293
3294/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3295/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3296/// <0, 0, 1, 1>
3297static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3298  int NumElems = VT.getVectorNumElements();
3299  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3300    return false;
3301
3302  // Handle vector lengths > 128 bits.  Define a "section" as a set of
3303  // 128 bits.  AVX defines UNPCK* to operate independently on 128-bit
3304  // sections.
3305  unsigned NumSections = VT.getSizeInBits() / 128;
3306  if (NumSections == 0 ) NumSections = 1;  // Handle MMX
3307  unsigned NumSectionElts = NumElems / NumSections;
3308
3309  for (unsigned s = 0; s < NumSections; ++s) {
3310    for (unsigned i = s * NumSectionElts, j = s * NumSectionElts;
3311         i != NumSectionElts * (s + 1);
3312         i += 2, ++j) {
3313      int BitI  = Mask[i];
3314      int BitI1 = Mask[i+1];
3315
3316      if (!isUndefOrEqual(BitI, j))
3317        return false;
3318      if (!isUndefOrEqual(BitI1, j))
3319        return false;
3320    }
3321  }
3322
3323  return true;
3324}
3325
3326bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3327  SmallVector<int, 8> M;
3328  N->getMask(M);
3329  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3330}
3331
3332/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3333/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3334/// <2, 2, 3, 3>
3335static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3336  int NumElems = VT.getVectorNumElements();
3337  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3338    return false;
3339
3340  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3341    int BitI  = Mask[i];
3342    int BitI1 = Mask[i+1];
3343    if (!isUndefOrEqual(BitI, j))
3344      return false;
3345    if (!isUndefOrEqual(BitI1, j))
3346      return false;
3347  }
3348  return true;
3349}
3350
3351bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3352  SmallVector<int, 8> M;
3353  N->getMask(M);
3354  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3355}
3356
3357/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3358/// specifies a shuffle of elements that is suitable for input to MOVSS,
3359/// MOVSD, and MOVD, i.e. setting the lowest element.
3360static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3361  if (VT.getVectorElementType().getSizeInBits() < 32)
3362    return false;
3363
3364  int NumElts = VT.getVectorNumElements();
3365
3366  if (!isUndefOrEqual(Mask[0], NumElts))
3367    return false;
3368
3369  for (int i = 1; i < NumElts; ++i)
3370    if (!isUndefOrEqual(Mask[i], i))
3371      return false;
3372
3373  return true;
3374}
3375
3376bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3377  SmallVector<int, 8> M;
3378  N->getMask(M);
3379  return ::isMOVLMask(M, N->getValueType(0));
3380}
3381
3382/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3383/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3384/// element of vector 2 and the other elements to come from vector 1 in order.
3385static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3386                               bool V2IsSplat = false, bool V2IsUndef = false) {
3387  int NumOps = VT.getVectorNumElements();
3388  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3389    return false;
3390
3391  if (!isUndefOrEqual(Mask[0], 0))
3392    return false;
3393
3394  for (int i = 1; i < NumOps; ++i)
3395    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3396          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3397          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3398      return false;
3399
3400  return true;
3401}
3402
3403static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3404                           bool V2IsUndef = false) {
3405  SmallVector<int, 8> M;
3406  N->getMask(M);
3407  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3408}
3409
3410/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3411/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3412bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3413  if (N->getValueType(0).getVectorNumElements() != 4)
3414    return false;
3415
3416  // Expect 1, 1, 3, 3
3417  for (unsigned i = 0; i < 2; ++i) {
3418    int Elt = N->getMaskElt(i);
3419    if (Elt >= 0 && Elt != 1)
3420      return false;
3421  }
3422
3423  bool HasHi = false;
3424  for (unsigned i = 2; i < 4; ++i) {
3425    int Elt = N->getMaskElt(i);
3426    if (Elt >= 0 && Elt != 3)
3427      return false;
3428    if (Elt == 3)
3429      HasHi = true;
3430  }
3431  // Don't use movshdup if it can be done with a shufps.
3432  // FIXME: verify that matching u, u, 3, 3 is what we want.
3433  return HasHi;
3434}
3435
3436/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3437/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3438bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3439  if (N->getValueType(0).getVectorNumElements() != 4)
3440    return false;
3441
3442  // Expect 0, 0, 2, 2
3443  for (unsigned i = 0; i < 2; ++i)
3444    if (N->getMaskElt(i) > 0)
3445      return false;
3446
3447  bool HasHi = false;
3448  for (unsigned i = 2; i < 4; ++i) {
3449    int Elt = N->getMaskElt(i);
3450    if (Elt >= 0 && Elt != 2)
3451      return false;
3452    if (Elt == 2)
3453      HasHi = true;
3454  }
3455  // Don't use movsldup if it can be done with a shufps.
3456  return HasHi;
3457}
3458
3459/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3460/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3461bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3462  int e = N->getValueType(0).getVectorNumElements() / 2;
3463
3464  for (int i = 0; i < e; ++i)
3465    if (!isUndefOrEqual(N->getMaskElt(i), i))
3466      return false;
3467  for (int i = 0; i < e; ++i)
3468    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3469      return false;
3470  return true;
3471}
3472
3473/// isVEXTRACTF128Index - Return true if the specified
3474/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3475/// suitable for input to VEXTRACTF128.
3476bool X86::isVEXTRACTF128Index(SDNode *N) {
3477  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3478    return false;
3479
3480  // The index should be aligned on a 128-bit boundary.
3481  uint64_t Index =
3482    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3483
3484  unsigned VL = N->getValueType(0).getVectorNumElements();
3485  unsigned VBits = N->getValueType(0).getSizeInBits();
3486  unsigned ElSize = VBits / VL;
3487  bool Result = (Index * ElSize) % 128 == 0;
3488
3489  return Result;
3490}
3491
3492/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3493/// operand specifies a subvector insert that is suitable for input to
3494/// VINSERTF128.
3495bool X86::isVINSERTF128Index(SDNode *N) {
3496  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3497    return false;
3498
3499  // The index should be aligned on a 128-bit boundary.
3500  uint64_t Index =
3501    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3502
3503  unsigned VL = N->getValueType(0).getVectorNumElements();
3504  unsigned VBits = N->getValueType(0).getSizeInBits();
3505  unsigned ElSize = VBits / VL;
3506  bool Result = (Index * ElSize) % 128 == 0;
3507
3508  return Result;
3509}
3510
3511/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3512/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3513unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3514  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3515  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3516
3517  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3518  unsigned Mask = 0;
3519  for (int i = 0; i < NumOperands; ++i) {
3520    int Val = SVOp->getMaskElt(NumOperands-i-1);
3521    if (Val < 0) Val = 0;
3522    if (Val >= NumOperands) Val -= NumOperands;
3523    Mask |= Val;
3524    if (i != NumOperands - 1)
3525      Mask <<= Shift;
3526  }
3527  return Mask;
3528}
3529
3530/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3531/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3532unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3533  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3534  unsigned Mask = 0;
3535  // 8 nodes, but we only care about the last 4.
3536  for (unsigned i = 7; i >= 4; --i) {
3537    int Val = SVOp->getMaskElt(i);
3538    if (Val >= 0)
3539      Mask |= (Val - 4);
3540    if (i != 4)
3541      Mask <<= 2;
3542  }
3543  return Mask;
3544}
3545
3546/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3547/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3548unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3549  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3550  unsigned Mask = 0;
3551  // 8 nodes, but we only care about the first 4.
3552  for (int i = 3; i >= 0; --i) {
3553    int Val = SVOp->getMaskElt(i);
3554    if (Val >= 0)
3555      Mask |= Val;
3556    if (i != 0)
3557      Mask <<= 2;
3558  }
3559  return Mask;
3560}
3561
3562/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3563/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3564unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3565  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3566  EVT VVT = N->getValueType(0);
3567  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3568  int Val = 0;
3569
3570  unsigned i, e;
3571  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3572    Val = SVOp->getMaskElt(i);
3573    if (Val >= 0)
3574      break;
3575  }
3576  return (Val - i) * EltSize;
3577}
3578
3579/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3580/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3581/// instructions.
3582unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3583  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3584    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3585
3586  uint64_t Index =
3587    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3588
3589  EVT VecVT = N->getOperand(0).getValueType();
3590  EVT ElVT = VecVT.getVectorElementType();
3591
3592  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3593
3594  return Index / NumElemsPerChunk;
3595}
3596
3597/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3598/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3599/// instructions.
3600unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3601  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3602    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3603
3604  uint64_t Index =
3605    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3606
3607  EVT VecVT = N->getValueType(0);
3608  EVT ElVT = VecVT.getVectorElementType();
3609
3610  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3611
3612  return Index / NumElemsPerChunk;
3613}
3614
3615/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3616/// constant +0.0.
3617bool X86::isZeroNode(SDValue Elt) {
3618  return ((isa<ConstantSDNode>(Elt) &&
3619           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3620          (isa<ConstantFPSDNode>(Elt) &&
3621           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3622}
3623
3624/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3625/// their permute mask.
3626static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3627                                    SelectionDAG &DAG) {
3628  EVT VT = SVOp->getValueType(0);
3629  unsigned NumElems = VT.getVectorNumElements();
3630  SmallVector<int, 8> MaskVec;
3631
3632  for (unsigned i = 0; i != NumElems; ++i) {
3633    int idx = SVOp->getMaskElt(i);
3634    if (idx < 0)
3635      MaskVec.push_back(idx);
3636    else if (idx < (int)NumElems)
3637      MaskVec.push_back(idx + NumElems);
3638    else
3639      MaskVec.push_back(idx - NumElems);
3640  }
3641  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3642                              SVOp->getOperand(0), &MaskVec[0]);
3643}
3644
3645/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3646/// the two vector operands have swapped position.
3647static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3648  unsigned NumElems = VT.getVectorNumElements();
3649  for (unsigned i = 0; i != NumElems; ++i) {
3650    int idx = Mask[i];
3651    if (idx < 0)
3652      continue;
3653    else if (idx < (int)NumElems)
3654      Mask[i] = idx + NumElems;
3655    else
3656      Mask[i] = idx - NumElems;
3657  }
3658}
3659
3660/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3661/// match movhlps. The lower half elements should come from upper half of
3662/// V1 (and in order), and the upper half elements should come from the upper
3663/// half of V2 (and in order).
3664static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3665  if (Op->getValueType(0).getVectorNumElements() != 4)
3666    return false;
3667  for (unsigned i = 0, e = 2; i != e; ++i)
3668    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3669      return false;
3670  for (unsigned i = 2; i != 4; ++i)
3671    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3672      return false;
3673  return true;
3674}
3675
3676/// isScalarLoadToVector - Returns true if the node is a scalar load that
3677/// is promoted to a vector. It also returns the LoadSDNode by reference if
3678/// required.
3679static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3680  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3681    return false;
3682  N = N->getOperand(0).getNode();
3683  if (!ISD::isNON_EXTLoad(N))
3684    return false;
3685  if (LD)
3686    *LD = cast<LoadSDNode>(N);
3687  return true;
3688}
3689
3690/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3691/// match movlp{s|d}. The lower half elements should come from lower half of
3692/// V1 (and in order), and the upper half elements should come from the upper
3693/// half of V2 (and in order). And since V1 will become the source of the
3694/// MOVLP, it must be either a vector load or a scalar load to vector.
3695static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3696                               ShuffleVectorSDNode *Op) {
3697  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3698    return false;
3699  // Is V2 is a vector load, don't do this transformation. We will try to use
3700  // load folding shufps op.
3701  if (ISD::isNON_EXTLoad(V2))
3702    return false;
3703
3704  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3705
3706  if (NumElems != 2 && NumElems != 4)
3707    return false;
3708  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3709    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3710      return false;
3711  for (unsigned i = NumElems/2; i != NumElems; ++i)
3712    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3713      return false;
3714  return true;
3715}
3716
3717/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3718/// all the same.
3719static bool isSplatVector(SDNode *N) {
3720  if (N->getOpcode() != ISD::BUILD_VECTOR)
3721    return false;
3722
3723  SDValue SplatValue = N->getOperand(0);
3724  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3725    if (N->getOperand(i) != SplatValue)
3726      return false;
3727  return true;
3728}
3729
3730/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3731/// to an zero vector.
3732/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3733static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3734  SDValue V1 = N->getOperand(0);
3735  SDValue V2 = N->getOperand(1);
3736  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3737  for (unsigned i = 0; i != NumElems; ++i) {
3738    int Idx = N->getMaskElt(i);
3739    if (Idx >= (int)NumElems) {
3740      unsigned Opc = V2.getOpcode();
3741      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3742        continue;
3743      if (Opc != ISD::BUILD_VECTOR ||
3744          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3745        return false;
3746    } else if (Idx >= 0) {
3747      unsigned Opc = V1.getOpcode();
3748      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3749        continue;
3750      if (Opc != ISD::BUILD_VECTOR ||
3751          !X86::isZeroNode(V1.getOperand(Idx)))
3752        return false;
3753    }
3754  }
3755  return true;
3756}
3757
3758/// getZeroVector - Returns a vector of specified type with all zero elements.
3759///
3760static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3761                             DebugLoc dl) {
3762  assert(VT.isVector() && "Expected a vector type");
3763
3764  // Always build SSE zero vectors as <4 x i32> bitcasted
3765  // to their dest type. This ensures they get CSE'd.
3766  SDValue Vec;
3767  if (VT.getSizeInBits() == 128) {  // SSE
3768    if (HasSSE2) {  // SSE2
3769      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3770      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3771    } else { // SSE1
3772      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3773      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3774    }
3775  } else if (VT.getSizeInBits() == 256) { // AVX
3776    // 256-bit logic and arithmetic instructions in AVX are
3777    // all floating-point, no support for integer ops. Default
3778    // to emitting fp zeroed vectors then.
3779    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3780    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3781    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3782  }
3783  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3784}
3785
3786/// getOnesVector - Returns a vector of specified type with all bits set.
3787///
3788static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3789  assert(VT.isVector() && "Expected a vector type");
3790
3791  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3792  // type.  This ensures they get CSE'd.
3793  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3794  SDValue Vec;
3795  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3796  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3797}
3798
3799
3800/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3801/// that point to V2 points to its first element.
3802static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3803  EVT VT = SVOp->getValueType(0);
3804  unsigned NumElems = VT.getVectorNumElements();
3805
3806  bool Changed = false;
3807  SmallVector<int, 8> MaskVec;
3808  SVOp->getMask(MaskVec);
3809
3810  for (unsigned i = 0; i != NumElems; ++i) {
3811    if (MaskVec[i] > (int)NumElems) {
3812      MaskVec[i] = NumElems;
3813      Changed = true;
3814    }
3815  }
3816  if (Changed)
3817    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3818                                SVOp->getOperand(1), &MaskVec[0]);
3819  return SDValue(SVOp, 0);
3820}
3821
3822/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3823/// operation of specified width.
3824static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3825                       SDValue V2) {
3826  unsigned NumElems = VT.getVectorNumElements();
3827  SmallVector<int, 8> Mask;
3828  Mask.push_back(NumElems);
3829  for (unsigned i = 1; i != NumElems; ++i)
3830    Mask.push_back(i);
3831  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3832}
3833
3834/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3835static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3836                          SDValue V2) {
3837  unsigned NumElems = VT.getVectorNumElements();
3838  SmallVector<int, 8> Mask;
3839  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3840    Mask.push_back(i);
3841    Mask.push_back(i + NumElems);
3842  }
3843  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3844}
3845
3846/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3847static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3848                          SDValue V2) {
3849  unsigned NumElems = VT.getVectorNumElements();
3850  unsigned Half = NumElems/2;
3851  SmallVector<int, 8> Mask;
3852  for (unsigned i = 0; i != Half; ++i) {
3853    Mask.push_back(i + Half);
3854    Mask.push_back(i + NumElems + Half);
3855  }
3856  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3857}
3858
3859/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3860static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3861  EVT PVT = MVT::v4f32;
3862  EVT VT = SV->getValueType(0);
3863  DebugLoc dl = SV->getDebugLoc();
3864  SDValue V1 = SV->getOperand(0);
3865  int NumElems = VT.getVectorNumElements();
3866  int EltNo = SV->getSplatIndex();
3867
3868  // unpack elements to the correct location
3869  while (NumElems > 4) {
3870    if (EltNo < NumElems/2) {
3871      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3872    } else {
3873      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3874      EltNo -= NumElems/2;
3875    }
3876    NumElems >>= 1;
3877  }
3878
3879  // Perform the splat.
3880  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3881  V1 = DAG.getNode(ISD::BITCAST, dl, PVT, V1);
3882  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3883  return DAG.getNode(ISD::BITCAST, dl, VT, V1);
3884}
3885
3886/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3887/// vector of zero or undef vector.  This produces a shuffle where the low
3888/// element of V2 is swizzled into the zero/undef vector, landing at element
3889/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3890static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3891                                             bool isZero, bool HasSSE2,
3892                                             SelectionDAG &DAG) {
3893  EVT VT = V2.getValueType();
3894  SDValue V1 = isZero
3895    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3896  unsigned NumElems = VT.getVectorNumElements();
3897  SmallVector<int, 16> MaskVec;
3898  for (unsigned i = 0; i != NumElems; ++i)
3899    // If this is the insertion idx, put the low elt of V2 here.
3900    MaskVec.push_back(i == Idx ? NumElems : i);
3901  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3902}
3903
3904/// getShuffleScalarElt - Returns the scalar element that will make up the ith
3905/// element of the result of the vector shuffle.
3906static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
3907                                   unsigned Depth) {
3908  if (Depth == 6)
3909    return SDValue();  // Limit search depth.
3910
3911  SDValue V = SDValue(N, 0);
3912  EVT VT = V.getValueType();
3913  unsigned Opcode = V.getOpcode();
3914
3915  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3916  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3917    Index = SV->getMaskElt(Index);
3918
3919    if (Index < 0)
3920      return DAG.getUNDEF(VT.getVectorElementType());
3921
3922    int NumElems = VT.getVectorNumElements();
3923    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3924    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
3925  }
3926
3927  // Recurse into target specific vector shuffles to find scalars.
3928  if (isTargetShuffle(Opcode)) {
3929    int NumElems = VT.getVectorNumElements();
3930    SmallVector<unsigned, 16> ShuffleMask;
3931    SDValue ImmN;
3932
3933    switch(Opcode) {
3934    case X86ISD::SHUFPS:
3935    case X86ISD::SHUFPD:
3936      ImmN = N->getOperand(N->getNumOperands()-1);
3937      DecodeSHUFPSMask(NumElems,
3938                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
3939                       ShuffleMask);
3940      break;
3941    case X86ISD::PUNPCKHBW:
3942    case X86ISD::PUNPCKHWD:
3943    case X86ISD::PUNPCKHDQ:
3944    case X86ISD::PUNPCKHQDQ:
3945      DecodePUNPCKHMask(NumElems, ShuffleMask);
3946      break;
3947    case X86ISD::UNPCKHPS:
3948    case X86ISD::UNPCKHPD:
3949      DecodeUNPCKHPMask(NumElems, ShuffleMask);
3950      break;
3951    case X86ISD::PUNPCKLBW:
3952    case X86ISD::PUNPCKLWD:
3953    case X86ISD::PUNPCKLDQ:
3954    case X86ISD::PUNPCKLQDQ:
3955      DecodePUNPCKLMask(VT, ShuffleMask);
3956      break;
3957    case X86ISD::UNPCKLPS:
3958    case X86ISD::UNPCKLPD:
3959    case X86ISD::VUNPCKLPS:
3960    case X86ISD::VUNPCKLPD:
3961    case X86ISD::VUNPCKLPSY:
3962    case X86ISD::VUNPCKLPDY:
3963      DecodeUNPCKLPMask(VT, ShuffleMask);
3964      break;
3965    case X86ISD::MOVHLPS:
3966      DecodeMOVHLPSMask(NumElems, ShuffleMask);
3967      break;
3968    case X86ISD::MOVLHPS:
3969      DecodeMOVLHPSMask(NumElems, ShuffleMask);
3970      break;
3971    case X86ISD::PSHUFD:
3972      ImmN = N->getOperand(N->getNumOperands()-1);
3973      DecodePSHUFMask(NumElems,
3974                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
3975                      ShuffleMask);
3976      break;
3977    case X86ISD::PSHUFHW:
3978      ImmN = N->getOperand(N->getNumOperands()-1);
3979      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3980                        ShuffleMask);
3981      break;
3982    case X86ISD::PSHUFLW:
3983      ImmN = N->getOperand(N->getNumOperands()-1);
3984      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3985                        ShuffleMask);
3986      break;
3987    case X86ISD::MOVSS:
3988    case X86ISD::MOVSD: {
3989      // The index 0 always comes from the first element of the second source,
3990      // this is why MOVSS and MOVSD are used in the first place. The other
3991      // elements come from the other positions of the first source vector.
3992      unsigned OpNum = (Index == 0) ? 1 : 0;
3993      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
3994                                 Depth+1);
3995    }
3996    default:
3997      assert("not implemented for target shuffle node");
3998      return SDValue();
3999    }
4000
4001    Index = ShuffleMask[Index];
4002    if (Index < 0)
4003      return DAG.getUNDEF(VT.getVectorElementType());
4004
4005    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4006    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4007                               Depth+1);
4008  }
4009
4010  // Actual nodes that may contain scalar elements
4011  if (Opcode == ISD::BITCAST) {
4012    V = V.getOperand(0);
4013    EVT SrcVT = V.getValueType();
4014    unsigned NumElems = VT.getVectorNumElements();
4015
4016    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4017      return SDValue();
4018  }
4019
4020  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4021    return (Index == 0) ? V.getOperand(0)
4022                          : DAG.getUNDEF(VT.getVectorElementType());
4023
4024  if (V.getOpcode() == ISD::BUILD_VECTOR)
4025    return V.getOperand(Index);
4026
4027  return SDValue();
4028}
4029
4030/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4031/// shuffle operation which come from a consecutively from a zero. The
4032/// search can start in two different directions, from left or right.
4033static
4034unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4035                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4036  int i = 0;
4037
4038  while (i < NumElems) {
4039    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4040    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4041    if (!(Elt.getNode() &&
4042         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4043      break;
4044    ++i;
4045  }
4046
4047  return i;
4048}
4049
4050/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4051/// MaskE correspond consecutively to elements from one of the vector operands,
4052/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4053static
4054bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4055                              int OpIdx, int NumElems, unsigned &OpNum) {
4056  bool SeenV1 = false;
4057  bool SeenV2 = false;
4058
4059  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4060    int Idx = SVOp->getMaskElt(i);
4061    // Ignore undef indicies
4062    if (Idx < 0)
4063      continue;
4064
4065    if (Idx < NumElems)
4066      SeenV1 = true;
4067    else
4068      SeenV2 = true;
4069
4070    // Only accept consecutive elements from the same vector
4071    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4072      return false;
4073  }
4074
4075  OpNum = SeenV1 ? 0 : 1;
4076  return true;
4077}
4078
4079/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4080/// logical left shift of a vector.
4081static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4082                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4083  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4084  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4085              false /* check zeros from right */, DAG);
4086  unsigned OpSrc;
4087
4088  if (!NumZeros)
4089    return false;
4090
4091  // Considering the elements in the mask that are not consecutive zeros,
4092  // check if they consecutively come from only one of the source vectors.
4093  //
4094  //               V1 = {X, A, B, C}     0
4095  //                         \  \  \    /
4096  //   vector_shuffle V1, V2 <1, 2, 3, X>
4097  //
4098  if (!isShuffleMaskConsecutive(SVOp,
4099            0,                   // Mask Start Index
4100            NumElems-NumZeros-1, // Mask End Index
4101            NumZeros,            // Where to start looking in the src vector
4102            NumElems,            // Number of elements in vector
4103            OpSrc))              // Which source operand ?
4104    return false;
4105
4106  isLeft = false;
4107  ShAmt = NumZeros;
4108  ShVal = SVOp->getOperand(OpSrc);
4109  return true;
4110}
4111
4112/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4113/// logical left shift of a vector.
4114static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4115                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4116  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4117  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4118              true /* check zeros from left */, DAG);
4119  unsigned OpSrc;
4120
4121  if (!NumZeros)
4122    return false;
4123
4124  // Considering the elements in the mask that are not consecutive zeros,
4125  // check if they consecutively come from only one of the source vectors.
4126  //
4127  //                           0    { A, B, X, X } = V2
4128  //                          / \    /  /
4129  //   vector_shuffle V1, V2 <X, X, 4, 5>
4130  //
4131  if (!isShuffleMaskConsecutive(SVOp,
4132            NumZeros,     // Mask Start Index
4133            NumElems-1,   // Mask End Index
4134            0,            // Where to start looking in the src vector
4135            NumElems,     // Number of elements in vector
4136            OpSrc))       // Which source operand ?
4137    return false;
4138
4139  isLeft = true;
4140  ShAmt = NumZeros;
4141  ShVal = SVOp->getOperand(OpSrc);
4142  return true;
4143}
4144
4145/// isVectorShift - Returns true if the shuffle can be implemented as a
4146/// logical left or right shift of a vector.
4147static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4148                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4149  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4150      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4151    return true;
4152
4153  return false;
4154}
4155
4156/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4157///
4158static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4159                                       unsigned NumNonZero, unsigned NumZero,
4160                                       SelectionDAG &DAG,
4161                                       const TargetLowering &TLI) {
4162  if (NumNonZero > 8)
4163    return SDValue();
4164
4165  DebugLoc dl = Op.getDebugLoc();
4166  SDValue V(0, 0);
4167  bool First = true;
4168  for (unsigned i = 0; i < 16; ++i) {
4169    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4170    if (ThisIsNonZero && First) {
4171      if (NumZero)
4172        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4173      else
4174        V = DAG.getUNDEF(MVT::v8i16);
4175      First = false;
4176    }
4177
4178    if ((i & 1) != 0) {
4179      SDValue ThisElt(0, 0), LastElt(0, 0);
4180      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4181      if (LastIsNonZero) {
4182        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4183                              MVT::i16, Op.getOperand(i-1));
4184      }
4185      if (ThisIsNonZero) {
4186        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4187        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4188                              ThisElt, DAG.getConstant(8, MVT::i8));
4189        if (LastIsNonZero)
4190          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4191      } else
4192        ThisElt = LastElt;
4193
4194      if (ThisElt.getNode())
4195        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4196                        DAG.getIntPtrConstant(i/2));
4197    }
4198  }
4199
4200  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4201}
4202
4203/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4204///
4205static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4206                                     unsigned NumNonZero, unsigned NumZero,
4207                                     SelectionDAG &DAG,
4208                                     const TargetLowering &TLI) {
4209  if (NumNonZero > 4)
4210    return SDValue();
4211
4212  DebugLoc dl = Op.getDebugLoc();
4213  SDValue V(0, 0);
4214  bool First = true;
4215  for (unsigned i = 0; i < 8; ++i) {
4216    bool isNonZero = (NonZeros & (1 << i)) != 0;
4217    if (isNonZero) {
4218      if (First) {
4219        if (NumZero)
4220          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4221        else
4222          V = DAG.getUNDEF(MVT::v8i16);
4223        First = false;
4224      }
4225      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4226                      MVT::v8i16, V, Op.getOperand(i),
4227                      DAG.getIntPtrConstant(i));
4228    }
4229  }
4230
4231  return V;
4232}
4233
4234/// getVShift - Return a vector logical shift node.
4235///
4236static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4237                         unsigned NumBits, SelectionDAG &DAG,
4238                         const TargetLowering &TLI, DebugLoc dl) {
4239  EVT ShVT = MVT::v2i64;
4240  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4241  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4242  return DAG.getNode(ISD::BITCAST, dl, VT,
4243                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4244                             DAG.getConstant(NumBits,
4245                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4246}
4247
4248SDValue
4249X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4250                                          SelectionDAG &DAG) const {
4251
4252  // Check if the scalar load can be widened into a vector load. And if
4253  // the address is "base + cst" see if the cst can be "absorbed" into
4254  // the shuffle mask.
4255  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4256    SDValue Ptr = LD->getBasePtr();
4257    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4258      return SDValue();
4259    EVT PVT = LD->getValueType(0);
4260    if (PVT != MVT::i32 && PVT != MVT::f32)
4261      return SDValue();
4262
4263    int FI = -1;
4264    int64_t Offset = 0;
4265    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4266      FI = FINode->getIndex();
4267      Offset = 0;
4268    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4269               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4270      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4271      Offset = Ptr.getConstantOperandVal(1);
4272      Ptr = Ptr.getOperand(0);
4273    } else {
4274      return SDValue();
4275    }
4276
4277    SDValue Chain = LD->getChain();
4278    // Make sure the stack object alignment is at least 16.
4279    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4280    if (DAG.InferPtrAlignment(Ptr) < 16) {
4281      if (MFI->isFixedObjectIndex(FI)) {
4282        // Can't change the alignment. FIXME: It's possible to compute
4283        // the exact stack offset and reference FI + adjust offset instead.
4284        // If someone *really* cares about this. That's the way to implement it.
4285        return SDValue();
4286      } else {
4287        MFI->setObjectAlignment(FI, 16);
4288      }
4289    }
4290
4291    // (Offset % 16) must be multiple of 4. Then address is then
4292    // Ptr + (Offset & ~15).
4293    if (Offset < 0)
4294      return SDValue();
4295    if ((Offset % 16) & 3)
4296      return SDValue();
4297    int64_t StartOffset = Offset & ~15;
4298    if (StartOffset)
4299      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4300                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4301
4302    int EltNo = (Offset - StartOffset) >> 2;
4303    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4304    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4305    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4306                             LD->getPointerInfo().getWithOffset(StartOffset),
4307                             false, false, 0);
4308    // Canonicalize it to a v4i32 shuffle.
4309    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
4310    return DAG.getNode(ISD::BITCAST, dl, VT,
4311                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4312                                            DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4313  }
4314
4315  return SDValue();
4316}
4317
4318/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4319/// vector of type 'VT', see if the elements can be replaced by a single large
4320/// load which has the same value as a build_vector whose operands are 'elts'.
4321///
4322/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4323///
4324/// FIXME: we'd also like to handle the case where the last elements are zero
4325/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4326/// There's even a handy isZeroNode for that purpose.
4327static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4328                                        DebugLoc &DL, SelectionDAG &DAG) {
4329  EVT EltVT = VT.getVectorElementType();
4330  unsigned NumElems = Elts.size();
4331
4332  LoadSDNode *LDBase = NULL;
4333  unsigned LastLoadedElt = -1U;
4334
4335  // For each element in the initializer, see if we've found a load or an undef.
4336  // If we don't find an initial load element, or later load elements are
4337  // non-consecutive, bail out.
4338  for (unsigned i = 0; i < NumElems; ++i) {
4339    SDValue Elt = Elts[i];
4340
4341    if (!Elt.getNode() ||
4342        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4343      return SDValue();
4344    if (!LDBase) {
4345      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4346        return SDValue();
4347      LDBase = cast<LoadSDNode>(Elt.getNode());
4348      LastLoadedElt = i;
4349      continue;
4350    }
4351    if (Elt.getOpcode() == ISD::UNDEF)
4352      continue;
4353
4354    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4355    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4356      return SDValue();
4357    LastLoadedElt = i;
4358  }
4359
4360  // If we have found an entire vector of loads and undefs, then return a large
4361  // load of the entire vector width starting at the base pointer.  If we found
4362  // consecutive loads for the low half, generate a vzext_load node.
4363  if (LastLoadedElt == NumElems - 1) {
4364    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4365      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4366                         LDBase->getPointerInfo(),
4367                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4368    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4369                       LDBase->getPointerInfo(),
4370                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4371                       LDBase->getAlignment());
4372  } else if (NumElems == 4 && LastLoadedElt == 1) {
4373    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4374    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4375    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4376                                              Ops, 2, MVT::i32,
4377                                              LDBase->getMemOperand());
4378    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4379  }
4380  return SDValue();
4381}
4382
4383SDValue
4384X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4385  DebugLoc dl = Op.getDebugLoc();
4386
4387  EVT VT = Op.getValueType();
4388  EVT ExtVT = VT.getVectorElementType();
4389
4390  unsigned NumElems = Op.getNumOperands();
4391
4392  // For AVX-length vectors, build the individual 128-bit pieces and
4393  // use shuffles to put them in place.
4394  if (VT.getSizeInBits() > 256 &&
4395      Subtarget->hasAVX() &&
4396      !ISD::isBuildVectorAllZeros(Op.getNode())) {
4397    SmallVector<SDValue, 8> V;
4398    V.resize(NumElems);
4399    for (unsigned i = 0; i < NumElems; ++i) {
4400      V[i] = Op.getOperand(i);
4401    }
4402
4403    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
4404
4405    // Build the lower subvector.
4406    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
4407    // Build the upper subvector.
4408    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
4409                                NumElems/2);
4410
4411    return ConcatVectors(Lower, Upper, DAG);
4412  }
4413
4414  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4415  // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4416  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4417  // is present, so AllOnes is ignored.
4418  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4419      (Op.getValueType().getSizeInBits() != 256 &&
4420       ISD::isBuildVectorAllOnes(Op.getNode()))) {
4421    // Canonicalize this to <4 x i32> (SSE) to
4422    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4423    // eliminated on x86-32 hosts.
4424    if (Op.getValueType() == MVT::v4i32)
4425      return Op;
4426
4427    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4428      return getOnesVector(Op.getValueType(), DAG, dl);
4429    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4430  }
4431
4432  unsigned EVTBits = ExtVT.getSizeInBits();
4433
4434  unsigned NumZero  = 0;
4435  unsigned NumNonZero = 0;
4436  unsigned NonZeros = 0;
4437  bool IsAllConstants = true;
4438  SmallSet<SDValue, 8> Values;
4439  for (unsigned i = 0; i < NumElems; ++i) {
4440    SDValue Elt = Op.getOperand(i);
4441    if (Elt.getOpcode() == ISD::UNDEF)
4442      continue;
4443    Values.insert(Elt);
4444    if (Elt.getOpcode() != ISD::Constant &&
4445        Elt.getOpcode() != ISD::ConstantFP)
4446      IsAllConstants = false;
4447    if (X86::isZeroNode(Elt))
4448      NumZero++;
4449    else {
4450      NonZeros |= (1 << i);
4451      NumNonZero++;
4452    }
4453  }
4454
4455  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4456  if (NumNonZero == 0)
4457    return DAG.getUNDEF(VT);
4458
4459  // Special case for single non-zero, non-undef, element.
4460  if (NumNonZero == 1) {
4461    unsigned Idx = CountTrailingZeros_32(NonZeros);
4462    SDValue Item = Op.getOperand(Idx);
4463
4464    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4465    // the value are obviously zero, truncate the value to i32 and do the
4466    // insertion that way.  Only do this if the value is non-constant or if the
4467    // value is a constant being inserted into element 0.  It is cheaper to do
4468    // a constant pool load than it is to do a movd + shuffle.
4469    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4470        (!IsAllConstants || Idx == 0)) {
4471      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4472        // Handle SSE only.
4473        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4474        EVT VecVT = MVT::v4i32;
4475        unsigned VecElts = 4;
4476
4477        // Truncate the value (which may itself be a constant) to i32, and
4478        // convert it to a vector with movd (S2V+shuffle to zero extend).
4479        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4480        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4481        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4482                                           Subtarget->hasSSE2(), DAG);
4483
4484        // Now we have our 32-bit value zero extended in the low element of
4485        // a vector.  If Idx != 0, swizzle it into place.
4486        if (Idx != 0) {
4487          SmallVector<int, 4> Mask;
4488          Mask.push_back(Idx);
4489          for (unsigned i = 1; i != VecElts; ++i)
4490            Mask.push_back(i);
4491          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4492                                      DAG.getUNDEF(Item.getValueType()),
4493                                      &Mask[0]);
4494        }
4495        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
4496      }
4497    }
4498
4499    // If we have a constant or non-constant insertion into the low element of
4500    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4501    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4502    // depending on what the source datatype is.
4503    if (Idx == 0) {
4504      if (NumZero == 0) {
4505        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4506      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4507          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4508        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4509        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4510        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4511                                           DAG);
4512      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4513        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4514        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4515        EVT MiddleVT = MVT::v4i32;
4516        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4517        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4518                                           Subtarget->hasSSE2(), DAG);
4519        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
4520      }
4521    }
4522
4523    // Is it a vector logical left shift?
4524    if (NumElems == 2 && Idx == 1 &&
4525        X86::isZeroNode(Op.getOperand(0)) &&
4526        !X86::isZeroNode(Op.getOperand(1))) {
4527      unsigned NumBits = VT.getSizeInBits();
4528      return getVShift(true, VT,
4529                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4530                                   VT, Op.getOperand(1)),
4531                       NumBits/2, DAG, *this, dl);
4532    }
4533
4534    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4535      return SDValue();
4536
4537    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4538    // is a non-constant being inserted into an element other than the low one,
4539    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4540    // movd/movss) to move this into the low element, then shuffle it into
4541    // place.
4542    if (EVTBits == 32) {
4543      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4544
4545      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4546      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4547                                         Subtarget->hasSSE2(), DAG);
4548      SmallVector<int, 8> MaskVec;
4549      for (unsigned i = 0; i < NumElems; i++)
4550        MaskVec.push_back(i == Idx ? 0 : 1);
4551      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4552    }
4553  }
4554
4555  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4556  if (Values.size() == 1) {
4557    if (EVTBits == 32) {
4558      // Instead of a shuffle like this:
4559      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4560      // Check if it's possible to issue this instead.
4561      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4562      unsigned Idx = CountTrailingZeros_32(NonZeros);
4563      SDValue Item = Op.getOperand(Idx);
4564      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4565        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4566    }
4567    return SDValue();
4568  }
4569
4570  // A vector full of immediates; various special cases are already
4571  // handled, so this is best done with a single constant-pool load.
4572  if (IsAllConstants)
4573    return SDValue();
4574
4575  // Let legalizer expand 2-wide build_vectors.
4576  if (EVTBits == 64) {
4577    if (NumNonZero == 1) {
4578      // One half is zero or undef.
4579      unsigned Idx = CountTrailingZeros_32(NonZeros);
4580      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4581                                 Op.getOperand(Idx));
4582      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4583                                         Subtarget->hasSSE2(), DAG);
4584    }
4585    return SDValue();
4586  }
4587
4588  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4589  if (EVTBits == 8 && NumElems == 16) {
4590    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4591                                        *this);
4592    if (V.getNode()) return V;
4593  }
4594
4595  if (EVTBits == 16 && NumElems == 8) {
4596    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4597                                      *this);
4598    if (V.getNode()) return V;
4599  }
4600
4601  // If element VT is == 32 bits, turn it into a number of shuffles.
4602  SmallVector<SDValue, 8> V;
4603  V.resize(NumElems);
4604  if (NumElems == 4 && NumZero > 0) {
4605    for (unsigned i = 0; i < 4; ++i) {
4606      bool isZero = !(NonZeros & (1 << i));
4607      if (isZero)
4608        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4609      else
4610        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4611    }
4612
4613    for (unsigned i = 0; i < 2; ++i) {
4614      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4615        default: break;
4616        case 0:
4617          V[i] = V[i*2];  // Must be a zero vector.
4618          break;
4619        case 1:
4620          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4621          break;
4622        case 2:
4623          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4624          break;
4625        case 3:
4626          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4627          break;
4628      }
4629    }
4630
4631    SmallVector<int, 8> MaskVec;
4632    bool Reverse = (NonZeros & 0x3) == 2;
4633    for (unsigned i = 0; i < 2; ++i)
4634      MaskVec.push_back(Reverse ? 1-i : i);
4635    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4636    for (unsigned i = 0; i < 2; ++i)
4637      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4638    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4639  }
4640
4641  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4642    // Check for a build vector of consecutive loads.
4643    for (unsigned i = 0; i < NumElems; ++i)
4644      V[i] = Op.getOperand(i);
4645
4646    // Check for elements which are consecutive loads.
4647    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4648    if (LD.getNode())
4649      return LD;
4650
4651    // For SSE 4.1, use insertps to put the high elements into the low element.
4652    if (getSubtarget()->hasSSE41()) {
4653      SDValue Result;
4654      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4655        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4656      else
4657        Result = DAG.getUNDEF(VT);
4658
4659      for (unsigned i = 1; i < NumElems; ++i) {
4660        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4661        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4662                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4663      }
4664      return Result;
4665    }
4666
4667    // Otherwise, expand into a number of unpckl*, start by extending each of
4668    // our (non-undef) elements to the full vector width with the element in the
4669    // bottom slot of the vector (which generates no code for SSE).
4670    for (unsigned i = 0; i < NumElems; ++i) {
4671      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4672        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4673      else
4674        V[i] = DAG.getUNDEF(VT);
4675    }
4676
4677    // Next, we iteratively mix elements, e.g. for v4f32:
4678    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4679    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4680    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4681    unsigned EltStride = NumElems >> 1;
4682    while (EltStride != 0) {
4683      for (unsigned i = 0; i < EltStride; ++i) {
4684        // If V[i+EltStride] is undef and this is the first round of mixing,
4685        // then it is safe to just drop this shuffle: V[i] is already in the
4686        // right place, the one element (since it's the first round) being
4687        // inserted as undef can be dropped.  This isn't safe for successive
4688        // rounds because they will permute elements within both vectors.
4689        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4690            EltStride == NumElems/2)
4691          continue;
4692
4693        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4694      }
4695      EltStride >>= 1;
4696    }
4697    return V[0];
4698  }
4699  return SDValue();
4700}
4701
4702SDValue
4703X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4704  // We support concatenate two MMX registers and place them in a MMX
4705  // register.  This is better than doing a stack convert.
4706  DebugLoc dl = Op.getDebugLoc();
4707  EVT ResVT = Op.getValueType();
4708  assert(Op.getNumOperands() == 2);
4709  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4710         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4711  int Mask[2];
4712  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
4713  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4714  InVec = Op.getOperand(1);
4715  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4716    unsigned NumElts = ResVT.getVectorNumElements();
4717    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4718    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4719                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4720  } else {
4721    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
4722    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4723    Mask[0] = 0; Mask[1] = 2;
4724    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4725  }
4726  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4727}
4728
4729// v8i16 shuffles - Prefer shuffles in the following order:
4730// 1. [all]   pshuflw, pshufhw, optional move
4731// 2. [ssse3] 1 x pshufb
4732// 3. [ssse3] 2 x pshufb + 1 x por
4733// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4734SDValue
4735X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4736                                            SelectionDAG &DAG) const {
4737  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4738  SDValue V1 = SVOp->getOperand(0);
4739  SDValue V2 = SVOp->getOperand(1);
4740  DebugLoc dl = SVOp->getDebugLoc();
4741  SmallVector<int, 8> MaskVals;
4742
4743  // Determine if more than 1 of the words in each of the low and high quadwords
4744  // of the result come from the same quadword of one of the two inputs.  Undef
4745  // mask values count as coming from any quadword, for better codegen.
4746  SmallVector<unsigned, 4> LoQuad(4);
4747  SmallVector<unsigned, 4> HiQuad(4);
4748  BitVector InputQuads(4);
4749  for (unsigned i = 0; i < 8; ++i) {
4750    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4751    int EltIdx = SVOp->getMaskElt(i);
4752    MaskVals.push_back(EltIdx);
4753    if (EltIdx < 0) {
4754      ++Quad[0];
4755      ++Quad[1];
4756      ++Quad[2];
4757      ++Quad[3];
4758      continue;
4759    }
4760    ++Quad[EltIdx / 4];
4761    InputQuads.set(EltIdx / 4);
4762  }
4763
4764  int BestLoQuad = -1;
4765  unsigned MaxQuad = 1;
4766  for (unsigned i = 0; i < 4; ++i) {
4767    if (LoQuad[i] > MaxQuad) {
4768      BestLoQuad = i;
4769      MaxQuad = LoQuad[i];
4770    }
4771  }
4772
4773  int BestHiQuad = -1;
4774  MaxQuad = 1;
4775  for (unsigned i = 0; i < 4; ++i) {
4776    if (HiQuad[i] > MaxQuad) {
4777      BestHiQuad = i;
4778      MaxQuad = HiQuad[i];
4779    }
4780  }
4781
4782  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4783  // of the two input vectors, shuffle them into one input vector so only a
4784  // single pshufb instruction is necessary. If There are more than 2 input
4785  // quads, disable the next transformation since it does not help SSSE3.
4786  bool V1Used = InputQuads[0] || InputQuads[1];
4787  bool V2Used = InputQuads[2] || InputQuads[3];
4788  if (Subtarget->hasSSSE3()) {
4789    if (InputQuads.count() == 2 && V1Used && V2Used) {
4790      BestLoQuad = InputQuads.find_first();
4791      BestHiQuad = InputQuads.find_next(BestLoQuad);
4792    }
4793    if (InputQuads.count() > 2) {
4794      BestLoQuad = -1;
4795      BestHiQuad = -1;
4796    }
4797  }
4798
4799  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4800  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4801  // words from all 4 input quadwords.
4802  SDValue NewV;
4803  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4804    SmallVector<int, 8> MaskV;
4805    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4806    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4807    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4808                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
4809                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
4810    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
4811
4812    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4813    // source words for the shuffle, to aid later transformations.
4814    bool AllWordsInNewV = true;
4815    bool InOrder[2] = { true, true };
4816    for (unsigned i = 0; i != 8; ++i) {
4817      int idx = MaskVals[i];
4818      if (idx != (int)i)
4819        InOrder[i/4] = false;
4820      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4821        continue;
4822      AllWordsInNewV = false;
4823      break;
4824    }
4825
4826    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4827    if (AllWordsInNewV) {
4828      for (int i = 0; i != 8; ++i) {
4829        int idx = MaskVals[i];
4830        if (idx < 0)
4831          continue;
4832        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4833        if ((idx != i) && idx < 4)
4834          pshufhw = false;
4835        if ((idx != i) && idx > 3)
4836          pshuflw = false;
4837      }
4838      V1 = NewV;
4839      V2Used = false;
4840      BestLoQuad = 0;
4841      BestHiQuad = 1;
4842    }
4843
4844    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4845    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4846    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4847      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4848      unsigned TargetMask = 0;
4849      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4850                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4851      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4852                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4853      V1 = NewV.getOperand(0);
4854      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4855    }
4856  }
4857
4858  // If we have SSSE3, and all words of the result are from 1 input vector,
4859  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4860  // is present, fall back to case 4.
4861  if (Subtarget->hasSSSE3()) {
4862    SmallVector<SDValue,16> pshufbMask;
4863
4864    // If we have elements from both input vectors, set the high bit of the
4865    // shuffle mask element to zero out elements that come from V2 in the V1
4866    // mask, and elements that come from V1 in the V2 mask, so that the two
4867    // results can be OR'd together.
4868    bool TwoInputs = V1Used && V2Used;
4869    for (unsigned i = 0; i != 8; ++i) {
4870      int EltIdx = MaskVals[i] * 2;
4871      if (TwoInputs && (EltIdx >= 16)) {
4872        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4873        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4874        continue;
4875      }
4876      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4877      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4878    }
4879    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
4880    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4881                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4882                                 MVT::v16i8, &pshufbMask[0], 16));
4883    if (!TwoInputs)
4884      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4885
4886    // Calculate the shuffle mask for the second input, shuffle it, and
4887    // OR it with the first shuffled input.
4888    pshufbMask.clear();
4889    for (unsigned i = 0; i != 8; ++i) {
4890      int EltIdx = MaskVals[i] * 2;
4891      if (EltIdx < 16) {
4892        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4893        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4894        continue;
4895      }
4896      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4897      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4898    }
4899    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
4900    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4901                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4902                                 MVT::v16i8, &pshufbMask[0], 16));
4903    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4904    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4905  }
4906
4907  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4908  // and update MaskVals with new element order.
4909  BitVector InOrder(8);
4910  if (BestLoQuad >= 0) {
4911    SmallVector<int, 8> MaskV;
4912    for (int i = 0; i != 4; ++i) {
4913      int idx = MaskVals[i];
4914      if (idx < 0) {
4915        MaskV.push_back(-1);
4916        InOrder.set(i);
4917      } else if ((idx / 4) == BestLoQuad) {
4918        MaskV.push_back(idx & 3);
4919        InOrder.set(i);
4920      } else {
4921        MaskV.push_back(-1);
4922      }
4923    }
4924    for (unsigned i = 4; i != 8; ++i)
4925      MaskV.push_back(i);
4926    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4927                                &MaskV[0]);
4928
4929    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4930      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4931                               NewV.getOperand(0),
4932                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4933                               DAG);
4934  }
4935
4936  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4937  // and update MaskVals with the new element order.
4938  if (BestHiQuad >= 0) {
4939    SmallVector<int, 8> MaskV;
4940    for (unsigned i = 0; i != 4; ++i)
4941      MaskV.push_back(i);
4942    for (unsigned i = 4; i != 8; ++i) {
4943      int idx = MaskVals[i];
4944      if (idx < 0) {
4945        MaskV.push_back(-1);
4946        InOrder.set(i);
4947      } else if ((idx / 4) == BestHiQuad) {
4948        MaskV.push_back((idx & 3) + 4);
4949        InOrder.set(i);
4950      } else {
4951        MaskV.push_back(-1);
4952      }
4953    }
4954    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4955                                &MaskV[0]);
4956
4957    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4958      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4959                              NewV.getOperand(0),
4960                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4961                              DAG);
4962  }
4963
4964  // In case BestHi & BestLo were both -1, which means each quadword has a word
4965  // from each of the four input quadwords, calculate the InOrder bitvector now
4966  // before falling through to the insert/extract cleanup.
4967  if (BestLoQuad == -1 && BestHiQuad == -1) {
4968    NewV = V1;
4969    for (int i = 0; i != 8; ++i)
4970      if (MaskVals[i] < 0 || MaskVals[i] == i)
4971        InOrder.set(i);
4972  }
4973
4974  // The other elements are put in the right place using pextrw and pinsrw.
4975  for (unsigned i = 0; i != 8; ++i) {
4976    if (InOrder[i])
4977      continue;
4978    int EltIdx = MaskVals[i];
4979    if (EltIdx < 0)
4980      continue;
4981    SDValue ExtOp = (EltIdx < 8)
4982    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4983                  DAG.getIntPtrConstant(EltIdx))
4984    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4985                  DAG.getIntPtrConstant(EltIdx - 8));
4986    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4987                       DAG.getIntPtrConstant(i));
4988  }
4989  return NewV;
4990}
4991
4992// v16i8 shuffles - Prefer shuffles in the following order:
4993// 1. [ssse3] 1 x pshufb
4994// 2. [ssse3] 2 x pshufb + 1 x por
4995// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4996static
4997SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4998                                 SelectionDAG &DAG,
4999                                 const X86TargetLowering &TLI) {
5000  SDValue V1 = SVOp->getOperand(0);
5001  SDValue V2 = SVOp->getOperand(1);
5002  DebugLoc dl = SVOp->getDebugLoc();
5003  SmallVector<int, 16> MaskVals;
5004  SVOp->getMask(MaskVals);
5005
5006  // If we have SSSE3, case 1 is generated when all result bytes come from
5007  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5008  // present, fall back to case 3.
5009  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5010  bool V1Only = true;
5011  bool V2Only = true;
5012  for (unsigned i = 0; i < 16; ++i) {
5013    int EltIdx = MaskVals[i];
5014    if (EltIdx < 0)
5015      continue;
5016    if (EltIdx < 16)
5017      V2Only = false;
5018    else
5019      V1Only = false;
5020  }
5021
5022  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5023  if (TLI.getSubtarget()->hasSSSE3()) {
5024    SmallVector<SDValue,16> pshufbMask;
5025
5026    // If all result elements are from one input vector, then only translate
5027    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5028    //
5029    // Otherwise, we have elements from both input vectors, and must zero out
5030    // elements that come from V2 in the first mask, and V1 in the second mask
5031    // so that we can OR them together.
5032    bool TwoInputs = !(V1Only || V2Only);
5033    for (unsigned i = 0; i != 16; ++i) {
5034      int EltIdx = MaskVals[i];
5035      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5036        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5037        continue;
5038      }
5039      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5040    }
5041    // If all the elements are from V2, assign it to V1 and return after
5042    // building the first pshufb.
5043    if (V2Only)
5044      V1 = V2;
5045    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5046                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5047                                 MVT::v16i8, &pshufbMask[0], 16));
5048    if (!TwoInputs)
5049      return V1;
5050
5051    // Calculate the shuffle mask for the second input, shuffle it, and
5052    // OR it with the first shuffled input.
5053    pshufbMask.clear();
5054    for (unsigned i = 0; i != 16; ++i) {
5055      int EltIdx = MaskVals[i];
5056      if (EltIdx < 16) {
5057        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5058        continue;
5059      }
5060      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5061    }
5062    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5063                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5064                                 MVT::v16i8, &pshufbMask[0], 16));
5065    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5066  }
5067
5068  // No SSSE3 - Calculate in place words and then fix all out of place words
5069  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5070  // the 16 different words that comprise the two doublequadword input vectors.
5071  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5072  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5073  SDValue NewV = V2Only ? V2 : V1;
5074  for (int i = 0; i != 8; ++i) {
5075    int Elt0 = MaskVals[i*2];
5076    int Elt1 = MaskVals[i*2+1];
5077
5078    // This word of the result is all undef, skip it.
5079    if (Elt0 < 0 && Elt1 < 0)
5080      continue;
5081
5082    // This word of the result is already in the correct place, skip it.
5083    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5084      continue;
5085    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5086      continue;
5087
5088    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5089    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5090    SDValue InsElt;
5091
5092    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5093    // using a single extract together, load it and store it.
5094    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5095      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5096                           DAG.getIntPtrConstant(Elt1 / 2));
5097      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5098                        DAG.getIntPtrConstant(i));
5099      continue;
5100    }
5101
5102    // If Elt1 is defined, extract it from the appropriate source.  If the
5103    // source byte is not also odd, shift the extracted word left 8 bits
5104    // otherwise clear the bottom 8 bits if we need to do an or.
5105    if (Elt1 >= 0) {
5106      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5107                           DAG.getIntPtrConstant(Elt1 / 2));
5108      if ((Elt1 & 1) == 0)
5109        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5110                             DAG.getConstant(8,
5111                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5112      else if (Elt0 >= 0)
5113        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5114                             DAG.getConstant(0xFF00, MVT::i16));
5115    }
5116    // If Elt0 is defined, extract it from the appropriate source.  If the
5117    // source byte is not also even, shift the extracted word right 8 bits. If
5118    // Elt1 was also defined, OR the extracted values together before
5119    // inserting them in the result.
5120    if (Elt0 >= 0) {
5121      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5122                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5123      if ((Elt0 & 1) != 0)
5124        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5125                              DAG.getConstant(8,
5126                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5127      else if (Elt1 >= 0)
5128        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5129                             DAG.getConstant(0x00FF, MVT::i16));
5130      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5131                         : InsElt0;
5132    }
5133    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5134                       DAG.getIntPtrConstant(i));
5135  }
5136  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5137}
5138
5139/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5140/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5141/// done when every pair / quad of shuffle mask elements point to elements in
5142/// the right sequence. e.g.
5143/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5144static
5145SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5146                                 SelectionDAG &DAG, DebugLoc dl) {
5147  EVT VT = SVOp->getValueType(0);
5148  SDValue V1 = SVOp->getOperand(0);
5149  SDValue V2 = SVOp->getOperand(1);
5150  unsigned NumElems = VT.getVectorNumElements();
5151  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5152  EVT NewVT;
5153  switch (VT.getSimpleVT().SimpleTy) {
5154  default: assert(false && "Unexpected!");
5155  case MVT::v4f32: NewVT = MVT::v2f64; break;
5156  case MVT::v4i32: NewVT = MVT::v2i64; break;
5157  case MVT::v8i16: NewVT = MVT::v4i32; break;
5158  case MVT::v16i8: NewVT = MVT::v4i32; break;
5159  }
5160
5161  int Scale = NumElems / NewWidth;
5162  SmallVector<int, 8> MaskVec;
5163  for (unsigned i = 0; i < NumElems; i += Scale) {
5164    int StartIdx = -1;
5165    for (int j = 0; j < Scale; ++j) {
5166      int EltIdx = SVOp->getMaskElt(i+j);
5167      if (EltIdx < 0)
5168        continue;
5169      if (StartIdx == -1)
5170        StartIdx = EltIdx - (EltIdx % Scale);
5171      if (EltIdx != StartIdx + j)
5172        return SDValue();
5173    }
5174    if (StartIdx == -1)
5175      MaskVec.push_back(-1);
5176    else
5177      MaskVec.push_back(StartIdx / Scale);
5178  }
5179
5180  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5181  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5182  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5183}
5184
5185/// getVZextMovL - Return a zero-extending vector move low node.
5186///
5187static SDValue getVZextMovL(EVT VT, EVT OpVT,
5188                            SDValue SrcOp, SelectionDAG &DAG,
5189                            const X86Subtarget *Subtarget, DebugLoc dl) {
5190  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5191    LoadSDNode *LD = NULL;
5192    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5193      LD = dyn_cast<LoadSDNode>(SrcOp);
5194    if (!LD) {
5195      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5196      // instead.
5197      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5198      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5199          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5200          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5201          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5202        // PR2108
5203        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5204        return DAG.getNode(ISD::BITCAST, dl, VT,
5205                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5206                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5207                                                   OpVT,
5208                                                   SrcOp.getOperand(0)
5209                                                          .getOperand(0))));
5210      }
5211    }
5212  }
5213
5214  return DAG.getNode(ISD::BITCAST, dl, VT,
5215                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5216                                 DAG.getNode(ISD::BITCAST, dl,
5217                                             OpVT, SrcOp)));
5218}
5219
5220/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
5221/// shuffles.
5222static SDValue
5223LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5224  SDValue V1 = SVOp->getOperand(0);
5225  SDValue V2 = SVOp->getOperand(1);
5226  DebugLoc dl = SVOp->getDebugLoc();
5227  EVT VT = SVOp->getValueType(0);
5228
5229  SmallVector<std::pair<int, int>, 8> Locs;
5230  Locs.resize(4);
5231  SmallVector<int, 8> Mask1(4U, -1);
5232  SmallVector<int, 8> PermMask;
5233  SVOp->getMask(PermMask);
5234
5235  unsigned NumHi = 0;
5236  unsigned NumLo = 0;
5237  for (unsigned i = 0; i != 4; ++i) {
5238    int Idx = PermMask[i];
5239    if (Idx < 0) {
5240      Locs[i] = std::make_pair(-1, -1);
5241    } else {
5242      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5243      if (Idx < 4) {
5244        Locs[i] = std::make_pair(0, NumLo);
5245        Mask1[NumLo] = Idx;
5246        NumLo++;
5247      } else {
5248        Locs[i] = std::make_pair(1, NumHi);
5249        if (2+NumHi < 4)
5250          Mask1[2+NumHi] = Idx;
5251        NumHi++;
5252      }
5253    }
5254  }
5255
5256  if (NumLo <= 2 && NumHi <= 2) {
5257    // If no more than two elements come from either vector. This can be
5258    // implemented with two shuffles. First shuffle gather the elements.
5259    // The second shuffle, which takes the first shuffle as both of its
5260    // vector operands, put the elements into the right order.
5261    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5262
5263    SmallVector<int, 8> Mask2(4U, -1);
5264
5265    for (unsigned i = 0; i != 4; ++i) {
5266      if (Locs[i].first == -1)
5267        continue;
5268      else {
5269        unsigned Idx = (i < 2) ? 0 : 4;
5270        Idx += Locs[i].first * 2 + Locs[i].second;
5271        Mask2[i] = Idx;
5272      }
5273    }
5274
5275    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5276  } else if (NumLo == 3 || NumHi == 3) {
5277    // Otherwise, we must have three elements from one vector, call it X, and
5278    // one element from the other, call it Y.  First, use a shufps to build an
5279    // intermediate vector with the one element from Y and the element from X
5280    // that will be in the same half in the final destination (the indexes don't
5281    // matter). Then, use a shufps to build the final vector, taking the half
5282    // containing the element from Y from the intermediate, and the other half
5283    // from X.
5284    if (NumHi == 3) {
5285      // Normalize it so the 3 elements come from V1.
5286      CommuteVectorShuffleMask(PermMask, VT);
5287      std::swap(V1, V2);
5288    }
5289
5290    // Find the element from V2.
5291    unsigned HiIndex;
5292    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5293      int Val = PermMask[HiIndex];
5294      if (Val < 0)
5295        continue;
5296      if (Val >= 4)
5297        break;
5298    }
5299
5300    Mask1[0] = PermMask[HiIndex];
5301    Mask1[1] = -1;
5302    Mask1[2] = PermMask[HiIndex^1];
5303    Mask1[3] = -1;
5304    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5305
5306    if (HiIndex >= 2) {
5307      Mask1[0] = PermMask[0];
5308      Mask1[1] = PermMask[1];
5309      Mask1[2] = HiIndex & 1 ? 6 : 4;
5310      Mask1[3] = HiIndex & 1 ? 4 : 6;
5311      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5312    } else {
5313      Mask1[0] = HiIndex & 1 ? 2 : 0;
5314      Mask1[1] = HiIndex & 1 ? 0 : 2;
5315      Mask1[2] = PermMask[2];
5316      Mask1[3] = PermMask[3];
5317      if (Mask1[2] >= 0)
5318        Mask1[2] += 4;
5319      if (Mask1[3] >= 0)
5320        Mask1[3] += 4;
5321      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5322    }
5323  }
5324
5325  // Break it into (shuffle shuffle_hi, shuffle_lo).
5326  Locs.clear();
5327  Locs.resize(4);
5328  SmallVector<int,8> LoMask(4U, -1);
5329  SmallVector<int,8> HiMask(4U, -1);
5330
5331  SmallVector<int,8> *MaskPtr = &LoMask;
5332  unsigned MaskIdx = 0;
5333  unsigned LoIdx = 0;
5334  unsigned HiIdx = 2;
5335  for (unsigned i = 0; i != 4; ++i) {
5336    if (i == 2) {
5337      MaskPtr = &HiMask;
5338      MaskIdx = 1;
5339      LoIdx = 0;
5340      HiIdx = 2;
5341    }
5342    int Idx = PermMask[i];
5343    if (Idx < 0) {
5344      Locs[i] = std::make_pair(-1, -1);
5345    } else if (Idx < 4) {
5346      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5347      (*MaskPtr)[LoIdx] = Idx;
5348      LoIdx++;
5349    } else {
5350      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5351      (*MaskPtr)[HiIdx] = Idx;
5352      HiIdx++;
5353    }
5354  }
5355
5356  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5357  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5358  SmallVector<int, 8> MaskOps;
5359  for (unsigned i = 0; i != 4; ++i) {
5360    if (Locs[i].first == -1) {
5361      MaskOps.push_back(-1);
5362    } else {
5363      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5364      MaskOps.push_back(Idx);
5365    }
5366  }
5367  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5368}
5369
5370static bool MayFoldVectorLoad(SDValue V) {
5371  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5372    V = V.getOperand(0);
5373  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5374    V = V.getOperand(0);
5375  if (MayFoldLoad(V))
5376    return true;
5377  return false;
5378}
5379
5380// FIXME: the version above should always be used. Since there's
5381// a bug where several vector shuffles can't be folded because the
5382// DAG is not updated during lowering and a node claims to have two
5383// uses while it only has one, use this version, and let isel match
5384// another instruction if the load really happens to have more than
5385// one use. Remove this version after this bug get fixed.
5386// rdar://8434668, PR8156
5387static bool RelaxedMayFoldVectorLoad(SDValue V) {
5388  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5389    V = V.getOperand(0);
5390  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5391    V = V.getOperand(0);
5392  if (ISD::isNormalLoad(V.getNode()))
5393    return true;
5394  return false;
5395}
5396
5397/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5398/// a vector extract, and if both can be later optimized into a single load.
5399/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5400/// here because otherwise a target specific shuffle node is going to be
5401/// emitted for this shuffle, and the optimization not done.
5402/// FIXME: This is probably not the best approach, but fix the problem
5403/// until the right path is decided.
5404static
5405bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5406                                         const TargetLowering &TLI) {
5407  EVT VT = V.getValueType();
5408  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5409
5410  // Be sure that the vector shuffle is present in a pattern like this:
5411  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5412  if (!V.hasOneUse())
5413    return false;
5414
5415  SDNode *N = *V.getNode()->use_begin();
5416  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5417    return false;
5418
5419  SDValue EltNo = N->getOperand(1);
5420  if (!isa<ConstantSDNode>(EltNo))
5421    return false;
5422
5423  // If the bit convert changed the number of elements, it is unsafe
5424  // to examine the mask.
5425  bool HasShuffleIntoBitcast = false;
5426  if (V.getOpcode() == ISD::BITCAST) {
5427    EVT SrcVT = V.getOperand(0).getValueType();
5428    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5429      return false;
5430    V = V.getOperand(0);
5431    HasShuffleIntoBitcast = true;
5432  }
5433
5434  // Select the input vector, guarding against out of range extract vector.
5435  unsigned NumElems = VT.getVectorNumElements();
5436  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5437  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5438  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5439
5440  // Skip one more bit_convert if necessary
5441  if (V.getOpcode() == ISD::BITCAST)
5442    V = V.getOperand(0);
5443
5444  if (ISD::isNormalLoad(V.getNode())) {
5445    // Is the original load suitable?
5446    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5447
5448    // FIXME: avoid the multi-use bug that is preventing lots of
5449    // of foldings to be detected, this is still wrong of course, but
5450    // give the temporary desired behavior, and if it happens that
5451    // the load has real more uses, during isel it will not fold, and
5452    // will generate poor code.
5453    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5454      return false;
5455
5456    if (!HasShuffleIntoBitcast)
5457      return true;
5458
5459    // If there's a bitcast before the shuffle, check if the load type and
5460    // alignment is valid.
5461    unsigned Align = LN0->getAlignment();
5462    unsigned NewAlign =
5463      TLI.getTargetData()->getABITypeAlignment(
5464                                    VT.getTypeForEVT(*DAG.getContext()));
5465
5466    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5467      return false;
5468  }
5469
5470  return true;
5471}
5472
5473static
5474SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5475  EVT VT = Op.getValueType();
5476
5477  // Canonizalize to v2f64.
5478  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
5479  return DAG.getNode(ISD::BITCAST, dl, VT,
5480                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5481                                          V1, DAG));
5482}
5483
5484static
5485SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5486                        bool HasSSE2) {
5487  SDValue V1 = Op.getOperand(0);
5488  SDValue V2 = Op.getOperand(1);
5489  EVT VT = Op.getValueType();
5490
5491  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5492
5493  if (HasSSE2 && VT == MVT::v2f64)
5494    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5495
5496  // v4f32 or v4i32
5497  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5498}
5499
5500static
5501SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5502  SDValue V1 = Op.getOperand(0);
5503  SDValue V2 = Op.getOperand(1);
5504  EVT VT = Op.getValueType();
5505
5506  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5507         "unsupported shuffle type");
5508
5509  if (V2.getOpcode() == ISD::UNDEF)
5510    V2 = V1;
5511
5512  // v4i32 or v4f32
5513  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5514}
5515
5516static
5517SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5518  SDValue V1 = Op.getOperand(0);
5519  SDValue V2 = Op.getOperand(1);
5520  EVT VT = Op.getValueType();
5521  unsigned NumElems = VT.getVectorNumElements();
5522
5523  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5524  // operand of these instructions is only memory, so check if there's a
5525  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5526  // same masks.
5527  bool CanFoldLoad = false;
5528
5529  // Trivial case, when V2 comes from a load.
5530  if (MayFoldVectorLoad(V2))
5531    CanFoldLoad = true;
5532
5533  // When V1 is a load, it can be folded later into a store in isel, example:
5534  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5535  //    turns into:
5536  //  (MOVLPSmr addr:$src1, VR128:$src2)
5537  // So, recognize this potential and also use MOVLPS or MOVLPD
5538  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5539    CanFoldLoad = true;
5540
5541  // Both of them can't be memory operations though.
5542  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
5543    CanFoldLoad = false;
5544
5545  if (CanFoldLoad) {
5546    if (HasSSE2 && NumElems == 2)
5547      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5548
5549    if (NumElems == 4)
5550      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5551  }
5552
5553  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5554  // movl and movlp will both match v2i64, but v2i64 is never matched by
5555  // movl earlier because we make it strict to avoid messing with the movlp load
5556  // folding logic (see the code above getMOVLP call). Match it here then,
5557  // this is horrible, but will stay like this until we move all shuffle
5558  // matching to x86 specific nodes. Note that for the 1st condition all
5559  // types are matched with movsd.
5560  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5561    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5562  else if (HasSSE2)
5563    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5564
5565
5566  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5567
5568  // Invert the operand order and use SHUFPS to match it.
5569  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5570                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5571}
5572
5573static inline unsigned getUNPCKLOpcode(EVT VT, const X86Subtarget *Subtarget) {
5574  switch(VT.getSimpleVT().SimpleTy) {
5575  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5576  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5577  case MVT::v4f32:
5578    return Subtarget->hasAVX() ? X86ISD::VUNPCKLPS : X86ISD::UNPCKLPS;
5579  case MVT::v2f64:
5580    return Subtarget->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD;
5581  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
5582  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
5583  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5584  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5585  default:
5586    llvm_unreachable("Unknown type for unpckl");
5587  }
5588  return 0;
5589}
5590
5591static inline unsigned getUNPCKHOpcode(EVT VT) {
5592  switch(VT.getSimpleVT().SimpleTy) {
5593  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5594  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5595  case MVT::v4f32: return X86ISD::UNPCKHPS;
5596  case MVT::v2f64: return X86ISD::UNPCKHPD;
5597  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5598  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5599  default:
5600    llvm_unreachable("Unknown type for unpckh");
5601  }
5602  return 0;
5603}
5604
5605static
5606SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5607                               const TargetLowering &TLI,
5608                               const X86Subtarget *Subtarget) {
5609  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5610  EVT VT = Op.getValueType();
5611  DebugLoc dl = Op.getDebugLoc();
5612  SDValue V1 = Op.getOperand(0);
5613  SDValue V2 = Op.getOperand(1);
5614
5615  if (isZeroShuffle(SVOp))
5616    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5617
5618  // Handle splat operations
5619  if (SVOp->isSplat()) {
5620    // Special case, this is the only place now where it's
5621    // allowed to return a vector_shuffle operation without
5622    // using a target specific node, because *hopefully* it
5623    // will be optimized away by the dag combiner.
5624    if (VT.getVectorNumElements() <= 4 &&
5625        CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5626      return Op;
5627
5628    // Handle splats by matching through known masks
5629    if (VT.getVectorNumElements() <= 4)
5630      return SDValue();
5631
5632    // Canonicalize all of the remaining to v4f32.
5633    return PromoteSplat(SVOp, DAG);
5634  }
5635
5636  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5637  // do it!
5638  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5639    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5640    if (NewOp.getNode())
5641      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
5642  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5643    // FIXME: Figure out a cleaner way to do this.
5644    // Try to make use of movq to zero out the top part.
5645    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5646      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5647      if (NewOp.getNode()) {
5648        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5649          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5650                              DAG, Subtarget, dl);
5651      }
5652    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5653      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5654      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5655        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5656                            DAG, Subtarget, dl);
5657    }
5658  }
5659  return SDValue();
5660}
5661
5662SDValue
5663X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5664  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5665  SDValue V1 = Op.getOperand(0);
5666  SDValue V2 = Op.getOperand(1);
5667  EVT VT = Op.getValueType();
5668  DebugLoc dl = Op.getDebugLoc();
5669  unsigned NumElems = VT.getVectorNumElements();
5670  bool isMMX = VT.getSizeInBits() == 64;
5671  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5672  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5673  bool V1IsSplat = false;
5674  bool V2IsSplat = false;
5675  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5676  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5677  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5678  MachineFunction &MF = DAG.getMachineFunction();
5679  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5680
5681  // Shuffle operations on MMX not supported.
5682  if (isMMX)
5683    return Op;
5684
5685  // Vector shuffle lowering takes 3 steps:
5686  //
5687  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5688  //    narrowing and commutation of operands should be handled.
5689  // 2) Matching of shuffles with known shuffle masks to x86 target specific
5690  //    shuffle nodes.
5691  // 3) Rewriting of unmatched masks into new generic shuffle operations,
5692  //    so the shuffle can be broken into other shuffles and the legalizer can
5693  //    try the lowering again.
5694  //
5695  // The general ideia is that no vector_shuffle operation should be left to
5696  // be matched during isel, all of them must be converted to a target specific
5697  // node here.
5698
5699  // Normalize the input vectors. Here splats, zeroed vectors, profitable
5700  // narrowing and commutation of operands should be handled. The actual code
5701  // doesn't include all of those, work in progress...
5702  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5703  if (NewOp.getNode())
5704    return NewOp;
5705
5706  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5707  // unpckh_undef). Only use pshufd if speed is more important than size.
5708  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5709    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5710      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()), dl, VT, V1, V1, DAG);
5711  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5712    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5713      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5714
5715  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5716      RelaxedMayFoldVectorLoad(V1))
5717    return getMOVDDup(Op, dl, V1, DAG);
5718
5719  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
5720    return getMOVHighToLow(Op, dl, DAG);
5721
5722  // Use to match splats
5723  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
5724      (VT == MVT::v2f64 || VT == MVT::v2i64))
5725    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5726
5727  if (X86::isPSHUFDMask(SVOp)) {
5728    // The actual implementation will match the mask in the if above and then
5729    // during isel it can match several different instructions, not only pshufd
5730    // as its name says, sad but true, emulate the behavior for now...
5731    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5732        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5733
5734    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5735
5736    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5737      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5738
5739    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5740      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5741                                  TargetMask, DAG);
5742
5743    if (VT == MVT::v4f32)
5744      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5745                                  TargetMask, DAG);
5746  }
5747
5748  // Check if this can be converted into a logical shift.
5749  bool isLeft = false;
5750  unsigned ShAmt = 0;
5751  SDValue ShVal;
5752  bool isShift = getSubtarget()->hasSSE2() &&
5753    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5754  if (isShift && ShVal.hasOneUse()) {
5755    // If the shifted value has multiple uses, it may be cheaper to use
5756    // v_set0 + movlhps or movhlps, etc.
5757    EVT EltVT = VT.getVectorElementType();
5758    ShAmt *= EltVT.getSizeInBits();
5759    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5760  }
5761
5762  if (X86::isMOVLMask(SVOp)) {
5763    if (V1IsUndef)
5764      return V2;
5765    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5766      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5767    if (!X86::isMOVLPMask(SVOp)) {
5768      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5769        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5770
5771      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5772        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5773    }
5774  }
5775
5776  // FIXME: fold these into legal mask.
5777  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5778    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5779
5780  if (X86::isMOVHLPSMask(SVOp))
5781    return getMOVHighToLow(Op, dl, DAG);
5782
5783  if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5784    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5785
5786  if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5787    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5788
5789  if (X86::isMOVLPMask(SVOp))
5790    return getMOVLP(Op, dl, DAG, HasSSE2);
5791
5792  if (ShouldXformToMOVHLPS(SVOp) ||
5793      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5794    return CommuteVectorShuffle(SVOp, DAG);
5795
5796  if (isShift) {
5797    // No better options. Use a vshl / vsrl.
5798    EVT EltVT = VT.getVectorElementType();
5799    ShAmt *= EltVT.getSizeInBits();
5800    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5801  }
5802
5803  bool Commuted = false;
5804  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
5805  // 1,1,1,1 -> v8i16 though.
5806  V1IsSplat = isSplatVector(V1.getNode());
5807  V2IsSplat = isSplatVector(V2.getNode());
5808
5809  // Canonicalize the splat or undef, if present, to be on the RHS.
5810  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5811    Op = CommuteVectorShuffle(SVOp, DAG);
5812    SVOp = cast<ShuffleVectorSDNode>(Op);
5813    V1 = SVOp->getOperand(0);
5814    V2 = SVOp->getOperand(1);
5815    std::swap(V1IsSplat, V2IsSplat);
5816    std::swap(V1IsUndef, V2IsUndef);
5817    Commuted = true;
5818  }
5819
5820  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5821    // Shuffling low element of v1 into undef, just return v1.
5822    if (V2IsUndef)
5823      return V1;
5824    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5825    // the instruction selector will not match, so get a canonical MOVL with
5826    // swapped operands to undo the commute.
5827    return getMOVL(DAG, dl, VT, V2, V1);
5828  }
5829
5830  if (X86::isUNPCKLMask(SVOp))
5831    return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5832                                dl, VT, V1, V2, DAG);
5833
5834  if (X86::isUNPCKHMask(SVOp))
5835    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
5836
5837  if (V2IsSplat) {
5838    // Normalize mask so all entries that point to V2 points to its first
5839    // element then try to match unpck{h|l} again. If match, return a
5840    // new vector_shuffle with the corrected mask.
5841    SDValue NewMask = NormalizeMask(SVOp, DAG);
5842    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5843    if (NSVOp != SVOp) {
5844      if (X86::isUNPCKLMask(NSVOp, true)) {
5845        return NewMask;
5846      } else if (X86::isUNPCKHMask(NSVOp, true)) {
5847        return NewMask;
5848      }
5849    }
5850  }
5851
5852  if (Commuted) {
5853    // Commute is back and try unpck* again.
5854    // FIXME: this seems wrong.
5855    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5856    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5857
5858    if (X86::isUNPCKLMask(NewSVOp))
5859      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5860                                  dl, VT, V2, V1, DAG);
5861
5862    if (X86::isUNPCKHMask(NewSVOp))
5863      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
5864  }
5865
5866  // Normalize the node to match x86 shuffle ops if needed
5867  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5868    return CommuteVectorShuffle(SVOp, DAG);
5869
5870  // The checks below are all present in isShuffleMaskLegal, but they are
5871  // inlined here right now to enable us to directly emit target specific
5872  // nodes, and remove one by one until they don't return Op anymore.
5873  SmallVector<int, 16> M;
5874  SVOp->getMask(M);
5875
5876  if (isPALIGNRMask(M, VT, HasSSSE3))
5877    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
5878                                X86::getShufflePALIGNRImmediate(SVOp),
5879                                DAG);
5880
5881  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
5882      SVOp->getSplatIndex() == 0 && V2IsUndef) {
5883    if (VT == MVT::v2f64) {
5884      X86ISD::NodeType Opcode =
5885        getSubtarget()->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD;
5886      return getTargetShuffleNode(Opcode, dl, VT, V1, V1, DAG);
5887    }
5888    if (VT == MVT::v2i64)
5889      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
5890  }
5891
5892  if (isPSHUFHWMask(M, VT))
5893    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
5894                                X86::getShufflePSHUFHWImmediate(SVOp),
5895                                DAG);
5896
5897  if (isPSHUFLWMask(M, VT))
5898    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
5899                                X86::getShufflePSHUFLWImmediate(SVOp),
5900                                DAG);
5901
5902  if (isSHUFPMask(M, VT)) {
5903    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5904    if (VT == MVT::v4f32 || VT == MVT::v4i32)
5905      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
5906                                  TargetMask, DAG);
5907    if (VT == MVT::v2f64 || VT == MVT::v2i64)
5908      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
5909                                  TargetMask, DAG);
5910  }
5911
5912  if (X86::isUNPCKL_v_undef_Mask(SVOp))
5913    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5914      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5915                                  dl, VT, V1, V1, DAG);
5916  if (X86::isUNPCKH_v_undef_Mask(SVOp))
5917    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5918      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5919
5920  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5921  if (VT == MVT::v8i16) {
5922    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5923    if (NewOp.getNode())
5924      return NewOp;
5925  }
5926
5927  if (VT == MVT::v16i8) {
5928    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5929    if (NewOp.getNode())
5930      return NewOp;
5931  }
5932
5933  // Handle all 4 wide cases with a number of shuffles.
5934  if (NumElems == 4)
5935    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5936
5937  return SDValue();
5938}
5939
5940SDValue
5941X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5942                                                SelectionDAG &DAG) const {
5943  EVT VT = Op.getValueType();
5944  DebugLoc dl = Op.getDebugLoc();
5945  if (VT.getSizeInBits() == 8) {
5946    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5947                                    Op.getOperand(0), Op.getOperand(1));
5948    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5949                                    DAG.getValueType(VT));
5950    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5951  } else if (VT.getSizeInBits() == 16) {
5952    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5953    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5954    if (Idx == 0)
5955      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5956                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5957                                     DAG.getNode(ISD::BITCAST, dl,
5958                                                 MVT::v4i32,
5959                                                 Op.getOperand(0)),
5960                                     Op.getOperand(1)));
5961    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5962                                    Op.getOperand(0), Op.getOperand(1));
5963    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5964                                    DAG.getValueType(VT));
5965    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5966  } else if (VT == MVT::f32) {
5967    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5968    // the result back to FR32 register. It's only worth matching if the
5969    // result has a single use which is a store or a bitcast to i32.  And in
5970    // the case of a store, it's not worth it if the index is a constant 0,
5971    // because a MOVSSmr can be used instead, which is smaller and faster.
5972    if (!Op.hasOneUse())
5973      return SDValue();
5974    SDNode *User = *Op.getNode()->use_begin();
5975    if ((User->getOpcode() != ISD::STORE ||
5976         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5977          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5978        (User->getOpcode() != ISD::BITCAST ||
5979         User->getValueType(0) != MVT::i32))
5980      return SDValue();
5981    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5982                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
5983                                              Op.getOperand(0)),
5984                                              Op.getOperand(1));
5985    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
5986  } else if (VT == MVT::i32) {
5987    // ExtractPS works with constant index.
5988    if (isa<ConstantSDNode>(Op.getOperand(1)))
5989      return Op;
5990  }
5991  return SDValue();
5992}
5993
5994
5995SDValue
5996X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5997                                           SelectionDAG &DAG) const {
5998  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5999    return SDValue();
6000
6001  SDValue Vec = Op.getOperand(0);
6002  EVT VecVT = Vec.getValueType();
6003
6004  // If this is a 256-bit vector result, first extract the 128-bit
6005  // vector and then extract from the 128-bit vector.
6006  if (VecVT.getSizeInBits() > 128) {
6007    DebugLoc dl = Op.getNode()->getDebugLoc();
6008    unsigned NumElems = VecVT.getVectorNumElements();
6009    SDValue Idx = Op.getOperand(1);
6010
6011    if (!isa<ConstantSDNode>(Idx))
6012      return SDValue();
6013
6014    unsigned ExtractNumElems = NumElems / (VecVT.getSizeInBits() / 128);
6015    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6016
6017    // Get the 128-bit vector.
6018    bool Upper = IdxVal >= ExtractNumElems;
6019    Vec = Extract128BitVector(Vec, Idx, DAG, dl);
6020
6021    // Extract from it.
6022    SDValue ScaledIdx = Idx;
6023    if (Upper)
6024      ScaledIdx = DAG.getNode(ISD::SUB, dl, Idx.getValueType(), Idx,
6025                              DAG.getConstant(ExtractNumElems,
6026                                              Idx.getValueType()));
6027    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6028                       ScaledIdx);
6029  }
6030
6031  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6032
6033  if (Subtarget->hasSSE41()) {
6034    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6035    if (Res.getNode())
6036      return Res;
6037  }
6038
6039  EVT VT = Op.getValueType();
6040  DebugLoc dl = Op.getDebugLoc();
6041  // TODO: handle v16i8.
6042  if (VT.getSizeInBits() == 16) {
6043    SDValue Vec = Op.getOperand(0);
6044    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6045    if (Idx == 0)
6046      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6047                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6048                                     DAG.getNode(ISD::BITCAST, dl,
6049                                                 MVT::v4i32, Vec),
6050                                     Op.getOperand(1)));
6051    // Transform it so it match pextrw which produces a 32-bit result.
6052    EVT EltVT = MVT::i32;
6053    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6054                                    Op.getOperand(0), Op.getOperand(1));
6055    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6056                                    DAG.getValueType(VT));
6057    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6058  } else if (VT.getSizeInBits() == 32) {
6059    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6060    if (Idx == 0)
6061      return Op;
6062
6063    // SHUFPS the element to the lowest double word, then movss.
6064    int Mask[4] = { Idx, -1, -1, -1 };
6065    EVT VVT = Op.getOperand(0).getValueType();
6066    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6067                                       DAG.getUNDEF(VVT), Mask);
6068    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6069                       DAG.getIntPtrConstant(0));
6070  } else if (VT.getSizeInBits() == 64) {
6071    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6072    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6073    //        to match extract_elt for f64.
6074    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6075    if (Idx == 0)
6076      return Op;
6077
6078    // UNPCKHPD the element to the lowest double word, then movsd.
6079    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6080    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6081    int Mask[2] = { 1, -1 };
6082    EVT VVT = Op.getOperand(0).getValueType();
6083    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6084                                       DAG.getUNDEF(VVT), Mask);
6085    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6086                       DAG.getIntPtrConstant(0));
6087  }
6088
6089  return SDValue();
6090}
6091
6092SDValue
6093X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6094                                               SelectionDAG &DAG) const {
6095  EVT VT = Op.getValueType();
6096  EVT EltVT = VT.getVectorElementType();
6097  DebugLoc dl = Op.getDebugLoc();
6098
6099  SDValue N0 = Op.getOperand(0);
6100  SDValue N1 = Op.getOperand(1);
6101  SDValue N2 = Op.getOperand(2);
6102
6103  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6104      isa<ConstantSDNode>(N2)) {
6105    unsigned Opc;
6106    if (VT == MVT::v8i16)
6107      Opc = X86ISD::PINSRW;
6108    else if (VT == MVT::v16i8)
6109      Opc = X86ISD::PINSRB;
6110    else
6111      Opc = X86ISD::PINSRB;
6112
6113    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6114    // argument.
6115    if (N1.getValueType() != MVT::i32)
6116      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6117    if (N2.getValueType() != MVT::i32)
6118      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6119    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6120  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6121    // Bits [7:6] of the constant are the source select.  This will always be
6122    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6123    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6124    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6125    // Bits [5:4] of the constant are the destination select.  This is the
6126    //  value of the incoming immediate.
6127    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6128    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6129    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6130    // Create this as a scalar to vector..
6131    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6132    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6133  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
6134    // PINSR* works with constant index.
6135    return Op;
6136  }
6137  return SDValue();
6138}
6139
6140SDValue
6141X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6142  EVT VT = Op.getValueType();
6143  EVT EltVT = VT.getVectorElementType();
6144
6145  DebugLoc dl = Op.getDebugLoc();
6146  SDValue N0 = Op.getOperand(0);
6147  SDValue N1 = Op.getOperand(1);
6148  SDValue N2 = Op.getOperand(2);
6149
6150  // If this is a 256-bit vector result, first insert into a 128-bit
6151  // vector and then insert into the 256-bit vector.
6152  if (VT.getSizeInBits() > 128) {
6153    if (!isa<ConstantSDNode>(N2))
6154      return SDValue();
6155
6156    // Get the 128-bit vector.
6157    unsigned NumElems = VT.getVectorNumElements();
6158    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6159    bool Upper = IdxVal >= NumElems / 2;
6160
6161    SDValue SubN0 = Extract128BitVector(N0, N2, DAG, dl);
6162
6163    // Insert into it.
6164    SDValue ScaledN2 = N2;
6165    if (Upper)
6166      ScaledN2 = DAG.getNode(ISD::SUB, dl, N2.getValueType(), N2,
6167                             DAG.getConstant(NumElems /
6168                                             (VT.getSizeInBits() / 128),
6169                                             N2.getValueType()));
6170    Op = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubN0.getValueType(), SubN0,
6171                     N1, ScaledN2);
6172
6173    // Insert the 128-bit vector
6174    // FIXME: Why UNDEF?
6175    return Insert128BitVector(N0, Op, N2, DAG, dl);
6176  }
6177
6178  if (Subtarget->hasSSE41())
6179    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6180
6181  if (EltVT == MVT::i8)
6182    return SDValue();
6183
6184  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6185    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6186    // as its second argument.
6187    if (N1.getValueType() != MVT::i32)
6188      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6189    if (N2.getValueType() != MVT::i32)
6190      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6191    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6192  }
6193  return SDValue();
6194}
6195
6196SDValue
6197X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6198  LLVMContext *Context = DAG.getContext();
6199  DebugLoc dl = Op.getDebugLoc();
6200  EVT OpVT = Op.getValueType();
6201
6202  // If this is a 256-bit vector result, first insert into a 128-bit
6203  // vector and then insert into the 256-bit vector.
6204  if (OpVT.getSizeInBits() > 128) {
6205    // Insert into a 128-bit vector.
6206    EVT VT128 = EVT::getVectorVT(*Context,
6207                                 OpVT.getVectorElementType(),
6208                                 OpVT.getVectorNumElements() / 2);
6209
6210    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6211
6212    // Insert the 128-bit vector.
6213    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6214                              DAG.getConstant(0, MVT::i32),
6215                              DAG, dl);
6216  }
6217
6218  if (Op.getValueType() == MVT::v1i64 &&
6219      Op.getOperand(0).getValueType() == MVT::i64)
6220    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6221
6222  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6223  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6224         "Expected an SSE type!");
6225  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6226                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6227}
6228
6229// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6230// a simple subregister reference or explicit instructions to grab
6231// upper bits of a vector.
6232SDValue
6233X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6234  if (Subtarget->hasAVX()) {
6235    DebugLoc dl = Op.getNode()->getDebugLoc();
6236    SDValue Vec = Op.getNode()->getOperand(0);
6237    SDValue Idx = Op.getNode()->getOperand(1);
6238
6239    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6240        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6241        return Extract128BitVector(Vec, Idx, DAG, dl);
6242    }
6243  }
6244  return SDValue();
6245}
6246
6247// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6248// simple superregister reference or explicit instructions to insert
6249// the upper bits of a vector.
6250SDValue
6251X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6252  if (Subtarget->hasAVX()) {
6253    DebugLoc dl = Op.getNode()->getDebugLoc();
6254    SDValue Vec = Op.getNode()->getOperand(0);
6255    SDValue SubVec = Op.getNode()->getOperand(1);
6256    SDValue Idx = Op.getNode()->getOperand(2);
6257
6258    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6259        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6260      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6261    }
6262  }
6263  return SDValue();
6264}
6265
6266// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6267// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6268// one of the above mentioned nodes. It has to be wrapped because otherwise
6269// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6270// be used to form addressing mode. These wrapped nodes will be selected
6271// into MOV32ri.
6272SDValue
6273X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6274  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6275
6276  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6277  // global base reg.
6278  unsigned char OpFlag = 0;
6279  unsigned WrapperKind = X86ISD::Wrapper;
6280  CodeModel::Model M = getTargetMachine().getCodeModel();
6281
6282  if (Subtarget->isPICStyleRIPRel() &&
6283      (M == CodeModel::Small || M == CodeModel::Kernel))
6284    WrapperKind = X86ISD::WrapperRIP;
6285  else if (Subtarget->isPICStyleGOT())
6286    OpFlag = X86II::MO_GOTOFF;
6287  else if (Subtarget->isPICStyleStubPIC())
6288    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6289
6290  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6291                                             CP->getAlignment(),
6292                                             CP->getOffset(), OpFlag);
6293  DebugLoc DL = CP->getDebugLoc();
6294  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6295  // With PIC, the address is actually $g + Offset.
6296  if (OpFlag) {
6297    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6298                         DAG.getNode(X86ISD::GlobalBaseReg,
6299                                     DebugLoc(), getPointerTy()),
6300                         Result);
6301  }
6302
6303  return Result;
6304}
6305
6306SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
6307  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
6308
6309  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6310  // global base reg.
6311  unsigned char OpFlag = 0;
6312  unsigned WrapperKind = X86ISD::Wrapper;
6313  CodeModel::Model M = getTargetMachine().getCodeModel();
6314
6315  if (Subtarget->isPICStyleRIPRel() &&
6316      (M == CodeModel::Small || M == CodeModel::Kernel))
6317    WrapperKind = X86ISD::WrapperRIP;
6318  else if (Subtarget->isPICStyleGOT())
6319    OpFlag = X86II::MO_GOTOFF;
6320  else if (Subtarget->isPICStyleStubPIC())
6321    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6322
6323  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
6324                                          OpFlag);
6325  DebugLoc DL = JT->getDebugLoc();
6326  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6327
6328  // With PIC, the address is actually $g + Offset.
6329  if (OpFlag)
6330    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6331                         DAG.getNode(X86ISD::GlobalBaseReg,
6332                                     DebugLoc(), getPointerTy()),
6333                         Result);
6334
6335  return Result;
6336}
6337
6338SDValue
6339X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
6340  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
6341
6342  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6343  // global base reg.
6344  unsigned char OpFlag = 0;
6345  unsigned WrapperKind = X86ISD::Wrapper;
6346  CodeModel::Model M = getTargetMachine().getCodeModel();
6347
6348  if (Subtarget->isPICStyleRIPRel() &&
6349      (M == CodeModel::Small || M == CodeModel::Kernel))
6350    WrapperKind = X86ISD::WrapperRIP;
6351  else if (Subtarget->isPICStyleGOT())
6352    OpFlag = X86II::MO_GOTOFF;
6353  else if (Subtarget->isPICStyleStubPIC())
6354    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6355
6356  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
6357
6358  DebugLoc DL = Op.getDebugLoc();
6359  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6360
6361
6362  // With PIC, the address is actually $g + Offset.
6363  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
6364      !Subtarget->is64Bit()) {
6365    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6366                         DAG.getNode(X86ISD::GlobalBaseReg,
6367                                     DebugLoc(), getPointerTy()),
6368                         Result);
6369  }
6370
6371  return Result;
6372}
6373
6374SDValue
6375X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
6376  // Create the TargetBlockAddressAddress node.
6377  unsigned char OpFlags =
6378    Subtarget->ClassifyBlockAddressReference();
6379  CodeModel::Model M = getTargetMachine().getCodeModel();
6380  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
6381  DebugLoc dl = Op.getDebugLoc();
6382  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
6383                                       /*isTarget=*/true, OpFlags);
6384
6385  if (Subtarget->isPICStyleRIPRel() &&
6386      (M == CodeModel::Small || M == CodeModel::Kernel))
6387    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6388  else
6389    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6390
6391  // With PIC, the address is actually $g + Offset.
6392  if (isGlobalRelativeToPICBase(OpFlags)) {
6393    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6394                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6395                         Result);
6396  }
6397
6398  return Result;
6399}
6400
6401SDValue
6402X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
6403                                      int64_t Offset,
6404                                      SelectionDAG &DAG) const {
6405  // Create the TargetGlobalAddress node, folding in the constant
6406  // offset if it is legal.
6407  unsigned char OpFlags =
6408    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
6409  CodeModel::Model M = getTargetMachine().getCodeModel();
6410  SDValue Result;
6411  if (OpFlags == X86II::MO_NO_FLAG &&
6412      X86::isOffsetSuitableForCodeModel(Offset, M)) {
6413    // A direct static reference to a global.
6414    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
6415    Offset = 0;
6416  } else {
6417    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
6418  }
6419
6420  if (Subtarget->isPICStyleRIPRel() &&
6421      (M == CodeModel::Small || M == CodeModel::Kernel))
6422    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6423  else
6424    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6425
6426  // With PIC, the address is actually $g + Offset.
6427  if (isGlobalRelativeToPICBase(OpFlags)) {
6428    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6429                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6430                         Result);
6431  }
6432
6433  // For globals that require a load from a stub to get the address, emit the
6434  // load.
6435  if (isGlobalStubReference(OpFlags))
6436    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6437                         MachinePointerInfo::getGOT(), false, false, 0);
6438
6439  // If there was a non-zero offset that we didn't fold, create an explicit
6440  // addition for it.
6441  if (Offset != 0)
6442    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6443                         DAG.getConstant(Offset, getPointerTy()));
6444
6445  return Result;
6446}
6447
6448SDValue
6449X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6450  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6451  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6452  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6453}
6454
6455static SDValue
6456GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6457           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6458           unsigned char OperandFlags) {
6459  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6460  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6461  DebugLoc dl = GA->getDebugLoc();
6462  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6463                                           GA->getValueType(0),
6464                                           GA->getOffset(),
6465                                           OperandFlags);
6466  if (InFlag) {
6467    SDValue Ops[] = { Chain,  TGA, *InFlag };
6468    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6469  } else {
6470    SDValue Ops[]  = { Chain, TGA };
6471    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6472  }
6473
6474  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6475  MFI->setAdjustsStack(true);
6476
6477  SDValue Flag = Chain.getValue(1);
6478  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6479}
6480
6481// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6482static SDValue
6483LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6484                                const EVT PtrVT) {
6485  SDValue InFlag;
6486  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6487  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6488                                     DAG.getNode(X86ISD::GlobalBaseReg,
6489                                                 DebugLoc(), PtrVT), InFlag);
6490  InFlag = Chain.getValue(1);
6491
6492  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6493}
6494
6495// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6496static SDValue
6497LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6498                                const EVT PtrVT) {
6499  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6500                    X86::RAX, X86II::MO_TLSGD);
6501}
6502
6503// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6504// "local exec" model.
6505static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6506                                   const EVT PtrVT, TLSModel::Model model,
6507                                   bool is64Bit) {
6508  DebugLoc dl = GA->getDebugLoc();
6509
6510  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6511  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6512                                                         is64Bit ? 257 : 256));
6513
6514  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6515                                      DAG.getIntPtrConstant(0),
6516                                      MachinePointerInfo(Ptr), false, false, 0);
6517
6518  unsigned char OperandFlags = 0;
6519  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6520  // initialexec.
6521  unsigned WrapperKind = X86ISD::Wrapper;
6522  if (model == TLSModel::LocalExec) {
6523    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6524  } else if (is64Bit) {
6525    assert(model == TLSModel::InitialExec);
6526    OperandFlags = X86II::MO_GOTTPOFF;
6527    WrapperKind = X86ISD::WrapperRIP;
6528  } else {
6529    assert(model == TLSModel::InitialExec);
6530    OperandFlags = X86II::MO_INDNTPOFF;
6531  }
6532
6533  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6534  // exec)
6535  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6536                                           GA->getValueType(0),
6537                                           GA->getOffset(), OperandFlags);
6538  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6539
6540  if (model == TLSModel::InitialExec)
6541    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6542                         MachinePointerInfo::getGOT(), false, false, 0);
6543
6544  // The address of the thread local variable is the add of the thread
6545  // pointer with the offset of the variable.
6546  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6547}
6548
6549SDValue
6550X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6551
6552  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6553  const GlobalValue *GV = GA->getGlobal();
6554
6555  if (Subtarget->isTargetELF()) {
6556    // TODO: implement the "local dynamic" model
6557    // TODO: implement the "initial exec"model for pic executables
6558
6559    // If GV is an alias then use the aliasee for determining
6560    // thread-localness.
6561    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6562      GV = GA->resolveAliasedGlobal(false);
6563
6564    TLSModel::Model model
6565      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6566
6567    switch (model) {
6568      case TLSModel::GeneralDynamic:
6569      case TLSModel::LocalDynamic: // not implemented
6570        if (Subtarget->is64Bit())
6571          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6572        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6573
6574      case TLSModel::InitialExec:
6575      case TLSModel::LocalExec:
6576        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6577                                   Subtarget->is64Bit());
6578    }
6579  } else if (Subtarget->isTargetDarwin()) {
6580    // Darwin only has one model of TLS.  Lower to that.
6581    unsigned char OpFlag = 0;
6582    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6583                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6584
6585    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6586    // global base reg.
6587    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6588                  !Subtarget->is64Bit();
6589    if (PIC32)
6590      OpFlag = X86II::MO_TLVP_PIC_BASE;
6591    else
6592      OpFlag = X86II::MO_TLVP;
6593    DebugLoc DL = Op.getDebugLoc();
6594    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6595                                                GA->getValueType(0),
6596                                                GA->getOffset(), OpFlag);
6597    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6598
6599    // With PIC32, the address is actually $g + Offset.
6600    if (PIC32)
6601      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6602                           DAG.getNode(X86ISD::GlobalBaseReg,
6603                                       DebugLoc(), getPointerTy()),
6604                           Offset);
6605
6606    // Lowering the machine isd will make sure everything is in the right
6607    // location.
6608    SDValue Chain = DAG.getEntryNode();
6609    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6610    SDValue Args[] = { Chain, Offset };
6611    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
6612
6613    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6614    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6615    MFI->setAdjustsStack(true);
6616
6617    // And our return value (tls address) is in the standard call return value
6618    // location.
6619    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6620    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6621  }
6622
6623  assert(false &&
6624         "TLS not implemented for this target.");
6625
6626  llvm_unreachable("Unreachable");
6627  return SDValue();
6628}
6629
6630
6631/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
6632/// take a 2 x i32 value to shift plus a shift amount.
6633SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
6634  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6635  EVT VT = Op.getValueType();
6636  unsigned VTBits = VT.getSizeInBits();
6637  DebugLoc dl = Op.getDebugLoc();
6638  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6639  SDValue ShOpLo = Op.getOperand(0);
6640  SDValue ShOpHi = Op.getOperand(1);
6641  SDValue ShAmt  = Op.getOperand(2);
6642  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6643                                     DAG.getConstant(VTBits - 1, MVT::i8))
6644                       : DAG.getConstant(0, VT);
6645
6646  SDValue Tmp2, Tmp3;
6647  if (Op.getOpcode() == ISD::SHL_PARTS) {
6648    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6649    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6650  } else {
6651    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6652    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6653  }
6654
6655  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6656                                DAG.getConstant(VTBits, MVT::i8));
6657  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6658                             AndNode, DAG.getConstant(0, MVT::i8));
6659
6660  SDValue Hi, Lo;
6661  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6662  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6663  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6664
6665  if (Op.getOpcode() == ISD::SHL_PARTS) {
6666    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6667    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6668  } else {
6669    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6670    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6671  }
6672
6673  SDValue Ops[2] = { Lo, Hi };
6674  return DAG.getMergeValues(Ops, 2, dl);
6675}
6676
6677SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6678                                           SelectionDAG &DAG) const {
6679  EVT SrcVT = Op.getOperand(0).getValueType();
6680
6681  if (SrcVT.isVector())
6682    return SDValue();
6683
6684  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6685         "Unknown SINT_TO_FP to lower!");
6686
6687  // These are really Legal; return the operand so the caller accepts it as
6688  // Legal.
6689  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6690    return Op;
6691  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6692      Subtarget->is64Bit()) {
6693    return Op;
6694  }
6695
6696  DebugLoc dl = Op.getDebugLoc();
6697  unsigned Size = SrcVT.getSizeInBits()/8;
6698  MachineFunction &MF = DAG.getMachineFunction();
6699  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6700  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6701  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6702                               StackSlot,
6703                               MachinePointerInfo::getFixedStack(SSFI),
6704                               false, false, 0);
6705  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6706}
6707
6708SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6709                                     SDValue StackSlot,
6710                                     SelectionDAG &DAG) const {
6711  // Build the FILD
6712  DebugLoc DL = Op.getDebugLoc();
6713  SDVTList Tys;
6714  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6715  if (useSSE)
6716    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
6717  else
6718    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6719
6720  unsigned ByteSize = SrcVT.getSizeInBits()/8;
6721
6722  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6723  MachineMemOperand *MMO =
6724    DAG.getMachineFunction()
6725    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6726                          MachineMemOperand::MOLoad, ByteSize, ByteSize);
6727
6728  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6729  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
6730                                           X86ISD::FILD, DL,
6731                                           Tys, Ops, array_lengthof(Ops),
6732                                           SrcVT, MMO);
6733
6734  if (useSSE) {
6735    Chain = Result.getValue(1);
6736    SDValue InFlag = Result.getValue(2);
6737
6738    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6739    // shouldn't be necessary except that RFP cannot be live across
6740    // multiple blocks. When stackifier is fixed, they can be uncoupled.
6741    MachineFunction &MF = DAG.getMachineFunction();
6742    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
6743    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
6744    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6745    Tys = DAG.getVTList(MVT::Other);
6746    SDValue Ops[] = {
6747      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6748    };
6749    MachineMemOperand *MMO =
6750      DAG.getMachineFunction()
6751      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6752                            MachineMemOperand::MOStore, SSFISize, SSFISize);
6753
6754    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
6755                                    Ops, array_lengthof(Ops),
6756                                    Op.getValueType(), MMO);
6757    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
6758                         MachinePointerInfo::getFixedStack(SSFI),
6759                         false, false, 0);
6760  }
6761
6762  return Result;
6763}
6764
6765// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6766SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6767                                               SelectionDAG &DAG) const {
6768  // This algorithm is not obvious. Here it is in C code, more or less:
6769  /*
6770    double uint64_to_double( uint32_t hi, uint32_t lo ) {
6771      static const __m128i exp = { 0x4330000045300000ULL, 0 };
6772      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6773
6774      // Copy ints to xmm registers.
6775      __m128i xh = _mm_cvtsi32_si128( hi );
6776      __m128i xl = _mm_cvtsi32_si128( lo );
6777
6778      // Combine into low half of a single xmm register.
6779      __m128i x = _mm_unpacklo_epi32( xh, xl );
6780      __m128d d;
6781      double sd;
6782
6783      // Merge in appropriate exponents to give the integer bits the right
6784      // magnitude.
6785      x = _mm_unpacklo_epi32( x, exp );
6786
6787      // Subtract away the biases to deal with the IEEE-754 double precision
6788      // implicit 1.
6789      d = _mm_sub_pd( (__m128d) x, bias );
6790
6791      // All conversions up to here are exact. The correctly rounded result is
6792      // calculated using the current rounding mode using the following
6793      // horizontal add.
6794      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6795      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
6796                                // store doesn't really need to be here (except
6797                                // maybe to zero the other double)
6798      return sd;
6799    }
6800  */
6801
6802  DebugLoc dl = Op.getDebugLoc();
6803  LLVMContext *Context = DAG.getContext();
6804
6805  // Build some magic constants.
6806  std::vector<Constant*> CV0;
6807  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6808  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6809  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6810  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6811  Constant *C0 = ConstantVector::get(CV0);
6812  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6813
6814  std::vector<Constant*> CV1;
6815  CV1.push_back(
6816    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6817  CV1.push_back(
6818    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6819  Constant *C1 = ConstantVector::get(CV1);
6820  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6821
6822  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6823                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6824                                        Op.getOperand(0),
6825                                        DAG.getIntPtrConstant(1)));
6826  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6827                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6828                                        Op.getOperand(0),
6829                                        DAG.getIntPtrConstant(0)));
6830  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6831  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6832                              MachinePointerInfo::getConstantPool(),
6833                              false, false, 16);
6834  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6835  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
6836  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6837                              MachinePointerInfo::getConstantPool(),
6838                              false, false, 16);
6839  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6840
6841  // Add the halves; easiest way is to swap them into another reg first.
6842  int ShufMask[2] = { 1, -1 };
6843  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6844                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
6845  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6846  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6847                     DAG.getIntPtrConstant(0));
6848}
6849
6850// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6851SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6852                                               SelectionDAG &DAG) const {
6853  DebugLoc dl = Op.getDebugLoc();
6854  // FP constant to bias correct the final result.
6855  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6856                                   MVT::f64);
6857
6858  // Load the 32-bit value into an XMM register.
6859  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6860                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6861                                         Op.getOperand(0),
6862                                         DAG.getIntPtrConstant(0)));
6863
6864  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6865                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
6866                     DAG.getIntPtrConstant(0));
6867
6868  // Or the load with the bias.
6869  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6870                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6871                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6872                                                   MVT::v2f64, Load)),
6873                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6874                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6875                                                   MVT::v2f64, Bias)));
6876  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6877                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
6878                   DAG.getIntPtrConstant(0));
6879
6880  // Subtract the bias.
6881  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6882
6883  // Handle final rounding.
6884  EVT DestVT = Op.getValueType();
6885
6886  if (DestVT.bitsLT(MVT::f64)) {
6887    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6888                       DAG.getIntPtrConstant(0));
6889  } else if (DestVT.bitsGT(MVT::f64)) {
6890    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6891  }
6892
6893  // Handle final rounding.
6894  return Sub;
6895}
6896
6897SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6898                                           SelectionDAG &DAG) const {
6899  SDValue N0 = Op.getOperand(0);
6900  DebugLoc dl = Op.getDebugLoc();
6901
6902  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6903  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6904  // the optimization here.
6905  if (DAG.SignBitIsZero(N0))
6906    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6907
6908  EVT SrcVT = N0.getValueType();
6909  EVT DstVT = Op.getValueType();
6910  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6911    return LowerUINT_TO_FP_i64(Op, DAG);
6912  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6913    return LowerUINT_TO_FP_i32(Op, DAG);
6914
6915  // Make a 64-bit buffer, and use it to build an FILD.
6916  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6917  if (SrcVT == MVT::i32) {
6918    SDValue WordOff = DAG.getConstant(4, getPointerTy());
6919    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6920                                     getPointerTy(), StackSlot, WordOff);
6921    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6922                                  StackSlot, MachinePointerInfo(),
6923                                  false, false, 0);
6924    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6925                                  OffsetSlot, MachinePointerInfo(),
6926                                  false, false, 0);
6927    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6928    return Fild;
6929  }
6930
6931  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6932  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6933                                StackSlot, MachinePointerInfo(),
6934                               false, false, 0);
6935  // For i64 source, we need to add the appropriate power of 2 if the input
6936  // was negative.  This is the same as the optimization in
6937  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6938  // we must be careful to do the computation in x87 extended precision, not
6939  // in SSE. (The generic code can't know it's OK to do this, or how to.)
6940  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6941  MachineMemOperand *MMO =
6942    DAG.getMachineFunction()
6943    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6944                          MachineMemOperand::MOLoad, 8, 8);
6945
6946  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6947  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6948  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
6949                                         MVT::i64, MMO);
6950
6951  APInt FF(32, 0x5F800000ULL);
6952
6953  // Check whether the sign bit is set.
6954  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6955                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6956                                 ISD::SETLT);
6957
6958  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6959  SDValue FudgePtr = DAG.getConstantPool(
6960                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6961                                         getPointerTy());
6962
6963  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6964  SDValue Zero = DAG.getIntPtrConstant(0);
6965  SDValue Four = DAG.getIntPtrConstant(4);
6966  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6967                               Zero, Four);
6968  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6969
6970  // Load the value out, extending it from f32 to f80.
6971  // FIXME: Avoid the extend by constructing the right constant pool?
6972  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
6973                                 FudgePtr, MachinePointerInfo::getConstantPool(),
6974                                 MVT::f32, false, false, 4);
6975  // Extend everything to 80 bits to force it to be done on x87.
6976  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6977  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6978}
6979
6980std::pair<SDValue,SDValue> X86TargetLowering::
6981FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6982  DebugLoc DL = Op.getDebugLoc();
6983
6984  EVT DstTy = Op.getValueType();
6985
6986  if (!IsSigned) {
6987    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
6988    DstTy = MVT::i64;
6989  }
6990
6991  assert(DstTy.getSimpleVT() <= MVT::i64 &&
6992         DstTy.getSimpleVT() >= MVT::i16 &&
6993         "Unknown FP_TO_SINT to lower!");
6994
6995  // These are really Legal.
6996  if (DstTy == MVT::i32 &&
6997      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6998    return std::make_pair(SDValue(), SDValue());
6999  if (Subtarget->is64Bit() &&
7000      DstTy == MVT::i64 &&
7001      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7002    return std::make_pair(SDValue(), SDValue());
7003
7004  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7005  // stack slot.
7006  MachineFunction &MF = DAG.getMachineFunction();
7007  unsigned MemSize = DstTy.getSizeInBits()/8;
7008  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7009  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7010
7011
7012
7013  unsigned Opc;
7014  switch (DstTy.getSimpleVT().SimpleTy) {
7015  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7016  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7017  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7018  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7019  }
7020
7021  SDValue Chain = DAG.getEntryNode();
7022  SDValue Value = Op.getOperand(0);
7023  EVT TheVT = Op.getOperand(0).getValueType();
7024  if (isScalarFPTypeInSSEReg(TheVT)) {
7025    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7026    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7027                         MachinePointerInfo::getFixedStack(SSFI),
7028                         false, false, 0);
7029    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7030    SDValue Ops[] = {
7031      Chain, StackSlot, DAG.getValueType(TheVT)
7032    };
7033
7034    MachineMemOperand *MMO =
7035      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7036                              MachineMemOperand::MOLoad, MemSize, MemSize);
7037    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7038                                    DstTy, MMO);
7039    Chain = Value.getValue(1);
7040    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7041    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7042  }
7043
7044  MachineMemOperand *MMO =
7045    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7046                            MachineMemOperand::MOStore, MemSize, MemSize);
7047
7048  // Build the FP_TO_INT*_IN_MEM
7049  SDValue Ops[] = { Chain, Value, StackSlot };
7050  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7051                                         Ops, 3, DstTy, MMO);
7052
7053  return std::make_pair(FIST, StackSlot);
7054}
7055
7056SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7057                                           SelectionDAG &DAG) const {
7058  if (Op.getValueType().isVector())
7059    return SDValue();
7060
7061  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7062  SDValue FIST = Vals.first, StackSlot = Vals.second;
7063  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7064  if (FIST.getNode() == 0) return Op;
7065
7066  // Load the result.
7067  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7068                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7069}
7070
7071SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7072                                           SelectionDAG &DAG) const {
7073  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7074  SDValue FIST = Vals.first, StackSlot = Vals.second;
7075  assert(FIST.getNode() && "Unexpected failure");
7076
7077  // Load the result.
7078  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7079                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7080}
7081
7082SDValue X86TargetLowering::LowerFABS(SDValue Op,
7083                                     SelectionDAG &DAG) const {
7084  LLVMContext *Context = DAG.getContext();
7085  DebugLoc dl = Op.getDebugLoc();
7086  EVT VT = Op.getValueType();
7087  EVT EltVT = VT;
7088  if (VT.isVector())
7089    EltVT = VT.getVectorElementType();
7090  std::vector<Constant*> CV;
7091  if (EltVT == MVT::f64) {
7092    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7093    CV.push_back(C);
7094    CV.push_back(C);
7095  } else {
7096    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7097    CV.push_back(C);
7098    CV.push_back(C);
7099    CV.push_back(C);
7100    CV.push_back(C);
7101  }
7102  Constant *C = ConstantVector::get(CV);
7103  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7104  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7105                             MachinePointerInfo::getConstantPool(),
7106                             false, false, 16);
7107  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7108}
7109
7110SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7111  LLVMContext *Context = DAG.getContext();
7112  DebugLoc dl = Op.getDebugLoc();
7113  EVT VT = Op.getValueType();
7114  EVT EltVT = VT;
7115  if (VT.isVector())
7116    EltVT = VT.getVectorElementType();
7117  std::vector<Constant*> CV;
7118  if (EltVT == MVT::f64) {
7119    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7120    CV.push_back(C);
7121    CV.push_back(C);
7122  } else {
7123    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7124    CV.push_back(C);
7125    CV.push_back(C);
7126    CV.push_back(C);
7127    CV.push_back(C);
7128  }
7129  Constant *C = ConstantVector::get(CV);
7130  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7131  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7132                             MachinePointerInfo::getConstantPool(),
7133                             false, false, 16);
7134  if (VT.isVector()) {
7135    return DAG.getNode(ISD::BITCAST, dl, VT,
7136                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
7137                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7138                                Op.getOperand(0)),
7139                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
7140  } else {
7141    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7142  }
7143}
7144
7145SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7146  LLVMContext *Context = DAG.getContext();
7147  SDValue Op0 = Op.getOperand(0);
7148  SDValue Op1 = Op.getOperand(1);
7149  DebugLoc dl = Op.getDebugLoc();
7150  EVT VT = Op.getValueType();
7151  EVT SrcVT = Op1.getValueType();
7152
7153  // If second operand is smaller, extend it first.
7154  if (SrcVT.bitsLT(VT)) {
7155    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7156    SrcVT = VT;
7157  }
7158  // And if it is bigger, shrink it first.
7159  if (SrcVT.bitsGT(VT)) {
7160    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7161    SrcVT = VT;
7162  }
7163
7164  // At this point the operands and the result should have the same
7165  // type, and that won't be f80 since that is not custom lowered.
7166
7167  // First get the sign bit of second operand.
7168  std::vector<Constant*> CV;
7169  if (SrcVT == MVT::f64) {
7170    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7171    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7172  } else {
7173    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7174    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7175    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7176    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7177  }
7178  Constant *C = ConstantVector::get(CV);
7179  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7180  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7181                              MachinePointerInfo::getConstantPool(),
7182                              false, false, 16);
7183  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7184
7185  // Shift sign bit right or left if the two operands have different types.
7186  if (SrcVT.bitsGT(VT)) {
7187    // Op0 is MVT::f32, Op1 is MVT::f64.
7188    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7189    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7190                          DAG.getConstant(32, MVT::i32));
7191    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7192    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7193                          DAG.getIntPtrConstant(0));
7194  }
7195
7196  // Clear first operand sign bit.
7197  CV.clear();
7198  if (VT == MVT::f64) {
7199    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7200    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7201  } else {
7202    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7203    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7204    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7205    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7206  }
7207  C = ConstantVector::get(CV);
7208  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7209  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7210                              MachinePointerInfo::getConstantPool(),
7211                              false, false, 16);
7212  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7213
7214  // Or the value with the sign bit.
7215  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7216}
7217
7218/// Emit nodes that will be selected as "test Op0,Op0", or something
7219/// equivalent.
7220SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7221                                    SelectionDAG &DAG) const {
7222  DebugLoc dl = Op.getDebugLoc();
7223
7224  // CF and OF aren't always set the way we want. Determine which
7225  // of these we need.
7226  bool NeedCF = false;
7227  bool NeedOF = false;
7228  switch (X86CC) {
7229  default: break;
7230  case X86::COND_A: case X86::COND_AE:
7231  case X86::COND_B: case X86::COND_BE:
7232    NeedCF = true;
7233    break;
7234  case X86::COND_G: case X86::COND_GE:
7235  case X86::COND_L: case X86::COND_LE:
7236  case X86::COND_O: case X86::COND_NO:
7237    NeedOF = true;
7238    break;
7239  }
7240
7241  // See if we can use the EFLAGS value from the operand instead of
7242  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
7243  // we prove that the arithmetic won't overflow, we can't use OF or CF.
7244  if (Op.getResNo() != 0 || NeedOF || NeedCF)
7245    // Emit a CMP with 0, which is the TEST pattern.
7246    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7247                       DAG.getConstant(0, Op.getValueType()));
7248
7249  unsigned Opcode = 0;
7250  unsigned NumOperands = 0;
7251  switch (Op.getNode()->getOpcode()) {
7252  case ISD::ADD:
7253    // Due to an isel shortcoming, be conservative if this add is likely to be
7254    // selected as part of a load-modify-store instruction. When the root node
7255    // in a match is a store, isel doesn't know how to remap non-chain non-flag
7256    // uses of other nodes in the match, such as the ADD in this case. This
7257    // leads to the ADD being left around and reselected, with the result being
7258    // two adds in the output.  Alas, even if none our users are stores, that
7259    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
7260    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
7261    // climbing the DAG back to the root, and it doesn't seem to be worth the
7262    // effort.
7263    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7264           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7265      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
7266        goto default_case;
7267
7268    if (ConstantSDNode *C =
7269        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
7270      // An add of one will be selected as an INC.
7271      if (C->getAPIntValue() == 1) {
7272        Opcode = X86ISD::INC;
7273        NumOperands = 1;
7274        break;
7275      }
7276
7277      // An add of negative one (subtract of one) will be selected as a DEC.
7278      if (C->getAPIntValue().isAllOnesValue()) {
7279        Opcode = X86ISD::DEC;
7280        NumOperands = 1;
7281        break;
7282      }
7283    }
7284
7285    // Otherwise use a regular EFLAGS-setting add.
7286    Opcode = X86ISD::ADD;
7287    NumOperands = 2;
7288    break;
7289  case ISD::AND: {
7290    // If the primary and result isn't used, don't bother using X86ISD::AND,
7291    // because a TEST instruction will be better.
7292    bool NonFlagUse = false;
7293    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7294           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
7295      SDNode *User = *UI;
7296      unsigned UOpNo = UI.getOperandNo();
7297      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
7298        // Look pass truncate.
7299        UOpNo = User->use_begin().getOperandNo();
7300        User = *User->use_begin();
7301      }
7302
7303      if (User->getOpcode() != ISD::BRCOND &&
7304          User->getOpcode() != ISD::SETCC &&
7305          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
7306        NonFlagUse = true;
7307        break;
7308      }
7309    }
7310
7311    if (!NonFlagUse)
7312      break;
7313  }
7314    // FALL THROUGH
7315  case ISD::SUB:
7316  case ISD::OR:
7317  case ISD::XOR:
7318    // Due to the ISEL shortcoming noted above, be conservative if this op is
7319    // likely to be selected as part of a load-modify-store instruction.
7320    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7321           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7322      if (UI->getOpcode() == ISD::STORE)
7323        goto default_case;
7324
7325    // Otherwise use a regular EFLAGS-setting instruction.
7326    switch (Op.getNode()->getOpcode()) {
7327    default: llvm_unreachable("unexpected operator!");
7328    case ISD::SUB: Opcode = X86ISD::SUB; break;
7329    case ISD::OR:  Opcode = X86ISD::OR;  break;
7330    case ISD::XOR: Opcode = X86ISD::XOR; break;
7331    case ISD::AND: Opcode = X86ISD::AND; break;
7332    }
7333
7334    NumOperands = 2;
7335    break;
7336  case X86ISD::ADD:
7337  case X86ISD::SUB:
7338  case X86ISD::INC:
7339  case X86ISD::DEC:
7340  case X86ISD::OR:
7341  case X86ISD::XOR:
7342  case X86ISD::AND:
7343    return SDValue(Op.getNode(), 1);
7344  default:
7345  default_case:
7346    break;
7347  }
7348
7349  if (Opcode == 0)
7350    // Emit a CMP with 0, which is the TEST pattern.
7351    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7352                       DAG.getConstant(0, Op.getValueType()));
7353
7354  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
7355  SmallVector<SDValue, 4> Ops;
7356  for (unsigned i = 0; i != NumOperands; ++i)
7357    Ops.push_back(Op.getOperand(i));
7358
7359  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
7360  DAG.ReplaceAllUsesWith(Op, New);
7361  return SDValue(New.getNode(), 1);
7362}
7363
7364/// Emit nodes that will be selected as "cmp Op0,Op1", or something
7365/// equivalent.
7366SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
7367                                   SelectionDAG &DAG) const {
7368  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
7369    if (C->getAPIntValue() == 0)
7370      return EmitTest(Op0, X86CC, DAG);
7371
7372  DebugLoc dl = Op0.getDebugLoc();
7373  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
7374}
7375
7376/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
7377/// if it's possible.
7378SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
7379                                     DebugLoc dl, SelectionDAG &DAG) const {
7380  SDValue Op0 = And.getOperand(0);
7381  SDValue Op1 = And.getOperand(1);
7382  if (Op0.getOpcode() == ISD::TRUNCATE)
7383    Op0 = Op0.getOperand(0);
7384  if (Op1.getOpcode() == ISD::TRUNCATE)
7385    Op1 = Op1.getOperand(0);
7386
7387  SDValue LHS, RHS;
7388  if (Op1.getOpcode() == ISD::SHL)
7389    std::swap(Op0, Op1);
7390  if (Op0.getOpcode() == ISD::SHL) {
7391    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
7392      if (And00C->getZExtValue() == 1) {
7393        // If we looked past a truncate, check that it's only truncating away
7394        // known zeros.
7395        unsigned BitWidth = Op0.getValueSizeInBits();
7396        unsigned AndBitWidth = And.getValueSizeInBits();
7397        if (BitWidth > AndBitWidth) {
7398          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
7399          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
7400          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
7401            return SDValue();
7402        }
7403        LHS = Op1;
7404        RHS = Op0.getOperand(1);
7405      }
7406  } else if (Op1.getOpcode() == ISD::Constant) {
7407    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
7408    SDValue AndLHS = Op0;
7409    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
7410      LHS = AndLHS.getOperand(0);
7411      RHS = AndLHS.getOperand(1);
7412    }
7413  }
7414
7415  if (LHS.getNode()) {
7416    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
7417    // instruction.  Since the shift amount is in-range-or-undefined, we know
7418    // that doing a bittest on the i32 value is ok.  We extend to i32 because
7419    // the encoding for the i16 version is larger than the i32 version.
7420    // Also promote i16 to i32 for performance / code size reason.
7421    if (LHS.getValueType() == MVT::i8 ||
7422        LHS.getValueType() == MVT::i16)
7423      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
7424
7425    // If the operand types disagree, extend the shift amount to match.  Since
7426    // BT ignores high bits (like shifts) we can use anyextend.
7427    if (LHS.getValueType() != RHS.getValueType())
7428      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
7429
7430    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
7431    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
7432    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7433                       DAG.getConstant(Cond, MVT::i8), BT);
7434  }
7435
7436  return SDValue();
7437}
7438
7439SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7440  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7441  SDValue Op0 = Op.getOperand(0);
7442  SDValue Op1 = Op.getOperand(1);
7443  DebugLoc dl = Op.getDebugLoc();
7444  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7445
7446  // Optimize to BT if possible.
7447  // Lower (X & (1 << N)) == 0 to BT(X, N).
7448  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7449  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7450  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
7451      Op1.getOpcode() == ISD::Constant &&
7452      cast<ConstantSDNode>(Op1)->isNullValue() &&
7453      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7454    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7455    if (NewSetCC.getNode())
7456      return NewSetCC;
7457  }
7458
7459  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
7460  // these.
7461  if (Op1.getOpcode() == ISD::Constant &&
7462      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7463       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7464      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7465
7466    // If the input is a setcc, then reuse the input setcc or use a new one with
7467    // the inverted condition.
7468    if (Op0.getOpcode() == X86ISD::SETCC) {
7469      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7470      bool Invert = (CC == ISD::SETNE) ^
7471        cast<ConstantSDNode>(Op1)->isNullValue();
7472      if (!Invert) return Op0;
7473
7474      CCode = X86::GetOppositeBranchCondition(CCode);
7475      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7476                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7477    }
7478  }
7479
7480  bool isFP = Op1.getValueType().isFloatingPoint();
7481  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7482  if (X86CC == X86::COND_INVALID)
7483    return SDValue();
7484
7485  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
7486  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7487                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
7488}
7489
7490SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7491  SDValue Cond;
7492  SDValue Op0 = Op.getOperand(0);
7493  SDValue Op1 = Op.getOperand(1);
7494  SDValue CC = Op.getOperand(2);
7495  EVT VT = Op.getValueType();
7496  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7497  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7498  DebugLoc dl = Op.getDebugLoc();
7499
7500  if (isFP) {
7501    unsigned SSECC = 8;
7502    EVT VT0 = Op0.getValueType();
7503    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7504    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7505    bool Swap = false;
7506
7507    switch (SetCCOpcode) {
7508    default: break;
7509    case ISD::SETOEQ:
7510    case ISD::SETEQ:  SSECC = 0; break;
7511    case ISD::SETOGT:
7512    case ISD::SETGT: Swap = true; // Fallthrough
7513    case ISD::SETLT:
7514    case ISD::SETOLT: SSECC = 1; break;
7515    case ISD::SETOGE:
7516    case ISD::SETGE: Swap = true; // Fallthrough
7517    case ISD::SETLE:
7518    case ISD::SETOLE: SSECC = 2; break;
7519    case ISD::SETUO:  SSECC = 3; break;
7520    case ISD::SETUNE:
7521    case ISD::SETNE:  SSECC = 4; break;
7522    case ISD::SETULE: Swap = true;
7523    case ISD::SETUGE: SSECC = 5; break;
7524    case ISD::SETULT: Swap = true;
7525    case ISD::SETUGT: SSECC = 6; break;
7526    case ISD::SETO:   SSECC = 7; break;
7527    }
7528    if (Swap)
7529      std::swap(Op0, Op1);
7530
7531    // In the two special cases we can't handle, emit two comparisons.
7532    if (SSECC == 8) {
7533      if (SetCCOpcode == ISD::SETUEQ) {
7534        SDValue UNORD, EQ;
7535        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7536        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7537        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7538      }
7539      else if (SetCCOpcode == ISD::SETONE) {
7540        SDValue ORD, NEQ;
7541        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7542        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7543        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7544      }
7545      llvm_unreachable("Illegal FP comparison");
7546    }
7547    // Handle all other FP comparisons here.
7548    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7549  }
7550
7551  // We are handling one of the integer comparisons here.  Since SSE only has
7552  // GT and EQ comparisons for integer, swapping operands and multiple
7553  // operations may be required for some comparisons.
7554  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7555  bool Swap = false, Invert = false, FlipSigns = false;
7556
7557  switch (VT.getSimpleVT().SimpleTy) {
7558  default: break;
7559  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7560  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7561  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7562  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7563  }
7564
7565  switch (SetCCOpcode) {
7566  default: break;
7567  case ISD::SETNE:  Invert = true;
7568  case ISD::SETEQ:  Opc = EQOpc; break;
7569  case ISD::SETLT:  Swap = true;
7570  case ISD::SETGT:  Opc = GTOpc; break;
7571  case ISD::SETGE:  Swap = true;
7572  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
7573  case ISD::SETULT: Swap = true;
7574  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7575  case ISD::SETUGE: Swap = true;
7576  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7577  }
7578  if (Swap)
7579    std::swap(Op0, Op1);
7580
7581  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
7582  // bits of the inputs before performing those operations.
7583  if (FlipSigns) {
7584    EVT EltVT = VT.getVectorElementType();
7585    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7586                                      EltVT);
7587    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7588    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7589                                    SignBits.size());
7590    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7591    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7592  }
7593
7594  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7595
7596  // If the logical-not of the result is required, perform that now.
7597  if (Invert)
7598    Result = DAG.getNOT(dl, Result, VT);
7599
7600  return Result;
7601}
7602
7603// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7604static bool isX86LogicalCmp(SDValue Op) {
7605  unsigned Opc = Op.getNode()->getOpcode();
7606  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7607    return true;
7608  if (Op.getResNo() == 1 &&
7609      (Opc == X86ISD::ADD ||
7610       Opc == X86ISD::SUB ||
7611       Opc == X86ISD::ADC ||
7612       Opc == X86ISD::SBB ||
7613       Opc == X86ISD::SMUL ||
7614       Opc == X86ISD::UMUL ||
7615       Opc == X86ISD::INC ||
7616       Opc == X86ISD::DEC ||
7617       Opc == X86ISD::OR ||
7618       Opc == X86ISD::XOR ||
7619       Opc == X86ISD::AND))
7620    return true;
7621
7622  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
7623    return true;
7624
7625  return false;
7626}
7627
7628static bool isZero(SDValue V) {
7629  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7630  return C && C->isNullValue();
7631}
7632
7633static bool isAllOnes(SDValue V) {
7634  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7635  return C && C->isAllOnesValue();
7636}
7637
7638SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7639  bool addTest = true;
7640  SDValue Cond  = Op.getOperand(0);
7641  SDValue Op1 = Op.getOperand(1);
7642  SDValue Op2 = Op.getOperand(2);
7643  DebugLoc DL = Op.getDebugLoc();
7644  SDValue CC;
7645
7646  if (Cond.getOpcode() == ISD::SETCC) {
7647    SDValue NewCond = LowerSETCC(Cond, DAG);
7648    if (NewCond.getNode())
7649      Cond = NewCond;
7650  }
7651
7652  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
7653  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
7654  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
7655  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
7656  if (Cond.getOpcode() == X86ISD::SETCC &&
7657      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
7658      isZero(Cond.getOperand(1).getOperand(1))) {
7659    SDValue Cmp = Cond.getOperand(1);
7660
7661    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
7662
7663    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
7664        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
7665      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
7666
7667      SDValue CmpOp0 = Cmp.getOperand(0);
7668      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
7669                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7670
7671      SDValue Res =   // Res = 0 or -1.
7672        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7673                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7674
7675      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
7676        Res = DAG.getNOT(DL, Res, Res.getValueType());
7677
7678      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7679      if (N2C == 0 || !N2C->isNullValue())
7680        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
7681      return Res;
7682    }
7683  }
7684
7685  // Look past (and (setcc_carry (cmp ...)), 1).
7686  if (Cond.getOpcode() == ISD::AND &&
7687      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7688    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7689    if (C && C->getAPIntValue() == 1)
7690      Cond = Cond.getOperand(0);
7691  }
7692
7693  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7694  // setting operand in place of the X86ISD::SETCC.
7695  if (Cond.getOpcode() == X86ISD::SETCC ||
7696      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7697    CC = Cond.getOperand(0);
7698
7699    SDValue Cmp = Cond.getOperand(1);
7700    unsigned Opc = Cmp.getOpcode();
7701    EVT VT = Op.getValueType();
7702
7703    bool IllegalFPCMov = false;
7704    if (VT.isFloatingPoint() && !VT.isVector() &&
7705        !isScalarFPTypeInSSEReg(VT))  // FPStack?
7706      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7707
7708    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7709        Opc == X86ISD::BT) { // FIXME
7710      Cond = Cmp;
7711      addTest = false;
7712    }
7713  }
7714
7715  if (addTest) {
7716    // Look pass the truncate.
7717    if (Cond.getOpcode() == ISD::TRUNCATE)
7718      Cond = Cond.getOperand(0);
7719
7720    // We know the result of AND is compared against zero. Try to match
7721    // it to BT.
7722    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7723      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
7724      if (NewSetCC.getNode()) {
7725        CC = NewSetCC.getOperand(0);
7726        Cond = NewSetCC.getOperand(1);
7727        addTest = false;
7728      }
7729    }
7730  }
7731
7732  if (addTest) {
7733    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7734    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7735  }
7736
7737  // a <  b ? -1 :  0 -> RES = ~setcc_carry
7738  // a <  b ?  0 : -1 -> RES = setcc_carry
7739  // a >= b ? -1 :  0 -> RES = setcc_carry
7740  // a >= b ?  0 : -1 -> RES = ~setcc_carry
7741  if (Cond.getOpcode() == X86ISD::CMP) {
7742    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
7743
7744    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
7745        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
7746      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7747                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
7748      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
7749        return DAG.getNOT(DL, Res, Res.getValueType());
7750      return Res;
7751    }
7752  }
7753
7754  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7755  // condition is true.
7756  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
7757  SDValue Ops[] = { Op2, Op1, CC, Cond };
7758  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
7759}
7760
7761// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7762// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7763// from the AND / OR.
7764static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7765  Opc = Op.getOpcode();
7766  if (Opc != ISD::OR && Opc != ISD::AND)
7767    return false;
7768  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7769          Op.getOperand(0).hasOneUse() &&
7770          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7771          Op.getOperand(1).hasOneUse());
7772}
7773
7774// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7775// 1 and that the SETCC node has a single use.
7776static bool isXor1OfSetCC(SDValue Op) {
7777  if (Op.getOpcode() != ISD::XOR)
7778    return false;
7779  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7780  if (N1C && N1C->getAPIntValue() == 1) {
7781    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7782      Op.getOperand(0).hasOneUse();
7783  }
7784  return false;
7785}
7786
7787SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7788  bool addTest = true;
7789  SDValue Chain = Op.getOperand(0);
7790  SDValue Cond  = Op.getOperand(1);
7791  SDValue Dest  = Op.getOperand(2);
7792  DebugLoc dl = Op.getDebugLoc();
7793  SDValue CC;
7794
7795  if (Cond.getOpcode() == ISD::SETCC) {
7796    SDValue NewCond = LowerSETCC(Cond, DAG);
7797    if (NewCond.getNode())
7798      Cond = NewCond;
7799  }
7800#if 0
7801  // FIXME: LowerXALUO doesn't handle these!!
7802  else if (Cond.getOpcode() == X86ISD::ADD  ||
7803           Cond.getOpcode() == X86ISD::SUB  ||
7804           Cond.getOpcode() == X86ISD::SMUL ||
7805           Cond.getOpcode() == X86ISD::UMUL)
7806    Cond = LowerXALUO(Cond, DAG);
7807#endif
7808
7809  // Look pass (and (setcc_carry (cmp ...)), 1).
7810  if (Cond.getOpcode() == ISD::AND &&
7811      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7812    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7813    if (C && C->getAPIntValue() == 1)
7814      Cond = Cond.getOperand(0);
7815  }
7816
7817  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7818  // setting operand in place of the X86ISD::SETCC.
7819  if (Cond.getOpcode() == X86ISD::SETCC ||
7820      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7821    CC = Cond.getOperand(0);
7822
7823    SDValue Cmp = Cond.getOperand(1);
7824    unsigned Opc = Cmp.getOpcode();
7825    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7826    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7827      Cond = Cmp;
7828      addTest = false;
7829    } else {
7830      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7831      default: break;
7832      case X86::COND_O:
7833      case X86::COND_B:
7834        // These can only come from an arithmetic instruction with overflow,
7835        // e.g. SADDO, UADDO.
7836        Cond = Cond.getNode()->getOperand(1);
7837        addTest = false;
7838        break;
7839      }
7840    }
7841  } else {
7842    unsigned CondOpc;
7843    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7844      SDValue Cmp = Cond.getOperand(0).getOperand(1);
7845      if (CondOpc == ISD::OR) {
7846        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7847        // two branches instead of an explicit OR instruction with a
7848        // separate test.
7849        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7850            isX86LogicalCmp(Cmp)) {
7851          CC = Cond.getOperand(0).getOperand(0);
7852          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7853                              Chain, Dest, CC, Cmp);
7854          CC = Cond.getOperand(1).getOperand(0);
7855          Cond = Cmp;
7856          addTest = false;
7857        }
7858      } else { // ISD::AND
7859        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7860        // two branches instead of an explicit AND instruction with a
7861        // separate test. However, we only do this if this block doesn't
7862        // have a fall-through edge, because this requires an explicit
7863        // jmp when the condition is false.
7864        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7865            isX86LogicalCmp(Cmp) &&
7866            Op.getNode()->hasOneUse()) {
7867          X86::CondCode CCode =
7868            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7869          CCode = X86::GetOppositeBranchCondition(CCode);
7870          CC = DAG.getConstant(CCode, MVT::i8);
7871          SDNode *User = *Op.getNode()->use_begin();
7872          // Look for an unconditional branch following this conditional branch.
7873          // We need this because we need to reverse the successors in order
7874          // to implement FCMP_OEQ.
7875          if (User->getOpcode() == ISD::BR) {
7876            SDValue FalseBB = User->getOperand(1);
7877            SDNode *NewBR =
7878              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7879            assert(NewBR == User);
7880            (void)NewBR;
7881            Dest = FalseBB;
7882
7883            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7884                                Chain, Dest, CC, Cmp);
7885            X86::CondCode CCode =
7886              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7887            CCode = X86::GetOppositeBranchCondition(CCode);
7888            CC = DAG.getConstant(CCode, MVT::i8);
7889            Cond = Cmp;
7890            addTest = false;
7891          }
7892        }
7893      }
7894    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7895      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7896      // It should be transformed during dag combiner except when the condition
7897      // is set by a arithmetics with overflow node.
7898      X86::CondCode CCode =
7899        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7900      CCode = X86::GetOppositeBranchCondition(CCode);
7901      CC = DAG.getConstant(CCode, MVT::i8);
7902      Cond = Cond.getOperand(0).getOperand(1);
7903      addTest = false;
7904    }
7905  }
7906
7907  if (addTest) {
7908    // Look pass the truncate.
7909    if (Cond.getOpcode() == ISD::TRUNCATE)
7910      Cond = Cond.getOperand(0);
7911
7912    // We know the result of AND is compared against zero. Try to match
7913    // it to BT.
7914    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7915      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7916      if (NewSetCC.getNode()) {
7917        CC = NewSetCC.getOperand(0);
7918        Cond = NewSetCC.getOperand(1);
7919        addTest = false;
7920      }
7921    }
7922  }
7923
7924  if (addTest) {
7925    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7926    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7927  }
7928  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7929                     Chain, Dest, CC, Cond);
7930}
7931
7932
7933// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7934// Calls to _alloca is needed to probe the stack when allocating more than 4k
7935// bytes in one go. Touching the stack at 4K increments is necessary to ensure
7936// that the guard pages used by the OS virtual memory manager are allocated in
7937// correct sequence.
7938SDValue
7939X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7940                                           SelectionDAG &DAG) const {
7941  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
7942         "This should be used only on Windows targets");
7943  assert(!Subtarget->isTargetEnvMacho());
7944  DebugLoc dl = Op.getDebugLoc();
7945
7946  // Get the inputs.
7947  SDValue Chain = Op.getOperand(0);
7948  SDValue Size  = Op.getOperand(1);
7949  // FIXME: Ensure alignment here
7950
7951  SDValue Flag;
7952
7953  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7954  unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
7955
7956  Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
7957  Flag = Chain.getValue(1);
7958
7959  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7960
7961  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
7962  Flag = Chain.getValue(1);
7963
7964  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7965
7966  SDValue Ops1[2] = { Chain.getValue(0), Chain };
7967  return DAG.getMergeValues(Ops1, 2, dl);
7968}
7969
7970SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7971  MachineFunction &MF = DAG.getMachineFunction();
7972  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7973
7974  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7975  DebugLoc DL = Op.getDebugLoc();
7976
7977  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
7978    // vastart just stores the address of the VarArgsFrameIndex slot into the
7979    // memory location argument.
7980    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7981                                   getPointerTy());
7982    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
7983                        MachinePointerInfo(SV), false, false, 0);
7984  }
7985
7986  // __va_list_tag:
7987  //   gp_offset         (0 - 6 * 8)
7988  //   fp_offset         (48 - 48 + 8 * 16)
7989  //   overflow_arg_area (point to parameters coming in memory).
7990  //   reg_save_area
7991  SmallVector<SDValue, 8> MemOps;
7992  SDValue FIN = Op.getOperand(1);
7993  // Store gp_offset
7994  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
7995                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
7996                                               MVT::i32),
7997                               FIN, MachinePointerInfo(SV), false, false, 0);
7998  MemOps.push_back(Store);
7999
8000  // Store fp_offset
8001  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8002                    FIN, DAG.getIntPtrConstant(4));
8003  Store = DAG.getStore(Op.getOperand(0), DL,
8004                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
8005                                       MVT::i32),
8006                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
8007  MemOps.push_back(Store);
8008
8009  // Store ptr to overflow_arg_area
8010  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8011                    FIN, DAG.getIntPtrConstant(4));
8012  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8013                                    getPointerTy());
8014  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
8015                       MachinePointerInfo(SV, 8),
8016                       false, false, 0);
8017  MemOps.push_back(Store);
8018
8019  // Store ptr to reg_save_area.
8020  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8021                    FIN, DAG.getIntPtrConstant(8));
8022  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
8023                                    getPointerTy());
8024  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
8025                       MachinePointerInfo(SV, 16), false, false, 0);
8026  MemOps.push_back(Store);
8027  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
8028                     &MemOps[0], MemOps.size());
8029}
8030
8031SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
8032  assert(Subtarget->is64Bit() &&
8033         "LowerVAARG only handles 64-bit va_arg!");
8034  assert((Subtarget->isTargetLinux() ||
8035          Subtarget->isTargetDarwin()) &&
8036          "Unhandled target in LowerVAARG");
8037  assert(Op.getNode()->getNumOperands() == 4);
8038  SDValue Chain = Op.getOperand(0);
8039  SDValue SrcPtr = Op.getOperand(1);
8040  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8041  unsigned Align = Op.getConstantOperandVal(3);
8042  DebugLoc dl = Op.getDebugLoc();
8043
8044  EVT ArgVT = Op.getNode()->getValueType(0);
8045  const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8046  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
8047  uint8_t ArgMode;
8048
8049  // Decide which area this value should be read from.
8050  // TODO: Implement the AMD64 ABI in its entirety. This simple
8051  // selection mechanism works only for the basic types.
8052  if (ArgVT == MVT::f80) {
8053    llvm_unreachable("va_arg for f80 not yet implemented");
8054  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
8055    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
8056  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
8057    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
8058  } else {
8059    llvm_unreachable("Unhandled argument type in LowerVAARG");
8060  }
8061
8062  if (ArgMode == 2) {
8063    // Sanity Check: Make sure using fp_offset makes sense.
8064    assert(!UseSoftFloat &&
8065           !(DAG.getMachineFunction()
8066                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
8067           Subtarget->hasXMM());
8068  }
8069
8070  // Insert VAARG_64 node into the DAG
8071  // VAARG_64 returns two values: Variable Argument Address, Chain
8072  SmallVector<SDValue, 11> InstOps;
8073  InstOps.push_back(Chain);
8074  InstOps.push_back(SrcPtr);
8075  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
8076  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
8077  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
8078  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
8079  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
8080                                          VTs, &InstOps[0], InstOps.size(),
8081                                          MVT::i64,
8082                                          MachinePointerInfo(SV),
8083                                          /*Align=*/0,
8084                                          /*Volatile=*/false,
8085                                          /*ReadMem=*/true,
8086                                          /*WriteMem=*/true);
8087  Chain = VAARG.getValue(1);
8088
8089  // Load the next argument and return it
8090  return DAG.getLoad(ArgVT, dl,
8091                     Chain,
8092                     VAARG,
8093                     MachinePointerInfo(),
8094                     false, false, 0);
8095}
8096
8097SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
8098  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
8099  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
8100  SDValue Chain = Op.getOperand(0);
8101  SDValue DstPtr = Op.getOperand(1);
8102  SDValue SrcPtr = Op.getOperand(2);
8103  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
8104  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8105  DebugLoc DL = Op.getDebugLoc();
8106
8107  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
8108                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
8109                       false,
8110                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
8111}
8112
8113SDValue
8114X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
8115  DebugLoc dl = Op.getDebugLoc();
8116  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8117  switch (IntNo) {
8118  default: return SDValue();    // Don't custom lower most intrinsics.
8119  // Comparison intrinsics.
8120  case Intrinsic::x86_sse_comieq_ss:
8121  case Intrinsic::x86_sse_comilt_ss:
8122  case Intrinsic::x86_sse_comile_ss:
8123  case Intrinsic::x86_sse_comigt_ss:
8124  case Intrinsic::x86_sse_comige_ss:
8125  case Intrinsic::x86_sse_comineq_ss:
8126  case Intrinsic::x86_sse_ucomieq_ss:
8127  case Intrinsic::x86_sse_ucomilt_ss:
8128  case Intrinsic::x86_sse_ucomile_ss:
8129  case Intrinsic::x86_sse_ucomigt_ss:
8130  case Intrinsic::x86_sse_ucomige_ss:
8131  case Intrinsic::x86_sse_ucomineq_ss:
8132  case Intrinsic::x86_sse2_comieq_sd:
8133  case Intrinsic::x86_sse2_comilt_sd:
8134  case Intrinsic::x86_sse2_comile_sd:
8135  case Intrinsic::x86_sse2_comigt_sd:
8136  case Intrinsic::x86_sse2_comige_sd:
8137  case Intrinsic::x86_sse2_comineq_sd:
8138  case Intrinsic::x86_sse2_ucomieq_sd:
8139  case Intrinsic::x86_sse2_ucomilt_sd:
8140  case Intrinsic::x86_sse2_ucomile_sd:
8141  case Intrinsic::x86_sse2_ucomigt_sd:
8142  case Intrinsic::x86_sse2_ucomige_sd:
8143  case Intrinsic::x86_sse2_ucomineq_sd: {
8144    unsigned Opc = 0;
8145    ISD::CondCode CC = ISD::SETCC_INVALID;
8146    switch (IntNo) {
8147    default: break;
8148    case Intrinsic::x86_sse_comieq_ss:
8149    case Intrinsic::x86_sse2_comieq_sd:
8150      Opc = X86ISD::COMI;
8151      CC = ISD::SETEQ;
8152      break;
8153    case Intrinsic::x86_sse_comilt_ss:
8154    case Intrinsic::x86_sse2_comilt_sd:
8155      Opc = X86ISD::COMI;
8156      CC = ISD::SETLT;
8157      break;
8158    case Intrinsic::x86_sse_comile_ss:
8159    case Intrinsic::x86_sse2_comile_sd:
8160      Opc = X86ISD::COMI;
8161      CC = ISD::SETLE;
8162      break;
8163    case Intrinsic::x86_sse_comigt_ss:
8164    case Intrinsic::x86_sse2_comigt_sd:
8165      Opc = X86ISD::COMI;
8166      CC = ISD::SETGT;
8167      break;
8168    case Intrinsic::x86_sse_comige_ss:
8169    case Intrinsic::x86_sse2_comige_sd:
8170      Opc = X86ISD::COMI;
8171      CC = ISD::SETGE;
8172      break;
8173    case Intrinsic::x86_sse_comineq_ss:
8174    case Intrinsic::x86_sse2_comineq_sd:
8175      Opc = X86ISD::COMI;
8176      CC = ISD::SETNE;
8177      break;
8178    case Intrinsic::x86_sse_ucomieq_ss:
8179    case Intrinsic::x86_sse2_ucomieq_sd:
8180      Opc = X86ISD::UCOMI;
8181      CC = ISD::SETEQ;
8182      break;
8183    case Intrinsic::x86_sse_ucomilt_ss:
8184    case Intrinsic::x86_sse2_ucomilt_sd:
8185      Opc = X86ISD::UCOMI;
8186      CC = ISD::SETLT;
8187      break;
8188    case Intrinsic::x86_sse_ucomile_ss:
8189    case Intrinsic::x86_sse2_ucomile_sd:
8190      Opc = X86ISD::UCOMI;
8191      CC = ISD::SETLE;
8192      break;
8193    case Intrinsic::x86_sse_ucomigt_ss:
8194    case Intrinsic::x86_sse2_ucomigt_sd:
8195      Opc = X86ISD::UCOMI;
8196      CC = ISD::SETGT;
8197      break;
8198    case Intrinsic::x86_sse_ucomige_ss:
8199    case Intrinsic::x86_sse2_ucomige_sd:
8200      Opc = X86ISD::UCOMI;
8201      CC = ISD::SETGE;
8202      break;
8203    case Intrinsic::x86_sse_ucomineq_ss:
8204    case Intrinsic::x86_sse2_ucomineq_sd:
8205      Opc = X86ISD::UCOMI;
8206      CC = ISD::SETNE;
8207      break;
8208    }
8209
8210    SDValue LHS = Op.getOperand(1);
8211    SDValue RHS = Op.getOperand(2);
8212    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
8213    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
8214    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
8215    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8216                                DAG.getConstant(X86CC, MVT::i8), Cond);
8217    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8218  }
8219  // ptest and testp intrinsics. The intrinsic these come from are designed to
8220  // return an integer value, not just an instruction so lower it to the ptest
8221  // or testp pattern and a setcc for the result.
8222  case Intrinsic::x86_sse41_ptestz:
8223  case Intrinsic::x86_sse41_ptestc:
8224  case Intrinsic::x86_sse41_ptestnzc:
8225  case Intrinsic::x86_avx_ptestz_256:
8226  case Intrinsic::x86_avx_ptestc_256:
8227  case Intrinsic::x86_avx_ptestnzc_256:
8228  case Intrinsic::x86_avx_vtestz_ps:
8229  case Intrinsic::x86_avx_vtestc_ps:
8230  case Intrinsic::x86_avx_vtestnzc_ps:
8231  case Intrinsic::x86_avx_vtestz_pd:
8232  case Intrinsic::x86_avx_vtestc_pd:
8233  case Intrinsic::x86_avx_vtestnzc_pd:
8234  case Intrinsic::x86_avx_vtestz_ps_256:
8235  case Intrinsic::x86_avx_vtestc_ps_256:
8236  case Intrinsic::x86_avx_vtestnzc_ps_256:
8237  case Intrinsic::x86_avx_vtestz_pd_256:
8238  case Intrinsic::x86_avx_vtestc_pd_256:
8239  case Intrinsic::x86_avx_vtestnzc_pd_256: {
8240    bool IsTestPacked = false;
8241    unsigned X86CC = 0;
8242    switch (IntNo) {
8243    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
8244    case Intrinsic::x86_avx_vtestz_ps:
8245    case Intrinsic::x86_avx_vtestz_pd:
8246    case Intrinsic::x86_avx_vtestz_ps_256:
8247    case Intrinsic::x86_avx_vtestz_pd_256:
8248      IsTestPacked = true; // Fallthrough
8249    case Intrinsic::x86_sse41_ptestz:
8250    case Intrinsic::x86_avx_ptestz_256:
8251      // ZF = 1
8252      X86CC = X86::COND_E;
8253      break;
8254    case Intrinsic::x86_avx_vtestc_ps:
8255    case Intrinsic::x86_avx_vtestc_pd:
8256    case Intrinsic::x86_avx_vtestc_ps_256:
8257    case Intrinsic::x86_avx_vtestc_pd_256:
8258      IsTestPacked = true; // Fallthrough
8259    case Intrinsic::x86_sse41_ptestc:
8260    case Intrinsic::x86_avx_ptestc_256:
8261      // CF = 1
8262      X86CC = X86::COND_B;
8263      break;
8264    case Intrinsic::x86_avx_vtestnzc_ps:
8265    case Intrinsic::x86_avx_vtestnzc_pd:
8266    case Intrinsic::x86_avx_vtestnzc_ps_256:
8267    case Intrinsic::x86_avx_vtestnzc_pd_256:
8268      IsTestPacked = true; // Fallthrough
8269    case Intrinsic::x86_sse41_ptestnzc:
8270    case Intrinsic::x86_avx_ptestnzc_256:
8271      // ZF and CF = 0
8272      X86CC = X86::COND_A;
8273      break;
8274    }
8275
8276    SDValue LHS = Op.getOperand(1);
8277    SDValue RHS = Op.getOperand(2);
8278    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
8279    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
8280    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
8281    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
8282    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8283  }
8284
8285  // Fix vector shift instructions where the last operand is a non-immediate
8286  // i32 value.
8287  case Intrinsic::x86_sse2_pslli_w:
8288  case Intrinsic::x86_sse2_pslli_d:
8289  case Intrinsic::x86_sse2_pslli_q:
8290  case Intrinsic::x86_sse2_psrli_w:
8291  case Intrinsic::x86_sse2_psrli_d:
8292  case Intrinsic::x86_sse2_psrli_q:
8293  case Intrinsic::x86_sse2_psrai_w:
8294  case Intrinsic::x86_sse2_psrai_d:
8295  case Intrinsic::x86_mmx_pslli_w:
8296  case Intrinsic::x86_mmx_pslli_d:
8297  case Intrinsic::x86_mmx_pslli_q:
8298  case Intrinsic::x86_mmx_psrli_w:
8299  case Intrinsic::x86_mmx_psrli_d:
8300  case Intrinsic::x86_mmx_psrli_q:
8301  case Intrinsic::x86_mmx_psrai_w:
8302  case Intrinsic::x86_mmx_psrai_d: {
8303    SDValue ShAmt = Op.getOperand(2);
8304    if (isa<ConstantSDNode>(ShAmt))
8305      return SDValue();
8306
8307    unsigned NewIntNo = 0;
8308    EVT ShAmtVT = MVT::v4i32;
8309    switch (IntNo) {
8310    case Intrinsic::x86_sse2_pslli_w:
8311      NewIntNo = Intrinsic::x86_sse2_psll_w;
8312      break;
8313    case Intrinsic::x86_sse2_pslli_d:
8314      NewIntNo = Intrinsic::x86_sse2_psll_d;
8315      break;
8316    case Intrinsic::x86_sse2_pslli_q:
8317      NewIntNo = Intrinsic::x86_sse2_psll_q;
8318      break;
8319    case Intrinsic::x86_sse2_psrli_w:
8320      NewIntNo = Intrinsic::x86_sse2_psrl_w;
8321      break;
8322    case Intrinsic::x86_sse2_psrli_d:
8323      NewIntNo = Intrinsic::x86_sse2_psrl_d;
8324      break;
8325    case Intrinsic::x86_sse2_psrli_q:
8326      NewIntNo = Intrinsic::x86_sse2_psrl_q;
8327      break;
8328    case Intrinsic::x86_sse2_psrai_w:
8329      NewIntNo = Intrinsic::x86_sse2_psra_w;
8330      break;
8331    case Intrinsic::x86_sse2_psrai_d:
8332      NewIntNo = Intrinsic::x86_sse2_psra_d;
8333      break;
8334    default: {
8335      ShAmtVT = MVT::v2i32;
8336      switch (IntNo) {
8337      case Intrinsic::x86_mmx_pslli_w:
8338        NewIntNo = Intrinsic::x86_mmx_psll_w;
8339        break;
8340      case Intrinsic::x86_mmx_pslli_d:
8341        NewIntNo = Intrinsic::x86_mmx_psll_d;
8342        break;
8343      case Intrinsic::x86_mmx_pslli_q:
8344        NewIntNo = Intrinsic::x86_mmx_psll_q;
8345        break;
8346      case Intrinsic::x86_mmx_psrli_w:
8347        NewIntNo = Intrinsic::x86_mmx_psrl_w;
8348        break;
8349      case Intrinsic::x86_mmx_psrli_d:
8350        NewIntNo = Intrinsic::x86_mmx_psrl_d;
8351        break;
8352      case Intrinsic::x86_mmx_psrli_q:
8353        NewIntNo = Intrinsic::x86_mmx_psrl_q;
8354        break;
8355      case Intrinsic::x86_mmx_psrai_w:
8356        NewIntNo = Intrinsic::x86_mmx_psra_w;
8357        break;
8358      case Intrinsic::x86_mmx_psrai_d:
8359        NewIntNo = Intrinsic::x86_mmx_psra_d;
8360        break;
8361      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8362      }
8363      break;
8364    }
8365    }
8366
8367    // The vector shift intrinsics with scalars uses 32b shift amounts but
8368    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
8369    // to be zero.
8370    SDValue ShOps[4];
8371    ShOps[0] = ShAmt;
8372    ShOps[1] = DAG.getConstant(0, MVT::i32);
8373    if (ShAmtVT == MVT::v4i32) {
8374      ShOps[2] = DAG.getUNDEF(MVT::i32);
8375      ShOps[3] = DAG.getUNDEF(MVT::i32);
8376      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
8377    } else {
8378      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
8379// FIXME this must be lowered to get rid of the invalid type.
8380    }
8381
8382    EVT VT = Op.getValueType();
8383    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
8384    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8385                       DAG.getConstant(NewIntNo, MVT::i32),
8386                       Op.getOperand(1), ShAmt);
8387  }
8388  }
8389}
8390
8391SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
8392                                           SelectionDAG &DAG) const {
8393  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8394  MFI->setReturnAddressIsTaken(true);
8395
8396  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8397  DebugLoc dl = Op.getDebugLoc();
8398
8399  if (Depth > 0) {
8400    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
8401    SDValue Offset =
8402      DAG.getConstant(TD->getPointerSize(),
8403                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8404    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8405                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
8406                                   FrameAddr, Offset),
8407                       MachinePointerInfo(), false, false, 0);
8408  }
8409
8410  // Just load the return address.
8411  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
8412  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8413                     RetAddrFI, MachinePointerInfo(), false, false, 0);
8414}
8415
8416SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
8417  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8418  MFI->setFrameAddressIsTaken(true);
8419
8420  EVT VT = Op.getValueType();
8421  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
8422  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8423  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
8424  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
8425  while (Depth--)
8426    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
8427                            MachinePointerInfo(),
8428                            false, false, 0);
8429  return FrameAddr;
8430}
8431
8432SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
8433                                                     SelectionDAG &DAG) const {
8434  return DAG.getIntPtrConstant(2*TD->getPointerSize());
8435}
8436
8437SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
8438  MachineFunction &MF = DAG.getMachineFunction();
8439  SDValue Chain     = Op.getOperand(0);
8440  SDValue Offset    = Op.getOperand(1);
8441  SDValue Handler   = Op.getOperand(2);
8442  DebugLoc dl       = Op.getDebugLoc();
8443
8444  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
8445                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
8446                                     getPointerTy());
8447  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
8448
8449  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
8450                                  DAG.getIntPtrConstant(TD->getPointerSize()));
8451  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
8452  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
8453                       false, false, 0);
8454  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
8455  MF.getRegInfo().addLiveOut(StoreAddrReg);
8456
8457  return DAG.getNode(X86ISD::EH_RETURN, dl,
8458                     MVT::Other,
8459                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
8460}
8461
8462SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
8463                                             SelectionDAG &DAG) const {
8464  SDValue Root = Op.getOperand(0);
8465  SDValue Trmp = Op.getOperand(1); // trampoline
8466  SDValue FPtr = Op.getOperand(2); // nested function
8467  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
8468  DebugLoc dl  = Op.getDebugLoc();
8469
8470  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8471
8472  if (Subtarget->is64Bit()) {
8473    SDValue OutChains[6];
8474
8475    // Large code-model.
8476    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
8477    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8478
8479    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
8480    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
8481
8482    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8483
8484    // Load the pointer to the nested function into R11.
8485    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8486    SDValue Addr = Trmp;
8487    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8488                                Addr, MachinePointerInfo(TrmpAddr),
8489                                false, false, 0);
8490
8491    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8492                       DAG.getConstant(2, MVT::i64));
8493    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8494                                MachinePointerInfo(TrmpAddr, 2),
8495                                false, false, 2);
8496
8497    // Load the 'nest' parameter value into R10.
8498    // R10 is specified in X86CallingConv.td
8499    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8500    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8501                       DAG.getConstant(10, MVT::i64));
8502    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8503                                Addr, MachinePointerInfo(TrmpAddr, 10),
8504                                false, false, 0);
8505
8506    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8507                       DAG.getConstant(12, MVT::i64));
8508    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8509                                MachinePointerInfo(TrmpAddr, 12),
8510                                false, false, 2);
8511
8512    // Jump to the nested function.
8513    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8514    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8515                       DAG.getConstant(20, MVT::i64));
8516    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8517                                Addr, MachinePointerInfo(TrmpAddr, 20),
8518                                false, false, 0);
8519
8520    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8521    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8522                       DAG.getConstant(22, MVT::i64));
8523    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8524                                MachinePointerInfo(TrmpAddr, 22),
8525                                false, false, 0);
8526
8527    SDValue Ops[] =
8528      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8529    return DAG.getMergeValues(Ops, 2, dl);
8530  } else {
8531    const Function *Func =
8532      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8533    CallingConv::ID CC = Func->getCallingConv();
8534    unsigned NestReg;
8535
8536    switch (CC) {
8537    default:
8538      llvm_unreachable("Unsupported calling convention");
8539    case CallingConv::C:
8540    case CallingConv::X86_StdCall: {
8541      // Pass 'nest' parameter in ECX.
8542      // Must be kept in sync with X86CallingConv.td
8543      NestReg = X86::ECX;
8544
8545      // Check that ECX wasn't needed by an 'inreg' parameter.
8546      const FunctionType *FTy = Func->getFunctionType();
8547      const AttrListPtr &Attrs = Func->getAttributes();
8548
8549      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8550        unsigned InRegCount = 0;
8551        unsigned Idx = 1;
8552
8553        for (FunctionType::param_iterator I = FTy->param_begin(),
8554             E = FTy->param_end(); I != E; ++I, ++Idx)
8555          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8556            // FIXME: should only count parameters that are lowered to integers.
8557            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8558
8559        if (InRegCount > 2) {
8560          report_fatal_error("Nest register in use - reduce number of inreg"
8561                             " parameters!");
8562        }
8563      }
8564      break;
8565    }
8566    case CallingConv::X86_FastCall:
8567    case CallingConv::X86_ThisCall:
8568    case CallingConv::Fast:
8569      // Pass 'nest' parameter in EAX.
8570      // Must be kept in sync with X86CallingConv.td
8571      NestReg = X86::EAX;
8572      break;
8573    }
8574
8575    SDValue OutChains[4];
8576    SDValue Addr, Disp;
8577
8578    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8579                       DAG.getConstant(10, MVT::i32));
8580    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8581
8582    // This is storing the opcode for MOV32ri.
8583    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8584    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
8585    OutChains[0] = DAG.getStore(Root, dl,
8586                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8587                                Trmp, MachinePointerInfo(TrmpAddr),
8588                                false, false, 0);
8589
8590    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8591                       DAG.getConstant(1, MVT::i32));
8592    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8593                                MachinePointerInfo(TrmpAddr, 1),
8594                                false, false, 1);
8595
8596    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8597    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8598                       DAG.getConstant(5, MVT::i32));
8599    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8600                                MachinePointerInfo(TrmpAddr, 5),
8601                                false, false, 1);
8602
8603    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8604                       DAG.getConstant(6, MVT::i32));
8605    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8606                                MachinePointerInfo(TrmpAddr, 6),
8607                                false, false, 1);
8608
8609    SDValue Ops[] =
8610      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8611    return DAG.getMergeValues(Ops, 2, dl);
8612  }
8613}
8614
8615SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8616                                            SelectionDAG &DAG) const {
8617  /*
8618   The rounding mode is in bits 11:10 of FPSR, and has the following
8619   settings:
8620     00 Round to nearest
8621     01 Round to -inf
8622     10 Round to +inf
8623     11 Round to 0
8624
8625  FLT_ROUNDS, on the other hand, expects the following:
8626    -1 Undefined
8627     0 Round to 0
8628     1 Round to nearest
8629     2 Round to +inf
8630     3 Round to -inf
8631
8632  To perform the conversion, we do:
8633    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8634  */
8635
8636  MachineFunction &MF = DAG.getMachineFunction();
8637  const TargetMachine &TM = MF.getTarget();
8638  const TargetFrameLowering &TFI = *TM.getFrameLowering();
8639  unsigned StackAlignment = TFI.getStackAlignment();
8640  EVT VT = Op.getValueType();
8641  DebugLoc DL = Op.getDebugLoc();
8642
8643  // Save FP Control Word to stack slot
8644  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8645  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8646
8647
8648  MachineMemOperand *MMO =
8649   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8650                           MachineMemOperand::MOStore, 2, 2);
8651
8652  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8653  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8654                                          DAG.getVTList(MVT::Other),
8655                                          Ops, 2, MVT::i16, MMO);
8656
8657  // Load FP Control Word from stack slot
8658  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8659                            MachinePointerInfo(), false, false, 0);
8660
8661  // Transform as necessary
8662  SDValue CWD1 =
8663    DAG.getNode(ISD::SRL, DL, MVT::i16,
8664                DAG.getNode(ISD::AND, DL, MVT::i16,
8665                            CWD, DAG.getConstant(0x800, MVT::i16)),
8666                DAG.getConstant(11, MVT::i8));
8667  SDValue CWD2 =
8668    DAG.getNode(ISD::SRL, DL, MVT::i16,
8669                DAG.getNode(ISD::AND, DL, MVT::i16,
8670                            CWD, DAG.getConstant(0x400, MVT::i16)),
8671                DAG.getConstant(9, MVT::i8));
8672
8673  SDValue RetVal =
8674    DAG.getNode(ISD::AND, DL, MVT::i16,
8675                DAG.getNode(ISD::ADD, DL, MVT::i16,
8676                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8677                            DAG.getConstant(1, MVT::i16)),
8678                DAG.getConstant(3, MVT::i16));
8679
8680
8681  return DAG.getNode((VT.getSizeInBits() < 16 ?
8682                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8683}
8684
8685SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8686  EVT VT = Op.getValueType();
8687  EVT OpVT = VT;
8688  unsigned NumBits = VT.getSizeInBits();
8689  DebugLoc dl = Op.getDebugLoc();
8690
8691  Op = Op.getOperand(0);
8692  if (VT == MVT::i8) {
8693    // Zero extend to i32 since there is not an i8 bsr.
8694    OpVT = MVT::i32;
8695    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8696  }
8697
8698  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8699  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8700  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
8701
8702  // If src is zero (i.e. bsr sets ZF), returns NumBits.
8703  SDValue Ops[] = {
8704    Op,
8705    DAG.getConstant(NumBits+NumBits-1, OpVT),
8706    DAG.getConstant(X86::COND_E, MVT::i8),
8707    Op.getValue(1)
8708  };
8709  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8710
8711  // Finally xor with NumBits-1.
8712  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
8713
8714  if (VT == MVT::i8)
8715    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8716  return Op;
8717}
8718
8719SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
8720  EVT VT = Op.getValueType();
8721  EVT OpVT = VT;
8722  unsigned NumBits = VT.getSizeInBits();
8723  DebugLoc dl = Op.getDebugLoc();
8724
8725  Op = Op.getOperand(0);
8726  if (VT == MVT::i8) {
8727    OpVT = MVT::i32;
8728    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8729  }
8730
8731  // Issue a bsf (scan bits forward) which also sets EFLAGS.
8732  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8733  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
8734
8735  // If src is zero (i.e. bsf sets ZF), returns NumBits.
8736  SDValue Ops[] = {
8737    Op,
8738    DAG.getConstant(NumBits, OpVT),
8739    DAG.getConstant(X86::COND_E, MVT::i8),
8740    Op.getValue(1)
8741  };
8742  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8743
8744  if (VT == MVT::i8)
8745    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8746  return Op;
8747}
8748
8749SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
8750  EVT VT = Op.getValueType();
8751  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
8752  DebugLoc dl = Op.getDebugLoc();
8753
8754  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8755  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8756  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8757  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8758  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8759  //
8760  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8761  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8762  //  return AloBlo + AloBhi + AhiBlo;
8763
8764  SDValue A = Op.getOperand(0);
8765  SDValue B = Op.getOperand(1);
8766
8767  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8768                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8769                       A, DAG.getConstant(32, MVT::i32));
8770  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8771                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8772                       B, DAG.getConstant(32, MVT::i32));
8773  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8774                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8775                       A, B);
8776  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8777                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8778                       A, Bhi);
8779  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8780                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8781                       Ahi, B);
8782  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8783                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8784                       AloBhi, DAG.getConstant(32, MVT::i32));
8785  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8786                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8787                       AhiBlo, DAG.getConstant(32, MVT::i32));
8788  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
8789  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
8790  return Res;
8791}
8792
8793SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
8794
8795  EVT VT = Op.getValueType();
8796  DebugLoc dl = Op.getDebugLoc();
8797  SDValue R = Op.getOperand(0);
8798  SDValue Amt = Op.getOperand(1);
8799
8800  LLVMContext *Context = DAG.getContext();
8801
8802  // Must have SSE2.
8803  if (!Subtarget->hasSSE2()) return SDValue();
8804
8805  // Optimize shl/srl/sra with constant shift amount.
8806  if (isSplatVector(Amt.getNode())) {
8807    SDValue SclrAmt = Amt->getOperand(0);
8808    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
8809      uint64_t ShiftAmt = C->getZExtValue();
8810
8811      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
8812       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8813                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8814                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8815
8816      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
8817       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8818                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8819                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8820
8821      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
8822       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8823                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8824                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8825
8826      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
8827       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8828                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8829                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8830
8831      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
8832       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8833                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8834                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8835
8836      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
8837       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8838                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8839                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8840
8841      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
8842       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8843                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8844                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8845
8846      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
8847       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8848                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8849                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8850    }
8851  }
8852
8853  // Lower SHL with variable shift amount.
8854  // Cannot lower SHL without SSE4.1 or later.
8855  if (!Subtarget->hasSSE41()) return SDValue();
8856
8857  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
8858    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8859                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8860                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
8861
8862    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
8863
8864    std::vector<Constant*> CV(4, CI);
8865    Constant *C = ConstantVector::get(CV);
8866    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8867    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8868                                 MachinePointerInfo::getConstantPool(),
8869                                 false, false, 16);
8870
8871    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
8872    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
8873    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
8874    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
8875  }
8876  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
8877    // a = a << 5;
8878    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8879                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8880                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
8881
8882    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
8883    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
8884
8885    std::vector<Constant*> CVM1(16, CM1);
8886    std::vector<Constant*> CVM2(16, CM2);
8887    Constant *C = ConstantVector::get(CVM1);
8888    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8889    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8890                            MachinePointerInfo::getConstantPool(),
8891                            false, false, 16);
8892
8893    // r = pblendv(r, psllw(r & (char16)15, 4), a);
8894    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8895    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8896                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8897                    DAG.getConstant(4, MVT::i32));
8898    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
8899    // a += a
8900    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8901
8902    C = ConstantVector::get(CVM2);
8903    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8904    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8905                    MachinePointerInfo::getConstantPool(),
8906                    false, false, 16);
8907
8908    // r = pblendv(r, psllw(r & (char16)63, 2), a);
8909    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8910    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8911                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8912                    DAG.getConstant(2, MVT::i32));
8913    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
8914    // a += a
8915    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8916
8917    // return pblendv(r, r+r, a);
8918    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
8919                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
8920    return R;
8921  }
8922  return SDValue();
8923}
8924
8925SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
8926  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8927  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8928  // looks for this combo and may remove the "setcc" instruction if the "setcc"
8929  // has only one use.
8930  SDNode *N = Op.getNode();
8931  SDValue LHS = N->getOperand(0);
8932  SDValue RHS = N->getOperand(1);
8933  unsigned BaseOp = 0;
8934  unsigned Cond = 0;
8935  DebugLoc DL = Op.getDebugLoc();
8936  switch (Op.getOpcode()) {
8937  default: llvm_unreachable("Unknown ovf instruction!");
8938  case ISD::SADDO:
8939    // A subtract of one will be selected as a INC. Note that INC doesn't
8940    // set CF, so we can't do this for UADDO.
8941    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
8942      if (C->isOne()) {
8943        BaseOp = X86ISD::INC;
8944        Cond = X86::COND_O;
8945        break;
8946      }
8947    BaseOp = X86ISD::ADD;
8948    Cond = X86::COND_O;
8949    break;
8950  case ISD::UADDO:
8951    BaseOp = X86ISD::ADD;
8952    Cond = X86::COND_B;
8953    break;
8954  case ISD::SSUBO:
8955    // A subtract of one will be selected as a DEC. Note that DEC doesn't
8956    // set CF, so we can't do this for USUBO.
8957    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
8958      if (C->isOne()) {
8959        BaseOp = X86ISD::DEC;
8960        Cond = X86::COND_O;
8961        break;
8962      }
8963    BaseOp = X86ISD::SUB;
8964    Cond = X86::COND_O;
8965    break;
8966  case ISD::USUBO:
8967    BaseOp = X86ISD::SUB;
8968    Cond = X86::COND_B;
8969    break;
8970  case ISD::SMULO:
8971    BaseOp = X86ISD::SMUL;
8972    Cond = X86::COND_O;
8973    break;
8974  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
8975    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
8976                                 MVT::i32);
8977    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
8978
8979    SDValue SetCC =
8980      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8981                  DAG.getConstant(X86::COND_O, MVT::i32),
8982                  SDValue(Sum.getNode(), 2));
8983
8984    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8985    return Sum;
8986  }
8987  }
8988
8989  // Also sets EFLAGS.
8990  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
8991  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
8992
8993  SDValue SetCC =
8994    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
8995                DAG.getConstant(Cond, MVT::i32),
8996                SDValue(Sum.getNode(), 1));
8997
8998  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8999  return Sum;
9000}
9001
9002SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
9003  DebugLoc dl = Op.getDebugLoc();
9004
9005  if (!Subtarget->hasSSE2()) {
9006    SDValue Chain = Op.getOperand(0);
9007    SDValue Zero = DAG.getConstant(0,
9008                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9009    SDValue Ops[] = {
9010      DAG.getRegister(X86::ESP, MVT::i32), // Base
9011      DAG.getTargetConstant(1, MVT::i8),   // Scale
9012      DAG.getRegister(0, MVT::i32),        // Index
9013      DAG.getTargetConstant(0, MVT::i32),  // Disp
9014      DAG.getRegister(0, MVT::i32),        // Segment.
9015      Zero,
9016      Chain
9017    };
9018    SDNode *Res =
9019      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
9020                          array_lengthof(Ops));
9021    return SDValue(Res, 0);
9022  }
9023
9024  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
9025  if (!isDev)
9026    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
9027
9028  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
9029  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
9030  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
9031  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
9032
9033  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
9034  if (!Op1 && !Op2 && !Op3 && Op4)
9035    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
9036
9037  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
9038  if (Op1 && !Op2 && !Op3 && !Op4)
9039    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
9040
9041  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
9042  //           (MFENCE)>;
9043  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
9044}
9045
9046SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
9047  EVT T = Op.getValueType();
9048  DebugLoc DL = Op.getDebugLoc();
9049  unsigned Reg = 0;
9050  unsigned size = 0;
9051  switch(T.getSimpleVT().SimpleTy) {
9052  default:
9053    assert(false && "Invalid value type!");
9054  case MVT::i8:  Reg = X86::AL;  size = 1; break;
9055  case MVT::i16: Reg = X86::AX;  size = 2; break;
9056  case MVT::i32: Reg = X86::EAX; size = 4; break;
9057  case MVT::i64:
9058    assert(Subtarget->is64Bit() && "Node not type legal!");
9059    Reg = X86::RAX; size = 8;
9060    break;
9061  }
9062  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
9063                                    Op.getOperand(2), SDValue());
9064  SDValue Ops[] = { cpIn.getValue(0),
9065                    Op.getOperand(1),
9066                    Op.getOperand(3),
9067                    DAG.getTargetConstant(size, MVT::i8),
9068                    cpIn.getValue(1) };
9069  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9070  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
9071  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
9072                                           Ops, 5, T, MMO);
9073  SDValue cpOut =
9074    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
9075  return cpOut;
9076}
9077
9078SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
9079                                                 SelectionDAG &DAG) const {
9080  assert(Subtarget->is64Bit() && "Result not type legalized?");
9081  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9082  SDValue TheChain = Op.getOperand(0);
9083  DebugLoc dl = Op.getDebugLoc();
9084  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9085  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
9086  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
9087                                   rax.getValue(2));
9088  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
9089                            DAG.getConstant(32, MVT::i8));
9090  SDValue Ops[] = {
9091    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
9092    rdx.getValue(1)
9093  };
9094  return DAG.getMergeValues(Ops, 2, dl);
9095}
9096
9097SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
9098                                            SelectionDAG &DAG) const {
9099  EVT SrcVT = Op.getOperand(0).getValueType();
9100  EVT DstVT = Op.getValueType();
9101  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
9102         Subtarget->hasMMX() && "Unexpected custom BITCAST");
9103  assert((DstVT == MVT::i64 ||
9104          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
9105         "Unexpected custom BITCAST");
9106  // i64 <=> MMX conversions are Legal.
9107  if (SrcVT==MVT::i64 && DstVT.isVector())
9108    return Op;
9109  if (DstVT==MVT::i64 && SrcVT.isVector())
9110    return Op;
9111  // MMX <=> MMX conversions are Legal.
9112  if (SrcVT.isVector() && DstVT.isVector())
9113    return Op;
9114  // All other conversions need to be expanded.
9115  return SDValue();
9116}
9117
9118SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
9119  SDNode *Node = Op.getNode();
9120  DebugLoc dl = Node->getDebugLoc();
9121  EVT T = Node->getValueType(0);
9122  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
9123                              DAG.getConstant(0, T), Node->getOperand(2));
9124  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
9125                       cast<AtomicSDNode>(Node)->getMemoryVT(),
9126                       Node->getOperand(0),
9127                       Node->getOperand(1), negOp,
9128                       cast<AtomicSDNode>(Node)->getSrcValue(),
9129                       cast<AtomicSDNode>(Node)->getAlignment());
9130}
9131
9132static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
9133  EVT VT = Op.getNode()->getValueType(0);
9134
9135  // Let legalize expand this if it isn't a legal type yet.
9136  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9137    return SDValue();
9138
9139  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9140
9141  unsigned Opc;
9142  bool ExtraOp = false;
9143  switch (Op.getOpcode()) {
9144  default: assert(0 && "Invalid code");
9145  case ISD::ADDC: Opc = X86ISD::ADD; break;
9146  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
9147  case ISD::SUBC: Opc = X86ISD::SUB; break;
9148  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
9149  }
9150
9151  if (!ExtraOp)
9152    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9153                       Op.getOperand(1));
9154  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9155                     Op.getOperand(1), Op.getOperand(2));
9156}
9157
9158/// LowerOperation - Provide custom lowering hooks for some operations.
9159///
9160SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9161  switch (Op.getOpcode()) {
9162  default: llvm_unreachable("Should not custom lower this!");
9163  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
9164  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
9165  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
9166  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9167  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
9168  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9169  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9170  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9171  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
9172  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
9173  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9174  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9175  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9176  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9177  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
9178  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9179  case ISD::SHL_PARTS:
9180  case ISD::SRA_PARTS:
9181  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
9182  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
9183  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
9184  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
9185  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
9186  case ISD::FABS:               return LowerFABS(Op, DAG);
9187  case ISD::FNEG:               return LowerFNEG(Op, DAG);
9188  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
9189  case ISD::SETCC:              return LowerSETCC(Op, DAG);
9190  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
9191  case ISD::SELECT:             return LowerSELECT(Op, DAG);
9192  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
9193  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9194  case ISD::VASTART:            return LowerVASTART(Op, DAG);
9195  case ISD::VAARG:              return LowerVAARG(Op, DAG);
9196  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9197  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9198  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9199  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9200  case ISD::FRAME_TO_ARGS_OFFSET:
9201                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
9202  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9203  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
9204  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
9205  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9206  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
9207  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
9208  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
9209  case ISD::SRA:
9210  case ISD::SRL:
9211  case ISD::SHL:                return LowerShift(Op, DAG);
9212  case ISD::SADDO:
9213  case ISD::UADDO:
9214  case ISD::SSUBO:
9215  case ISD::USUBO:
9216  case ISD::SMULO:
9217  case ISD::UMULO:              return LowerXALUO(Op, DAG);
9218  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
9219  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9220  case ISD::ADDC:
9221  case ISD::ADDE:
9222  case ISD::SUBC:
9223  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
9224  }
9225}
9226
9227void X86TargetLowering::
9228ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
9229                        SelectionDAG &DAG, unsigned NewOp) const {
9230  EVT T = Node->getValueType(0);
9231  DebugLoc dl = Node->getDebugLoc();
9232  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
9233
9234  SDValue Chain = Node->getOperand(0);
9235  SDValue In1 = Node->getOperand(1);
9236  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9237                             Node->getOperand(2), DAG.getIntPtrConstant(0));
9238  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9239                             Node->getOperand(2), DAG.getIntPtrConstant(1));
9240  SDValue Ops[] = { Chain, In1, In2L, In2H };
9241  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9242  SDValue Result =
9243    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
9244                            cast<MemSDNode>(Node)->getMemOperand());
9245  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
9246  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9247  Results.push_back(Result.getValue(2));
9248}
9249
9250/// ReplaceNodeResults - Replace a node with an illegal result type
9251/// with a new node built out of custom code.
9252void X86TargetLowering::ReplaceNodeResults(SDNode *N,
9253                                           SmallVectorImpl<SDValue>&Results,
9254                                           SelectionDAG &DAG) const {
9255  DebugLoc dl = N->getDebugLoc();
9256  switch (N->getOpcode()) {
9257  default:
9258    assert(false && "Do not know how to custom type legalize this operation!");
9259    return;
9260  case ISD::ADDC:
9261  case ISD::ADDE:
9262  case ISD::SUBC:
9263  case ISD::SUBE:
9264    // We don't want to expand or promote these.
9265    return;
9266  case ISD::FP_TO_SINT: {
9267    std::pair<SDValue,SDValue> Vals =
9268        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
9269    SDValue FIST = Vals.first, StackSlot = Vals.second;
9270    if (FIST.getNode() != 0) {
9271      EVT VT = N->getValueType(0);
9272      // Return a load from the stack slot.
9273      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
9274                                    MachinePointerInfo(), false, false, 0));
9275    }
9276    return;
9277  }
9278  case ISD::READCYCLECOUNTER: {
9279    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9280    SDValue TheChain = N->getOperand(0);
9281    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9282    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
9283                                     rd.getValue(1));
9284    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
9285                                     eax.getValue(2));
9286    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
9287    SDValue Ops[] = { eax, edx };
9288    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
9289    Results.push_back(edx.getValue(1));
9290    return;
9291  }
9292  case ISD::ATOMIC_CMP_SWAP: {
9293    EVT T = N->getValueType(0);
9294    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
9295    SDValue cpInL, cpInH;
9296    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9297                        DAG.getConstant(0, MVT::i32));
9298    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9299                        DAG.getConstant(1, MVT::i32));
9300    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
9301    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
9302                             cpInL.getValue(1));
9303    SDValue swapInL, swapInH;
9304    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9305                          DAG.getConstant(0, MVT::i32));
9306    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9307                          DAG.getConstant(1, MVT::i32));
9308    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
9309                               cpInH.getValue(1));
9310    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
9311                               swapInL.getValue(1));
9312    SDValue Ops[] = { swapInH.getValue(0),
9313                      N->getOperand(1),
9314                      swapInH.getValue(1) };
9315    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9316    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
9317    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
9318                                             Ops, 3, T, MMO);
9319    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
9320                                        MVT::i32, Result.getValue(1));
9321    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
9322                                        MVT::i32, cpOutL.getValue(2));
9323    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
9324    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9325    Results.push_back(cpOutH.getValue(1));
9326    return;
9327  }
9328  case ISD::ATOMIC_LOAD_ADD:
9329    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
9330    return;
9331  case ISD::ATOMIC_LOAD_AND:
9332    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
9333    return;
9334  case ISD::ATOMIC_LOAD_NAND:
9335    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
9336    return;
9337  case ISD::ATOMIC_LOAD_OR:
9338    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
9339    return;
9340  case ISD::ATOMIC_LOAD_SUB:
9341    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
9342    return;
9343  case ISD::ATOMIC_LOAD_XOR:
9344    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
9345    return;
9346  case ISD::ATOMIC_SWAP:
9347    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
9348    return;
9349  }
9350}
9351
9352const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
9353  switch (Opcode) {
9354  default: return NULL;
9355  case X86ISD::BSF:                return "X86ISD::BSF";
9356  case X86ISD::BSR:                return "X86ISD::BSR";
9357  case X86ISD::SHLD:               return "X86ISD::SHLD";
9358  case X86ISD::SHRD:               return "X86ISD::SHRD";
9359  case X86ISD::FAND:               return "X86ISD::FAND";
9360  case X86ISD::FOR:                return "X86ISD::FOR";
9361  case X86ISD::FXOR:               return "X86ISD::FXOR";
9362  case X86ISD::FSRL:               return "X86ISD::FSRL";
9363  case X86ISD::FILD:               return "X86ISD::FILD";
9364  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
9365  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
9366  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
9367  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
9368  case X86ISD::FLD:                return "X86ISD::FLD";
9369  case X86ISD::FST:                return "X86ISD::FST";
9370  case X86ISD::CALL:               return "X86ISD::CALL";
9371  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
9372  case X86ISD::BT:                 return "X86ISD::BT";
9373  case X86ISD::CMP:                return "X86ISD::CMP";
9374  case X86ISD::COMI:               return "X86ISD::COMI";
9375  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
9376  case X86ISD::SETCC:              return "X86ISD::SETCC";
9377  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
9378  case X86ISD::CMOV:               return "X86ISD::CMOV";
9379  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
9380  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
9381  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
9382  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
9383  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
9384  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
9385  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
9386  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
9387  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
9388  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
9389  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
9390  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
9391  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
9392  case X86ISD::PANDN:              return "X86ISD::PANDN";
9393  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
9394  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
9395  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
9396  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
9397  case X86ISD::FMAX:               return "X86ISD::FMAX";
9398  case X86ISD::FMIN:               return "X86ISD::FMIN";
9399  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
9400  case X86ISD::FRCP:               return "X86ISD::FRCP";
9401  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
9402  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
9403  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
9404  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
9405  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
9406  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
9407  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
9408  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
9409  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
9410  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
9411  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
9412  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
9413  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
9414  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
9415  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
9416  case X86ISD::VSHL:               return "X86ISD::VSHL";
9417  case X86ISD::VSRL:               return "X86ISD::VSRL";
9418  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
9419  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
9420  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
9421  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
9422  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
9423  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
9424  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
9425  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
9426  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
9427  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
9428  case X86ISD::ADD:                return "X86ISD::ADD";
9429  case X86ISD::SUB:                return "X86ISD::SUB";
9430  case X86ISD::ADC:                return "X86ISD::ADC";
9431  case X86ISD::SBB:                return "X86ISD::SBB";
9432  case X86ISD::SMUL:               return "X86ISD::SMUL";
9433  case X86ISD::UMUL:               return "X86ISD::UMUL";
9434  case X86ISD::INC:                return "X86ISD::INC";
9435  case X86ISD::DEC:                return "X86ISD::DEC";
9436  case X86ISD::OR:                 return "X86ISD::OR";
9437  case X86ISD::XOR:                return "X86ISD::XOR";
9438  case X86ISD::AND:                return "X86ISD::AND";
9439  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
9440  case X86ISD::PTEST:              return "X86ISD::PTEST";
9441  case X86ISD::TESTP:              return "X86ISD::TESTP";
9442  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
9443  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
9444  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
9445  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
9446  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
9447  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
9448  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
9449  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
9450  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
9451  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
9452  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
9453  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
9454  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
9455  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
9456  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
9457  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
9458  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
9459  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
9460  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
9461  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
9462  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
9463  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
9464  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
9465  case X86ISD::VUNPCKLPS:          return "X86ISD::VUNPCKLPS";
9466  case X86ISD::VUNPCKLPD:          return "X86ISD::VUNPCKLPD";
9467  case X86ISD::VUNPCKLPSY:         return "X86ISD::VUNPCKLPSY";
9468  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
9469  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
9470  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
9471  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
9472  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
9473  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
9474  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
9475  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
9476  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
9477  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
9478  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
9479  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
9480  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
9481  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
9482  }
9483}
9484
9485// isLegalAddressingMode - Return true if the addressing mode represented
9486// by AM is legal for this target, for a load/store of the specified type.
9487bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
9488                                              const Type *Ty) const {
9489  // X86 supports extremely general addressing modes.
9490  CodeModel::Model M = getTargetMachine().getCodeModel();
9491  Reloc::Model R = getTargetMachine().getRelocationModel();
9492
9493  // X86 allows a sign-extended 32-bit immediate field as a displacement.
9494  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
9495    return false;
9496
9497  if (AM.BaseGV) {
9498    unsigned GVFlags =
9499      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
9500
9501    // If a reference to this global requires an extra load, we can't fold it.
9502    if (isGlobalStubReference(GVFlags))
9503      return false;
9504
9505    // If BaseGV requires a register for the PIC base, we cannot also have a
9506    // BaseReg specified.
9507    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
9508      return false;
9509
9510    // If lower 4G is not available, then we must use rip-relative addressing.
9511    if ((M != CodeModel::Small || R != Reloc::Static) &&
9512        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
9513      return false;
9514  }
9515
9516  switch (AM.Scale) {
9517  case 0:
9518  case 1:
9519  case 2:
9520  case 4:
9521  case 8:
9522    // These scales always work.
9523    break;
9524  case 3:
9525  case 5:
9526  case 9:
9527    // These scales are formed with basereg+scalereg.  Only accept if there is
9528    // no basereg yet.
9529    if (AM.HasBaseReg)
9530      return false;
9531    break;
9532  default:  // Other stuff never works.
9533    return false;
9534  }
9535
9536  return true;
9537}
9538
9539
9540bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
9541  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
9542    return false;
9543  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
9544  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
9545  if (NumBits1 <= NumBits2)
9546    return false;
9547  return true;
9548}
9549
9550bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
9551  if (!VT1.isInteger() || !VT2.isInteger())
9552    return false;
9553  unsigned NumBits1 = VT1.getSizeInBits();
9554  unsigned NumBits2 = VT2.getSizeInBits();
9555  if (NumBits1 <= NumBits2)
9556    return false;
9557  return true;
9558}
9559
9560bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
9561  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9562  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
9563}
9564
9565bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
9566  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9567  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
9568}
9569
9570bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
9571  // i16 instructions are longer (0x66 prefix) and potentially slower.
9572  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
9573}
9574
9575/// isShuffleMaskLegal - Targets can use this to indicate that they only
9576/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
9577/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
9578/// are assumed to be legal.
9579bool
9580X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
9581                                      EVT VT) const {
9582  // Very little shuffling can be done for 64-bit vectors right now.
9583  if (VT.getSizeInBits() == 64)
9584    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
9585
9586  // FIXME: pshufb, blends, shifts.
9587  return (VT.getVectorNumElements() == 2 ||
9588          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
9589          isMOVLMask(M, VT) ||
9590          isSHUFPMask(M, VT) ||
9591          isPSHUFDMask(M, VT) ||
9592          isPSHUFHWMask(M, VT) ||
9593          isPSHUFLWMask(M, VT) ||
9594          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
9595          isUNPCKLMask(M, VT) ||
9596          isUNPCKHMask(M, VT) ||
9597          isUNPCKL_v_undef_Mask(M, VT) ||
9598          isUNPCKH_v_undef_Mask(M, VT));
9599}
9600
9601bool
9602X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
9603                                          EVT VT) const {
9604  unsigned NumElts = VT.getVectorNumElements();
9605  // FIXME: This collection of masks seems suspect.
9606  if (NumElts == 2)
9607    return true;
9608  if (NumElts == 4 && VT.getSizeInBits() == 128) {
9609    return (isMOVLMask(Mask, VT)  ||
9610            isCommutedMOVLMask(Mask, VT, true) ||
9611            isSHUFPMask(Mask, VT) ||
9612            isCommutedSHUFPMask(Mask, VT));
9613  }
9614  return false;
9615}
9616
9617//===----------------------------------------------------------------------===//
9618//                           X86 Scheduler Hooks
9619//===----------------------------------------------------------------------===//
9620
9621// private utility function
9622MachineBasicBlock *
9623X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
9624                                                       MachineBasicBlock *MBB,
9625                                                       unsigned regOpc,
9626                                                       unsigned immOpc,
9627                                                       unsigned LoadOpc,
9628                                                       unsigned CXchgOpc,
9629                                                       unsigned notOpc,
9630                                                       unsigned EAXreg,
9631                                                       TargetRegisterClass *RC,
9632                                                       bool invSrc) const {
9633  // For the atomic bitwise operator, we generate
9634  //   thisMBB:
9635  //   newMBB:
9636  //     ld  t1 = [bitinstr.addr]
9637  //     op  t2 = t1, [bitinstr.val]
9638  //     mov EAX = t1
9639  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9640  //     bz  newMBB
9641  //     fallthrough -->nextMBB
9642  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9643  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9644  MachineFunction::iterator MBBIter = MBB;
9645  ++MBBIter;
9646
9647  /// First build the CFG
9648  MachineFunction *F = MBB->getParent();
9649  MachineBasicBlock *thisMBB = MBB;
9650  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9651  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9652  F->insert(MBBIter, newMBB);
9653  F->insert(MBBIter, nextMBB);
9654
9655  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9656  nextMBB->splice(nextMBB->begin(), thisMBB,
9657                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9658                  thisMBB->end());
9659  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9660
9661  // Update thisMBB to fall through to newMBB
9662  thisMBB->addSuccessor(newMBB);
9663
9664  // newMBB jumps to itself and fall through to nextMBB
9665  newMBB->addSuccessor(nextMBB);
9666  newMBB->addSuccessor(newMBB);
9667
9668  // Insert instructions into newMBB based on incoming instruction
9669  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9670         "unexpected number of operands");
9671  DebugLoc dl = bInstr->getDebugLoc();
9672  MachineOperand& destOper = bInstr->getOperand(0);
9673  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9674  int numArgs = bInstr->getNumOperands() - 1;
9675  for (int i=0; i < numArgs; ++i)
9676    argOpers[i] = &bInstr->getOperand(i+1);
9677
9678  // x86 address has 4 operands: base, index, scale, and displacement
9679  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9680  int valArgIndx = lastAddrIndx + 1;
9681
9682  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9683  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
9684  for (int i=0; i <= lastAddrIndx; ++i)
9685    (*MIB).addOperand(*argOpers[i]);
9686
9687  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
9688  if (invSrc) {
9689    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
9690  }
9691  else
9692    tt = t1;
9693
9694  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9695  assert((argOpers[valArgIndx]->isReg() ||
9696          argOpers[valArgIndx]->isImm()) &&
9697         "invalid operand");
9698  if (argOpers[valArgIndx]->isReg())
9699    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
9700  else
9701    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
9702  MIB.addReg(tt);
9703  (*MIB).addOperand(*argOpers[valArgIndx]);
9704
9705  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
9706  MIB.addReg(t1);
9707
9708  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
9709  for (int i=0; i <= lastAddrIndx; ++i)
9710    (*MIB).addOperand(*argOpers[i]);
9711  MIB.addReg(t2);
9712  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9713  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9714                    bInstr->memoperands_end());
9715
9716  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9717  MIB.addReg(EAXreg);
9718
9719  // insert branch
9720  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9721
9722  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9723  return nextMBB;
9724}
9725
9726// private utility function:  64 bit atomics on 32 bit host.
9727MachineBasicBlock *
9728X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
9729                                                       MachineBasicBlock *MBB,
9730                                                       unsigned regOpcL,
9731                                                       unsigned regOpcH,
9732                                                       unsigned immOpcL,
9733                                                       unsigned immOpcH,
9734                                                       bool invSrc) const {
9735  // For the atomic bitwise operator, we generate
9736  //   thisMBB (instructions are in pairs, except cmpxchg8b)
9737  //     ld t1,t2 = [bitinstr.addr]
9738  //   newMBB:
9739  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
9740  //     op  t5, t6 <- out1, out2, [bitinstr.val]
9741  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
9742  //     mov ECX, EBX <- t5, t6
9743  //     mov EAX, EDX <- t1, t2
9744  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
9745  //     mov t3, t4 <- EAX, EDX
9746  //     bz  newMBB
9747  //     result in out1, out2
9748  //     fallthrough -->nextMBB
9749
9750  const TargetRegisterClass *RC = X86::GR32RegisterClass;
9751  const unsigned LoadOpc = X86::MOV32rm;
9752  const unsigned NotOpc = X86::NOT32r;
9753  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9754  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9755  MachineFunction::iterator MBBIter = MBB;
9756  ++MBBIter;
9757
9758  /// First build the CFG
9759  MachineFunction *F = MBB->getParent();
9760  MachineBasicBlock *thisMBB = MBB;
9761  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9762  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9763  F->insert(MBBIter, newMBB);
9764  F->insert(MBBIter, nextMBB);
9765
9766  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9767  nextMBB->splice(nextMBB->begin(), thisMBB,
9768                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9769                  thisMBB->end());
9770  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9771
9772  // Update thisMBB to fall through to newMBB
9773  thisMBB->addSuccessor(newMBB);
9774
9775  // newMBB jumps to itself and fall through to nextMBB
9776  newMBB->addSuccessor(nextMBB);
9777  newMBB->addSuccessor(newMBB);
9778
9779  DebugLoc dl = bInstr->getDebugLoc();
9780  // Insert instructions into newMBB based on incoming instruction
9781  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
9782  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
9783         "unexpected number of operands");
9784  MachineOperand& dest1Oper = bInstr->getOperand(0);
9785  MachineOperand& dest2Oper = bInstr->getOperand(1);
9786  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9787  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
9788    argOpers[i] = &bInstr->getOperand(i+2);
9789
9790    // We use some of the operands multiple times, so conservatively just
9791    // clear any kill flags that might be present.
9792    if (argOpers[i]->isReg() && argOpers[i]->isUse())
9793      argOpers[i]->setIsKill(false);
9794  }
9795
9796  // x86 address has 5 operands: base, index, scale, displacement, and segment.
9797  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9798
9799  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9800  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
9801  for (int i=0; i <= lastAddrIndx; ++i)
9802    (*MIB).addOperand(*argOpers[i]);
9803  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9804  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
9805  // add 4 to displacement.
9806  for (int i=0; i <= lastAddrIndx-2; ++i)
9807    (*MIB).addOperand(*argOpers[i]);
9808  MachineOperand newOp3 = *(argOpers[3]);
9809  if (newOp3.isImm())
9810    newOp3.setImm(newOp3.getImm()+4);
9811  else
9812    newOp3.setOffset(newOp3.getOffset()+4);
9813  (*MIB).addOperand(newOp3);
9814  (*MIB).addOperand(*argOpers[lastAddrIndx]);
9815
9816  // t3/4 are defined later, at the bottom of the loop
9817  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
9818  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
9819  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
9820    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
9821  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
9822    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
9823
9824  // The subsequent operations should be using the destination registers of
9825  //the PHI instructions.
9826  if (invSrc) {
9827    t1 = F->getRegInfo().createVirtualRegister(RC);
9828    t2 = F->getRegInfo().createVirtualRegister(RC);
9829    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
9830    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
9831  } else {
9832    t1 = dest1Oper.getReg();
9833    t2 = dest2Oper.getReg();
9834  }
9835
9836  int valArgIndx = lastAddrIndx + 1;
9837  assert((argOpers[valArgIndx]->isReg() ||
9838          argOpers[valArgIndx]->isImm()) &&
9839         "invalid operand");
9840  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
9841  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
9842  if (argOpers[valArgIndx]->isReg())
9843    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
9844  else
9845    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
9846  if (regOpcL != X86::MOV32rr)
9847    MIB.addReg(t1);
9848  (*MIB).addOperand(*argOpers[valArgIndx]);
9849  assert(argOpers[valArgIndx + 1]->isReg() ==
9850         argOpers[valArgIndx]->isReg());
9851  assert(argOpers[valArgIndx + 1]->isImm() ==
9852         argOpers[valArgIndx]->isImm());
9853  if (argOpers[valArgIndx + 1]->isReg())
9854    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
9855  else
9856    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
9857  if (regOpcH != X86::MOV32rr)
9858    MIB.addReg(t2);
9859  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
9860
9861  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9862  MIB.addReg(t1);
9863  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
9864  MIB.addReg(t2);
9865
9866  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
9867  MIB.addReg(t5);
9868  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
9869  MIB.addReg(t6);
9870
9871  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
9872  for (int i=0; i <= lastAddrIndx; ++i)
9873    (*MIB).addOperand(*argOpers[i]);
9874
9875  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9876  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9877                    bInstr->memoperands_end());
9878
9879  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
9880  MIB.addReg(X86::EAX);
9881  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
9882  MIB.addReg(X86::EDX);
9883
9884  // insert branch
9885  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9886
9887  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9888  return nextMBB;
9889}
9890
9891// private utility function
9892MachineBasicBlock *
9893X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
9894                                                      MachineBasicBlock *MBB,
9895                                                      unsigned cmovOpc) const {
9896  // For the atomic min/max operator, we generate
9897  //   thisMBB:
9898  //   newMBB:
9899  //     ld t1 = [min/max.addr]
9900  //     mov t2 = [min/max.val]
9901  //     cmp  t1, t2
9902  //     cmov[cond] t2 = t1
9903  //     mov EAX = t1
9904  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9905  //     bz   newMBB
9906  //     fallthrough -->nextMBB
9907  //
9908  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9909  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9910  MachineFunction::iterator MBBIter = MBB;
9911  ++MBBIter;
9912
9913  /// First build the CFG
9914  MachineFunction *F = MBB->getParent();
9915  MachineBasicBlock *thisMBB = MBB;
9916  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9917  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9918  F->insert(MBBIter, newMBB);
9919  F->insert(MBBIter, nextMBB);
9920
9921  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9922  nextMBB->splice(nextMBB->begin(), thisMBB,
9923                  llvm::next(MachineBasicBlock::iterator(mInstr)),
9924                  thisMBB->end());
9925  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9926
9927  // Update thisMBB to fall through to newMBB
9928  thisMBB->addSuccessor(newMBB);
9929
9930  // newMBB jumps to newMBB and fall through to nextMBB
9931  newMBB->addSuccessor(nextMBB);
9932  newMBB->addSuccessor(newMBB);
9933
9934  DebugLoc dl = mInstr->getDebugLoc();
9935  // Insert instructions into newMBB based on incoming instruction
9936  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9937         "unexpected number of operands");
9938  MachineOperand& destOper = mInstr->getOperand(0);
9939  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9940  int numArgs = mInstr->getNumOperands() - 1;
9941  for (int i=0; i < numArgs; ++i)
9942    argOpers[i] = &mInstr->getOperand(i+1);
9943
9944  // x86 address has 4 operands: base, index, scale, and displacement
9945  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9946  int valArgIndx = lastAddrIndx + 1;
9947
9948  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9949  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
9950  for (int i=0; i <= lastAddrIndx; ++i)
9951    (*MIB).addOperand(*argOpers[i]);
9952
9953  // We only support register and immediate values
9954  assert((argOpers[valArgIndx]->isReg() ||
9955          argOpers[valArgIndx]->isImm()) &&
9956         "invalid operand");
9957
9958  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9959  if (argOpers[valArgIndx]->isReg())
9960    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
9961  else
9962    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
9963  (*MIB).addOperand(*argOpers[valArgIndx]);
9964
9965  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9966  MIB.addReg(t1);
9967
9968  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
9969  MIB.addReg(t1);
9970  MIB.addReg(t2);
9971
9972  // Generate movc
9973  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9974  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
9975  MIB.addReg(t2);
9976  MIB.addReg(t1);
9977
9978  // Cmp and exchange if none has modified the memory location
9979  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
9980  for (int i=0; i <= lastAddrIndx; ++i)
9981    (*MIB).addOperand(*argOpers[i]);
9982  MIB.addReg(t3);
9983  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9984  (*MIB).setMemRefs(mInstr->memoperands_begin(),
9985                    mInstr->memoperands_end());
9986
9987  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9988  MIB.addReg(X86::EAX);
9989
9990  // insert branch
9991  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9992
9993  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
9994  return nextMBB;
9995}
9996
9997// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
9998// or XMM0_V32I8 in AVX all of this code can be replaced with that
9999// in the .td file.
10000MachineBasicBlock *
10001X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
10002                            unsigned numArgs, bool memArg) const {
10003  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
10004         "Target must have SSE4.2 or AVX features enabled");
10005
10006  DebugLoc dl = MI->getDebugLoc();
10007  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10008  unsigned Opc;
10009  if (!Subtarget->hasAVX()) {
10010    if (memArg)
10011      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
10012    else
10013      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
10014  } else {
10015    if (memArg)
10016      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
10017    else
10018      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
10019  }
10020
10021  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
10022  for (unsigned i = 0; i < numArgs; ++i) {
10023    MachineOperand &Op = MI->getOperand(i+1);
10024    if (!(Op.isReg() && Op.isImplicit()))
10025      MIB.addOperand(Op);
10026  }
10027  BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
10028    .addReg(X86::XMM0);
10029
10030  MI->eraseFromParent();
10031  return BB;
10032}
10033
10034MachineBasicBlock *
10035X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
10036  DebugLoc dl = MI->getDebugLoc();
10037  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10038
10039  // Address into RAX/EAX, other two args into ECX, EDX.
10040  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
10041  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
10042  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
10043  for (int i = 0; i < X86::AddrNumOperands; ++i)
10044    MIB.addOperand(MI->getOperand(i));
10045
10046  unsigned ValOps = X86::AddrNumOperands;
10047  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
10048    .addReg(MI->getOperand(ValOps).getReg());
10049  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
10050    .addReg(MI->getOperand(ValOps+1).getReg());
10051
10052  // The instruction doesn't actually take any operands though.
10053  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
10054
10055  MI->eraseFromParent(); // The pseudo is gone now.
10056  return BB;
10057}
10058
10059MachineBasicBlock *
10060X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
10061  DebugLoc dl = MI->getDebugLoc();
10062  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10063
10064  // First arg in ECX, the second in EAX.
10065  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
10066    .addReg(MI->getOperand(0).getReg());
10067  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
10068    .addReg(MI->getOperand(1).getReg());
10069
10070  // The instruction doesn't actually take any operands though.
10071  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
10072
10073  MI->eraseFromParent(); // The pseudo is gone now.
10074  return BB;
10075}
10076
10077MachineBasicBlock *
10078X86TargetLowering::EmitVAARG64WithCustomInserter(
10079                   MachineInstr *MI,
10080                   MachineBasicBlock *MBB) const {
10081  // Emit va_arg instruction on X86-64.
10082
10083  // Operands to this pseudo-instruction:
10084  // 0  ) Output        : destination address (reg)
10085  // 1-5) Input         : va_list address (addr, i64mem)
10086  // 6  ) ArgSize       : Size (in bytes) of vararg type
10087  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
10088  // 8  ) Align         : Alignment of type
10089  // 9  ) EFLAGS (implicit-def)
10090
10091  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
10092  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
10093
10094  unsigned DestReg = MI->getOperand(0).getReg();
10095  MachineOperand &Base = MI->getOperand(1);
10096  MachineOperand &Scale = MI->getOperand(2);
10097  MachineOperand &Index = MI->getOperand(3);
10098  MachineOperand &Disp = MI->getOperand(4);
10099  MachineOperand &Segment = MI->getOperand(5);
10100  unsigned ArgSize = MI->getOperand(6).getImm();
10101  unsigned ArgMode = MI->getOperand(7).getImm();
10102  unsigned Align = MI->getOperand(8).getImm();
10103
10104  // Memory Reference
10105  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
10106  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
10107  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
10108
10109  // Machine Information
10110  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10111  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
10112  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
10113  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
10114  DebugLoc DL = MI->getDebugLoc();
10115
10116  // struct va_list {
10117  //   i32   gp_offset
10118  //   i32   fp_offset
10119  //   i64   overflow_area (address)
10120  //   i64   reg_save_area (address)
10121  // }
10122  // sizeof(va_list) = 24
10123  // alignment(va_list) = 8
10124
10125  unsigned TotalNumIntRegs = 6;
10126  unsigned TotalNumXMMRegs = 8;
10127  bool UseGPOffset = (ArgMode == 1);
10128  bool UseFPOffset = (ArgMode == 2);
10129  unsigned MaxOffset = TotalNumIntRegs * 8 +
10130                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
10131
10132  /* Align ArgSize to a multiple of 8 */
10133  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
10134  bool NeedsAlign = (Align > 8);
10135
10136  MachineBasicBlock *thisMBB = MBB;
10137  MachineBasicBlock *overflowMBB;
10138  MachineBasicBlock *offsetMBB;
10139  MachineBasicBlock *endMBB;
10140
10141  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
10142  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
10143  unsigned OffsetReg = 0;
10144
10145  if (!UseGPOffset && !UseFPOffset) {
10146    // If we only pull from the overflow region, we don't create a branch.
10147    // We don't need to alter control flow.
10148    OffsetDestReg = 0; // unused
10149    OverflowDestReg = DestReg;
10150
10151    offsetMBB = NULL;
10152    overflowMBB = thisMBB;
10153    endMBB = thisMBB;
10154  } else {
10155    // First emit code to check if gp_offset (or fp_offset) is below the bound.
10156    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
10157    // If not, pull from overflow_area. (branch to overflowMBB)
10158    //
10159    //       thisMBB
10160    //         |     .
10161    //         |        .
10162    //     offsetMBB   overflowMBB
10163    //         |        .
10164    //         |     .
10165    //        endMBB
10166
10167    // Registers for the PHI in endMBB
10168    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
10169    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
10170
10171    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10172    MachineFunction *MF = MBB->getParent();
10173    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10174    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10175    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10176
10177    MachineFunction::iterator MBBIter = MBB;
10178    ++MBBIter;
10179
10180    // Insert the new basic blocks
10181    MF->insert(MBBIter, offsetMBB);
10182    MF->insert(MBBIter, overflowMBB);
10183    MF->insert(MBBIter, endMBB);
10184
10185    // Transfer the remainder of MBB and its successor edges to endMBB.
10186    endMBB->splice(endMBB->begin(), thisMBB,
10187                    llvm::next(MachineBasicBlock::iterator(MI)),
10188                    thisMBB->end());
10189    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10190
10191    // Make offsetMBB and overflowMBB successors of thisMBB
10192    thisMBB->addSuccessor(offsetMBB);
10193    thisMBB->addSuccessor(overflowMBB);
10194
10195    // endMBB is a successor of both offsetMBB and overflowMBB
10196    offsetMBB->addSuccessor(endMBB);
10197    overflowMBB->addSuccessor(endMBB);
10198
10199    // Load the offset value into a register
10200    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10201    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
10202      .addOperand(Base)
10203      .addOperand(Scale)
10204      .addOperand(Index)
10205      .addDisp(Disp, UseFPOffset ? 4 : 0)
10206      .addOperand(Segment)
10207      .setMemRefs(MMOBegin, MMOEnd);
10208
10209    // Check if there is enough room left to pull this argument.
10210    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
10211      .addReg(OffsetReg)
10212      .addImm(MaxOffset + 8 - ArgSizeA8);
10213
10214    // Branch to "overflowMBB" if offset >= max
10215    // Fall through to "offsetMBB" otherwise
10216    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
10217      .addMBB(overflowMBB);
10218  }
10219
10220  // In offsetMBB, emit code to use the reg_save_area.
10221  if (offsetMBB) {
10222    assert(OffsetReg != 0);
10223
10224    // Read the reg_save_area address.
10225    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
10226    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
10227      .addOperand(Base)
10228      .addOperand(Scale)
10229      .addOperand(Index)
10230      .addDisp(Disp, 16)
10231      .addOperand(Segment)
10232      .setMemRefs(MMOBegin, MMOEnd);
10233
10234    // Zero-extend the offset
10235    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
10236      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
10237        .addImm(0)
10238        .addReg(OffsetReg)
10239        .addImm(X86::sub_32bit);
10240
10241    // Add the offset to the reg_save_area to get the final address.
10242    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
10243      .addReg(OffsetReg64)
10244      .addReg(RegSaveReg);
10245
10246    // Compute the offset for the next argument
10247    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10248    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
10249      .addReg(OffsetReg)
10250      .addImm(UseFPOffset ? 16 : 8);
10251
10252    // Store it back into the va_list.
10253    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
10254      .addOperand(Base)
10255      .addOperand(Scale)
10256      .addOperand(Index)
10257      .addDisp(Disp, UseFPOffset ? 4 : 0)
10258      .addOperand(Segment)
10259      .addReg(NextOffsetReg)
10260      .setMemRefs(MMOBegin, MMOEnd);
10261
10262    // Jump to endMBB
10263    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
10264      .addMBB(endMBB);
10265  }
10266
10267  //
10268  // Emit code to use overflow area
10269  //
10270
10271  // Load the overflow_area address into a register.
10272  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
10273  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
10274    .addOperand(Base)
10275    .addOperand(Scale)
10276    .addOperand(Index)
10277    .addDisp(Disp, 8)
10278    .addOperand(Segment)
10279    .setMemRefs(MMOBegin, MMOEnd);
10280
10281  // If we need to align it, do so. Otherwise, just copy the address
10282  // to OverflowDestReg.
10283  if (NeedsAlign) {
10284    // Align the overflow address
10285    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
10286    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
10287
10288    // aligned_addr = (addr + (align-1)) & ~(align-1)
10289    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
10290      .addReg(OverflowAddrReg)
10291      .addImm(Align-1);
10292
10293    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
10294      .addReg(TmpReg)
10295      .addImm(~(uint64_t)(Align-1));
10296  } else {
10297    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
10298      .addReg(OverflowAddrReg);
10299  }
10300
10301  // Compute the next overflow address after this argument.
10302  // (the overflow address should be kept 8-byte aligned)
10303  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
10304  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
10305    .addReg(OverflowDestReg)
10306    .addImm(ArgSizeA8);
10307
10308  // Store the new overflow address.
10309  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
10310    .addOperand(Base)
10311    .addOperand(Scale)
10312    .addOperand(Index)
10313    .addDisp(Disp, 8)
10314    .addOperand(Segment)
10315    .addReg(NextAddrReg)
10316    .setMemRefs(MMOBegin, MMOEnd);
10317
10318  // If we branched, emit the PHI to the front of endMBB.
10319  if (offsetMBB) {
10320    BuildMI(*endMBB, endMBB->begin(), DL,
10321            TII->get(X86::PHI), DestReg)
10322      .addReg(OffsetDestReg).addMBB(offsetMBB)
10323      .addReg(OverflowDestReg).addMBB(overflowMBB);
10324  }
10325
10326  // Erase the pseudo instruction
10327  MI->eraseFromParent();
10328
10329  return endMBB;
10330}
10331
10332MachineBasicBlock *
10333X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
10334                                                 MachineInstr *MI,
10335                                                 MachineBasicBlock *MBB) const {
10336  // Emit code to save XMM registers to the stack. The ABI says that the
10337  // number of registers to save is given in %al, so it's theoretically
10338  // possible to do an indirect jump trick to avoid saving all of them,
10339  // however this code takes a simpler approach and just executes all
10340  // of the stores if %al is non-zero. It's less code, and it's probably
10341  // easier on the hardware branch predictor, and stores aren't all that
10342  // expensive anyway.
10343
10344  // Create the new basic blocks. One block contains all the XMM stores,
10345  // and one block is the final destination regardless of whether any
10346  // stores were performed.
10347  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10348  MachineFunction *F = MBB->getParent();
10349  MachineFunction::iterator MBBIter = MBB;
10350  ++MBBIter;
10351  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
10352  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
10353  F->insert(MBBIter, XMMSaveMBB);
10354  F->insert(MBBIter, EndMBB);
10355
10356  // Transfer the remainder of MBB and its successor edges to EndMBB.
10357  EndMBB->splice(EndMBB->begin(), MBB,
10358                 llvm::next(MachineBasicBlock::iterator(MI)),
10359                 MBB->end());
10360  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
10361
10362  // The original block will now fall through to the XMM save block.
10363  MBB->addSuccessor(XMMSaveMBB);
10364  // The XMMSaveMBB will fall through to the end block.
10365  XMMSaveMBB->addSuccessor(EndMBB);
10366
10367  // Now add the instructions.
10368  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10369  DebugLoc DL = MI->getDebugLoc();
10370
10371  unsigned CountReg = MI->getOperand(0).getReg();
10372  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
10373  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
10374
10375  if (!Subtarget->isTargetWin64()) {
10376    // If %al is 0, branch around the XMM save block.
10377    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
10378    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
10379    MBB->addSuccessor(EndMBB);
10380  }
10381
10382  // In the XMM save block, save all the XMM argument registers.
10383  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
10384    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
10385    MachineMemOperand *MMO =
10386      F->getMachineMemOperand(
10387          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
10388        MachineMemOperand::MOStore,
10389        /*Size=*/16, /*Align=*/16);
10390    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
10391      .addFrameIndex(RegSaveFrameIndex)
10392      .addImm(/*Scale=*/1)
10393      .addReg(/*IndexReg=*/0)
10394      .addImm(/*Disp=*/Offset)
10395      .addReg(/*Segment=*/0)
10396      .addReg(MI->getOperand(i).getReg())
10397      .addMemOperand(MMO);
10398  }
10399
10400  MI->eraseFromParent();   // The pseudo instruction is gone now.
10401
10402  return EndMBB;
10403}
10404
10405MachineBasicBlock *
10406X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
10407                                     MachineBasicBlock *BB) const {
10408  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10409  DebugLoc DL = MI->getDebugLoc();
10410
10411  // To "insert" a SELECT_CC instruction, we actually have to insert the
10412  // diamond control-flow pattern.  The incoming instruction knows the
10413  // destination vreg to set, the condition code register to branch on, the
10414  // true/false values to select between, and a branch opcode to use.
10415  const BasicBlock *LLVM_BB = BB->getBasicBlock();
10416  MachineFunction::iterator It = BB;
10417  ++It;
10418
10419  //  thisMBB:
10420  //  ...
10421  //   TrueVal = ...
10422  //   cmpTY ccX, r1, r2
10423  //   bCC copy1MBB
10424  //   fallthrough --> copy0MBB
10425  MachineBasicBlock *thisMBB = BB;
10426  MachineFunction *F = BB->getParent();
10427  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10428  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10429  F->insert(It, copy0MBB);
10430  F->insert(It, sinkMBB);
10431
10432  // If the EFLAGS register isn't dead in the terminator, then claim that it's
10433  // live into the sink and copy blocks.
10434  const MachineFunction *MF = BB->getParent();
10435  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
10436  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
10437
10438  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
10439    const MachineOperand &MO = MI->getOperand(I);
10440    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
10441    unsigned Reg = MO.getReg();
10442    if (Reg != X86::EFLAGS) continue;
10443    copy0MBB->addLiveIn(Reg);
10444    sinkMBB->addLiveIn(Reg);
10445  }
10446
10447  // Transfer the remainder of BB and its successor edges to sinkMBB.
10448  sinkMBB->splice(sinkMBB->begin(), BB,
10449                  llvm::next(MachineBasicBlock::iterator(MI)),
10450                  BB->end());
10451  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10452
10453  // Add the true and fallthrough blocks as its successors.
10454  BB->addSuccessor(copy0MBB);
10455  BB->addSuccessor(sinkMBB);
10456
10457  // Create the conditional branch instruction.
10458  unsigned Opc =
10459    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
10460  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
10461
10462  //  copy0MBB:
10463  //   %FalseValue = ...
10464  //   # fallthrough to sinkMBB
10465  copy0MBB->addSuccessor(sinkMBB);
10466
10467  //  sinkMBB:
10468  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10469  //  ...
10470  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10471          TII->get(X86::PHI), MI->getOperand(0).getReg())
10472    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
10473    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
10474
10475  MI->eraseFromParent();   // The pseudo instruction is gone now.
10476  return sinkMBB;
10477}
10478
10479MachineBasicBlock *
10480X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
10481                                          MachineBasicBlock *BB) const {
10482  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10483  DebugLoc DL = MI->getDebugLoc();
10484
10485  assert(!Subtarget->isTargetEnvMacho());
10486
10487  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
10488  // non-trivial part is impdef of ESP.
10489
10490  if (Subtarget->isTargetWin64()) {
10491    if (Subtarget->isTargetCygMing()) {
10492      // ___chkstk(Mingw64):
10493      // Clobbers R10, R11, RAX and EFLAGS.
10494      // Updates RSP.
10495      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
10496        .addExternalSymbol("___chkstk")
10497        .addReg(X86::RAX, RegState::Implicit)
10498        .addReg(X86::RSP, RegState::Implicit)
10499        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
10500        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
10501        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10502    } else {
10503      // __chkstk(MSVCRT): does not update stack pointer.
10504      // Clobbers R10, R11 and EFLAGS.
10505      // FIXME: RAX(allocated size) might be reused and not killed.
10506      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
10507        .addExternalSymbol("__chkstk")
10508        .addReg(X86::RAX, RegState::Implicit)
10509        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10510      // RAX has the offset to subtracted from RSP.
10511      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
10512        .addReg(X86::RSP)
10513        .addReg(X86::RAX);
10514    }
10515  } else {
10516    const char *StackProbeSymbol =
10517      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
10518
10519    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
10520      .addExternalSymbol(StackProbeSymbol)
10521      .addReg(X86::EAX, RegState::Implicit)
10522      .addReg(X86::ESP, RegState::Implicit)
10523      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
10524      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
10525      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10526  }
10527
10528  MI->eraseFromParent();   // The pseudo instruction is gone now.
10529  return BB;
10530}
10531
10532MachineBasicBlock *
10533X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
10534                                      MachineBasicBlock *BB) const {
10535  // This is pretty easy.  We're taking the value that we received from
10536  // our load from the relocation, sticking it in either RDI (x86-64)
10537  // or EAX and doing an indirect call.  The return value will then
10538  // be in the normal return register.
10539  const X86InstrInfo *TII
10540    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
10541  DebugLoc DL = MI->getDebugLoc();
10542  MachineFunction *F = BB->getParent();
10543
10544  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
10545  assert(MI->getOperand(3).isGlobal() && "This should be a global");
10546
10547  if (Subtarget->is64Bit()) {
10548    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10549                                      TII->get(X86::MOV64rm), X86::RDI)
10550    .addReg(X86::RIP)
10551    .addImm(0).addReg(0)
10552    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10553                      MI->getOperand(3).getTargetFlags())
10554    .addReg(0);
10555    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
10556    addDirectMem(MIB, X86::RDI);
10557  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
10558    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10559                                      TII->get(X86::MOV32rm), X86::EAX)
10560    .addReg(0)
10561    .addImm(0).addReg(0)
10562    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10563                      MI->getOperand(3).getTargetFlags())
10564    .addReg(0);
10565    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10566    addDirectMem(MIB, X86::EAX);
10567  } else {
10568    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10569                                      TII->get(X86::MOV32rm), X86::EAX)
10570    .addReg(TII->getGlobalBaseReg(F))
10571    .addImm(0).addReg(0)
10572    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10573                      MI->getOperand(3).getTargetFlags())
10574    .addReg(0);
10575    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10576    addDirectMem(MIB, X86::EAX);
10577  }
10578
10579  MI->eraseFromParent(); // The pseudo instruction is gone now.
10580  return BB;
10581}
10582
10583MachineBasicBlock *
10584X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
10585                                               MachineBasicBlock *BB) const {
10586  switch (MI->getOpcode()) {
10587  default: assert(false && "Unexpected instr type to insert");
10588  case X86::TAILJMPd64:
10589  case X86::TAILJMPr64:
10590  case X86::TAILJMPm64:
10591    assert(!"TAILJMP64 would not be touched here.");
10592  case X86::TCRETURNdi64:
10593  case X86::TCRETURNri64:
10594  case X86::TCRETURNmi64:
10595    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
10596    // On AMD64, additional defs should be added before register allocation.
10597    if (!Subtarget->isTargetWin64()) {
10598      MI->addRegisterDefined(X86::RSI);
10599      MI->addRegisterDefined(X86::RDI);
10600      MI->addRegisterDefined(X86::XMM6);
10601      MI->addRegisterDefined(X86::XMM7);
10602      MI->addRegisterDefined(X86::XMM8);
10603      MI->addRegisterDefined(X86::XMM9);
10604      MI->addRegisterDefined(X86::XMM10);
10605      MI->addRegisterDefined(X86::XMM11);
10606      MI->addRegisterDefined(X86::XMM12);
10607      MI->addRegisterDefined(X86::XMM13);
10608      MI->addRegisterDefined(X86::XMM14);
10609      MI->addRegisterDefined(X86::XMM15);
10610    }
10611    return BB;
10612  case X86::WIN_ALLOCA:
10613    return EmitLoweredWinAlloca(MI, BB);
10614  case X86::TLSCall_32:
10615  case X86::TLSCall_64:
10616    return EmitLoweredTLSCall(MI, BB);
10617  case X86::CMOV_GR8:
10618  case X86::CMOV_FR32:
10619  case X86::CMOV_FR64:
10620  case X86::CMOV_V4F32:
10621  case X86::CMOV_V2F64:
10622  case X86::CMOV_V2I64:
10623  case X86::CMOV_GR16:
10624  case X86::CMOV_GR32:
10625  case X86::CMOV_RFP32:
10626  case X86::CMOV_RFP64:
10627  case X86::CMOV_RFP80:
10628    return EmitLoweredSelect(MI, BB);
10629
10630  case X86::FP32_TO_INT16_IN_MEM:
10631  case X86::FP32_TO_INT32_IN_MEM:
10632  case X86::FP32_TO_INT64_IN_MEM:
10633  case X86::FP64_TO_INT16_IN_MEM:
10634  case X86::FP64_TO_INT32_IN_MEM:
10635  case X86::FP64_TO_INT64_IN_MEM:
10636  case X86::FP80_TO_INT16_IN_MEM:
10637  case X86::FP80_TO_INT32_IN_MEM:
10638  case X86::FP80_TO_INT64_IN_MEM: {
10639    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10640    DebugLoc DL = MI->getDebugLoc();
10641
10642    // Change the floating point control register to use "round towards zero"
10643    // mode when truncating to an integer value.
10644    MachineFunction *F = BB->getParent();
10645    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
10646    addFrameReference(BuildMI(*BB, MI, DL,
10647                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
10648
10649    // Load the old value of the high byte of the control word...
10650    unsigned OldCW =
10651      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
10652    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
10653                      CWFrameIdx);
10654
10655    // Set the high part to be round to zero...
10656    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
10657      .addImm(0xC7F);
10658
10659    // Reload the modified control word now...
10660    addFrameReference(BuildMI(*BB, MI, DL,
10661                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10662
10663    // Restore the memory image of control word to original value
10664    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
10665      .addReg(OldCW);
10666
10667    // Get the X86 opcode to use.
10668    unsigned Opc;
10669    switch (MI->getOpcode()) {
10670    default: llvm_unreachable("illegal opcode!");
10671    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
10672    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
10673    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
10674    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
10675    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
10676    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
10677    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
10678    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
10679    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
10680    }
10681
10682    X86AddressMode AM;
10683    MachineOperand &Op = MI->getOperand(0);
10684    if (Op.isReg()) {
10685      AM.BaseType = X86AddressMode::RegBase;
10686      AM.Base.Reg = Op.getReg();
10687    } else {
10688      AM.BaseType = X86AddressMode::FrameIndexBase;
10689      AM.Base.FrameIndex = Op.getIndex();
10690    }
10691    Op = MI->getOperand(1);
10692    if (Op.isImm())
10693      AM.Scale = Op.getImm();
10694    Op = MI->getOperand(2);
10695    if (Op.isImm())
10696      AM.IndexReg = Op.getImm();
10697    Op = MI->getOperand(3);
10698    if (Op.isGlobal()) {
10699      AM.GV = Op.getGlobal();
10700    } else {
10701      AM.Disp = Op.getImm();
10702    }
10703    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
10704                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
10705
10706    // Reload the original control word now.
10707    addFrameReference(BuildMI(*BB, MI, DL,
10708                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10709
10710    MI->eraseFromParent();   // The pseudo instruction is gone now.
10711    return BB;
10712  }
10713    // String/text processing lowering.
10714  case X86::PCMPISTRM128REG:
10715  case X86::VPCMPISTRM128REG:
10716    return EmitPCMP(MI, BB, 3, false /* in-mem */);
10717  case X86::PCMPISTRM128MEM:
10718  case X86::VPCMPISTRM128MEM:
10719    return EmitPCMP(MI, BB, 3, true /* in-mem */);
10720  case X86::PCMPESTRM128REG:
10721  case X86::VPCMPESTRM128REG:
10722    return EmitPCMP(MI, BB, 5, false /* in mem */);
10723  case X86::PCMPESTRM128MEM:
10724  case X86::VPCMPESTRM128MEM:
10725    return EmitPCMP(MI, BB, 5, true /* in mem */);
10726
10727    // Thread synchronization.
10728  case X86::MONITOR:
10729    return EmitMonitor(MI, BB);
10730  case X86::MWAIT:
10731    return EmitMwait(MI, BB);
10732
10733    // Atomic Lowering.
10734  case X86::ATOMAND32:
10735    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10736                                               X86::AND32ri, X86::MOV32rm,
10737                                               X86::LCMPXCHG32,
10738                                               X86::NOT32r, X86::EAX,
10739                                               X86::GR32RegisterClass);
10740  case X86::ATOMOR32:
10741    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
10742                                               X86::OR32ri, X86::MOV32rm,
10743                                               X86::LCMPXCHG32,
10744                                               X86::NOT32r, X86::EAX,
10745                                               X86::GR32RegisterClass);
10746  case X86::ATOMXOR32:
10747    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
10748                                               X86::XOR32ri, X86::MOV32rm,
10749                                               X86::LCMPXCHG32,
10750                                               X86::NOT32r, X86::EAX,
10751                                               X86::GR32RegisterClass);
10752  case X86::ATOMNAND32:
10753    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10754                                               X86::AND32ri, X86::MOV32rm,
10755                                               X86::LCMPXCHG32,
10756                                               X86::NOT32r, X86::EAX,
10757                                               X86::GR32RegisterClass, true);
10758  case X86::ATOMMIN32:
10759    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
10760  case X86::ATOMMAX32:
10761    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
10762  case X86::ATOMUMIN32:
10763    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
10764  case X86::ATOMUMAX32:
10765    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
10766
10767  case X86::ATOMAND16:
10768    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10769                                               X86::AND16ri, X86::MOV16rm,
10770                                               X86::LCMPXCHG16,
10771                                               X86::NOT16r, X86::AX,
10772                                               X86::GR16RegisterClass);
10773  case X86::ATOMOR16:
10774    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
10775                                               X86::OR16ri, X86::MOV16rm,
10776                                               X86::LCMPXCHG16,
10777                                               X86::NOT16r, X86::AX,
10778                                               X86::GR16RegisterClass);
10779  case X86::ATOMXOR16:
10780    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
10781                                               X86::XOR16ri, X86::MOV16rm,
10782                                               X86::LCMPXCHG16,
10783                                               X86::NOT16r, X86::AX,
10784                                               X86::GR16RegisterClass);
10785  case X86::ATOMNAND16:
10786    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10787                                               X86::AND16ri, X86::MOV16rm,
10788                                               X86::LCMPXCHG16,
10789                                               X86::NOT16r, X86::AX,
10790                                               X86::GR16RegisterClass, true);
10791  case X86::ATOMMIN16:
10792    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
10793  case X86::ATOMMAX16:
10794    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
10795  case X86::ATOMUMIN16:
10796    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
10797  case X86::ATOMUMAX16:
10798    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
10799
10800  case X86::ATOMAND8:
10801    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10802                                               X86::AND8ri, X86::MOV8rm,
10803                                               X86::LCMPXCHG8,
10804                                               X86::NOT8r, X86::AL,
10805                                               X86::GR8RegisterClass);
10806  case X86::ATOMOR8:
10807    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
10808                                               X86::OR8ri, X86::MOV8rm,
10809                                               X86::LCMPXCHG8,
10810                                               X86::NOT8r, X86::AL,
10811                                               X86::GR8RegisterClass);
10812  case X86::ATOMXOR8:
10813    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
10814                                               X86::XOR8ri, X86::MOV8rm,
10815                                               X86::LCMPXCHG8,
10816                                               X86::NOT8r, X86::AL,
10817                                               X86::GR8RegisterClass);
10818  case X86::ATOMNAND8:
10819    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10820                                               X86::AND8ri, X86::MOV8rm,
10821                                               X86::LCMPXCHG8,
10822                                               X86::NOT8r, X86::AL,
10823                                               X86::GR8RegisterClass, true);
10824  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
10825  // This group is for 64-bit host.
10826  case X86::ATOMAND64:
10827    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10828                                               X86::AND64ri32, X86::MOV64rm,
10829                                               X86::LCMPXCHG64,
10830                                               X86::NOT64r, X86::RAX,
10831                                               X86::GR64RegisterClass);
10832  case X86::ATOMOR64:
10833    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
10834                                               X86::OR64ri32, X86::MOV64rm,
10835                                               X86::LCMPXCHG64,
10836                                               X86::NOT64r, X86::RAX,
10837                                               X86::GR64RegisterClass);
10838  case X86::ATOMXOR64:
10839    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
10840                                               X86::XOR64ri32, X86::MOV64rm,
10841                                               X86::LCMPXCHG64,
10842                                               X86::NOT64r, X86::RAX,
10843                                               X86::GR64RegisterClass);
10844  case X86::ATOMNAND64:
10845    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10846                                               X86::AND64ri32, X86::MOV64rm,
10847                                               X86::LCMPXCHG64,
10848                                               X86::NOT64r, X86::RAX,
10849                                               X86::GR64RegisterClass, true);
10850  case X86::ATOMMIN64:
10851    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
10852  case X86::ATOMMAX64:
10853    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
10854  case X86::ATOMUMIN64:
10855    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
10856  case X86::ATOMUMAX64:
10857    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
10858
10859  // This group does 64-bit operations on a 32-bit host.
10860  case X86::ATOMAND6432:
10861    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10862                                               X86::AND32rr, X86::AND32rr,
10863                                               X86::AND32ri, X86::AND32ri,
10864                                               false);
10865  case X86::ATOMOR6432:
10866    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10867                                               X86::OR32rr, X86::OR32rr,
10868                                               X86::OR32ri, X86::OR32ri,
10869                                               false);
10870  case X86::ATOMXOR6432:
10871    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10872                                               X86::XOR32rr, X86::XOR32rr,
10873                                               X86::XOR32ri, X86::XOR32ri,
10874                                               false);
10875  case X86::ATOMNAND6432:
10876    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10877                                               X86::AND32rr, X86::AND32rr,
10878                                               X86::AND32ri, X86::AND32ri,
10879                                               true);
10880  case X86::ATOMADD6432:
10881    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10882                                               X86::ADD32rr, X86::ADC32rr,
10883                                               X86::ADD32ri, X86::ADC32ri,
10884                                               false);
10885  case X86::ATOMSUB6432:
10886    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10887                                               X86::SUB32rr, X86::SBB32rr,
10888                                               X86::SUB32ri, X86::SBB32ri,
10889                                               false);
10890  case X86::ATOMSWAP6432:
10891    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10892                                               X86::MOV32rr, X86::MOV32rr,
10893                                               X86::MOV32ri, X86::MOV32ri,
10894                                               false);
10895  case X86::VASTART_SAVE_XMM_REGS:
10896    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
10897
10898  case X86::VAARG_64:
10899    return EmitVAARG64WithCustomInserter(MI, BB);
10900  }
10901}
10902
10903//===----------------------------------------------------------------------===//
10904//                           X86 Optimization Hooks
10905//===----------------------------------------------------------------------===//
10906
10907void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
10908                                                       const APInt &Mask,
10909                                                       APInt &KnownZero,
10910                                                       APInt &KnownOne,
10911                                                       const SelectionDAG &DAG,
10912                                                       unsigned Depth) const {
10913  unsigned Opc = Op.getOpcode();
10914  assert((Opc >= ISD::BUILTIN_OP_END ||
10915          Opc == ISD::INTRINSIC_WO_CHAIN ||
10916          Opc == ISD::INTRINSIC_W_CHAIN ||
10917          Opc == ISD::INTRINSIC_VOID) &&
10918         "Should use MaskedValueIsZero if you don't know whether Op"
10919         " is a target node!");
10920
10921  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
10922  switch (Opc) {
10923  default: break;
10924  case X86ISD::ADD:
10925  case X86ISD::SUB:
10926  case X86ISD::ADC:
10927  case X86ISD::SBB:
10928  case X86ISD::SMUL:
10929  case X86ISD::UMUL:
10930  case X86ISD::INC:
10931  case X86ISD::DEC:
10932  case X86ISD::OR:
10933  case X86ISD::XOR:
10934  case X86ISD::AND:
10935    // These nodes' second result is a boolean.
10936    if (Op.getResNo() == 0)
10937      break;
10938    // Fallthrough
10939  case X86ISD::SETCC:
10940    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
10941                                       Mask.getBitWidth() - 1);
10942    break;
10943  }
10944}
10945
10946unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
10947                                                         unsigned Depth) const {
10948  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
10949  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
10950    return Op.getValueType().getScalarType().getSizeInBits();
10951
10952  // Fallback case.
10953  return 1;
10954}
10955
10956/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
10957/// node is a GlobalAddress + offset.
10958bool X86TargetLowering::isGAPlusOffset(SDNode *N,
10959                                       const GlobalValue* &GA,
10960                                       int64_t &Offset) const {
10961  if (N->getOpcode() == X86ISD::Wrapper) {
10962    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
10963      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
10964      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
10965      return true;
10966    }
10967  }
10968  return TargetLowering::isGAPlusOffset(N, GA, Offset);
10969}
10970
10971/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
10972/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
10973/// if the load addresses are consecutive, non-overlapping, and in the right
10974/// order.
10975static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
10976                                     TargetLowering::DAGCombinerInfo &DCI) {
10977  DebugLoc dl = N->getDebugLoc();
10978  EVT VT = N->getValueType(0);
10979
10980  if (VT.getSizeInBits() != 128)
10981    return SDValue();
10982
10983  // Don't create instructions with illegal types after legalize types has run.
10984  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10985  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
10986    return SDValue();
10987
10988  SmallVector<SDValue, 16> Elts;
10989  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
10990    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
10991
10992  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
10993}
10994
10995/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
10996/// generation and convert it from being a bunch of shuffles and extracts
10997/// to a simple store and scalar loads to extract the elements.
10998static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
10999                                                const TargetLowering &TLI) {
11000  SDValue InputVector = N->getOperand(0);
11001
11002  // Only operate on vectors of 4 elements, where the alternative shuffling
11003  // gets to be more expensive.
11004  if (InputVector.getValueType() != MVT::v4i32)
11005    return SDValue();
11006
11007  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
11008  // single use which is a sign-extend or zero-extend, and all elements are
11009  // used.
11010  SmallVector<SDNode *, 4> Uses;
11011  unsigned ExtractedElements = 0;
11012  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
11013       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
11014    if (UI.getUse().getResNo() != InputVector.getResNo())
11015      return SDValue();
11016
11017    SDNode *Extract = *UI;
11018    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11019      return SDValue();
11020
11021    if (Extract->getValueType(0) != MVT::i32)
11022      return SDValue();
11023    if (!Extract->hasOneUse())
11024      return SDValue();
11025    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
11026        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
11027      return SDValue();
11028    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
11029      return SDValue();
11030
11031    // Record which element was extracted.
11032    ExtractedElements |=
11033      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
11034
11035    Uses.push_back(Extract);
11036  }
11037
11038  // If not all the elements were used, this may not be worthwhile.
11039  if (ExtractedElements != 15)
11040    return SDValue();
11041
11042  // Ok, we've now decided to do the transformation.
11043  DebugLoc dl = InputVector.getDebugLoc();
11044
11045  // Store the value to a temporary stack slot.
11046  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
11047  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
11048                            MachinePointerInfo(), false, false, 0);
11049
11050  // Replace each use (extract) with a load of the appropriate element.
11051  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
11052       UE = Uses.end(); UI != UE; ++UI) {
11053    SDNode *Extract = *UI;
11054
11055    // cOMpute the element's address.
11056    SDValue Idx = Extract->getOperand(1);
11057    unsigned EltSize =
11058        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
11059    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
11060    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
11061
11062    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
11063                                     StackPtr, OffsetVal);
11064
11065    // Load the scalar.
11066    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
11067                                     ScalarAddr, MachinePointerInfo(),
11068                                     false, false, 0);
11069
11070    // Replace the exact with the load.
11071    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
11072  }
11073
11074  // The replacement was made in place; don't return anything.
11075  return SDValue();
11076}
11077
11078/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
11079static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
11080                                    const X86Subtarget *Subtarget) {
11081  DebugLoc DL = N->getDebugLoc();
11082  SDValue Cond = N->getOperand(0);
11083  // Get the LHS/RHS of the select.
11084  SDValue LHS = N->getOperand(1);
11085  SDValue RHS = N->getOperand(2);
11086
11087  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
11088  // instructions match the semantics of the common C idiom x<y?x:y but not
11089  // x<=y?x:y, because of how they handle negative zero (which can be
11090  // ignored in unsafe-math mode).
11091  if (Subtarget->hasSSE2() &&
11092      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
11093      Cond.getOpcode() == ISD::SETCC) {
11094    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
11095
11096    unsigned Opcode = 0;
11097    // Check for x CC y ? x : y.
11098    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
11099        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
11100      switch (CC) {
11101      default: break;
11102      case ISD::SETULT:
11103        // Converting this to a min would handle NaNs incorrectly, and swapping
11104        // the operands would cause it to handle comparisons between positive
11105        // and negative zero incorrectly.
11106        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11107          if (!UnsafeFPMath &&
11108              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11109            break;
11110          std::swap(LHS, RHS);
11111        }
11112        Opcode = X86ISD::FMIN;
11113        break;
11114      case ISD::SETOLE:
11115        // Converting this to a min would handle comparisons between positive
11116        // and negative zero incorrectly.
11117        if (!UnsafeFPMath &&
11118            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
11119          break;
11120        Opcode = X86ISD::FMIN;
11121        break;
11122      case ISD::SETULE:
11123        // Converting this to a min would handle both negative zeros and NaNs
11124        // incorrectly, but we can swap the operands to fix both.
11125        std::swap(LHS, RHS);
11126      case ISD::SETOLT:
11127      case ISD::SETLT:
11128      case ISD::SETLE:
11129        Opcode = X86ISD::FMIN;
11130        break;
11131
11132      case ISD::SETOGE:
11133        // Converting this to a max would handle comparisons between positive
11134        // and negative zero incorrectly.
11135        if (!UnsafeFPMath &&
11136            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
11137          break;
11138        Opcode = X86ISD::FMAX;
11139        break;
11140      case ISD::SETUGT:
11141        // Converting this to a max would handle NaNs incorrectly, and swapping
11142        // the operands would cause it to handle comparisons between positive
11143        // and negative zero incorrectly.
11144        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11145          if (!UnsafeFPMath &&
11146              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11147            break;
11148          std::swap(LHS, RHS);
11149        }
11150        Opcode = X86ISD::FMAX;
11151        break;
11152      case ISD::SETUGE:
11153        // Converting this to a max would handle both negative zeros and NaNs
11154        // incorrectly, but we can swap the operands to fix both.
11155        std::swap(LHS, RHS);
11156      case ISD::SETOGT:
11157      case ISD::SETGT:
11158      case ISD::SETGE:
11159        Opcode = X86ISD::FMAX;
11160        break;
11161      }
11162    // Check for x CC y ? y : x -- a min/max with reversed arms.
11163    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
11164               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
11165      switch (CC) {
11166      default: break;
11167      case ISD::SETOGE:
11168        // Converting this to a min would handle comparisons between positive
11169        // and negative zero incorrectly, and swapping the operands would
11170        // cause it to handle NaNs incorrectly.
11171        if (!UnsafeFPMath &&
11172            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
11173          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11174            break;
11175          std::swap(LHS, RHS);
11176        }
11177        Opcode = X86ISD::FMIN;
11178        break;
11179      case ISD::SETUGT:
11180        // Converting this to a min would handle NaNs incorrectly.
11181        if (!UnsafeFPMath &&
11182            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
11183          break;
11184        Opcode = X86ISD::FMIN;
11185        break;
11186      case ISD::SETUGE:
11187        // Converting this to a min would handle both negative zeros and NaNs
11188        // incorrectly, but we can swap the operands to fix both.
11189        std::swap(LHS, RHS);
11190      case ISD::SETOGT:
11191      case ISD::SETGT:
11192      case ISD::SETGE:
11193        Opcode = X86ISD::FMIN;
11194        break;
11195
11196      case ISD::SETULT:
11197        // Converting this to a max would handle NaNs incorrectly.
11198        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11199          break;
11200        Opcode = X86ISD::FMAX;
11201        break;
11202      case ISD::SETOLE:
11203        // Converting this to a max would handle comparisons between positive
11204        // and negative zero incorrectly, and swapping the operands would
11205        // cause it to handle NaNs incorrectly.
11206        if (!UnsafeFPMath &&
11207            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
11208          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11209            break;
11210          std::swap(LHS, RHS);
11211        }
11212        Opcode = X86ISD::FMAX;
11213        break;
11214      case ISD::SETULE:
11215        // Converting this to a max would handle both negative zeros and NaNs
11216        // incorrectly, but we can swap the operands to fix both.
11217        std::swap(LHS, RHS);
11218      case ISD::SETOLT:
11219      case ISD::SETLT:
11220      case ISD::SETLE:
11221        Opcode = X86ISD::FMAX;
11222        break;
11223      }
11224    }
11225
11226    if (Opcode)
11227      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
11228  }
11229
11230  // If this is a select between two integer constants, try to do some
11231  // optimizations.
11232  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
11233    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
11234      // Don't do this for crazy integer types.
11235      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
11236        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
11237        // so that TrueC (the true value) is larger than FalseC.
11238        bool NeedsCondInvert = false;
11239
11240        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
11241            // Efficiently invertible.
11242            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
11243             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
11244              isa<ConstantSDNode>(Cond.getOperand(1))))) {
11245          NeedsCondInvert = true;
11246          std::swap(TrueC, FalseC);
11247        }
11248
11249        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
11250        if (FalseC->getAPIntValue() == 0 &&
11251            TrueC->getAPIntValue().isPowerOf2()) {
11252          if (NeedsCondInvert) // Invert the condition if needed.
11253            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11254                               DAG.getConstant(1, Cond.getValueType()));
11255
11256          // Zero extend the condition if needed.
11257          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
11258
11259          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11260          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
11261                             DAG.getConstant(ShAmt, MVT::i8));
11262        }
11263
11264        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
11265        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11266          if (NeedsCondInvert) // Invert the condition if needed.
11267            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11268                               DAG.getConstant(1, Cond.getValueType()));
11269
11270          // Zero extend the condition if needed.
11271          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11272                             FalseC->getValueType(0), Cond);
11273          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11274                             SDValue(FalseC, 0));
11275        }
11276
11277        // Optimize cases that will turn into an LEA instruction.  This requires
11278        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11279        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11280          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11281          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11282
11283          bool isFastMultiplier = false;
11284          if (Diff < 10) {
11285            switch ((unsigned char)Diff) {
11286              default: break;
11287              case 1:  // result = add base, cond
11288              case 2:  // result = lea base(    , cond*2)
11289              case 3:  // result = lea base(cond, cond*2)
11290              case 4:  // result = lea base(    , cond*4)
11291              case 5:  // result = lea base(cond, cond*4)
11292              case 8:  // result = lea base(    , cond*8)
11293              case 9:  // result = lea base(cond, cond*8)
11294                isFastMultiplier = true;
11295                break;
11296            }
11297          }
11298
11299          if (isFastMultiplier) {
11300            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11301            if (NeedsCondInvert) // Invert the condition if needed.
11302              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11303                                 DAG.getConstant(1, Cond.getValueType()));
11304
11305            // Zero extend the condition if needed.
11306            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11307                               Cond);
11308            // Scale the condition by the difference.
11309            if (Diff != 1)
11310              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11311                                 DAG.getConstant(Diff, Cond.getValueType()));
11312
11313            // Add the base if non-zero.
11314            if (FalseC->getAPIntValue() != 0)
11315              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11316                                 SDValue(FalseC, 0));
11317            return Cond;
11318          }
11319        }
11320      }
11321  }
11322
11323  return SDValue();
11324}
11325
11326/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
11327static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
11328                                  TargetLowering::DAGCombinerInfo &DCI) {
11329  DebugLoc DL = N->getDebugLoc();
11330
11331  // If the flag operand isn't dead, don't touch this CMOV.
11332  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
11333    return SDValue();
11334
11335  SDValue FalseOp = N->getOperand(0);
11336  SDValue TrueOp = N->getOperand(1);
11337  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
11338  SDValue Cond = N->getOperand(3);
11339  if (CC == X86::COND_E || CC == X86::COND_NE) {
11340    switch (Cond.getOpcode()) {
11341    default: break;
11342    case X86ISD::BSR:
11343    case X86ISD::BSF:
11344      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
11345      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
11346        return (CC == X86::COND_E) ? FalseOp : TrueOp;
11347    }
11348  }
11349
11350  // If this is a select between two integer constants, try to do some
11351  // optimizations.  Note that the operands are ordered the opposite of SELECT
11352  // operands.
11353  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
11354    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
11355      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
11356      // larger than FalseC (the false value).
11357      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
11358        CC = X86::GetOppositeBranchCondition(CC);
11359        std::swap(TrueC, FalseC);
11360      }
11361
11362      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
11363      // This is efficient for any integer data type (including i8/i16) and
11364      // shift amount.
11365      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
11366        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11367                           DAG.getConstant(CC, MVT::i8), Cond);
11368
11369        // Zero extend the condition if needed.
11370        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
11371
11372        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11373        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
11374                           DAG.getConstant(ShAmt, MVT::i8));
11375        if (N->getNumValues() == 2)  // Dead flag value?
11376          return DCI.CombineTo(N, Cond, SDValue());
11377        return Cond;
11378      }
11379
11380      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
11381      // for any integer data type, including i8/i16.
11382      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11383        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11384                           DAG.getConstant(CC, MVT::i8), Cond);
11385
11386        // Zero extend the condition if needed.
11387        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11388                           FalseC->getValueType(0), Cond);
11389        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11390                           SDValue(FalseC, 0));
11391
11392        if (N->getNumValues() == 2)  // Dead flag value?
11393          return DCI.CombineTo(N, Cond, SDValue());
11394        return Cond;
11395      }
11396
11397      // Optimize cases that will turn into an LEA instruction.  This requires
11398      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11399      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11400        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11401        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11402
11403        bool isFastMultiplier = false;
11404        if (Diff < 10) {
11405          switch ((unsigned char)Diff) {
11406          default: break;
11407          case 1:  // result = add base, cond
11408          case 2:  // result = lea base(    , cond*2)
11409          case 3:  // result = lea base(cond, cond*2)
11410          case 4:  // result = lea base(    , cond*4)
11411          case 5:  // result = lea base(cond, cond*4)
11412          case 8:  // result = lea base(    , cond*8)
11413          case 9:  // result = lea base(cond, cond*8)
11414            isFastMultiplier = true;
11415            break;
11416          }
11417        }
11418
11419        if (isFastMultiplier) {
11420          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11421          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11422                             DAG.getConstant(CC, MVT::i8), Cond);
11423          // Zero extend the condition if needed.
11424          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11425                             Cond);
11426          // Scale the condition by the difference.
11427          if (Diff != 1)
11428            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11429                               DAG.getConstant(Diff, Cond.getValueType()));
11430
11431          // Add the base if non-zero.
11432          if (FalseC->getAPIntValue() != 0)
11433            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11434                               SDValue(FalseC, 0));
11435          if (N->getNumValues() == 2)  // Dead flag value?
11436            return DCI.CombineTo(N, Cond, SDValue());
11437          return Cond;
11438        }
11439      }
11440    }
11441  }
11442  return SDValue();
11443}
11444
11445
11446/// PerformMulCombine - Optimize a single multiply with constant into two
11447/// in order to implement it with two cheaper instructions, e.g.
11448/// LEA + SHL, LEA + LEA.
11449static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
11450                                 TargetLowering::DAGCombinerInfo &DCI) {
11451  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11452    return SDValue();
11453
11454  EVT VT = N->getValueType(0);
11455  if (VT != MVT::i64)
11456    return SDValue();
11457
11458  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11459  if (!C)
11460    return SDValue();
11461  uint64_t MulAmt = C->getZExtValue();
11462  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
11463    return SDValue();
11464
11465  uint64_t MulAmt1 = 0;
11466  uint64_t MulAmt2 = 0;
11467  if ((MulAmt % 9) == 0) {
11468    MulAmt1 = 9;
11469    MulAmt2 = MulAmt / 9;
11470  } else if ((MulAmt % 5) == 0) {
11471    MulAmt1 = 5;
11472    MulAmt2 = MulAmt / 5;
11473  } else if ((MulAmt % 3) == 0) {
11474    MulAmt1 = 3;
11475    MulAmt2 = MulAmt / 3;
11476  }
11477  if (MulAmt2 &&
11478      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
11479    DebugLoc DL = N->getDebugLoc();
11480
11481    if (isPowerOf2_64(MulAmt2) &&
11482        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
11483      // If second multiplifer is pow2, issue it first. We want the multiply by
11484      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
11485      // is an add.
11486      std::swap(MulAmt1, MulAmt2);
11487
11488    SDValue NewMul;
11489    if (isPowerOf2_64(MulAmt1))
11490      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
11491                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
11492    else
11493      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
11494                           DAG.getConstant(MulAmt1, VT));
11495
11496    if (isPowerOf2_64(MulAmt2))
11497      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
11498                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
11499    else
11500      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
11501                           DAG.getConstant(MulAmt2, VT));
11502
11503    // Do not add new nodes to DAG combiner worklist.
11504    DCI.CombineTo(N, NewMul, false);
11505  }
11506  return SDValue();
11507}
11508
11509static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
11510  SDValue N0 = N->getOperand(0);
11511  SDValue N1 = N->getOperand(1);
11512  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
11513  EVT VT = N0.getValueType();
11514
11515  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
11516  // since the result of setcc_c is all zero's or all ones.
11517  if (N1C && N0.getOpcode() == ISD::AND &&
11518      N0.getOperand(1).getOpcode() == ISD::Constant) {
11519    SDValue N00 = N0.getOperand(0);
11520    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
11521        ((N00.getOpcode() == ISD::ANY_EXTEND ||
11522          N00.getOpcode() == ISD::ZERO_EXTEND) &&
11523         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
11524      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
11525      APInt ShAmt = N1C->getAPIntValue();
11526      Mask = Mask.shl(ShAmt);
11527      if (Mask != 0)
11528        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
11529                           N00, DAG.getConstant(Mask, VT));
11530    }
11531  }
11532
11533  return SDValue();
11534}
11535
11536/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
11537///                       when possible.
11538static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
11539                                   const X86Subtarget *Subtarget) {
11540  EVT VT = N->getValueType(0);
11541  if (!VT.isVector() && VT.isInteger() &&
11542      N->getOpcode() == ISD::SHL)
11543    return PerformSHLCombine(N, DAG);
11544
11545  // On X86 with SSE2 support, we can transform this to a vector shift if
11546  // all elements are shifted by the same amount.  We can't do this in legalize
11547  // because the a constant vector is typically transformed to a constant pool
11548  // so we have no knowledge of the shift amount.
11549  if (!Subtarget->hasSSE2())
11550    return SDValue();
11551
11552  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
11553    return SDValue();
11554
11555  SDValue ShAmtOp = N->getOperand(1);
11556  EVT EltVT = VT.getVectorElementType();
11557  DebugLoc DL = N->getDebugLoc();
11558  SDValue BaseShAmt = SDValue();
11559  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
11560    unsigned NumElts = VT.getVectorNumElements();
11561    unsigned i = 0;
11562    for (; i != NumElts; ++i) {
11563      SDValue Arg = ShAmtOp.getOperand(i);
11564      if (Arg.getOpcode() == ISD::UNDEF) continue;
11565      BaseShAmt = Arg;
11566      break;
11567    }
11568    for (; i != NumElts; ++i) {
11569      SDValue Arg = ShAmtOp.getOperand(i);
11570      if (Arg.getOpcode() == ISD::UNDEF) continue;
11571      if (Arg != BaseShAmt) {
11572        return SDValue();
11573      }
11574    }
11575  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
11576             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
11577    SDValue InVec = ShAmtOp.getOperand(0);
11578    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
11579      unsigned NumElts = InVec.getValueType().getVectorNumElements();
11580      unsigned i = 0;
11581      for (; i != NumElts; ++i) {
11582        SDValue Arg = InVec.getOperand(i);
11583        if (Arg.getOpcode() == ISD::UNDEF) continue;
11584        BaseShAmt = Arg;
11585        break;
11586      }
11587    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
11588       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
11589         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
11590         if (C->getZExtValue() == SplatIdx)
11591           BaseShAmt = InVec.getOperand(1);
11592       }
11593    }
11594    if (BaseShAmt.getNode() == 0)
11595      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
11596                              DAG.getIntPtrConstant(0));
11597  } else
11598    return SDValue();
11599
11600  // The shift amount is an i32.
11601  if (EltVT.bitsGT(MVT::i32))
11602    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
11603  else if (EltVT.bitsLT(MVT::i32))
11604    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
11605
11606  // The shift amount is identical so we can do a vector shift.
11607  SDValue  ValOp = N->getOperand(0);
11608  switch (N->getOpcode()) {
11609  default:
11610    llvm_unreachable("Unknown shift opcode!");
11611    break;
11612  case ISD::SHL:
11613    if (VT == MVT::v2i64)
11614      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11615                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
11616                         ValOp, BaseShAmt);
11617    if (VT == MVT::v4i32)
11618      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11619                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
11620                         ValOp, BaseShAmt);
11621    if (VT == MVT::v8i16)
11622      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11623                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
11624                         ValOp, BaseShAmt);
11625    break;
11626  case ISD::SRA:
11627    if (VT == MVT::v4i32)
11628      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11629                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
11630                         ValOp, BaseShAmt);
11631    if (VT == MVT::v8i16)
11632      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11633                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
11634                         ValOp, BaseShAmt);
11635    break;
11636  case ISD::SRL:
11637    if (VT == MVT::v2i64)
11638      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11639                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
11640                         ValOp, BaseShAmt);
11641    if (VT == MVT::v4i32)
11642      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11643                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
11644                         ValOp, BaseShAmt);
11645    if (VT ==  MVT::v8i16)
11646      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11647                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
11648                         ValOp, BaseShAmt);
11649    break;
11650  }
11651  return SDValue();
11652}
11653
11654
11655static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
11656                                 TargetLowering::DAGCombinerInfo &DCI,
11657                                 const X86Subtarget *Subtarget) {
11658  if (DCI.isBeforeLegalizeOps())
11659    return SDValue();
11660
11661  // Want to form PANDN nodes, in the hopes of then easily combining them with
11662  // OR and AND nodes to form PBLEND/PSIGN.
11663  EVT VT = N->getValueType(0);
11664  if (VT != MVT::v2i64)
11665    return SDValue();
11666
11667  SDValue N0 = N->getOperand(0);
11668  SDValue N1 = N->getOperand(1);
11669  DebugLoc DL = N->getDebugLoc();
11670
11671  // Check LHS for vnot
11672  if (N0.getOpcode() == ISD::XOR &&
11673      ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
11674    return DAG.getNode(X86ISD::PANDN, DL, VT, N0.getOperand(0), N1);
11675
11676  // Check RHS for vnot
11677  if (N1.getOpcode() == ISD::XOR &&
11678      ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
11679    return DAG.getNode(X86ISD::PANDN, DL, VT, N1.getOperand(0), N0);
11680
11681  return SDValue();
11682}
11683
11684static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
11685                                TargetLowering::DAGCombinerInfo &DCI,
11686                                const X86Subtarget *Subtarget) {
11687  if (DCI.isBeforeLegalizeOps())
11688    return SDValue();
11689
11690  EVT VT = N->getValueType(0);
11691  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
11692    return SDValue();
11693
11694  SDValue N0 = N->getOperand(0);
11695  SDValue N1 = N->getOperand(1);
11696
11697  // look for psign/blend
11698  if (Subtarget->hasSSSE3()) {
11699    if (VT == MVT::v2i64) {
11700      // Canonicalize pandn to RHS
11701      if (N0.getOpcode() == X86ISD::PANDN)
11702        std::swap(N0, N1);
11703      // or (and (m, x), (pandn m, y))
11704      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::PANDN) {
11705        SDValue Mask = N1.getOperand(0);
11706        SDValue X    = N1.getOperand(1);
11707        SDValue Y;
11708        if (N0.getOperand(0) == Mask)
11709          Y = N0.getOperand(1);
11710        if (N0.getOperand(1) == Mask)
11711          Y = N0.getOperand(0);
11712
11713        // Check to see if the mask appeared in both the AND and PANDN and
11714        if (!Y.getNode())
11715          return SDValue();
11716
11717        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
11718        if (Mask.getOpcode() != ISD::BITCAST ||
11719            X.getOpcode() != ISD::BITCAST ||
11720            Y.getOpcode() != ISD::BITCAST)
11721          return SDValue();
11722
11723        // Look through mask bitcast.
11724        Mask = Mask.getOperand(0);
11725        EVT MaskVT = Mask.getValueType();
11726
11727        // Validate that the Mask operand is a vector sra node.  The sra node
11728        // will be an intrinsic.
11729        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
11730          return SDValue();
11731
11732        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
11733        // there is no psrai.b
11734        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
11735        case Intrinsic::x86_sse2_psrai_w:
11736        case Intrinsic::x86_sse2_psrai_d:
11737          break;
11738        default: return SDValue();
11739        }
11740
11741        // Check that the SRA is all signbits.
11742        SDValue SraC = Mask.getOperand(2);
11743        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
11744        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
11745        if ((SraAmt + 1) != EltBits)
11746          return SDValue();
11747
11748        DebugLoc DL = N->getDebugLoc();
11749
11750        // Now we know we at least have a plendvb with the mask val.  See if
11751        // we can form a psignb/w/d.
11752        // psign = x.type == y.type == mask.type && y = sub(0, x);
11753        X = X.getOperand(0);
11754        Y = Y.getOperand(0);
11755        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
11756            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
11757            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
11758          unsigned Opc = 0;
11759          switch (EltBits) {
11760          case 8: Opc = X86ISD::PSIGNB; break;
11761          case 16: Opc = X86ISD::PSIGNW; break;
11762          case 32: Opc = X86ISD::PSIGND; break;
11763          default: break;
11764          }
11765          if (Opc) {
11766            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
11767            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
11768          }
11769        }
11770        // PBLENDVB only available on SSE 4.1
11771        if (!Subtarget->hasSSE41())
11772          return SDValue();
11773
11774        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
11775        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
11776        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
11777        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
11778        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
11779      }
11780    }
11781  }
11782
11783  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
11784  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
11785    std::swap(N0, N1);
11786  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
11787    return SDValue();
11788  if (!N0.hasOneUse() || !N1.hasOneUse())
11789    return SDValue();
11790
11791  SDValue ShAmt0 = N0.getOperand(1);
11792  if (ShAmt0.getValueType() != MVT::i8)
11793    return SDValue();
11794  SDValue ShAmt1 = N1.getOperand(1);
11795  if (ShAmt1.getValueType() != MVT::i8)
11796    return SDValue();
11797  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
11798    ShAmt0 = ShAmt0.getOperand(0);
11799  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
11800    ShAmt1 = ShAmt1.getOperand(0);
11801
11802  DebugLoc DL = N->getDebugLoc();
11803  unsigned Opc = X86ISD::SHLD;
11804  SDValue Op0 = N0.getOperand(0);
11805  SDValue Op1 = N1.getOperand(0);
11806  if (ShAmt0.getOpcode() == ISD::SUB) {
11807    Opc = X86ISD::SHRD;
11808    std::swap(Op0, Op1);
11809    std::swap(ShAmt0, ShAmt1);
11810  }
11811
11812  unsigned Bits = VT.getSizeInBits();
11813  if (ShAmt1.getOpcode() == ISD::SUB) {
11814    SDValue Sum = ShAmt1.getOperand(0);
11815    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
11816      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
11817      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
11818        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
11819      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
11820        return DAG.getNode(Opc, DL, VT,
11821                           Op0, Op1,
11822                           DAG.getNode(ISD::TRUNCATE, DL,
11823                                       MVT::i8, ShAmt0));
11824    }
11825  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
11826    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
11827    if (ShAmt0C &&
11828        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
11829      return DAG.getNode(Opc, DL, VT,
11830                         N0.getOperand(0), N1.getOperand(0),
11831                         DAG.getNode(ISD::TRUNCATE, DL,
11832                                       MVT::i8, ShAmt0));
11833  }
11834
11835  return SDValue();
11836}
11837
11838/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
11839static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
11840                                   const X86Subtarget *Subtarget) {
11841  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
11842  // the FP state in cases where an emms may be missing.
11843  // A preferable solution to the general problem is to figure out the right
11844  // places to insert EMMS.  This qualifies as a quick hack.
11845
11846  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
11847  StoreSDNode *St = cast<StoreSDNode>(N);
11848  EVT VT = St->getValue().getValueType();
11849  if (VT.getSizeInBits() != 64)
11850    return SDValue();
11851
11852  const Function *F = DAG.getMachineFunction().getFunction();
11853  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
11854  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
11855    && Subtarget->hasSSE2();
11856  if ((VT.isVector() ||
11857       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
11858      isa<LoadSDNode>(St->getValue()) &&
11859      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
11860      St->getChain().hasOneUse() && !St->isVolatile()) {
11861    SDNode* LdVal = St->getValue().getNode();
11862    LoadSDNode *Ld = 0;
11863    int TokenFactorIndex = -1;
11864    SmallVector<SDValue, 8> Ops;
11865    SDNode* ChainVal = St->getChain().getNode();
11866    // Must be a store of a load.  We currently handle two cases:  the load
11867    // is a direct child, and it's under an intervening TokenFactor.  It is
11868    // possible to dig deeper under nested TokenFactors.
11869    if (ChainVal == LdVal)
11870      Ld = cast<LoadSDNode>(St->getChain());
11871    else if (St->getValue().hasOneUse() &&
11872             ChainVal->getOpcode() == ISD::TokenFactor) {
11873      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
11874        if (ChainVal->getOperand(i).getNode() == LdVal) {
11875          TokenFactorIndex = i;
11876          Ld = cast<LoadSDNode>(St->getValue());
11877        } else
11878          Ops.push_back(ChainVal->getOperand(i));
11879      }
11880    }
11881
11882    if (!Ld || !ISD::isNormalLoad(Ld))
11883      return SDValue();
11884
11885    // If this is not the MMX case, i.e. we are just turning i64 load/store
11886    // into f64 load/store, avoid the transformation if there are multiple
11887    // uses of the loaded value.
11888    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
11889      return SDValue();
11890
11891    DebugLoc LdDL = Ld->getDebugLoc();
11892    DebugLoc StDL = N->getDebugLoc();
11893    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
11894    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
11895    // pair instead.
11896    if (Subtarget->is64Bit() || F64IsLegal) {
11897      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
11898      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
11899                                  Ld->getPointerInfo(), Ld->isVolatile(),
11900                                  Ld->isNonTemporal(), Ld->getAlignment());
11901      SDValue NewChain = NewLd.getValue(1);
11902      if (TokenFactorIndex != -1) {
11903        Ops.push_back(NewChain);
11904        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11905                               Ops.size());
11906      }
11907      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
11908                          St->getPointerInfo(),
11909                          St->isVolatile(), St->isNonTemporal(),
11910                          St->getAlignment());
11911    }
11912
11913    // Otherwise, lower to two pairs of 32-bit loads / stores.
11914    SDValue LoAddr = Ld->getBasePtr();
11915    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
11916                                 DAG.getConstant(4, MVT::i32));
11917
11918    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
11919                               Ld->getPointerInfo(),
11920                               Ld->isVolatile(), Ld->isNonTemporal(),
11921                               Ld->getAlignment());
11922    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
11923                               Ld->getPointerInfo().getWithOffset(4),
11924                               Ld->isVolatile(), Ld->isNonTemporal(),
11925                               MinAlign(Ld->getAlignment(), 4));
11926
11927    SDValue NewChain = LoLd.getValue(1);
11928    if (TokenFactorIndex != -1) {
11929      Ops.push_back(LoLd);
11930      Ops.push_back(HiLd);
11931      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11932                             Ops.size());
11933    }
11934
11935    LoAddr = St->getBasePtr();
11936    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
11937                         DAG.getConstant(4, MVT::i32));
11938
11939    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
11940                                St->getPointerInfo(),
11941                                St->isVolatile(), St->isNonTemporal(),
11942                                St->getAlignment());
11943    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
11944                                St->getPointerInfo().getWithOffset(4),
11945                                St->isVolatile(),
11946                                St->isNonTemporal(),
11947                                MinAlign(St->getAlignment(), 4));
11948    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
11949  }
11950  return SDValue();
11951}
11952
11953/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
11954/// X86ISD::FXOR nodes.
11955static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
11956  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
11957  // F[X]OR(0.0, x) -> x
11958  // F[X]OR(x, 0.0) -> x
11959  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11960    if (C->getValueAPF().isPosZero())
11961      return N->getOperand(1);
11962  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11963    if (C->getValueAPF().isPosZero())
11964      return N->getOperand(0);
11965  return SDValue();
11966}
11967
11968/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
11969static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
11970  // FAND(0.0, x) -> 0.0
11971  // FAND(x, 0.0) -> 0.0
11972  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11973    if (C->getValueAPF().isPosZero())
11974      return N->getOperand(0);
11975  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11976    if (C->getValueAPF().isPosZero())
11977      return N->getOperand(1);
11978  return SDValue();
11979}
11980
11981static SDValue PerformBTCombine(SDNode *N,
11982                                SelectionDAG &DAG,
11983                                TargetLowering::DAGCombinerInfo &DCI) {
11984  // BT ignores high bits in the bit index operand.
11985  SDValue Op1 = N->getOperand(1);
11986  if (Op1.hasOneUse()) {
11987    unsigned BitWidth = Op1.getValueSizeInBits();
11988    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
11989    APInt KnownZero, KnownOne;
11990    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
11991                                          !DCI.isBeforeLegalizeOps());
11992    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11993    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
11994        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
11995      DCI.CommitTargetLoweringOpt(TLO);
11996  }
11997  return SDValue();
11998}
11999
12000static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
12001  SDValue Op = N->getOperand(0);
12002  if (Op.getOpcode() == ISD::BITCAST)
12003    Op = Op.getOperand(0);
12004  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
12005  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
12006      VT.getVectorElementType().getSizeInBits() ==
12007      OpVT.getVectorElementType().getSizeInBits()) {
12008    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
12009  }
12010  return SDValue();
12011}
12012
12013static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
12014  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
12015  //           (and (i32 x86isd::setcc_carry), 1)
12016  // This eliminates the zext. This transformation is necessary because
12017  // ISD::SETCC is always legalized to i8.
12018  DebugLoc dl = N->getDebugLoc();
12019  SDValue N0 = N->getOperand(0);
12020  EVT VT = N->getValueType(0);
12021  if (N0.getOpcode() == ISD::AND &&
12022      N0.hasOneUse() &&
12023      N0.getOperand(0).hasOneUse()) {
12024    SDValue N00 = N0.getOperand(0);
12025    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
12026      return SDValue();
12027    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
12028    if (!C || C->getZExtValue() != 1)
12029      return SDValue();
12030    return DAG.getNode(ISD::AND, dl, VT,
12031                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
12032                                   N00.getOperand(0), N00.getOperand(1)),
12033                       DAG.getConstant(1, VT));
12034  }
12035
12036  return SDValue();
12037}
12038
12039// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
12040static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
12041  unsigned X86CC = N->getConstantOperandVal(0);
12042  SDValue EFLAG = N->getOperand(1);
12043  DebugLoc DL = N->getDebugLoc();
12044
12045  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
12046  // a zext and produces an all-ones bit which is more useful than 0/1 in some
12047  // cases.
12048  if (X86CC == X86::COND_B)
12049    return DAG.getNode(ISD::AND, DL, MVT::i8,
12050                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
12051                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
12052                       DAG.getConstant(1, MVT::i8));
12053
12054  return SDValue();
12055}
12056
12057// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
12058static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
12059                                 X86TargetLowering::DAGCombinerInfo &DCI) {
12060  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
12061  // the result is either zero or one (depending on the input carry bit).
12062  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
12063  if (X86::isZeroNode(N->getOperand(0)) &&
12064      X86::isZeroNode(N->getOperand(1)) &&
12065      // We don't have a good way to replace an EFLAGS use, so only do this when
12066      // dead right now.
12067      SDValue(N, 1).use_empty()) {
12068    DebugLoc DL = N->getDebugLoc();
12069    EVT VT = N->getValueType(0);
12070    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
12071    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
12072                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
12073                                           DAG.getConstant(X86::COND_B,MVT::i8),
12074                                           N->getOperand(2)),
12075                               DAG.getConstant(1, VT));
12076    return DCI.CombineTo(N, Res1, CarryOut);
12077  }
12078
12079  return SDValue();
12080}
12081
12082// fold (add Y, (sete  X, 0)) -> adc  0, Y
12083//      (add Y, (setne X, 0)) -> sbb -1, Y
12084//      (sub (sete  X, 0), Y) -> sbb  0, Y
12085//      (sub (setne X, 0), Y) -> adc -1, Y
12086static SDValue OptimizeConditonalInDecrement(SDNode *N, SelectionDAG &DAG) {
12087  DebugLoc DL = N->getDebugLoc();
12088
12089  // Look through ZExts.
12090  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
12091  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
12092    return SDValue();
12093
12094  SDValue SetCC = Ext.getOperand(0);
12095  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
12096    return SDValue();
12097
12098  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
12099  if (CC != X86::COND_E && CC != X86::COND_NE)
12100    return SDValue();
12101
12102  SDValue Cmp = SetCC.getOperand(1);
12103  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
12104      !X86::isZeroNode(Cmp.getOperand(1)) ||
12105      !Cmp.getOperand(0).getValueType().isInteger())
12106    return SDValue();
12107
12108  SDValue CmpOp0 = Cmp.getOperand(0);
12109  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
12110                               DAG.getConstant(1, CmpOp0.getValueType()));
12111
12112  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
12113  if (CC == X86::COND_NE)
12114    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
12115                       DL, OtherVal.getValueType(), OtherVal,
12116                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
12117  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
12118                     DL, OtherVal.getValueType(), OtherVal,
12119                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
12120}
12121
12122SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
12123                                             DAGCombinerInfo &DCI) const {
12124  SelectionDAG &DAG = DCI.DAG;
12125  switch (N->getOpcode()) {
12126  default: break;
12127  case ISD::EXTRACT_VECTOR_ELT:
12128    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
12129  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
12130  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
12131  case ISD::ADD:
12132  case ISD::SUB:            return OptimizeConditonalInDecrement(N, DAG);
12133  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
12134  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
12135  case ISD::SHL:
12136  case ISD::SRA:
12137  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
12138  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
12139  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
12140  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
12141  case X86ISD::FXOR:
12142  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
12143  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
12144  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
12145  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
12146  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
12147  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
12148  case X86ISD::SHUFPS:      // Handle all target specific shuffles
12149  case X86ISD::SHUFPD:
12150  case X86ISD::PALIGN:
12151  case X86ISD::PUNPCKHBW:
12152  case X86ISD::PUNPCKHWD:
12153  case X86ISD::PUNPCKHDQ:
12154  case X86ISD::PUNPCKHQDQ:
12155  case X86ISD::UNPCKHPS:
12156  case X86ISD::UNPCKHPD:
12157  case X86ISD::PUNPCKLBW:
12158  case X86ISD::PUNPCKLWD:
12159  case X86ISD::PUNPCKLDQ:
12160  case X86ISD::PUNPCKLQDQ:
12161  case X86ISD::UNPCKLPS:
12162  case X86ISD::UNPCKLPD:
12163  case X86ISD::VUNPCKLPS:
12164  case X86ISD::VUNPCKLPD:
12165  case X86ISD::VUNPCKLPSY:
12166  case X86ISD::VUNPCKLPDY:
12167  case X86ISD::MOVHLPS:
12168  case X86ISD::MOVLHPS:
12169  case X86ISD::PSHUFD:
12170  case X86ISD::PSHUFHW:
12171  case X86ISD::PSHUFLW:
12172  case X86ISD::MOVSS:
12173  case X86ISD::MOVSD:
12174  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI);
12175  }
12176
12177  return SDValue();
12178}
12179
12180/// isTypeDesirableForOp - Return true if the target has native support for
12181/// the specified value type and it is 'desirable' to use the type for the
12182/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
12183/// instruction encodings are longer and some i16 instructions are slow.
12184bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
12185  if (!isTypeLegal(VT))
12186    return false;
12187  if (VT != MVT::i16)
12188    return true;
12189
12190  switch (Opc) {
12191  default:
12192    return true;
12193  case ISD::LOAD:
12194  case ISD::SIGN_EXTEND:
12195  case ISD::ZERO_EXTEND:
12196  case ISD::ANY_EXTEND:
12197  case ISD::SHL:
12198  case ISD::SRL:
12199  case ISD::SUB:
12200  case ISD::ADD:
12201  case ISD::MUL:
12202  case ISD::AND:
12203  case ISD::OR:
12204  case ISD::XOR:
12205    return false;
12206  }
12207}
12208
12209/// IsDesirableToPromoteOp - This method query the target whether it is
12210/// beneficial for dag combiner to promote the specified node. If true, it
12211/// should return the desired promotion type by reference.
12212bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
12213  EVT VT = Op.getValueType();
12214  if (VT != MVT::i16)
12215    return false;
12216
12217  bool Promote = false;
12218  bool Commute = false;
12219  switch (Op.getOpcode()) {
12220  default: break;
12221  case ISD::LOAD: {
12222    LoadSDNode *LD = cast<LoadSDNode>(Op);
12223    // If the non-extending load has a single use and it's not live out, then it
12224    // might be folded.
12225    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
12226                                                     Op.hasOneUse()*/) {
12227      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
12228             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
12229        // The only case where we'd want to promote LOAD (rather then it being
12230        // promoted as an operand is when it's only use is liveout.
12231        if (UI->getOpcode() != ISD::CopyToReg)
12232          return false;
12233      }
12234    }
12235    Promote = true;
12236    break;
12237  }
12238  case ISD::SIGN_EXTEND:
12239  case ISD::ZERO_EXTEND:
12240  case ISD::ANY_EXTEND:
12241    Promote = true;
12242    break;
12243  case ISD::SHL:
12244  case ISD::SRL: {
12245    SDValue N0 = Op.getOperand(0);
12246    // Look out for (store (shl (load), x)).
12247    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
12248      return false;
12249    Promote = true;
12250    break;
12251  }
12252  case ISD::ADD:
12253  case ISD::MUL:
12254  case ISD::AND:
12255  case ISD::OR:
12256  case ISD::XOR:
12257    Commute = true;
12258    // fallthrough
12259  case ISD::SUB: {
12260    SDValue N0 = Op.getOperand(0);
12261    SDValue N1 = Op.getOperand(1);
12262    if (!Commute && MayFoldLoad(N1))
12263      return false;
12264    // Avoid disabling potential load folding opportunities.
12265    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
12266      return false;
12267    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
12268      return false;
12269    Promote = true;
12270  }
12271  }
12272
12273  PVT = MVT::i32;
12274  return Promote;
12275}
12276
12277//===----------------------------------------------------------------------===//
12278//                           X86 Inline Assembly Support
12279//===----------------------------------------------------------------------===//
12280
12281bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
12282  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
12283
12284  std::string AsmStr = IA->getAsmString();
12285
12286  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
12287  SmallVector<StringRef, 4> AsmPieces;
12288  SplitString(AsmStr, AsmPieces, ";\n");
12289
12290  switch (AsmPieces.size()) {
12291  default: return false;
12292  case 1:
12293    AsmStr = AsmPieces[0];
12294    AsmPieces.clear();
12295    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
12296
12297    // FIXME: this should verify that we are targeting a 486 or better.  If not,
12298    // we will turn this bswap into something that will be lowered to logical ops
12299    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
12300    // so don't worry about this.
12301    // bswap $0
12302    if (AsmPieces.size() == 2 &&
12303        (AsmPieces[0] == "bswap" ||
12304         AsmPieces[0] == "bswapq" ||
12305         AsmPieces[0] == "bswapl") &&
12306        (AsmPieces[1] == "$0" ||
12307         AsmPieces[1] == "${0:q}")) {
12308      // No need to check constraints, nothing other than the equivalent of
12309      // "=r,0" would be valid here.
12310      const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12311      if (!Ty || Ty->getBitWidth() % 16 != 0)
12312        return false;
12313      return IntrinsicLowering::LowerToByteSwap(CI);
12314    }
12315    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
12316    if (CI->getType()->isIntegerTy(16) &&
12317        AsmPieces.size() == 3 &&
12318        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
12319        AsmPieces[1] == "$$8," &&
12320        AsmPieces[2] == "${0:w}" &&
12321        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12322      AsmPieces.clear();
12323      const std::string &ConstraintsStr = IA->getConstraintString();
12324      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12325      std::sort(AsmPieces.begin(), AsmPieces.end());
12326      if (AsmPieces.size() == 4 &&
12327          AsmPieces[0] == "~{cc}" &&
12328          AsmPieces[1] == "~{dirflag}" &&
12329          AsmPieces[2] == "~{flags}" &&
12330          AsmPieces[3] == "~{fpsr}") {
12331        const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12332        if (!Ty || Ty->getBitWidth() % 16 != 0)
12333          return false;
12334        return IntrinsicLowering::LowerToByteSwap(CI);
12335      }
12336    }
12337    break;
12338  case 3:
12339    if (CI->getType()->isIntegerTy(32) &&
12340        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12341      SmallVector<StringRef, 4> Words;
12342      SplitString(AsmPieces[0], Words, " \t,");
12343      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12344          Words[2] == "${0:w}") {
12345        Words.clear();
12346        SplitString(AsmPieces[1], Words, " \t,");
12347        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
12348            Words[2] == "$0") {
12349          Words.clear();
12350          SplitString(AsmPieces[2], Words, " \t,");
12351          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12352              Words[2] == "${0:w}") {
12353            AsmPieces.clear();
12354            const std::string &ConstraintsStr = IA->getConstraintString();
12355            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12356            std::sort(AsmPieces.begin(), AsmPieces.end());
12357            if (AsmPieces.size() == 4 &&
12358                AsmPieces[0] == "~{cc}" &&
12359                AsmPieces[1] == "~{dirflag}" &&
12360                AsmPieces[2] == "~{flags}" &&
12361                AsmPieces[3] == "~{fpsr}") {
12362              const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12363              if (!Ty || Ty->getBitWidth() % 16 != 0)
12364                return false;
12365              return IntrinsicLowering::LowerToByteSwap(CI);
12366            }
12367          }
12368        }
12369      }
12370    }
12371
12372    if (CI->getType()->isIntegerTy(64)) {
12373      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
12374      if (Constraints.size() >= 2 &&
12375          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
12376          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
12377        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
12378        SmallVector<StringRef, 4> Words;
12379        SplitString(AsmPieces[0], Words, " \t");
12380        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
12381          Words.clear();
12382          SplitString(AsmPieces[1], Words, " \t");
12383          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
12384            Words.clear();
12385            SplitString(AsmPieces[2], Words, " \t,");
12386            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
12387                Words[2] == "%edx") {
12388              const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12389              if (!Ty || Ty->getBitWidth() % 16 != 0)
12390                return false;
12391              return IntrinsicLowering::LowerToByteSwap(CI);
12392            }
12393          }
12394        }
12395      }
12396    }
12397    break;
12398  }
12399  return false;
12400}
12401
12402
12403
12404/// getConstraintType - Given a constraint letter, return the type of
12405/// constraint it is for this target.
12406X86TargetLowering::ConstraintType
12407X86TargetLowering::getConstraintType(const std::string &Constraint) const {
12408  if (Constraint.size() == 1) {
12409    switch (Constraint[0]) {
12410    case 'R':
12411    case 'q':
12412    case 'Q':
12413    case 'f':
12414    case 't':
12415    case 'u':
12416    case 'y':
12417    case 'x':
12418    case 'Y':
12419      return C_RegisterClass;
12420    case 'a':
12421    case 'b':
12422    case 'c':
12423    case 'd':
12424    case 'S':
12425    case 'D':
12426    case 'A':
12427      return C_Register;
12428    case 'I':
12429    case 'J':
12430    case 'K':
12431    case 'L':
12432    case 'M':
12433    case 'N':
12434    case 'G':
12435    case 'C':
12436    case 'e':
12437    case 'Z':
12438      return C_Other;
12439    default:
12440      break;
12441    }
12442  }
12443  return TargetLowering::getConstraintType(Constraint);
12444}
12445
12446/// Examine constraint type and operand type and determine a weight value.
12447/// This object must already have been set up with the operand type
12448/// and the current alternative constraint selected.
12449TargetLowering::ConstraintWeight
12450  X86TargetLowering::getSingleConstraintMatchWeight(
12451    AsmOperandInfo &info, const char *constraint) const {
12452  ConstraintWeight weight = CW_Invalid;
12453  Value *CallOperandVal = info.CallOperandVal;
12454    // If we don't have a value, we can't do a match,
12455    // but allow it at the lowest weight.
12456  if (CallOperandVal == NULL)
12457    return CW_Default;
12458  const Type *type = CallOperandVal->getType();
12459  // Look at the constraint type.
12460  switch (*constraint) {
12461  default:
12462    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
12463  case 'R':
12464  case 'q':
12465  case 'Q':
12466  case 'a':
12467  case 'b':
12468  case 'c':
12469  case 'd':
12470  case 'S':
12471  case 'D':
12472  case 'A':
12473    if (CallOperandVal->getType()->isIntegerTy())
12474      weight = CW_SpecificReg;
12475    break;
12476  case 'f':
12477  case 't':
12478  case 'u':
12479      if (type->isFloatingPointTy())
12480        weight = CW_SpecificReg;
12481      break;
12482  case 'y':
12483      if (type->isX86_MMXTy() && Subtarget->hasMMX())
12484        weight = CW_SpecificReg;
12485      break;
12486  case 'x':
12487  case 'Y':
12488    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
12489      weight = CW_Register;
12490    break;
12491  case 'I':
12492    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
12493      if (C->getZExtValue() <= 31)
12494        weight = CW_Constant;
12495    }
12496    break;
12497  case 'J':
12498    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12499      if (C->getZExtValue() <= 63)
12500        weight = CW_Constant;
12501    }
12502    break;
12503  case 'K':
12504    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12505      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
12506        weight = CW_Constant;
12507    }
12508    break;
12509  case 'L':
12510    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12511      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
12512        weight = CW_Constant;
12513    }
12514    break;
12515  case 'M':
12516    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12517      if (C->getZExtValue() <= 3)
12518        weight = CW_Constant;
12519    }
12520    break;
12521  case 'N':
12522    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12523      if (C->getZExtValue() <= 0xff)
12524        weight = CW_Constant;
12525    }
12526    break;
12527  case 'G':
12528  case 'C':
12529    if (dyn_cast<ConstantFP>(CallOperandVal)) {
12530      weight = CW_Constant;
12531    }
12532    break;
12533  case 'e':
12534    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12535      if ((C->getSExtValue() >= -0x80000000LL) &&
12536          (C->getSExtValue() <= 0x7fffffffLL))
12537        weight = CW_Constant;
12538    }
12539    break;
12540  case 'Z':
12541    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12542      if (C->getZExtValue() <= 0xffffffff)
12543        weight = CW_Constant;
12544    }
12545    break;
12546  }
12547  return weight;
12548}
12549
12550/// LowerXConstraint - try to replace an X constraint, which matches anything,
12551/// with another that has more specific requirements based on the type of the
12552/// corresponding operand.
12553const char *X86TargetLowering::
12554LowerXConstraint(EVT ConstraintVT) const {
12555  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
12556  // 'f' like normal targets.
12557  if (ConstraintVT.isFloatingPoint()) {
12558    if (Subtarget->hasXMMInt())
12559      return "Y";
12560    if (Subtarget->hasXMM())
12561      return "x";
12562  }
12563
12564  return TargetLowering::LowerXConstraint(ConstraintVT);
12565}
12566
12567/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
12568/// vector.  If it is invalid, don't add anything to Ops.
12569void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
12570                                                     char Constraint,
12571                                                     std::vector<SDValue>&Ops,
12572                                                     SelectionDAG &DAG) const {
12573  SDValue Result(0, 0);
12574
12575  switch (Constraint) {
12576  default: break;
12577  case 'I':
12578    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12579      if (C->getZExtValue() <= 31) {
12580        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12581        break;
12582      }
12583    }
12584    return;
12585  case 'J':
12586    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12587      if (C->getZExtValue() <= 63) {
12588        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12589        break;
12590      }
12591    }
12592    return;
12593  case 'K':
12594    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12595      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
12596        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12597        break;
12598      }
12599    }
12600    return;
12601  case 'N':
12602    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12603      if (C->getZExtValue() <= 255) {
12604        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12605        break;
12606      }
12607    }
12608    return;
12609  case 'e': {
12610    // 32-bit signed value
12611    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12612      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
12613                                           C->getSExtValue())) {
12614        // Widen to 64 bits here to get it sign extended.
12615        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
12616        break;
12617      }
12618    // FIXME gcc accepts some relocatable values here too, but only in certain
12619    // memory models; it's complicated.
12620    }
12621    return;
12622  }
12623  case 'Z': {
12624    // 32-bit unsigned value
12625    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12626      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
12627                                           C->getZExtValue())) {
12628        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12629        break;
12630      }
12631    }
12632    // FIXME gcc accepts some relocatable values here too, but only in certain
12633    // memory models; it's complicated.
12634    return;
12635  }
12636  case 'i': {
12637    // Literal immediates are always ok.
12638    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
12639      // Widen to 64 bits here to get it sign extended.
12640      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
12641      break;
12642    }
12643
12644    // In any sort of PIC mode addresses need to be computed at runtime by
12645    // adding in a register or some sort of table lookup.  These can't
12646    // be used as immediates.
12647    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
12648      return;
12649
12650    // If we are in non-pic codegen mode, we allow the address of a global (with
12651    // an optional displacement) to be used with 'i'.
12652    GlobalAddressSDNode *GA = 0;
12653    int64_t Offset = 0;
12654
12655    // Match either (GA), (GA+C), (GA+C1+C2), etc.
12656    while (1) {
12657      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
12658        Offset += GA->getOffset();
12659        break;
12660      } else if (Op.getOpcode() == ISD::ADD) {
12661        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
12662          Offset += C->getZExtValue();
12663          Op = Op.getOperand(0);
12664          continue;
12665        }
12666      } else if (Op.getOpcode() == ISD::SUB) {
12667        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
12668          Offset += -C->getZExtValue();
12669          Op = Op.getOperand(0);
12670          continue;
12671        }
12672      }
12673
12674      // Otherwise, this isn't something we can handle, reject it.
12675      return;
12676    }
12677
12678    const GlobalValue *GV = GA->getGlobal();
12679    // If we require an extra load to get this address, as in PIC mode, we
12680    // can't accept it.
12681    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
12682                                                        getTargetMachine())))
12683      return;
12684
12685    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
12686                                        GA->getValueType(0), Offset);
12687    break;
12688  }
12689  }
12690
12691  if (Result.getNode()) {
12692    Ops.push_back(Result);
12693    return;
12694  }
12695  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12696}
12697
12698std::vector<unsigned> X86TargetLowering::
12699getRegClassForInlineAsmConstraint(const std::string &Constraint,
12700                                  EVT VT) const {
12701  if (Constraint.size() == 1) {
12702    // FIXME: not handling fp-stack yet!
12703    switch (Constraint[0]) {      // GCC X86 Constraint Letters
12704    default: break;  // Unknown constraint letter
12705    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
12706      if (Subtarget->is64Bit()) {
12707        if (VT == MVT::i32)
12708          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
12709                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
12710                                       X86::R10D,X86::R11D,X86::R12D,
12711                                       X86::R13D,X86::R14D,X86::R15D,
12712                                       X86::EBP, X86::ESP, 0);
12713        else if (VT == MVT::i16)
12714          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
12715                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
12716                                       X86::R10W,X86::R11W,X86::R12W,
12717                                       X86::R13W,X86::R14W,X86::R15W,
12718                                       X86::BP,  X86::SP, 0);
12719        else if (VT == MVT::i8)
12720          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
12721                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
12722                                       X86::R10B,X86::R11B,X86::R12B,
12723                                       X86::R13B,X86::R14B,X86::R15B,
12724                                       X86::BPL, X86::SPL, 0);
12725
12726        else if (VT == MVT::i64)
12727          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
12728                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
12729                                       X86::R10, X86::R11, X86::R12,
12730                                       X86::R13, X86::R14, X86::R15,
12731                                       X86::RBP, X86::RSP, 0);
12732
12733        break;
12734      }
12735      // 32-bit fallthrough
12736    case 'Q':   // Q_REGS
12737      if (VT == MVT::i32)
12738        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
12739      else if (VT == MVT::i16)
12740        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
12741      else if (VT == MVT::i8)
12742        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
12743      else if (VT == MVT::i64)
12744        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
12745      break;
12746    }
12747  }
12748
12749  return std::vector<unsigned>();
12750}
12751
12752std::pair<unsigned, const TargetRegisterClass*>
12753X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
12754                                                EVT VT) const {
12755  // First, see if this is a constraint that directly corresponds to an LLVM
12756  // register class.
12757  if (Constraint.size() == 1) {
12758    // GCC Constraint Letters
12759    switch (Constraint[0]) {
12760    default: break;
12761    case 'r':   // GENERAL_REGS
12762    case 'l':   // INDEX_REGS
12763      if (VT == MVT::i8)
12764        return std::make_pair(0U, X86::GR8RegisterClass);
12765      if (VT == MVT::i16)
12766        return std::make_pair(0U, X86::GR16RegisterClass);
12767      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
12768        return std::make_pair(0U, X86::GR32RegisterClass);
12769      return std::make_pair(0U, X86::GR64RegisterClass);
12770    case 'R':   // LEGACY_REGS
12771      if (VT == MVT::i8)
12772        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
12773      if (VT == MVT::i16)
12774        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
12775      if (VT == MVT::i32 || !Subtarget->is64Bit())
12776        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
12777      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
12778    case 'f':  // FP Stack registers.
12779      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
12780      // value to the correct fpstack register class.
12781      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
12782        return std::make_pair(0U, X86::RFP32RegisterClass);
12783      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
12784        return std::make_pair(0U, X86::RFP64RegisterClass);
12785      return std::make_pair(0U, X86::RFP80RegisterClass);
12786    case 'y':   // MMX_REGS if MMX allowed.
12787      if (!Subtarget->hasMMX()) break;
12788      return std::make_pair(0U, X86::VR64RegisterClass);
12789    case 'Y':   // SSE_REGS if SSE2 allowed
12790      if (!Subtarget->hasXMMInt()) break;
12791      // FALL THROUGH.
12792    case 'x':   // SSE_REGS if SSE1 allowed
12793      if (!Subtarget->hasXMM()) break;
12794
12795      switch (VT.getSimpleVT().SimpleTy) {
12796      default: break;
12797      // Scalar SSE types.
12798      case MVT::f32:
12799      case MVT::i32:
12800        return std::make_pair(0U, X86::FR32RegisterClass);
12801      case MVT::f64:
12802      case MVT::i64:
12803        return std::make_pair(0U, X86::FR64RegisterClass);
12804      // Vector types.
12805      case MVT::v16i8:
12806      case MVT::v8i16:
12807      case MVT::v4i32:
12808      case MVT::v2i64:
12809      case MVT::v4f32:
12810      case MVT::v2f64:
12811        return std::make_pair(0U, X86::VR128RegisterClass);
12812      }
12813      break;
12814    }
12815  }
12816
12817  // Use the default implementation in TargetLowering to convert the register
12818  // constraint into a member of a register class.
12819  std::pair<unsigned, const TargetRegisterClass*> Res;
12820  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
12821
12822  // Not found as a standard register?
12823  if (Res.second == 0) {
12824    // Map st(0) -> st(7) -> ST0
12825    if (Constraint.size() == 7 && Constraint[0] == '{' &&
12826        tolower(Constraint[1]) == 's' &&
12827        tolower(Constraint[2]) == 't' &&
12828        Constraint[3] == '(' &&
12829        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
12830        Constraint[5] == ')' &&
12831        Constraint[6] == '}') {
12832
12833      Res.first = X86::ST0+Constraint[4]-'0';
12834      Res.second = X86::RFP80RegisterClass;
12835      return Res;
12836    }
12837
12838    // GCC allows "st(0)" to be called just plain "st".
12839    if (StringRef("{st}").equals_lower(Constraint)) {
12840      Res.first = X86::ST0;
12841      Res.second = X86::RFP80RegisterClass;
12842      return Res;
12843    }
12844
12845    // flags -> EFLAGS
12846    if (StringRef("{flags}").equals_lower(Constraint)) {
12847      Res.first = X86::EFLAGS;
12848      Res.second = X86::CCRRegisterClass;
12849      return Res;
12850    }
12851
12852    // 'A' means EAX + EDX.
12853    if (Constraint == "A") {
12854      Res.first = X86::EAX;
12855      Res.second = X86::GR32_ADRegisterClass;
12856      return Res;
12857    }
12858    return Res;
12859  }
12860
12861  // Otherwise, check to see if this is a register class of the wrong value
12862  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
12863  // turn into {ax},{dx}.
12864  if (Res.second->hasType(VT))
12865    return Res;   // Correct type already, nothing to do.
12866
12867  // All of the single-register GCC register classes map their values onto
12868  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
12869  // really want an 8-bit or 32-bit register, map to the appropriate register
12870  // class and return the appropriate register.
12871  if (Res.second == X86::GR16RegisterClass) {
12872    if (VT == MVT::i8) {
12873      unsigned DestReg = 0;
12874      switch (Res.first) {
12875      default: break;
12876      case X86::AX: DestReg = X86::AL; break;
12877      case X86::DX: DestReg = X86::DL; break;
12878      case X86::CX: DestReg = X86::CL; break;
12879      case X86::BX: DestReg = X86::BL; break;
12880      }
12881      if (DestReg) {
12882        Res.first = DestReg;
12883        Res.second = X86::GR8RegisterClass;
12884      }
12885    } else if (VT == MVT::i32) {
12886      unsigned DestReg = 0;
12887      switch (Res.first) {
12888      default: break;
12889      case X86::AX: DestReg = X86::EAX; break;
12890      case X86::DX: DestReg = X86::EDX; break;
12891      case X86::CX: DestReg = X86::ECX; break;
12892      case X86::BX: DestReg = X86::EBX; break;
12893      case X86::SI: DestReg = X86::ESI; break;
12894      case X86::DI: DestReg = X86::EDI; break;
12895      case X86::BP: DestReg = X86::EBP; break;
12896      case X86::SP: DestReg = X86::ESP; break;
12897      }
12898      if (DestReg) {
12899        Res.first = DestReg;
12900        Res.second = X86::GR32RegisterClass;
12901      }
12902    } else if (VT == MVT::i64) {
12903      unsigned DestReg = 0;
12904      switch (Res.first) {
12905      default: break;
12906      case X86::AX: DestReg = X86::RAX; break;
12907      case X86::DX: DestReg = X86::RDX; break;
12908      case X86::CX: DestReg = X86::RCX; break;
12909      case X86::BX: DestReg = X86::RBX; break;
12910      case X86::SI: DestReg = X86::RSI; break;
12911      case X86::DI: DestReg = X86::RDI; break;
12912      case X86::BP: DestReg = X86::RBP; break;
12913      case X86::SP: DestReg = X86::RSP; break;
12914      }
12915      if (DestReg) {
12916        Res.first = DestReg;
12917        Res.second = X86::GR64RegisterClass;
12918      }
12919    }
12920  } else if (Res.second == X86::FR32RegisterClass ||
12921             Res.second == X86::FR64RegisterClass ||
12922             Res.second == X86::VR128RegisterClass) {
12923    // Handle references to XMM physical registers that got mapped into the
12924    // wrong class.  This can happen with constraints like {xmm0} where the
12925    // target independent register mapper will just pick the first match it can
12926    // find, ignoring the required type.
12927    if (VT == MVT::f32)
12928      Res.second = X86::FR32RegisterClass;
12929    else if (VT == MVT::f64)
12930      Res.second = X86::FR64RegisterClass;
12931    else if (X86::VR128RegisterClass->hasType(VT))
12932      Res.second = X86::VR128RegisterClass;
12933  }
12934
12935  return Res;
12936}
12937