X86ISelLowering.cpp revision 362e98a5f5cf1919ac6435ff5b630b58ecd95fc5
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/ADT/VectorExtras.h"
26#include "llvm/Analysis/ScalarEvolutionExpressions.h"
27#include "llvm/CodeGen/CallingConvLower.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/SelectionDAG.h"
32#include "llvm/CodeGen/SSARegMap.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/ADT/StringExtras.h"
37using namespace llvm;
38
39// FIXME: temporary.
40static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden,
41                                  cl::desc("Enable fastcc on X86"));
42X86TargetLowering::X86TargetLowering(TargetMachine &TM)
43  : TargetLowering(TM) {
44  Subtarget = &TM.getSubtarget<X86Subtarget>();
45  X86ScalarSSE = Subtarget->hasSSE2();
46  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
47
48  // Set up the TargetLowering object.
49
50  // X86 is weird, it always uses i8 for shift amounts and setcc results.
51  setShiftAmountType(MVT::i8);
52  setSetCCResultType(MVT::i8);
53  setSetCCResultContents(ZeroOrOneSetCCResult);
54  setSchedulingPreference(SchedulingForRegPressure);
55  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
56  setStackPointerRegisterToSaveRestore(X86StackPtr);
57
58  if (Subtarget->isTargetDarwin()) {
59    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
60    setUseUnderscoreSetJmp(false);
61    setUseUnderscoreLongJmp(false);
62  } else if (Subtarget->isTargetMingw()) {
63    // MS runtime is weird: it exports _setjmp, but longjmp!
64    setUseUnderscoreSetJmp(true);
65    setUseUnderscoreLongJmp(false);
66  } else {
67    setUseUnderscoreSetJmp(true);
68    setUseUnderscoreLongJmp(true);
69  }
70
71  // Add legal addressing mode scale values.
72  addLegalAddressScale(8);
73  addLegalAddressScale(4);
74  addLegalAddressScale(2);
75  // Enter the ones which require both scale + index last. These are more
76  // expensive.
77  addLegalAddressScale(9);
78  addLegalAddressScale(5);
79  addLegalAddressScale(3);
80
81  // Set up the register classes.
82  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
83  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
84  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
85  if (Subtarget->is64Bit())
86    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
87
88  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
89
90  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
91  // operation.
92  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
93  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
94  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
95
96  if (Subtarget->is64Bit()) {
97    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
98    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
99  } else {
100    if (X86ScalarSSE)
101      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
102      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
103    else
104      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
105  }
106
107  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
108  // this operation.
109  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
110  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
111  // SSE has no i16 to fp conversion, only i32
112  if (X86ScalarSSE)
113    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
114  else {
115    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
116    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
117  }
118
119  if (!Subtarget->is64Bit()) {
120    // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
121    setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
122    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
123  }
124
125  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
126  // this operation.
127  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
128  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
129
130  if (X86ScalarSSE) {
131    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
132  } else {
133    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
134    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
135  }
136
137  // Handle FP_TO_UINT by promoting the destination to a larger signed
138  // conversion.
139  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
140  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
141  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
142
143  if (Subtarget->is64Bit()) {
144    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
145    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
146  } else {
147    if (X86ScalarSSE && !Subtarget->hasSSE3())
148      // Expand FP_TO_UINT into a select.
149      // FIXME: We would like to use a Custom expander here eventually to do
150      // the optimal thing for SSE vs. the default expansion in the legalizer.
151      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
152    else
153      // With SSE3 we can use fisttpll to convert to a signed i64.
154      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
155  }
156
157  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
158  if (!X86ScalarSSE) {
159    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
160    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
161  }
162
163  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
164  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
165  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
166  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
167  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
168  if (Subtarget->is64Bit())
169    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
170  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand);
171  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Expand);
172  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
173  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
174  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
175
176  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
177  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
178  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
179  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
180  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
181  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
182  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
183  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
184  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
185  if (Subtarget->is64Bit()) {
186    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
187    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
188    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
189  }
190
191  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
192  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
193
194  // These should be promoted to a larger select which is supported.
195  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
196  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
197  // X86 wants to expand cmov itself.
198  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
199  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
200  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
201  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
202  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
203  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
204  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
205  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
206  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
207  if (Subtarget->is64Bit()) {
208    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
209    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
210  }
211  // X86 ret instruction may pop stack.
212  setOperationAction(ISD::RET             , MVT::Other, Custom);
213  // Darwin ABI issue.
214  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
215  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
216  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
217  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
218  if (Subtarget->is64Bit()) {
219    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
220    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
221    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
222    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
223  }
224  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
225  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
226  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
227  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
228  // X86 wants to expand memset / memcpy itself.
229  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
230  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
231
232  // We don't have line number support yet.
233  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
234  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
235  // FIXME - use subtarget debug flags
236  if (!Subtarget->isTargetDarwin() &&
237      !Subtarget->isTargetELF() &&
238      !Subtarget->isTargetCygMing())
239    setOperationAction(ISD::LABEL, MVT::Other, Expand);
240
241  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
242  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
243
244  // Use the default implementation.
245  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
246  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
247  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
248  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
249  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
250  if (Subtarget->is64Bit())
251    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
252  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
253
254  if (X86ScalarSSE) {
255    // Set up the FP register classes.
256    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
257    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
258
259    // Use ANDPD to simulate FABS.
260    setOperationAction(ISD::FABS , MVT::f64, Custom);
261    setOperationAction(ISD::FABS , MVT::f32, Custom);
262
263    // Use XORP to simulate FNEG.
264    setOperationAction(ISD::FNEG , MVT::f64, Custom);
265    setOperationAction(ISD::FNEG , MVT::f32, Custom);
266
267    // Use ANDPD and ORPD to simulate FCOPYSIGN.
268    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
269    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
270
271    // We don't support sin/cos/fmod
272    setOperationAction(ISD::FSIN , MVT::f64, Expand);
273    setOperationAction(ISD::FCOS , MVT::f64, Expand);
274    setOperationAction(ISD::FREM , MVT::f64, Expand);
275    setOperationAction(ISD::FSIN , MVT::f32, Expand);
276    setOperationAction(ISD::FCOS , MVT::f32, Expand);
277    setOperationAction(ISD::FREM , MVT::f32, Expand);
278
279    // Expand FP immediates into loads from the stack, except for the special
280    // cases we handle.
281    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
282    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
283    addLegalFPImmediate(+0.0); // xorps / xorpd
284  } else {
285    // Set up the FP register classes.
286    addRegisterClass(MVT::f64, X86::RFPRegisterClass);
287
288    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
289    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
290    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
291
292    if (!UnsafeFPMath) {
293      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
294      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
295    }
296
297    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
298    addLegalFPImmediate(+0.0); // FLD0
299    addLegalFPImmediate(+1.0); // FLD1
300    addLegalFPImmediate(-0.0); // FLD0/FCHS
301    addLegalFPImmediate(-1.0); // FLD1/FCHS
302  }
303
304  // First set operation action for all vector types to expand. Then we
305  // will selectively turn on ones that can be effectively codegen'd.
306  for (unsigned VT = (unsigned)MVT::Vector + 1;
307       VT != (unsigned)MVT::LAST_VALUETYPE; VT++) {
308    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
309    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
310    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
311    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
312    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
313    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
314    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
315    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
316    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
317    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
318    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
319    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
320    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
321    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
322    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
323  }
324
325  if (Subtarget->hasMMX()) {
326    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
327    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
328    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
329
330    // FIXME: add MMX packed arithmetics
331    setOperationAction(ISD::BUILD_VECTOR,     MVT::v8i8,  Expand);
332    setOperationAction(ISD::BUILD_VECTOR,     MVT::v4i16, Expand);
333    setOperationAction(ISD::BUILD_VECTOR,     MVT::v2i32, Expand);
334  }
335
336  if (Subtarget->hasSSE1()) {
337    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
338
339    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
340    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
341    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
342    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
343    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
344    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
345    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
346    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
347    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
348  }
349
350  if (Subtarget->hasSSE2()) {
351    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
352    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
353    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
354    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
355    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
356
357    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
358    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
359    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
360    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
361    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
362    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
363    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
364    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
365    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
366    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
367    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
368
369    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
370    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
371    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
372    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
373    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
374    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
375
376    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
377    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
378      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
379      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
380      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
381    }
382    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
383    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
384    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
385    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
386    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
387    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
388
389    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
390    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
391      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
392      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
393      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
394      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
395      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
396      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
397      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
398      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
399      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
400      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
401    }
402
403    // Custom lower v2i64 and v2f64 selects.
404    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
405    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
406    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
407    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
408  }
409
410  // We want to custom lower some of our intrinsics.
411  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
412
413  // We have target-specific dag combine patterns for the following nodes:
414  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
415  setTargetDAGCombine(ISD::SELECT);
416
417  computeRegisterProperties();
418
419  // FIXME: These should be based on subtarget info. Plus, the values should
420  // be smaller when we are in optimizing for size mode.
421  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
422  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
423  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
424  allowUnalignedMemoryAccesses = true; // x86 supports it!
425}
426
427
428//===----------------------------------------------------------------------===//
429//               Return Value Calling Convention Implementation
430//===----------------------------------------------------------------------===//
431
432/// GetRetValueLocs - If we are returning a set of values with the specified
433/// value types, determine the set of registers each one will land in.  This
434/// sets one element of the ResultRegs array for each element in the VTs array.
435static void GetRetValueLocs(const MVT::ValueType *VTs, unsigned NumVTs,
436                            unsigned *ResultRegs,
437                            const X86Subtarget *Subtarget,
438                            unsigned CC) {
439  if (NumVTs == 0) return;
440
441  if (NumVTs == 2) {
442    ResultRegs[0] = VTs[0] == MVT::i64 ? X86::RAX : X86::EAX;
443    ResultRegs[1] = VTs[1] == MVT::i64 ? X86::RDX : X86::EDX;
444    return;
445  }
446
447  // Otherwise, NumVTs is 1.
448  MVT::ValueType ArgVT = VTs[0];
449
450  unsigned Reg;
451  switch (ArgVT) {
452  case MVT::i8:  Reg = X86::AL; break;
453  case MVT::i16: Reg = X86::AX; break;
454  case MVT::i32: Reg = X86::EAX; break;
455  case MVT::i64: Reg = X86::RAX; break;
456  case MVT::f32:
457  case MVT::f64:
458    if (Subtarget->is64Bit())
459      Reg = X86::XMM0;         // FP values in X86-64 go in XMM0.
460    else if (CC == CallingConv::Fast && Subtarget->hasSSE2())
461      Reg = X86::XMM0;         // FP values in X86-32 with fastcc go in XMM0.
462    else
463      Reg = X86::ST0;          // FP values in X86-32 go in ST0.
464    break;
465  default:
466    assert(MVT::isVector(ArgVT) && "Unknown return value type!");
467    Reg = X86::XMM0; // Int/FP vector result -> XMM0.
468    break;
469  }
470  ResultRegs[0] = Reg;
471}
472
473/// LowerRET - Lower an ISD::RET node.
474SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
475  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
476
477  // Support up returning up to two registers.
478  MVT::ValueType VTs[2];
479  unsigned DestRegs[2];
480  unsigned NumRegs = Op.getNumOperands() / 2;
481  assert(NumRegs <= 2 && "Can only return up to two regs!");
482
483  for (unsigned i = 0; i != NumRegs; ++i)
484    VTs[i] = Op.getOperand(i*2+1).getValueType();
485
486  // Determine which register each value should be copied into.
487  GetRetValueLocs(VTs, NumRegs, DestRegs, Subtarget,
488                  DAG.getMachineFunction().getFunction()->getCallingConv());
489
490  // If this is the first return lowered for this function, add the regs to the
491  // liveout set for the function.
492  if (DAG.getMachineFunction().liveout_empty()) {
493    for (unsigned i = 0; i != NumRegs; ++i)
494      DAG.getMachineFunction().addLiveOut(DestRegs[i]);
495  }
496
497  SDOperand Chain = Op.getOperand(0);
498  SDOperand Flag;
499
500  // Copy the result values into the output registers.
501  if (NumRegs != 1 || DestRegs[0] != X86::ST0) {
502    for (unsigned i = 0; i != NumRegs; ++i) {
503      Chain = DAG.getCopyToReg(Chain, DestRegs[i], Op.getOperand(i*2+1), Flag);
504      Flag = Chain.getValue(1);
505    }
506  } else {
507    // We need to handle a destination of ST0 specially, because it isn't really
508    // a register.
509    SDOperand Value = Op.getOperand(1);
510
511    // If this is an FP return with ScalarSSE, we need to move the value from
512    // an XMM register onto the fp-stack.
513    if (X86ScalarSSE) {
514      SDOperand MemLoc;
515
516      // If this is a load into a scalarsse value, don't store the loaded value
517      // back to the stack, only to reload it: just replace the scalar-sse load.
518      if (ISD::isNON_EXTLoad(Value.Val) &&
519          (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
520        Chain  = Value.getOperand(0);
521        MemLoc = Value.getOperand(1);
522      } else {
523        // Spill the value to memory and reload it into top of stack.
524        unsigned Size = MVT::getSizeInBits(VTs[0])/8;
525        MachineFunction &MF = DAG.getMachineFunction();
526        int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
527        MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
528        Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
529      }
530      SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other);
531      SDOperand Ops[] = { Chain, MemLoc, DAG.getValueType(VTs[0]) };
532      Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
533      Chain = Value.getValue(1);
534    }
535
536    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
537    SDOperand Ops[] = { Chain, Value };
538    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
539    Flag = Chain.getValue(1);
540  }
541
542  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
543  if (Flag.Val)
544    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
545  else
546    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
547}
548
549
550/// LowerCallResult - Lower the result values of an ISD::CALL into the
551/// appropriate copies out of appropriate physical registers.  This assumes that
552/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
553/// being lowered.  The returns a SDNode with the same number of values as the
554/// ISD::CALL.
555SDNode *X86TargetLowering::
556LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
557                unsigned CallingConv, SelectionDAG &DAG) {
558  SmallVector<SDOperand, 8> ResultVals;
559
560  // We support returning up to two registers.
561  MVT::ValueType VTs[2];
562  unsigned DestRegs[2];
563  unsigned NumRegs = TheCall->getNumValues() - 1;
564  assert(NumRegs <= 2 && "Can only return up to two regs!");
565
566  for (unsigned i = 0; i != NumRegs; ++i)
567    VTs[i] = TheCall->getValueType(i);
568
569  // Determine which register each value should be copied into.
570  GetRetValueLocs(VTs, NumRegs, DestRegs, Subtarget, CallingConv);
571
572  // Copy all of the result registers out of their specified physreg.
573  if (NumRegs != 1 || DestRegs[0] != X86::ST0) {
574    for (unsigned i = 0; i != NumRegs; ++i) {
575      Chain = DAG.getCopyFromReg(Chain, DestRegs[i], VTs[i],
576                                 InFlag).getValue(1);
577      InFlag = Chain.getValue(2);
578      ResultVals.push_back(Chain.getValue(0));
579    }
580  } else {
581    // Copies from the FP stack are special, as ST0 isn't a valid register
582    // before the fp stackifier runs.
583
584    // Copy ST0 into an RFP register with FP_GET_RESULT.
585    SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
586    SDOperand GROps[] = { Chain, InFlag };
587    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
588    Chain  = RetVal.getValue(1);
589    InFlag = RetVal.getValue(2);
590
591    // If we are using ScalarSSE, store ST(0) to the stack and reload it into
592    // an XMM register.
593    if (X86ScalarSSE) {
594      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
595      // shouldn't be necessary except that RFP cannot be live across
596      // multiple blocks. When stackifier is fixed, they can be uncoupled.
597      MachineFunction &MF = DAG.getMachineFunction();
598      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
599      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
600      SDOperand Ops[] = {
601        Chain, RetVal, StackSlot, DAG.getValueType(VTs[0]), InFlag
602      };
603      Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
604      RetVal = DAG.getLoad(VTs[0], Chain, StackSlot, NULL, 0);
605      Chain = RetVal.getValue(1);
606    }
607
608    if (VTs[0] == MVT::f32 && !X86ScalarSSE)
609      // FIXME: we would really like to remember that this FP_ROUND
610      // operation is okay to eliminate if we allow excess FP precision.
611      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
612    ResultVals.push_back(RetVal);
613  }
614
615  // Merge everything together with a MERGE_VALUES node.
616  ResultVals.push_back(Chain);
617  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
618                     &ResultVals[0], ResultVals.size()).Val;
619}
620
621
622//===----------------------------------------------------------------------===//
623//                C & StdCall Calling Convention implementation
624//===----------------------------------------------------------------------===//
625//  StdCall calling convention seems to be standard for many Windows' API
626//  routines and around. It differs from C calling convention just a little:
627//  callee should clean up the stack, not caller. Symbols should be also
628//  decorated in some fancy way :) It doesn't support any vector arguments.
629
630/// AddLiveIn - This helper function adds the specified physical register to the
631/// MachineFunction as a live in value.  It also creates a corresponding virtual
632/// register for it.
633static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
634                          const TargetRegisterClass *RC) {
635  assert(RC->contains(PReg) && "Not the correct regclass!");
636  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
637  MF.addLiveIn(PReg, VReg);
638  return VReg;
639}
640
641/// HowToPassArgument - Returns how an formal argument of the specified type
642/// should be passed. If it is through stack, returns the size of the stack
643/// slot; if it is through integer or XMM register, returns the number of
644/// integer or XMM registers are needed.
645static void
646HowToPassCallArgument(MVT::ValueType ObjectVT,
647                      bool ArgInReg,
648                      unsigned NumIntRegs, unsigned NumXMMRegs,
649                      unsigned MaxNumIntRegs,
650                      unsigned &ObjSize, unsigned &ObjIntRegs,
651                      unsigned &ObjXMMRegs) {
652  ObjSize = 0;
653  ObjIntRegs = 0;
654  ObjXMMRegs = 0;
655
656  if (MaxNumIntRegs>3) {
657    // We don't have too much registers on ia32! :)
658    MaxNumIntRegs = 3;
659  }
660
661  switch (ObjectVT) {
662  default: assert(0 && "Unhandled argument type!");
663  case MVT::i8:
664   if (ArgInReg && (NumIntRegs < MaxNumIntRegs))
665     ObjIntRegs = 1;
666   else
667     ObjSize = 1;
668   break;
669  case MVT::i16:
670   if (ArgInReg && (NumIntRegs < MaxNumIntRegs))
671     ObjIntRegs = 1;
672   else
673     ObjSize = 2;
674   break;
675  case MVT::i32:
676   if (ArgInReg && (NumIntRegs < MaxNumIntRegs))
677     ObjIntRegs = 1;
678   else
679     ObjSize = 4;
680   break;
681  case MVT::i64:
682   if (ArgInReg && (NumIntRegs+2 <= MaxNumIntRegs)) {
683     ObjIntRegs = 2;
684   } else if (ArgInReg && (NumIntRegs+1 <= MaxNumIntRegs)) {
685     ObjIntRegs = 1;
686     ObjSize = 4;
687   } else
688     ObjSize = 8;
689  case MVT::f32:
690    ObjSize = 4;
691    break;
692  case MVT::f64:
693    ObjSize = 8;
694    break;
695  case MVT::v16i8:
696  case MVT::v8i16:
697  case MVT::v4i32:
698  case MVT::v2i64:
699  case MVT::v4f32:
700  case MVT::v2f64:
701    if (NumXMMRegs < 4)
702      ObjXMMRegs = 1;
703    else
704      ObjSize = 16;
705    break;
706  }
707}
708
709SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
710                                               bool isStdCall) {
711  unsigned NumArgs = Op.Val->getNumValues() - 1;
712  MachineFunction &MF = DAG.getMachineFunction();
713  MachineFrameInfo *MFI = MF.getFrameInfo();
714  SDOperand Root = Op.getOperand(0);
715  SmallVector<SDOperand, 8> ArgValues;
716  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
717
718  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
719  // the stack frame looks like this:
720  //
721  // [ESP] -- return address
722  // [ESP + 4] -- first argument (leftmost lexically)
723  // [ESP + 8] -- second argument, if first argument is <= 4 bytes in size
724  //    ...
725  //
726  unsigned ArgOffset   = 0; // Frame mechanisms handle retaddr slot
727  unsigned NumSRetBytes= 0; // How much bytes on stack used for struct return
728  unsigned NumXMMRegs  = 0; // XMM regs used for parameter passing.
729  unsigned NumIntRegs  = 0; // Integer regs used for parameter passing
730
731  static const unsigned XMMArgRegs[] = {
732    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
733  };
734  static const unsigned GPRArgRegs[][3] = {
735    { X86::AL,  X86::DL,  X86::CL  },
736    { X86::AX,  X86::DX,  X86::CX  },
737    { X86::EAX, X86::EDX, X86::ECX }
738  };
739  static const TargetRegisterClass* GPRClasses[3] = {
740    X86::GR8RegisterClass, X86::GR16RegisterClass, X86::GR32RegisterClass
741  };
742
743  // Handle regparm attribute
744  SmallVector<bool, 8> ArgInRegs(NumArgs, false);
745  SmallVector<bool, 8> SRetArgs(NumArgs, false);
746  if (!isVarArg) {
747    for (unsigned i = 0; i<NumArgs; ++i) {
748      unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3+i))->getValue();
749      ArgInRegs[i]   = (Flags >> 1) & 1;
750      SRetArgs[i]    = (Flags >> 2) & 1;
751    }
752  }
753
754  for (unsigned i = 0; i < NumArgs; ++i) {
755    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
756    unsigned ArgIncrement = 4;
757    unsigned ObjSize = 0;
758    unsigned ObjXMMRegs = 0;
759    unsigned ObjIntRegs = 0;
760    unsigned Reg = 0;
761    SDOperand ArgValue;
762
763    HowToPassCallArgument(ObjectVT,
764                          ArgInRegs[i],
765                          NumIntRegs, NumXMMRegs, 3,
766                          ObjSize, ObjIntRegs, ObjXMMRegs);
767
768    if (ObjSize > 4)
769      ArgIncrement = ObjSize;
770
771    if (ObjIntRegs || ObjXMMRegs) {
772      switch (ObjectVT) {
773      default: assert(0 && "Unhandled argument type!");
774      case MVT::i8:
775      case MVT::i16:
776      case MVT::i32: {
777       unsigned RegToUse = GPRArgRegs[ObjectVT-MVT::i8][NumIntRegs];
778       Reg = AddLiveIn(MF, RegToUse, GPRClasses[ObjectVT-MVT::i8]);
779       ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
780       break;
781      }
782      case MVT::v16i8:
783      case MVT::v8i16:
784      case MVT::v4i32:
785      case MVT::v2i64:
786      case MVT::v4f32:
787      case MVT::v2f64:
788       assert(!isStdCall && "Unhandled argument type!");
789       Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass);
790       ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
791       break;
792      }
793      NumIntRegs += ObjIntRegs;
794      NumXMMRegs += ObjXMMRegs;
795    }
796    if (ObjSize) {
797      // XMM arguments have to be aligned on 16-byte boundary.
798      if (ObjSize == 16)
799        ArgOffset = ((ArgOffset + 15) / 16) * 16;
800      // Create the SelectionDAG nodes corresponding to a load from this
801      // parameter.
802      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
803      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
804      ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
805
806      ArgOffset += ArgIncrement;   // Move on to the next argument.
807      if (SRetArgs[i])
808        NumSRetBytes += ArgIncrement;
809    }
810
811    ArgValues.push_back(ArgValue);
812  }
813
814  ArgValues.push_back(Root);
815
816  // If the function takes variable number of arguments, make a frame index for
817  // the start of the first vararg value... for expansion of llvm.va_start.
818  if (isVarArg)
819    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
820
821  if (isStdCall && !isVarArg) {
822    BytesToPopOnReturn  = ArgOffset;    // Callee pops everything..
823    BytesCallerReserves = 0;
824  } else {
825    BytesToPopOnReturn  = NumSRetBytes; // Callee pops hidden struct pointer.
826    BytesCallerReserves = ArgOffset;
827  }
828
829  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
830  ReturnAddrIndex = 0;            // No return address slot generated yet.
831
832
833  MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
834
835  // Return the new list of results.
836  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
837                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
838}
839
840SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
841                                            unsigned CC) {
842  SDOperand Chain     = Op.getOperand(0);
843  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
844  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
845  SDOperand Callee    = Op.getOperand(4);
846  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
847
848  static const unsigned XMMArgRegs[] = {
849    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
850  };
851  static const unsigned GPR32ArgRegs[] = {
852    X86::EAX, X86::EDX,  X86::ECX
853  };
854
855  // Count how many bytes are to be pushed on the stack.
856  unsigned NumBytes   = 0;
857  // Keep track of the number of integer regs passed so far.
858  unsigned NumIntRegs = 0;
859  // Keep track of the number of XMM regs passed so far.
860  unsigned NumXMMRegs = 0;
861  // How much bytes on stack used for struct return
862  unsigned NumSRetBytes= 0;
863
864  // Handle regparm attribute
865  SmallVector<bool, 8> ArgInRegs(NumOps, false);
866  SmallVector<bool, 8> SRetArgs(NumOps, false);
867  for (unsigned i = 0; i<NumOps; ++i) {
868    unsigned Flags =
869      dyn_cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
870    ArgInRegs[i] = (Flags >> 1) & 1;
871    SRetArgs[i]  = (Flags >> 2) & 1;
872  }
873
874  // Calculate stack frame size
875  for (unsigned i = 0; i != NumOps; ++i) {
876    SDOperand Arg = Op.getOperand(5+2*i);
877    unsigned ArgIncrement = 4;
878    unsigned ObjSize = 0;
879    unsigned ObjIntRegs = 0;
880    unsigned ObjXMMRegs = 0;
881
882    HowToPassCallArgument(Arg.getValueType(),
883                          ArgInRegs[i],
884                          NumIntRegs, NumXMMRegs, 3,
885                          ObjSize, ObjIntRegs, ObjXMMRegs);
886    if (ObjSize > 4)
887      ArgIncrement = ObjSize;
888
889    NumIntRegs += ObjIntRegs;
890    NumXMMRegs += ObjXMMRegs;
891    if (ObjSize) {
892      // XMM arguments have to be aligned on 16-byte boundary.
893      if (ObjSize == 16)
894        NumBytes = ((NumBytes + 15) / 16) * 16;
895      NumBytes += ArgIncrement;
896    }
897  }
898
899  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
900
901  // Arguments go on the stack in reverse order, as specified by the ABI.
902  unsigned ArgOffset = 0;
903  NumXMMRegs = 0;
904  NumIntRegs = 0;
905  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
906  SmallVector<SDOperand, 8> MemOpChains;
907  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
908  for (unsigned i = 0; i != NumOps; ++i) {
909    SDOperand Arg = Op.getOperand(5+2*i);
910    unsigned ArgIncrement = 4;
911    unsigned ObjSize = 0;
912    unsigned ObjIntRegs = 0;
913    unsigned ObjXMMRegs = 0;
914
915    HowToPassCallArgument(Arg.getValueType(),
916                          ArgInRegs[i],
917                          NumIntRegs, NumXMMRegs, 3,
918                          ObjSize, ObjIntRegs, ObjXMMRegs);
919
920    if (ObjSize > 4)
921      ArgIncrement = ObjSize;
922
923    if (Arg.getValueType() == MVT::i8 || Arg.getValueType() == MVT::i16) {
924      // Promote the integer to 32 bits.  If the input type is signed use a
925      // sign extend, otherwise use a zero extend.
926      unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
927
928      unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
929      Arg = DAG.getNode(ExtOp, MVT::i32, Arg);
930    }
931
932    if (ObjIntRegs || ObjXMMRegs) {
933      switch (Arg.getValueType()) {
934      default: assert(0 && "Unhandled argument type!");
935      case MVT::i32:
936       RegsToPass.push_back(std::make_pair(GPR32ArgRegs[NumIntRegs], Arg));
937       break;
938      case MVT::v16i8:
939      case MVT::v8i16:
940      case MVT::v4i32:
941      case MVT::v2i64:
942      case MVT::v4f32:
943      case MVT::v2f64:
944       RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
945       break;
946      }
947
948      NumIntRegs += ObjIntRegs;
949      NumXMMRegs += ObjXMMRegs;
950    }
951    if (ObjSize) {
952      // XMM arguments have to be aligned on 16-byte boundary.
953      if (ObjSize == 16)
954        ArgOffset = ((ArgOffset + 15) / 16) * 16;
955
956      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
957      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
958      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
959
960      ArgOffset += ArgIncrement;   // Move on to the next argument.
961      if (SRetArgs[i])
962        NumSRetBytes += ArgIncrement;
963    }
964  }
965
966  // Sanity check: we haven't seen NumSRetBytes > 4
967  assert((NumSRetBytes<=4) &&
968         "Too much space for struct-return pointer requested");
969
970  if (!MemOpChains.empty())
971    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
972                        &MemOpChains[0], MemOpChains.size());
973
974  // Build a sequence of copy-to-reg nodes chained together with token chain
975  // and flag operands which copy the outgoing args into registers.
976  SDOperand InFlag;
977  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
978    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
979                             InFlag);
980    InFlag = Chain.getValue(1);
981  }
982
983  // ELF / PIC requires GOT in the EBX register before function calls via PLT
984  // GOT pointer.
985  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
986      Subtarget->isPICStyleGOT()) {
987    Chain = DAG.getCopyToReg(Chain, X86::EBX,
988                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
989                             InFlag);
990    InFlag = Chain.getValue(1);
991  }
992
993  // If the callee is a GlobalAddress node (quite common, every direct call is)
994  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
995  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
996    // We should use extra load for direct calls to dllimported functions in
997    // non-JIT mode.
998    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
999                                        getTargetMachine(), true))
1000      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1001  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1002    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1003
1004  // Returns a chain & a flag for retval copy to use.
1005  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1006  SmallVector<SDOperand, 8> Ops;
1007  Ops.push_back(Chain);
1008  Ops.push_back(Callee);
1009
1010  // Add argument registers to the end of the list so that they are known live
1011  // into the call.
1012  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1013    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1014                                  RegsToPass[i].second.getValueType()));
1015
1016  // Add an implicit use GOT pointer in EBX.
1017  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1018      Subtarget->isPICStyleGOT())
1019    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1020
1021  if (InFlag.Val)
1022    Ops.push_back(InFlag);
1023
1024  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1025                      NodeTys, &Ops[0], Ops.size());
1026  InFlag = Chain.getValue(1);
1027
1028  // Create the CALLSEQ_END node.
1029  unsigned NumBytesForCalleeToPush = 0;
1030
1031  if (CC == CallingConv::X86_StdCall) {
1032    if (isVarArg)
1033      NumBytesForCalleeToPush = NumSRetBytes;
1034    else
1035      NumBytesForCalleeToPush = NumBytes;
1036  } else {
1037    // If this is is a call to a struct-return function, the callee
1038    // pops the hidden struct pointer, so we have to push it back.
1039    // This is common for Darwin/X86, Linux & Mingw32 targets.
1040    NumBytesForCalleeToPush = NumSRetBytes;
1041  }
1042
1043  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1044  Ops.clear();
1045  Ops.push_back(Chain);
1046  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1047  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
1048  Ops.push_back(InFlag);
1049  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1050  InFlag = Chain.getValue(1);
1051
1052  // Handle result values, copying them out of physregs into vregs that we
1053  // return.
1054  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1055}
1056
1057
1058//===----------------------------------------------------------------------===//
1059//                 X86-64 C Calling Convention implementation
1060//===----------------------------------------------------------------------===//
1061
1062
1063/// X86_64_CCC_AssignArgument - Implement the X86-64 C Calling Convention.
1064static void X86_64_CCC_AssignArgument(unsigned ValNo,
1065                                      MVT::ValueType ArgVT, unsigned ArgFlags,
1066                                      CCState &State,
1067                                      SmallVector<CCValAssign, 16> &Locs) {
1068  MVT::ValueType LocVT = ArgVT;
1069  CCValAssign::LocInfo LocInfo = CCValAssign::Full;
1070
1071  // Promote the integer to 32 bits.  If the input type is signed use a
1072  // sign extend, otherwise use a zero extend.
1073  if (ArgVT == MVT::i8 || ArgVT == MVT::i16) {
1074    LocVT = MVT::i32;
1075    LocInfo = (ArgFlags & 1) ? CCValAssign::SExt : CCValAssign::ZExt;
1076  }
1077
1078  // If this is a 32-bit value, assign to a 32-bit register if any are
1079  // available.
1080  if (LocVT == MVT::i32) {
1081    static const unsigned GPR32ArgRegs[] = {
1082      X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
1083    };
1084    if (unsigned Reg = State.AllocateReg(GPR32ArgRegs, 6)) {
1085      Locs.push_back(CCValAssign::getReg(ValNo, ArgVT, Reg, LocVT, LocInfo));
1086      return;
1087    }
1088  }
1089
1090  // If this is a 64-bit value, assign to a 64-bit register if any are
1091  // available.
1092  if (LocVT == MVT::i64) {
1093    static const unsigned GPR64ArgRegs[] = {
1094      X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1095    };
1096    if (unsigned Reg = State.AllocateReg(GPR64ArgRegs, 6)) {
1097      Locs.push_back(CCValAssign::getReg(ValNo, ArgVT, Reg, LocVT, LocInfo));
1098      return;
1099    }
1100  }
1101
1102  // If this is a FP or vector type, assign to an XMM reg if any are
1103  // available.
1104  if (MVT::isVector(LocVT) || MVT::isFloatingPoint(LocVT)) {
1105    static const unsigned XMMArgRegs[] = {
1106      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1107      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1108    };
1109    if (unsigned Reg = State.AllocateReg(XMMArgRegs, 8)) {
1110      Locs.push_back(CCValAssign::getReg(ValNo, ArgVT, Reg, LocVT, LocInfo));
1111      return;
1112    }
1113  }
1114
1115  // Integer/FP values get stored in stack slots that are 8 bytes in size and
1116  // 8-byte aligned if there are no more registers to hold them.
1117  if (LocVT == MVT::i32 || LocVT == MVT::i64 ||
1118      LocVT == MVT::f32 || LocVT == MVT::f64) {
1119    unsigned Offset = State.AllocateStack(8, 8);
1120    Locs.push_back(CCValAssign::getMem(ValNo, ArgVT, Offset, LocVT, LocInfo));
1121    return;
1122  }
1123
1124  // Vectors get 16-byte stack slots that are 16-byte aligned.
1125  if (MVT::isVector(LocVT)) {
1126    unsigned Offset = State.AllocateStack(16, 16);
1127    Locs.push_back(CCValAssign::getMem(ValNo, ArgVT, Offset, LocVT, LocInfo));
1128    return;
1129  }
1130  assert(0 && "Unknown argument type!");
1131}
1132
1133
1134SDOperand
1135X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1136  unsigned NumArgs = Op.Val->getNumValues() - 1;
1137  MachineFunction &MF = DAG.getMachineFunction();
1138  MachineFrameInfo *MFI = MF.getFrameInfo();
1139  SDOperand Root = Op.getOperand(0);
1140  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1141
1142  static const unsigned GPR64ArgRegs[] = {
1143    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1144  };
1145  static const unsigned XMMArgRegs[] = {
1146    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1147    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1148  };
1149
1150  SmallVector<SDOperand, 8> ArgValues;
1151
1152
1153  CCState CCInfo(*getTargetMachine().getRegisterInfo());
1154  SmallVector<CCValAssign, 16> ArgLocs;
1155
1156  for (unsigned i = 0; i != NumArgs; ++i) {
1157    MVT::ValueType ArgVT = Op.getValue(i).getValueType();
1158    unsigned ArgFlags = cast<ConstantSDNode>(Op.getOperand(3+i))->getValue();
1159    X86_64_CCC_AssignArgument(i, ArgVT, ArgFlags, CCInfo, ArgLocs);
1160  }
1161
1162  unsigned LastVal = ~0U;
1163  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1164    CCValAssign &VA = ArgLocs[i];
1165    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1166    // places.
1167    assert(VA.getValNo() != LastVal &&
1168           "Don't support value assigned to multiple locs yet");
1169    LastVal = VA.getValNo();
1170
1171    if (VA.isRegLoc()) {
1172      MVT::ValueType RegVT = VA.getLocVT();
1173      TargetRegisterClass *RC;
1174      if (RegVT == MVT::i32)
1175        RC = X86::GR32RegisterClass;
1176      else if (RegVT == MVT::i64)
1177        RC = X86::GR64RegisterClass;
1178      else if (RegVT == MVT::f32)
1179        RC = X86::FR32RegisterClass;
1180      else if (RegVT == MVT::f64)
1181        RC = X86::FR64RegisterClass;
1182      else {
1183        assert(MVT::isVector(RegVT));
1184        RC = X86::VR128RegisterClass;
1185      }
1186
1187      SDOperand ArgValue = DAG.getCopyFromReg(Root, VA.getLocReg(), RegVT);
1188      AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1189
1190      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1191      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1192      // right size.
1193      if (VA.getLocInfo() == CCValAssign::SExt)
1194        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1195                               DAG.getValueType(VA.getValVT()));
1196      else if (VA.getLocInfo() == CCValAssign::ZExt)
1197        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1198                               DAG.getValueType(VA.getValVT()));
1199
1200      if (VA.getLocInfo() != CCValAssign::Full)
1201        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1202
1203      ArgValues.push_back(ArgValue);
1204    } else {
1205      assert(VA.isMemLoc());
1206
1207      // Create the nodes corresponding to a load from this parameter slot.
1208      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1209                                      VA.getLocMemOffset());
1210      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1211      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
1212    }
1213  }
1214
1215  unsigned StackSize = CCInfo.getNextStackOffset();
1216
1217  // If the function takes variable number of arguments, make a frame index for
1218  // the start of the first vararg value... for expansion of llvm.va_start.
1219  if (isVarArg) {
1220    unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1221    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1222
1223    // For X86-64, if there are vararg parameters that are passed via
1224    // registers, then we must store them to their spots on the stack so they
1225    // may be loaded by deferencing the result of va_next.
1226    VarArgsGPOffset = NumIntRegs * 8;
1227    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1228    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1229    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1230
1231    // Store the integer parameter registers.
1232    SmallVector<SDOperand, 8> MemOps;
1233    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1234    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1235                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1236    for (; NumIntRegs != 6; ++NumIntRegs) {
1237      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1238                                X86::GR64RegisterClass);
1239      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1240      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1241      MemOps.push_back(Store);
1242      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1243                        DAG.getConstant(8, getPointerTy()));
1244    }
1245
1246    // Now store the XMM (fp + vector) parameter registers.
1247    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1248                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1249    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1250      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1251                                X86::VR128RegisterClass);
1252      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1253      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1254      MemOps.push_back(Store);
1255      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1256                        DAG.getConstant(16, getPointerTy()));
1257    }
1258    if (!MemOps.empty())
1259        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1260                           &MemOps[0], MemOps.size());
1261  }
1262
1263  ArgValues.push_back(Root);
1264
1265  ReturnAddrIndex = 0;     // No return address slot generated yet.
1266  BytesToPopOnReturn = 0;  // Callee pops nothing.
1267  BytesCallerReserves = StackSize;
1268
1269  // Return the new list of results.
1270  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1271                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1272}
1273
1274SDOperand
1275X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1276                                        unsigned CC) {
1277  SDOperand Chain     = Op.getOperand(0);
1278  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1279  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1280  SDOperand Callee    = Op.getOperand(4);
1281  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1282
1283  CCState CCInfo(*getTargetMachine().getRegisterInfo());
1284  SmallVector<CCValAssign, 16> ArgLocs;
1285
1286  for (unsigned i = 0; i != NumOps; ++i) {
1287    MVT::ValueType ArgVT = Op.getOperand(5+2*i).getValueType();
1288    unsigned ArgFlags =cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1289    X86_64_CCC_AssignArgument(i, ArgVT, ArgFlags, CCInfo, ArgLocs);
1290  }
1291
1292  // Get a count of how many bytes are to be pushed on the stack.
1293  unsigned NumBytes = CCInfo.getNextStackOffset();
1294  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1295
1296  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1297  SmallVector<SDOperand, 8> MemOpChains;
1298
1299  SDOperand StackPtr;
1300
1301  // Walk the register/memloc assignments, inserting copies/loads.
1302  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1303    CCValAssign &VA = ArgLocs[i];
1304    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1305
1306    // Promote the value if needed.
1307    switch (VA.getLocInfo()) {
1308    default: assert(0 && "Unknown loc info!");
1309    case CCValAssign::Full: break;
1310    case CCValAssign::SExt:
1311      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1312      break;
1313    case CCValAssign::ZExt:
1314      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1315      break;
1316    case CCValAssign::AExt:
1317      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1318      break;
1319    }
1320
1321    if (VA.isRegLoc()) {
1322      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1323    } else {
1324      assert(VA.isMemLoc());
1325      if (StackPtr.Val == 0)
1326        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1327      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1328      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1329      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1330    }
1331  }
1332
1333  if (!MemOpChains.empty())
1334    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1335                        &MemOpChains[0], MemOpChains.size());
1336
1337  // Build a sequence of copy-to-reg nodes chained together with token chain
1338  // and flag operands which copy the outgoing args into registers.
1339  SDOperand InFlag;
1340  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1341    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1342                             InFlag);
1343    InFlag = Chain.getValue(1);
1344  }
1345
1346  if (isVarArg) {
1347    // From AMD64 ABI document:
1348    // For calls that may call functions that use varargs or stdargs
1349    // (prototype-less calls or calls to functions containing ellipsis (...) in
1350    // the declaration) %al is used as hidden argument to specify the number
1351    // of SSE registers used. The contents of %al do not need to match exactly
1352    // the number of registers, but must be an ubound on the number of SSE
1353    // registers used and is in the range 0 - 8 inclusive.
1354
1355    // Count the number of XMM registers allocated.
1356    static const unsigned XMMArgRegs[] = {
1357      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1358      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1359    };
1360    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1361
1362    Chain = DAG.getCopyToReg(Chain, X86::AL,
1363                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1364    InFlag = Chain.getValue(1);
1365  }
1366
1367  // If the callee is a GlobalAddress node (quite common, every direct call is)
1368  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1369  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1370    // We should use extra load for direct calls to dllimported functions in
1371    // non-JIT mode.
1372    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1373                                        getTargetMachine(), true))
1374      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1375  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1376    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1377
1378  // Returns a chain & a flag for retval copy to use.
1379  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1380  SmallVector<SDOperand, 8> Ops;
1381  Ops.push_back(Chain);
1382  Ops.push_back(Callee);
1383
1384  // Add argument registers to the end of the list so that they are known live
1385  // into the call.
1386  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1387    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1388                                  RegsToPass[i].second.getValueType()));
1389
1390  if (InFlag.Val)
1391    Ops.push_back(InFlag);
1392
1393  // FIXME: Do not generate X86ISD::TAILCALL for now.
1394  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1395                      NodeTys, &Ops[0], Ops.size());
1396  InFlag = Chain.getValue(1);
1397
1398  // Returns a flag for retval copy to use.
1399  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1400  Ops.clear();
1401  Ops.push_back(Chain);
1402  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1403  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1404  Ops.push_back(InFlag);
1405  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1406  InFlag = Chain.getValue(1);
1407
1408  // Handle result values, copying them out of physregs into vregs that we
1409  // return.
1410  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1411}
1412
1413//===----------------------------------------------------------------------===//
1414//                 Fast & FastCall Calling Convention implementation
1415//===----------------------------------------------------------------------===//
1416//
1417// The X86 'fast' calling convention passes up to two integer arguments in
1418// registers (an appropriate portion of EAX/EDX), passes arguments in C order,
1419// and requires that the callee pop its arguments off the stack (allowing proper
1420// tail calls), and has the same return value conventions as C calling convs.
1421//
1422// This calling convention always arranges for the callee pop value to be 8n+4
1423// bytes, which is needed for tail recursion elimination and stack alignment
1424// reasons.
1425//
1426// Note that this can be enhanced in the future to pass fp vals in registers
1427// (when we have a global fp allocator) and do other tricks.
1428//
1429//===----------------------------------------------------------------------===//
1430// The X86 'fastcall' calling convention passes up to two integer arguments in
1431// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
1432// and requires that the callee pop its arguments off the stack (allowing proper
1433// tail calls), and has the same return value conventions as C calling convs.
1434//
1435// This calling convention always arranges for the callee pop value to be 8n+4
1436// bytes, which is needed for tail recursion elimination and stack alignment
1437// reasons.
1438SDOperand
1439X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG,
1440                                        bool isFastCall) {
1441  unsigned NumArgs = Op.Val->getNumValues()-1;
1442  MachineFunction &MF = DAG.getMachineFunction();
1443  MachineFrameInfo *MFI = MF.getFrameInfo();
1444  SDOperand Root = Op.getOperand(0);
1445  SmallVector<SDOperand, 8> ArgValues;
1446
1447  // Add DAG nodes to load the arguments...  On entry to a function the stack
1448  // frame looks like this:
1449  //
1450  // [ESP] -- return address
1451  // [ESP + 4] -- first nonreg argument (leftmost lexically)
1452  // [ESP + 8] -- second nonreg argument, if 1st argument is <= 4 bytes in size
1453  //    ...
1454  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
1455
1456  // Keep track of the number of integer regs passed so far.  This can be either
1457  // 0 (neither EAX/ECX or EDX used), 1 (EAX/ECX is used) or 2 (EAX/ECX and EDX
1458  // are both used).
1459  unsigned NumIntRegs = 0;
1460  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1461
1462  static const unsigned XMMArgRegs[] = {
1463    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1464  };
1465
1466  static const unsigned GPRArgRegs[][2][2] = {
1467    {{ X86::AL,  X86::DL },  { X86::CL,  X86::DL }},
1468    {{ X86::AX,  X86::DX },  { X86::CX,  X86::DX }},
1469    {{ X86::EAX, X86::EDX }, { X86::ECX,  X86::EDX }}
1470  };
1471
1472  static const TargetRegisterClass* GPRClasses[3] = {
1473    X86::GR8RegisterClass, X86::GR16RegisterClass, X86::GR32RegisterClass
1474  };
1475
1476  unsigned GPRInd = (isFastCall ? 1 : 0);
1477  for (unsigned i = 0; i < NumArgs; ++i) {
1478    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
1479    unsigned ArgIncrement = 4;
1480    unsigned ObjSize = 0;
1481    unsigned ObjXMMRegs = 0;
1482    unsigned ObjIntRegs = 0;
1483    unsigned Reg = 0;
1484    SDOperand ArgValue;
1485
1486    HowToPassCallArgument(ObjectVT,
1487                          true, // Use as much registers as possible
1488                          NumIntRegs, NumXMMRegs,
1489                          (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS),
1490                          ObjSize, ObjIntRegs, ObjXMMRegs);
1491
1492    if (ObjSize > 4)
1493      ArgIncrement = ObjSize;
1494
1495    if (ObjIntRegs || ObjXMMRegs) {
1496      switch (ObjectVT) {
1497      default: assert(0 && "Unhandled argument type!");
1498      case MVT::i8:
1499      case MVT::i16:
1500      case MVT::i32: {
1501        unsigned RegToUse = GPRArgRegs[ObjectVT-MVT::i8][GPRInd][NumIntRegs];
1502        Reg = AddLiveIn(MF, RegToUse, GPRClasses[ObjectVT-MVT::i8]);
1503        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
1504        break;
1505      }
1506      case MVT::v16i8:
1507      case MVT::v8i16:
1508      case MVT::v4i32:
1509      case MVT::v2i64:
1510      case MVT::v4f32:
1511      case MVT::v2f64: {
1512        assert(!isFastCall && "Unhandled argument type!");
1513        Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass);
1514        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
1515        break;
1516      }
1517      }
1518      NumIntRegs += ObjIntRegs;
1519      NumXMMRegs += ObjXMMRegs;
1520    }
1521    if (ObjSize) {
1522      // XMM arguments have to be aligned on 16-byte boundary.
1523      if (ObjSize == 16)
1524        ArgOffset = ((ArgOffset + 15) / 16) * 16;
1525      // Create the SelectionDAG nodes corresponding to a load from this
1526      // parameter.
1527      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
1528      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1529      ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
1530
1531      ArgOffset += ArgIncrement;   // Move on to the next argument.
1532    }
1533
1534    ArgValues.push_back(ArgValue);
1535  }
1536
1537  ArgValues.push_back(Root);
1538
1539  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1540  // arguments and the arguments after the retaddr has been pushed are aligned.
1541  if ((ArgOffset & 7) == 0)
1542    ArgOffset += 4;
1543
1544  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1545  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
1546  ReturnAddrIndex = 0;             // No return address slot generated yet.
1547  BytesToPopOnReturn = ArgOffset;  // Callee pops all stack arguments.
1548  BytesCallerReserves = 0;
1549
1550  MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
1551
1552  // Finally, inform the code generator which regs we return values in.
1553  switch (getValueType(MF.getFunction()->getReturnType())) {
1554  default: assert(0 && "Unknown type!");
1555  case MVT::isVoid: break;
1556  case MVT::i1:
1557  case MVT::i8:
1558  case MVT::i16:
1559  case MVT::i32:
1560    MF.addLiveOut(X86::EAX);
1561    break;
1562  case MVT::i64:
1563    MF.addLiveOut(X86::EAX);
1564    MF.addLiveOut(X86::EDX);
1565    break;
1566  case MVT::f32:
1567  case MVT::f64:
1568    MF.addLiveOut(X86::ST0);
1569    break;
1570  case MVT::v16i8:
1571  case MVT::v8i16:
1572  case MVT::v4i32:
1573  case MVT::v2i64:
1574  case MVT::v4f32:
1575  case MVT::v2f64:
1576    assert(!isFastCall && "Unknown result type");
1577    MF.addLiveOut(X86::XMM0);
1578    break;
1579  }
1580
1581  // Return the new list of results.
1582  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1583                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1584}
1585
1586SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1587                                               unsigned CC) {
1588  SDOperand Chain     = Op.getOperand(0);
1589  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1590  SDOperand Callee    = Op.getOperand(4);
1591  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1592
1593  // Count how many bytes are to be pushed on the stack.
1594  unsigned NumBytes = 0;
1595
1596  // Keep track of the number of integer regs passed so far.  This can be either
1597  // 0 (neither EAX/ECX or EDX used), 1 (EAX/ECX is used) or 2 (EAX/ECX and EDX
1598  // are both used).
1599  unsigned NumIntRegs = 0;
1600  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1601
1602  static const unsigned GPRArgRegs[][2][2] = {
1603    {{ X86::AL,  X86::DL },  { X86::CL,  X86::DL }},
1604    {{ X86::AX,  X86::DX },  { X86::CX,  X86::DX }},
1605    {{ X86::EAX, X86::EDX }, { X86::ECX,  X86::EDX }}
1606  };
1607  static const unsigned XMMArgRegs[] = {
1608    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1609  };
1610
1611  bool isFastCall = CC == CallingConv::X86_FastCall;
1612  unsigned GPRInd = isFastCall ? 1 : 0;
1613  for (unsigned i = 0; i != NumOps; ++i) {
1614    SDOperand Arg = Op.getOperand(5+2*i);
1615
1616    switch (Arg.getValueType()) {
1617    default: assert(0 && "Unknown value type!");
1618    case MVT::i8:
1619    case MVT::i16:
1620    case MVT::i32: {
1621     unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS);
1622     if (NumIntRegs < MaxNumIntRegs) {
1623       ++NumIntRegs;
1624       break;
1625     }
1626     } // Fall through
1627    case MVT::f32:
1628      NumBytes += 4;
1629      break;
1630    case MVT::f64:
1631      NumBytes += 8;
1632      break;
1633    case MVT::v16i8:
1634    case MVT::v8i16:
1635    case MVT::v4i32:
1636    case MVT::v2i64:
1637    case MVT::v4f32:
1638    case MVT::v2f64:
1639      assert(!isFastCall && "Unknown value type!");
1640      if (NumXMMRegs < 4)
1641        NumXMMRegs++;
1642      else {
1643        // XMM arguments have to be aligned on 16-byte boundary.
1644        NumBytes = ((NumBytes + 15) / 16) * 16;
1645        NumBytes += 16;
1646      }
1647      break;
1648    }
1649  }
1650
1651  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1652  // arguments and the arguments after the retaddr has been pushed are aligned.
1653  if ((NumBytes & 7) == 0)
1654    NumBytes += 4;
1655
1656  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1657
1658  // Arguments go on the stack in reverse order, as specified by the ABI.
1659  unsigned ArgOffset = 0;
1660  NumIntRegs = 0;
1661  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1662  SmallVector<SDOperand, 8> MemOpChains;
1663  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
1664  for (unsigned i = 0; i != NumOps; ++i) {
1665    SDOperand Arg = Op.getOperand(5+2*i);
1666
1667    switch (Arg.getValueType()) {
1668    default: assert(0 && "Unexpected ValueType for argument!");
1669    case MVT::i8:
1670    case MVT::i16:
1671    case MVT::i32: {
1672     unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS);
1673     if (NumIntRegs < MaxNumIntRegs) {
1674       unsigned RegToUse =
1675         GPRArgRegs[Arg.getValueType()-MVT::i8][GPRInd][NumIntRegs];
1676       RegsToPass.push_back(std::make_pair(RegToUse, Arg));
1677       ++NumIntRegs;
1678       break;
1679     }
1680    } // Fall through
1681    case MVT::f32: {
1682      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1683      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1684      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1685      ArgOffset += 4;
1686      break;
1687    }
1688    case MVT::f64: {
1689      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1690      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1691      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1692      ArgOffset += 8;
1693      break;
1694    }
1695    case MVT::v16i8:
1696    case MVT::v8i16:
1697    case MVT::v4i32:
1698    case MVT::v2i64:
1699    case MVT::v4f32:
1700    case MVT::v2f64:
1701      assert(!isFastCall && "Unexpected ValueType for argument!");
1702      if (NumXMMRegs < 4) {
1703        RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
1704        NumXMMRegs++;
1705      } else {
1706        // XMM arguments have to be aligned on 16-byte boundary.
1707        ArgOffset = ((ArgOffset + 15) / 16) * 16;
1708        SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1709        PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1710        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1711        ArgOffset += 16;
1712      }
1713      break;
1714    }
1715  }
1716
1717  if (!MemOpChains.empty())
1718    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1719                        &MemOpChains[0], MemOpChains.size());
1720
1721  // Build a sequence of copy-to-reg nodes chained together with token chain
1722  // and flag operands which copy the outgoing args into registers.
1723  SDOperand InFlag;
1724  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1725    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1726                             InFlag);
1727    InFlag = Chain.getValue(1);
1728  }
1729
1730  // If the callee is a GlobalAddress node (quite common, every direct call is)
1731  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1732  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1733    // We should use extra load for direct calls to dllimported functions in
1734    // non-JIT mode.
1735    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1736                                        getTargetMachine(), true))
1737      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1738  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1739    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1740
1741  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1742  // GOT pointer.
1743  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1744      Subtarget->isPICStyleGOT()) {
1745    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1746                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1747                             InFlag);
1748    InFlag = Chain.getValue(1);
1749  }
1750
1751  // Returns a chain & a flag for retval copy to use.
1752  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1753  SmallVector<SDOperand, 8> Ops;
1754  Ops.push_back(Chain);
1755  Ops.push_back(Callee);
1756
1757  // Add argument registers to the end of the list so that they are known live
1758  // into the call.
1759  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1760    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1761                                  RegsToPass[i].second.getValueType()));
1762
1763  // Add an implicit use GOT pointer in EBX.
1764  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1765      Subtarget->isPICStyleGOT())
1766    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1767
1768  if (InFlag.Val)
1769    Ops.push_back(InFlag);
1770
1771  // FIXME: Do not generate X86ISD::TAILCALL for now.
1772  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1773                      NodeTys, &Ops[0], Ops.size());
1774  InFlag = Chain.getValue(1);
1775
1776  // Returns a flag for retval copy to use.
1777  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1778  Ops.clear();
1779  Ops.push_back(Chain);
1780  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1781  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1782  Ops.push_back(InFlag);
1783  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1784  InFlag = Chain.getValue(1);
1785
1786  // Handle result values, copying them out of physregs into vregs that we
1787  // return.
1788  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1789}
1790
1791SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1792  if (ReturnAddrIndex == 0) {
1793    // Set up a frame object for the return address.
1794    MachineFunction &MF = DAG.getMachineFunction();
1795    if (Subtarget->is64Bit())
1796      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1797    else
1798      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1799  }
1800
1801  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1802}
1803
1804
1805
1806/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1807/// specific condition code. It returns a false if it cannot do a direct
1808/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1809/// needed.
1810static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1811                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1812                           SelectionDAG &DAG) {
1813  X86CC = X86::COND_INVALID;
1814  if (!isFP) {
1815    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1816      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1817        // X > -1   -> X == 0, jump !sign.
1818        RHS = DAG.getConstant(0, RHS.getValueType());
1819        X86CC = X86::COND_NS;
1820        return true;
1821      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1822        // X < 0   -> X == 0, jump on sign.
1823        X86CC = X86::COND_S;
1824        return true;
1825      }
1826    }
1827
1828    switch (SetCCOpcode) {
1829    default: break;
1830    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1831    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1832    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1833    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1834    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1835    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1836    case ISD::SETULT: X86CC = X86::COND_B;  break;
1837    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1838    case ISD::SETULE: X86CC = X86::COND_BE; break;
1839    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1840    }
1841  } else {
1842    // On a floating point condition, the flags are set as follows:
1843    // ZF  PF  CF   op
1844    //  0 | 0 | 0 | X > Y
1845    //  0 | 0 | 1 | X < Y
1846    //  1 | 0 | 0 | X == Y
1847    //  1 | 1 | 1 | unordered
1848    bool Flip = false;
1849    switch (SetCCOpcode) {
1850    default: break;
1851    case ISD::SETUEQ:
1852    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1853    case ISD::SETOLT: Flip = true; // Fallthrough
1854    case ISD::SETOGT:
1855    case ISD::SETGT: X86CC = X86::COND_A;  break;
1856    case ISD::SETOLE: Flip = true; // Fallthrough
1857    case ISD::SETOGE:
1858    case ISD::SETGE: X86CC = X86::COND_AE; break;
1859    case ISD::SETUGT: Flip = true; // Fallthrough
1860    case ISD::SETULT:
1861    case ISD::SETLT: X86CC = X86::COND_B;  break;
1862    case ISD::SETUGE: Flip = true; // Fallthrough
1863    case ISD::SETULE:
1864    case ISD::SETLE: X86CC = X86::COND_BE; break;
1865    case ISD::SETONE:
1866    case ISD::SETNE: X86CC = X86::COND_NE; break;
1867    case ISD::SETUO: X86CC = X86::COND_P;  break;
1868    case ISD::SETO:  X86CC = X86::COND_NP; break;
1869    }
1870    if (Flip)
1871      std::swap(LHS, RHS);
1872  }
1873
1874  return X86CC != X86::COND_INVALID;
1875}
1876
1877/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1878/// code. Current x86 isa includes the following FP cmov instructions:
1879/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1880static bool hasFPCMov(unsigned X86CC) {
1881  switch (X86CC) {
1882  default:
1883    return false;
1884  case X86::COND_B:
1885  case X86::COND_BE:
1886  case X86::COND_E:
1887  case X86::COND_P:
1888  case X86::COND_A:
1889  case X86::COND_AE:
1890  case X86::COND_NE:
1891  case X86::COND_NP:
1892    return true;
1893  }
1894}
1895
1896/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
1897/// true if Op is undef or if its value falls within the specified range (L, H].
1898static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1899  if (Op.getOpcode() == ISD::UNDEF)
1900    return true;
1901
1902  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1903  return (Val >= Low && Val < Hi);
1904}
1905
1906/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
1907/// true if Op is undef or if its value equal to the specified value.
1908static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1909  if (Op.getOpcode() == ISD::UNDEF)
1910    return true;
1911  return cast<ConstantSDNode>(Op)->getValue() == Val;
1912}
1913
1914/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1915/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1916bool X86::isPSHUFDMask(SDNode *N) {
1917  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1918
1919  if (N->getNumOperands() != 4)
1920    return false;
1921
1922  // Check if the value doesn't reference the second vector.
1923  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1924    SDOperand Arg = N->getOperand(i);
1925    if (Arg.getOpcode() == ISD::UNDEF) continue;
1926    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1927    if (cast<ConstantSDNode>(Arg)->getValue() >= 4)
1928      return false;
1929  }
1930
1931  return true;
1932}
1933
1934/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1935/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1936bool X86::isPSHUFHWMask(SDNode *N) {
1937  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1938
1939  if (N->getNumOperands() != 8)
1940    return false;
1941
1942  // Lower quadword copied in order.
1943  for (unsigned i = 0; i != 4; ++i) {
1944    SDOperand Arg = N->getOperand(i);
1945    if (Arg.getOpcode() == ISD::UNDEF) continue;
1946    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1947    if (cast<ConstantSDNode>(Arg)->getValue() != i)
1948      return false;
1949  }
1950
1951  // Upper quadword shuffled.
1952  for (unsigned i = 4; i != 8; ++i) {
1953    SDOperand Arg = N->getOperand(i);
1954    if (Arg.getOpcode() == ISD::UNDEF) continue;
1955    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1956    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1957    if (Val < 4 || Val > 7)
1958      return false;
1959  }
1960
1961  return true;
1962}
1963
1964/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1965/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1966bool X86::isPSHUFLWMask(SDNode *N) {
1967  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1968
1969  if (N->getNumOperands() != 8)
1970    return false;
1971
1972  // Upper quadword copied in order.
1973  for (unsigned i = 4; i != 8; ++i)
1974    if (!isUndefOrEqual(N->getOperand(i), i))
1975      return false;
1976
1977  // Lower quadword shuffled.
1978  for (unsigned i = 0; i != 4; ++i)
1979    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1980      return false;
1981
1982  return true;
1983}
1984
1985/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1986/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1987static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1988  if (NumElems != 2 && NumElems != 4) return false;
1989
1990  unsigned Half = NumElems / 2;
1991  for (unsigned i = 0; i < Half; ++i)
1992    if (!isUndefOrInRange(Elems[i], 0, NumElems))
1993      return false;
1994  for (unsigned i = Half; i < NumElems; ++i)
1995    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1996      return false;
1997
1998  return true;
1999}
2000
2001bool X86::isSHUFPMask(SDNode *N) {
2002  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2003  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2004}
2005
2006/// isCommutedSHUFP - Returns true if the shuffle mask is except
2007/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2008/// half elements to come from vector 1 (which would equal the dest.) and
2009/// the upper half to come from vector 2.
2010static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
2011  if (NumOps != 2 && NumOps != 4) return false;
2012
2013  unsigned Half = NumOps / 2;
2014  for (unsigned i = 0; i < Half; ++i)
2015    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2016      return false;
2017  for (unsigned i = Half; i < NumOps; ++i)
2018    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2019      return false;
2020  return true;
2021}
2022
2023static bool isCommutedSHUFP(SDNode *N) {
2024  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2025  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2026}
2027
2028/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2029/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2030bool X86::isMOVHLPSMask(SDNode *N) {
2031  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2032
2033  if (N->getNumOperands() != 4)
2034    return false;
2035
2036  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2037  return isUndefOrEqual(N->getOperand(0), 6) &&
2038         isUndefOrEqual(N->getOperand(1), 7) &&
2039         isUndefOrEqual(N->getOperand(2), 2) &&
2040         isUndefOrEqual(N->getOperand(3), 3);
2041}
2042
2043/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2044/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2045/// <2, 3, 2, 3>
2046bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2047  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2048
2049  if (N->getNumOperands() != 4)
2050    return false;
2051
2052  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2053  return isUndefOrEqual(N->getOperand(0), 2) &&
2054         isUndefOrEqual(N->getOperand(1), 3) &&
2055         isUndefOrEqual(N->getOperand(2), 2) &&
2056         isUndefOrEqual(N->getOperand(3), 3);
2057}
2058
2059/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2060/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2061bool X86::isMOVLPMask(SDNode *N) {
2062  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2063
2064  unsigned NumElems = N->getNumOperands();
2065  if (NumElems != 2 && NumElems != 4)
2066    return false;
2067
2068  for (unsigned i = 0; i < NumElems/2; ++i)
2069    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2070      return false;
2071
2072  for (unsigned i = NumElems/2; i < NumElems; ++i)
2073    if (!isUndefOrEqual(N->getOperand(i), i))
2074      return false;
2075
2076  return true;
2077}
2078
2079/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2080/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2081/// and MOVLHPS.
2082bool X86::isMOVHPMask(SDNode *N) {
2083  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2084
2085  unsigned NumElems = N->getNumOperands();
2086  if (NumElems != 2 && NumElems != 4)
2087    return false;
2088
2089  for (unsigned i = 0; i < NumElems/2; ++i)
2090    if (!isUndefOrEqual(N->getOperand(i), i))
2091      return false;
2092
2093  for (unsigned i = 0; i < NumElems/2; ++i) {
2094    SDOperand Arg = N->getOperand(i + NumElems/2);
2095    if (!isUndefOrEqual(Arg, i + NumElems))
2096      return false;
2097  }
2098
2099  return true;
2100}
2101
2102/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2103/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2104bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
2105                         bool V2IsSplat = false) {
2106  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2107    return false;
2108
2109  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2110    SDOperand BitI  = Elts[i];
2111    SDOperand BitI1 = Elts[i+1];
2112    if (!isUndefOrEqual(BitI, j))
2113      return false;
2114    if (V2IsSplat) {
2115      if (isUndefOrEqual(BitI1, NumElts))
2116        return false;
2117    } else {
2118      if (!isUndefOrEqual(BitI1, j + NumElts))
2119        return false;
2120    }
2121  }
2122
2123  return true;
2124}
2125
2126bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2127  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2128  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2129}
2130
2131/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2132/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2133bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
2134                         bool V2IsSplat = false) {
2135  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2136    return false;
2137
2138  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2139    SDOperand BitI  = Elts[i];
2140    SDOperand BitI1 = Elts[i+1];
2141    if (!isUndefOrEqual(BitI, j + NumElts/2))
2142      return false;
2143    if (V2IsSplat) {
2144      if (isUndefOrEqual(BitI1, NumElts))
2145        return false;
2146    } else {
2147      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2148        return false;
2149    }
2150  }
2151
2152  return true;
2153}
2154
2155bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2156  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2157  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2158}
2159
2160/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2161/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2162/// <0, 0, 1, 1>
2163bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2164  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2165
2166  unsigned NumElems = N->getNumOperands();
2167  if (NumElems != 4 && NumElems != 8 && NumElems != 16)
2168    return false;
2169
2170  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2171    SDOperand BitI  = N->getOperand(i);
2172    SDOperand BitI1 = N->getOperand(i+1);
2173
2174    if (!isUndefOrEqual(BitI, j))
2175      return false;
2176    if (!isUndefOrEqual(BitI1, j))
2177      return false;
2178  }
2179
2180  return true;
2181}
2182
2183/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2184/// specifies a shuffle of elements that is suitable for input to MOVSS,
2185/// MOVSD, and MOVD, i.e. setting the lowest element.
2186static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
2187  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2188    return false;
2189
2190  if (!isUndefOrEqual(Elts[0], NumElts))
2191    return false;
2192
2193  for (unsigned i = 1; i < NumElts; ++i) {
2194    if (!isUndefOrEqual(Elts[i], i))
2195      return false;
2196  }
2197
2198  return true;
2199}
2200
2201bool X86::isMOVLMask(SDNode *N) {
2202  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2203  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2204}
2205
2206/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2207/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2208/// element of vector 2 and the other elements to come from vector 1 in order.
2209static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2210                           bool V2IsSplat = false,
2211                           bool V2IsUndef = false) {
2212  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2213    return false;
2214
2215  if (!isUndefOrEqual(Ops[0], 0))
2216    return false;
2217
2218  for (unsigned i = 1; i < NumOps; ++i) {
2219    SDOperand Arg = Ops[i];
2220    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2221          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2222          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2223      return false;
2224  }
2225
2226  return true;
2227}
2228
2229static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2230                           bool V2IsUndef = false) {
2231  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2232  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2233                        V2IsSplat, V2IsUndef);
2234}
2235
2236/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2237/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2238bool X86::isMOVSHDUPMask(SDNode *N) {
2239  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2240
2241  if (N->getNumOperands() != 4)
2242    return false;
2243
2244  // Expect 1, 1, 3, 3
2245  for (unsigned i = 0; i < 2; ++i) {
2246    SDOperand Arg = N->getOperand(i);
2247    if (Arg.getOpcode() == ISD::UNDEF) continue;
2248    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2249    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2250    if (Val != 1) return false;
2251  }
2252
2253  bool HasHi = false;
2254  for (unsigned i = 2; i < 4; ++i) {
2255    SDOperand Arg = N->getOperand(i);
2256    if (Arg.getOpcode() == ISD::UNDEF) continue;
2257    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2258    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2259    if (Val != 3) return false;
2260    HasHi = true;
2261  }
2262
2263  // Don't use movshdup if it can be done with a shufps.
2264  return HasHi;
2265}
2266
2267/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2268/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2269bool X86::isMOVSLDUPMask(SDNode *N) {
2270  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2271
2272  if (N->getNumOperands() != 4)
2273    return false;
2274
2275  // Expect 0, 0, 2, 2
2276  for (unsigned i = 0; i < 2; ++i) {
2277    SDOperand Arg = N->getOperand(i);
2278    if (Arg.getOpcode() == ISD::UNDEF) continue;
2279    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2280    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2281    if (Val != 0) return false;
2282  }
2283
2284  bool HasHi = false;
2285  for (unsigned i = 2; i < 4; ++i) {
2286    SDOperand Arg = N->getOperand(i);
2287    if (Arg.getOpcode() == ISD::UNDEF) continue;
2288    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2289    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2290    if (Val != 2) return false;
2291    HasHi = true;
2292  }
2293
2294  // Don't use movshdup if it can be done with a shufps.
2295  return HasHi;
2296}
2297
2298/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2299/// a splat of a single element.
2300static bool isSplatMask(SDNode *N) {
2301  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2302
2303  // This is a splat operation if each element of the permute is the same, and
2304  // if the value doesn't reference the second vector.
2305  unsigned NumElems = N->getNumOperands();
2306  SDOperand ElementBase;
2307  unsigned i = 0;
2308  for (; i != NumElems; ++i) {
2309    SDOperand Elt = N->getOperand(i);
2310    if (isa<ConstantSDNode>(Elt)) {
2311      ElementBase = Elt;
2312      break;
2313    }
2314  }
2315
2316  if (!ElementBase.Val)
2317    return false;
2318
2319  for (; i != NumElems; ++i) {
2320    SDOperand Arg = N->getOperand(i);
2321    if (Arg.getOpcode() == ISD::UNDEF) continue;
2322    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2323    if (Arg != ElementBase) return false;
2324  }
2325
2326  // Make sure it is a splat of the first vector operand.
2327  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2328}
2329
2330/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2331/// a splat of a single element and it's a 2 or 4 element mask.
2332bool X86::isSplatMask(SDNode *N) {
2333  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2334
2335  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2336  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2337    return false;
2338  return ::isSplatMask(N);
2339}
2340
2341/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2342/// specifies a splat of zero element.
2343bool X86::isSplatLoMask(SDNode *N) {
2344  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2345
2346  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2347    if (!isUndefOrEqual(N->getOperand(i), 0))
2348      return false;
2349  return true;
2350}
2351
2352/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2353/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2354/// instructions.
2355unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2356  unsigned NumOperands = N->getNumOperands();
2357  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2358  unsigned Mask = 0;
2359  for (unsigned i = 0; i < NumOperands; ++i) {
2360    unsigned Val = 0;
2361    SDOperand Arg = N->getOperand(NumOperands-i-1);
2362    if (Arg.getOpcode() != ISD::UNDEF)
2363      Val = cast<ConstantSDNode>(Arg)->getValue();
2364    if (Val >= NumOperands) Val -= NumOperands;
2365    Mask |= Val;
2366    if (i != NumOperands - 1)
2367      Mask <<= Shift;
2368  }
2369
2370  return Mask;
2371}
2372
2373/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2374/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2375/// instructions.
2376unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2377  unsigned Mask = 0;
2378  // 8 nodes, but we only care about the last 4.
2379  for (unsigned i = 7; i >= 4; --i) {
2380    unsigned Val = 0;
2381    SDOperand Arg = N->getOperand(i);
2382    if (Arg.getOpcode() != ISD::UNDEF)
2383      Val = cast<ConstantSDNode>(Arg)->getValue();
2384    Mask |= (Val - 4);
2385    if (i != 4)
2386      Mask <<= 2;
2387  }
2388
2389  return Mask;
2390}
2391
2392/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2393/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2394/// instructions.
2395unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2396  unsigned Mask = 0;
2397  // 8 nodes, but we only care about the first 4.
2398  for (int i = 3; i >= 0; --i) {
2399    unsigned Val = 0;
2400    SDOperand Arg = N->getOperand(i);
2401    if (Arg.getOpcode() != ISD::UNDEF)
2402      Val = cast<ConstantSDNode>(Arg)->getValue();
2403    Mask |= Val;
2404    if (i != 0)
2405      Mask <<= 2;
2406  }
2407
2408  return Mask;
2409}
2410
2411/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2412/// specifies a 8 element shuffle that can be broken into a pair of
2413/// PSHUFHW and PSHUFLW.
2414static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2415  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2416
2417  if (N->getNumOperands() != 8)
2418    return false;
2419
2420  // Lower quadword shuffled.
2421  for (unsigned i = 0; i != 4; ++i) {
2422    SDOperand Arg = N->getOperand(i);
2423    if (Arg.getOpcode() == ISD::UNDEF) continue;
2424    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2425    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2426    if (Val > 4)
2427      return false;
2428  }
2429
2430  // Upper quadword shuffled.
2431  for (unsigned i = 4; i != 8; ++i) {
2432    SDOperand Arg = N->getOperand(i);
2433    if (Arg.getOpcode() == ISD::UNDEF) continue;
2434    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2435    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2436    if (Val < 4 || Val > 7)
2437      return false;
2438  }
2439
2440  return true;
2441}
2442
2443/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2444/// values in ther permute mask.
2445static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2446                                      SDOperand &V2, SDOperand &Mask,
2447                                      SelectionDAG &DAG) {
2448  MVT::ValueType VT = Op.getValueType();
2449  MVT::ValueType MaskVT = Mask.getValueType();
2450  MVT::ValueType EltVT = MVT::getVectorBaseType(MaskVT);
2451  unsigned NumElems = Mask.getNumOperands();
2452  SmallVector<SDOperand, 8> MaskVec;
2453
2454  for (unsigned i = 0; i != NumElems; ++i) {
2455    SDOperand Arg = Mask.getOperand(i);
2456    if (Arg.getOpcode() == ISD::UNDEF) {
2457      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2458      continue;
2459    }
2460    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2461    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2462    if (Val < NumElems)
2463      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2464    else
2465      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2466  }
2467
2468  std::swap(V1, V2);
2469  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2470  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2471}
2472
2473/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2474/// match movhlps. The lower half elements should come from upper half of
2475/// V1 (and in order), and the upper half elements should come from the upper
2476/// half of V2 (and in order).
2477static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2478  unsigned NumElems = Mask->getNumOperands();
2479  if (NumElems != 4)
2480    return false;
2481  for (unsigned i = 0, e = 2; i != e; ++i)
2482    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2483      return false;
2484  for (unsigned i = 2; i != 4; ++i)
2485    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2486      return false;
2487  return true;
2488}
2489
2490/// isScalarLoadToVector - Returns true if the node is a scalar load that
2491/// is promoted to a vector.
2492static inline bool isScalarLoadToVector(SDNode *N) {
2493  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2494    N = N->getOperand(0).Val;
2495    return ISD::isNON_EXTLoad(N);
2496  }
2497  return false;
2498}
2499
2500/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2501/// match movlp{s|d}. The lower half elements should come from lower half of
2502/// V1 (and in order), and the upper half elements should come from the upper
2503/// half of V2 (and in order). And since V1 will become the source of the
2504/// MOVLP, it must be either a vector load or a scalar load to vector.
2505static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2506  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2507    return false;
2508  // Is V2 is a vector load, don't do this transformation. We will try to use
2509  // load folding shufps op.
2510  if (ISD::isNON_EXTLoad(V2))
2511    return false;
2512
2513  unsigned NumElems = Mask->getNumOperands();
2514  if (NumElems != 2 && NumElems != 4)
2515    return false;
2516  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2517    if (!isUndefOrEqual(Mask->getOperand(i), i))
2518      return false;
2519  for (unsigned i = NumElems/2; i != NumElems; ++i)
2520    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2521      return false;
2522  return true;
2523}
2524
2525/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2526/// all the same.
2527static bool isSplatVector(SDNode *N) {
2528  if (N->getOpcode() != ISD::BUILD_VECTOR)
2529    return false;
2530
2531  SDOperand SplatValue = N->getOperand(0);
2532  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2533    if (N->getOperand(i) != SplatValue)
2534      return false;
2535  return true;
2536}
2537
2538/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2539/// to an undef.
2540static bool isUndefShuffle(SDNode *N) {
2541  if (N->getOpcode() != ISD::BUILD_VECTOR)
2542    return false;
2543
2544  SDOperand V1 = N->getOperand(0);
2545  SDOperand V2 = N->getOperand(1);
2546  SDOperand Mask = N->getOperand(2);
2547  unsigned NumElems = Mask.getNumOperands();
2548  for (unsigned i = 0; i != NumElems; ++i) {
2549    SDOperand Arg = Mask.getOperand(i);
2550    if (Arg.getOpcode() != ISD::UNDEF) {
2551      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2552      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2553        return false;
2554      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2555        return false;
2556    }
2557  }
2558  return true;
2559}
2560
2561/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2562/// that point to V2 points to its first element.
2563static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2564  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2565
2566  bool Changed = false;
2567  SmallVector<SDOperand, 8> MaskVec;
2568  unsigned NumElems = Mask.getNumOperands();
2569  for (unsigned i = 0; i != NumElems; ++i) {
2570    SDOperand Arg = Mask.getOperand(i);
2571    if (Arg.getOpcode() != ISD::UNDEF) {
2572      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2573      if (Val > NumElems) {
2574        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2575        Changed = true;
2576      }
2577    }
2578    MaskVec.push_back(Arg);
2579  }
2580
2581  if (Changed)
2582    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2583                       &MaskVec[0], MaskVec.size());
2584  return Mask;
2585}
2586
2587/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2588/// operation of specified width.
2589static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2590  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2591  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2592
2593  SmallVector<SDOperand, 8> MaskVec;
2594  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2595  for (unsigned i = 1; i != NumElems; ++i)
2596    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2597  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2598}
2599
2600/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2601/// of specified width.
2602static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2603  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2604  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2605  SmallVector<SDOperand, 8> MaskVec;
2606  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2607    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2608    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2609  }
2610  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2611}
2612
2613/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2614/// of specified width.
2615static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2616  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2617  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2618  unsigned Half = NumElems/2;
2619  SmallVector<SDOperand, 8> MaskVec;
2620  for (unsigned i = 0; i != Half; ++i) {
2621    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2622    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2623  }
2624  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2625}
2626
2627/// getZeroVector - Returns a vector of specified type with all zero elements.
2628///
2629static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2630  assert(MVT::isVector(VT) && "Expected a vector type");
2631  unsigned NumElems = getVectorNumElements(VT);
2632  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
2633  bool isFP = MVT::isFloatingPoint(EVT);
2634  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2635  SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2636  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2637}
2638
2639/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2640///
2641static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2642  SDOperand V1 = Op.getOperand(0);
2643  SDOperand Mask = Op.getOperand(2);
2644  MVT::ValueType VT = Op.getValueType();
2645  unsigned NumElems = Mask.getNumOperands();
2646  Mask = getUnpacklMask(NumElems, DAG);
2647  while (NumElems != 4) {
2648    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2649    NumElems >>= 1;
2650  }
2651  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2652
2653  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2654  Mask = getZeroVector(MaskVT, DAG);
2655  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2656                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2657  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2658}
2659
2660/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2661/// constant +0.0.
2662static inline bool isZeroNode(SDOperand Elt) {
2663  return ((isa<ConstantSDNode>(Elt) &&
2664           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2665          (isa<ConstantFPSDNode>(Elt) &&
2666           cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
2667}
2668
2669/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2670/// vector and zero or undef vector.
2671static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2672                                             unsigned NumElems, unsigned Idx,
2673                                             bool isZero, SelectionDAG &DAG) {
2674  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2675  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2676  MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
2677  SDOperand Zero = DAG.getConstant(0, EVT);
2678  SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2679  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2680  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2681                               &MaskVec[0], MaskVec.size());
2682  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2683}
2684
2685/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2686///
2687static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2688                                       unsigned NumNonZero, unsigned NumZero,
2689                                       SelectionDAG &DAG, TargetLowering &TLI) {
2690  if (NumNonZero > 8)
2691    return SDOperand();
2692
2693  SDOperand V(0, 0);
2694  bool First = true;
2695  for (unsigned i = 0; i < 16; ++i) {
2696    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2697    if (ThisIsNonZero && First) {
2698      if (NumZero)
2699        V = getZeroVector(MVT::v8i16, DAG);
2700      else
2701        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2702      First = false;
2703    }
2704
2705    if ((i & 1) != 0) {
2706      SDOperand ThisElt(0, 0), LastElt(0, 0);
2707      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2708      if (LastIsNonZero) {
2709        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2710      }
2711      if (ThisIsNonZero) {
2712        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2713        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2714                              ThisElt, DAG.getConstant(8, MVT::i8));
2715        if (LastIsNonZero)
2716          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2717      } else
2718        ThisElt = LastElt;
2719
2720      if (ThisElt.Val)
2721        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2722                        DAG.getConstant(i/2, TLI.getPointerTy()));
2723    }
2724  }
2725
2726  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2727}
2728
2729/// LowerBuildVectorv16i8 - Custom lower build_vector of v8i16.
2730///
2731static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2732                                       unsigned NumNonZero, unsigned NumZero,
2733                                       SelectionDAG &DAG, TargetLowering &TLI) {
2734  if (NumNonZero > 4)
2735    return SDOperand();
2736
2737  SDOperand V(0, 0);
2738  bool First = true;
2739  for (unsigned i = 0; i < 8; ++i) {
2740    bool isNonZero = (NonZeros & (1 << i)) != 0;
2741    if (isNonZero) {
2742      if (First) {
2743        if (NumZero)
2744          V = getZeroVector(MVT::v8i16, DAG);
2745        else
2746          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2747        First = false;
2748      }
2749      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2750                      DAG.getConstant(i, TLI.getPointerTy()));
2751    }
2752  }
2753
2754  return V;
2755}
2756
2757SDOperand
2758X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2759  // All zero's are handled with pxor.
2760  if (ISD::isBuildVectorAllZeros(Op.Val))
2761    return Op;
2762
2763  // All one's are handled with pcmpeqd.
2764  if (ISD::isBuildVectorAllOnes(Op.Val))
2765    return Op;
2766
2767  MVT::ValueType VT = Op.getValueType();
2768  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
2769  unsigned EVTBits = MVT::getSizeInBits(EVT);
2770
2771  unsigned NumElems = Op.getNumOperands();
2772  unsigned NumZero  = 0;
2773  unsigned NumNonZero = 0;
2774  unsigned NonZeros = 0;
2775  std::set<SDOperand> Values;
2776  for (unsigned i = 0; i < NumElems; ++i) {
2777    SDOperand Elt = Op.getOperand(i);
2778    if (Elt.getOpcode() != ISD::UNDEF) {
2779      Values.insert(Elt);
2780      if (isZeroNode(Elt))
2781        NumZero++;
2782      else {
2783        NonZeros |= (1 << i);
2784        NumNonZero++;
2785      }
2786    }
2787  }
2788
2789  if (NumNonZero == 0)
2790    // Must be a mix of zero and undef. Return a zero vector.
2791    return getZeroVector(VT, DAG);
2792
2793  // Splat is obviously ok. Let legalizer expand it to a shuffle.
2794  if (Values.size() == 1)
2795    return SDOperand();
2796
2797  // Special case for single non-zero element.
2798  if (NumNonZero == 1) {
2799    unsigned Idx = CountTrailingZeros_32(NonZeros);
2800    SDOperand Item = Op.getOperand(Idx);
2801    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2802    if (Idx == 0)
2803      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2804      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2805                                         NumZero > 0, DAG);
2806
2807    if (EVTBits == 32) {
2808      // Turn it into a shuffle of zero and zero-extended scalar to vector.
2809      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2810                                         DAG);
2811      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
2812      MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
2813      SmallVector<SDOperand, 8> MaskVec;
2814      for (unsigned i = 0; i < NumElems; i++)
2815        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2816      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2817                                   &MaskVec[0], MaskVec.size());
2818      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2819                         DAG.getNode(ISD::UNDEF, VT), Mask);
2820    }
2821  }
2822
2823  // Let legalizer expand 2-wide build_vector's.
2824  if (EVTBits == 64)
2825    return SDOperand();
2826
2827  // If element VT is < 32 bits, convert it to inserts into a zero vector.
2828  if (EVTBits == 8) {
2829    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2830                                        *this);
2831    if (V.Val) return V;
2832  }
2833
2834  if (EVTBits == 16) {
2835    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2836                                        *this);
2837    if (V.Val) return V;
2838  }
2839
2840  // If element VT is == 32 bits, turn it into a number of shuffles.
2841  SmallVector<SDOperand, 8> V;
2842  V.resize(NumElems);
2843  if (NumElems == 4 && NumZero > 0) {
2844    for (unsigned i = 0; i < 4; ++i) {
2845      bool isZero = !(NonZeros & (1 << i));
2846      if (isZero)
2847        V[i] = getZeroVector(VT, DAG);
2848      else
2849        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2850    }
2851
2852    for (unsigned i = 0; i < 2; ++i) {
2853      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2854        default: break;
2855        case 0:
2856          V[i] = V[i*2];  // Must be a zero vector.
2857          break;
2858        case 1:
2859          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2860                             getMOVLMask(NumElems, DAG));
2861          break;
2862        case 2:
2863          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2864                             getMOVLMask(NumElems, DAG));
2865          break;
2866        case 3:
2867          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2868                             getUnpacklMask(NumElems, DAG));
2869          break;
2870      }
2871    }
2872
2873    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2874    // clears the upper bits.
2875    // FIXME: we can do the same for v4f32 case when we know both parts of
2876    // the lower half come from scalar_to_vector (loadf32). We should do
2877    // that in post legalizer dag combiner with target specific hooks.
2878    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2879      return V[0];
2880    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2881    MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
2882    SmallVector<SDOperand, 8> MaskVec;
2883    bool Reverse = (NonZeros & 0x3) == 2;
2884    for (unsigned i = 0; i < 2; ++i)
2885      if (Reverse)
2886        MaskVec.push_back(DAG.getConstant(1-i, EVT));
2887      else
2888        MaskVec.push_back(DAG.getConstant(i, EVT));
2889    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2890    for (unsigned i = 0; i < 2; ++i)
2891      if (Reverse)
2892        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2893      else
2894        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2895    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2896                                     &MaskVec[0], MaskVec.size());
2897    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2898  }
2899
2900  if (Values.size() > 2) {
2901    // Expand into a number of unpckl*.
2902    // e.g. for v4f32
2903    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2904    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2905    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
2906    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2907    for (unsigned i = 0; i < NumElems; ++i)
2908      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2909    NumElems >>= 1;
2910    while (NumElems != 0) {
2911      for (unsigned i = 0; i < NumElems; ++i)
2912        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2913                           UnpckMask);
2914      NumElems >>= 1;
2915    }
2916    return V[0];
2917  }
2918
2919  return SDOperand();
2920}
2921
2922SDOperand
2923X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2924  SDOperand V1 = Op.getOperand(0);
2925  SDOperand V2 = Op.getOperand(1);
2926  SDOperand PermMask = Op.getOperand(2);
2927  MVT::ValueType VT = Op.getValueType();
2928  unsigned NumElems = PermMask.getNumOperands();
2929  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2930  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2931  bool V1IsSplat = false;
2932  bool V2IsSplat = false;
2933
2934  if (isUndefShuffle(Op.Val))
2935    return DAG.getNode(ISD::UNDEF, VT);
2936
2937  if (isSplatMask(PermMask.Val)) {
2938    if (NumElems <= 4) return Op;
2939    // Promote it to a v4i32 splat.
2940    return PromoteSplat(Op, DAG);
2941  }
2942
2943  if (X86::isMOVLMask(PermMask.Val))
2944    return (V1IsUndef) ? V2 : Op;
2945
2946  if (X86::isMOVSHDUPMask(PermMask.Val) ||
2947      X86::isMOVSLDUPMask(PermMask.Val) ||
2948      X86::isMOVHLPSMask(PermMask.Val) ||
2949      X86::isMOVHPMask(PermMask.Val) ||
2950      X86::isMOVLPMask(PermMask.Val))
2951    return Op;
2952
2953  if (ShouldXformToMOVHLPS(PermMask.Val) ||
2954      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2955    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2956
2957  bool Commuted = false;
2958  V1IsSplat = isSplatVector(V1.Val);
2959  V2IsSplat = isSplatVector(V2.Val);
2960  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2961    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2962    std::swap(V1IsSplat, V2IsSplat);
2963    std::swap(V1IsUndef, V2IsUndef);
2964    Commuted = true;
2965  }
2966
2967  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2968    if (V2IsUndef) return V1;
2969    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2970    if (V2IsSplat) {
2971      // V2 is a splat, so the mask may be malformed. That is, it may point
2972      // to any V2 element. The instruction selectior won't like this. Get
2973      // a corrected mask and commute to form a proper MOVS{S|D}.
2974      SDOperand NewMask = getMOVLMask(NumElems, DAG);
2975      if (NewMask.Val != PermMask.Val)
2976        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2977    }
2978    return Op;
2979  }
2980
2981  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2982      X86::isUNPCKLMask(PermMask.Val) ||
2983      X86::isUNPCKHMask(PermMask.Val))
2984    return Op;
2985
2986  if (V2IsSplat) {
2987    // Normalize mask so all entries that point to V2 points to its first
2988    // element then try to match unpck{h|l} again. If match, return a
2989    // new vector_shuffle with the corrected mask.
2990    SDOperand NewMask = NormalizeMask(PermMask, DAG);
2991    if (NewMask.Val != PermMask.Val) {
2992      if (X86::isUNPCKLMask(PermMask.Val, true)) {
2993        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2994        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2995      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2996        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2997        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2998      }
2999    }
3000  }
3001
3002  // Normalize the node to match x86 shuffle ops if needed
3003  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3004      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3005
3006  if (Commuted) {
3007    // Commute is back and try unpck* again.
3008    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3009    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3010        X86::isUNPCKLMask(PermMask.Val) ||
3011        X86::isUNPCKHMask(PermMask.Val))
3012      return Op;
3013  }
3014
3015  // If VT is integer, try PSHUF* first, then SHUFP*.
3016  if (MVT::isInteger(VT)) {
3017    if (X86::isPSHUFDMask(PermMask.Val) ||
3018        X86::isPSHUFHWMask(PermMask.Val) ||
3019        X86::isPSHUFLWMask(PermMask.Val)) {
3020      if (V2.getOpcode() != ISD::UNDEF)
3021        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3022                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3023      return Op;
3024    }
3025
3026    if (X86::isSHUFPMask(PermMask.Val))
3027      return Op;
3028
3029    // Handle v8i16 shuffle high / low shuffle node pair.
3030    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
3031      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3032      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3033      SmallVector<SDOperand, 8> MaskVec;
3034      for (unsigned i = 0; i != 4; ++i)
3035        MaskVec.push_back(PermMask.getOperand(i));
3036      for (unsigned i = 4; i != 8; ++i)
3037        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3038      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3039                                   &MaskVec[0], MaskVec.size());
3040      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3041      MaskVec.clear();
3042      for (unsigned i = 0; i != 4; ++i)
3043        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3044      for (unsigned i = 4; i != 8; ++i)
3045        MaskVec.push_back(PermMask.getOperand(i));
3046      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
3047      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3048    }
3049  } else {
3050    // Floating point cases in the other order.
3051    if (X86::isSHUFPMask(PermMask.Val))
3052      return Op;
3053    if (X86::isPSHUFDMask(PermMask.Val) ||
3054        X86::isPSHUFHWMask(PermMask.Val) ||
3055        X86::isPSHUFLWMask(PermMask.Val)) {
3056      if (V2.getOpcode() != ISD::UNDEF)
3057        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3058                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3059      return Op;
3060    }
3061  }
3062
3063  if (NumElems == 4) {
3064    MVT::ValueType MaskVT = PermMask.getValueType();
3065    MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
3066    SmallVector<std::pair<int, int>, 8> Locs;
3067    Locs.reserve(NumElems);
3068    SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3069    SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3070    unsigned NumHi = 0;
3071    unsigned NumLo = 0;
3072    // If no more than two elements come from either vector. This can be
3073    // implemented with two shuffles. First shuffle gather the elements.
3074    // The second shuffle, which takes the first shuffle as both of its
3075    // vector operands, put the elements into the right order.
3076    for (unsigned i = 0; i != NumElems; ++i) {
3077      SDOperand Elt = PermMask.getOperand(i);
3078      if (Elt.getOpcode() == ISD::UNDEF) {
3079        Locs[i] = std::make_pair(-1, -1);
3080      } else {
3081        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3082        if (Val < NumElems) {
3083          Locs[i] = std::make_pair(0, NumLo);
3084          Mask1[NumLo] = Elt;
3085          NumLo++;
3086        } else {
3087          Locs[i] = std::make_pair(1, NumHi);
3088          if (2+NumHi < NumElems)
3089            Mask1[2+NumHi] = Elt;
3090          NumHi++;
3091        }
3092      }
3093    }
3094    if (NumLo <= 2 && NumHi <= 2) {
3095      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3096                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3097                                   &Mask1[0], Mask1.size()));
3098      for (unsigned i = 0; i != NumElems; ++i) {
3099        if (Locs[i].first == -1)
3100          continue;
3101        else {
3102          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3103          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3104          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3105        }
3106      }
3107
3108      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3109                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3110                                     &Mask2[0], Mask2.size()));
3111    }
3112
3113    // Break it into (shuffle shuffle_hi, shuffle_lo).
3114    Locs.clear();
3115    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3116    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3117    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3118    unsigned MaskIdx = 0;
3119    unsigned LoIdx = 0;
3120    unsigned HiIdx = NumElems/2;
3121    for (unsigned i = 0; i != NumElems; ++i) {
3122      if (i == NumElems/2) {
3123        MaskPtr = &HiMask;
3124        MaskIdx = 1;
3125        LoIdx = 0;
3126        HiIdx = NumElems/2;
3127      }
3128      SDOperand Elt = PermMask.getOperand(i);
3129      if (Elt.getOpcode() == ISD::UNDEF) {
3130        Locs[i] = std::make_pair(-1, -1);
3131      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3132        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3133        (*MaskPtr)[LoIdx] = Elt;
3134        LoIdx++;
3135      } else {
3136        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3137        (*MaskPtr)[HiIdx] = Elt;
3138        HiIdx++;
3139      }
3140    }
3141
3142    SDOperand LoShuffle =
3143      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3144                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3145                              &LoMask[0], LoMask.size()));
3146    SDOperand HiShuffle =
3147      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3148                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3149                              &HiMask[0], HiMask.size()));
3150    SmallVector<SDOperand, 8> MaskOps;
3151    for (unsigned i = 0; i != NumElems; ++i) {
3152      if (Locs[i].first == -1) {
3153        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3154      } else {
3155        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3156        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3157      }
3158    }
3159    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3160                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3161                                   &MaskOps[0], MaskOps.size()));
3162  }
3163
3164  return SDOperand();
3165}
3166
3167SDOperand
3168X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3169  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3170    return SDOperand();
3171
3172  MVT::ValueType VT = Op.getValueType();
3173  // TODO: handle v16i8.
3174  if (MVT::getSizeInBits(VT) == 16) {
3175    // Transform it so it match pextrw which produces a 32-bit result.
3176    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3177    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3178                                    Op.getOperand(0), Op.getOperand(1));
3179    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3180                                    DAG.getValueType(VT));
3181    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3182  } else if (MVT::getSizeInBits(VT) == 32) {
3183    SDOperand Vec = Op.getOperand(0);
3184    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3185    if (Idx == 0)
3186      return Op;
3187    // SHUFPS the element to the lowest double word, then movss.
3188    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3189    SmallVector<SDOperand, 8> IdxVec;
3190    IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorBaseType(MaskVT)));
3191    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3192    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3193    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3194    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3195                                 &IdxVec[0], IdxVec.size());
3196    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3197                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3198    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3199                       DAG.getConstant(0, getPointerTy()));
3200  } else if (MVT::getSizeInBits(VT) == 64) {
3201    SDOperand Vec = Op.getOperand(0);
3202    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3203    if (Idx == 0)
3204      return Op;
3205
3206    // UNPCKHPD the element to the lowest double word, then movsd.
3207    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3208    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3209    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3210    SmallVector<SDOperand, 8> IdxVec;
3211    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorBaseType(MaskVT)));
3212    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3213    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3214                                 &IdxVec[0], IdxVec.size());
3215    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3216                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3217    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3218                       DAG.getConstant(0, getPointerTy()));
3219  }
3220
3221  return SDOperand();
3222}
3223
3224SDOperand
3225X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3226  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3227  // as its second argument.
3228  MVT::ValueType VT = Op.getValueType();
3229  MVT::ValueType BaseVT = MVT::getVectorBaseType(VT);
3230  SDOperand N0 = Op.getOperand(0);
3231  SDOperand N1 = Op.getOperand(1);
3232  SDOperand N2 = Op.getOperand(2);
3233  if (MVT::getSizeInBits(BaseVT) == 16) {
3234    if (N1.getValueType() != MVT::i32)
3235      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3236    if (N2.getValueType() != MVT::i32)
3237      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(), MVT::i32);
3238    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3239  } else if (MVT::getSizeInBits(BaseVT) == 32) {
3240    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3241    if (Idx == 0) {
3242      // Use a movss.
3243      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3244      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3245      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3246      SmallVector<SDOperand, 8> MaskVec;
3247      MaskVec.push_back(DAG.getConstant(4, BaseVT));
3248      for (unsigned i = 1; i <= 3; ++i)
3249        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3250      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3251                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3252                                     &MaskVec[0], MaskVec.size()));
3253    } else {
3254      // Use two pinsrw instructions to insert a 32 bit value.
3255      Idx <<= 1;
3256      if (MVT::isFloatingPoint(N1.getValueType())) {
3257        if (ISD::isNON_EXTLoad(N1.Val)) {
3258          // Just load directly from f32mem to GR32.
3259          LoadSDNode *LD = cast<LoadSDNode>(N1);
3260          N1 = DAG.getLoad(MVT::i32, LD->getChain(), LD->getBasePtr(),
3261                           LD->getSrcValue(), LD->getSrcValueOffset());
3262        } else {
3263          N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3264          N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3265          N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3266                           DAG.getConstant(0, getPointerTy()));
3267        }
3268      }
3269      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3270      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3271                       DAG.getConstant(Idx, getPointerTy()));
3272      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3273      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3274                       DAG.getConstant(Idx+1, getPointerTy()));
3275      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3276    }
3277  }
3278
3279  return SDOperand();
3280}
3281
3282SDOperand
3283X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3284  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3285  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3286}
3287
3288// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3289// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3290// one of the above mentioned nodes. It has to be wrapped because otherwise
3291// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3292// be used to form addressing mode. These wrapped nodes will be selected
3293// into MOV32ri.
3294SDOperand
3295X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3296  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3297  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3298                                               getPointerTy(),
3299                                               CP->getAlignment());
3300  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3301  // With PIC, the address is actually $g + Offset.
3302  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3303      !Subtarget->isPICStyleRIPRel()) {
3304    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3305                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3306                         Result);
3307  }
3308
3309  return Result;
3310}
3311
3312SDOperand
3313X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3314  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3315  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3316  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3317  // With PIC, the address is actually $g + Offset.
3318  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3319      !Subtarget->isPICStyleRIPRel()) {
3320    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3321                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3322                         Result);
3323  }
3324
3325  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3326  // load the value at address GV, not the value of GV itself. This means that
3327  // the GlobalAddress must be in the base or index register of the address, not
3328  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3329  // The same applies for external symbols during PIC codegen
3330  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3331    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3332
3333  return Result;
3334}
3335
3336SDOperand
3337X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3338  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3339  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3340  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3341  // With PIC, the address is actually $g + Offset.
3342  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3343      !Subtarget->isPICStyleRIPRel()) {
3344    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3345                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3346                         Result);
3347  }
3348
3349  return Result;
3350}
3351
3352SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3353  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3354  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3355  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3356  // With PIC, the address is actually $g + Offset.
3357  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3358      !Subtarget->isPICStyleRIPRel()) {
3359    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3360                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3361                         Result);
3362  }
3363
3364  return Result;
3365}
3366
3367SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3368    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3369           "Not an i64 shift!");
3370    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3371    SDOperand ShOpLo = Op.getOperand(0);
3372    SDOperand ShOpHi = Op.getOperand(1);
3373    SDOperand ShAmt  = Op.getOperand(2);
3374    SDOperand Tmp1 = isSRA ?
3375      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3376      DAG.getConstant(0, MVT::i32);
3377
3378    SDOperand Tmp2, Tmp3;
3379    if (Op.getOpcode() == ISD::SHL_PARTS) {
3380      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3381      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3382    } else {
3383      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3384      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3385    }
3386
3387    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3388    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3389                                    DAG.getConstant(32, MVT::i8));
3390    SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3391    SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3392
3393    SDOperand Hi, Lo;
3394    SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3395
3396    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3397    SmallVector<SDOperand, 4> Ops;
3398    if (Op.getOpcode() == ISD::SHL_PARTS) {
3399      Ops.push_back(Tmp2);
3400      Ops.push_back(Tmp3);
3401      Ops.push_back(CC);
3402      Ops.push_back(InFlag);
3403      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3404      InFlag = Hi.getValue(1);
3405
3406      Ops.clear();
3407      Ops.push_back(Tmp3);
3408      Ops.push_back(Tmp1);
3409      Ops.push_back(CC);
3410      Ops.push_back(InFlag);
3411      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3412    } else {
3413      Ops.push_back(Tmp2);
3414      Ops.push_back(Tmp3);
3415      Ops.push_back(CC);
3416      Ops.push_back(InFlag);
3417      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3418      InFlag = Lo.getValue(1);
3419
3420      Ops.clear();
3421      Ops.push_back(Tmp3);
3422      Ops.push_back(Tmp1);
3423      Ops.push_back(CC);
3424      Ops.push_back(InFlag);
3425      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3426    }
3427
3428    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3429    Ops.clear();
3430    Ops.push_back(Lo);
3431    Ops.push_back(Hi);
3432    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3433}
3434
3435SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3436  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3437         Op.getOperand(0).getValueType() >= MVT::i16 &&
3438         "Unknown SINT_TO_FP to lower!");
3439
3440  SDOperand Result;
3441  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3442  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3443  MachineFunction &MF = DAG.getMachineFunction();
3444  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3445  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3446  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3447                                 StackSlot, NULL, 0);
3448
3449  // Build the FILD
3450  SDVTList Tys;
3451  if (X86ScalarSSE)
3452    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3453  else
3454    Tys = DAG.getVTList(MVT::f64, MVT::Other);
3455  SmallVector<SDOperand, 8> Ops;
3456  Ops.push_back(Chain);
3457  Ops.push_back(StackSlot);
3458  Ops.push_back(DAG.getValueType(SrcVT));
3459  Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3460                       Tys, &Ops[0], Ops.size());
3461
3462  if (X86ScalarSSE) {
3463    Chain = Result.getValue(1);
3464    SDOperand InFlag = Result.getValue(2);
3465
3466    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3467    // shouldn't be necessary except that RFP cannot be live across
3468    // multiple blocks. When stackifier is fixed, they can be uncoupled.
3469    MachineFunction &MF = DAG.getMachineFunction();
3470    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3471    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3472    Tys = DAG.getVTList(MVT::Other);
3473    SmallVector<SDOperand, 8> Ops;
3474    Ops.push_back(Chain);
3475    Ops.push_back(Result);
3476    Ops.push_back(StackSlot);
3477    Ops.push_back(DAG.getValueType(Op.getValueType()));
3478    Ops.push_back(InFlag);
3479    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3480    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3481  }
3482
3483  return Result;
3484}
3485
3486SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3487  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3488         "Unknown FP_TO_SINT to lower!");
3489  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3490  // stack slot.
3491  MachineFunction &MF = DAG.getMachineFunction();
3492  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3493  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3494  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3495
3496  unsigned Opc;
3497  switch (Op.getValueType()) {
3498    default: assert(0 && "Invalid FP_TO_SINT to lower!");
3499    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3500    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3501    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3502  }
3503
3504  SDOperand Chain = DAG.getEntryNode();
3505  SDOperand Value = Op.getOperand(0);
3506  if (X86ScalarSSE) {
3507    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3508    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3509    SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other);
3510    SDOperand Ops[] = {
3511      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3512    };
3513    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3514    Chain = Value.getValue(1);
3515    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3516    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3517  }
3518
3519  // Build the FP_TO_INT*_IN_MEM
3520  SDOperand Ops[] = { Chain, Value, StackSlot };
3521  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3522
3523  // Load the result.
3524  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3525}
3526
3527SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3528  MVT::ValueType VT = Op.getValueType();
3529  const Type *OpNTy =  MVT::getTypeForValueType(VT);
3530  std::vector<Constant*> CV;
3531  if (VT == MVT::f64) {
3532    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63))));
3533    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3534  } else {
3535    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31))));
3536    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3537    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3538    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3539  }
3540  Constant *CS = ConstantStruct::get(CV);
3541  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3542  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
3543  SmallVector<SDOperand, 3> Ops;
3544  Ops.push_back(DAG.getEntryNode());
3545  Ops.push_back(CPIdx);
3546  Ops.push_back(DAG.getSrcValue(NULL));
3547  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3548  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3549}
3550
3551SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3552  MVT::ValueType VT = Op.getValueType();
3553  const Type *OpNTy =  MVT::getTypeForValueType(VT);
3554  std::vector<Constant*> CV;
3555  if (VT == MVT::f64) {
3556    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63)));
3557    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3558  } else {
3559    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31)));
3560    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3561    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3562    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3563  }
3564  Constant *CS = ConstantStruct::get(CV);
3565  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3566  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
3567  SmallVector<SDOperand, 3> Ops;
3568  Ops.push_back(DAG.getEntryNode());
3569  Ops.push_back(CPIdx);
3570  Ops.push_back(DAG.getSrcValue(NULL));
3571  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3572  return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3573}
3574
3575SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3576  SDOperand Op0 = Op.getOperand(0);
3577  SDOperand Op1 = Op.getOperand(1);
3578  MVT::ValueType VT = Op.getValueType();
3579  MVT::ValueType SrcVT = Op1.getValueType();
3580  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
3581
3582  // If second operand is smaller, extend it first.
3583  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3584    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3585    SrcVT = VT;
3586  }
3587
3588  // First get the sign bit of second operand.
3589  std::vector<Constant*> CV;
3590  if (SrcVT == MVT::f64) {
3591    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(1ULL << 63)));
3592    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3593  } else {
3594    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(1U << 31)));
3595    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3596    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3597    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3598  }
3599  Constant *CS = ConstantStruct::get(CV);
3600  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3601  SDVTList Tys = DAG.getVTList(SrcVT, MVT::Other);
3602  SmallVector<SDOperand, 3> Ops;
3603  Ops.push_back(DAG.getEntryNode());
3604  Ops.push_back(CPIdx);
3605  Ops.push_back(DAG.getSrcValue(NULL));
3606  SDOperand Mask1 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3607  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3608
3609  // Shift sign bit right or left if the two operands have different types.
3610  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3611    // Op0 is MVT::f32, Op1 is MVT::f64.
3612    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3613    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3614                          DAG.getConstant(32, MVT::i32));
3615    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3616    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3617                          DAG.getConstant(0, getPointerTy()));
3618  }
3619
3620  // Clear first operand sign bit.
3621  CV.clear();
3622  if (VT == MVT::f64) {
3623    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(~(1ULL << 63))));
3624    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3625  } else {
3626    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(~(1U << 31))));
3627    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3628    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3629    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3630  }
3631  CS = ConstantStruct::get(CV);
3632  CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3633  Tys = DAG.getVTList(VT, MVT::Other);
3634  Ops.clear();
3635  Ops.push_back(DAG.getEntryNode());
3636  Ops.push_back(CPIdx);
3637  Ops.push_back(DAG.getSrcValue(NULL));
3638  SDOperand Mask2 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3639  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3640
3641  // Or the value with the sign bit.
3642  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3643}
3644
3645SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3646                                        SDOperand Chain) {
3647  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3648  SDOperand Cond;
3649  SDOperand Op0 = Op.getOperand(0);
3650  SDOperand Op1 = Op.getOperand(1);
3651  SDOperand CC = Op.getOperand(2);
3652  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3653  const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3654  const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3655  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3656  unsigned X86CC;
3657
3658  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3659                     Op0, Op1, DAG)) {
3660    SDOperand Ops1[] = { Chain, Op0, Op1 };
3661    Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3662    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3663    return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3664  }
3665
3666  assert(isFP && "Illegal integer SetCC!");
3667
3668  SDOperand COps[] = { Chain, Op0, Op1 };
3669  Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3670
3671  switch (SetCCOpcode) {
3672  default: assert(false && "Illegal floating point SetCC!");
3673  case ISD::SETOEQ: {  // !PF & ZF
3674    SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3675    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3676    SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3677                         Tmp1.getValue(1) };
3678    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3679    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3680  }
3681  case ISD::SETUNE: {  // PF | !ZF
3682    SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3683    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3684    SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3685                         Tmp1.getValue(1) };
3686    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3687    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3688  }
3689  }
3690}
3691
3692SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3693  bool addTest = true;
3694  SDOperand Chain = DAG.getEntryNode();
3695  SDOperand Cond  = Op.getOperand(0);
3696  SDOperand CC;
3697  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3698
3699  if (Cond.getOpcode() == ISD::SETCC)
3700    Cond = LowerSETCC(Cond, DAG, Chain);
3701
3702  if (Cond.getOpcode() == X86ISD::SETCC) {
3703    CC = Cond.getOperand(0);
3704
3705    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3706    // (since flag operand cannot be shared). Use it as the condition setting
3707    // operand in place of the X86ISD::SETCC.
3708    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3709    // to use a test instead of duplicating the X86ISD::CMP (for register
3710    // pressure reason)?
3711    SDOperand Cmp = Cond.getOperand(1);
3712    unsigned Opc = Cmp.getOpcode();
3713    bool IllegalFPCMov = !X86ScalarSSE &&
3714      MVT::isFloatingPoint(Op.getValueType()) &&
3715      !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3716    if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3717        !IllegalFPCMov) {
3718      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3719      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3720      addTest = false;
3721    }
3722  }
3723
3724  if (addTest) {
3725    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3726    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3727    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3728  }
3729
3730  VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3731  SmallVector<SDOperand, 4> Ops;
3732  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3733  // condition is true.
3734  Ops.push_back(Op.getOperand(2));
3735  Ops.push_back(Op.getOperand(1));
3736  Ops.push_back(CC);
3737  Ops.push_back(Cond.getValue(1));
3738  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3739}
3740
3741SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3742  bool addTest = true;
3743  SDOperand Chain = Op.getOperand(0);
3744  SDOperand Cond  = Op.getOperand(1);
3745  SDOperand Dest  = Op.getOperand(2);
3746  SDOperand CC;
3747  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3748
3749  if (Cond.getOpcode() == ISD::SETCC)
3750    Cond = LowerSETCC(Cond, DAG, Chain);
3751
3752  if (Cond.getOpcode() == X86ISD::SETCC) {
3753    CC = Cond.getOperand(0);
3754
3755    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3756    // (since flag operand cannot be shared). Use it as the condition setting
3757    // operand in place of the X86ISD::SETCC.
3758    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3759    // to use a test instead of duplicating the X86ISD::CMP (for register
3760    // pressure reason)?
3761    SDOperand Cmp = Cond.getOperand(1);
3762    unsigned Opc = Cmp.getOpcode();
3763    if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3764      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3765      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3766      addTest = false;
3767    }
3768  }
3769
3770  if (addTest) {
3771    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3772    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3773    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3774  }
3775  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3776                     Cond, Op.getOperand(2), CC, Cond.getValue(1));
3777}
3778
3779SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3780  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3781
3782  if (Subtarget->is64Bit())
3783    return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3784  else
3785    switch (CallingConv) {
3786    default:
3787      assert(0 && "Unsupported calling convention");
3788    case CallingConv::Fast:
3789      if (EnableFastCC)
3790        return LowerFastCCCallTo(Op, DAG, CallingConv);
3791      // Falls through
3792    case CallingConv::C:
3793    case CallingConv::X86_StdCall:
3794      return LowerCCCCallTo(Op, DAG, CallingConv);
3795    case CallingConv::X86_FastCall:
3796      return LowerFastCCCallTo(Op, DAG, CallingConv);
3797    }
3798}
3799
3800SDOperand
3801X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
3802  MachineFunction &MF = DAG.getMachineFunction();
3803  const Function* Fn = MF.getFunction();
3804  if (Fn->hasExternalLinkage() &&
3805      Subtarget->isTargetCygMing() &&
3806      Fn->getName() == "main")
3807    MF.getInfo<X86FunctionInfo>()->setForceFramePointer(true);
3808
3809  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3810  if (Subtarget->is64Bit())
3811    return LowerX86_64CCCArguments(Op, DAG);
3812  else
3813    switch(CC) {
3814    default:
3815      assert(0 && "Unsupported calling convention");
3816    case CallingConv::Fast:
3817      if (EnableFastCC) {
3818        return LowerFastCCArguments(Op, DAG);
3819      }
3820      // Falls through
3821    case CallingConv::C:
3822      return LowerCCCArguments(Op, DAG);
3823    case CallingConv::X86_StdCall:
3824      MF.getInfo<X86FunctionInfo>()->setDecorationStyle(StdCall);
3825      return LowerCCCArguments(Op, DAG, true);
3826    case CallingConv::X86_FastCall:
3827      MF.getInfo<X86FunctionInfo>()->setDecorationStyle(FastCall);
3828      return LowerFastCCArguments(Op, DAG, true);
3829    }
3830}
3831
3832SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
3833  SDOperand InFlag(0, 0);
3834  SDOperand Chain = Op.getOperand(0);
3835  unsigned Align =
3836    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3837  if (Align == 0) Align = 1;
3838
3839  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3840  // If not DWORD aligned, call memset if size is less than the threshold.
3841  // It knows how to align to the right boundary first.
3842  if ((Align & 3) != 0 ||
3843      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
3844    MVT::ValueType IntPtr = getPointerTy();
3845    const Type *IntPtrTy = getTargetData()->getIntPtrType();
3846    TargetLowering::ArgListTy Args;
3847    TargetLowering::ArgListEntry Entry;
3848    Entry.Node = Op.getOperand(1);
3849    Entry.Ty = IntPtrTy;
3850    Entry.isSigned = false;
3851    Entry.isInReg = false;
3852    Entry.isSRet = false;
3853    Args.push_back(Entry);
3854    // Extend the unsigned i8 argument to be an int value for the call.
3855    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
3856    Entry.Ty = IntPtrTy;
3857    Entry.isSigned = false;
3858    Entry.isInReg = false;
3859    Entry.isSRet = false;
3860    Args.push_back(Entry);
3861    Entry.Node = Op.getOperand(3);
3862    Args.push_back(Entry);
3863    std::pair<SDOperand,SDOperand> CallResult =
3864      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3865                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
3866    return CallResult.second;
3867  }
3868
3869  MVT::ValueType AVT;
3870  SDOperand Count;
3871  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3872  unsigned BytesLeft = 0;
3873  bool TwoRepStos = false;
3874  if (ValC) {
3875    unsigned ValReg;
3876    uint64_t Val = ValC->getValue() & 255;
3877
3878    // If the value is a constant, then we can potentially use larger sets.
3879    switch (Align & 3) {
3880      case 2:   // WORD aligned
3881        AVT = MVT::i16;
3882        ValReg = X86::AX;
3883        Val = (Val << 8) | Val;
3884        break;
3885      case 0:  // DWORD aligned
3886        AVT = MVT::i32;
3887        ValReg = X86::EAX;
3888        Val = (Val << 8)  | Val;
3889        Val = (Val << 16) | Val;
3890        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
3891          AVT = MVT::i64;
3892          ValReg = X86::RAX;
3893          Val = (Val << 32) | Val;
3894        }
3895        break;
3896      default:  // Byte aligned
3897        AVT = MVT::i8;
3898        ValReg = X86::AL;
3899        Count = Op.getOperand(3);
3900        break;
3901    }
3902
3903    if (AVT > MVT::i8) {
3904      if (I) {
3905        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3906        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3907        BytesLeft = I->getValue() % UBytes;
3908      } else {
3909        assert(AVT >= MVT::i32 &&
3910               "Do not use rep;stos if not at least DWORD aligned");
3911        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3912                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3913        TwoRepStos = true;
3914      }
3915    }
3916
3917    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
3918                              InFlag);
3919    InFlag = Chain.getValue(1);
3920  } else {
3921    AVT = MVT::i8;
3922    Count  = Op.getOperand(3);
3923    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
3924    InFlag = Chain.getValue(1);
3925  }
3926
3927  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3928                            Count, InFlag);
3929  InFlag = Chain.getValue(1);
3930  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3931                            Op.getOperand(1), InFlag);
3932  InFlag = Chain.getValue(1);
3933
3934  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3935  SmallVector<SDOperand, 8> Ops;
3936  Ops.push_back(Chain);
3937  Ops.push_back(DAG.getValueType(AVT));
3938  Ops.push_back(InFlag);
3939  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3940
3941  if (TwoRepStos) {
3942    InFlag = Chain.getValue(1);
3943    Count = Op.getOperand(3);
3944    MVT::ValueType CVT = Count.getValueType();
3945    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3946                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3947    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3948                              Left, InFlag);
3949    InFlag = Chain.getValue(1);
3950    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3951    Ops.clear();
3952    Ops.push_back(Chain);
3953    Ops.push_back(DAG.getValueType(MVT::i8));
3954    Ops.push_back(InFlag);
3955    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3956  } else if (BytesLeft) {
3957    // Issue stores for the last 1 - 7 bytes.
3958    SDOperand Value;
3959    unsigned Val = ValC->getValue() & 255;
3960    unsigned Offset = I->getValue() - BytesLeft;
3961    SDOperand DstAddr = Op.getOperand(1);
3962    MVT::ValueType AddrVT = DstAddr.getValueType();
3963    if (BytesLeft >= 4) {
3964      Val = (Val << 8)  | Val;
3965      Val = (Val << 16) | Val;
3966      Value = DAG.getConstant(Val, MVT::i32);
3967      Chain = DAG.getStore(Chain, Value,
3968                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3969                                       DAG.getConstant(Offset, AddrVT)),
3970                           NULL, 0);
3971      BytesLeft -= 4;
3972      Offset += 4;
3973    }
3974    if (BytesLeft >= 2) {
3975      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
3976      Chain = DAG.getStore(Chain, Value,
3977                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3978                                       DAG.getConstant(Offset, AddrVT)),
3979                           NULL, 0);
3980      BytesLeft -= 2;
3981      Offset += 2;
3982    }
3983    if (BytesLeft == 1) {
3984      Value = DAG.getConstant(Val, MVT::i8);
3985      Chain = DAG.getStore(Chain, Value,
3986                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3987                                       DAG.getConstant(Offset, AddrVT)),
3988                           NULL, 0);
3989    }
3990  }
3991
3992  return Chain;
3993}
3994
3995SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
3996  SDOperand Chain = Op.getOperand(0);
3997  unsigned Align =
3998    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3999  if (Align == 0) Align = 1;
4000
4001  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4002  // If not DWORD aligned, call memcpy if size is less than the threshold.
4003  // It knows how to align to the right boundary first.
4004  if ((Align & 3) != 0 ||
4005      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
4006    MVT::ValueType IntPtr = getPointerTy();
4007    TargetLowering::ArgListTy Args;
4008    TargetLowering::ArgListEntry Entry;
4009    Entry.Ty = getTargetData()->getIntPtrType();
4010    Entry.isSigned = false;
4011    Entry.isInReg = false;
4012    Entry.isSRet = false;
4013    Entry.Node = Op.getOperand(1); Args.push_back(Entry);
4014    Entry.Node = Op.getOperand(2); Args.push_back(Entry);
4015    Entry.Node = Op.getOperand(3); Args.push_back(Entry);
4016    std::pair<SDOperand,SDOperand> CallResult =
4017      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4018                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
4019    return CallResult.second;
4020  }
4021
4022  MVT::ValueType AVT;
4023  SDOperand Count;
4024  unsigned BytesLeft = 0;
4025  bool TwoRepMovs = false;
4026  switch (Align & 3) {
4027    case 2:   // WORD aligned
4028      AVT = MVT::i16;
4029      break;
4030    case 0:  // DWORD aligned
4031      AVT = MVT::i32;
4032      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
4033        AVT = MVT::i64;
4034      break;
4035    default:  // Byte aligned
4036      AVT = MVT::i8;
4037      Count = Op.getOperand(3);
4038      break;
4039  }
4040
4041  if (AVT > MVT::i8) {
4042    if (I) {
4043      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4044      Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4045      BytesLeft = I->getValue() % UBytes;
4046    } else {
4047      assert(AVT >= MVT::i32 &&
4048             "Do not use rep;movs if not at least DWORD aligned");
4049      Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4050                          Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4051      TwoRepMovs = true;
4052    }
4053  }
4054
4055  SDOperand InFlag(0, 0);
4056  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4057                            Count, InFlag);
4058  InFlag = Chain.getValue(1);
4059  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4060                            Op.getOperand(1), InFlag);
4061  InFlag = Chain.getValue(1);
4062  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4063                            Op.getOperand(2), InFlag);
4064  InFlag = Chain.getValue(1);
4065
4066  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4067  SmallVector<SDOperand, 8> Ops;
4068  Ops.push_back(Chain);
4069  Ops.push_back(DAG.getValueType(AVT));
4070  Ops.push_back(InFlag);
4071  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4072
4073  if (TwoRepMovs) {
4074    InFlag = Chain.getValue(1);
4075    Count = Op.getOperand(3);
4076    MVT::ValueType CVT = Count.getValueType();
4077    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4078                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4079    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4080                              Left, InFlag);
4081    InFlag = Chain.getValue(1);
4082    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4083    Ops.clear();
4084    Ops.push_back(Chain);
4085    Ops.push_back(DAG.getValueType(MVT::i8));
4086    Ops.push_back(InFlag);
4087    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4088  } else if (BytesLeft) {
4089    // Issue loads and stores for the last 1 - 7 bytes.
4090    unsigned Offset = I->getValue() - BytesLeft;
4091    SDOperand DstAddr = Op.getOperand(1);
4092    MVT::ValueType DstVT = DstAddr.getValueType();
4093    SDOperand SrcAddr = Op.getOperand(2);
4094    MVT::ValueType SrcVT = SrcAddr.getValueType();
4095    SDOperand Value;
4096    if (BytesLeft >= 4) {
4097      Value = DAG.getLoad(MVT::i32, Chain,
4098                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4099                                      DAG.getConstant(Offset, SrcVT)),
4100                          NULL, 0);
4101      Chain = Value.getValue(1);
4102      Chain = DAG.getStore(Chain, Value,
4103                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4104                                       DAG.getConstant(Offset, DstVT)),
4105                           NULL, 0);
4106      BytesLeft -= 4;
4107      Offset += 4;
4108    }
4109    if (BytesLeft >= 2) {
4110      Value = DAG.getLoad(MVT::i16, Chain,
4111                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4112                                      DAG.getConstant(Offset, SrcVT)),
4113                          NULL, 0);
4114      Chain = Value.getValue(1);
4115      Chain = DAG.getStore(Chain, Value,
4116                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4117                                       DAG.getConstant(Offset, DstVT)),
4118                           NULL, 0);
4119      BytesLeft -= 2;
4120      Offset += 2;
4121    }
4122
4123    if (BytesLeft == 1) {
4124      Value = DAG.getLoad(MVT::i8, Chain,
4125                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4126                                      DAG.getConstant(Offset, SrcVT)),
4127                          NULL, 0);
4128      Chain = Value.getValue(1);
4129      Chain = DAG.getStore(Chain, Value,
4130                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4131                                       DAG.getConstant(Offset, DstVT)),
4132                           NULL, 0);
4133    }
4134  }
4135
4136  return Chain;
4137}
4138
4139SDOperand
4140X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4141  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4142  SDOperand TheOp = Op.getOperand(0);
4143  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4144  if (Subtarget->is64Bit()) {
4145    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4146    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4147                                         MVT::i64, Copy1.getValue(2));
4148    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4149                                DAG.getConstant(32, MVT::i8));
4150    SDOperand Ops[] = {
4151      DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4152    };
4153
4154    Tys = DAG.getVTList(MVT::i64, MVT::Other);
4155    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4156  }
4157
4158  SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4159  SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4160                                       MVT::i32, Copy1.getValue(2));
4161  SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4162  Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4163  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4164}
4165
4166SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4167  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4168
4169  if (!Subtarget->is64Bit()) {
4170    // vastart just stores the address of the VarArgsFrameIndex slot into the
4171    // memory location argument.
4172    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4173    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4174                        SV->getOffset());
4175  }
4176
4177  // __va_list_tag:
4178  //   gp_offset         (0 - 6 * 8)
4179  //   fp_offset         (48 - 48 + 8 * 16)
4180  //   overflow_arg_area (point to parameters coming in memory).
4181  //   reg_save_area
4182  SmallVector<SDOperand, 8> MemOps;
4183  SDOperand FIN = Op.getOperand(1);
4184  // Store gp_offset
4185  SDOperand Store = DAG.getStore(Op.getOperand(0),
4186                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4187                                 FIN, SV->getValue(), SV->getOffset());
4188  MemOps.push_back(Store);
4189
4190  // Store fp_offset
4191  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4192                    DAG.getConstant(4, getPointerTy()));
4193  Store = DAG.getStore(Op.getOperand(0),
4194                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4195                       FIN, SV->getValue(), SV->getOffset());
4196  MemOps.push_back(Store);
4197
4198  // Store ptr to overflow_arg_area
4199  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4200                    DAG.getConstant(4, getPointerTy()));
4201  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4202  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4203                       SV->getOffset());
4204  MemOps.push_back(Store);
4205
4206  // Store ptr to reg_save_area.
4207  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4208                    DAG.getConstant(8, getPointerTy()));
4209  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4210  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4211                       SV->getOffset());
4212  MemOps.push_back(Store);
4213  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4214}
4215
4216SDOperand
4217X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4218  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4219  switch (IntNo) {
4220  default: return SDOperand();    // Don't custom lower most intrinsics.
4221    // Comparison intrinsics.
4222  case Intrinsic::x86_sse_comieq_ss:
4223  case Intrinsic::x86_sse_comilt_ss:
4224  case Intrinsic::x86_sse_comile_ss:
4225  case Intrinsic::x86_sse_comigt_ss:
4226  case Intrinsic::x86_sse_comige_ss:
4227  case Intrinsic::x86_sse_comineq_ss:
4228  case Intrinsic::x86_sse_ucomieq_ss:
4229  case Intrinsic::x86_sse_ucomilt_ss:
4230  case Intrinsic::x86_sse_ucomile_ss:
4231  case Intrinsic::x86_sse_ucomigt_ss:
4232  case Intrinsic::x86_sse_ucomige_ss:
4233  case Intrinsic::x86_sse_ucomineq_ss:
4234  case Intrinsic::x86_sse2_comieq_sd:
4235  case Intrinsic::x86_sse2_comilt_sd:
4236  case Intrinsic::x86_sse2_comile_sd:
4237  case Intrinsic::x86_sse2_comigt_sd:
4238  case Intrinsic::x86_sse2_comige_sd:
4239  case Intrinsic::x86_sse2_comineq_sd:
4240  case Intrinsic::x86_sse2_ucomieq_sd:
4241  case Intrinsic::x86_sse2_ucomilt_sd:
4242  case Intrinsic::x86_sse2_ucomile_sd:
4243  case Intrinsic::x86_sse2_ucomigt_sd:
4244  case Intrinsic::x86_sse2_ucomige_sd:
4245  case Intrinsic::x86_sse2_ucomineq_sd: {
4246    unsigned Opc = 0;
4247    ISD::CondCode CC = ISD::SETCC_INVALID;
4248    switch (IntNo) {
4249    default: break;
4250    case Intrinsic::x86_sse_comieq_ss:
4251    case Intrinsic::x86_sse2_comieq_sd:
4252      Opc = X86ISD::COMI;
4253      CC = ISD::SETEQ;
4254      break;
4255    case Intrinsic::x86_sse_comilt_ss:
4256    case Intrinsic::x86_sse2_comilt_sd:
4257      Opc = X86ISD::COMI;
4258      CC = ISD::SETLT;
4259      break;
4260    case Intrinsic::x86_sse_comile_ss:
4261    case Intrinsic::x86_sse2_comile_sd:
4262      Opc = X86ISD::COMI;
4263      CC = ISD::SETLE;
4264      break;
4265    case Intrinsic::x86_sse_comigt_ss:
4266    case Intrinsic::x86_sse2_comigt_sd:
4267      Opc = X86ISD::COMI;
4268      CC = ISD::SETGT;
4269      break;
4270    case Intrinsic::x86_sse_comige_ss:
4271    case Intrinsic::x86_sse2_comige_sd:
4272      Opc = X86ISD::COMI;
4273      CC = ISD::SETGE;
4274      break;
4275    case Intrinsic::x86_sse_comineq_ss:
4276    case Intrinsic::x86_sse2_comineq_sd:
4277      Opc = X86ISD::COMI;
4278      CC = ISD::SETNE;
4279      break;
4280    case Intrinsic::x86_sse_ucomieq_ss:
4281    case Intrinsic::x86_sse2_ucomieq_sd:
4282      Opc = X86ISD::UCOMI;
4283      CC = ISD::SETEQ;
4284      break;
4285    case Intrinsic::x86_sse_ucomilt_ss:
4286    case Intrinsic::x86_sse2_ucomilt_sd:
4287      Opc = X86ISD::UCOMI;
4288      CC = ISD::SETLT;
4289      break;
4290    case Intrinsic::x86_sse_ucomile_ss:
4291    case Intrinsic::x86_sse2_ucomile_sd:
4292      Opc = X86ISD::UCOMI;
4293      CC = ISD::SETLE;
4294      break;
4295    case Intrinsic::x86_sse_ucomigt_ss:
4296    case Intrinsic::x86_sse2_ucomigt_sd:
4297      Opc = X86ISD::UCOMI;
4298      CC = ISD::SETGT;
4299      break;
4300    case Intrinsic::x86_sse_ucomige_ss:
4301    case Intrinsic::x86_sse2_ucomige_sd:
4302      Opc = X86ISD::UCOMI;
4303      CC = ISD::SETGE;
4304      break;
4305    case Intrinsic::x86_sse_ucomineq_ss:
4306    case Intrinsic::x86_sse2_ucomineq_sd:
4307      Opc = X86ISD::UCOMI;
4308      CC = ISD::SETNE;
4309      break;
4310    }
4311
4312    unsigned X86CC;
4313    SDOperand LHS = Op.getOperand(1);
4314    SDOperand RHS = Op.getOperand(2);
4315    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4316
4317    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4318    SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4319    SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4320    VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4321    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4322    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4323    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4324  }
4325  }
4326}
4327
4328SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4329  // Depths > 0 not supported yet!
4330  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4331    return SDOperand();
4332
4333  // Just load the return address
4334  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4335  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4336}
4337
4338SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4339  // Depths > 0 not supported yet!
4340  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4341    return SDOperand();
4342
4343  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4344  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4345                     DAG.getConstant(4, getPointerTy()));
4346}
4347
4348/// LowerOperation - Provide custom lowering hooks for some operations.
4349///
4350SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4351  switch (Op.getOpcode()) {
4352  default: assert(0 && "Should not custom lower this!");
4353  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4354  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4355  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4356  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
4357  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4358  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4359  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4360  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
4361  case ISD::SHL_PARTS:
4362  case ISD::SRA_PARTS:
4363  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
4364  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4365  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
4366  case ISD::FABS:               return LowerFABS(Op, DAG);
4367  case ISD::FNEG:               return LowerFNEG(Op, DAG);
4368  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
4369  case ISD::SETCC:              return LowerSETCC(Op, DAG, DAG.getEntryNode());
4370  case ISD::SELECT:             return LowerSELECT(Op, DAG);
4371  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
4372  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4373  case ISD::CALL:               return LowerCALL(Op, DAG);
4374  case ISD::RET:                return LowerRET(Op, DAG);
4375  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
4376  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
4377  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
4378  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
4379  case ISD::VASTART:            return LowerVASTART(Op, DAG);
4380  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4381  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4382  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4383  }
4384  return SDOperand();
4385}
4386
4387const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4388  switch (Opcode) {
4389  default: return NULL;
4390  case X86ISD::SHLD:               return "X86ISD::SHLD";
4391  case X86ISD::SHRD:               return "X86ISD::SHRD";
4392  case X86ISD::FAND:               return "X86ISD::FAND";
4393  case X86ISD::FOR:                return "X86ISD::FOR";
4394  case X86ISD::FXOR:               return "X86ISD::FXOR";
4395  case X86ISD::FSRL:               return "X86ISD::FSRL";
4396  case X86ISD::FILD:               return "X86ISD::FILD";
4397  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
4398  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4399  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4400  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4401  case X86ISD::FLD:                return "X86ISD::FLD";
4402  case X86ISD::FST:                return "X86ISD::FST";
4403  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
4404  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
4405  case X86ISD::CALL:               return "X86ISD::CALL";
4406  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
4407  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
4408  case X86ISD::CMP:                return "X86ISD::CMP";
4409  case X86ISD::COMI:               return "X86ISD::COMI";
4410  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
4411  case X86ISD::SETCC:              return "X86ISD::SETCC";
4412  case X86ISD::CMOV:               return "X86ISD::CMOV";
4413  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
4414  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
4415  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
4416  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
4417  case X86ISD::LOAD_PACK:          return "X86ISD::LOAD_PACK";
4418  case X86ISD::LOAD_UA:            return "X86ISD::LOAD_UA";
4419  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
4420  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
4421  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
4422  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
4423  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
4424  case X86ISD::FMAX:               return "X86ISD::FMAX";
4425  case X86ISD::FMIN:               return "X86ISD::FMIN";
4426  }
4427}
4428
4429/// isLegalAddressImmediate - Return true if the integer value or
4430/// GlobalValue can be used as the offset of the target addressing mode.
4431bool X86TargetLowering::isLegalAddressImmediate(int64_t V) const {
4432  // X86 allows a sign-extended 32-bit immediate field.
4433  return (V > -(1LL << 32) && V < (1LL << 32)-1);
4434}
4435
4436bool X86TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
4437  // In 64-bit mode, GV is 64-bit so it won't fit in the 32-bit displacement
4438  // field unless we are in small code model.
4439  if (Subtarget->is64Bit() &&
4440      getTargetMachine().getCodeModel() != CodeModel::Small)
4441    return false;
4442
4443  return (!Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false));
4444}
4445
4446/// isShuffleMaskLegal - Targets can use this to indicate that they only
4447/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4448/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4449/// are assumed to be legal.
4450bool
4451X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4452  // Only do shuffles on 128-bit vector types for now.
4453  if (MVT::getSizeInBits(VT) == 64) return false;
4454  return (Mask.Val->getNumOperands() <= 4 ||
4455          isSplatMask(Mask.Val)  ||
4456          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4457          X86::isUNPCKLMask(Mask.Val) ||
4458          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4459          X86::isUNPCKHMask(Mask.Val));
4460}
4461
4462bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4463                                               MVT::ValueType EVT,
4464                                               SelectionDAG &DAG) const {
4465  unsigned NumElts = BVOps.size();
4466  // Only do shuffles on 128-bit vector types for now.
4467  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4468  if (NumElts == 2) return true;
4469  if (NumElts == 4) {
4470    return (isMOVLMask(&BVOps[0], 4)  ||
4471            isCommutedMOVL(&BVOps[0], 4, true) ||
4472            isSHUFPMask(&BVOps[0], 4) ||
4473            isCommutedSHUFP(&BVOps[0], 4));
4474  }
4475  return false;
4476}
4477
4478//===----------------------------------------------------------------------===//
4479//                           X86 Scheduler Hooks
4480//===----------------------------------------------------------------------===//
4481
4482MachineBasicBlock *
4483X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4484                                           MachineBasicBlock *BB) {
4485  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4486  switch (MI->getOpcode()) {
4487  default: assert(false && "Unexpected instr type to insert");
4488  case X86::CMOV_FR32:
4489  case X86::CMOV_FR64:
4490  case X86::CMOV_V4F32:
4491  case X86::CMOV_V2F64:
4492  case X86::CMOV_V2I64: {
4493    // To "insert" a SELECT_CC instruction, we actually have to insert the
4494    // diamond control-flow pattern.  The incoming instruction knows the
4495    // destination vreg to set, the condition code register to branch on, the
4496    // true/false values to select between, and a branch opcode to use.
4497    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4498    ilist<MachineBasicBlock>::iterator It = BB;
4499    ++It;
4500
4501    //  thisMBB:
4502    //  ...
4503    //   TrueVal = ...
4504    //   cmpTY ccX, r1, r2
4505    //   bCC copy1MBB
4506    //   fallthrough --> copy0MBB
4507    MachineBasicBlock *thisMBB = BB;
4508    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4509    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4510    unsigned Opc =
4511      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4512    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4513    MachineFunction *F = BB->getParent();
4514    F->getBasicBlockList().insert(It, copy0MBB);
4515    F->getBasicBlockList().insert(It, sinkMBB);
4516    // Update machine-CFG edges by first adding all successors of the current
4517    // block to the new block which will contain the Phi node for the select.
4518    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4519        e = BB->succ_end(); i != e; ++i)
4520      sinkMBB->addSuccessor(*i);
4521    // Next, remove all successors of the current block, and add the true
4522    // and fallthrough blocks as its successors.
4523    while(!BB->succ_empty())
4524      BB->removeSuccessor(BB->succ_begin());
4525    BB->addSuccessor(copy0MBB);
4526    BB->addSuccessor(sinkMBB);
4527
4528    //  copy0MBB:
4529    //   %FalseValue = ...
4530    //   # fallthrough to sinkMBB
4531    BB = copy0MBB;
4532
4533    // Update machine-CFG edges
4534    BB->addSuccessor(sinkMBB);
4535
4536    //  sinkMBB:
4537    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4538    //  ...
4539    BB = sinkMBB;
4540    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4541      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4542      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4543
4544    delete MI;   // The pseudo instruction is gone now.
4545    return BB;
4546  }
4547
4548  case X86::FP_TO_INT16_IN_MEM:
4549  case X86::FP_TO_INT32_IN_MEM:
4550  case X86::FP_TO_INT64_IN_MEM: {
4551    // Change the floating point control register to use "round towards zero"
4552    // mode when truncating to an integer value.
4553    MachineFunction *F = BB->getParent();
4554    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4555    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4556
4557    // Load the old value of the high byte of the control word...
4558    unsigned OldCW =
4559      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4560    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4561
4562    // Set the high part to be round to zero...
4563    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4564      .addImm(0xC7F);
4565
4566    // Reload the modified control word now...
4567    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4568
4569    // Restore the memory image of control word to original value
4570    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4571      .addReg(OldCW);
4572
4573    // Get the X86 opcode to use.
4574    unsigned Opc;
4575    switch (MI->getOpcode()) {
4576    default: assert(0 && "illegal opcode!");
4577    case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break;
4578    case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break;
4579    case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break;
4580    }
4581
4582    X86AddressMode AM;
4583    MachineOperand &Op = MI->getOperand(0);
4584    if (Op.isRegister()) {
4585      AM.BaseType = X86AddressMode::RegBase;
4586      AM.Base.Reg = Op.getReg();
4587    } else {
4588      AM.BaseType = X86AddressMode::FrameIndexBase;
4589      AM.Base.FrameIndex = Op.getFrameIndex();
4590    }
4591    Op = MI->getOperand(1);
4592    if (Op.isImmediate())
4593      AM.Scale = Op.getImm();
4594    Op = MI->getOperand(2);
4595    if (Op.isImmediate())
4596      AM.IndexReg = Op.getImm();
4597    Op = MI->getOperand(3);
4598    if (Op.isGlobalAddress()) {
4599      AM.GV = Op.getGlobal();
4600    } else {
4601      AM.Disp = Op.getImm();
4602    }
4603    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4604                      .addReg(MI->getOperand(4).getReg());
4605
4606    // Reload the original control word now.
4607    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4608
4609    delete MI;   // The pseudo instruction is gone now.
4610    return BB;
4611  }
4612  }
4613}
4614
4615//===----------------------------------------------------------------------===//
4616//                           X86 Optimization Hooks
4617//===----------------------------------------------------------------------===//
4618
4619void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4620                                                       uint64_t Mask,
4621                                                       uint64_t &KnownZero,
4622                                                       uint64_t &KnownOne,
4623                                                       unsigned Depth) const {
4624  unsigned Opc = Op.getOpcode();
4625  assert((Opc >= ISD::BUILTIN_OP_END ||
4626          Opc == ISD::INTRINSIC_WO_CHAIN ||
4627          Opc == ISD::INTRINSIC_W_CHAIN ||
4628          Opc == ISD::INTRINSIC_VOID) &&
4629         "Should use MaskedValueIsZero if you don't know whether Op"
4630         " is a target node!");
4631
4632  KnownZero = KnownOne = 0;   // Don't know anything.
4633  switch (Opc) {
4634  default: break;
4635  case X86ISD::SETCC:
4636    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4637    break;
4638  }
4639}
4640
4641/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4642/// element of the result of the vector shuffle.
4643static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4644  MVT::ValueType VT = N->getValueType(0);
4645  SDOperand PermMask = N->getOperand(2);
4646  unsigned NumElems = PermMask.getNumOperands();
4647  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4648  i %= NumElems;
4649  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4650    return (i == 0)
4651      ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
4652  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4653    SDOperand Idx = PermMask.getOperand(i);
4654    if (Idx.getOpcode() == ISD::UNDEF)
4655      return DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
4656    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4657  }
4658  return SDOperand();
4659}
4660
4661/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4662/// node is a GlobalAddress + an offset.
4663static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4664  unsigned Opc = N->getOpcode();
4665  if (Opc == X86ISD::Wrapper) {
4666    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4667      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4668      return true;
4669    }
4670  } else if (Opc == ISD::ADD) {
4671    SDOperand N1 = N->getOperand(0);
4672    SDOperand N2 = N->getOperand(1);
4673    if (isGAPlusOffset(N1.Val, GA, Offset)) {
4674      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4675      if (V) {
4676        Offset += V->getSignExtended();
4677        return true;
4678      }
4679    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4680      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4681      if (V) {
4682        Offset += V->getSignExtended();
4683        return true;
4684      }
4685    }
4686  }
4687  return false;
4688}
4689
4690/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4691/// + Dist * Size.
4692static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4693                              MachineFrameInfo *MFI) {
4694  if (N->getOperand(0).Val != Base->getOperand(0).Val)
4695    return false;
4696
4697  SDOperand Loc = N->getOperand(1);
4698  SDOperand BaseLoc = Base->getOperand(1);
4699  if (Loc.getOpcode() == ISD::FrameIndex) {
4700    if (BaseLoc.getOpcode() != ISD::FrameIndex)
4701      return false;
4702    int FI  = dyn_cast<FrameIndexSDNode>(Loc)->getIndex();
4703    int BFI = dyn_cast<FrameIndexSDNode>(BaseLoc)->getIndex();
4704    int FS  = MFI->getObjectSize(FI);
4705    int BFS = MFI->getObjectSize(BFI);
4706    if (FS != BFS || FS != Size) return false;
4707    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4708  } else {
4709    GlobalValue *GV1 = NULL;
4710    GlobalValue *GV2 = NULL;
4711    int64_t Offset1 = 0;
4712    int64_t Offset2 = 0;
4713    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4714    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4715    if (isGA1 && isGA2 && GV1 == GV2)
4716      return Offset1 == (Offset2 + Dist*Size);
4717  }
4718
4719  return false;
4720}
4721
4722static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4723                              const X86Subtarget *Subtarget) {
4724  GlobalValue *GV;
4725  int64_t Offset;
4726  if (isGAPlusOffset(Base, GV, Offset))
4727    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4728  else {
4729    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
4730    int BFI = dyn_cast<FrameIndexSDNode>(Base)->getIndex();
4731    if (BFI < 0)
4732      // Fixed objects do not specify alignment, however the offsets are known.
4733      return ((Subtarget->getStackAlignment() % 16) == 0 &&
4734              (MFI->getObjectOffset(BFI) % 16) == 0);
4735    else
4736      return MFI->getObjectAlignment(BFI) >= 16;
4737  }
4738  return false;
4739}
4740
4741
4742/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
4743/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
4744/// if the load addresses are consecutive, non-overlapping, and in the right
4745/// order.
4746static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
4747                                       const X86Subtarget *Subtarget) {
4748  MachineFunction &MF = DAG.getMachineFunction();
4749  MachineFrameInfo *MFI = MF.getFrameInfo();
4750  MVT::ValueType VT = N->getValueType(0);
4751  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
4752  SDOperand PermMask = N->getOperand(2);
4753  int NumElems = (int)PermMask.getNumOperands();
4754  SDNode *Base = NULL;
4755  for (int i = 0; i < NumElems; ++i) {
4756    SDOperand Idx = PermMask.getOperand(i);
4757    if (Idx.getOpcode() == ISD::UNDEF) {
4758      if (!Base) return SDOperand();
4759    } else {
4760      SDOperand Arg =
4761        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
4762      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
4763        return SDOperand();
4764      if (!Base)
4765        Base = Arg.Val;
4766      else if (!isConsecutiveLoad(Arg.Val, Base,
4767                                  i, MVT::getSizeInBits(EVT)/8,MFI))
4768        return SDOperand();
4769    }
4770  }
4771
4772  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
4773  if (isAlign16) {
4774    LoadSDNode *LD = cast<LoadSDNode>(Base);
4775    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4776                       LD->getSrcValueOffset());
4777  } else {
4778    // Just use movups, it's shorter.
4779    SDVTList Tys = DAG.getVTList(MVT::v4f32, MVT::Other);
4780    SmallVector<SDOperand, 3> Ops;
4781    Ops.push_back(Base->getOperand(0));
4782    Ops.push_back(Base->getOperand(1));
4783    Ops.push_back(Base->getOperand(2));
4784    return DAG.getNode(ISD::BIT_CONVERT, VT,
4785                       DAG.getNode(X86ISD::LOAD_UA, Tys, &Ops[0], Ops.size()));
4786  }
4787}
4788
4789/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
4790static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
4791                                      const X86Subtarget *Subtarget) {
4792  SDOperand Cond = N->getOperand(0);
4793
4794  // If we have SSE[12] support, try to form min/max nodes.
4795  if (Subtarget->hasSSE2() &&
4796      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
4797    if (Cond.getOpcode() == ISD::SETCC) {
4798      // Get the LHS/RHS of the select.
4799      SDOperand LHS = N->getOperand(1);
4800      SDOperand RHS = N->getOperand(2);
4801      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
4802
4803      unsigned Opcode = 0;
4804      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
4805        switch (CC) {
4806        default: break;
4807        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
4808        case ISD::SETULE:
4809        case ISD::SETLE:
4810          if (!UnsafeFPMath) break;
4811          // FALL THROUGH.
4812        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
4813        case ISD::SETLT:
4814          Opcode = X86ISD::FMIN;
4815          break;
4816
4817        case ISD::SETOGT: // (X > Y) ? X : Y -> max
4818        case ISD::SETUGT:
4819        case ISD::SETGT:
4820          if (!UnsafeFPMath) break;
4821          // FALL THROUGH.
4822        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
4823        case ISD::SETGE:
4824          Opcode = X86ISD::FMAX;
4825          break;
4826        }
4827      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
4828        switch (CC) {
4829        default: break;
4830        case ISD::SETOGT: // (X > Y) ? Y : X -> min
4831        case ISD::SETUGT:
4832        case ISD::SETGT:
4833          if (!UnsafeFPMath) break;
4834          // FALL THROUGH.
4835        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
4836        case ISD::SETGE:
4837          Opcode = X86ISD::FMIN;
4838          break;
4839
4840        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
4841        case ISD::SETULE:
4842        case ISD::SETLE:
4843          if (!UnsafeFPMath) break;
4844          // FALL THROUGH.
4845        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
4846        case ISD::SETLT:
4847          Opcode = X86ISD::FMAX;
4848          break;
4849        }
4850      }
4851
4852      if (Opcode)
4853        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
4854    }
4855
4856  }
4857
4858  return SDOperand();
4859}
4860
4861
4862SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
4863                                               DAGCombinerInfo &DCI) const {
4864  SelectionDAG &DAG = DCI.DAG;
4865  switch (N->getOpcode()) {
4866  default: break;
4867  case ISD::VECTOR_SHUFFLE:
4868    return PerformShuffleCombine(N, DAG, Subtarget);
4869  case ISD::SELECT:
4870    return PerformSELECTCombine(N, DAG, Subtarget);
4871  }
4872
4873  return SDOperand();
4874}
4875
4876//===----------------------------------------------------------------------===//
4877//                           X86 Inline Assembly Support
4878//===----------------------------------------------------------------------===//
4879
4880/// getConstraintType - Given a constraint letter, return the type of
4881/// constraint it is for this target.
4882X86TargetLowering::ConstraintType
4883X86TargetLowering::getConstraintType(char ConstraintLetter) const {
4884  switch (ConstraintLetter) {
4885  case 'A':
4886  case 'r':
4887  case 'R':
4888  case 'l':
4889  case 'q':
4890  case 'Q':
4891  case 'x':
4892  case 'Y':
4893    return C_RegisterClass;
4894  default: return TargetLowering::getConstraintType(ConstraintLetter);
4895  }
4896}
4897
4898/// isOperandValidForConstraint - Return the specified operand (possibly
4899/// modified) if the specified SDOperand is valid for the specified target
4900/// constraint letter, otherwise return null.
4901SDOperand X86TargetLowering::
4902isOperandValidForConstraint(SDOperand Op, char Constraint, SelectionDAG &DAG) {
4903  switch (Constraint) {
4904  default: break;
4905  case 'i':
4906    // Literal immediates are always ok.
4907    if (isa<ConstantSDNode>(Op)) return Op;
4908
4909    // If we are in non-pic codegen mode, we allow the address of a global to
4910    // be used with 'i'.
4911    if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4912      if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4913        return SDOperand(0, 0);
4914
4915      if (GA->getOpcode() != ISD::TargetGlobalAddress)
4916        Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4917                                        GA->getOffset());
4918      return Op;
4919    }
4920
4921    // Otherwise, not valid for this mode.
4922    return SDOperand(0, 0);
4923  }
4924  return TargetLowering::isOperandValidForConstraint(Op, Constraint, DAG);
4925}
4926
4927
4928std::vector<unsigned> X86TargetLowering::
4929getRegClassForInlineAsmConstraint(const std::string &Constraint,
4930                                  MVT::ValueType VT) const {
4931  if (Constraint.size() == 1) {
4932    // FIXME: not handling fp-stack yet!
4933    // FIXME: not handling MMX registers yet ('y' constraint).
4934    switch (Constraint[0]) {      // GCC X86 Constraint Letters
4935    default: break;  // Unknown constraint letter
4936    case 'A':   // EAX/EDX
4937      if (VT == MVT::i32 || VT == MVT::i64)
4938        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
4939      break;
4940    case 'r':   // GENERAL_REGS
4941    case 'R':   // LEGACY_REGS
4942      if (VT == MVT::i64 && Subtarget->is64Bit())
4943        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
4944                                     X86::RSI, X86::RDI, X86::RBP, X86::RSP,
4945                                     X86::R8,  X86::R9,  X86::R10, X86::R11,
4946                                     X86::R12, X86::R13, X86::R14, X86::R15, 0);
4947      if (VT == MVT::i32)
4948        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
4949                                     X86::ESI, X86::EDI, X86::EBP, X86::ESP, 0);
4950      else if (VT == MVT::i16)
4951        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
4952                                     X86::SI, X86::DI, X86::BP, X86::SP, 0);
4953      else if (VT == MVT::i8)
4954        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
4955      break;
4956    case 'l':   // INDEX_REGS
4957      if (VT == MVT::i32)
4958        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
4959                                     X86::ESI, X86::EDI, X86::EBP, 0);
4960      else if (VT == MVT::i16)
4961        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
4962                                     X86::SI, X86::DI, X86::BP, 0);
4963      else if (VT == MVT::i8)
4964        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
4965      break;
4966    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
4967    case 'Q':   // Q_REGS
4968      if (VT == MVT::i32)
4969        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
4970      else if (VT == MVT::i16)
4971        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
4972      else if (VT == MVT::i8)
4973        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
4974        break;
4975    case 'x':   // SSE_REGS if SSE1 allowed
4976      if (Subtarget->hasSSE1())
4977        return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
4978                                     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
4979                                     0);
4980      return std::vector<unsigned>();
4981    case 'Y':   // SSE_REGS if SSE2 allowed
4982      if (Subtarget->hasSSE2())
4983        return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
4984                                     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
4985                                     0);
4986      return std::vector<unsigned>();
4987    }
4988  }
4989
4990  return std::vector<unsigned>();
4991}
4992
4993std::pair<unsigned, const TargetRegisterClass*>
4994X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4995                                                MVT::ValueType VT) const {
4996  // Use the default implementation in TargetLowering to convert the register
4997  // constraint into a member of a register class.
4998  std::pair<unsigned, const TargetRegisterClass*> Res;
4999  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5000
5001  // Not found as a standard register?
5002  if (Res.second == 0) {
5003    // GCC calls "st(0)" just plain "st".
5004    if (StringsEqualNoCase("{st}", Constraint)) {
5005      Res.first = X86::ST0;
5006      Res.second = X86::RSTRegisterClass;
5007    }
5008
5009    return Res;
5010  }
5011
5012  // Otherwise, check to see if this is a register class of the wrong value
5013  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5014  // turn into {ax},{dx}.
5015  if (Res.second->hasType(VT))
5016    return Res;   // Correct type already, nothing to do.
5017
5018  // All of the single-register GCC register classes map their values onto
5019  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
5020  // really want an 8-bit or 32-bit register, map to the appropriate register
5021  // class and return the appropriate register.
5022  if (Res.second != X86::GR16RegisterClass)
5023    return Res;
5024
5025  if (VT == MVT::i8) {
5026    unsigned DestReg = 0;
5027    switch (Res.first) {
5028    default: break;
5029    case X86::AX: DestReg = X86::AL; break;
5030    case X86::DX: DestReg = X86::DL; break;
5031    case X86::CX: DestReg = X86::CL; break;
5032    case X86::BX: DestReg = X86::BL; break;
5033    }
5034    if (DestReg) {
5035      Res.first = DestReg;
5036      Res.second = Res.second = X86::GR8RegisterClass;
5037    }
5038  } else if (VT == MVT::i32) {
5039    unsigned DestReg = 0;
5040    switch (Res.first) {
5041    default: break;
5042    case X86::AX: DestReg = X86::EAX; break;
5043    case X86::DX: DestReg = X86::EDX; break;
5044    case X86::CX: DestReg = X86::ECX; break;
5045    case X86::BX: DestReg = X86::EBX; break;
5046    case X86::SI: DestReg = X86::ESI; break;
5047    case X86::DI: DestReg = X86::EDI; break;
5048    case X86::BP: DestReg = X86::EBP; break;
5049    case X86::SP: DestReg = X86::ESP; break;
5050    }
5051    if (DestReg) {
5052      Res.first = DestReg;
5053      Res.second = Res.second = X86::GR32RegisterClass;
5054    }
5055  } else if (VT == MVT::i64) {
5056    unsigned DestReg = 0;
5057    switch (Res.first) {
5058    default: break;
5059    case X86::AX: DestReg = X86::RAX; break;
5060    case X86::DX: DestReg = X86::RDX; break;
5061    case X86::CX: DestReg = X86::RCX; break;
5062    case X86::BX: DestReg = X86::RBX; break;
5063    case X86::SI: DestReg = X86::RSI; break;
5064    case X86::DI: DestReg = X86::RDI; break;
5065    case X86::BP: DestReg = X86::RBP; break;
5066    case X86::SP: DestReg = X86::RSP; break;
5067    }
5068    if (DestReg) {
5069      Res.first = DestReg;
5070      Res.second = Res.second = X86::GR64RegisterClass;
5071    }
5072  }
5073
5074  return Res;
5075}
5076