X86ISelLowering.cpp revision 37c2677fbcff1187106c579abfbd498aac739c2a
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VariadicFunction.h"
47#include "llvm/Support/CallSite.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/Dwarf.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53#include "llvm/Target/TargetOptions.h"
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63static SDValue Insert128BitVector(SDValue Result,
64                                  SDValue Vec,
65                                  SDValue Idx,
66                                  SelectionDAG &DAG,
67                                  DebugLoc dl);
68
69static SDValue Extract128BitVector(SDValue Vec,
70                                   SDValue Idx,
71                                   SelectionDAG &DAG,
72                                   DebugLoc dl);
73
74/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
75/// sets things up to match to an AVX VEXTRACTF128 instruction or a
76/// simple subregister reference.  Idx is an index in the 128 bits we
77/// want.  It need not be aligned to a 128-bit bounday.  That makes
78/// lowering EXTRACT_VECTOR_ELT operations easier.
79static SDValue Extract128BitVector(SDValue Vec,
80                                   SDValue Idx,
81                                   SelectionDAG &DAG,
82                                   DebugLoc dl) {
83  EVT VT = Vec.getValueType();
84  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
85  EVT ElVT = VT.getVectorElementType();
86  int Factor = VT.getSizeInBits()/128;
87  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
88                                  VT.getVectorNumElements()/Factor);
89
90  // Extract from UNDEF is UNDEF.
91  if (Vec.getOpcode() == ISD::UNDEF)
92    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
93
94  if (isa<ConstantSDNode>(Idx)) {
95    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
96
97    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
98    // we can match to VEXTRACTF128.
99    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
100
101    // This is the index of the first element of the 128-bit chunk
102    // we want.
103    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
104                                 * ElemsPerChunk);
105
106    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
107    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
108                                 VecIdx);
109
110    return Result;
111  }
112
113  return SDValue();
114}
115
116/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
117/// sets things up to match to an AVX VINSERTF128 instruction or a
118/// simple superregister reference.  Idx is an index in the 128 bits
119/// we want.  It need not be aligned to a 128-bit bounday.  That makes
120/// lowering INSERT_VECTOR_ELT operations easier.
121static SDValue Insert128BitVector(SDValue Result,
122                                  SDValue Vec,
123                                  SDValue Idx,
124                                  SelectionDAG &DAG,
125                                  DebugLoc dl) {
126  if (isa<ConstantSDNode>(Idx)) {
127    EVT VT = Vec.getValueType();
128    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
129
130    EVT ElVT = VT.getVectorElementType();
131    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
132    EVT ResultVT = Result.getValueType();
133
134    // Insert the relevant 128 bits.
135    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
136
137    // This is the index of the first element of the 128-bit chunk
138    // we want.
139    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
140                                 * ElemsPerChunk);
141
142    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
143    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
144                         VecIdx);
145    return Result;
146  }
147
148  return SDValue();
149}
150
151static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
152  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
153  bool is64Bit = Subtarget->is64Bit();
154
155  if (Subtarget->isTargetEnvMacho()) {
156    if (is64Bit)
157      return new X8664_MachoTargetObjectFile();
158    return new TargetLoweringObjectFileMachO();
159  }
160
161  if (Subtarget->isTargetELF())
162    return new TargetLoweringObjectFileELF();
163  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
164    return new TargetLoweringObjectFileCOFF();
165  llvm_unreachable("unknown subtarget type");
166}
167
168X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
169  : TargetLowering(TM, createTLOF(TM)) {
170  Subtarget = &TM.getSubtarget<X86Subtarget>();
171  X86ScalarSSEf64 = Subtarget->hasSSE2();
172  X86ScalarSSEf32 = Subtarget->hasSSE1();
173  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
174
175  RegInfo = TM.getRegisterInfo();
176  TD = getTargetData();
177
178  // Set up the TargetLowering object.
179  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
180
181  // X86 is weird, it always uses i8 for shift amounts and setcc results.
182  setBooleanContents(ZeroOrOneBooleanContent);
183  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
184  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
185
186  // For 64-bit since we have so many registers use the ILP scheduler, for
187  // 32-bit code use the register pressure specific scheduling.
188  if (Subtarget->is64Bit())
189    setSchedulingPreference(Sched::ILP);
190  else
191    setSchedulingPreference(Sched::RegPressure);
192  setStackPointerRegisterToSaveRestore(X86StackPtr);
193
194  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
195    // Setup Windows compiler runtime calls.
196    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
197    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
198    setLibcallName(RTLIB::SREM_I64, "_allrem");
199    setLibcallName(RTLIB::UREM_I64, "_aullrem");
200    setLibcallName(RTLIB::MUL_I64, "_allmul");
201    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
202    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
203    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
204    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
207    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
208    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
209    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
210  }
211
212  if (Subtarget->isTargetDarwin()) {
213    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
214    setUseUnderscoreSetJmp(false);
215    setUseUnderscoreLongJmp(false);
216  } else if (Subtarget->isTargetMingw()) {
217    // MS runtime is weird: it exports _setjmp, but longjmp!
218    setUseUnderscoreSetJmp(true);
219    setUseUnderscoreLongJmp(false);
220  } else {
221    setUseUnderscoreSetJmp(true);
222    setUseUnderscoreLongJmp(true);
223  }
224
225  // Set up the register classes.
226  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
227  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
228  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
229  if (Subtarget->is64Bit())
230    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
231
232  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
233
234  // We don't accept any truncstore of integer registers.
235  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
236  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
239  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
240  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
241
242  // SETOEQ and SETUNE require checking two conditions.
243  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
244  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
245  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
247  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
248  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
249
250  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
251  // operation.
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
253  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
254  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
255
256  if (Subtarget->is64Bit()) {
257    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
258    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
259  } else if (!TM.Options.UseSoftFloat) {
260    // We have an algorithm for SSE2->double, and we turn this into a
261    // 64-bit FILD followed by conditional FADD for other targets.
262    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
263    // We have an algorithm for SSE2, and we turn this into a 64-bit
264    // FILD for other targets.
265    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
266  }
267
268  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
269  // this operation.
270  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
271  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
272
273  if (!TM.Options.UseSoftFloat) {
274    // SSE has no i16 to fp conversion, only i32
275    if (X86ScalarSSEf32) {
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
277      // f32 and f64 cases are Legal, f80 case is not
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
279    } else {
280      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
281      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
282    }
283  } else {
284    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
285    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
286  }
287
288  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
289  // are Legal, f80 is custom lowered.
290  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
291  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
292
293  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
294  // this operation.
295  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
296  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
297
298  if (X86ScalarSSEf32) {
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
300    // f32 and f64 cases are Legal, f80 case is not
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
302  } else {
303    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
304    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
305  }
306
307  // Handle FP_TO_UINT by promoting the destination to a larger signed
308  // conversion.
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
310  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
311  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
312
313  if (Subtarget->is64Bit()) {
314    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
315    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
316  } else if (!TM.Options.UseSoftFloat) {
317    // Since AVX is a superset of SSE3, only check for SSE here.
318    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
319      // Expand FP_TO_UINT into a select.
320      // FIXME: We would like to use a Custom expander here eventually to do
321      // the optimal thing for SSE vs. the default expansion in the legalizer.
322      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
323    else
324      // With SSE3 we can use fisttpll to convert to a signed i64; without
325      // SSE, we're stuck with a fistpll.
326      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
327  }
328
329  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
330  if (!X86ScalarSSEf64) {
331    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
332    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
333    if (Subtarget->is64Bit()) {
334      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
335      // Without SSE, i64->f64 goes through memory.
336      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
337    }
338  }
339
340  // Scalar integer divide and remainder are lowered to use operations that
341  // produce two results, to match the available instructions. This exposes
342  // the two-result form to trivial CSE, which is able to combine x/y and x%y
343  // into a single instruction.
344  //
345  // Scalar integer multiply-high is also lowered to use two-result
346  // operations, to match the available instructions. However, plain multiply
347  // (low) operations are left as Legal, as there are single-result
348  // instructions for this in x86. Using the two-result multiply instructions
349  // when both high and low results are needed must be arranged by dagcombine.
350  for (unsigned i = 0, e = 4; i != e; ++i) {
351    MVT VT = IntVTs[i];
352    setOperationAction(ISD::MULHS, VT, Expand);
353    setOperationAction(ISD::MULHU, VT, Expand);
354    setOperationAction(ISD::SDIV, VT, Expand);
355    setOperationAction(ISD::UDIV, VT, Expand);
356    setOperationAction(ISD::SREM, VT, Expand);
357    setOperationAction(ISD::UREM, VT, Expand);
358
359    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
360    setOperationAction(ISD::ADDC, VT, Custom);
361    setOperationAction(ISD::ADDE, VT, Custom);
362    setOperationAction(ISD::SUBC, VT, Custom);
363    setOperationAction(ISD::SUBE, VT, Custom);
364  }
365
366  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
367  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
368  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
369  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
370  if (Subtarget->is64Bit())
371    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
373  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
374  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
375  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
377  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
378  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
379  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
380
381  // Promote the i8 variants and force them on up to i32 which has a shorter
382  // encoding.
383  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
384  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
385  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
386  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
387  if (Subtarget->hasBMI()) {
388    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
389    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
390    if (Subtarget->is64Bit())
391      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
392  } else {
393    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
394    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
395    if (Subtarget->is64Bit())
396      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
397  }
398
399  if (Subtarget->hasLZCNT()) {
400    // When promoting the i8 variants, force them to i32 for a shorter
401    // encoding.
402    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
403    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
404    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
405    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
406    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
407    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
408    if (Subtarget->is64Bit())
409      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
410  } else {
411    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
412    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
413    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
414    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
415    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
416    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
417    if (Subtarget->is64Bit()) {
418      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
419      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
420    }
421  }
422
423  if (Subtarget->hasPOPCNT()) {
424    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
425  } else {
426    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
427    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
428    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
429    if (Subtarget->is64Bit())
430      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
431  }
432
433  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
434  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
435
436  // These should be promoted to a larger select which is supported.
437  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
438  // X86 wants to expand cmov itself.
439  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
440  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
441  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
442  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
443  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
444  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
445  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
446  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
450  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
451  if (Subtarget->is64Bit()) {
452    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
453    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
454  }
455  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
456
457  // Darwin ABI issue.
458  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
459  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
460  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
461  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
462  if (Subtarget->is64Bit())
463    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
464  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
465  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
466  if (Subtarget->is64Bit()) {
467    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
468    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
469    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
470    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
471    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
472  }
473  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
474  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
475  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
476  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
477  if (Subtarget->is64Bit()) {
478    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
479    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
480    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
481  }
482
483  if (Subtarget->hasSSE1())
484    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
485
486  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
487  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
488
489  // On X86 and X86-64, atomic operations are lowered to locked instructions.
490  // Locked instructions, in turn, have implicit fence semantics (all memory
491  // operations are flushed before issuing the locked instruction, and they
492  // are not buffered), so we can fold away the common pattern of
493  // fence-atomic-fence.
494  setShouldFoldAtomicFences(true);
495
496  // Expand certain atomics
497  for (unsigned i = 0, e = 4; i != e; ++i) {
498    MVT VT = IntVTs[i];
499    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
500    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
501    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
502  }
503
504  if (!Subtarget->is64Bit()) {
505    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
511    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
512    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
513  }
514
515  if (Subtarget->hasCmpxchg16b()) {
516    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
517  }
518
519  // FIXME - use subtarget debug flags
520  if (!Subtarget->isTargetDarwin() &&
521      !Subtarget->isTargetELF() &&
522      !Subtarget->isTargetCygMing()) {
523    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
524  }
525
526  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
527  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
528  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
529  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
530  if (Subtarget->is64Bit()) {
531    setExceptionPointerRegister(X86::RAX);
532    setExceptionSelectorRegister(X86::RDX);
533  } else {
534    setExceptionPointerRegister(X86::EAX);
535    setExceptionSelectorRegister(X86::EDX);
536  }
537  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
538  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
539
540  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
541  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
542
543  setOperationAction(ISD::TRAP, MVT::Other, Legal);
544
545  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
546  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
547  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
548  if (Subtarget->is64Bit()) {
549    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
550    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
551  } else {
552    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
553    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
554  }
555
556  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
557  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
558
559  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
560    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
561                       MVT::i64 : MVT::i32, Custom);
562  else if (TM.Options.EnableSegmentedStacks)
563    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
564                       MVT::i64 : MVT::i32, Custom);
565  else
566    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
567                       MVT::i64 : MVT::i32, Expand);
568
569  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
570    // f32 and f64 use SSE.
571    // Set up the FP register classes.
572    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
573    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
574
575    // Use ANDPD to simulate FABS.
576    setOperationAction(ISD::FABS , MVT::f64, Custom);
577    setOperationAction(ISD::FABS , MVT::f32, Custom);
578
579    // Use XORP to simulate FNEG.
580    setOperationAction(ISD::FNEG , MVT::f64, Custom);
581    setOperationAction(ISD::FNEG , MVT::f32, Custom);
582
583    // Use ANDPD and ORPD to simulate FCOPYSIGN.
584    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
585    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
586
587    // Lower this to FGETSIGNx86 plus an AND.
588    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
589    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
590
591    // We don't support sin/cos/fmod
592    setOperationAction(ISD::FSIN , MVT::f64, Expand);
593    setOperationAction(ISD::FCOS , MVT::f64, Expand);
594    setOperationAction(ISD::FSIN , MVT::f32, Expand);
595    setOperationAction(ISD::FCOS , MVT::f32, Expand);
596
597    // Expand FP immediates into loads from the stack, except for the special
598    // cases we handle.
599    addLegalFPImmediate(APFloat(+0.0)); // xorpd
600    addLegalFPImmediate(APFloat(+0.0f)); // xorps
601  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
602    // Use SSE for f32, x87 for f64.
603    // Set up the FP register classes.
604    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
605    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
606
607    // Use ANDPS to simulate FABS.
608    setOperationAction(ISD::FABS , MVT::f32, Custom);
609
610    // Use XORP to simulate FNEG.
611    setOperationAction(ISD::FNEG , MVT::f32, Custom);
612
613    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
614
615    // Use ANDPS and ORPS to simulate FCOPYSIGN.
616    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
617    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
618
619    // We don't support sin/cos/fmod
620    setOperationAction(ISD::FSIN , MVT::f32, Expand);
621    setOperationAction(ISD::FCOS , MVT::f32, Expand);
622
623    // Special cases we handle for FP constants.
624    addLegalFPImmediate(APFloat(+0.0f)); // xorps
625    addLegalFPImmediate(APFloat(+0.0)); // FLD0
626    addLegalFPImmediate(APFloat(+1.0)); // FLD1
627    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
628    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
629
630    if (!TM.Options.UnsafeFPMath) {
631      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
632      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
633    }
634  } else if (!TM.Options.UseSoftFloat) {
635    // f32 and f64 in x87.
636    // Set up the FP register classes.
637    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
638    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
639
640    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
641    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
642    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
643    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
644
645    if (!TM.Options.UnsafeFPMath) {
646      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
647      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
648    }
649    addLegalFPImmediate(APFloat(+0.0)); // FLD0
650    addLegalFPImmediate(APFloat(+1.0)); // FLD1
651    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
652    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
653    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
654    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
655    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
656    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
657  }
658
659  // We don't support FMA.
660  setOperationAction(ISD::FMA, MVT::f64, Expand);
661  setOperationAction(ISD::FMA, MVT::f32, Expand);
662
663  // Long double always uses X87.
664  if (!TM.Options.UseSoftFloat) {
665    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
666    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
667    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
668    {
669      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
670      addLegalFPImmediate(TmpFlt);  // FLD0
671      TmpFlt.changeSign();
672      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
673
674      bool ignored;
675      APFloat TmpFlt2(+1.0);
676      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
677                      &ignored);
678      addLegalFPImmediate(TmpFlt2);  // FLD1
679      TmpFlt2.changeSign();
680      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
681    }
682
683    if (!TM.Options.UnsafeFPMath) {
684      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
685      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
686    }
687
688    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
689    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
690    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
691    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
692    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
693    setOperationAction(ISD::FMA, MVT::f80, Expand);
694  }
695
696  // Always use a library call for pow.
697  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
698  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
699  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
700
701  setOperationAction(ISD::FLOG, MVT::f80, Expand);
702  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
703  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
704  setOperationAction(ISD::FEXP, MVT::f80, Expand);
705  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
706
707  // First set operation action for all vector types to either promote
708  // (for widening) or expand (for scalarization). Then we will selectively
709  // turn on ones that can be effectively codegen'd.
710  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
711       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
712    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
727    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
729    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
730    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
764    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
767    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
768    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
769    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
770         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
771      setTruncStoreAction((MVT::SimpleValueType)VT,
772                          (MVT::SimpleValueType)InnerVT, Expand);
773    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
774    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
775    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
776  }
777
778  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
779  // with -msoft-float, disable use of MMX as well.
780  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
781    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
782    // No operations on x86mmx supported, everything uses intrinsics.
783  }
784
785  // MMX-sized vectors (other than x86mmx) are expected to be expanded
786  // into smaller operations.
787  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
788  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
789  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
790  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
791  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
792  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
793  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
794  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
795  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
796  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
797  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
798  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
799  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
800  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
801  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
802  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
803  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
804  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
805  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
806  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
807  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
808  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
809  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
810  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
811  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
812  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
813  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
814  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
815  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
816
817  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
818    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
819
820    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
821    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
822    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
823    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
824    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
825    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
826    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
827    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
828    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
829    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
830    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
831    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
832  }
833
834  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
835    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
836
837    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
838    // registers cannot be used even for integer operations.
839    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
840    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
841    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
842    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
843
844    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
845    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
846    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
847    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
848    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
849    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
850    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
851    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
852    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
853    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
854    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
855    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
856    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
857    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
858    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
859    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
860
861    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
862    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
863    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
864    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
865
866    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
867    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
868    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
869    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
870    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
871
872    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
873    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
874    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
875    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
876    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
877
878    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
879    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
880      EVT VT = (MVT::SimpleValueType)i;
881      // Do not attempt to custom lower non-power-of-2 vectors
882      if (!isPowerOf2_32(VT.getVectorNumElements()))
883        continue;
884      // Do not attempt to custom lower non-128-bit vectors
885      if (!VT.is128BitVector())
886        continue;
887      setOperationAction(ISD::BUILD_VECTOR,
888                         VT.getSimpleVT().SimpleTy, Custom);
889      setOperationAction(ISD::VECTOR_SHUFFLE,
890                         VT.getSimpleVT().SimpleTy, Custom);
891      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
892                         VT.getSimpleVT().SimpleTy, Custom);
893    }
894
895    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
896    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
897    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
898    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
899    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
900    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
901
902    if (Subtarget->is64Bit()) {
903      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
904      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
905    }
906
907    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
908    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
909      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
910      EVT VT = SVT;
911
912      // Do not attempt to promote non-128-bit vectors
913      if (!VT.is128BitVector())
914        continue;
915
916      setOperationAction(ISD::AND,    SVT, Promote);
917      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
918      setOperationAction(ISD::OR,     SVT, Promote);
919      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
920      setOperationAction(ISD::XOR,    SVT, Promote);
921      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
922      setOperationAction(ISD::LOAD,   SVT, Promote);
923      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
924      setOperationAction(ISD::SELECT, SVT, Promote);
925      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
926    }
927
928    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
929
930    // Custom lower v2i64 and v2f64 selects.
931    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
932    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
933    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
934    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
935
936    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
937    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
938  }
939
940  if (Subtarget->hasSSE41()) {
941    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
942    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
943    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
944    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
945    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
946    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
947    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
948    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
949    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
950    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
951
952    // FIXME: Do we need to handle scalar-to-vector here?
953    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
954
955    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
956    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
957    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
958    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
959    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
960
961    // i8 and i16 vectors are custom , because the source register and source
962    // source memory operand types are not the same width.  f32 vectors are
963    // custom since the immediate controlling the insert encodes additional
964    // information.
965    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
966    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
967    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
968    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
969
970    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
971    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
972    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
973    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
974
975    // FIXME: these should be Legal but thats only for the case where
976    // the index is constant.  For now custom expand to deal with that.
977    if (Subtarget->is64Bit()) {
978      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
979      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
980    }
981  }
982
983  if (Subtarget->hasSSE2()) {
984    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
985    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
986
987    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
988    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
989
990    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
991    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
992
993    if (Subtarget->hasAVX2()) {
994      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
995      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
996
997      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
998      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
999
1000      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1001    } else {
1002      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1003      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1004
1005      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1006      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1007
1008      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1009    }
1010  }
1011
1012  if (Subtarget->hasSSE42())
1013    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1014
1015  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1016    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
1017    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1018    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
1019    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
1020    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
1021    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
1022
1023    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1024    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1025    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1026
1027    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1028    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1029    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1030    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1031    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1032    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1033
1034    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1035    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1036    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1037    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1038    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1039    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1040
1041    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1042    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1043    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1044
1045    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1046    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1047    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1048    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1049    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1050    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1051
1052    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1053    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1054
1055    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1056    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1057
1058    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1059    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1060
1061    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1062    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1063    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1064    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1065
1066    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1067    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1068    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1069
1070    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1071    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1072    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1073    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1074
1075    if (Subtarget->hasAVX2()) {
1076      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1077      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1078      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1079      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1080
1081      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1082      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1083      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1084      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1085
1086      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1087      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1088      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1089      // Don't lower v32i8 because there is no 128-bit byte mul
1090
1091      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1092
1093      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1094      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1095
1096      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1097      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1098
1099      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1100    } else {
1101      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1102      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1103      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1104      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1105
1106      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1107      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1108      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1109      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1110
1111      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1112      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1113      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1114      // Don't lower v32i8 because there is no 128-bit byte mul
1115
1116      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1117      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1118
1119      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1120      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1121
1122      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1123    }
1124
1125    // Custom lower several nodes for 256-bit types.
1126    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1127                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1128      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1129      EVT VT = SVT;
1130
1131      // Extract subvector is special because the value type
1132      // (result) is 128-bit but the source is 256-bit wide.
1133      if (VT.is128BitVector())
1134        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1135
1136      // Do not attempt to custom lower other non-256-bit vectors
1137      if (!VT.is256BitVector())
1138        continue;
1139
1140      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1141      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1142      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1143      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1144      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1145      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1146    }
1147
1148    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1149    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1150      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1151      EVT VT = SVT;
1152
1153      // Do not attempt to promote non-256-bit vectors
1154      if (!VT.is256BitVector())
1155        continue;
1156
1157      setOperationAction(ISD::AND,    SVT, Promote);
1158      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1159      setOperationAction(ISD::OR,     SVT, Promote);
1160      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1161      setOperationAction(ISD::XOR,    SVT, Promote);
1162      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1163      setOperationAction(ISD::LOAD,   SVT, Promote);
1164      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1165      setOperationAction(ISD::SELECT, SVT, Promote);
1166      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1167    }
1168  }
1169
1170  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1171  // of this type with custom code.
1172  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1173         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1174    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1175                       Custom);
1176  }
1177
1178  // We want to custom lower some of our intrinsics.
1179  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1180
1181
1182  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1183  // handle type legalization for these operations here.
1184  //
1185  // FIXME: We really should do custom legalization for addition and
1186  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1187  // than generic legalization for 64-bit multiplication-with-overflow, though.
1188  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1189    // Add/Sub/Mul with overflow operations are custom lowered.
1190    MVT VT = IntVTs[i];
1191    setOperationAction(ISD::SADDO, VT, Custom);
1192    setOperationAction(ISD::UADDO, VT, Custom);
1193    setOperationAction(ISD::SSUBO, VT, Custom);
1194    setOperationAction(ISD::USUBO, VT, Custom);
1195    setOperationAction(ISD::SMULO, VT, Custom);
1196    setOperationAction(ISD::UMULO, VT, Custom);
1197  }
1198
1199  // There are no 8-bit 3-address imul/mul instructions
1200  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1201  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1202
1203  if (!Subtarget->is64Bit()) {
1204    // These libcalls are not available in 32-bit.
1205    setLibcallName(RTLIB::SHL_I128, 0);
1206    setLibcallName(RTLIB::SRL_I128, 0);
1207    setLibcallName(RTLIB::SRA_I128, 0);
1208  }
1209
1210  // We have target-specific dag combine patterns for the following nodes:
1211  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1212  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1213  setTargetDAGCombine(ISD::VSELECT);
1214  setTargetDAGCombine(ISD::SELECT);
1215  setTargetDAGCombine(ISD::SHL);
1216  setTargetDAGCombine(ISD::SRA);
1217  setTargetDAGCombine(ISD::SRL);
1218  setTargetDAGCombine(ISD::OR);
1219  setTargetDAGCombine(ISD::AND);
1220  setTargetDAGCombine(ISD::ADD);
1221  setTargetDAGCombine(ISD::FADD);
1222  setTargetDAGCombine(ISD::FSUB);
1223  setTargetDAGCombine(ISD::SUB);
1224  setTargetDAGCombine(ISD::LOAD);
1225  setTargetDAGCombine(ISD::STORE);
1226  setTargetDAGCombine(ISD::ZERO_EXTEND);
1227  setTargetDAGCombine(ISD::SINT_TO_FP);
1228  if (Subtarget->is64Bit())
1229    setTargetDAGCombine(ISD::MUL);
1230  if (Subtarget->hasBMI())
1231    setTargetDAGCombine(ISD::XOR);
1232
1233  computeRegisterProperties();
1234
1235  // On Darwin, -Os means optimize for size without hurting performance,
1236  // do not reduce the limit.
1237  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1238  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1239  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1240  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1241  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1242  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1243  setPrefLoopAlignment(4); // 2^4 bytes.
1244  benefitFromCodePlacementOpt = true;
1245
1246  setPrefFunctionAlignment(4); // 2^4 bytes.
1247}
1248
1249
1250EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1251  if (!VT.isVector()) return MVT::i8;
1252  return VT.changeVectorElementTypeToInteger();
1253}
1254
1255
1256/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1257/// the desired ByVal argument alignment.
1258static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1259  if (MaxAlign == 16)
1260    return;
1261  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1262    if (VTy->getBitWidth() == 128)
1263      MaxAlign = 16;
1264  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1265    unsigned EltAlign = 0;
1266    getMaxByValAlign(ATy->getElementType(), EltAlign);
1267    if (EltAlign > MaxAlign)
1268      MaxAlign = EltAlign;
1269  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1270    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1271      unsigned EltAlign = 0;
1272      getMaxByValAlign(STy->getElementType(i), EltAlign);
1273      if (EltAlign > MaxAlign)
1274        MaxAlign = EltAlign;
1275      if (MaxAlign == 16)
1276        break;
1277    }
1278  }
1279  return;
1280}
1281
1282/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1283/// function arguments in the caller parameter area. For X86, aggregates
1284/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1285/// are at 4-byte boundaries.
1286unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1287  if (Subtarget->is64Bit()) {
1288    // Max of 8 and alignment of type.
1289    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1290    if (TyAlign > 8)
1291      return TyAlign;
1292    return 8;
1293  }
1294
1295  unsigned Align = 4;
1296  if (Subtarget->hasSSE1())
1297    getMaxByValAlign(Ty, Align);
1298  return Align;
1299}
1300
1301/// getOptimalMemOpType - Returns the target specific optimal type for load
1302/// and store operations as a result of memset, memcpy, and memmove
1303/// lowering. If DstAlign is zero that means it's safe to destination
1304/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1305/// means there isn't a need to check it against alignment requirement,
1306/// probably because the source does not need to be loaded. If
1307/// 'IsZeroVal' is true, that means it's safe to return a
1308/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1309/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1310/// constant so it does not need to be loaded.
1311/// It returns EVT::Other if the type should be determined using generic
1312/// target-independent logic.
1313EVT
1314X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1315                                       unsigned DstAlign, unsigned SrcAlign,
1316                                       bool IsZeroVal,
1317                                       bool MemcpyStrSrc,
1318                                       MachineFunction &MF) const {
1319  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1320  // linux.  This is because the stack realignment code can't handle certain
1321  // cases like PR2962.  This should be removed when PR2962 is fixed.
1322  const Function *F = MF.getFunction();
1323  if (IsZeroVal &&
1324      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1325    if (Size >= 16 &&
1326        (Subtarget->isUnalignedMemAccessFast() ||
1327         ((DstAlign == 0 || DstAlign >= 16) &&
1328          (SrcAlign == 0 || SrcAlign >= 16))) &&
1329        Subtarget->getStackAlignment() >= 16) {
1330      if (Subtarget->getStackAlignment() >= 32) {
1331        if (Subtarget->hasAVX2())
1332          return MVT::v8i32;
1333        if (Subtarget->hasAVX())
1334          return MVT::v8f32;
1335      }
1336      if (Subtarget->hasSSE2())
1337        return MVT::v4i32;
1338      if (Subtarget->hasSSE1())
1339        return MVT::v4f32;
1340    } else if (!MemcpyStrSrc && Size >= 8 &&
1341               !Subtarget->is64Bit() &&
1342               Subtarget->getStackAlignment() >= 8 &&
1343               Subtarget->hasSSE2()) {
1344      // Do not use f64 to lower memcpy if source is string constant. It's
1345      // better to use i32 to avoid the loads.
1346      return MVT::f64;
1347    }
1348  }
1349  if (Subtarget->is64Bit() && Size >= 8)
1350    return MVT::i64;
1351  return MVT::i32;
1352}
1353
1354/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1355/// current function.  The returned value is a member of the
1356/// MachineJumpTableInfo::JTEntryKind enum.
1357unsigned X86TargetLowering::getJumpTableEncoding() const {
1358  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1359  // symbol.
1360  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1361      Subtarget->isPICStyleGOT())
1362    return MachineJumpTableInfo::EK_Custom32;
1363
1364  // Otherwise, use the normal jump table encoding heuristics.
1365  return TargetLowering::getJumpTableEncoding();
1366}
1367
1368const MCExpr *
1369X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1370                                             const MachineBasicBlock *MBB,
1371                                             unsigned uid,MCContext &Ctx) const{
1372  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1373         Subtarget->isPICStyleGOT());
1374  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1375  // entries.
1376  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1377                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1378}
1379
1380/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1381/// jumptable.
1382SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1383                                                    SelectionDAG &DAG) const {
1384  if (!Subtarget->is64Bit())
1385    // This doesn't have DebugLoc associated with it, but is not really the
1386    // same as a Register.
1387    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1388  return Table;
1389}
1390
1391/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1392/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1393/// MCExpr.
1394const MCExpr *X86TargetLowering::
1395getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1396                             MCContext &Ctx) const {
1397  // X86-64 uses RIP relative addressing based on the jump table label.
1398  if (Subtarget->isPICStyleRIPRel())
1399    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1400
1401  // Otherwise, the reference is relative to the PIC base.
1402  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1403}
1404
1405// FIXME: Why this routine is here? Move to RegInfo!
1406std::pair<const TargetRegisterClass*, uint8_t>
1407X86TargetLowering::findRepresentativeClass(EVT VT) const{
1408  const TargetRegisterClass *RRC = 0;
1409  uint8_t Cost = 1;
1410  switch (VT.getSimpleVT().SimpleTy) {
1411  default:
1412    return TargetLowering::findRepresentativeClass(VT);
1413  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1414    RRC = (Subtarget->is64Bit()
1415           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1416    break;
1417  case MVT::x86mmx:
1418    RRC = X86::VR64RegisterClass;
1419    break;
1420  case MVT::f32: case MVT::f64:
1421  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1422  case MVT::v4f32: case MVT::v2f64:
1423  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1424  case MVT::v4f64:
1425    RRC = X86::VR128RegisterClass;
1426    break;
1427  }
1428  return std::make_pair(RRC, Cost);
1429}
1430
1431bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1432                                               unsigned &Offset) const {
1433  if (!Subtarget->isTargetLinux())
1434    return false;
1435
1436  if (Subtarget->is64Bit()) {
1437    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1438    Offset = 0x28;
1439    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1440      AddressSpace = 256;
1441    else
1442      AddressSpace = 257;
1443  } else {
1444    // %gs:0x14 on i386
1445    Offset = 0x14;
1446    AddressSpace = 256;
1447  }
1448  return true;
1449}
1450
1451
1452//===----------------------------------------------------------------------===//
1453//               Return Value Calling Convention Implementation
1454//===----------------------------------------------------------------------===//
1455
1456#include "X86GenCallingConv.inc"
1457
1458bool
1459X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1460				  MachineFunction &MF, bool isVarArg,
1461                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1462                        LLVMContext &Context) const {
1463  SmallVector<CCValAssign, 16> RVLocs;
1464  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1465                 RVLocs, Context);
1466  return CCInfo.CheckReturn(Outs, RetCC_X86);
1467}
1468
1469SDValue
1470X86TargetLowering::LowerReturn(SDValue Chain,
1471                               CallingConv::ID CallConv, bool isVarArg,
1472                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1473                               const SmallVectorImpl<SDValue> &OutVals,
1474                               DebugLoc dl, SelectionDAG &DAG) const {
1475  MachineFunction &MF = DAG.getMachineFunction();
1476  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1477
1478  SmallVector<CCValAssign, 16> RVLocs;
1479  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1480                 RVLocs, *DAG.getContext());
1481  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1482
1483  // Add the regs to the liveout set for the function.
1484  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1485  for (unsigned i = 0; i != RVLocs.size(); ++i)
1486    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1487      MRI.addLiveOut(RVLocs[i].getLocReg());
1488
1489  SDValue Flag;
1490
1491  SmallVector<SDValue, 6> RetOps;
1492  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1493  // Operand #1 = Bytes To Pop
1494  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1495                   MVT::i16));
1496
1497  // Copy the result values into the output registers.
1498  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1499    CCValAssign &VA = RVLocs[i];
1500    assert(VA.isRegLoc() && "Can only return in registers!");
1501    SDValue ValToCopy = OutVals[i];
1502    EVT ValVT = ValToCopy.getValueType();
1503
1504    // If this is x86-64, and we disabled SSE, we can't return FP values,
1505    // or SSE or MMX vectors.
1506    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1507         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1508          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1509      report_fatal_error("SSE register return with SSE disabled");
1510    }
1511    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1512    // llvm-gcc has never done it right and no one has noticed, so this
1513    // should be OK for now.
1514    if (ValVT == MVT::f64 &&
1515        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1516      report_fatal_error("SSE2 register return with SSE2 disabled");
1517
1518    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1519    // the RET instruction and handled by the FP Stackifier.
1520    if (VA.getLocReg() == X86::ST0 ||
1521        VA.getLocReg() == X86::ST1) {
1522      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1523      // change the value to the FP stack register class.
1524      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1525        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1526      RetOps.push_back(ValToCopy);
1527      // Don't emit a copytoreg.
1528      continue;
1529    }
1530
1531    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1532    // which is returned in RAX / RDX.
1533    if (Subtarget->is64Bit()) {
1534      if (ValVT == MVT::x86mmx) {
1535        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1536          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1537          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1538                                  ValToCopy);
1539          // If we don't have SSE2 available, convert to v4f32 so the generated
1540          // register is legal.
1541          if (!Subtarget->hasSSE2())
1542            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1543        }
1544      }
1545    }
1546
1547    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1548    Flag = Chain.getValue(1);
1549  }
1550
1551  // The x86-64 ABI for returning structs by value requires that we copy
1552  // the sret argument into %rax for the return. We saved the argument into
1553  // a virtual register in the entry block, so now we copy the value out
1554  // and into %rax.
1555  if (Subtarget->is64Bit() &&
1556      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1557    MachineFunction &MF = DAG.getMachineFunction();
1558    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1559    unsigned Reg = FuncInfo->getSRetReturnReg();
1560    assert(Reg &&
1561           "SRetReturnReg should have been set in LowerFormalArguments().");
1562    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1563
1564    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1565    Flag = Chain.getValue(1);
1566
1567    // RAX now acts like a return value.
1568    MRI.addLiveOut(X86::RAX);
1569  }
1570
1571  RetOps[0] = Chain;  // Update chain.
1572
1573  // Add the flag if we have it.
1574  if (Flag.getNode())
1575    RetOps.push_back(Flag);
1576
1577  return DAG.getNode(X86ISD::RET_FLAG, dl,
1578                     MVT::Other, &RetOps[0], RetOps.size());
1579}
1580
1581bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1582  if (N->getNumValues() != 1)
1583    return false;
1584  if (!N->hasNUsesOfValue(1, 0))
1585    return false;
1586
1587  SDNode *Copy = *N->use_begin();
1588  if (Copy->getOpcode() != ISD::CopyToReg &&
1589      Copy->getOpcode() != ISD::FP_EXTEND)
1590    return false;
1591
1592  bool HasRet = false;
1593  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1594       UI != UE; ++UI) {
1595    if (UI->getOpcode() != X86ISD::RET_FLAG)
1596      return false;
1597    HasRet = true;
1598  }
1599
1600  return HasRet;
1601}
1602
1603EVT
1604X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1605                                            ISD::NodeType ExtendKind) const {
1606  MVT ReturnMVT;
1607  // TODO: Is this also valid on 32-bit?
1608  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1609    ReturnMVT = MVT::i8;
1610  else
1611    ReturnMVT = MVT::i32;
1612
1613  EVT MinVT = getRegisterType(Context, ReturnMVT);
1614  return VT.bitsLT(MinVT) ? MinVT : VT;
1615}
1616
1617/// LowerCallResult - Lower the result values of a call into the
1618/// appropriate copies out of appropriate physical registers.
1619///
1620SDValue
1621X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1622                                   CallingConv::ID CallConv, bool isVarArg,
1623                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1624                                   DebugLoc dl, SelectionDAG &DAG,
1625                                   SmallVectorImpl<SDValue> &InVals) const {
1626
1627  // Assign locations to each value returned by this call.
1628  SmallVector<CCValAssign, 16> RVLocs;
1629  bool Is64Bit = Subtarget->is64Bit();
1630  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1631		 getTargetMachine(), RVLocs, *DAG.getContext());
1632  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1633
1634  // Copy all of the result registers out of their specified physreg.
1635  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1636    CCValAssign &VA = RVLocs[i];
1637    EVT CopyVT = VA.getValVT();
1638
1639    // If this is x86-64, and we disabled SSE, we can't return FP values
1640    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1641        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1642      report_fatal_error("SSE register return with SSE disabled");
1643    }
1644
1645    SDValue Val;
1646
1647    // If this is a call to a function that returns an fp value on the floating
1648    // point stack, we must guarantee the the value is popped from the stack, so
1649    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1650    // if the return value is not used. We use the FpPOP_RETVAL instruction
1651    // instead.
1652    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1653      // If we prefer to use the value in xmm registers, copy it out as f80 and
1654      // use a truncate to move it from fp stack reg to xmm reg.
1655      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1656      SDValue Ops[] = { Chain, InFlag };
1657      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1658                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1659      Val = Chain.getValue(0);
1660
1661      // Round the f80 to the right size, which also moves it to the appropriate
1662      // xmm register.
1663      if (CopyVT != VA.getValVT())
1664        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1665                          // This truncation won't change the value.
1666                          DAG.getIntPtrConstant(1));
1667    } else {
1668      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1669                                 CopyVT, InFlag).getValue(1);
1670      Val = Chain.getValue(0);
1671    }
1672    InFlag = Chain.getValue(2);
1673    InVals.push_back(Val);
1674  }
1675
1676  return Chain;
1677}
1678
1679
1680//===----------------------------------------------------------------------===//
1681//                C & StdCall & Fast Calling Convention implementation
1682//===----------------------------------------------------------------------===//
1683//  StdCall calling convention seems to be standard for many Windows' API
1684//  routines and around. It differs from C calling convention just a little:
1685//  callee should clean up the stack, not caller. Symbols should be also
1686//  decorated in some fancy way :) It doesn't support any vector arguments.
1687//  For info on fast calling convention see Fast Calling Convention (tail call)
1688//  implementation LowerX86_32FastCCCallTo.
1689
1690/// CallIsStructReturn - Determines whether a call uses struct return
1691/// semantics.
1692static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1693  if (Outs.empty())
1694    return false;
1695
1696  return Outs[0].Flags.isSRet();
1697}
1698
1699/// ArgsAreStructReturn - Determines whether a function uses struct
1700/// return semantics.
1701static bool
1702ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1703  if (Ins.empty())
1704    return false;
1705
1706  return Ins[0].Flags.isSRet();
1707}
1708
1709/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1710/// by "Src" to address "Dst" with size and alignment information specified by
1711/// the specific parameter attribute. The copy will be passed as a byval
1712/// function parameter.
1713static SDValue
1714CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1715                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1716                          DebugLoc dl) {
1717  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1718
1719  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1720                       /*isVolatile*/false, /*AlwaysInline=*/true,
1721                       MachinePointerInfo(), MachinePointerInfo());
1722}
1723
1724/// IsTailCallConvention - Return true if the calling convention is one that
1725/// supports tail call optimization.
1726static bool IsTailCallConvention(CallingConv::ID CC) {
1727  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1728}
1729
1730bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1731  if (!CI->isTailCall())
1732    return false;
1733
1734  CallSite CS(CI);
1735  CallingConv::ID CalleeCC = CS.getCallingConv();
1736  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1737    return false;
1738
1739  return true;
1740}
1741
1742/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1743/// a tailcall target by changing its ABI.
1744static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1745                                   bool GuaranteedTailCallOpt) {
1746  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1747}
1748
1749SDValue
1750X86TargetLowering::LowerMemArgument(SDValue Chain,
1751                                    CallingConv::ID CallConv,
1752                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1753                                    DebugLoc dl, SelectionDAG &DAG,
1754                                    const CCValAssign &VA,
1755                                    MachineFrameInfo *MFI,
1756                                    unsigned i) const {
1757  // Create the nodes corresponding to a load from this parameter slot.
1758  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1759  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1760                              getTargetMachine().Options.GuaranteedTailCallOpt);
1761  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1762  EVT ValVT;
1763
1764  // If value is passed by pointer we have address passed instead of the value
1765  // itself.
1766  if (VA.getLocInfo() == CCValAssign::Indirect)
1767    ValVT = VA.getLocVT();
1768  else
1769    ValVT = VA.getValVT();
1770
1771  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1772  // changed with more analysis.
1773  // In case of tail call optimization mark all arguments mutable. Since they
1774  // could be overwritten by lowering of arguments in case of a tail call.
1775  if (Flags.isByVal()) {
1776    unsigned Bytes = Flags.getByValSize();
1777    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1778    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1779    return DAG.getFrameIndex(FI, getPointerTy());
1780  } else {
1781    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1782                                    VA.getLocMemOffset(), isImmutable);
1783    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1784    return DAG.getLoad(ValVT, dl, Chain, FIN,
1785                       MachinePointerInfo::getFixedStack(FI),
1786                       false, false, false, 0);
1787  }
1788}
1789
1790SDValue
1791X86TargetLowering::LowerFormalArguments(SDValue Chain,
1792                                        CallingConv::ID CallConv,
1793                                        bool isVarArg,
1794                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1795                                        DebugLoc dl,
1796                                        SelectionDAG &DAG,
1797                                        SmallVectorImpl<SDValue> &InVals)
1798                                          const {
1799  MachineFunction &MF = DAG.getMachineFunction();
1800  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1801
1802  const Function* Fn = MF.getFunction();
1803  if (Fn->hasExternalLinkage() &&
1804      Subtarget->isTargetCygMing() &&
1805      Fn->getName() == "main")
1806    FuncInfo->setForceFramePointer(true);
1807
1808  MachineFrameInfo *MFI = MF.getFrameInfo();
1809  bool Is64Bit = Subtarget->is64Bit();
1810  bool IsWin64 = Subtarget->isTargetWin64();
1811
1812  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1813         "Var args not supported with calling convention fastcc or ghc");
1814
1815  // Assign locations to all of the incoming arguments.
1816  SmallVector<CCValAssign, 16> ArgLocs;
1817  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1818                 ArgLocs, *DAG.getContext());
1819
1820  // Allocate shadow area for Win64
1821  if (IsWin64) {
1822    CCInfo.AllocateStack(32, 8);
1823  }
1824
1825  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1826
1827  unsigned LastVal = ~0U;
1828  SDValue ArgValue;
1829  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1830    CCValAssign &VA = ArgLocs[i];
1831    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1832    // places.
1833    assert(VA.getValNo() != LastVal &&
1834           "Don't support value assigned to multiple locs yet");
1835    (void)LastVal;
1836    LastVal = VA.getValNo();
1837
1838    if (VA.isRegLoc()) {
1839      EVT RegVT = VA.getLocVT();
1840      TargetRegisterClass *RC = NULL;
1841      if (RegVT == MVT::i32)
1842        RC = X86::GR32RegisterClass;
1843      else if (Is64Bit && RegVT == MVT::i64)
1844        RC = X86::GR64RegisterClass;
1845      else if (RegVT == MVT::f32)
1846        RC = X86::FR32RegisterClass;
1847      else if (RegVT == MVT::f64)
1848        RC = X86::FR64RegisterClass;
1849      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1850        RC = X86::VR256RegisterClass;
1851      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1852        RC = X86::VR128RegisterClass;
1853      else if (RegVT == MVT::x86mmx)
1854        RC = X86::VR64RegisterClass;
1855      else
1856        llvm_unreachable("Unknown argument type!");
1857
1858      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1859      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1860
1861      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1862      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1863      // right size.
1864      if (VA.getLocInfo() == CCValAssign::SExt)
1865        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1866                               DAG.getValueType(VA.getValVT()));
1867      else if (VA.getLocInfo() == CCValAssign::ZExt)
1868        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1869                               DAG.getValueType(VA.getValVT()));
1870      else if (VA.getLocInfo() == CCValAssign::BCvt)
1871        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1872
1873      if (VA.isExtInLoc()) {
1874        // Handle MMX values passed in XMM regs.
1875        if (RegVT.isVector()) {
1876          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1877                                 ArgValue);
1878        } else
1879          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1880      }
1881    } else {
1882      assert(VA.isMemLoc());
1883      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1884    }
1885
1886    // If value is passed via pointer - do a load.
1887    if (VA.getLocInfo() == CCValAssign::Indirect)
1888      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1889                             MachinePointerInfo(), false, false, false, 0);
1890
1891    InVals.push_back(ArgValue);
1892  }
1893
1894  // The x86-64 ABI for returning structs by value requires that we copy
1895  // the sret argument into %rax for the return. Save the argument into
1896  // a virtual register so that we can access it from the return points.
1897  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1898    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1899    unsigned Reg = FuncInfo->getSRetReturnReg();
1900    if (!Reg) {
1901      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1902      FuncInfo->setSRetReturnReg(Reg);
1903    }
1904    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1905    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1906  }
1907
1908  unsigned StackSize = CCInfo.getNextStackOffset();
1909  // Align stack specially for tail calls.
1910  if (FuncIsMadeTailCallSafe(CallConv,
1911                             MF.getTarget().Options.GuaranteedTailCallOpt))
1912    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1913
1914  // If the function takes variable number of arguments, make a frame index for
1915  // the start of the first vararg value... for expansion of llvm.va_start.
1916  if (isVarArg) {
1917    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1918                    CallConv != CallingConv::X86_ThisCall)) {
1919      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1920    }
1921    if (Is64Bit) {
1922      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1923
1924      // FIXME: We should really autogenerate these arrays
1925      static const unsigned GPR64ArgRegsWin64[] = {
1926        X86::RCX, X86::RDX, X86::R8,  X86::R9
1927      };
1928      static const unsigned GPR64ArgRegs64Bit[] = {
1929        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1930      };
1931      static const unsigned XMMArgRegs64Bit[] = {
1932        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1933        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1934      };
1935      const unsigned *GPR64ArgRegs;
1936      unsigned NumXMMRegs = 0;
1937
1938      if (IsWin64) {
1939        // The XMM registers which might contain var arg parameters are shadowed
1940        // in their paired GPR.  So we only need to save the GPR to their home
1941        // slots.
1942        TotalNumIntRegs = 4;
1943        GPR64ArgRegs = GPR64ArgRegsWin64;
1944      } else {
1945        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1946        GPR64ArgRegs = GPR64ArgRegs64Bit;
1947
1948        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1949                                                TotalNumXMMRegs);
1950      }
1951      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1952                                                       TotalNumIntRegs);
1953
1954      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1955      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1956             "SSE register cannot be used when SSE is disabled!");
1957      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1958               NoImplicitFloatOps) &&
1959             "SSE register cannot be used when SSE is disabled!");
1960      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1961          !Subtarget->hasSSE1())
1962        // Kernel mode asks for SSE to be disabled, so don't push them
1963        // on the stack.
1964        TotalNumXMMRegs = 0;
1965
1966      if (IsWin64) {
1967        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1968        // Get to the caller-allocated home save location.  Add 8 to account
1969        // for the return address.
1970        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1971        FuncInfo->setRegSaveFrameIndex(
1972          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1973        // Fixup to set vararg frame on shadow area (4 x i64).
1974        if (NumIntRegs < 4)
1975          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1976      } else {
1977        // For X86-64, if there are vararg parameters that are passed via
1978        // registers, then we must store them to their spots on the stack so
1979        // they may be loaded by deferencing the result of va_next.
1980        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1981        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1982        FuncInfo->setRegSaveFrameIndex(
1983          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1984                               false));
1985      }
1986
1987      // Store the integer parameter registers.
1988      SmallVector<SDValue, 8> MemOps;
1989      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1990                                        getPointerTy());
1991      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1992      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1993        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1994                                  DAG.getIntPtrConstant(Offset));
1995        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1996                                     X86::GR64RegisterClass);
1997        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1998        SDValue Store =
1999          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2000                       MachinePointerInfo::getFixedStack(
2001                         FuncInfo->getRegSaveFrameIndex(), Offset),
2002                       false, false, 0);
2003        MemOps.push_back(Store);
2004        Offset += 8;
2005      }
2006
2007      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2008        // Now store the XMM (fp + vector) parameter registers.
2009        SmallVector<SDValue, 11> SaveXMMOps;
2010        SaveXMMOps.push_back(Chain);
2011
2012        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2013        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2014        SaveXMMOps.push_back(ALVal);
2015
2016        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2017                               FuncInfo->getRegSaveFrameIndex()));
2018        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2019                               FuncInfo->getVarArgsFPOffset()));
2020
2021        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2022          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2023                                       X86::VR128RegisterClass);
2024          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2025          SaveXMMOps.push_back(Val);
2026        }
2027        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2028                                     MVT::Other,
2029                                     &SaveXMMOps[0], SaveXMMOps.size()));
2030      }
2031
2032      if (!MemOps.empty())
2033        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2034                            &MemOps[0], MemOps.size());
2035    }
2036  }
2037
2038  // Some CCs need callee pop.
2039  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2040                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2041    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2042  } else {
2043    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2044    // If this is an sret function, the return should pop the hidden pointer.
2045    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
2046      FuncInfo->setBytesToPopOnReturn(4);
2047  }
2048
2049  if (!Is64Bit) {
2050    // RegSaveFrameIndex is X86-64 only.
2051    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2052    if (CallConv == CallingConv::X86_FastCall ||
2053        CallConv == CallingConv::X86_ThisCall)
2054      // fastcc functions can't have varargs.
2055      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2056  }
2057
2058  FuncInfo->setArgumentStackSize(StackSize);
2059
2060  return Chain;
2061}
2062
2063SDValue
2064X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2065                                    SDValue StackPtr, SDValue Arg,
2066                                    DebugLoc dl, SelectionDAG &DAG,
2067                                    const CCValAssign &VA,
2068                                    ISD::ArgFlagsTy Flags) const {
2069  unsigned LocMemOffset = VA.getLocMemOffset();
2070  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2071  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2072  if (Flags.isByVal())
2073    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2074
2075  return DAG.getStore(Chain, dl, Arg, PtrOff,
2076                      MachinePointerInfo::getStack(LocMemOffset),
2077                      false, false, 0);
2078}
2079
2080/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2081/// optimization is performed and it is required.
2082SDValue
2083X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2084                                           SDValue &OutRetAddr, SDValue Chain,
2085                                           bool IsTailCall, bool Is64Bit,
2086                                           int FPDiff, DebugLoc dl) const {
2087  // Adjust the Return address stack slot.
2088  EVT VT = getPointerTy();
2089  OutRetAddr = getReturnAddressFrameIndex(DAG);
2090
2091  // Load the "old" Return address.
2092  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2093                           false, false, false, 0);
2094  return SDValue(OutRetAddr.getNode(), 1);
2095}
2096
2097/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2098/// optimization is performed and it is required (FPDiff!=0).
2099static SDValue
2100EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2101                         SDValue Chain, SDValue RetAddrFrIdx,
2102                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2103  // Store the return address to the appropriate stack slot.
2104  if (!FPDiff) return Chain;
2105  // Calculate the new stack slot for the return address.
2106  int SlotSize = Is64Bit ? 8 : 4;
2107  int NewReturnAddrFI =
2108    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2109  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2110  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2111  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2112                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2113                       false, false, 0);
2114  return Chain;
2115}
2116
2117SDValue
2118X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2119                             CallingConv::ID CallConv, bool isVarArg,
2120                             bool &isTailCall,
2121                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2122                             const SmallVectorImpl<SDValue> &OutVals,
2123                             const SmallVectorImpl<ISD::InputArg> &Ins,
2124                             DebugLoc dl, SelectionDAG &DAG,
2125                             SmallVectorImpl<SDValue> &InVals) const {
2126  MachineFunction &MF = DAG.getMachineFunction();
2127  bool Is64Bit        = Subtarget->is64Bit();
2128  bool IsWin64        = Subtarget->isTargetWin64();
2129  bool IsStructRet    = CallIsStructReturn(Outs);
2130  bool IsSibcall      = false;
2131
2132  if (isTailCall) {
2133    // Check if it's really possible to do a tail call.
2134    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2135                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2136                                                   Outs, OutVals, Ins, DAG);
2137
2138    // Sibcalls are automatically detected tailcalls which do not require
2139    // ABI changes.
2140    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2141      IsSibcall = true;
2142
2143    if (isTailCall)
2144      ++NumTailCalls;
2145  }
2146
2147  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2148         "Var args not supported with calling convention fastcc or ghc");
2149
2150  // Analyze operands of the call, assigning locations to each operand.
2151  SmallVector<CCValAssign, 16> ArgLocs;
2152  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2153                 ArgLocs, *DAG.getContext());
2154
2155  // Allocate shadow area for Win64
2156  if (IsWin64) {
2157    CCInfo.AllocateStack(32, 8);
2158  }
2159
2160  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2161
2162  // Get a count of how many bytes are to be pushed on the stack.
2163  unsigned NumBytes = CCInfo.getNextStackOffset();
2164  if (IsSibcall)
2165    // This is a sibcall. The memory operands are available in caller's
2166    // own caller's stack.
2167    NumBytes = 0;
2168  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2169           IsTailCallConvention(CallConv))
2170    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2171
2172  int FPDiff = 0;
2173  if (isTailCall && !IsSibcall) {
2174    // Lower arguments at fp - stackoffset + fpdiff.
2175    unsigned NumBytesCallerPushed =
2176      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2177    FPDiff = NumBytesCallerPushed - NumBytes;
2178
2179    // Set the delta of movement of the returnaddr stackslot.
2180    // But only set if delta is greater than previous delta.
2181    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2182      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2183  }
2184
2185  if (!IsSibcall)
2186    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2187
2188  SDValue RetAddrFrIdx;
2189  // Load return address for tail calls.
2190  if (isTailCall && FPDiff)
2191    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2192                                    Is64Bit, FPDiff, dl);
2193
2194  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2195  SmallVector<SDValue, 8> MemOpChains;
2196  SDValue StackPtr;
2197
2198  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2199  // of tail call optimization arguments are handle later.
2200  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2201    CCValAssign &VA = ArgLocs[i];
2202    EVT RegVT = VA.getLocVT();
2203    SDValue Arg = OutVals[i];
2204    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2205    bool isByVal = Flags.isByVal();
2206
2207    // Promote the value if needed.
2208    switch (VA.getLocInfo()) {
2209    default: llvm_unreachable("Unknown loc info!");
2210    case CCValAssign::Full: break;
2211    case CCValAssign::SExt:
2212      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2213      break;
2214    case CCValAssign::ZExt:
2215      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2216      break;
2217    case CCValAssign::AExt:
2218      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2219        // Special case: passing MMX values in XMM registers.
2220        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2221        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2222        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2223      } else
2224        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2225      break;
2226    case CCValAssign::BCvt:
2227      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2228      break;
2229    case CCValAssign::Indirect: {
2230      // Store the argument.
2231      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2232      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2233      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2234                           MachinePointerInfo::getFixedStack(FI),
2235                           false, false, 0);
2236      Arg = SpillSlot;
2237      break;
2238    }
2239    }
2240
2241    if (VA.isRegLoc()) {
2242      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2243      if (isVarArg && IsWin64) {
2244        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2245        // shadow reg if callee is a varargs function.
2246        unsigned ShadowReg = 0;
2247        switch (VA.getLocReg()) {
2248        case X86::XMM0: ShadowReg = X86::RCX; break;
2249        case X86::XMM1: ShadowReg = X86::RDX; break;
2250        case X86::XMM2: ShadowReg = X86::R8; break;
2251        case X86::XMM3: ShadowReg = X86::R9; break;
2252        }
2253        if (ShadowReg)
2254          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2255      }
2256    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2257      assert(VA.isMemLoc());
2258      if (StackPtr.getNode() == 0)
2259        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2260      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2261                                             dl, DAG, VA, Flags));
2262    }
2263  }
2264
2265  if (!MemOpChains.empty())
2266    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2267                        &MemOpChains[0], MemOpChains.size());
2268
2269  // Build a sequence of copy-to-reg nodes chained together with token chain
2270  // and flag operands which copy the outgoing args into registers.
2271  SDValue InFlag;
2272  // Tail call byval lowering might overwrite argument registers so in case of
2273  // tail call optimization the copies to registers are lowered later.
2274  if (!isTailCall)
2275    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2276      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2277                               RegsToPass[i].second, InFlag);
2278      InFlag = Chain.getValue(1);
2279    }
2280
2281  if (Subtarget->isPICStyleGOT()) {
2282    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2283    // GOT pointer.
2284    if (!isTailCall) {
2285      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2286                               DAG.getNode(X86ISD::GlobalBaseReg,
2287                                           DebugLoc(), getPointerTy()),
2288                               InFlag);
2289      InFlag = Chain.getValue(1);
2290    } else {
2291      // If we are tail calling and generating PIC/GOT style code load the
2292      // address of the callee into ECX. The value in ecx is used as target of
2293      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2294      // for tail calls on PIC/GOT architectures. Normally we would just put the
2295      // address of GOT into ebx and then call target@PLT. But for tail calls
2296      // ebx would be restored (since ebx is callee saved) before jumping to the
2297      // target@PLT.
2298
2299      // Note: The actual moving to ECX is done further down.
2300      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2301      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2302          !G->getGlobal()->hasProtectedVisibility())
2303        Callee = LowerGlobalAddress(Callee, DAG);
2304      else if (isa<ExternalSymbolSDNode>(Callee))
2305        Callee = LowerExternalSymbol(Callee, DAG);
2306    }
2307  }
2308
2309  if (Is64Bit && isVarArg && !IsWin64) {
2310    // From AMD64 ABI document:
2311    // For calls that may call functions that use varargs or stdargs
2312    // (prototype-less calls or calls to functions containing ellipsis (...) in
2313    // the declaration) %al is used as hidden argument to specify the number
2314    // of SSE registers used. The contents of %al do not need to match exactly
2315    // the number of registers, but must be an ubound on the number of SSE
2316    // registers used and is in the range 0 - 8 inclusive.
2317
2318    // Count the number of XMM registers allocated.
2319    static const unsigned XMMArgRegs[] = {
2320      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2321      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2322    };
2323    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2324    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2325           && "SSE registers cannot be used when SSE is disabled");
2326
2327    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2328                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2329    InFlag = Chain.getValue(1);
2330  }
2331
2332
2333  // For tail calls lower the arguments to the 'real' stack slot.
2334  if (isTailCall) {
2335    // Force all the incoming stack arguments to be loaded from the stack
2336    // before any new outgoing arguments are stored to the stack, because the
2337    // outgoing stack slots may alias the incoming argument stack slots, and
2338    // the alias isn't otherwise explicit. This is slightly more conservative
2339    // than necessary, because it means that each store effectively depends
2340    // on every argument instead of just those arguments it would clobber.
2341    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2342
2343    SmallVector<SDValue, 8> MemOpChains2;
2344    SDValue FIN;
2345    int FI = 0;
2346    // Do not flag preceding copytoreg stuff together with the following stuff.
2347    InFlag = SDValue();
2348    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2349      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2350        CCValAssign &VA = ArgLocs[i];
2351        if (VA.isRegLoc())
2352          continue;
2353        assert(VA.isMemLoc());
2354        SDValue Arg = OutVals[i];
2355        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2356        // Create frame index.
2357        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2358        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2359        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2360        FIN = DAG.getFrameIndex(FI, getPointerTy());
2361
2362        if (Flags.isByVal()) {
2363          // Copy relative to framepointer.
2364          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2365          if (StackPtr.getNode() == 0)
2366            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2367                                          getPointerTy());
2368          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2369
2370          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2371                                                           ArgChain,
2372                                                           Flags, DAG, dl));
2373        } else {
2374          // Store relative to framepointer.
2375          MemOpChains2.push_back(
2376            DAG.getStore(ArgChain, dl, Arg, FIN,
2377                         MachinePointerInfo::getFixedStack(FI),
2378                         false, false, 0));
2379        }
2380      }
2381    }
2382
2383    if (!MemOpChains2.empty())
2384      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2385                          &MemOpChains2[0], MemOpChains2.size());
2386
2387    // Copy arguments to their registers.
2388    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2389      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2390                               RegsToPass[i].second, InFlag);
2391      InFlag = Chain.getValue(1);
2392    }
2393    InFlag =SDValue();
2394
2395    // Store the return address to the appropriate stack slot.
2396    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2397                                     FPDiff, dl);
2398  }
2399
2400  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2401    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2402    // In the 64-bit large code model, we have to make all calls
2403    // through a register, since the call instruction's 32-bit
2404    // pc-relative offset may not be large enough to hold the whole
2405    // address.
2406  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2407    // If the callee is a GlobalAddress node (quite common, every direct call
2408    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2409    // it.
2410
2411    // We should use extra load for direct calls to dllimported functions in
2412    // non-JIT mode.
2413    const GlobalValue *GV = G->getGlobal();
2414    if (!GV->hasDLLImportLinkage()) {
2415      unsigned char OpFlags = 0;
2416      bool ExtraLoad = false;
2417      unsigned WrapperKind = ISD::DELETED_NODE;
2418
2419      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2420      // external symbols most go through the PLT in PIC mode.  If the symbol
2421      // has hidden or protected visibility, or if it is static or local, then
2422      // we don't need to use the PLT - we can directly call it.
2423      if (Subtarget->isTargetELF() &&
2424          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2425          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2426        OpFlags = X86II::MO_PLT;
2427      } else if (Subtarget->isPICStyleStubAny() &&
2428                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2429                 (!Subtarget->getTargetTriple().isMacOSX() ||
2430                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2431        // PC-relative references to external symbols should go through $stub,
2432        // unless we're building with the leopard linker or later, which
2433        // automatically synthesizes these stubs.
2434        OpFlags = X86II::MO_DARWIN_STUB;
2435      } else if (Subtarget->isPICStyleRIPRel() &&
2436                 isa<Function>(GV) &&
2437                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2438        // If the function is marked as non-lazy, generate an indirect call
2439        // which loads from the GOT directly. This avoids runtime overhead
2440        // at the cost of eager binding (and one extra byte of encoding).
2441        OpFlags = X86II::MO_GOTPCREL;
2442        WrapperKind = X86ISD::WrapperRIP;
2443        ExtraLoad = true;
2444      }
2445
2446      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2447                                          G->getOffset(), OpFlags);
2448
2449      // Add a wrapper if needed.
2450      if (WrapperKind != ISD::DELETED_NODE)
2451        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2452      // Add extra indirection if needed.
2453      if (ExtraLoad)
2454        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2455                             MachinePointerInfo::getGOT(),
2456                             false, false, false, 0);
2457    }
2458  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2459    unsigned char OpFlags = 0;
2460
2461    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2462    // external symbols should go through the PLT.
2463    if (Subtarget->isTargetELF() &&
2464        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2465      OpFlags = X86II::MO_PLT;
2466    } else if (Subtarget->isPICStyleStubAny() &&
2467               (!Subtarget->getTargetTriple().isMacOSX() ||
2468                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2469      // PC-relative references to external symbols should go through $stub,
2470      // unless we're building with the leopard linker or later, which
2471      // automatically synthesizes these stubs.
2472      OpFlags = X86II::MO_DARWIN_STUB;
2473    }
2474
2475    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2476                                         OpFlags);
2477  }
2478
2479  // Returns a chain & a flag for retval copy to use.
2480  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2481  SmallVector<SDValue, 8> Ops;
2482
2483  if (!IsSibcall && isTailCall) {
2484    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2485                           DAG.getIntPtrConstant(0, true), InFlag);
2486    InFlag = Chain.getValue(1);
2487  }
2488
2489  Ops.push_back(Chain);
2490  Ops.push_back(Callee);
2491
2492  if (isTailCall)
2493    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2494
2495  // Add argument registers to the end of the list so that they are known live
2496  // into the call.
2497  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2498    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2499                                  RegsToPass[i].second.getValueType()));
2500
2501  // Add an implicit use GOT pointer in EBX.
2502  if (!isTailCall && Subtarget->isPICStyleGOT())
2503    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2504
2505  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2506  if (Is64Bit && isVarArg && !IsWin64)
2507    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2508
2509  if (InFlag.getNode())
2510    Ops.push_back(InFlag);
2511
2512  if (isTailCall) {
2513    // We used to do:
2514    //// If this is the first return lowered for this function, add the regs
2515    //// to the liveout set for the function.
2516    // This isn't right, although it's probably harmless on x86; liveouts
2517    // should be computed from returns not tail calls.  Consider a void
2518    // function making a tail call to a function returning int.
2519    return DAG.getNode(X86ISD::TC_RETURN, dl,
2520                       NodeTys, &Ops[0], Ops.size());
2521  }
2522
2523  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2524  InFlag = Chain.getValue(1);
2525
2526  // Create the CALLSEQ_END node.
2527  unsigned NumBytesForCalleeToPush;
2528  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2529                       getTargetMachine().Options.GuaranteedTailCallOpt))
2530    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2531  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2532    // If this is a call to a struct-return function, the callee
2533    // pops the hidden struct pointer, so we have to push it back.
2534    // This is common for Darwin/X86, Linux & Mingw32 targets.
2535    NumBytesForCalleeToPush = 4;
2536  else
2537    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2538
2539  // Returns a flag for retval copy to use.
2540  if (!IsSibcall) {
2541    Chain = DAG.getCALLSEQ_END(Chain,
2542                               DAG.getIntPtrConstant(NumBytes, true),
2543                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2544                                                     true),
2545                               InFlag);
2546    InFlag = Chain.getValue(1);
2547  }
2548
2549  // Handle result values, copying them out of physregs into vregs that we
2550  // return.
2551  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2552                         Ins, dl, DAG, InVals);
2553}
2554
2555
2556//===----------------------------------------------------------------------===//
2557//                Fast Calling Convention (tail call) implementation
2558//===----------------------------------------------------------------------===//
2559
2560//  Like std call, callee cleans arguments, convention except that ECX is
2561//  reserved for storing the tail called function address. Only 2 registers are
2562//  free for argument passing (inreg). Tail call optimization is performed
2563//  provided:
2564//                * tailcallopt is enabled
2565//                * caller/callee are fastcc
2566//  On X86_64 architecture with GOT-style position independent code only local
2567//  (within module) calls are supported at the moment.
2568//  To keep the stack aligned according to platform abi the function
2569//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2570//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2571//  If a tail called function callee has more arguments than the caller the
2572//  caller needs to make sure that there is room to move the RETADDR to. This is
2573//  achieved by reserving an area the size of the argument delta right after the
2574//  original REtADDR, but before the saved framepointer or the spilled registers
2575//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2576//  stack layout:
2577//    arg1
2578//    arg2
2579//    RETADDR
2580//    [ new RETADDR
2581//      move area ]
2582//    (possible EBP)
2583//    ESI
2584//    EDI
2585//    local1 ..
2586
2587/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2588/// for a 16 byte align requirement.
2589unsigned
2590X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2591                                               SelectionDAG& DAG) const {
2592  MachineFunction &MF = DAG.getMachineFunction();
2593  const TargetMachine &TM = MF.getTarget();
2594  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2595  unsigned StackAlignment = TFI.getStackAlignment();
2596  uint64_t AlignMask = StackAlignment - 1;
2597  int64_t Offset = StackSize;
2598  uint64_t SlotSize = TD->getPointerSize();
2599  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2600    // Number smaller than 12 so just add the difference.
2601    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2602  } else {
2603    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2604    Offset = ((~AlignMask) & Offset) + StackAlignment +
2605      (StackAlignment-SlotSize);
2606  }
2607  return Offset;
2608}
2609
2610/// MatchingStackOffset - Return true if the given stack call argument is
2611/// already available in the same position (relatively) of the caller's
2612/// incoming argument stack.
2613static
2614bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2615                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2616                         const X86InstrInfo *TII) {
2617  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2618  int FI = INT_MAX;
2619  if (Arg.getOpcode() == ISD::CopyFromReg) {
2620    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2621    if (!TargetRegisterInfo::isVirtualRegister(VR))
2622      return false;
2623    MachineInstr *Def = MRI->getVRegDef(VR);
2624    if (!Def)
2625      return false;
2626    if (!Flags.isByVal()) {
2627      if (!TII->isLoadFromStackSlot(Def, FI))
2628        return false;
2629    } else {
2630      unsigned Opcode = Def->getOpcode();
2631      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2632          Def->getOperand(1).isFI()) {
2633        FI = Def->getOperand(1).getIndex();
2634        Bytes = Flags.getByValSize();
2635      } else
2636        return false;
2637    }
2638  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2639    if (Flags.isByVal())
2640      // ByVal argument is passed in as a pointer but it's now being
2641      // dereferenced. e.g.
2642      // define @foo(%struct.X* %A) {
2643      //   tail call @bar(%struct.X* byval %A)
2644      // }
2645      return false;
2646    SDValue Ptr = Ld->getBasePtr();
2647    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2648    if (!FINode)
2649      return false;
2650    FI = FINode->getIndex();
2651  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2652    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2653    FI = FINode->getIndex();
2654    Bytes = Flags.getByValSize();
2655  } else
2656    return false;
2657
2658  assert(FI != INT_MAX);
2659  if (!MFI->isFixedObjectIndex(FI))
2660    return false;
2661  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2662}
2663
2664/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2665/// for tail call optimization. Targets which want to do tail call
2666/// optimization should implement this function.
2667bool
2668X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2669                                                     CallingConv::ID CalleeCC,
2670                                                     bool isVarArg,
2671                                                     bool isCalleeStructRet,
2672                                                     bool isCallerStructRet,
2673                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2674                                    const SmallVectorImpl<SDValue> &OutVals,
2675                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2676                                                     SelectionDAG& DAG) const {
2677  if (!IsTailCallConvention(CalleeCC) &&
2678      CalleeCC != CallingConv::C)
2679    return false;
2680
2681  // If -tailcallopt is specified, make fastcc functions tail-callable.
2682  const MachineFunction &MF = DAG.getMachineFunction();
2683  const Function *CallerF = DAG.getMachineFunction().getFunction();
2684  CallingConv::ID CallerCC = CallerF->getCallingConv();
2685  bool CCMatch = CallerCC == CalleeCC;
2686
2687  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2688    if (IsTailCallConvention(CalleeCC) && CCMatch)
2689      return true;
2690    return false;
2691  }
2692
2693  // Look for obvious safe cases to perform tail call optimization that do not
2694  // require ABI changes. This is what gcc calls sibcall.
2695
2696  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2697  // emit a special epilogue.
2698  if (RegInfo->needsStackRealignment(MF))
2699    return false;
2700
2701  // Also avoid sibcall optimization if either caller or callee uses struct
2702  // return semantics.
2703  if (isCalleeStructRet || isCallerStructRet)
2704    return false;
2705
2706  // An stdcall caller is expected to clean up its arguments; the callee
2707  // isn't going to do that.
2708  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2709    return false;
2710
2711  // Do not sibcall optimize vararg calls unless all arguments are passed via
2712  // registers.
2713  if (isVarArg && !Outs.empty()) {
2714
2715    // Optimizing for varargs on Win64 is unlikely to be safe without
2716    // additional testing.
2717    if (Subtarget->isTargetWin64())
2718      return false;
2719
2720    SmallVector<CCValAssign, 16> ArgLocs;
2721    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2722		   getTargetMachine(), ArgLocs, *DAG.getContext());
2723
2724    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2725    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2726      if (!ArgLocs[i].isRegLoc())
2727        return false;
2728  }
2729
2730  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2731  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2732  // this into a sibcall.
2733  bool Unused = false;
2734  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2735    if (!Ins[i].Used) {
2736      Unused = true;
2737      break;
2738    }
2739  }
2740  if (Unused) {
2741    SmallVector<CCValAssign, 16> RVLocs;
2742    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2743		   getTargetMachine(), RVLocs, *DAG.getContext());
2744    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2745    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2746      CCValAssign &VA = RVLocs[i];
2747      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2748        return false;
2749    }
2750  }
2751
2752  // If the calling conventions do not match, then we'd better make sure the
2753  // results are returned in the same way as what the caller expects.
2754  if (!CCMatch) {
2755    SmallVector<CCValAssign, 16> RVLocs1;
2756    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2757		    getTargetMachine(), RVLocs1, *DAG.getContext());
2758    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2759
2760    SmallVector<CCValAssign, 16> RVLocs2;
2761    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2762		    getTargetMachine(), RVLocs2, *DAG.getContext());
2763    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2764
2765    if (RVLocs1.size() != RVLocs2.size())
2766      return false;
2767    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2768      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2769        return false;
2770      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2771        return false;
2772      if (RVLocs1[i].isRegLoc()) {
2773        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2774          return false;
2775      } else {
2776        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2777          return false;
2778      }
2779    }
2780  }
2781
2782  // If the callee takes no arguments then go on to check the results of the
2783  // call.
2784  if (!Outs.empty()) {
2785    // Check if stack adjustment is needed. For now, do not do this if any
2786    // argument is passed on the stack.
2787    SmallVector<CCValAssign, 16> ArgLocs;
2788    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2789		   getTargetMachine(), ArgLocs, *DAG.getContext());
2790
2791    // Allocate shadow area for Win64
2792    if (Subtarget->isTargetWin64()) {
2793      CCInfo.AllocateStack(32, 8);
2794    }
2795
2796    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2797    if (CCInfo.getNextStackOffset()) {
2798      MachineFunction &MF = DAG.getMachineFunction();
2799      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2800        return false;
2801
2802      // Check if the arguments are already laid out in the right way as
2803      // the caller's fixed stack objects.
2804      MachineFrameInfo *MFI = MF.getFrameInfo();
2805      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2806      const X86InstrInfo *TII =
2807        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2808      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2809        CCValAssign &VA = ArgLocs[i];
2810        SDValue Arg = OutVals[i];
2811        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2812        if (VA.getLocInfo() == CCValAssign::Indirect)
2813          return false;
2814        if (!VA.isRegLoc()) {
2815          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2816                                   MFI, MRI, TII))
2817            return false;
2818        }
2819      }
2820    }
2821
2822    // If the tailcall address may be in a register, then make sure it's
2823    // possible to register allocate for it. In 32-bit, the call address can
2824    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2825    // callee-saved registers are restored. These happen to be the same
2826    // registers used to pass 'inreg' arguments so watch out for those.
2827    if (!Subtarget->is64Bit() &&
2828        !isa<GlobalAddressSDNode>(Callee) &&
2829        !isa<ExternalSymbolSDNode>(Callee)) {
2830      unsigned NumInRegs = 0;
2831      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2832        CCValAssign &VA = ArgLocs[i];
2833        if (!VA.isRegLoc())
2834          continue;
2835        unsigned Reg = VA.getLocReg();
2836        switch (Reg) {
2837        default: break;
2838        case X86::EAX: case X86::EDX: case X86::ECX:
2839          if (++NumInRegs == 3)
2840            return false;
2841          break;
2842        }
2843      }
2844    }
2845  }
2846
2847  return true;
2848}
2849
2850FastISel *
2851X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2852  return X86::createFastISel(funcInfo);
2853}
2854
2855
2856//===----------------------------------------------------------------------===//
2857//                           Other Lowering Hooks
2858//===----------------------------------------------------------------------===//
2859
2860static bool MayFoldLoad(SDValue Op) {
2861  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2862}
2863
2864static bool MayFoldIntoStore(SDValue Op) {
2865  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2866}
2867
2868static bool isTargetShuffle(unsigned Opcode) {
2869  switch(Opcode) {
2870  default: return false;
2871  case X86ISD::PSHUFD:
2872  case X86ISD::PSHUFHW:
2873  case X86ISD::PSHUFLW:
2874  case X86ISD::SHUFP:
2875  case X86ISD::PALIGN:
2876  case X86ISD::MOVLHPS:
2877  case X86ISD::MOVLHPD:
2878  case X86ISD::MOVHLPS:
2879  case X86ISD::MOVLPS:
2880  case X86ISD::MOVLPD:
2881  case X86ISD::MOVSHDUP:
2882  case X86ISD::MOVSLDUP:
2883  case X86ISD::MOVDDUP:
2884  case X86ISD::MOVSS:
2885  case X86ISD::MOVSD:
2886  case X86ISD::UNPCKL:
2887  case X86ISD::UNPCKH:
2888  case X86ISD::VPERMILP:
2889  case X86ISD::VPERM2X128:
2890    return true;
2891  }
2892  return false;
2893}
2894
2895static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2896                                               SDValue V1, SelectionDAG &DAG) {
2897  switch(Opc) {
2898  default: llvm_unreachable("Unknown x86 shuffle node");
2899  case X86ISD::MOVSHDUP:
2900  case X86ISD::MOVSLDUP:
2901  case X86ISD::MOVDDUP:
2902    return DAG.getNode(Opc, dl, VT, V1);
2903  }
2904
2905  return SDValue();
2906}
2907
2908static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2909                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2910  switch(Opc) {
2911  default: llvm_unreachable("Unknown x86 shuffle node");
2912  case X86ISD::PSHUFD:
2913  case X86ISD::PSHUFHW:
2914  case X86ISD::PSHUFLW:
2915  case X86ISD::VPERMILP:
2916    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2917  }
2918
2919  return SDValue();
2920}
2921
2922static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2923               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2924  switch(Opc) {
2925  default: llvm_unreachable("Unknown x86 shuffle node");
2926  case X86ISD::PALIGN:
2927  case X86ISD::SHUFP:
2928  case X86ISD::VPERM2X128:
2929    return DAG.getNode(Opc, dl, VT, V1, V2,
2930                       DAG.getConstant(TargetMask, MVT::i8));
2931  }
2932  return SDValue();
2933}
2934
2935static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2936                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2937  switch(Opc) {
2938  default: llvm_unreachable("Unknown x86 shuffle node");
2939  case X86ISD::MOVLHPS:
2940  case X86ISD::MOVLHPD:
2941  case X86ISD::MOVHLPS:
2942  case X86ISD::MOVLPS:
2943  case X86ISD::MOVLPD:
2944  case X86ISD::MOVSS:
2945  case X86ISD::MOVSD:
2946  case X86ISD::UNPCKL:
2947  case X86ISD::UNPCKH:
2948    return DAG.getNode(Opc, dl, VT, V1, V2);
2949  }
2950  return SDValue();
2951}
2952
2953SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2954  MachineFunction &MF = DAG.getMachineFunction();
2955  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2956  int ReturnAddrIndex = FuncInfo->getRAIndex();
2957
2958  if (ReturnAddrIndex == 0) {
2959    // Set up a frame object for the return address.
2960    uint64_t SlotSize = TD->getPointerSize();
2961    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2962                                                           false);
2963    FuncInfo->setRAIndex(ReturnAddrIndex);
2964  }
2965
2966  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2967}
2968
2969
2970bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2971                                       bool hasSymbolicDisplacement) {
2972  // Offset should fit into 32 bit immediate field.
2973  if (!isInt<32>(Offset))
2974    return false;
2975
2976  // If we don't have a symbolic displacement - we don't have any extra
2977  // restrictions.
2978  if (!hasSymbolicDisplacement)
2979    return true;
2980
2981  // FIXME: Some tweaks might be needed for medium code model.
2982  if (M != CodeModel::Small && M != CodeModel::Kernel)
2983    return false;
2984
2985  // For small code model we assume that latest object is 16MB before end of 31
2986  // bits boundary. We may also accept pretty large negative constants knowing
2987  // that all objects are in the positive half of address space.
2988  if (M == CodeModel::Small && Offset < 16*1024*1024)
2989    return true;
2990
2991  // For kernel code model we know that all object resist in the negative half
2992  // of 32bits address space. We may not accept negative offsets, since they may
2993  // be just off and we may accept pretty large positive ones.
2994  if (M == CodeModel::Kernel && Offset > 0)
2995    return true;
2996
2997  return false;
2998}
2999
3000/// isCalleePop - Determines whether the callee is required to pop its
3001/// own arguments. Callee pop is necessary to support tail calls.
3002bool X86::isCalleePop(CallingConv::ID CallingConv,
3003                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3004  if (IsVarArg)
3005    return false;
3006
3007  switch (CallingConv) {
3008  default:
3009    return false;
3010  case CallingConv::X86_StdCall:
3011    return !is64Bit;
3012  case CallingConv::X86_FastCall:
3013    return !is64Bit;
3014  case CallingConv::X86_ThisCall:
3015    return !is64Bit;
3016  case CallingConv::Fast:
3017    return TailCallOpt;
3018  case CallingConv::GHC:
3019    return TailCallOpt;
3020  }
3021}
3022
3023/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3024/// specific condition code, returning the condition code and the LHS/RHS of the
3025/// comparison to make.
3026static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3027                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3028  if (!isFP) {
3029    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3030      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3031        // X > -1   -> X == 0, jump !sign.
3032        RHS = DAG.getConstant(0, RHS.getValueType());
3033        return X86::COND_NS;
3034      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3035        // X < 0   -> X == 0, jump on sign.
3036        return X86::COND_S;
3037      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3038        // X < 1   -> X <= 0
3039        RHS = DAG.getConstant(0, RHS.getValueType());
3040        return X86::COND_LE;
3041      }
3042    }
3043
3044    switch (SetCCOpcode) {
3045    default: llvm_unreachable("Invalid integer condition!");
3046    case ISD::SETEQ:  return X86::COND_E;
3047    case ISD::SETGT:  return X86::COND_G;
3048    case ISD::SETGE:  return X86::COND_GE;
3049    case ISD::SETLT:  return X86::COND_L;
3050    case ISD::SETLE:  return X86::COND_LE;
3051    case ISD::SETNE:  return X86::COND_NE;
3052    case ISD::SETULT: return X86::COND_B;
3053    case ISD::SETUGT: return X86::COND_A;
3054    case ISD::SETULE: return X86::COND_BE;
3055    case ISD::SETUGE: return X86::COND_AE;
3056    }
3057  }
3058
3059  // First determine if it is required or is profitable to flip the operands.
3060
3061  // If LHS is a foldable load, but RHS is not, flip the condition.
3062  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3063      !ISD::isNON_EXTLoad(RHS.getNode())) {
3064    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3065    std::swap(LHS, RHS);
3066  }
3067
3068  switch (SetCCOpcode) {
3069  default: break;
3070  case ISD::SETOLT:
3071  case ISD::SETOLE:
3072  case ISD::SETUGT:
3073  case ISD::SETUGE:
3074    std::swap(LHS, RHS);
3075    break;
3076  }
3077
3078  // On a floating point condition, the flags are set as follows:
3079  // ZF  PF  CF   op
3080  //  0 | 0 | 0 | X > Y
3081  //  0 | 0 | 1 | X < Y
3082  //  1 | 0 | 0 | X == Y
3083  //  1 | 1 | 1 | unordered
3084  switch (SetCCOpcode) {
3085  default: llvm_unreachable("Condcode should be pre-legalized away");
3086  case ISD::SETUEQ:
3087  case ISD::SETEQ:   return X86::COND_E;
3088  case ISD::SETOLT:              // flipped
3089  case ISD::SETOGT:
3090  case ISD::SETGT:   return X86::COND_A;
3091  case ISD::SETOLE:              // flipped
3092  case ISD::SETOGE:
3093  case ISD::SETGE:   return X86::COND_AE;
3094  case ISD::SETUGT:              // flipped
3095  case ISD::SETULT:
3096  case ISD::SETLT:   return X86::COND_B;
3097  case ISD::SETUGE:              // flipped
3098  case ISD::SETULE:
3099  case ISD::SETLE:   return X86::COND_BE;
3100  case ISD::SETONE:
3101  case ISD::SETNE:   return X86::COND_NE;
3102  case ISD::SETUO:   return X86::COND_P;
3103  case ISD::SETO:    return X86::COND_NP;
3104  case ISD::SETOEQ:
3105  case ISD::SETUNE:  return X86::COND_INVALID;
3106  }
3107}
3108
3109/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3110/// code. Current x86 isa includes the following FP cmov instructions:
3111/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3112static bool hasFPCMov(unsigned X86CC) {
3113  switch (X86CC) {
3114  default:
3115    return false;
3116  case X86::COND_B:
3117  case X86::COND_BE:
3118  case X86::COND_E:
3119  case X86::COND_P:
3120  case X86::COND_A:
3121  case X86::COND_AE:
3122  case X86::COND_NE:
3123  case X86::COND_NP:
3124    return true;
3125  }
3126}
3127
3128/// isFPImmLegal - Returns true if the target can instruction select the
3129/// specified FP immediate natively. If false, the legalizer will
3130/// materialize the FP immediate as a load from a constant pool.
3131bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3132  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3133    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3134      return true;
3135  }
3136  return false;
3137}
3138
3139/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3140/// the specified range (L, H].
3141static bool isUndefOrInRange(int Val, int Low, int Hi) {
3142  return (Val < 0) || (Val >= Low && Val < Hi);
3143}
3144
3145/// isUndefOrInRange - Return true if every element in Mask, begining
3146/// from position Pos and ending in Pos+Size, falls within the specified
3147/// range (L, L+Pos]. or is undef.
3148static bool isUndefOrInRange(ArrayRef<int> Mask,
3149                             int Pos, int Size, int Low, int Hi) {
3150  for (int i = Pos, e = Pos+Size; i != e; ++i)
3151    if (!isUndefOrInRange(Mask[i], Low, Hi))
3152      return false;
3153  return true;
3154}
3155
3156/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3157/// specified value.
3158static bool isUndefOrEqual(int Val, int CmpVal) {
3159  if (Val < 0 || Val == CmpVal)
3160    return true;
3161  return false;
3162}
3163
3164/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3165/// from position Pos and ending in Pos+Size, falls within the specified
3166/// sequential range (L, L+Pos]. or is undef.
3167static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3168                                       int Pos, int Size, int Low) {
3169  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3170    if (!isUndefOrEqual(Mask[i], Low))
3171      return false;
3172  return true;
3173}
3174
3175/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3176/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3177/// the second operand.
3178static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3179  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3180    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3181  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3182    return (Mask[0] < 2 && Mask[1] < 2);
3183  return false;
3184}
3185
3186bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3187  return ::isPSHUFDMask(N->getMask(), N->getValueType(0));
3188}
3189
3190/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3191/// is suitable for input to PSHUFHW.
3192static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
3193  if (VT != MVT::v8i16)
3194    return false;
3195
3196  // Lower quadword copied in order or undef.
3197  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3198    return false;
3199
3200  // Upper quadword shuffled.
3201  for (unsigned i = 4; i != 8; ++i)
3202    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3203      return false;
3204
3205  return true;
3206}
3207
3208bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3209  return ::isPSHUFHWMask(N->getMask(), N->getValueType(0));
3210}
3211
3212/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3213/// is suitable for input to PSHUFLW.
3214static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
3215  if (VT != MVT::v8i16)
3216    return false;
3217
3218  // Upper quadword copied in order.
3219  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3220    return false;
3221
3222  // Lower quadword shuffled.
3223  for (unsigned i = 0; i != 4; ++i)
3224    if (Mask[i] >= 4)
3225      return false;
3226
3227  return true;
3228}
3229
3230bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3231  return ::isPSHUFLWMask(N->getMask(), N->getValueType(0));
3232}
3233
3234/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3235/// is suitable for input to PALIGNR.
3236static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT, bool hasSSSE3) {
3237  int i, e = VT.getVectorNumElements();
3238  if (VT.getSizeInBits() != 128)
3239    return false;
3240
3241  // Do not handle v2i64 / v2f64 shuffles with palignr.
3242  if (e < 4 || !hasSSSE3)
3243    return false;
3244
3245  for (i = 0; i != e; ++i)
3246    if (Mask[i] >= 0)
3247      break;
3248
3249  // All undef, not a palignr.
3250  if (i == e)
3251    return false;
3252
3253  // Make sure we're shifting in the right direction.
3254  if (Mask[i] <= i)
3255    return false;
3256
3257  int s = Mask[i] - i;
3258
3259  // Check the rest of the elements to see if they are consecutive.
3260  for (++i; i != e; ++i) {
3261    int m = Mask[i];
3262    if (m >= 0 && m != s+i)
3263      return false;
3264  }
3265  return true;
3266}
3267
3268/// isVSHUFPYMask - Return true if the specified VECTOR_SHUFFLE operand
3269/// specifies a shuffle of elements that is suitable for input to 256-bit
3270/// VSHUFPSY.
3271static bool isVSHUFPYMask(ArrayRef<int> Mask, EVT VT,
3272                          bool HasAVX, bool Commuted = false) {
3273  int NumElems = VT.getVectorNumElements();
3274
3275  if (!HasAVX || VT.getSizeInBits() != 256)
3276    return false;
3277
3278  if (NumElems != 4 && NumElems != 8)
3279    return false;
3280
3281  // VSHUFPSY divides the resulting vector into 4 chunks.
3282  // The sources are also splitted into 4 chunks, and each destination
3283  // chunk must come from a different source chunk.
3284  //
3285  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3286  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3287  //
3288  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3289  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3290  //
3291  // VSHUFPDY divides the resulting vector into 4 chunks.
3292  // The sources are also splitted into 4 chunks, and each destination
3293  // chunk must come from a different source chunk.
3294  //
3295  //  SRC1 =>      X3       X2       X1       X0
3296  //  SRC2 =>      Y3       Y2       Y1       Y0
3297  //
3298  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3299  //
3300  unsigned QuarterSize = NumElems/4;
3301  unsigned HalfSize = QuarterSize*2;
3302  for (unsigned l = 0; l != 2; ++l) {
3303    unsigned LaneStart = l*HalfSize;
3304    for (unsigned s = 0; s != 2; ++s) {
3305      unsigned QuarterStart = s*QuarterSize;
3306      unsigned Src = (Commuted) ? (1-s) : s;
3307      unsigned SrcStart = Src*NumElems + LaneStart;
3308      for (unsigned i = 0; i != QuarterSize; ++i) {
3309        int Idx = Mask[i+QuarterStart+LaneStart];
3310        if (!isUndefOrInRange(Idx, SrcStart, SrcStart+HalfSize))
3311          return false;
3312        // For VSHUFPSY, the mask of the second half must be the same as the
3313        // first but with the appropriate offsets. This works in the same way as
3314        // VPERMILPS works with masks.
3315        if (NumElems == 4 || l == 0 || Mask[i+QuarterStart] < 0)
3316          continue;
3317        if (!isUndefOrEqual(Idx, Mask[i+QuarterStart]+LaneStart))
3318          return false;
3319      }
3320    }
3321  }
3322
3323  return true;
3324}
3325
3326/// getShuffleVSHUFPYImmediate - Return the appropriate immediate to shuffle
3327/// the specified VECTOR_MASK mask with VSHUFPSY/VSHUFPDY instructions.
3328static unsigned getShuffleVSHUFPYImmediate(ShuffleVectorSDNode *SVOp) {
3329  EVT VT = SVOp->getValueType(0);
3330  unsigned NumElems = VT.getVectorNumElements();
3331
3332  assert(VT.getSizeInBits() == 256 && "Only supports 256-bit types");
3333  assert((NumElems == 4 || NumElems == 8) && "Only supports v4 and v8 types");
3334
3335  unsigned HalfSize = NumElems/2;
3336  unsigned Mul = (NumElems == 8) ? 2 : 1;
3337  unsigned Mask = 0;
3338  for (unsigned i = 0; i != NumElems; ++i) {
3339    int Elt = SVOp->getMaskElt(i);
3340    if (Elt < 0)
3341      continue;
3342    Elt %= HalfSize;
3343    unsigned Shamt = i;
3344    // For VSHUFPSY, the mask of the first half must be equal to the second one.
3345    if (NumElems == 8) Shamt %= HalfSize;
3346    Mask |= Elt << (Shamt*Mul);
3347  }
3348
3349  return Mask;
3350}
3351
3352/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3353/// the two vector operands have swapped position.
3354static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3355                                     unsigned NumElems) {
3356  for (unsigned i = 0; i != NumElems; ++i) {
3357    int idx = Mask[i];
3358    if (idx < 0)
3359      continue;
3360    else if (idx < (int)NumElems)
3361      Mask[i] = idx + NumElems;
3362    else
3363      Mask[i] = idx - NumElems;
3364  }
3365}
3366
3367/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3368/// specifies a shuffle of elements that is suitable for input to 128-bit
3369/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3370/// reverse of what x86 shuffles want.
3371static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool Commuted = false) {
3372  unsigned NumElems = VT.getVectorNumElements();
3373
3374  if (VT.getSizeInBits() != 128)
3375    return false;
3376
3377  if (NumElems != 2 && NumElems != 4)
3378    return false;
3379
3380  unsigned Half = NumElems / 2;
3381  unsigned SrcStart = Commuted ? NumElems : 0;
3382  for (unsigned i = 0; i != Half; ++i)
3383    if (!isUndefOrInRange(Mask[i], SrcStart, SrcStart+NumElems))
3384      return false;
3385  SrcStart = Commuted ? 0 : NumElems;
3386  for (unsigned i = Half; i != NumElems; ++i)
3387    if (!isUndefOrInRange(Mask[i], SrcStart, SrcStart+NumElems))
3388      return false;
3389
3390  return true;
3391}
3392
3393bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3394  return ::isSHUFPMask(N->getMask(), N->getValueType(0));
3395}
3396
3397/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3398/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3399bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3400  EVT VT = N->getValueType(0);
3401  unsigned NumElems = VT.getVectorNumElements();
3402
3403  if (VT.getSizeInBits() != 128)
3404    return false;
3405
3406  if (NumElems != 4)
3407    return false;
3408
3409  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3410  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3411         isUndefOrEqual(N->getMaskElt(1), 7) &&
3412         isUndefOrEqual(N->getMaskElt(2), 2) &&
3413         isUndefOrEqual(N->getMaskElt(3), 3);
3414}
3415
3416/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3417/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3418/// <2, 3, 2, 3>
3419bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3420  EVT VT = N->getValueType(0);
3421  unsigned NumElems = VT.getVectorNumElements();
3422
3423  if (VT.getSizeInBits() != 128)
3424    return false;
3425
3426  if (NumElems != 4)
3427    return false;
3428
3429  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3430         isUndefOrEqual(N->getMaskElt(1), 3) &&
3431         isUndefOrEqual(N->getMaskElt(2), 2) &&
3432         isUndefOrEqual(N->getMaskElt(3), 3);
3433}
3434
3435/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3436/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3437bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3438  EVT VT = N->getValueType(0);
3439
3440  if (VT.getSizeInBits() != 128)
3441    return false;
3442
3443  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3444
3445  if (NumElems != 2 && NumElems != 4)
3446    return false;
3447
3448  for (unsigned i = 0; i < NumElems/2; ++i)
3449    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3450      return false;
3451
3452  for (unsigned i = NumElems/2; i < NumElems; ++i)
3453    if (!isUndefOrEqual(N->getMaskElt(i), i))
3454      return false;
3455
3456  return true;
3457}
3458
3459/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3460/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3461bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3462  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3463
3464  if ((NumElems != 2 && NumElems != 4)
3465      || N->getValueType(0).getSizeInBits() > 128)
3466    return false;
3467
3468  for (unsigned i = 0; i < NumElems/2; ++i)
3469    if (!isUndefOrEqual(N->getMaskElt(i), i))
3470      return false;
3471
3472  for (unsigned i = 0; i < NumElems/2; ++i)
3473    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3474      return false;
3475
3476  return true;
3477}
3478
3479/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3480/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3481static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3482                         bool HasAVX2, bool V2IsSplat = false) {
3483  unsigned NumElts = VT.getVectorNumElements();
3484
3485  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3486         "Unsupported vector type for unpckh");
3487
3488  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3489      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3490    return false;
3491
3492  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3493  // independently on 128-bit lanes.
3494  unsigned NumLanes = VT.getSizeInBits()/128;
3495  unsigned NumLaneElts = NumElts/NumLanes;
3496
3497  for (unsigned l = 0; l != NumLanes; ++l) {
3498    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3499         i != (l+1)*NumLaneElts;
3500         i += 2, ++j) {
3501      int BitI  = Mask[i];
3502      int BitI1 = Mask[i+1];
3503      if (!isUndefOrEqual(BitI, j))
3504        return false;
3505      if (V2IsSplat) {
3506        if (!isUndefOrEqual(BitI1, NumElts))
3507          return false;
3508      } else {
3509        if (!isUndefOrEqual(BitI1, j + NumElts))
3510          return false;
3511      }
3512    }
3513  }
3514
3515  return true;
3516}
3517
3518bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3519  return ::isUNPCKLMask(N->getMask(), N->getValueType(0), HasAVX2, V2IsSplat);
3520}
3521
3522/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3523/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3524static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3525                         bool HasAVX2, bool V2IsSplat = false) {
3526  unsigned NumElts = VT.getVectorNumElements();
3527
3528  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3529         "Unsupported vector type for unpckh");
3530
3531  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3532      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3533    return false;
3534
3535  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3536  // independently on 128-bit lanes.
3537  unsigned NumLanes = VT.getSizeInBits()/128;
3538  unsigned NumLaneElts = NumElts/NumLanes;
3539
3540  for (unsigned l = 0; l != NumLanes; ++l) {
3541    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3542         i != (l+1)*NumLaneElts; i += 2, ++j) {
3543      int BitI  = Mask[i];
3544      int BitI1 = Mask[i+1];
3545      if (!isUndefOrEqual(BitI, j))
3546        return false;
3547      if (V2IsSplat) {
3548        if (isUndefOrEqual(BitI1, NumElts))
3549          return false;
3550      } else {
3551        if (!isUndefOrEqual(BitI1, j+NumElts))
3552          return false;
3553      }
3554    }
3555  }
3556  return true;
3557}
3558
3559bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3560  return ::isUNPCKHMask(N->getMask(), N->getValueType(0), HasAVX2, V2IsSplat);
3561}
3562
3563/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3564/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3565/// <0, 0, 1, 1>
3566static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3567                                  bool HasAVX2) {
3568  unsigned NumElts = VT.getVectorNumElements();
3569
3570  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3571         "Unsupported vector type for unpckh");
3572
3573  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3574      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3575    return false;
3576
3577  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3578  // FIXME: Need a better way to get rid of this, there's no latency difference
3579  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3580  // the former later. We should also remove the "_undef" special mask.
3581  if (NumElts == 4 && VT.getSizeInBits() == 256)
3582    return false;
3583
3584  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3585  // independently on 128-bit lanes.
3586  unsigned NumLanes = VT.getSizeInBits()/128;
3587  unsigned NumLaneElts = NumElts/NumLanes;
3588
3589  for (unsigned l = 0; l != NumLanes; ++l) {
3590    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3591         i != (l+1)*NumLaneElts;
3592         i += 2, ++j) {
3593      int BitI  = Mask[i];
3594      int BitI1 = Mask[i+1];
3595
3596      if (!isUndefOrEqual(BitI, j))
3597        return false;
3598      if (!isUndefOrEqual(BitI1, j))
3599        return false;
3600    }
3601  }
3602
3603  return true;
3604}
3605
3606bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3607  return ::isUNPCKL_v_undef_Mask(N->getMask(), N->getValueType(0), HasAVX2);
3608}
3609
3610/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3611/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3612/// <2, 2, 3, 3>
3613static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3614  unsigned NumElts = VT.getVectorNumElements();
3615
3616  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3617         "Unsupported vector type for unpckh");
3618
3619  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3620      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3621    return false;
3622
3623  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3624  // independently on 128-bit lanes.
3625  unsigned NumLanes = VT.getSizeInBits()/128;
3626  unsigned NumLaneElts = NumElts/NumLanes;
3627
3628  for (unsigned l = 0; l != NumLanes; ++l) {
3629    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3630         i != (l+1)*NumLaneElts; i += 2, ++j) {
3631      int BitI  = Mask[i];
3632      int BitI1 = Mask[i+1];
3633      if (!isUndefOrEqual(BitI, j))
3634        return false;
3635      if (!isUndefOrEqual(BitI1, j))
3636        return false;
3637    }
3638  }
3639  return true;
3640}
3641
3642bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3643  return ::isUNPCKH_v_undef_Mask(N->getMask(), N->getValueType(0), HasAVX2);
3644}
3645
3646/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3647/// specifies a shuffle of elements that is suitable for input to MOVSS,
3648/// MOVSD, and MOVD, i.e. setting the lowest element.
3649static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3650  if (VT.getVectorElementType().getSizeInBits() < 32)
3651    return false;
3652  if (VT.getSizeInBits() == 256)
3653    return false;
3654
3655  unsigned NumElts = VT.getVectorNumElements();
3656
3657  if (!isUndefOrEqual(Mask[0], NumElts))
3658    return false;
3659
3660  for (unsigned i = 1; i != NumElts; ++i)
3661    if (!isUndefOrEqual(Mask[i], i))
3662      return false;
3663
3664  return true;
3665}
3666
3667bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3668  return ::isMOVLMask(N->getMask(), N->getValueType(0));
3669}
3670
3671/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3672/// as permutations between 128-bit chunks or halves. As an example: this
3673/// shuffle bellow:
3674///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3675/// The first half comes from the second half of V1 and the second half from the
3676/// the second half of V2.
3677static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3678  if (!HasAVX || VT.getSizeInBits() != 256)
3679    return false;
3680
3681  // The shuffle result is divided into half A and half B. In total the two
3682  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3683  // B must come from C, D, E or F.
3684  unsigned HalfSize = VT.getVectorNumElements()/2;
3685  bool MatchA = false, MatchB = false;
3686
3687  // Check if A comes from one of C, D, E, F.
3688  for (unsigned Half = 0; Half != 4; ++Half) {
3689    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3690      MatchA = true;
3691      break;
3692    }
3693  }
3694
3695  // Check if B comes from one of C, D, E, F.
3696  for (unsigned Half = 0; Half != 4; ++Half) {
3697    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3698      MatchB = true;
3699      break;
3700    }
3701  }
3702
3703  return MatchA && MatchB;
3704}
3705
3706/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3707/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3708static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3709  EVT VT = SVOp->getValueType(0);
3710
3711  unsigned HalfSize = VT.getVectorNumElements()/2;
3712
3713  unsigned FstHalf = 0, SndHalf = 0;
3714  for (unsigned i = 0; i < HalfSize; ++i) {
3715    if (SVOp->getMaskElt(i) > 0) {
3716      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3717      break;
3718    }
3719  }
3720  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3721    if (SVOp->getMaskElt(i) > 0) {
3722      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3723      break;
3724    }
3725  }
3726
3727  return (FstHalf | (SndHalf << 4));
3728}
3729
3730/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3731/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3732/// Note that VPERMIL mask matching is different depending whether theunderlying
3733/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3734/// to the same elements of the low, but to the higher half of the source.
3735/// In VPERMILPD the two lanes could be shuffled independently of each other
3736/// with the same restriction that lanes can't be crossed.
3737static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3738  if (!HasAVX)
3739    return false;
3740
3741  unsigned NumElts = VT.getVectorNumElements();
3742  // Only match 256-bit with 32/64-bit types
3743  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3744    return false;
3745
3746  unsigned NumLanes = VT.getSizeInBits()/128;
3747  unsigned LaneSize = NumElts/NumLanes;
3748  for (unsigned l = 0; l != NumLanes; ++l) {
3749    unsigned LaneStart = l*LaneSize;
3750    for (unsigned i = 0; i != LaneSize; ++i) {
3751      if (!isUndefOrInRange(Mask[i+LaneStart], LaneStart, LaneStart+LaneSize))
3752        return false;
3753      if (NumElts == 4 || l == 0)
3754        continue;
3755      // VPERMILPS handling
3756      if (Mask[i] < 0)
3757        continue;
3758      if (!isUndefOrEqual(Mask[i+LaneStart], Mask[i]+LaneStart))
3759        return false;
3760    }
3761  }
3762
3763  return true;
3764}
3765
3766/// getShuffleVPERMILPImmediate - Return the appropriate immediate to shuffle
3767/// the specified VECTOR_MASK mask with VPERMILPS/D* instructions.
3768static unsigned getShuffleVPERMILPImmediate(ShuffleVectorSDNode *SVOp) {
3769  EVT VT = SVOp->getValueType(0);
3770
3771  unsigned NumElts = VT.getVectorNumElements();
3772  unsigned NumLanes = VT.getSizeInBits()/128;
3773  unsigned LaneSize = NumElts/NumLanes;
3774
3775  // Although the mask is equal for both lanes do it twice to get the cases
3776  // where a mask will match because the same mask element is undef on the
3777  // first half but valid on the second. This would get pathological cases
3778  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3779  unsigned Shift = (LaneSize == 4) ? 2 : 1;
3780  unsigned Mask = 0;
3781  for (unsigned i = 0; i != NumElts; ++i) {
3782    int MaskElt = SVOp->getMaskElt(i);
3783    if (MaskElt < 0)
3784      continue;
3785    MaskElt %= LaneSize;
3786    unsigned Shamt = i;
3787    // VPERMILPSY, the mask of the first half must be equal to the second one
3788    if (NumElts == 8) Shamt %= LaneSize;
3789    Mask |= MaskElt << (Shamt*Shift);
3790  }
3791
3792  return Mask;
3793}
3794
3795/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3796/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3797/// element of vector 2 and the other elements to come from vector 1 in order.
3798static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3799                               bool V2IsSplat = false, bool V2IsUndef = false) {
3800  unsigned NumOps = VT.getVectorNumElements();
3801  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3802    return false;
3803
3804  if (!isUndefOrEqual(Mask[0], 0))
3805    return false;
3806
3807  for (unsigned i = 1; i != NumOps; ++i)
3808    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3809          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3810          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3811      return false;
3812
3813  return true;
3814}
3815
3816static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3817                           bool V2IsUndef = false) {
3818  return isCommutedMOVLMask(N->getMask(), N->getValueType(0),
3819                            V2IsSplat, V2IsUndef);
3820}
3821
3822/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3823/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3824/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3825bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3826                         const X86Subtarget *Subtarget) {
3827  if (!Subtarget->hasSSE3())
3828    return false;
3829
3830  // The second vector must be undef
3831  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3832    return false;
3833
3834  EVT VT = N->getValueType(0);
3835  unsigned NumElems = VT.getVectorNumElements();
3836
3837  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3838      (VT.getSizeInBits() == 256 && NumElems != 8))
3839    return false;
3840
3841  // "i+1" is the value the indexed mask element must have
3842  for (unsigned i = 0; i < NumElems; i += 2)
3843    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3844        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3845      return false;
3846
3847  return true;
3848}
3849
3850/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3851/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3852/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3853bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3854                         const X86Subtarget *Subtarget) {
3855  if (!Subtarget->hasSSE3())
3856    return false;
3857
3858  // The second vector must be undef
3859  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3860    return false;
3861
3862  EVT VT = N->getValueType(0);
3863  unsigned NumElems = VT.getVectorNumElements();
3864
3865  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3866      (VT.getSizeInBits() == 256 && NumElems != 8))
3867    return false;
3868
3869  // "i" is the value the indexed mask element must have
3870  for (unsigned i = 0; i != NumElems; i += 2)
3871    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3872        !isUndefOrEqual(N->getMaskElt(i+1), i))
3873      return false;
3874
3875  return true;
3876}
3877
3878/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3879/// specifies a shuffle of elements that is suitable for input to 256-bit
3880/// version of MOVDDUP.
3881static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3882  unsigned NumElts = VT.getVectorNumElements();
3883
3884  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3885    return false;
3886
3887  for (unsigned i = 0; i != NumElts/2; ++i)
3888    if (!isUndefOrEqual(Mask[i], 0))
3889      return false;
3890  for (unsigned i = NumElts/2; i != NumElts; ++i)
3891    if (!isUndefOrEqual(Mask[i], NumElts/2))
3892      return false;
3893  return true;
3894}
3895
3896/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3897/// specifies a shuffle of elements that is suitable for input to 128-bit
3898/// version of MOVDDUP.
3899bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3900  EVT VT = N->getValueType(0);
3901
3902  if (VT.getSizeInBits() != 128)
3903    return false;
3904
3905  unsigned e = VT.getVectorNumElements() / 2;
3906  for (unsigned i = 0; i != e; ++i)
3907    if (!isUndefOrEqual(N->getMaskElt(i), i))
3908      return false;
3909  for (unsigned i = 0; i != e; ++i)
3910    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3911      return false;
3912  return true;
3913}
3914
3915/// isVEXTRACTF128Index - Return true if the specified
3916/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3917/// suitable for input to VEXTRACTF128.
3918bool X86::isVEXTRACTF128Index(SDNode *N) {
3919  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3920    return false;
3921
3922  // The index should be aligned on a 128-bit boundary.
3923  uint64_t Index =
3924    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3925
3926  unsigned VL = N->getValueType(0).getVectorNumElements();
3927  unsigned VBits = N->getValueType(0).getSizeInBits();
3928  unsigned ElSize = VBits / VL;
3929  bool Result = (Index * ElSize) % 128 == 0;
3930
3931  return Result;
3932}
3933
3934/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3935/// operand specifies a subvector insert that is suitable for input to
3936/// VINSERTF128.
3937bool X86::isVINSERTF128Index(SDNode *N) {
3938  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3939    return false;
3940
3941  // The index should be aligned on a 128-bit boundary.
3942  uint64_t Index =
3943    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3944
3945  unsigned VL = N->getValueType(0).getVectorNumElements();
3946  unsigned VBits = N->getValueType(0).getSizeInBits();
3947  unsigned ElSize = VBits / VL;
3948  bool Result = (Index * ElSize) % 128 == 0;
3949
3950  return Result;
3951}
3952
3953/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3954/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3955unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3956  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3957  unsigned NumOperands = SVOp->getValueType(0).getVectorNumElements();
3958
3959  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3960  unsigned Mask = 0;
3961  for (unsigned i = 0; i != NumOperands; ++i) {
3962    int Val = SVOp->getMaskElt(NumOperands-i-1);
3963    if (Val < 0) Val = 0;
3964    if (Val >= (int)NumOperands) Val -= NumOperands;
3965    Mask |= Val;
3966    if (i != NumOperands - 1)
3967      Mask <<= Shift;
3968  }
3969  return Mask;
3970}
3971
3972/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3973/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3974unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3975  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3976  unsigned Mask = 0;
3977  // 8 nodes, but we only care about the last 4.
3978  for (unsigned i = 7; i >= 4; --i) {
3979    int Val = SVOp->getMaskElt(i);
3980    if (Val >= 0)
3981      Mask |= (Val - 4);
3982    if (i != 4)
3983      Mask <<= 2;
3984  }
3985  return Mask;
3986}
3987
3988/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3989/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3990unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3991  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3992  unsigned Mask = 0;
3993  // 8 nodes, but we only care about the first 4.
3994  for (int i = 3; i >= 0; --i) {
3995    int Val = SVOp->getMaskElt(i);
3996    if (Val >= 0)
3997      Mask |= Val;
3998    if (i != 0)
3999      Mask <<= 2;
4000  }
4001  return Mask;
4002}
4003
4004/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4005/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4006static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4007  EVT VT = SVOp->getValueType(0);
4008  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4009  int Val = 0;
4010
4011  unsigned i, e;
4012  for (i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4013    Val = SVOp->getMaskElt(i);
4014    if (Val >= 0)
4015      break;
4016  }
4017  assert(Val - i > 0 && "PALIGNR imm should be positive");
4018  return (Val - i) * EltSize;
4019}
4020
4021/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4022/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4023/// instructions.
4024unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4025  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4026    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4027
4028  uint64_t Index =
4029    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4030
4031  EVT VecVT = N->getOperand(0).getValueType();
4032  EVT ElVT = VecVT.getVectorElementType();
4033
4034  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4035  return Index / NumElemsPerChunk;
4036}
4037
4038/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4039/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4040/// instructions.
4041unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4042  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4043    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4044
4045  uint64_t Index =
4046    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4047
4048  EVT VecVT = N->getValueType(0);
4049  EVT ElVT = VecVT.getVectorElementType();
4050
4051  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4052  return Index / NumElemsPerChunk;
4053}
4054
4055/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4056/// constant +0.0.
4057bool X86::isZeroNode(SDValue Elt) {
4058  return ((isa<ConstantSDNode>(Elt) &&
4059           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4060          (isa<ConstantFPSDNode>(Elt) &&
4061           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4062}
4063
4064/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4065/// their permute mask.
4066static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4067                                    SelectionDAG &DAG) {
4068  EVT VT = SVOp->getValueType(0);
4069  unsigned NumElems = VT.getVectorNumElements();
4070  SmallVector<int, 8> MaskVec;
4071
4072  for (unsigned i = 0; i != NumElems; ++i) {
4073    int idx = SVOp->getMaskElt(i);
4074    if (idx < 0)
4075      MaskVec.push_back(idx);
4076    else if (idx < (int)NumElems)
4077      MaskVec.push_back(idx + NumElems);
4078    else
4079      MaskVec.push_back(idx - NumElems);
4080  }
4081  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4082                              SVOp->getOperand(0), &MaskVec[0]);
4083}
4084
4085/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4086/// match movhlps. The lower half elements should come from upper half of
4087/// V1 (and in order), and the upper half elements should come from the upper
4088/// half of V2 (and in order).
4089static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4090  EVT VT = Op->getValueType(0);
4091  if (VT.getSizeInBits() != 128)
4092    return false;
4093  if (VT.getVectorNumElements() != 4)
4094    return false;
4095  for (unsigned i = 0, e = 2; i != e; ++i)
4096    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4097      return false;
4098  for (unsigned i = 2; i != 4; ++i)
4099    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4100      return false;
4101  return true;
4102}
4103
4104/// isScalarLoadToVector - Returns true if the node is a scalar load that
4105/// is promoted to a vector. It also returns the LoadSDNode by reference if
4106/// required.
4107static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4108  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4109    return false;
4110  N = N->getOperand(0).getNode();
4111  if (!ISD::isNON_EXTLoad(N))
4112    return false;
4113  if (LD)
4114    *LD = cast<LoadSDNode>(N);
4115  return true;
4116}
4117
4118// Test whether the given value is a vector value which will be legalized
4119// into a load.
4120static bool WillBeConstantPoolLoad(SDNode *N) {
4121  if (N->getOpcode() != ISD::BUILD_VECTOR)
4122    return false;
4123
4124  // Check for any non-constant elements.
4125  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4126    switch (N->getOperand(i).getNode()->getOpcode()) {
4127    case ISD::UNDEF:
4128    case ISD::ConstantFP:
4129    case ISD::Constant:
4130      break;
4131    default:
4132      return false;
4133    }
4134
4135  // Vectors of all-zeros and all-ones are materialized with special
4136  // instructions rather than being loaded.
4137  return !ISD::isBuildVectorAllZeros(N) &&
4138         !ISD::isBuildVectorAllOnes(N);
4139}
4140
4141/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4142/// match movlp{s|d}. The lower half elements should come from lower half of
4143/// V1 (and in order), and the upper half elements should come from the upper
4144/// half of V2 (and in order). And since V1 will become the source of the
4145/// MOVLP, it must be either a vector load or a scalar load to vector.
4146static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4147                               ShuffleVectorSDNode *Op) {
4148  EVT VT = Op->getValueType(0);
4149  if (VT.getSizeInBits() != 128)
4150    return false;
4151
4152  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4153    return false;
4154  // Is V2 is a vector load, don't do this transformation. We will try to use
4155  // load folding shufps op.
4156  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4157    return false;
4158
4159  unsigned NumElems = VT.getVectorNumElements();
4160
4161  if (NumElems != 2 && NumElems != 4)
4162    return false;
4163  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4164    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4165      return false;
4166  for (unsigned i = NumElems/2; i != NumElems; ++i)
4167    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4168      return false;
4169  return true;
4170}
4171
4172/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4173/// all the same.
4174static bool isSplatVector(SDNode *N) {
4175  if (N->getOpcode() != ISD::BUILD_VECTOR)
4176    return false;
4177
4178  SDValue SplatValue = N->getOperand(0);
4179  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4180    if (N->getOperand(i) != SplatValue)
4181      return false;
4182  return true;
4183}
4184
4185/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4186/// to an zero vector.
4187/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4188static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4189  SDValue V1 = N->getOperand(0);
4190  SDValue V2 = N->getOperand(1);
4191  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4192  for (unsigned i = 0; i != NumElems; ++i) {
4193    int Idx = N->getMaskElt(i);
4194    if (Idx >= (int)NumElems) {
4195      unsigned Opc = V2.getOpcode();
4196      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4197        continue;
4198      if (Opc != ISD::BUILD_VECTOR ||
4199          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4200        return false;
4201    } else if (Idx >= 0) {
4202      unsigned Opc = V1.getOpcode();
4203      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4204        continue;
4205      if (Opc != ISD::BUILD_VECTOR ||
4206          !X86::isZeroNode(V1.getOperand(Idx)))
4207        return false;
4208    }
4209  }
4210  return true;
4211}
4212
4213/// getZeroVector - Returns a vector of specified type with all zero elements.
4214///
4215static SDValue getZeroVector(EVT VT, bool HasSSE2, bool HasAVX2,
4216                             SelectionDAG &DAG, DebugLoc dl) {
4217  assert(VT.isVector() && "Expected a vector type");
4218
4219  // Always build SSE zero vectors as <4 x i32> bitcasted
4220  // to their dest type. This ensures they get CSE'd.
4221  SDValue Vec;
4222  if (VT.getSizeInBits() == 128) {  // SSE
4223    if (HasSSE2) {  // SSE2
4224      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4225      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4226    } else { // SSE1
4227      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4228      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4229    }
4230  } else if (VT.getSizeInBits() == 256) { // AVX
4231    if (HasAVX2) { // AVX2
4232      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4233      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4234      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4235    } else {
4236      // 256-bit logic and arithmetic instructions in AVX are all
4237      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4238      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4239      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4240      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4241    }
4242  }
4243  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4244}
4245
4246/// getOnesVector - Returns a vector of specified type with all bits set.
4247/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4248/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4249/// Then bitcast to their original type, ensuring they get CSE'd.
4250static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4251                             DebugLoc dl) {
4252  assert(VT.isVector() && "Expected a vector type");
4253  assert((VT.is128BitVector() || VT.is256BitVector())
4254         && "Expected a 128-bit or 256-bit vector type");
4255
4256  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4257  SDValue Vec;
4258  if (VT.getSizeInBits() == 256) {
4259    if (HasAVX2) { // AVX2
4260      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4261      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4262    } else { // AVX
4263      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4264      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4265                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4266      Vec = Insert128BitVector(InsV, Vec,
4267                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4268    }
4269  } else {
4270    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4271  }
4272
4273  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4274}
4275
4276/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4277/// that point to V2 points to its first element.
4278static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4279  EVT VT = SVOp->getValueType(0);
4280  unsigned NumElems = VT.getVectorNumElements();
4281
4282  bool Changed = false;
4283  SmallVector<int, 8> MaskVec(SVOp->getMask().begin(), SVOp->getMask().end());
4284
4285  for (unsigned i = 0; i != NumElems; ++i) {
4286    if (MaskVec[i] > (int)NumElems) {
4287      MaskVec[i] = NumElems;
4288      Changed = true;
4289    }
4290  }
4291  if (Changed)
4292    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4293                                SVOp->getOperand(1), &MaskVec[0]);
4294  return SDValue(SVOp, 0);
4295}
4296
4297/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4298/// operation of specified width.
4299static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4300                       SDValue V2) {
4301  unsigned NumElems = VT.getVectorNumElements();
4302  SmallVector<int, 8> Mask;
4303  Mask.push_back(NumElems);
4304  for (unsigned i = 1; i != NumElems; ++i)
4305    Mask.push_back(i);
4306  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4307}
4308
4309/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4310static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4311                          SDValue V2) {
4312  unsigned NumElems = VT.getVectorNumElements();
4313  SmallVector<int, 8> Mask;
4314  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4315    Mask.push_back(i);
4316    Mask.push_back(i + NumElems);
4317  }
4318  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4319}
4320
4321/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4322static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4323                          SDValue V2) {
4324  unsigned NumElems = VT.getVectorNumElements();
4325  unsigned Half = NumElems/2;
4326  SmallVector<int, 8> Mask;
4327  for (unsigned i = 0; i != Half; ++i) {
4328    Mask.push_back(i + Half);
4329    Mask.push_back(i + NumElems + Half);
4330  }
4331  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4332}
4333
4334// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4335// a generic shuffle instruction because the target has no such instructions.
4336// Generate shuffles which repeat i16 and i8 several times until they can be
4337// represented by v4f32 and then be manipulated by target suported shuffles.
4338static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4339  EVT VT = V.getValueType();
4340  int NumElems = VT.getVectorNumElements();
4341  DebugLoc dl = V.getDebugLoc();
4342
4343  while (NumElems > 4) {
4344    if (EltNo < NumElems/2) {
4345      V = getUnpackl(DAG, dl, VT, V, V);
4346    } else {
4347      V = getUnpackh(DAG, dl, VT, V, V);
4348      EltNo -= NumElems/2;
4349    }
4350    NumElems >>= 1;
4351  }
4352  return V;
4353}
4354
4355/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4356static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4357  EVT VT = V.getValueType();
4358  DebugLoc dl = V.getDebugLoc();
4359  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4360         && "Vector size not supported");
4361
4362  if (VT.getSizeInBits() == 128) {
4363    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4364    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4365    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4366                             &SplatMask[0]);
4367  } else {
4368    // To use VPERMILPS to splat scalars, the second half of indicies must
4369    // refer to the higher part, which is a duplication of the lower one,
4370    // because VPERMILPS can only handle in-lane permutations.
4371    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4372                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4373
4374    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4375    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4376                             &SplatMask[0]);
4377  }
4378
4379  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4380}
4381
4382/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4383static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4384  EVT SrcVT = SV->getValueType(0);
4385  SDValue V1 = SV->getOperand(0);
4386  DebugLoc dl = SV->getDebugLoc();
4387
4388  int EltNo = SV->getSplatIndex();
4389  int NumElems = SrcVT.getVectorNumElements();
4390  unsigned Size = SrcVT.getSizeInBits();
4391
4392  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4393          "Unknown how to promote splat for type");
4394
4395  // Extract the 128-bit part containing the splat element and update
4396  // the splat element index when it refers to the higher register.
4397  if (Size == 256) {
4398    unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4399    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4400    if (Idx > 0)
4401      EltNo -= NumElems/2;
4402  }
4403
4404  // All i16 and i8 vector types can't be used directly by a generic shuffle
4405  // instruction because the target has no such instruction. Generate shuffles
4406  // which repeat i16 and i8 several times until they fit in i32, and then can
4407  // be manipulated by target suported shuffles.
4408  EVT EltVT = SrcVT.getVectorElementType();
4409  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4410    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4411
4412  // Recreate the 256-bit vector and place the same 128-bit vector
4413  // into the low and high part. This is necessary because we want
4414  // to use VPERM* to shuffle the vectors
4415  if (Size == 256) {
4416    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4417                         DAG.getConstant(0, MVT::i32), DAG, dl);
4418    V1 = Insert128BitVector(InsV, V1,
4419               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4420  }
4421
4422  return getLegalSplat(DAG, V1, EltNo);
4423}
4424
4425/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4426/// vector of zero or undef vector.  This produces a shuffle where the low
4427/// element of V2 is swizzled into the zero/undef vector, landing at element
4428/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4429static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4430                                           bool IsZero,
4431                                           const X86Subtarget *Subtarget,
4432                                           SelectionDAG &DAG) {
4433  EVT VT = V2.getValueType();
4434  SDValue V1 = IsZero
4435    ? getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(), DAG,
4436                    V2.getDebugLoc()) : DAG.getUNDEF(VT);
4437  unsigned NumElems = VT.getVectorNumElements();
4438  SmallVector<int, 16> MaskVec;
4439  for (unsigned i = 0; i != NumElems; ++i)
4440    // If this is the insertion idx, put the low elt of V2 here.
4441    MaskVec.push_back(i == Idx ? NumElems : i);
4442  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4443}
4444
4445/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4446/// element of the result of the vector shuffle.
4447static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4448                                   unsigned Depth) {
4449  if (Depth == 6)
4450    return SDValue();  // Limit search depth.
4451
4452  SDValue V = SDValue(N, 0);
4453  EVT VT = V.getValueType();
4454  unsigned Opcode = V.getOpcode();
4455
4456  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4457  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4458    Index = SV->getMaskElt(Index);
4459
4460    if (Index < 0)
4461      return DAG.getUNDEF(VT.getVectorElementType());
4462
4463    int NumElems = VT.getVectorNumElements();
4464    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4465    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4466  }
4467
4468  // Recurse into target specific vector shuffles to find scalars.
4469  if (isTargetShuffle(Opcode)) {
4470    int NumElems = VT.getVectorNumElements();
4471    SmallVector<unsigned, 16> ShuffleMask;
4472    SDValue ImmN;
4473
4474    switch(Opcode) {
4475    case X86ISD::SHUFP:
4476      ImmN = N->getOperand(N->getNumOperands()-1);
4477      DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4478                      ShuffleMask);
4479      break;
4480    case X86ISD::UNPCKH:
4481      DecodeUNPCKHMask(VT, ShuffleMask);
4482      break;
4483    case X86ISD::UNPCKL:
4484      DecodeUNPCKLMask(VT, ShuffleMask);
4485      break;
4486    case X86ISD::MOVHLPS:
4487      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4488      break;
4489    case X86ISD::MOVLHPS:
4490      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4491      break;
4492    case X86ISD::PSHUFD:
4493      ImmN = N->getOperand(N->getNumOperands()-1);
4494      DecodePSHUFMask(NumElems,
4495                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4496                      ShuffleMask);
4497      break;
4498    case X86ISD::PSHUFHW:
4499      ImmN = N->getOperand(N->getNumOperands()-1);
4500      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4501                        ShuffleMask);
4502      break;
4503    case X86ISD::PSHUFLW:
4504      ImmN = N->getOperand(N->getNumOperands()-1);
4505      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4506                        ShuffleMask);
4507      break;
4508    case X86ISD::MOVSS:
4509    case X86ISD::MOVSD: {
4510      // The index 0 always comes from the first element of the second source,
4511      // this is why MOVSS and MOVSD are used in the first place. The other
4512      // elements come from the other positions of the first source vector.
4513      unsigned OpNum = (Index == 0) ? 1 : 0;
4514      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4515                                 Depth+1);
4516    }
4517    case X86ISD::VPERMILP:
4518      ImmN = N->getOperand(N->getNumOperands()-1);
4519      DecodeVPERMILPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4520                        ShuffleMask);
4521      break;
4522    case X86ISD::VPERM2X128:
4523      ImmN = N->getOperand(N->getNumOperands()-1);
4524      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4525                           ShuffleMask);
4526      break;
4527    case X86ISD::MOVDDUP:
4528    case X86ISD::MOVLHPD:
4529    case X86ISD::MOVLPD:
4530    case X86ISD::MOVLPS:
4531    case X86ISD::MOVSHDUP:
4532    case X86ISD::MOVSLDUP:
4533    case X86ISD::PALIGN:
4534      return SDValue(); // Not yet implemented.
4535    default:
4536      assert(0 && "unknown target shuffle node");
4537      return SDValue();
4538    }
4539
4540    Index = ShuffleMask[Index];
4541    if (Index < 0)
4542      return DAG.getUNDEF(VT.getVectorElementType());
4543
4544    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4545    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4546                               Depth+1);
4547  }
4548
4549  // Actual nodes that may contain scalar elements
4550  if (Opcode == ISD::BITCAST) {
4551    V = V.getOperand(0);
4552    EVT SrcVT = V.getValueType();
4553    unsigned NumElems = VT.getVectorNumElements();
4554
4555    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4556      return SDValue();
4557  }
4558
4559  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4560    return (Index == 0) ? V.getOperand(0)
4561                          : DAG.getUNDEF(VT.getVectorElementType());
4562
4563  if (V.getOpcode() == ISD::BUILD_VECTOR)
4564    return V.getOperand(Index);
4565
4566  return SDValue();
4567}
4568
4569/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4570/// shuffle operation which come from a consecutively from a zero. The
4571/// search can start in two different directions, from left or right.
4572static
4573unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4574                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4575  int i = 0;
4576
4577  while (i < NumElems) {
4578    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4579    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4580    if (!(Elt.getNode() &&
4581         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4582      break;
4583    ++i;
4584  }
4585
4586  return i;
4587}
4588
4589/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4590/// MaskE correspond consecutively to elements from one of the vector operands,
4591/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4592static
4593bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4594                              int OpIdx, int NumElems, unsigned &OpNum) {
4595  bool SeenV1 = false;
4596  bool SeenV2 = false;
4597
4598  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4599    int Idx = SVOp->getMaskElt(i);
4600    // Ignore undef indicies
4601    if (Idx < 0)
4602      continue;
4603
4604    if (Idx < NumElems)
4605      SeenV1 = true;
4606    else
4607      SeenV2 = true;
4608
4609    // Only accept consecutive elements from the same vector
4610    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4611      return false;
4612  }
4613
4614  OpNum = SeenV1 ? 0 : 1;
4615  return true;
4616}
4617
4618/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4619/// logical left shift of a vector.
4620static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4621                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4622  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4623  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4624              false /* check zeros from right */, DAG);
4625  unsigned OpSrc;
4626
4627  if (!NumZeros)
4628    return false;
4629
4630  // Considering the elements in the mask that are not consecutive zeros,
4631  // check if they consecutively come from only one of the source vectors.
4632  //
4633  //               V1 = {X, A, B, C}     0
4634  //                         \  \  \    /
4635  //   vector_shuffle V1, V2 <1, 2, 3, X>
4636  //
4637  if (!isShuffleMaskConsecutive(SVOp,
4638            0,                   // Mask Start Index
4639            NumElems-NumZeros-1, // Mask End Index
4640            NumZeros,            // Where to start looking in the src vector
4641            NumElems,            // Number of elements in vector
4642            OpSrc))              // Which source operand ?
4643    return false;
4644
4645  isLeft = false;
4646  ShAmt = NumZeros;
4647  ShVal = SVOp->getOperand(OpSrc);
4648  return true;
4649}
4650
4651/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4652/// logical left shift of a vector.
4653static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4654                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4655  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4656  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4657              true /* check zeros from left */, DAG);
4658  unsigned OpSrc;
4659
4660  if (!NumZeros)
4661    return false;
4662
4663  // Considering the elements in the mask that are not consecutive zeros,
4664  // check if they consecutively come from only one of the source vectors.
4665  //
4666  //                           0    { A, B, X, X } = V2
4667  //                          / \    /  /
4668  //   vector_shuffle V1, V2 <X, X, 4, 5>
4669  //
4670  if (!isShuffleMaskConsecutive(SVOp,
4671            NumZeros,     // Mask Start Index
4672            NumElems-1,   // Mask End Index
4673            0,            // Where to start looking in the src vector
4674            NumElems,     // Number of elements in vector
4675            OpSrc))       // Which source operand ?
4676    return false;
4677
4678  isLeft = true;
4679  ShAmt = NumZeros;
4680  ShVal = SVOp->getOperand(OpSrc);
4681  return true;
4682}
4683
4684/// isVectorShift - Returns true if the shuffle can be implemented as a
4685/// logical left or right shift of a vector.
4686static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4687                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4688  // Although the logic below support any bitwidth size, there are no
4689  // shift instructions which handle more than 128-bit vectors.
4690  if (SVOp->getValueType(0).getSizeInBits() > 128)
4691    return false;
4692
4693  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4694      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4695    return true;
4696
4697  return false;
4698}
4699
4700/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4701///
4702static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4703                                       unsigned NumNonZero, unsigned NumZero,
4704                                       SelectionDAG &DAG,
4705                                       const TargetLowering &TLI) {
4706  if (NumNonZero > 8)
4707    return SDValue();
4708
4709  DebugLoc dl = Op.getDebugLoc();
4710  SDValue V(0, 0);
4711  bool First = true;
4712  for (unsigned i = 0; i < 16; ++i) {
4713    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4714    if (ThisIsNonZero && First) {
4715      if (NumZero)
4716        V = getZeroVector(MVT::v8i16, /*HasSSE2*/ true, /*HasAVX2*/ false,
4717                          DAG, dl);
4718      else
4719        V = DAG.getUNDEF(MVT::v8i16);
4720      First = false;
4721    }
4722
4723    if ((i & 1) != 0) {
4724      SDValue ThisElt(0, 0), LastElt(0, 0);
4725      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4726      if (LastIsNonZero) {
4727        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4728                              MVT::i16, Op.getOperand(i-1));
4729      }
4730      if (ThisIsNonZero) {
4731        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4732        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4733                              ThisElt, DAG.getConstant(8, MVT::i8));
4734        if (LastIsNonZero)
4735          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4736      } else
4737        ThisElt = LastElt;
4738
4739      if (ThisElt.getNode())
4740        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4741                        DAG.getIntPtrConstant(i/2));
4742    }
4743  }
4744
4745  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4746}
4747
4748/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4749///
4750static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4751                                     unsigned NumNonZero, unsigned NumZero,
4752                                     SelectionDAG &DAG,
4753                                     const TargetLowering &TLI) {
4754  if (NumNonZero > 4)
4755    return SDValue();
4756
4757  DebugLoc dl = Op.getDebugLoc();
4758  SDValue V(0, 0);
4759  bool First = true;
4760  for (unsigned i = 0; i < 8; ++i) {
4761    bool isNonZero = (NonZeros & (1 << i)) != 0;
4762    if (isNonZero) {
4763      if (First) {
4764        if (NumZero)
4765          V = getZeroVector(MVT::v8i16, /*HasSSE2*/ true, /*HasAVX2*/ false,
4766                            DAG, dl);
4767        else
4768          V = DAG.getUNDEF(MVT::v8i16);
4769        First = false;
4770      }
4771      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4772                      MVT::v8i16, V, Op.getOperand(i),
4773                      DAG.getIntPtrConstant(i));
4774    }
4775  }
4776
4777  return V;
4778}
4779
4780/// getVShift - Return a vector logical shift node.
4781///
4782static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4783                         unsigned NumBits, SelectionDAG &DAG,
4784                         const TargetLowering &TLI, DebugLoc dl) {
4785  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4786  EVT ShVT = MVT::v2i64;
4787  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4788  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4789  return DAG.getNode(ISD::BITCAST, dl, VT,
4790                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4791                             DAG.getConstant(NumBits,
4792                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4793}
4794
4795SDValue
4796X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4797                                          SelectionDAG &DAG) const {
4798
4799  // Check if the scalar load can be widened into a vector load. And if
4800  // the address is "base + cst" see if the cst can be "absorbed" into
4801  // the shuffle mask.
4802  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4803    SDValue Ptr = LD->getBasePtr();
4804    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4805      return SDValue();
4806    EVT PVT = LD->getValueType(0);
4807    if (PVT != MVT::i32 && PVT != MVT::f32)
4808      return SDValue();
4809
4810    int FI = -1;
4811    int64_t Offset = 0;
4812    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4813      FI = FINode->getIndex();
4814      Offset = 0;
4815    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4816               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4817      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4818      Offset = Ptr.getConstantOperandVal(1);
4819      Ptr = Ptr.getOperand(0);
4820    } else {
4821      return SDValue();
4822    }
4823
4824    // FIXME: 256-bit vector instructions don't require a strict alignment,
4825    // improve this code to support it better.
4826    unsigned RequiredAlign = VT.getSizeInBits()/8;
4827    SDValue Chain = LD->getChain();
4828    // Make sure the stack object alignment is at least 16 or 32.
4829    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4830    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4831      if (MFI->isFixedObjectIndex(FI)) {
4832        // Can't change the alignment. FIXME: It's possible to compute
4833        // the exact stack offset and reference FI + adjust offset instead.
4834        // If someone *really* cares about this. That's the way to implement it.
4835        return SDValue();
4836      } else {
4837        MFI->setObjectAlignment(FI, RequiredAlign);
4838      }
4839    }
4840
4841    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4842    // Ptr + (Offset & ~15).
4843    if (Offset < 0)
4844      return SDValue();
4845    if ((Offset % RequiredAlign) & 3)
4846      return SDValue();
4847    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4848    if (StartOffset)
4849      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4850                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4851
4852    int EltNo = (Offset - StartOffset) >> 2;
4853    int NumElems = VT.getVectorNumElements();
4854
4855    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4856    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4857    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4858                             LD->getPointerInfo().getWithOffset(StartOffset),
4859                             false, false, false, 0);
4860
4861    // Canonicalize it to a v4i32 or v8i32 shuffle.
4862    SmallVector<int, 8> Mask;
4863    for (int i = 0; i < NumElems; ++i)
4864      Mask.push_back(EltNo);
4865
4866    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4867    return DAG.getNode(ISD::BITCAST, dl, NVT,
4868                       DAG.getVectorShuffle(CanonVT, dl, V1,
4869                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4870  }
4871
4872  return SDValue();
4873}
4874
4875/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4876/// vector of type 'VT', see if the elements can be replaced by a single large
4877/// load which has the same value as a build_vector whose operands are 'elts'.
4878///
4879/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4880///
4881/// FIXME: we'd also like to handle the case where the last elements are zero
4882/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4883/// There's even a handy isZeroNode for that purpose.
4884static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4885                                        DebugLoc &DL, SelectionDAG &DAG) {
4886  EVT EltVT = VT.getVectorElementType();
4887  unsigned NumElems = Elts.size();
4888
4889  LoadSDNode *LDBase = NULL;
4890  unsigned LastLoadedElt = -1U;
4891
4892  // For each element in the initializer, see if we've found a load or an undef.
4893  // If we don't find an initial load element, or later load elements are
4894  // non-consecutive, bail out.
4895  for (unsigned i = 0; i < NumElems; ++i) {
4896    SDValue Elt = Elts[i];
4897
4898    if (!Elt.getNode() ||
4899        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4900      return SDValue();
4901    if (!LDBase) {
4902      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4903        return SDValue();
4904      LDBase = cast<LoadSDNode>(Elt.getNode());
4905      LastLoadedElt = i;
4906      continue;
4907    }
4908    if (Elt.getOpcode() == ISD::UNDEF)
4909      continue;
4910
4911    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4912    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4913      return SDValue();
4914    LastLoadedElt = i;
4915  }
4916
4917  // If we have found an entire vector of loads and undefs, then return a large
4918  // load of the entire vector width starting at the base pointer.  If we found
4919  // consecutive loads for the low half, generate a vzext_load node.
4920  if (LastLoadedElt == NumElems - 1) {
4921    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4922      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4923                         LDBase->getPointerInfo(),
4924                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4925                         LDBase->isInvariant(), 0);
4926    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4927                       LDBase->getPointerInfo(),
4928                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4929                       LDBase->isInvariant(), LDBase->getAlignment());
4930  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4931             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4932    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4933    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4934    SDValue ResNode =
4935        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4936                                LDBase->getPointerInfo(),
4937                                LDBase->getAlignment(),
4938                                false/*isVolatile*/, true/*ReadMem*/,
4939                                false/*WriteMem*/);
4940    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4941  }
4942  return SDValue();
4943}
4944
4945/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
4946/// a vbroadcast node. We support two patterns:
4947/// 1. A splat BUILD_VECTOR which uses a single scalar load.
4948/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4949/// a scalar load.
4950/// The scalar load node is returned when a pattern is found,
4951/// or SDValue() otherwise.
4952static SDValue isVectorBroadcast(SDValue &Op, const X86Subtarget *Subtarget) {
4953  if (!Subtarget->hasAVX())
4954    return SDValue();
4955
4956  EVT VT = Op.getValueType();
4957  SDValue V = Op;
4958
4959  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
4960    V = V.getOperand(0);
4961
4962  //A suspected load to be broadcasted.
4963  SDValue Ld;
4964
4965  switch (V.getOpcode()) {
4966    default:
4967      // Unknown pattern found.
4968      return SDValue();
4969
4970    case ISD::BUILD_VECTOR: {
4971      // The BUILD_VECTOR node must be a splat.
4972      if (!isSplatVector(V.getNode()))
4973        return SDValue();
4974
4975      Ld = V.getOperand(0);
4976
4977      // The suspected load node has several users. Make sure that all
4978      // of its users are from the BUILD_VECTOR node.
4979      if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4980        return SDValue();
4981      break;
4982    }
4983
4984    case ISD::VECTOR_SHUFFLE: {
4985      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4986
4987      // Shuffles must have a splat mask where the first element is
4988      // broadcasted.
4989      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4990        return SDValue();
4991
4992      SDValue Sc = Op.getOperand(0);
4993      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4994        return SDValue();
4995
4996      Ld = Sc.getOperand(0);
4997
4998      // The scalar_to_vector node and the suspected
4999      // load node must have exactly one user.
5000      if (!Sc.hasOneUse() || !Ld.hasOneUse())
5001        return SDValue();
5002      break;
5003    }
5004  }
5005
5006  // The scalar source must be a normal load.
5007  if (!ISD::isNormalLoad(Ld.getNode()))
5008    return SDValue();
5009
5010  bool Is256 = VT.getSizeInBits() == 256;
5011  bool Is128 = VT.getSizeInBits() == 128;
5012  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5013
5014  // VBroadcast to YMM
5015  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
5016    return Ld;
5017
5018  // VBroadcast to XMM
5019  if (Is128 && (ScalarSize == 32))
5020    return Ld;
5021
5022  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5023  // double since there is vbroadcastsd xmm
5024  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5025    // VBroadcast to YMM
5026    if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
5027      return Ld;
5028
5029    // VBroadcast to XMM
5030    if (Is128 && (ScalarSize ==  8 || ScalarSize == 16 || ScalarSize == 64))
5031      return Ld;
5032  }
5033
5034  // Unsupported broadcast.
5035  return SDValue();
5036}
5037
5038SDValue
5039X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5040  DebugLoc dl = Op.getDebugLoc();
5041
5042  EVT VT = Op.getValueType();
5043  EVT ExtVT = VT.getVectorElementType();
5044  unsigned NumElems = Op.getNumOperands();
5045
5046  // Vectors containing all zeros can be matched by pxor and xorps later
5047  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5048    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5049    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5050    if (Op.getValueType() == MVT::v4i32 ||
5051        Op.getValueType() == MVT::v8i32)
5052      return Op;
5053
5054    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(),
5055                         Subtarget->hasAVX2(), DAG, dl);
5056  }
5057
5058  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5059  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5060  // vpcmpeqd on 256-bit vectors.
5061  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5062    if (Op.getValueType() == MVT::v4i32 ||
5063        (Op.getValueType() == MVT::v8i32 && Subtarget->hasAVX2()))
5064      return Op;
5065
5066    return getOnesVector(Op.getValueType(), Subtarget->hasAVX2(), DAG, dl);
5067  }
5068
5069  SDValue LD = isVectorBroadcast(Op, Subtarget);
5070  if (LD.getNode())
5071    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
5072
5073  unsigned EVTBits = ExtVT.getSizeInBits();
5074
5075  unsigned NumZero  = 0;
5076  unsigned NumNonZero = 0;
5077  unsigned NonZeros = 0;
5078  bool IsAllConstants = true;
5079  SmallSet<SDValue, 8> Values;
5080  for (unsigned i = 0; i < NumElems; ++i) {
5081    SDValue Elt = Op.getOperand(i);
5082    if (Elt.getOpcode() == ISD::UNDEF)
5083      continue;
5084    Values.insert(Elt);
5085    if (Elt.getOpcode() != ISD::Constant &&
5086        Elt.getOpcode() != ISD::ConstantFP)
5087      IsAllConstants = false;
5088    if (X86::isZeroNode(Elt))
5089      NumZero++;
5090    else {
5091      NonZeros |= (1 << i);
5092      NumNonZero++;
5093    }
5094  }
5095
5096  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5097  if (NumNonZero == 0)
5098    return DAG.getUNDEF(VT);
5099
5100  // Special case for single non-zero, non-undef, element.
5101  if (NumNonZero == 1) {
5102    unsigned Idx = CountTrailingZeros_32(NonZeros);
5103    SDValue Item = Op.getOperand(Idx);
5104
5105    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5106    // the value are obviously zero, truncate the value to i32 and do the
5107    // insertion that way.  Only do this if the value is non-constant or if the
5108    // value is a constant being inserted into element 0.  It is cheaper to do
5109    // a constant pool load than it is to do a movd + shuffle.
5110    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5111        (!IsAllConstants || Idx == 0)) {
5112      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5113        // Handle SSE only.
5114        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5115        EVT VecVT = MVT::v4i32;
5116        unsigned VecElts = 4;
5117
5118        // Truncate the value (which may itself be a constant) to i32, and
5119        // convert it to a vector with movd (S2V+shuffle to zero extend).
5120        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5121        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5122        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5123
5124        // Now we have our 32-bit value zero extended in the low element of
5125        // a vector.  If Idx != 0, swizzle it into place.
5126        if (Idx != 0) {
5127          SmallVector<int, 4> Mask;
5128          Mask.push_back(Idx);
5129          for (unsigned i = 1; i != VecElts; ++i)
5130            Mask.push_back(i);
5131          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5132                                      DAG.getUNDEF(Item.getValueType()),
5133                                      &Mask[0]);
5134        }
5135        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5136      }
5137    }
5138
5139    // If we have a constant or non-constant insertion into the low element of
5140    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5141    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5142    // depending on what the source datatype is.
5143    if (Idx == 0) {
5144      if (NumZero == 0)
5145        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5146
5147      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5148          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5149        if (VT.getSizeInBits() == 256) {
5150          SDValue ZeroVec = getZeroVector(VT, Subtarget->hasSSE2(),
5151                                          Subtarget->hasAVX2(), DAG, dl);
5152          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5153                             Item, DAG.getIntPtrConstant(0));
5154        }
5155        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5156        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5157        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5158        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5159      }
5160
5161      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5162        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5163        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5164        if (VT.getSizeInBits() == 256) {
5165          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget->hasSSE2(),
5166                                          Subtarget->hasAVX2(), DAG, dl);
5167          Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5168                                    DAG, dl);
5169        } else {
5170          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5171          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5172        }
5173        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5174      }
5175    }
5176
5177    // Is it a vector logical left shift?
5178    if (NumElems == 2 && Idx == 1 &&
5179        X86::isZeroNode(Op.getOperand(0)) &&
5180        !X86::isZeroNode(Op.getOperand(1))) {
5181      unsigned NumBits = VT.getSizeInBits();
5182      return getVShift(true, VT,
5183                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5184                                   VT, Op.getOperand(1)),
5185                       NumBits/2, DAG, *this, dl);
5186    }
5187
5188    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5189      return SDValue();
5190
5191    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5192    // is a non-constant being inserted into an element other than the low one,
5193    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5194    // movd/movss) to move this into the low element, then shuffle it into
5195    // place.
5196    if (EVTBits == 32) {
5197      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5198
5199      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5200      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5201      SmallVector<int, 8> MaskVec;
5202      for (unsigned i = 0; i < NumElems; i++)
5203        MaskVec.push_back(i == Idx ? 0 : 1);
5204      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5205    }
5206  }
5207
5208  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5209  if (Values.size() == 1) {
5210    if (EVTBits == 32) {
5211      // Instead of a shuffle like this:
5212      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5213      // Check if it's possible to issue this instead.
5214      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5215      unsigned Idx = CountTrailingZeros_32(NonZeros);
5216      SDValue Item = Op.getOperand(Idx);
5217      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5218        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5219    }
5220    return SDValue();
5221  }
5222
5223  // A vector full of immediates; various special cases are already
5224  // handled, so this is best done with a single constant-pool load.
5225  if (IsAllConstants)
5226    return SDValue();
5227
5228  // For AVX-length vectors, build the individual 128-bit pieces and use
5229  // shuffles to put them in place.
5230  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5231    SmallVector<SDValue, 32> V;
5232    for (unsigned i = 0; i < NumElems; ++i)
5233      V.push_back(Op.getOperand(i));
5234
5235    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5236
5237    // Build both the lower and upper subvector.
5238    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5239    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5240                                NumElems/2);
5241
5242    // Recreate the wider vector with the lower and upper part.
5243    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5244                                DAG.getConstant(0, MVT::i32), DAG, dl);
5245    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5246                              DAG, dl);
5247  }
5248
5249  // Let legalizer expand 2-wide build_vectors.
5250  if (EVTBits == 64) {
5251    if (NumNonZero == 1) {
5252      // One half is zero or undef.
5253      unsigned Idx = CountTrailingZeros_32(NonZeros);
5254      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5255                                 Op.getOperand(Idx));
5256      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5257    }
5258    return SDValue();
5259  }
5260
5261  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5262  if (EVTBits == 8 && NumElems == 16) {
5263    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5264                                        *this);
5265    if (V.getNode()) return V;
5266  }
5267
5268  if (EVTBits == 16 && NumElems == 8) {
5269    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5270                                      *this);
5271    if (V.getNode()) return V;
5272  }
5273
5274  // If element VT is == 32 bits, turn it into a number of shuffles.
5275  SmallVector<SDValue, 8> V;
5276  V.resize(NumElems);
5277  if (NumElems == 4 && NumZero > 0) {
5278    for (unsigned i = 0; i < 4; ++i) {
5279      bool isZero = !(NonZeros & (1 << i));
5280      if (isZero)
5281        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(),
5282                             DAG, dl);
5283      else
5284        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5285    }
5286
5287    for (unsigned i = 0; i < 2; ++i) {
5288      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5289        default: break;
5290        case 0:
5291          V[i] = V[i*2];  // Must be a zero vector.
5292          break;
5293        case 1:
5294          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5295          break;
5296        case 2:
5297          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5298          break;
5299        case 3:
5300          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5301          break;
5302      }
5303    }
5304
5305    SmallVector<int, 8> MaskVec;
5306    bool Reverse = (NonZeros & 0x3) == 2;
5307    for (unsigned i = 0; i < 2; ++i)
5308      MaskVec.push_back(Reverse ? 1-i : i);
5309    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5310    for (unsigned i = 0; i < 2; ++i)
5311      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5312    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5313  }
5314
5315  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5316    // Check for a build vector of consecutive loads.
5317    for (unsigned i = 0; i < NumElems; ++i)
5318      V[i] = Op.getOperand(i);
5319
5320    // Check for elements which are consecutive loads.
5321    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5322    if (LD.getNode())
5323      return LD;
5324
5325    // For SSE 4.1, use insertps to put the high elements into the low element.
5326    if (getSubtarget()->hasSSE41()) {
5327      SDValue Result;
5328      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5329        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5330      else
5331        Result = DAG.getUNDEF(VT);
5332
5333      for (unsigned i = 1; i < NumElems; ++i) {
5334        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5335        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5336                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5337      }
5338      return Result;
5339    }
5340
5341    // Otherwise, expand into a number of unpckl*, start by extending each of
5342    // our (non-undef) elements to the full vector width with the element in the
5343    // bottom slot of the vector (which generates no code for SSE).
5344    for (unsigned i = 0; i < NumElems; ++i) {
5345      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5346        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5347      else
5348        V[i] = DAG.getUNDEF(VT);
5349    }
5350
5351    // Next, we iteratively mix elements, e.g. for v4f32:
5352    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5353    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5354    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5355    unsigned EltStride = NumElems >> 1;
5356    while (EltStride != 0) {
5357      for (unsigned i = 0; i < EltStride; ++i) {
5358        // If V[i+EltStride] is undef and this is the first round of mixing,
5359        // then it is safe to just drop this shuffle: V[i] is already in the
5360        // right place, the one element (since it's the first round) being
5361        // inserted as undef can be dropped.  This isn't safe for successive
5362        // rounds because they will permute elements within both vectors.
5363        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5364            EltStride == NumElems/2)
5365          continue;
5366
5367        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5368      }
5369      EltStride >>= 1;
5370    }
5371    return V[0];
5372  }
5373  return SDValue();
5374}
5375
5376// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5377// them in a MMX register.  This is better than doing a stack convert.
5378static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5379  DebugLoc dl = Op.getDebugLoc();
5380  EVT ResVT = Op.getValueType();
5381
5382  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5383         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5384  int Mask[2];
5385  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5386  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5387  InVec = Op.getOperand(1);
5388  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5389    unsigned NumElts = ResVT.getVectorNumElements();
5390    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5391    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5392                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5393  } else {
5394    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5395    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5396    Mask[0] = 0; Mask[1] = 2;
5397    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5398  }
5399  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5400}
5401
5402// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5403// to create 256-bit vectors from two other 128-bit ones.
5404static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5405  DebugLoc dl = Op.getDebugLoc();
5406  EVT ResVT = Op.getValueType();
5407
5408  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5409
5410  SDValue V1 = Op.getOperand(0);
5411  SDValue V2 = Op.getOperand(1);
5412  unsigned NumElems = ResVT.getVectorNumElements();
5413
5414  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5415                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5416  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5417                            DAG, dl);
5418}
5419
5420SDValue
5421X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5422  EVT ResVT = Op.getValueType();
5423
5424  assert(Op.getNumOperands() == 2);
5425  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5426         "Unsupported CONCAT_VECTORS for value type");
5427
5428  // We support concatenate two MMX registers and place them in a MMX register.
5429  // This is better than doing a stack convert.
5430  if (ResVT.is128BitVector())
5431    return LowerMMXCONCAT_VECTORS(Op, DAG);
5432
5433  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5434  // from two other 128-bit ones.
5435  return LowerAVXCONCAT_VECTORS(Op, DAG);
5436}
5437
5438// v8i16 shuffles - Prefer shuffles in the following order:
5439// 1. [all]   pshuflw, pshufhw, optional move
5440// 2. [ssse3] 1 x pshufb
5441// 3. [ssse3] 2 x pshufb + 1 x por
5442// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5443SDValue
5444X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5445                                            SelectionDAG &DAG) const {
5446  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5447  SDValue V1 = SVOp->getOperand(0);
5448  SDValue V2 = SVOp->getOperand(1);
5449  DebugLoc dl = SVOp->getDebugLoc();
5450  SmallVector<int, 8> MaskVals;
5451
5452  // Determine if more than 1 of the words in each of the low and high quadwords
5453  // of the result come from the same quadword of one of the two inputs.  Undef
5454  // mask values count as coming from any quadword, for better codegen.
5455  unsigned LoQuad[] = { 0, 0, 0, 0 };
5456  unsigned HiQuad[] = { 0, 0, 0, 0 };
5457  BitVector InputQuads(4);
5458  for (unsigned i = 0; i < 8; ++i) {
5459    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5460    int EltIdx = SVOp->getMaskElt(i);
5461    MaskVals.push_back(EltIdx);
5462    if (EltIdx < 0) {
5463      ++Quad[0];
5464      ++Quad[1];
5465      ++Quad[2];
5466      ++Quad[3];
5467      continue;
5468    }
5469    ++Quad[EltIdx / 4];
5470    InputQuads.set(EltIdx / 4);
5471  }
5472
5473  int BestLoQuad = -1;
5474  unsigned MaxQuad = 1;
5475  for (unsigned i = 0; i < 4; ++i) {
5476    if (LoQuad[i] > MaxQuad) {
5477      BestLoQuad = i;
5478      MaxQuad = LoQuad[i];
5479    }
5480  }
5481
5482  int BestHiQuad = -1;
5483  MaxQuad = 1;
5484  for (unsigned i = 0; i < 4; ++i) {
5485    if (HiQuad[i] > MaxQuad) {
5486      BestHiQuad = i;
5487      MaxQuad = HiQuad[i];
5488    }
5489  }
5490
5491  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5492  // of the two input vectors, shuffle them into one input vector so only a
5493  // single pshufb instruction is necessary. If There are more than 2 input
5494  // quads, disable the next transformation since it does not help SSSE3.
5495  bool V1Used = InputQuads[0] || InputQuads[1];
5496  bool V2Used = InputQuads[2] || InputQuads[3];
5497  if (Subtarget->hasSSSE3()) {
5498    if (InputQuads.count() == 2 && V1Used && V2Used) {
5499      BestLoQuad = InputQuads.find_first();
5500      BestHiQuad = InputQuads.find_next(BestLoQuad);
5501    }
5502    if (InputQuads.count() > 2) {
5503      BestLoQuad = -1;
5504      BestHiQuad = -1;
5505    }
5506  }
5507
5508  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5509  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5510  // words from all 4 input quadwords.
5511  SDValue NewV;
5512  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5513    SmallVector<int, 8> MaskV;
5514    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5515    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5516    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5517                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5518                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5519    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5520
5521    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5522    // source words for the shuffle, to aid later transformations.
5523    bool AllWordsInNewV = true;
5524    bool InOrder[2] = { true, true };
5525    for (unsigned i = 0; i != 8; ++i) {
5526      int idx = MaskVals[i];
5527      if (idx != (int)i)
5528        InOrder[i/4] = false;
5529      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5530        continue;
5531      AllWordsInNewV = false;
5532      break;
5533    }
5534
5535    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5536    if (AllWordsInNewV) {
5537      for (int i = 0; i != 8; ++i) {
5538        int idx = MaskVals[i];
5539        if (idx < 0)
5540          continue;
5541        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5542        if ((idx != i) && idx < 4)
5543          pshufhw = false;
5544        if ((idx != i) && idx > 3)
5545          pshuflw = false;
5546      }
5547      V1 = NewV;
5548      V2Used = false;
5549      BestLoQuad = 0;
5550      BestHiQuad = 1;
5551    }
5552
5553    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5554    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5555    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5556      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5557      unsigned TargetMask = 0;
5558      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5559                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5560      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5561                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5562      V1 = NewV.getOperand(0);
5563      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5564    }
5565  }
5566
5567  // If we have SSSE3, and all words of the result are from 1 input vector,
5568  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5569  // is present, fall back to case 4.
5570  if (Subtarget->hasSSSE3()) {
5571    SmallVector<SDValue,16> pshufbMask;
5572
5573    // If we have elements from both input vectors, set the high bit of the
5574    // shuffle mask element to zero out elements that come from V2 in the V1
5575    // mask, and elements that come from V1 in the V2 mask, so that the two
5576    // results can be OR'd together.
5577    bool TwoInputs = V1Used && V2Used;
5578    for (unsigned i = 0; i != 8; ++i) {
5579      int EltIdx = MaskVals[i] * 2;
5580      if (TwoInputs && (EltIdx >= 16)) {
5581        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5582        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5583        continue;
5584      }
5585      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5586      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5587    }
5588    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5589    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5590                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5591                                 MVT::v16i8, &pshufbMask[0], 16));
5592    if (!TwoInputs)
5593      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5594
5595    // Calculate the shuffle mask for the second input, shuffle it, and
5596    // OR it with the first shuffled input.
5597    pshufbMask.clear();
5598    for (unsigned i = 0; i != 8; ++i) {
5599      int EltIdx = MaskVals[i] * 2;
5600      if (EltIdx < 16) {
5601        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5602        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5603        continue;
5604      }
5605      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5606      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5607    }
5608    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5609    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5610                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5611                                 MVT::v16i8, &pshufbMask[0], 16));
5612    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5613    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5614  }
5615
5616  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5617  // and update MaskVals with new element order.
5618  BitVector InOrder(8);
5619  if (BestLoQuad >= 0) {
5620    SmallVector<int, 8> MaskV;
5621    for (int i = 0; i != 4; ++i) {
5622      int idx = MaskVals[i];
5623      if (idx < 0) {
5624        MaskV.push_back(-1);
5625        InOrder.set(i);
5626      } else if ((idx / 4) == BestLoQuad) {
5627        MaskV.push_back(idx & 3);
5628        InOrder.set(i);
5629      } else {
5630        MaskV.push_back(-1);
5631      }
5632    }
5633    for (unsigned i = 4; i != 8; ++i)
5634      MaskV.push_back(i);
5635    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5636                                &MaskV[0]);
5637
5638    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5639      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5640                               NewV.getOperand(0),
5641                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5642                               DAG);
5643  }
5644
5645  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5646  // and update MaskVals with the new element order.
5647  if (BestHiQuad >= 0) {
5648    SmallVector<int, 8> MaskV;
5649    for (unsigned i = 0; i != 4; ++i)
5650      MaskV.push_back(i);
5651    for (unsigned i = 4; i != 8; ++i) {
5652      int idx = MaskVals[i];
5653      if (idx < 0) {
5654        MaskV.push_back(-1);
5655        InOrder.set(i);
5656      } else if ((idx / 4) == BestHiQuad) {
5657        MaskV.push_back((idx & 3) + 4);
5658        InOrder.set(i);
5659      } else {
5660        MaskV.push_back(-1);
5661      }
5662    }
5663    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5664                                &MaskV[0]);
5665
5666    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5667      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5668                              NewV.getOperand(0),
5669                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5670                              DAG);
5671  }
5672
5673  // In case BestHi & BestLo were both -1, which means each quadword has a word
5674  // from each of the four input quadwords, calculate the InOrder bitvector now
5675  // before falling through to the insert/extract cleanup.
5676  if (BestLoQuad == -1 && BestHiQuad == -1) {
5677    NewV = V1;
5678    for (int i = 0; i != 8; ++i)
5679      if (MaskVals[i] < 0 || MaskVals[i] == i)
5680        InOrder.set(i);
5681  }
5682
5683  // The other elements are put in the right place using pextrw and pinsrw.
5684  for (unsigned i = 0; i != 8; ++i) {
5685    if (InOrder[i])
5686      continue;
5687    int EltIdx = MaskVals[i];
5688    if (EltIdx < 0)
5689      continue;
5690    SDValue ExtOp = (EltIdx < 8)
5691    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5692                  DAG.getIntPtrConstant(EltIdx))
5693    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5694                  DAG.getIntPtrConstant(EltIdx - 8));
5695    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5696                       DAG.getIntPtrConstant(i));
5697  }
5698  return NewV;
5699}
5700
5701// v16i8 shuffles - Prefer shuffles in the following order:
5702// 1. [ssse3] 1 x pshufb
5703// 2. [ssse3] 2 x pshufb + 1 x por
5704// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5705static
5706SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5707                                 SelectionDAG &DAG,
5708                                 const X86TargetLowering &TLI) {
5709  SDValue V1 = SVOp->getOperand(0);
5710  SDValue V2 = SVOp->getOperand(1);
5711  DebugLoc dl = SVOp->getDebugLoc();
5712  ArrayRef<int> MaskVals = SVOp->getMask();
5713
5714  // If we have SSSE3, case 1 is generated when all result bytes come from
5715  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5716  // present, fall back to case 3.
5717  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5718  bool V1Only = true;
5719  bool V2Only = true;
5720  for (unsigned i = 0; i < 16; ++i) {
5721    int EltIdx = MaskVals[i];
5722    if (EltIdx < 0)
5723      continue;
5724    if (EltIdx < 16)
5725      V2Only = false;
5726    else
5727      V1Only = false;
5728  }
5729
5730  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5731  if (TLI.getSubtarget()->hasSSSE3()) {
5732    SmallVector<SDValue,16> pshufbMask;
5733
5734    // If all result elements are from one input vector, then only translate
5735    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5736    //
5737    // Otherwise, we have elements from both input vectors, and must zero out
5738    // elements that come from V2 in the first mask, and V1 in the second mask
5739    // so that we can OR them together.
5740    bool TwoInputs = !(V1Only || V2Only);
5741    for (unsigned i = 0; i != 16; ++i) {
5742      int EltIdx = MaskVals[i];
5743      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5744        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5745        continue;
5746      }
5747      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5748    }
5749    // If all the elements are from V2, assign it to V1 and return after
5750    // building the first pshufb.
5751    if (V2Only)
5752      V1 = V2;
5753    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5754                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5755                                 MVT::v16i8, &pshufbMask[0], 16));
5756    if (!TwoInputs)
5757      return V1;
5758
5759    // Calculate the shuffle mask for the second input, shuffle it, and
5760    // OR it with the first shuffled input.
5761    pshufbMask.clear();
5762    for (unsigned i = 0; i != 16; ++i) {
5763      int EltIdx = MaskVals[i];
5764      if (EltIdx < 16) {
5765        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5766        continue;
5767      }
5768      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5769    }
5770    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5771                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5772                                 MVT::v16i8, &pshufbMask[0], 16));
5773    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5774  }
5775
5776  // No SSSE3 - Calculate in place words and then fix all out of place words
5777  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5778  // the 16 different words that comprise the two doublequadword input vectors.
5779  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5780  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5781  SDValue NewV = V2Only ? V2 : V1;
5782  for (int i = 0; i != 8; ++i) {
5783    int Elt0 = MaskVals[i*2];
5784    int Elt1 = MaskVals[i*2+1];
5785
5786    // This word of the result is all undef, skip it.
5787    if (Elt0 < 0 && Elt1 < 0)
5788      continue;
5789
5790    // This word of the result is already in the correct place, skip it.
5791    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5792      continue;
5793    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5794      continue;
5795
5796    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5797    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5798    SDValue InsElt;
5799
5800    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5801    // using a single extract together, load it and store it.
5802    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5803      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5804                           DAG.getIntPtrConstant(Elt1 / 2));
5805      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5806                        DAG.getIntPtrConstant(i));
5807      continue;
5808    }
5809
5810    // If Elt1 is defined, extract it from the appropriate source.  If the
5811    // source byte is not also odd, shift the extracted word left 8 bits
5812    // otherwise clear the bottom 8 bits if we need to do an or.
5813    if (Elt1 >= 0) {
5814      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5815                           DAG.getIntPtrConstant(Elt1 / 2));
5816      if ((Elt1 & 1) == 0)
5817        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5818                             DAG.getConstant(8,
5819                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5820      else if (Elt0 >= 0)
5821        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5822                             DAG.getConstant(0xFF00, MVT::i16));
5823    }
5824    // If Elt0 is defined, extract it from the appropriate source.  If the
5825    // source byte is not also even, shift the extracted word right 8 bits. If
5826    // Elt1 was also defined, OR the extracted values together before
5827    // inserting them in the result.
5828    if (Elt0 >= 0) {
5829      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5830                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5831      if ((Elt0 & 1) != 0)
5832        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5833                              DAG.getConstant(8,
5834                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5835      else if (Elt1 >= 0)
5836        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5837                             DAG.getConstant(0x00FF, MVT::i16));
5838      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5839                         : InsElt0;
5840    }
5841    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5842                       DAG.getIntPtrConstant(i));
5843  }
5844  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5845}
5846
5847/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5848/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5849/// done when every pair / quad of shuffle mask elements point to elements in
5850/// the right sequence. e.g.
5851/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5852static
5853SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5854                                 SelectionDAG &DAG, DebugLoc dl) {
5855  EVT VT = SVOp->getValueType(0);
5856  SDValue V1 = SVOp->getOperand(0);
5857  SDValue V2 = SVOp->getOperand(1);
5858  unsigned NumElems = VT.getVectorNumElements();
5859  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5860  EVT NewVT;
5861  switch (VT.getSimpleVT().SimpleTy) {
5862  default: assert(false && "Unexpected!");
5863  case MVT::v4f32: NewVT = MVT::v2f64; break;
5864  case MVT::v4i32: NewVT = MVT::v2i64; break;
5865  case MVT::v8i16: NewVT = MVT::v4i32; break;
5866  case MVT::v16i8: NewVT = MVT::v4i32; break;
5867  }
5868
5869  int Scale = NumElems / NewWidth;
5870  SmallVector<int, 8> MaskVec;
5871  for (unsigned i = 0; i < NumElems; i += Scale) {
5872    int StartIdx = -1;
5873    for (int j = 0; j < Scale; ++j) {
5874      int EltIdx = SVOp->getMaskElt(i+j);
5875      if (EltIdx < 0)
5876        continue;
5877      if (StartIdx == -1)
5878        StartIdx = EltIdx - (EltIdx % Scale);
5879      if (EltIdx != StartIdx + j)
5880        return SDValue();
5881    }
5882    if (StartIdx == -1)
5883      MaskVec.push_back(-1);
5884    else
5885      MaskVec.push_back(StartIdx / Scale);
5886  }
5887
5888  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5889  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5890  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5891}
5892
5893/// getVZextMovL - Return a zero-extending vector move low node.
5894///
5895static SDValue getVZextMovL(EVT VT, EVT OpVT,
5896                            SDValue SrcOp, SelectionDAG &DAG,
5897                            const X86Subtarget *Subtarget, DebugLoc dl) {
5898  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5899    LoadSDNode *LD = NULL;
5900    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5901      LD = dyn_cast<LoadSDNode>(SrcOp);
5902    if (!LD) {
5903      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5904      // instead.
5905      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5906      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5907          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5908          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5909          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5910        // PR2108
5911        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5912        return DAG.getNode(ISD::BITCAST, dl, VT,
5913                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5914                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5915                                                   OpVT,
5916                                                   SrcOp.getOperand(0)
5917                                                          .getOperand(0))));
5918      }
5919    }
5920  }
5921
5922  return DAG.getNode(ISD::BITCAST, dl, VT,
5923                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5924                                 DAG.getNode(ISD::BITCAST, dl,
5925                                             OpVT, SrcOp)));
5926}
5927
5928/// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
5929/// shuffle node referes to only one lane in the sources.
5930static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
5931  EVT VT = SVOp->getValueType(0);
5932  int NumElems = VT.getVectorNumElements();
5933  int HalfSize = NumElems/2;
5934  ArrayRef<int> M = SVOp->getMask();
5935  bool MatchA = false, MatchB = false;
5936
5937  for (int l = 0; l < NumElems*2; l += HalfSize) {
5938    if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
5939      MatchA = true;
5940      break;
5941    }
5942  }
5943
5944  for (int l = 0; l < NumElems*2; l += HalfSize) {
5945    if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
5946      MatchB = true;
5947      break;
5948    }
5949  }
5950
5951  return MatchA && MatchB;
5952}
5953
5954/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5955/// which could not be matched by any known target speficic shuffle
5956static SDValue
5957LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5958  if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
5959    // If each half of a vector shuffle node referes to only one lane in the
5960    // source vectors, extract each used 128-bit lane and shuffle them using
5961    // 128-bit shuffles. Then, concatenate the results. Otherwise leave
5962    // the work to the legalizer.
5963    DebugLoc dl = SVOp->getDebugLoc();
5964    EVT VT = SVOp->getValueType(0);
5965    int NumElems = VT.getVectorNumElements();
5966    int HalfSize = NumElems/2;
5967
5968    // Extract the reference for each half
5969    int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
5970    int FstVecOpNum = 0, SndVecOpNum = 0;
5971    for (int i = 0; i < HalfSize; ++i) {
5972      int Elt = SVOp->getMaskElt(i);
5973      if (SVOp->getMaskElt(i) < 0)
5974        continue;
5975      FstVecOpNum = Elt/NumElems;
5976      FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5977      break;
5978    }
5979    for (int i = HalfSize; i < NumElems; ++i) {
5980      int Elt = SVOp->getMaskElt(i);
5981      if (SVOp->getMaskElt(i) < 0)
5982        continue;
5983      SndVecOpNum = Elt/NumElems;
5984      SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5985      break;
5986    }
5987
5988    // Extract the subvectors
5989    SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
5990                      DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
5991    SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
5992                      DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
5993
5994    // Generate 128-bit shuffles
5995    SmallVector<int, 16> MaskV1, MaskV2;
5996    for (int i = 0; i < HalfSize; ++i) {
5997      int Elt = SVOp->getMaskElt(i);
5998      MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5999    }
6000    for (int i = HalfSize; i < NumElems; ++i) {
6001      int Elt = SVOp->getMaskElt(i);
6002      MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
6003    }
6004
6005    EVT NVT = V1.getValueType();
6006    V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
6007    V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
6008
6009    // Concatenate the result back
6010    SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
6011                                   DAG.getConstant(0, MVT::i32), DAG, dl);
6012    return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
6013                              DAG, dl);
6014  }
6015
6016  return SDValue();
6017}
6018
6019/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6020/// 4 elements, and match them with several different shuffle types.
6021static SDValue
6022LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6023  SDValue V1 = SVOp->getOperand(0);
6024  SDValue V2 = SVOp->getOperand(1);
6025  DebugLoc dl = SVOp->getDebugLoc();
6026  EVT VT = SVOp->getValueType(0);
6027
6028  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6029
6030  SmallVector<std::pair<int, int>, 8> Locs;
6031  Locs.resize(4);
6032  SmallVector<int, 8> Mask1(4U, -1);
6033  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6034
6035  unsigned NumHi = 0;
6036  unsigned NumLo = 0;
6037  for (unsigned i = 0; i != 4; ++i) {
6038    int Idx = PermMask[i];
6039    if (Idx < 0) {
6040      Locs[i] = std::make_pair(-1, -1);
6041    } else {
6042      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6043      if (Idx < 4) {
6044        Locs[i] = std::make_pair(0, NumLo);
6045        Mask1[NumLo] = Idx;
6046        NumLo++;
6047      } else {
6048        Locs[i] = std::make_pair(1, NumHi);
6049        if (2+NumHi < 4)
6050          Mask1[2+NumHi] = Idx;
6051        NumHi++;
6052      }
6053    }
6054  }
6055
6056  if (NumLo <= 2 && NumHi <= 2) {
6057    // If no more than two elements come from either vector. This can be
6058    // implemented with two shuffles. First shuffle gather the elements.
6059    // The second shuffle, which takes the first shuffle as both of its
6060    // vector operands, put the elements into the right order.
6061    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6062
6063    SmallVector<int, 8> Mask2(4U, -1);
6064
6065    for (unsigned i = 0; i != 4; ++i) {
6066      if (Locs[i].first == -1)
6067        continue;
6068      else {
6069        unsigned Idx = (i < 2) ? 0 : 4;
6070        Idx += Locs[i].first * 2 + Locs[i].second;
6071        Mask2[i] = Idx;
6072      }
6073    }
6074
6075    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6076  } else if (NumLo == 3 || NumHi == 3) {
6077    // Otherwise, we must have three elements from one vector, call it X, and
6078    // one element from the other, call it Y.  First, use a shufps to build an
6079    // intermediate vector with the one element from Y and the element from X
6080    // that will be in the same half in the final destination (the indexes don't
6081    // matter). Then, use a shufps to build the final vector, taking the half
6082    // containing the element from Y from the intermediate, and the other half
6083    // from X.
6084    if (NumHi == 3) {
6085      // Normalize it so the 3 elements come from V1.
6086      CommuteVectorShuffleMask(PermMask, 4);
6087      std::swap(V1, V2);
6088    }
6089
6090    // Find the element from V2.
6091    unsigned HiIndex;
6092    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6093      int Val = PermMask[HiIndex];
6094      if (Val < 0)
6095        continue;
6096      if (Val >= 4)
6097        break;
6098    }
6099
6100    Mask1[0] = PermMask[HiIndex];
6101    Mask1[1] = -1;
6102    Mask1[2] = PermMask[HiIndex^1];
6103    Mask1[3] = -1;
6104    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6105
6106    if (HiIndex >= 2) {
6107      Mask1[0] = PermMask[0];
6108      Mask1[1] = PermMask[1];
6109      Mask1[2] = HiIndex & 1 ? 6 : 4;
6110      Mask1[3] = HiIndex & 1 ? 4 : 6;
6111      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6112    } else {
6113      Mask1[0] = HiIndex & 1 ? 2 : 0;
6114      Mask1[1] = HiIndex & 1 ? 0 : 2;
6115      Mask1[2] = PermMask[2];
6116      Mask1[3] = PermMask[3];
6117      if (Mask1[2] >= 0)
6118        Mask1[2] += 4;
6119      if (Mask1[3] >= 0)
6120        Mask1[3] += 4;
6121      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6122    }
6123  }
6124
6125  // Break it into (shuffle shuffle_hi, shuffle_lo).
6126  Locs.clear();
6127  Locs.resize(4);
6128  SmallVector<int,8> LoMask(4U, -1);
6129  SmallVector<int,8> HiMask(4U, -1);
6130
6131  SmallVector<int,8> *MaskPtr = &LoMask;
6132  unsigned MaskIdx = 0;
6133  unsigned LoIdx = 0;
6134  unsigned HiIdx = 2;
6135  for (unsigned i = 0; i != 4; ++i) {
6136    if (i == 2) {
6137      MaskPtr = &HiMask;
6138      MaskIdx = 1;
6139      LoIdx = 0;
6140      HiIdx = 2;
6141    }
6142    int Idx = PermMask[i];
6143    if (Idx < 0) {
6144      Locs[i] = std::make_pair(-1, -1);
6145    } else if (Idx < 4) {
6146      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6147      (*MaskPtr)[LoIdx] = Idx;
6148      LoIdx++;
6149    } else {
6150      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6151      (*MaskPtr)[HiIdx] = Idx;
6152      HiIdx++;
6153    }
6154  }
6155
6156  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6157  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6158  SmallVector<int, 8> MaskOps;
6159  for (unsigned i = 0; i != 4; ++i) {
6160    if (Locs[i].first == -1) {
6161      MaskOps.push_back(-1);
6162    } else {
6163      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6164      MaskOps.push_back(Idx);
6165    }
6166  }
6167  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6168}
6169
6170static bool MayFoldVectorLoad(SDValue V) {
6171  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6172    V = V.getOperand(0);
6173  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6174    V = V.getOperand(0);
6175  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6176      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6177    // BUILD_VECTOR (load), undef
6178    V = V.getOperand(0);
6179  if (MayFoldLoad(V))
6180    return true;
6181  return false;
6182}
6183
6184// FIXME: the version above should always be used. Since there's
6185// a bug where several vector shuffles can't be folded because the
6186// DAG is not updated during lowering and a node claims to have two
6187// uses while it only has one, use this version, and let isel match
6188// another instruction if the load really happens to have more than
6189// one use. Remove this version after this bug get fixed.
6190// rdar://8434668, PR8156
6191static bool RelaxedMayFoldVectorLoad(SDValue V) {
6192  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6193    V = V.getOperand(0);
6194  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6195    V = V.getOperand(0);
6196  if (ISD::isNormalLoad(V.getNode()))
6197    return true;
6198  return false;
6199}
6200
6201/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6202/// a vector extract, and if both can be later optimized into a single load.
6203/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6204/// here because otherwise a target specific shuffle node is going to be
6205/// emitted for this shuffle, and the optimization not done.
6206/// FIXME: This is probably not the best approach, but fix the problem
6207/// until the right path is decided.
6208static
6209bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6210                                         const TargetLowering &TLI) {
6211  EVT VT = V.getValueType();
6212  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6213
6214  // Be sure that the vector shuffle is present in a pattern like this:
6215  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6216  if (!V.hasOneUse())
6217    return false;
6218
6219  SDNode *N = *V.getNode()->use_begin();
6220  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6221    return false;
6222
6223  SDValue EltNo = N->getOperand(1);
6224  if (!isa<ConstantSDNode>(EltNo))
6225    return false;
6226
6227  // If the bit convert changed the number of elements, it is unsafe
6228  // to examine the mask.
6229  bool HasShuffleIntoBitcast = false;
6230  if (V.getOpcode() == ISD::BITCAST) {
6231    EVT SrcVT = V.getOperand(0).getValueType();
6232    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6233      return false;
6234    V = V.getOperand(0);
6235    HasShuffleIntoBitcast = true;
6236  }
6237
6238  // Select the input vector, guarding against out of range extract vector.
6239  unsigned NumElems = VT.getVectorNumElements();
6240  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6241  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6242  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6243
6244  // Skip one more bit_convert if necessary
6245  if (V.getOpcode() == ISD::BITCAST)
6246    V = V.getOperand(0);
6247
6248  if (!ISD::isNormalLoad(V.getNode()))
6249    return false;
6250
6251  // Is the original load suitable?
6252  LoadSDNode *LN0 = cast<LoadSDNode>(V);
6253
6254  if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
6255    return false;
6256
6257  if (!HasShuffleIntoBitcast)
6258    return true;
6259
6260  // If there's a bitcast before the shuffle, check if the load type and
6261  // alignment is valid.
6262  unsigned Align = LN0->getAlignment();
6263  unsigned NewAlign =
6264    TLI.getTargetData()->getABITypeAlignment(
6265                                  VT.getTypeForEVT(*DAG.getContext()));
6266
6267  if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6268    return false;
6269
6270  return true;
6271}
6272
6273static
6274SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6275  EVT VT = Op.getValueType();
6276
6277  // Canonizalize to v2f64.
6278  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6279  return DAG.getNode(ISD::BITCAST, dl, VT,
6280                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6281                                          V1, DAG));
6282}
6283
6284static
6285SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6286                        bool HasSSE2) {
6287  SDValue V1 = Op.getOperand(0);
6288  SDValue V2 = Op.getOperand(1);
6289  EVT VT = Op.getValueType();
6290
6291  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6292
6293  if (HasSSE2 && VT == MVT::v2f64)
6294    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6295
6296  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6297  return DAG.getNode(ISD::BITCAST, dl, VT,
6298                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6299                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6300                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6301}
6302
6303static
6304SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6305  SDValue V1 = Op.getOperand(0);
6306  SDValue V2 = Op.getOperand(1);
6307  EVT VT = Op.getValueType();
6308
6309  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6310         "unsupported shuffle type");
6311
6312  if (V2.getOpcode() == ISD::UNDEF)
6313    V2 = V1;
6314
6315  // v4i32 or v4f32
6316  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6317}
6318
6319static
6320SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6321  SDValue V1 = Op.getOperand(0);
6322  SDValue V2 = Op.getOperand(1);
6323  EVT VT = Op.getValueType();
6324  unsigned NumElems = VT.getVectorNumElements();
6325
6326  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6327  // operand of these instructions is only memory, so check if there's a
6328  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6329  // same masks.
6330  bool CanFoldLoad = false;
6331
6332  // Trivial case, when V2 comes from a load.
6333  if (MayFoldVectorLoad(V2))
6334    CanFoldLoad = true;
6335
6336  // When V1 is a load, it can be folded later into a store in isel, example:
6337  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6338  //    turns into:
6339  //  (MOVLPSmr addr:$src1, VR128:$src2)
6340  // So, recognize this potential and also use MOVLPS or MOVLPD
6341  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6342    CanFoldLoad = true;
6343
6344  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6345  if (CanFoldLoad) {
6346    if (HasSSE2 && NumElems == 2)
6347      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6348
6349    if (NumElems == 4)
6350      // If we don't care about the second element, procede to use movss.
6351      if (SVOp->getMaskElt(1) != -1)
6352        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6353  }
6354
6355  // movl and movlp will both match v2i64, but v2i64 is never matched by
6356  // movl earlier because we make it strict to avoid messing with the movlp load
6357  // folding logic (see the code above getMOVLP call). Match it here then,
6358  // this is horrible, but will stay like this until we move all shuffle
6359  // matching to x86 specific nodes. Note that for the 1st condition all
6360  // types are matched with movsd.
6361  if (HasSSE2) {
6362    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6363    // as to remove this logic from here, as much as possible
6364    if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6365      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6366    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6367  }
6368
6369  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6370
6371  // Invert the operand order and use SHUFPS to match it.
6372  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6373                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6374}
6375
6376static
6377SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6378                               const TargetLowering &TLI,
6379                               const X86Subtarget *Subtarget) {
6380  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6381  EVT VT = Op.getValueType();
6382  DebugLoc dl = Op.getDebugLoc();
6383  SDValue V1 = Op.getOperand(0);
6384  SDValue V2 = Op.getOperand(1);
6385
6386  if (isZeroShuffle(SVOp))
6387    return getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(),
6388                         DAG, dl);
6389
6390  // Handle splat operations
6391  if (SVOp->isSplat()) {
6392    unsigned NumElem = VT.getVectorNumElements();
6393    int Size = VT.getSizeInBits();
6394    // Special case, this is the only place now where it's allowed to return
6395    // a vector_shuffle operation without using a target specific node, because
6396    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6397    // this be moved to DAGCombine instead?
6398    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6399      return Op;
6400
6401    // Use vbroadcast whenever the splat comes from a foldable load
6402    SDValue LD = isVectorBroadcast(Op, Subtarget);
6403    if (LD.getNode())
6404      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6405
6406    // Handle splats by matching through known shuffle masks
6407    if ((Size == 128 && NumElem <= 4) ||
6408        (Size == 256 && NumElem < 8))
6409      return SDValue();
6410
6411    // All remaning splats are promoted to target supported vector shuffles.
6412    return PromoteSplat(SVOp, DAG);
6413  }
6414
6415  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6416  // do it!
6417  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6418    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6419    if (NewOp.getNode())
6420      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6421  } else if ((VT == MVT::v4i32 ||
6422             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6423    // FIXME: Figure out a cleaner way to do this.
6424    // Try to make use of movq to zero out the top part.
6425    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6426      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6427      if (NewOp.getNode()) {
6428        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6429          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6430                              DAG, Subtarget, dl);
6431      }
6432    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6433      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6434      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6435        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6436                            DAG, Subtarget, dl);
6437    }
6438  }
6439  return SDValue();
6440}
6441
6442SDValue
6443X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6444  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6445  SDValue V1 = Op.getOperand(0);
6446  SDValue V2 = Op.getOperand(1);
6447  EVT VT = Op.getValueType();
6448  DebugLoc dl = Op.getDebugLoc();
6449  unsigned NumElems = VT.getVectorNumElements();
6450  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6451  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6452  bool V1IsSplat = false;
6453  bool V2IsSplat = false;
6454  bool HasSSE2 = Subtarget->hasSSE2();
6455  bool HasAVX    = Subtarget->hasAVX();
6456  bool HasAVX2   = Subtarget->hasAVX2();
6457  MachineFunction &MF = DAG.getMachineFunction();
6458  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6459
6460  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6461
6462  if (V1IsUndef && V2IsUndef)
6463    return DAG.getUNDEF(VT);
6464
6465  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6466
6467  // Vector shuffle lowering takes 3 steps:
6468  //
6469  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6470  //    narrowing and commutation of operands should be handled.
6471  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6472  //    shuffle nodes.
6473  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6474  //    so the shuffle can be broken into other shuffles and the legalizer can
6475  //    try the lowering again.
6476  //
6477  // The general idea is that no vector_shuffle operation should be left to
6478  // be matched during isel, all of them must be converted to a target specific
6479  // node here.
6480
6481  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6482  // narrowing and commutation of operands should be handled. The actual code
6483  // doesn't include all of those, work in progress...
6484  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6485  if (NewOp.getNode())
6486    return NewOp;
6487
6488  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6489  // unpckh_undef). Only use pshufd if speed is more important than size.
6490  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp, HasAVX2))
6491    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6492  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp, HasAVX2))
6493    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6494
6495  if (X86::isMOVDDUPMask(SVOp) && Subtarget->hasSSE3() &&
6496      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6497    return getMOVDDup(Op, dl, V1, DAG);
6498
6499  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6500    return getMOVHighToLow(Op, dl, DAG);
6501
6502  // Use to match splats
6503  if (HasSSE2 && X86::isUNPCKHMask(SVOp, HasAVX2) && V2IsUndef &&
6504      (VT == MVT::v2f64 || VT == MVT::v2i64))
6505    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6506
6507  if (X86::isPSHUFDMask(SVOp)) {
6508    // The actual implementation will match the mask in the if above and then
6509    // during isel it can match several different instructions, not only pshufd
6510    // as its name says, sad but true, emulate the behavior for now...
6511    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6512        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6513
6514    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6515
6516    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6517      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6518
6519    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6520                                TargetMask, DAG);
6521  }
6522
6523  // Check if this can be converted into a logical shift.
6524  bool isLeft = false;
6525  unsigned ShAmt = 0;
6526  SDValue ShVal;
6527  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6528  if (isShift && ShVal.hasOneUse()) {
6529    // If the shifted value has multiple uses, it may be cheaper to use
6530    // v_set0 + movlhps or movhlps, etc.
6531    EVT EltVT = VT.getVectorElementType();
6532    ShAmt *= EltVT.getSizeInBits();
6533    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6534  }
6535
6536  if (X86::isMOVLMask(SVOp)) {
6537    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6538      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6539    if (!X86::isMOVLPMask(SVOp)) {
6540      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6541        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6542
6543      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6544        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6545    }
6546  }
6547
6548  // FIXME: fold these into legal mask.
6549  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp, HasAVX2))
6550    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6551
6552  if (X86::isMOVHLPSMask(SVOp))
6553    return getMOVHighToLow(Op, dl, DAG);
6554
6555  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6556    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6557
6558  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6559    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6560
6561  if (X86::isMOVLPMask(SVOp))
6562    return getMOVLP(Op, dl, DAG, HasSSE2);
6563
6564  if (ShouldXformToMOVHLPS(SVOp) ||
6565      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6566    return CommuteVectorShuffle(SVOp, DAG);
6567
6568  if (isShift) {
6569    // No better options. Use a vshl / vsrl.
6570    EVT EltVT = VT.getVectorElementType();
6571    ShAmt *= EltVT.getSizeInBits();
6572    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6573  }
6574
6575  bool Commuted = false;
6576  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6577  // 1,1,1,1 -> v8i16 though.
6578  V1IsSplat = isSplatVector(V1.getNode());
6579  V2IsSplat = isSplatVector(V2.getNode());
6580
6581  // Canonicalize the splat or undef, if present, to be on the RHS.
6582  if (V1IsSplat && !V2IsSplat) {
6583    Op = CommuteVectorShuffle(SVOp, DAG);
6584    SVOp = cast<ShuffleVectorSDNode>(Op);
6585    V1 = SVOp->getOperand(0);
6586    V2 = SVOp->getOperand(1);
6587    std::swap(V1IsSplat, V2IsSplat);
6588    Commuted = true;
6589  }
6590
6591  ArrayRef<int> M = SVOp->getMask();
6592
6593  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6594    // Shuffling low element of v1 into undef, just return v1.
6595    if (V2IsUndef)
6596      return V1;
6597    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6598    // the instruction selector will not match, so get a canonical MOVL with
6599    // swapped operands to undo the commute.
6600    return getMOVL(DAG, dl, VT, V2, V1);
6601  }
6602
6603  if (isUNPCKLMask(M, VT, HasAVX2))
6604    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6605
6606  if (isUNPCKHMask(M, VT, HasAVX2))
6607    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6608
6609  if (V2IsSplat) {
6610    // Normalize mask so all entries that point to V2 points to its first
6611    // element then try to match unpck{h|l} again. If match, return a
6612    // new vector_shuffle with the corrected mask.
6613    SDValue NewMask = NormalizeMask(SVOp, DAG);
6614    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6615    if (NSVOp != SVOp) {
6616      if (X86::isUNPCKLMask(NSVOp, HasAVX2, true)) {
6617        return NewMask;
6618      } else if (X86::isUNPCKHMask(NSVOp, HasAVX2, true)) {
6619        return NewMask;
6620      }
6621    }
6622  }
6623
6624  if (Commuted) {
6625    // Commute is back and try unpck* again.
6626    // FIXME: this seems wrong.
6627    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6628    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6629
6630    if (X86::isUNPCKLMask(NewSVOp, HasAVX2))
6631      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V2, V1, DAG);
6632
6633    if (X86::isUNPCKHMask(NewSVOp, HasAVX2))
6634      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V2, V1, DAG);
6635  }
6636
6637  // Normalize the node to match x86 shuffle ops if needed
6638  if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true) ||
6639                     isVSHUFPYMask(M, VT, HasAVX, /* Commuted */ true)))
6640    return CommuteVectorShuffle(SVOp, DAG);
6641
6642  // The checks below are all present in isShuffleMaskLegal, but they are
6643  // inlined here right now to enable us to directly emit target specific
6644  // nodes, and remove one by one until they don't return Op anymore.
6645
6646  if (isPALIGNRMask(M, VT, Subtarget->hasSSSE3()))
6647    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6648                                getShufflePALIGNRImmediate(SVOp),
6649                                DAG);
6650
6651  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6652      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6653    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6654      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6655  }
6656
6657  if (isPSHUFHWMask(M, VT))
6658    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6659                                X86::getShufflePSHUFHWImmediate(SVOp),
6660                                DAG);
6661
6662  if (isPSHUFLWMask(M, VT))
6663    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6664                                X86::getShufflePSHUFLWImmediate(SVOp),
6665                                DAG);
6666
6667  if (isSHUFPMask(M, VT))
6668    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6669                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6670
6671  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6672    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6673  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6674    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6675
6676  //===--------------------------------------------------------------------===//
6677  // Generate target specific nodes for 128 or 256-bit shuffles only
6678  // supported in the AVX instruction set.
6679  //
6680
6681  // Handle VMOVDDUPY permutations
6682  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6683    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6684
6685  // Handle VPERMILPS/D* permutations
6686  if (isVPERMILPMask(M, VT, HasAVX))
6687    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6688                                getShuffleVPERMILPImmediate(SVOp), DAG);
6689
6690  // Handle VPERM2F128/VPERM2I128 permutations
6691  if (isVPERM2X128Mask(M, VT, HasAVX))
6692    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6693                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6694
6695  // Handle VSHUFPS/DY permutations
6696  if (isVSHUFPYMask(M, VT, HasAVX))
6697    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6698                                getShuffleVSHUFPYImmediate(SVOp), DAG);
6699
6700  //===--------------------------------------------------------------------===//
6701  // Since no target specific shuffle was selected for this generic one,
6702  // lower it into other known shuffles. FIXME: this isn't true yet, but
6703  // this is the plan.
6704  //
6705
6706  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6707  if (VT == MVT::v8i16) {
6708    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6709    if (NewOp.getNode())
6710      return NewOp;
6711  }
6712
6713  if (VT == MVT::v16i8) {
6714    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6715    if (NewOp.getNode())
6716      return NewOp;
6717  }
6718
6719  // Handle all 128-bit wide vectors with 4 elements, and match them with
6720  // several different shuffle types.
6721  if (NumElems == 4 && VT.getSizeInBits() == 128)
6722    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6723
6724  // Handle general 256-bit shuffles
6725  if (VT.is256BitVector())
6726    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6727
6728  return SDValue();
6729}
6730
6731SDValue
6732X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6733                                                SelectionDAG &DAG) const {
6734  EVT VT = Op.getValueType();
6735  DebugLoc dl = Op.getDebugLoc();
6736
6737  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6738    return SDValue();
6739
6740  if (VT.getSizeInBits() == 8) {
6741    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6742                                    Op.getOperand(0), Op.getOperand(1));
6743    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6744                                    DAG.getValueType(VT));
6745    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6746  } else if (VT.getSizeInBits() == 16) {
6747    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6748    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6749    if (Idx == 0)
6750      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6751                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6752                                     DAG.getNode(ISD::BITCAST, dl,
6753                                                 MVT::v4i32,
6754                                                 Op.getOperand(0)),
6755                                     Op.getOperand(1)));
6756    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6757                                    Op.getOperand(0), Op.getOperand(1));
6758    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6759                                    DAG.getValueType(VT));
6760    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6761  } else if (VT == MVT::f32) {
6762    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6763    // the result back to FR32 register. It's only worth matching if the
6764    // result has a single use which is a store or a bitcast to i32.  And in
6765    // the case of a store, it's not worth it if the index is a constant 0,
6766    // because a MOVSSmr can be used instead, which is smaller and faster.
6767    if (!Op.hasOneUse())
6768      return SDValue();
6769    SDNode *User = *Op.getNode()->use_begin();
6770    if ((User->getOpcode() != ISD::STORE ||
6771         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6772          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6773        (User->getOpcode() != ISD::BITCAST ||
6774         User->getValueType(0) != MVT::i32))
6775      return SDValue();
6776    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6777                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6778                                              Op.getOperand(0)),
6779                                              Op.getOperand(1));
6780    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6781  } else if (VT == MVT::i32 || VT == MVT::i64) {
6782    // ExtractPS/pextrq works with constant index.
6783    if (isa<ConstantSDNode>(Op.getOperand(1)))
6784      return Op;
6785  }
6786  return SDValue();
6787}
6788
6789
6790SDValue
6791X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6792                                           SelectionDAG &DAG) const {
6793  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6794    return SDValue();
6795
6796  SDValue Vec = Op.getOperand(0);
6797  EVT VecVT = Vec.getValueType();
6798
6799  // If this is a 256-bit vector result, first extract the 128-bit vector and
6800  // then extract the element from the 128-bit vector.
6801  if (VecVT.getSizeInBits() == 256) {
6802    DebugLoc dl = Op.getNode()->getDebugLoc();
6803    unsigned NumElems = VecVT.getVectorNumElements();
6804    SDValue Idx = Op.getOperand(1);
6805    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6806
6807    // Get the 128-bit vector.
6808    bool Upper = IdxVal >= NumElems/2;
6809    Vec = Extract128BitVector(Vec,
6810                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6811
6812    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6813                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6814  }
6815
6816  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6817
6818  if (Subtarget->hasSSE41()) {
6819    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6820    if (Res.getNode())
6821      return Res;
6822  }
6823
6824  EVT VT = Op.getValueType();
6825  DebugLoc dl = Op.getDebugLoc();
6826  // TODO: handle v16i8.
6827  if (VT.getSizeInBits() == 16) {
6828    SDValue Vec = Op.getOperand(0);
6829    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6830    if (Idx == 0)
6831      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6832                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6833                                     DAG.getNode(ISD::BITCAST, dl,
6834                                                 MVT::v4i32, Vec),
6835                                     Op.getOperand(1)));
6836    // Transform it so it match pextrw which produces a 32-bit result.
6837    EVT EltVT = MVT::i32;
6838    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6839                                    Op.getOperand(0), Op.getOperand(1));
6840    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6841                                    DAG.getValueType(VT));
6842    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6843  } else if (VT.getSizeInBits() == 32) {
6844    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6845    if (Idx == 0)
6846      return Op;
6847
6848    // SHUFPS the element to the lowest double word, then movss.
6849    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6850    EVT VVT = Op.getOperand(0).getValueType();
6851    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6852                                       DAG.getUNDEF(VVT), Mask);
6853    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6854                       DAG.getIntPtrConstant(0));
6855  } else if (VT.getSizeInBits() == 64) {
6856    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6857    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6858    //        to match extract_elt for f64.
6859    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6860    if (Idx == 0)
6861      return Op;
6862
6863    // UNPCKHPD the element to the lowest double word, then movsd.
6864    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6865    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6866    int Mask[2] = { 1, -1 };
6867    EVT VVT = Op.getOperand(0).getValueType();
6868    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6869                                       DAG.getUNDEF(VVT), Mask);
6870    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6871                       DAG.getIntPtrConstant(0));
6872  }
6873
6874  return SDValue();
6875}
6876
6877SDValue
6878X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6879                                               SelectionDAG &DAG) const {
6880  EVT VT = Op.getValueType();
6881  EVT EltVT = VT.getVectorElementType();
6882  DebugLoc dl = Op.getDebugLoc();
6883
6884  SDValue N0 = Op.getOperand(0);
6885  SDValue N1 = Op.getOperand(1);
6886  SDValue N2 = Op.getOperand(2);
6887
6888  if (VT.getSizeInBits() == 256)
6889    return SDValue();
6890
6891  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6892      isa<ConstantSDNode>(N2)) {
6893    unsigned Opc;
6894    if (VT == MVT::v8i16)
6895      Opc = X86ISD::PINSRW;
6896    else if (VT == MVT::v16i8)
6897      Opc = X86ISD::PINSRB;
6898    else
6899      Opc = X86ISD::PINSRB;
6900
6901    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6902    // argument.
6903    if (N1.getValueType() != MVT::i32)
6904      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6905    if (N2.getValueType() != MVT::i32)
6906      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6907    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6908  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6909    // Bits [7:6] of the constant are the source select.  This will always be
6910    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6911    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6912    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6913    // Bits [5:4] of the constant are the destination select.  This is the
6914    //  value of the incoming immediate.
6915    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6916    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6917    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6918    // Create this as a scalar to vector..
6919    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6920    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6921  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6922             isa<ConstantSDNode>(N2)) {
6923    // PINSR* works with constant index.
6924    return Op;
6925  }
6926  return SDValue();
6927}
6928
6929SDValue
6930X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6931  EVT VT = Op.getValueType();
6932  EVT EltVT = VT.getVectorElementType();
6933
6934  DebugLoc dl = Op.getDebugLoc();
6935  SDValue N0 = Op.getOperand(0);
6936  SDValue N1 = Op.getOperand(1);
6937  SDValue N2 = Op.getOperand(2);
6938
6939  // If this is a 256-bit vector result, first extract the 128-bit vector,
6940  // insert the element into the extracted half and then place it back.
6941  if (VT.getSizeInBits() == 256) {
6942    if (!isa<ConstantSDNode>(N2))
6943      return SDValue();
6944
6945    // Get the desired 128-bit vector half.
6946    unsigned NumElems = VT.getVectorNumElements();
6947    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6948    bool Upper = IdxVal >= NumElems/2;
6949    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6950    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6951
6952    // Insert the element into the desired half.
6953    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6954                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6955
6956    // Insert the changed part back to the 256-bit vector
6957    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6958  }
6959
6960  if (Subtarget->hasSSE41())
6961    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6962
6963  if (EltVT == MVT::i8)
6964    return SDValue();
6965
6966  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6967    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6968    // as its second argument.
6969    if (N1.getValueType() != MVT::i32)
6970      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6971    if (N2.getValueType() != MVT::i32)
6972      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6973    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6974  }
6975  return SDValue();
6976}
6977
6978SDValue
6979X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6980  LLVMContext *Context = DAG.getContext();
6981  DebugLoc dl = Op.getDebugLoc();
6982  EVT OpVT = Op.getValueType();
6983
6984  // If this is a 256-bit vector result, first insert into a 128-bit
6985  // vector and then insert into the 256-bit vector.
6986  if (OpVT.getSizeInBits() > 128) {
6987    // Insert into a 128-bit vector.
6988    EVT VT128 = EVT::getVectorVT(*Context,
6989                                 OpVT.getVectorElementType(),
6990                                 OpVT.getVectorNumElements() / 2);
6991
6992    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6993
6994    // Insert the 128-bit vector.
6995    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6996                              DAG.getConstant(0, MVT::i32),
6997                              DAG, dl);
6998  }
6999
7000  if (Op.getValueType() == MVT::v1i64 &&
7001      Op.getOperand(0).getValueType() == MVT::i64)
7002    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7003
7004  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7005  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7006         "Expected an SSE type!");
7007  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7008                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7009}
7010
7011// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7012// a simple subregister reference or explicit instructions to grab
7013// upper bits of a vector.
7014SDValue
7015X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7016  if (Subtarget->hasAVX()) {
7017    DebugLoc dl = Op.getNode()->getDebugLoc();
7018    SDValue Vec = Op.getNode()->getOperand(0);
7019    SDValue Idx = Op.getNode()->getOperand(1);
7020
7021    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7022        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7023        return Extract128BitVector(Vec, Idx, DAG, dl);
7024    }
7025  }
7026  return SDValue();
7027}
7028
7029// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7030// simple superregister reference or explicit instructions to insert
7031// the upper bits of a vector.
7032SDValue
7033X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7034  if (Subtarget->hasAVX()) {
7035    DebugLoc dl = Op.getNode()->getDebugLoc();
7036    SDValue Vec = Op.getNode()->getOperand(0);
7037    SDValue SubVec = Op.getNode()->getOperand(1);
7038    SDValue Idx = Op.getNode()->getOperand(2);
7039
7040    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7041        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7042      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7043    }
7044  }
7045  return SDValue();
7046}
7047
7048// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7049// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7050// one of the above mentioned nodes. It has to be wrapped because otherwise
7051// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7052// be used to form addressing mode. These wrapped nodes will be selected
7053// into MOV32ri.
7054SDValue
7055X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7056  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7057
7058  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7059  // global base reg.
7060  unsigned char OpFlag = 0;
7061  unsigned WrapperKind = X86ISD::Wrapper;
7062  CodeModel::Model M = getTargetMachine().getCodeModel();
7063
7064  if (Subtarget->isPICStyleRIPRel() &&
7065      (M == CodeModel::Small || M == CodeModel::Kernel))
7066    WrapperKind = X86ISD::WrapperRIP;
7067  else if (Subtarget->isPICStyleGOT())
7068    OpFlag = X86II::MO_GOTOFF;
7069  else if (Subtarget->isPICStyleStubPIC())
7070    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7071
7072  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7073                                             CP->getAlignment(),
7074                                             CP->getOffset(), OpFlag);
7075  DebugLoc DL = CP->getDebugLoc();
7076  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7077  // With PIC, the address is actually $g + Offset.
7078  if (OpFlag) {
7079    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7080                         DAG.getNode(X86ISD::GlobalBaseReg,
7081                                     DebugLoc(), getPointerTy()),
7082                         Result);
7083  }
7084
7085  return Result;
7086}
7087
7088SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7089  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7090
7091  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7092  // global base reg.
7093  unsigned char OpFlag = 0;
7094  unsigned WrapperKind = X86ISD::Wrapper;
7095  CodeModel::Model M = getTargetMachine().getCodeModel();
7096
7097  if (Subtarget->isPICStyleRIPRel() &&
7098      (M == CodeModel::Small || M == CodeModel::Kernel))
7099    WrapperKind = X86ISD::WrapperRIP;
7100  else if (Subtarget->isPICStyleGOT())
7101    OpFlag = X86II::MO_GOTOFF;
7102  else if (Subtarget->isPICStyleStubPIC())
7103    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7104
7105  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7106                                          OpFlag);
7107  DebugLoc DL = JT->getDebugLoc();
7108  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7109
7110  // With PIC, the address is actually $g + Offset.
7111  if (OpFlag)
7112    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7113                         DAG.getNode(X86ISD::GlobalBaseReg,
7114                                     DebugLoc(), getPointerTy()),
7115                         Result);
7116
7117  return Result;
7118}
7119
7120SDValue
7121X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7122  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7123
7124  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7125  // global base reg.
7126  unsigned char OpFlag = 0;
7127  unsigned WrapperKind = X86ISD::Wrapper;
7128  CodeModel::Model M = getTargetMachine().getCodeModel();
7129
7130  if (Subtarget->isPICStyleRIPRel() &&
7131      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7132    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7133      OpFlag = X86II::MO_GOTPCREL;
7134    WrapperKind = X86ISD::WrapperRIP;
7135  } else if (Subtarget->isPICStyleGOT()) {
7136    OpFlag = X86II::MO_GOT;
7137  } else if (Subtarget->isPICStyleStubPIC()) {
7138    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7139  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7140    OpFlag = X86II::MO_DARWIN_NONLAZY;
7141  }
7142
7143  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7144
7145  DebugLoc DL = Op.getDebugLoc();
7146  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7147
7148
7149  // With PIC, the address is actually $g + Offset.
7150  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7151      !Subtarget->is64Bit()) {
7152    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7153                         DAG.getNode(X86ISD::GlobalBaseReg,
7154                                     DebugLoc(), getPointerTy()),
7155                         Result);
7156  }
7157
7158  // For symbols that require a load from a stub to get the address, emit the
7159  // load.
7160  if (isGlobalStubReference(OpFlag))
7161    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7162                         MachinePointerInfo::getGOT(), false, false, false, 0);
7163
7164  return Result;
7165}
7166
7167SDValue
7168X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7169  // Create the TargetBlockAddressAddress node.
7170  unsigned char OpFlags =
7171    Subtarget->ClassifyBlockAddressReference();
7172  CodeModel::Model M = getTargetMachine().getCodeModel();
7173  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7174  DebugLoc dl = Op.getDebugLoc();
7175  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7176                                       /*isTarget=*/true, OpFlags);
7177
7178  if (Subtarget->isPICStyleRIPRel() &&
7179      (M == CodeModel::Small || M == CodeModel::Kernel))
7180    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7181  else
7182    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7183
7184  // With PIC, the address is actually $g + Offset.
7185  if (isGlobalRelativeToPICBase(OpFlags)) {
7186    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7187                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7188                         Result);
7189  }
7190
7191  return Result;
7192}
7193
7194SDValue
7195X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7196                                      int64_t Offset,
7197                                      SelectionDAG &DAG) const {
7198  // Create the TargetGlobalAddress node, folding in the constant
7199  // offset if it is legal.
7200  unsigned char OpFlags =
7201    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7202  CodeModel::Model M = getTargetMachine().getCodeModel();
7203  SDValue Result;
7204  if (OpFlags == X86II::MO_NO_FLAG &&
7205      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7206    // A direct static reference to a global.
7207    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7208    Offset = 0;
7209  } else {
7210    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7211  }
7212
7213  if (Subtarget->isPICStyleRIPRel() &&
7214      (M == CodeModel::Small || M == CodeModel::Kernel))
7215    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7216  else
7217    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7218
7219  // With PIC, the address is actually $g + Offset.
7220  if (isGlobalRelativeToPICBase(OpFlags)) {
7221    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7222                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7223                         Result);
7224  }
7225
7226  // For globals that require a load from a stub to get the address, emit the
7227  // load.
7228  if (isGlobalStubReference(OpFlags))
7229    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7230                         MachinePointerInfo::getGOT(), false, false, false, 0);
7231
7232  // If there was a non-zero offset that we didn't fold, create an explicit
7233  // addition for it.
7234  if (Offset != 0)
7235    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7236                         DAG.getConstant(Offset, getPointerTy()));
7237
7238  return Result;
7239}
7240
7241SDValue
7242X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7243  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7244  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7245  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7246}
7247
7248static SDValue
7249GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7250           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7251           unsigned char OperandFlags) {
7252  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7253  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7254  DebugLoc dl = GA->getDebugLoc();
7255  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7256                                           GA->getValueType(0),
7257                                           GA->getOffset(),
7258                                           OperandFlags);
7259  if (InFlag) {
7260    SDValue Ops[] = { Chain,  TGA, *InFlag };
7261    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7262  } else {
7263    SDValue Ops[]  = { Chain, TGA };
7264    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7265  }
7266
7267  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7268  MFI->setAdjustsStack(true);
7269
7270  SDValue Flag = Chain.getValue(1);
7271  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7272}
7273
7274// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7275static SDValue
7276LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7277                                const EVT PtrVT) {
7278  SDValue InFlag;
7279  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7280  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7281                                     DAG.getNode(X86ISD::GlobalBaseReg,
7282                                                 DebugLoc(), PtrVT), InFlag);
7283  InFlag = Chain.getValue(1);
7284
7285  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7286}
7287
7288// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7289static SDValue
7290LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7291                                const EVT PtrVT) {
7292  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7293                    X86::RAX, X86II::MO_TLSGD);
7294}
7295
7296// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7297// "local exec" model.
7298static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7299                                   const EVT PtrVT, TLSModel::Model model,
7300                                   bool is64Bit) {
7301  DebugLoc dl = GA->getDebugLoc();
7302
7303  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7304  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7305                                                         is64Bit ? 257 : 256));
7306
7307  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7308                                      DAG.getIntPtrConstant(0),
7309                                      MachinePointerInfo(Ptr),
7310                                      false, false, false, 0);
7311
7312  unsigned char OperandFlags = 0;
7313  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7314  // initialexec.
7315  unsigned WrapperKind = X86ISD::Wrapper;
7316  if (model == TLSModel::LocalExec) {
7317    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7318  } else if (is64Bit) {
7319    assert(model == TLSModel::InitialExec);
7320    OperandFlags = X86II::MO_GOTTPOFF;
7321    WrapperKind = X86ISD::WrapperRIP;
7322  } else {
7323    assert(model == TLSModel::InitialExec);
7324    OperandFlags = X86II::MO_INDNTPOFF;
7325  }
7326
7327  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7328  // exec)
7329  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7330                                           GA->getValueType(0),
7331                                           GA->getOffset(), OperandFlags);
7332  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7333
7334  if (model == TLSModel::InitialExec)
7335    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7336                         MachinePointerInfo::getGOT(), false, false, false, 0);
7337
7338  // The address of the thread local variable is the add of the thread
7339  // pointer with the offset of the variable.
7340  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7341}
7342
7343SDValue
7344X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7345
7346  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7347  const GlobalValue *GV = GA->getGlobal();
7348
7349  if (Subtarget->isTargetELF()) {
7350    // TODO: implement the "local dynamic" model
7351    // TODO: implement the "initial exec"model for pic executables
7352
7353    // If GV is an alias then use the aliasee for determining
7354    // thread-localness.
7355    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7356      GV = GA->resolveAliasedGlobal(false);
7357
7358    TLSModel::Model model
7359      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7360
7361    switch (model) {
7362      case TLSModel::GeneralDynamic:
7363      case TLSModel::LocalDynamic: // not implemented
7364        if (Subtarget->is64Bit())
7365          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7366        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7367
7368      case TLSModel::InitialExec:
7369      case TLSModel::LocalExec:
7370        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7371                                   Subtarget->is64Bit());
7372    }
7373  } else if (Subtarget->isTargetDarwin()) {
7374    // Darwin only has one model of TLS.  Lower to that.
7375    unsigned char OpFlag = 0;
7376    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7377                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7378
7379    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7380    // global base reg.
7381    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7382                  !Subtarget->is64Bit();
7383    if (PIC32)
7384      OpFlag = X86II::MO_TLVP_PIC_BASE;
7385    else
7386      OpFlag = X86II::MO_TLVP;
7387    DebugLoc DL = Op.getDebugLoc();
7388    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7389                                                GA->getValueType(0),
7390                                                GA->getOffset(), OpFlag);
7391    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7392
7393    // With PIC32, the address is actually $g + Offset.
7394    if (PIC32)
7395      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7396                           DAG.getNode(X86ISD::GlobalBaseReg,
7397                                       DebugLoc(), getPointerTy()),
7398                           Offset);
7399
7400    // Lowering the machine isd will make sure everything is in the right
7401    // location.
7402    SDValue Chain = DAG.getEntryNode();
7403    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7404    SDValue Args[] = { Chain, Offset };
7405    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7406
7407    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7408    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7409    MFI->setAdjustsStack(true);
7410
7411    // And our return value (tls address) is in the standard call return value
7412    // location.
7413    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7414    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7415                              Chain.getValue(1));
7416  }
7417
7418  assert(false &&
7419         "TLS not implemented for this target.");
7420
7421  llvm_unreachable("Unreachable");
7422  return SDValue();
7423}
7424
7425
7426/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7427/// and take a 2 x i32 value to shift plus a shift amount.
7428SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7429  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7430  EVT VT = Op.getValueType();
7431  unsigned VTBits = VT.getSizeInBits();
7432  DebugLoc dl = Op.getDebugLoc();
7433  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7434  SDValue ShOpLo = Op.getOperand(0);
7435  SDValue ShOpHi = Op.getOperand(1);
7436  SDValue ShAmt  = Op.getOperand(2);
7437  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7438                                     DAG.getConstant(VTBits - 1, MVT::i8))
7439                       : DAG.getConstant(0, VT);
7440
7441  SDValue Tmp2, Tmp3;
7442  if (Op.getOpcode() == ISD::SHL_PARTS) {
7443    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7444    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7445  } else {
7446    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7447    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7448  }
7449
7450  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7451                                DAG.getConstant(VTBits, MVT::i8));
7452  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7453                             AndNode, DAG.getConstant(0, MVT::i8));
7454
7455  SDValue Hi, Lo;
7456  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7457  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7458  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7459
7460  if (Op.getOpcode() == ISD::SHL_PARTS) {
7461    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7462    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7463  } else {
7464    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7465    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7466  }
7467
7468  SDValue Ops[2] = { Lo, Hi };
7469  return DAG.getMergeValues(Ops, 2, dl);
7470}
7471
7472SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7473                                           SelectionDAG &DAG) const {
7474  EVT SrcVT = Op.getOperand(0).getValueType();
7475
7476  if (SrcVT.isVector())
7477    return SDValue();
7478
7479  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7480         "Unknown SINT_TO_FP to lower!");
7481
7482  // These are really Legal; return the operand so the caller accepts it as
7483  // Legal.
7484  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7485    return Op;
7486  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7487      Subtarget->is64Bit()) {
7488    return Op;
7489  }
7490
7491  DebugLoc dl = Op.getDebugLoc();
7492  unsigned Size = SrcVT.getSizeInBits()/8;
7493  MachineFunction &MF = DAG.getMachineFunction();
7494  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7495  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7496  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7497                               StackSlot,
7498                               MachinePointerInfo::getFixedStack(SSFI),
7499                               false, false, 0);
7500  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7501}
7502
7503SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7504                                     SDValue StackSlot,
7505                                     SelectionDAG &DAG) const {
7506  // Build the FILD
7507  DebugLoc DL = Op.getDebugLoc();
7508  SDVTList Tys;
7509  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7510  if (useSSE)
7511    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7512  else
7513    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7514
7515  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7516
7517  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7518  MachineMemOperand *MMO;
7519  if (FI) {
7520    int SSFI = FI->getIndex();
7521    MMO =
7522      DAG.getMachineFunction()
7523      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7524                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7525  } else {
7526    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7527    StackSlot = StackSlot.getOperand(1);
7528  }
7529  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7530  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7531                                           X86ISD::FILD, DL,
7532                                           Tys, Ops, array_lengthof(Ops),
7533                                           SrcVT, MMO);
7534
7535  if (useSSE) {
7536    Chain = Result.getValue(1);
7537    SDValue InFlag = Result.getValue(2);
7538
7539    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7540    // shouldn't be necessary except that RFP cannot be live across
7541    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7542    MachineFunction &MF = DAG.getMachineFunction();
7543    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7544    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7545    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7546    Tys = DAG.getVTList(MVT::Other);
7547    SDValue Ops[] = {
7548      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7549    };
7550    MachineMemOperand *MMO =
7551      DAG.getMachineFunction()
7552      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7553                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7554
7555    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7556                                    Ops, array_lengthof(Ops),
7557                                    Op.getValueType(), MMO);
7558    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7559                         MachinePointerInfo::getFixedStack(SSFI),
7560                         false, false, false, 0);
7561  }
7562
7563  return Result;
7564}
7565
7566// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7567SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7568                                               SelectionDAG &DAG) const {
7569  // This algorithm is not obvious. Here it is what we're trying to output:
7570  /*
7571     movq       %rax,  %xmm0
7572     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7573     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7574     #ifdef __SSE3__
7575       haddpd   %xmm0, %xmm0
7576     #else
7577       pshufd   $0x4e, %xmm0, %xmm1
7578       addpd    %xmm1, %xmm0
7579     #endif
7580  */
7581
7582  DebugLoc dl = Op.getDebugLoc();
7583  LLVMContext *Context = DAG.getContext();
7584
7585  // Build some magic constants.
7586  SmallVector<Constant*,4> CV0;
7587  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7588  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7589  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7590  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7591  Constant *C0 = ConstantVector::get(CV0);
7592  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7593
7594  SmallVector<Constant*,2> CV1;
7595  CV1.push_back(
7596    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7597  CV1.push_back(
7598    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7599  Constant *C1 = ConstantVector::get(CV1);
7600  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7601
7602  // Load the 64-bit value into an XMM register.
7603  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7604                            Op.getOperand(0));
7605  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7606                              MachinePointerInfo::getConstantPool(),
7607                              false, false, false, 16);
7608  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7609                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7610                              CLod0);
7611
7612  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7613                              MachinePointerInfo::getConstantPool(),
7614                              false, false, false, 16);
7615  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7616  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7617  SDValue Result;
7618
7619  if (Subtarget->hasSSE3()) {
7620    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7621    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7622  } else {
7623    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7624    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7625                                           S2F, 0x4E, DAG);
7626    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7627                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7628                         Sub);
7629  }
7630
7631  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7632                     DAG.getIntPtrConstant(0));
7633}
7634
7635// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7636SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7637                                               SelectionDAG &DAG) const {
7638  DebugLoc dl = Op.getDebugLoc();
7639  // FP constant to bias correct the final result.
7640  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7641                                   MVT::f64);
7642
7643  // Load the 32-bit value into an XMM register.
7644  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7645                             Op.getOperand(0));
7646
7647  // Zero out the upper parts of the register.
7648  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7649
7650  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7651                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7652                     DAG.getIntPtrConstant(0));
7653
7654  // Or the load with the bias.
7655  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7656                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7657                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7658                                                   MVT::v2f64, Load)),
7659                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7660                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7661                                                   MVT::v2f64, Bias)));
7662  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7663                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7664                   DAG.getIntPtrConstant(0));
7665
7666  // Subtract the bias.
7667  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7668
7669  // Handle final rounding.
7670  EVT DestVT = Op.getValueType();
7671
7672  if (DestVT.bitsLT(MVT::f64)) {
7673    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7674                       DAG.getIntPtrConstant(0));
7675  } else if (DestVT.bitsGT(MVT::f64)) {
7676    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7677  }
7678
7679  // Handle final rounding.
7680  return Sub;
7681}
7682
7683SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7684                                           SelectionDAG &DAG) const {
7685  SDValue N0 = Op.getOperand(0);
7686  DebugLoc dl = Op.getDebugLoc();
7687
7688  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7689  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7690  // the optimization here.
7691  if (DAG.SignBitIsZero(N0))
7692    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7693
7694  EVT SrcVT = N0.getValueType();
7695  EVT DstVT = Op.getValueType();
7696  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7697    return LowerUINT_TO_FP_i64(Op, DAG);
7698  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7699    return LowerUINT_TO_FP_i32(Op, DAG);
7700  else if (Subtarget->is64Bit() &&
7701           SrcVT == MVT::i64 && DstVT == MVT::f32)
7702    return SDValue();
7703
7704  // Make a 64-bit buffer, and use it to build an FILD.
7705  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7706  if (SrcVT == MVT::i32) {
7707    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7708    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7709                                     getPointerTy(), StackSlot, WordOff);
7710    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7711                                  StackSlot, MachinePointerInfo(),
7712                                  false, false, 0);
7713    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7714                                  OffsetSlot, MachinePointerInfo(),
7715                                  false, false, 0);
7716    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7717    return Fild;
7718  }
7719
7720  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7721  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7722                               StackSlot, MachinePointerInfo(),
7723                               false, false, 0);
7724  // For i64 source, we need to add the appropriate power of 2 if the input
7725  // was negative.  This is the same as the optimization in
7726  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7727  // we must be careful to do the computation in x87 extended precision, not
7728  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7729  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7730  MachineMemOperand *MMO =
7731    DAG.getMachineFunction()
7732    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7733                          MachineMemOperand::MOLoad, 8, 8);
7734
7735  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7736  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7737  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7738                                         MVT::i64, MMO);
7739
7740  APInt FF(32, 0x5F800000ULL);
7741
7742  // Check whether the sign bit is set.
7743  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7744                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7745                                 ISD::SETLT);
7746
7747  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7748  SDValue FudgePtr = DAG.getConstantPool(
7749                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7750                                         getPointerTy());
7751
7752  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7753  SDValue Zero = DAG.getIntPtrConstant(0);
7754  SDValue Four = DAG.getIntPtrConstant(4);
7755  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7756                               Zero, Four);
7757  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7758
7759  // Load the value out, extending it from f32 to f80.
7760  // FIXME: Avoid the extend by constructing the right constant pool?
7761  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7762                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7763                                 MVT::f32, false, false, 4);
7764  // Extend everything to 80 bits to force it to be done on x87.
7765  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7766  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7767}
7768
7769std::pair<SDValue,SDValue> X86TargetLowering::
7770FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7771  DebugLoc DL = Op.getDebugLoc();
7772
7773  EVT DstTy = Op.getValueType();
7774
7775  if (!IsSigned) {
7776    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7777    DstTy = MVT::i64;
7778  }
7779
7780  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7781         DstTy.getSimpleVT() >= MVT::i16 &&
7782         "Unknown FP_TO_SINT to lower!");
7783
7784  // These are really Legal.
7785  if (DstTy == MVT::i32 &&
7786      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7787    return std::make_pair(SDValue(), SDValue());
7788  if (Subtarget->is64Bit() &&
7789      DstTy == MVT::i64 &&
7790      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7791    return std::make_pair(SDValue(), SDValue());
7792
7793  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7794  // stack slot.
7795  MachineFunction &MF = DAG.getMachineFunction();
7796  unsigned MemSize = DstTy.getSizeInBits()/8;
7797  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7798  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7799
7800
7801
7802  unsigned Opc;
7803  switch (DstTy.getSimpleVT().SimpleTy) {
7804  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7805  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7806  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7807  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7808  }
7809
7810  SDValue Chain = DAG.getEntryNode();
7811  SDValue Value = Op.getOperand(0);
7812  EVT TheVT = Op.getOperand(0).getValueType();
7813  if (isScalarFPTypeInSSEReg(TheVT)) {
7814    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7815    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7816                         MachinePointerInfo::getFixedStack(SSFI),
7817                         false, false, 0);
7818    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7819    SDValue Ops[] = {
7820      Chain, StackSlot, DAG.getValueType(TheVT)
7821    };
7822
7823    MachineMemOperand *MMO =
7824      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7825                              MachineMemOperand::MOLoad, MemSize, MemSize);
7826    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7827                                    DstTy, MMO);
7828    Chain = Value.getValue(1);
7829    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7830    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7831  }
7832
7833  MachineMemOperand *MMO =
7834    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7835                            MachineMemOperand::MOStore, MemSize, MemSize);
7836
7837  // Build the FP_TO_INT*_IN_MEM
7838  SDValue Ops[] = { Chain, Value, StackSlot };
7839  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7840                                         Ops, 3, DstTy, MMO);
7841
7842  return std::make_pair(FIST, StackSlot);
7843}
7844
7845SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7846                                           SelectionDAG &DAG) const {
7847  if (Op.getValueType().isVector())
7848    return SDValue();
7849
7850  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7851  SDValue FIST = Vals.first, StackSlot = Vals.second;
7852  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7853  if (FIST.getNode() == 0) return Op;
7854
7855  // Load the result.
7856  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7857                     FIST, StackSlot, MachinePointerInfo(),
7858                     false, false, false, 0);
7859}
7860
7861SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7862                                           SelectionDAG &DAG) const {
7863  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7864  SDValue FIST = Vals.first, StackSlot = Vals.second;
7865  assert(FIST.getNode() && "Unexpected failure");
7866
7867  // Load the result.
7868  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7869                     FIST, StackSlot, MachinePointerInfo(),
7870                     false, false, false, 0);
7871}
7872
7873SDValue X86TargetLowering::LowerFABS(SDValue Op,
7874                                     SelectionDAG &DAG) const {
7875  LLVMContext *Context = DAG.getContext();
7876  DebugLoc dl = Op.getDebugLoc();
7877  EVT VT = Op.getValueType();
7878  EVT EltVT = VT;
7879  if (VT.isVector())
7880    EltVT = VT.getVectorElementType();
7881  SmallVector<Constant*,4> CV;
7882  if (EltVT == MVT::f64) {
7883    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7884    CV.assign(2, C);
7885  } else {
7886    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7887    CV.assign(4, C);
7888  }
7889  Constant *C = ConstantVector::get(CV);
7890  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7891  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7892                             MachinePointerInfo::getConstantPool(),
7893                             false, false, false, 16);
7894  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7895}
7896
7897SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7898  LLVMContext *Context = DAG.getContext();
7899  DebugLoc dl = Op.getDebugLoc();
7900  EVT VT = Op.getValueType();
7901  EVT EltVT = VT;
7902  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7903  if (VT.isVector()) {
7904    EltVT = VT.getVectorElementType();
7905    NumElts = VT.getVectorNumElements();
7906  }
7907  SmallVector<Constant*,8> CV;
7908  if (EltVT == MVT::f64) {
7909    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7910    CV.assign(NumElts, C);
7911  } else {
7912    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7913    CV.assign(NumElts, C);
7914  }
7915  Constant *C = ConstantVector::get(CV);
7916  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7917  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7918                             MachinePointerInfo::getConstantPool(),
7919                             false, false, false, 16);
7920  if (VT.isVector()) {
7921    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7922    return DAG.getNode(ISD::BITCAST, dl, VT,
7923                       DAG.getNode(ISD::XOR, dl, XORVT,
7924                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7925                                Op.getOperand(0)),
7926                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7927  } else {
7928    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7929  }
7930}
7931
7932SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7933  LLVMContext *Context = DAG.getContext();
7934  SDValue Op0 = Op.getOperand(0);
7935  SDValue Op1 = Op.getOperand(1);
7936  DebugLoc dl = Op.getDebugLoc();
7937  EVT VT = Op.getValueType();
7938  EVT SrcVT = Op1.getValueType();
7939
7940  // If second operand is smaller, extend it first.
7941  if (SrcVT.bitsLT(VT)) {
7942    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7943    SrcVT = VT;
7944  }
7945  // And if it is bigger, shrink it first.
7946  if (SrcVT.bitsGT(VT)) {
7947    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7948    SrcVT = VT;
7949  }
7950
7951  // At this point the operands and the result should have the same
7952  // type, and that won't be f80 since that is not custom lowered.
7953
7954  // First get the sign bit of second operand.
7955  SmallVector<Constant*,4> CV;
7956  if (SrcVT == MVT::f64) {
7957    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7958    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7959  } else {
7960    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7961    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7962    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7963    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7964  }
7965  Constant *C = ConstantVector::get(CV);
7966  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7967  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7968                              MachinePointerInfo::getConstantPool(),
7969                              false, false, false, 16);
7970  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7971
7972  // Shift sign bit right or left if the two operands have different types.
7973  if (SrcVT.bitsGT(VT)) {
7974    // Op0 is MVT::f32, Op1 is MVT::f64.
7975    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7976    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7977                          DAG.getConstant(32, MVT::i32));
7978    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7979    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7980                          DAG.getIntPtrConstant(0));
7981  }
7982
7983  // Clear first operand sign bit.
7984  CV.clear();
7985  if (VT == MVT::f64) {
7986    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7987    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7988  } else {
7989    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7990    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7991    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7992    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7993  }
7994  C = ConstantVector::get(CV);
7995  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7996  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7997                              MachinePointerInfo::getConstantPool(),
7998                              false, false, false, 16);
7999  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8000
8001  // Or the value with the sign bit.
8002  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8003}
8004
8005SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8006  SDValue N0 = Op.getOperand(0);
8007  DebugLoc dl = Op.getDebugLoc();
8008  EVT VT = Op.getValueType();
8009
8010  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8011  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8012                                  DAG.getConstant(1, VT));
8013  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8014}
8015
8016/// Emit nodes that will be selected as "test Op0,Op0", or something
8017/// equivalent.
8018SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8019                                    SelectionDAG &DAG) const {
8020  DebugLoc dl = Op.getDebugLoc();
8021
8022  // CF and OF aren't always set the way we want. Determine which
8023  // of these we need.
8024  bool NeedCF = false;
8025  bool NeedOF = false;
8026  switch (X86CC) {
8027  default: break;
8028  case X86::COND_A: case X86::COND_AE:
8029  case X86::COND_B: case X86::COND_BE:
8030    NeedCF = true;
8031    break;
8032  case X86::COND_G: case X86::COND_GE:
8033  case X86::COND_L: case X86::COND_LE:
8034  case X86::COND_O: case X86::COND_NO:
8035    NeedOF = true;
8036    break;
8037  }
8038
8039  // See if we can use the EFLAGS value from the operand instead of
8040  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8041  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8042  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8043    // Emit a CMP with 0, which is the TEST pattern.
8044    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8045                       DAG.getConstant(0, Op.getValueType()));
8046
8047  unsigned Opcode = 0;
8048  unsigned NumOperands = 0;
8049  switch (Op.getNode()->getOpcode()) {
8050  case ISD::ADD:
8051    // Due to an isel shortcoming, be conservative if this add is likely to be
8052    // selected as part of a load-modify-store instruction. When the root node
8053    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8054    // uses of other nodes in the match, such as the ADD in this case. This
8055    // leads to the ADD being left around and reselected, with the result being
8056    // two adds in the output.  Alas, even if none our users are stores, that
8057    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8058    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8059    // climbing the DAG back to the root, and it doesn't seem to be worth the
8060    // effort.
8061    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8062         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8063      if (UI->getOpcode() != ISD::CopyToReg &&
8064          UI->getOpcode() != ISD::SETCC &&
8065          UI->getOpcode() != ISD::STORE)
8066        goto default_case;
8067
8068    if (ConstantSDNode *C =
8069        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8070      // An add of one will be selected as an INC.
8071      if (C->getAPIntValue() == 1) {
8072        Opcode = X86ISD::INC;
8073        NumOperands = 1;
8074        break;
8075      }
8076
8077      // An add of negative one (subtract of one) will be selected as a DEC.
8078      if (C->getAPIntValue().isAllOnesValue()) {
8079        Opcode = X86ISD::DEC;
8080        NumOperands = 1;
8081        break;
8082      }
8083    }
8084
8085    // Otherwise use a regular EFLAGS-setting add.
8086    Opcode = X86ISD::ADD;
8087    NumOperands = 2;
8088    break;
8089  case ISD::AND: {
8090    // If the primary and result isn't used, don't bother using X86ISD::AND,
8091    // because a TEST instruction will be better.
8092    bool NonFlagUse = false;
8093    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8094           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8095      SDNode *User = *UI;
8096      unsigned UOpNo = UI.getOperandNo();
8097      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8098        // Look pass truncate.
8099        UOpNo = User->use_begin().getOperandNo();
8100        User = *User->use_begin();
8101      }
8102
8103      if (User->getOpcode() != ISD::BRCOND &&
8104          User->getOpcode() != ISD::SETCC &&
8105          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8106        NonFlagUse = true;
8107        break;
8108      }
8109    }
8110
8111    if (!NonFlagUse)
8112      break;
8113  }
8114    // FALL THROUGH
8115  case ISD::SUB:
8116  case ISD::OR:
8117  case ISD::XOR:
8118    // Due to the ISEL shortcoming noted above, be conservative if this op is
8119    // likely to be selected as part of a load-modify-store instruction.
8120    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8121           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8122      if (UI->getOpcode() == ISD::STORE)
8123        goto default_case;
8124
8125    // Otherwise use a regular EFLAGS-setting instruction.
8126    switch (Op.getNode()->getOpcode()) {
8127    default: llvm_unreachable("unexpected operator!");
8128    case ISD::SUB: Opcode = X86ISD::SUB; break;
8129    case ISD::OR:  Opcode = X86ISD::OR;  break;
8130    case ISD::XOR: Opcode = X86ISD::XOR; break;
8131    case ISD::AND: Opcode = X86ISD::AND; break;
8132    }
8133
8134    NumOperands = 2;
8135    break;
8136  case X86ISD::ADD:
8137  case X86ISD::SUB:
8138  case X86ISD::INC:
8139  case X86ISD::DEC:
8140  case X86ISD::OR:
8141  case X86ISD::XOR:
8142  case X86ISD::AND:
8143    return SDValue(Op.getNode(), 1);
8144  default:
8145  default_case:
8146    break;
8147  }
8148
8149  if (Opcode == 0)
8150    // Emit a CMP with 0, which is the TEST pattern.
8151    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8152                       DAG.getConstant(0, Op.getValueType()));
8153
8154  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8155  SmallVector<SDValue, 4> Ops;
8156  for (unsigned i = 0; i != NumOperands; ++i)
8157    Ops.push_back(Op.getOperand(i));
8158
8159  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8160  DAG.ReplaceAllUsesWith(Op, New);
8161  return SDValue(New.getNode(), 1);
8162}
8163
8164/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8165/// equivalent.
8166SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8167                                   SelectionDAG &DAG) const {
8168  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8169    if (C->getAPIntValue() == 0)
8170      return EmitTest(Op0, X86CC, DAG);
8171
8172  DebugLoc dl = Op0.getDebugLoc();
8173  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8174}
8175
8176/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8177/// if it's possible.
8178SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8179                                     DebugLoc dl, SelectionDAG &DAG) const {
8180  SDValue Op0 = And.getOperand(0);
8181  SDValue Op1 = And.getOperand(1);
8182  if (Op0.getOpcode() == ISD::TRUNCATE)
8183    Op0 = Op0.getOperand(0);
8184  if (Op1.getOpcode() == ISD::TRUNCATE)
8185    Op1 = Op1.getOperand(0);
8186
8187  SDValue LHS, RHS;
8188  if (Op1.getOpcode() == ISD::SHL)
8189    std::swap(Op0, Op1);
8190  if (Op0.getOpcode() == ISD::SHL) {
8191    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8192      if (And00C->getZExtValue() == 1) {
8193        // If we looked past a truncate, check that it's only truncating away
8194        // known zeros.
8195        unsigned BitWidth = Op0.getValueSizeInBits();
8196        unsigned AndBitWidth = And.getValueSizeInBits();
8197        if (BitWidth > AndBitWidth) {
8198          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8199          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8200          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8201            return SDValue();
8202        }
8203        LHS = Op1;
8204        RHS = Op0.getOperand(1);
8205      }
8206  } else if (Op1.getOpcode() == ISD::Constant) {
8207    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8208    uint64_t AndRHSVal = AndRHS->getZExtValue();
8209    SDValue AndLHS = Op0;
8210
8211    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8212      LHS = AndLHS.getOperand(0);
8213      RHS = AndLHS.getOperand(1);
8214    }
8215
8216    // Use BT if the immediate can't be encoded in a TEST instruction.
8217    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8218      LHS = AndLHS;
8219      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8220    }
8221  }
8222
8223  if (LHS.getNode()) {
8224    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8225    // instruction.  Since the shift amount is in-range-or-undefined, we know
8226    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8227    // the encoding for the i16 version is larger than the i32 version.
8228    // Also promote i16 to i32 for performance / code size reason.
8229    if (LHS.getValueType() == MVT::i8 ||
8230        LHS.getValueType() == MVT::i16)
8231      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8232
8233    // If the operand types disagree, extend the shift amount to match.  Since
8234    // BT ignores high bits (like shifts) we can use anyextend.
8235    if (LHS.getValueType() != RHS.getValueType())
8236      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8237
8238    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8239    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8240    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8241                       DAG.getConstant(Cond, MVT::i8), BT);
8242  }
8243
8244  return SDValue();
8245}
8246
8247SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8248
8249  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8250
8251  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8252  SDValue Op0 = Op.getOperand(0);
8253  SDValue Op1 = Op.getOperand(1);
8254  DebugLoc dl = Op.getDebugLoc();
8255  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8256
8257  // Optimize to BT if possible.
8258  // Lower (X & (1 << N)) == 0 to BT(X, N).
8259  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8260  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8261  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8262      Op1.getOpcode() == ISD::Constant &&
8263      cast<ConstantSDNode>(Op1)->isNullValue() &&
8264      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8265    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8266    if (NewSetCC.getNode())
8267      return NewSetCC;
8268  }
8269
8270  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8271  // these.
8272  if (Op1.getOpcode() == ISD::Constant &&
8273      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8274       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8275      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8276
8277    // If the input is a setcc, then reuse the input setcc or use a new one with
8278    // the inverted condition.
8279    if (Op0.getOpcode() == X86ISD::SETCC) {
8280      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8281      bool Invert = (CC == ISD::SETNE) ^
8282        cast<ConstantSDNode>(Op1)->isNullValue();
8283      if (!Invert) return Op0;
8284
8285      CCode = X86::GetOppositeBranchCondition(CCode);
8286      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8287                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8288    }
8289  }
8290
8291  bool isFP = Op1.getValueType().isFloatingPoint();
8292  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8293  if (X86CC == X86::COND_INVALID)
8294    return SDValue();
8295
8296  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8297  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8298                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8299}
8300
8301// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8302// ones, and then concatenate the result back.
8303static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8304  EVT VT = Op.getValueType();
8305
8306  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8307         "Unsupported value type for operation");
8308
8309  int NumElems = VT.getVectorNumElements();
8310  DebugLoc dl = Op.getDebugLoc();
8311  SDValue CC = Op.getOperand(2);
8312  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8313  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8314
8315  // Extract the LHS vectors
8316  SDValue LHS = Op.getOperand(0);
8317  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8318  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8319
8320  // Extract the RHS vectors
8321  SDValue RHS = Op.getOperand(1);
8322  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8323  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8324
8325  // Issue the operation on the smaller types and concatenate the result back
8326  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8327  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8328  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8329                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8330                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8331}
8332
8333
8334SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8335  SDValue Cond;
8336  SDValue Op0 = Op.getOperand(0);
8337  SDValue Op1 = Op.getOperand(1);
8338  SDValue CC = Op.getOperand(2);
8339  EVT VT = Op.getValueType();
8340  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8341  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8342  DebugLoc dl = Op.getDebugLoc();
8343
8344  if (isFP) {
8345    unsigned SSECC = 8;
8346    EVT EltVT = Op0.getValueType().getVectorElementType();
8347    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8348
8349    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8350    bool Swap = false;
8351
8352    // SSE Condition code mapping:
8353    //  0 - EQ
8354    //  1 - LT
8355    //  2 - LE
8356    //  3 - UNORD
8357    //  4 - NEQ
8358    //  5 - NLT
8359    //  6 - NLE
8360    //  7 - ORD
8361    switch (SetCCOpcode) {
8362    default: break;
8363    case ISD::SETOEQ:
8364    case ISD::SETEQ:  SSECC = 0; break;
8365    case ISD::SETOGT:
8366    case ISD::SETGT: Swap = true; // Fallthrough
8367    case ISD::SETLT:
8368    case ISD::SETOLT: SSECC = 1; break;
8369    case ISD::SETOGE:
8370    case ISD::SETGE: Swap = true; // Fallthrough
8371    case ISD::SETLE:
8372    case ISD::SETOLE: SSECC = 2; break;
8373    case ISD::SETUO:  SSECC = 3; break;
8374    case ISD::SETUNE:
8375    case ISD::SETNE:  SSECC = 4; break;
8376    case ISD::SETULE: Swap = true;
8377    case ISD::SETUGE: SSECC = 5; break;
8378    case ISD::SETULT: Swap = true;
8379    case ISD::SETUGT: SSECC = 6; break;
8380    case ISD::SETO:   SSECC = 7; break;
8381    }
8382    if (Swap)
8383      std::swap(Op0, Op1);
8384
8385    // In the two special cases we can't handle, emit two comparisons.
8386    if (SSECC == 8) {
8387      if (SetCCOpcode == ISD::SETUEQ) {
8388        SDValue UNORD, EQ;
8389        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8390        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8391        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8392      } else if (SetCCOpcode == ISD::SETONE) {
8393        SDValue ORD, NEQ;
8394        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8395        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8396        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8397      }
8398      llvm_unreachable("Illegal FP comparison");
8399    }
8400    // Handle all other FP comparisons here.
8401    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8402  }
8403
8404  // Break 256-bit integer vector compare into smaller ones.
8405  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8406    return Lower256IntVSETCC(Op, DAG);
8407
8408  // We are handling one of the integer comparisons here.  Since SSE only has
8409  // GT and EQ comparisons for integer, swapping operands and multiple
8410  // operations may be required for some comparisons.
8411  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8412  bool Swap = false, Invert = false, FlipSigns = false;
8413
8414  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
8415  default: break;
8416  case MVT::i8:   EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8417  case MVT::i16:  EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8418  case MVT::i32:  EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8419  case MVT::i64:  EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8420  }
8421
8422  switch (SetCCOpcode) {
8423  default: break;
8424  case ISD::SETNE:  Invert = true;
8425  case ISD::SETEQ:  Opc = EQOpc; break;
8426  case ISD::SETLT:  Swap = true;
8427  case ISD::SETGT:  Opc = GTOpc; break;
8428  case ISD::SETGE:  Swap = true;
8429  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8430  case ISD::SETULT: Swap = true;
8431  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8432  case ISD::SETUGE: Swap = true;
8433  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8434  }
8435  if (Swap)
8436    std::swap(Op0, Op1);
8437
8438  // Check that the operation in question is available (most are plain SSE2,
8439  // but PCMPGTQ and PCMPEQQ have different requirements).
8440  if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42())
8441    return SDValue();
8442  if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41())
8443    return SDValue();
8444
8445  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8446  // bits of the inputs before performing those operations.
8447  if (FlipSigns) {
8448    EVT EltVT = VT.getVectorElementType();
8449    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8450                                      EltVT);
8451    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8452    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8453                                    SignBits.size());
8454    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8455    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8456  }
8457
8458  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8459
8460  // If the logical-not of the result is required, perform that now.
8461  if (Invert)
8462    Result = DAG.getNOT(dl, Result, VT);
8463
8464  return Result;
8465}
8466
8467// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8468static bool isX86LogicalCmp(SDValue Op) {
8469  unsigned Opc = Op.getNode()->getOpcode();
8470  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8471    return true;
8472  if (Op.getResNo() == 1 &&
8473      (Opc == X86ISD::ADD ||
8474       Opc == X86ISD::SUB ||
8475       Opc == X86ISD::ADC ||
8476       Opc == X86ISD::SBB ||
8477       Opc == X86ISD::SMUL ||
8478       Opc == X86ISD::UMUL ||
8479       Opc == X86ISD::INC ||
8480       Opc == X86ISD::DEC ||
8481       Opc == X86ISD::OR ||
8482       Opc == X86ISD::XOR ||
8483       Opc == X86ISD::AND))
8484    return true;
8485
8486  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8487    return true;
8488
8489  return false;
8490}
8491
8492static bool isZero(SDValue V) {
8493  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8494  return C && C->isNullValue();
8495}
8496
8497static bool isAllOnes(SDValue V) {
8498  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8499  return C && C->isAllOnesValue();
8500}
8501
8502SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8503  bool addTest = true;
8504  SDValue Cond  = Op.getOperand(0);
8505  SDValue Op1 = Op.getOperand(1);
8506  SDValue Op2 = Op.getOperand(2);
8507  DebugLoc DL = Op.getDebugLoc();
8508  SDValue CC;
8509
8510  if (Cond.getOpcode() == ISD::SETCC) {
8511    SDValue NewCond = LowerSETCC(Cond, DAG);
8512    if (NewCond.getNode())
8513      Cond = NewCond;
8514  }
8515
8516  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8517  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8518  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8519  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8520  if (Cond.getOpcode() == X86ISD::SETCC &&
8521      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8522      isZero(Cond.getOperand(1).getOperand(1))) {
8523    SDValue Cmp = Cond.getOperand(1);
8524
8525    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8526
8527    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8528        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8529      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8530
8531      SDValue CmpOp0 = Cmp.getOperand(0);
8532      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8533                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8534
8535      SDValue Res =   // Res = 0 or -1.
8536        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8537                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8538
8539      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8540        Res = DAG.getNOT(DL, Res, Res.getValueType());
8541
8542      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8543      if (N2C == 0 || !N2C->isNullValue())
8544        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8545      return Res;
8546    }
8547  }
8548
8549  // Look past (and (setcc_carry (cmp ...)), 1).
8550  if (Cond.getOpcode() == ISD::AND &&
8551      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8552    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8553    if (C && C->getAPIntValue() == 1)
8554      Cond = Cond.getOperand(0);
8555  }
8556
8557  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8558  // setting operand in place of the X86ISD::SETCC.
8559  unsigned CondOpcode = Cond.getOpcode();
8560  if (CondOpcode == X86ISD::SETCC ||
8561      CondOpcode == X86ISD::SETCC_CARRY) {
8562    CC = Cond.getOperand(0);
8563
8564    SDValue Cmp = Cond.getOperand(1);
8565    unsigned Opc = Cmp.getOpcode();
8566    EVT VT = Op.getValueType();
8567
8568    bool IllegalFPCMov = false;
8569    if (VT.isFloatingPoint() && !VT.isVector() &&
8570        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8571      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8572
8573    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8574        Opc == X86ISD::BT) { // FIXME
8575      Cond = Cmp;
8576      addTest = false;
8577    }
8578  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8579             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8580             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8581              Cond.getOperand(0).getValueType() != MVT::i8)) {
8582    SDValue LHS = Cond.getOperand(0);
8583    SDValue RHS = Cond.getOperand(1);
8584    unsigned X86Opcode;
8585    unsigned X86Cond;
8586    SDVTList VTs;
8587    switch (CondOpcode) {
8588    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8589    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8590    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8591    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8592    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8593    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8594    default: llvm_unreachable("unexpected overflowing operator");
8595    }
8596    if (CondOpcode == ISD::UMULO)
8597      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8598                          MVT::i32);
8599    else
8600      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8601
8602    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8603
8604    if (CondOpcode == ISD::UMULO)
8605      Cond = X86Op.getValue(2);
8606    else
8607      Cond = X86Op.getValue(1);
8608
8609    CC = DAG.getConstant(X86Cond, MVT::i8);
8610    addTest = false;
8611  }
8612
8613  if (addTest) {
8614    // Look pass the truncate.
8615    if (Cond.getOpcode() == ISD::TRUNCATE)
8616      Cond = Cond.getOperand(0);
8617
8618    // We know the result of AND is compared against zero. Try to match
8619    // it to BT.
8620    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8621      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8622      if (NewSetCC.getNode()) {
8623        CC = NewSetCC.getOperand(0);
8624        Cond = NewSetCC.getOperand(1);
8625        addTest = false;
8626      }
8627    }
8628  }
8629
8630  if (addTest) {
8631    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8632    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8633  }
8634
8635  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8636  // a <  b ?  0 : -1 -> RES = setcc_carry
8637  // a >= b ? -1 :  0 -> RES = setcc_carry
8638  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8639  if (Cond.getOpcode() == X86ISD::CMP) {
8640    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8641
8642    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8643        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8644      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8645                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8646      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8647        return DAG.getNOT(DL, Res, Res.getValueType());
8648      return Res;
8649    }
8650  }
8651
8652  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8653  // condition is true.
8654  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8655  SDValue Ops[] = { Op2, Op1, CC, Cond };
8656  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8657}
8658
8659// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8660// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8661// from the AND / OR.
8662static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8663  Opc = Op.getOpcode();
8664  if (Opc != ISD::OR && Opc != ISD::AND)
8665    return false;
8666  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8667          Op.getOperand(0).hasOneUse() &&
8668          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8669          Op.getOperand(1).hasOneUse());
8670}
8671
8672// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8673// 1 and that the SETCC node has a single use.
8674static bool isXor1OfSetCC(SDValue Op) {
8675  if (Op.getOpcode() != ISD::XOR)
8676    return false;
8677  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8678  if (N1C && N1C->getAPIntValue() == 1) {
8679    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8680      Op.getOperand(0).hasOneUse();
8681  }
8682  return false;
8683}
8684
8685SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8686  bool addTest = true;
8687  SDValue Chain = Op.getOperand(0);
8688  SDValue Cond  = Op.getOperand(1);
8689  SDValue Dest  = Op.getOperand(2);
8690  DebugLoc dl = Op.getDebugLoc();
8691  SDValue CC;
8692  bool Inverted = false;
8693
8694  if (Cond.getOpcode() == ISD::SETCC) {
8695    // Check for setcc([su]{add,sub,mul}o == 0).
8696    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8697        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8698        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8699        Cond.getOperand(0).getResNo() == 1 &&
8700        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8701         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8702         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8703         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8704         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8705         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8706      Inverted = true;
8707      Cond = Cond.getOperand(0);
8708    } else {
8709      SDValue NewCond = LowerSETCC(Cond, DAG);
8710      if (NewCond.getNode())
8711        Cond = NewCond;
8712    }
8713  }
8714#if 0
8715  // FIXME: LowerXALUO doesn't handle these!!
8716  else if (Cond.getOpcode() == X86ISD::ADD  ||
8717           Cond.getOpcode() == X86ISD::SUB  ||
8718           Cond.getOpcode() == X86ISD::SMUL ||
8719           Cond.getOpcode() == X86ISD::UMUL)
8720    Cond = LowerXALUO(Cond, DAG);
8721#endif
8722
8723  // Look pass (and (setcc_carry (cmp ...)), 1).
8724  if (Cond.getOpcode() == ISD::AND &&
8725      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8726    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8727    if (C && C->getAPIntValue() == 1)
8728      Cond = Cond.getOperand(0);
8729  }
8730
8731  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8732  // setting operand in place of the X86ISD::SETCC.
8733  unsigned CondOpcode = Cond.getOpcode();
8734  if (CondOpcode == X86ISD::SETCC ||
8735      CondOpcode == X86ISD::SETCC_CARRY) {
8736    CC = Cond.getOperand(0);
8737
8738    SDValue Cmp = Cond.getOperand(1);
8739    unsigned Opc = Cmp.getOpcode();
8740    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8741    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8742      Cond = Cmp;
8743      addTest = false;
8744    } else {
8745      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8746      default: break;
8747      case X86::COND_O:
8748      case X86::COND_B:
8749        // These can only come from an arithmetic instruction with overflow,
8750        // e.g. SADDO, UADDO.
8751        Cond = Cond.getNode()->getOperand(1);
8752        addTest = false;
8753        break;
8754      }
8755    }
8756  }
8757  CondOpcode = Cond.getOpcode();
8758  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8759      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8760      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8761       Cond.getOperand(0).getValueType() != MVT::i8)) {
8762    SDValue LHS = Cond.getOperand(0);
8763    SDValue RHS = Cond.getOperand(1);
8764    unsigned X86Opcode;
8765    unsigned X86Cond;
8766    SDVTList VTs;
8767    switch (CondOpcode) {
8768    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8769    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8770    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8771    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8772    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8773    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8774    default: llvm_unreachable("unexpected overflowing operator");
8775    }
8776    if (Inverted)
8777      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8778    if (CondOpcode == ISD::UMULO)
8779      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8780                          MVT::i32);
8781    else
8782      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8783
8784    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8785
8786    if (CondOpcode == ISD::UMULO)
8787      Cond = X86Op.getValue(2);
8788    else
8789      Cond = X86Op.getValue(1);
8790
8791    CC = DAG.getConstant(X86Cond, MVT::i8);
8792    addTest = false;
8793  } else {
8794    unsigned CondOpc;
8795    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8796      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8797      if (CondOpc == ISD::OR) {
8798        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8799        // two branches instead of an explicit OR instruction with a
8800        // separate test.
8801        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8802            isX86LogicalCmp(Cmp)) {
8803          CC = Cond.getOperand(0).getOperand(0);
8804          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8805                              Chain, Dest, CC, Cmp);
8806          CC = Cond.getOperand(1).getOperand(0);
8807          Cond = Cmp;
8808          addTest = false;
8809        }
8810      } else { // ISD::AND
8811        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8812        // two branches instead of an explicit AND instruction with a
8813        // separate test. However, we only do this if this block doesn't
8814        // have a fall-through edge, because this requires an explicit
8815        // jmp when the condition is false.
8816        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8817            isX86LogicalCmp(Cmp) &&
8818            Op.getNode()->hasOneUse()) {
8819          X86::CondCode CCode =
8820            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8821          CCode = X86::GetOppositeBranchCondition(CCode);
8822          CC = DAG.getConstant(CCode, MVT::i8);
8823          SDNode *User = *Op.getNode()->use_begin();
8824          // Look for an unconditional branch following this conditional branch.
8825          // We need this because we need to reverse the successors in order
8826          // to implement FCMP_OEQ.
8827          if (User->getOpcode() == ISD::BR) {
8828            SDValue FalseBB = User->getOperand(1);
8829            SDNode *NewBR =
8830              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8831            assert(NewBR == User);
8832            (void)NewBR;
8833            Dest = FalseBB;
8834
8835            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8836                                Chain, Dest, CC, Cmp);
8837            X86::CondCode CCode =
8838              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8839            CCode = X86::GetOppositeBranchCondition(CCode);
8840            CC = DAG.getConstant(CCode, MVT::i8);
8841            Cond = Cmp;
8842            addTest = false;
8843          }
8844        }
8845      }
8846    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8847      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8848      // It should be transformed during dag combiner except when the condition
8849      // is set by a arithmetics with overflow node.
8850      X86::CondCode CCode =
8851        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8852      CCode = X86::GetOppositeBranchCondition(CCode);
8853      CC = DAG.getConstant(CCode, MVT::i8);
8854      Cond = Cond.getOperand(0).getOperand(1);
8855      addTest = false;
8856    } else if (Cond.getOpcode() == ISD::SETCC &&
8857               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8858      // For FCMP_OEQ, we can emit
8859      // two branches instead of an explicit AND instruction with a
8860      // separate test. However, we only do this if this block doesn't
8861      // have a fall-through edge, because this requires an explicit
8862      // jmp when the condition is false.
8863      if (Op.getNode()->hasOneUse()) {
8864        SDNode *User = *Op.getNode()->use_begin();
8865        // Look for an unconditional branch following this conditional branch.
8866        // We need this because we need to reverse the successors in order
8867        // to implement FCMP_OEQ.
8868        if (User->getOpcode() == ISD::BR) {
8869          SDValue FalseBB = User->getOperand(1);
8870          SDNode *NewBR =
8871            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8872          assert(NewBR == User);
8873          (void)NewBR;
8874          Dest = FalseBB;
8875
8876          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8877                                    Cond.getOperand(0), Cond.getOperand(1));
8878          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8879          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8880                              Chain, Dest, CC, Cmp);
8881          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8882          Cond = Cmp;
8883          addTest = false;
8884        }
8885      }
8886    } else if (Cond.getOpcode() == ISD::SETCC &&
8887               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8888      // For FCMP_UNE, we can emit
8889      // two branches instead of an explicit AND instruction with a
8890      // separate test. However, we only do this if this block doesn't
8891      // have a fall-through edge, because this requires an explicit
8892      // jmp when the condition is false.
8893      if (Op.getNode()->hasOneUse()) {
8894        SDNode *User = *Op.getNode()->use_begin();
8895        // Look for an unconditional branch following this conditional branch.
8896        // We need this because we need to reverse the successors in order
8897        // to implement FCMP_UNE.
8898        if (User->getOpcode() == ISD::BR) {
8899          SDValue FalseBB = User->getOperand(1);
8900          SDNode *NewBR =
8901            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8902          assert(NewBR == User);
8903          (void)NewBR;
8904
8905          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8906                                    Cond.getOperand(0), Cond.getOperand(1));
8907          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8908          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8909                              Chain, Dest, CC, Cmp);
8910          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8911          Cond = Cmp;
8912          addTest = false;
8913          Dest = FalseBB;
8914        }
8915      }
8916    }
8917  }
8918
8919  if (addTest) {
8920    // Look pass the truncate.
8921    if (Cond.getOpcode() == ISD::TRUNCATE)
8922      Cond = Cond.getOperand(0);
8923
8924    // We know the result of AND is compared against zero. Try to match
8925    // it to BT.
8926    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8927      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8928      if (NewSetCC.getNode()) {
8929        CC = NewSetCC.getOperand(0);
8930        Cond = NewSetCC.getOperand(1);
8931        addTest = false;
8932      }
8933    }
8934  }
8935
8936  if (addTest) {
8937    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8938    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8939  }
8940  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8941                     Chain, Dest, CC, Cond);
8942}
8943
8944
8945// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8946// Calls to _alloca is needed to probe the stack when allocating more than 4k
8947// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8948// that the guard pages used by the OS virtual memory manager are allocated in
8949// correct sequence.
8950SDValue
8951X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8952                                           SelectionDAG &DAG) const {
8953  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8954          getTargetMachine().Options.EnableSegmentedStacks) &&
8955         "This should be used only on Windows targets or when segmented stacks "
8956         "are being used");
8957  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8958  DebugLoc dl = Op.getDebugLoc();
8959
8960  // Get the inputs.
8961  SDValue Chain = Op.getOperand(0);
8962  SDValue Size  = Op.getOperand(1);
8963  // FIXME: Ensure alignment here
8964
8965  bool Is64Bit = Subtarget->is64Bit();
8966  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8967
8968  if (getTargetMachine().Options.EnableSegmentedStacks) {
8969    MachineFunction &MF = DAG.getMachineFunction();
8970    MachineRegisterInfo &MRI = MF.getRegInfo();
8971
8972    if (Is64Bit) {
8973      // The 64 bit implementation of segmented stacks needs to clobber both r10
8974      // r11. This makes it impossible to use it along with nested parameters.
8975      const Function *F = MF.getFunction();
8976
8977      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8978           I != E; I++)
8979        if (I->hasNestAttr())
8980          report_fatal_error("Cannot use segmented stacks with functions that "
8981                             "have nested arguments.");
8982    }
8983
8984    const TargetRegisterClass *AddrRegClass =
8985      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8986    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8987    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8988    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8989                                DAG.getRegister(Vreg, SPTy));
8990    SDValue Ops1[2] = { Value, Chain };
8991    return DAG.getMergeValues(Ops1, 2, dl);
8992  } else {
8993    SDValue Flag;
8994    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8995
8996    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8997    Flag = Chain.getValue(1);
8998    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8999
9000    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9001    Flag = Chain.getValue(1);
9002
9003    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9004
9005    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9006    return DAG.getMergeValues(Ops1, 2, dl);
9007  }
9008}
9009
9010SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9011  MachineFunction &MF = DAG.getMachineFunction();
9012  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9013
9014  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9015  DebugLoc DL = Op.getDebugLoc();
9016
9017  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9018    // vastart just stores the address of the VarArgsFrameIndex slot into the
9019    // memory location argument.
9020    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9021                                   getPointerTy());
9022    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9023                        MachinePointerInfo(SV), false, false, 0);
9024  }
9025
9026  // __va_list_tag:
9027  //   gp_offset         (0 - 6 * 8)
9028  //   fp_offset         (48 - 48 + 8 * 16)
9029  //   overflow_arg_area (point to parameters coming in memory).
9030  //   reg_save_area
9031  SmallVector<SDValue, 8> MemOps;
9032  SDValue FIN = Op.getOperand(1);
9033  // Store gp_offset
9034  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9035                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9036                                               MVT::i32),
9037                               FIN, MachinePointerInfo(SV), false, false, 0);
9038  MemOps.push_back(Store);
9039
9040  // Store fp_offset
9041  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9042                    FIN, DAG.getIntPtrConstant(4));
9043  Store = DAG.getStore(Op.getOperand(0), DL,
9044                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9045                                       MVT::i32),
9046                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9047  MemOps.push_back(Store);
9048
9049  // Store ptr to overflow_arg_area
9050  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9051                    FIN, DAG.getIntPtrConstant(4));
9052  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9053                                    getPointerTy());
9054  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9055                       MachinePointerInfo(SV, 8),
9056                       false, false, 0);
9057  MemOps.push_back(Store);
9058
9059  // Store ptr to reg_save_area.
9060  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9061                    FIN, DAG.getIntPtrConstant(8));
9062  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9063                                    getPointerTy());
9064  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9065                       MachinePointerInfo(SV, 16), false, false, 0);
9066  MemOps.push_back(Store);
9067  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9068                     &MemOps[0], MemOps.size());
9069}
9070
9071SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9072  assert(Subtarget->is64Bit() &&
9073         "LowerVAARG only handles 64-bit va_arg!");
9074  assert((Subtarget->isTargetLinux() ||
9075          Subtarget->isTargetDarwin()) &&
9076          "Unhandled target in LowerVAARG");
9077  assert(Op.getNode()->getNumOperands() == 4);
9078  SDValue Chain = Op.getOperand(0);
9079  SDValue SrcPtr = Op.getOperand(1);
9080  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9081  unsigned Align = Op.getConstantOperandVal(3);
9082  DebugLoc dl = Op.getDebugLoc();
9083
9084  EVT ArgVT = Op.getNode()->getValueType(0);
9085  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9086  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9087  uint8_t ArgMode;
9088
9089  // Decide which area this value should be read from.
9090  // TODO: Implement the AMD64 ABI in its entirety. This simple
9091  // selection mechanism works only for the basic types.
9092  if (ArgVT == MVT::f80) {
9093    llvm_unreachable("va_arg for f80 not yet implemented");
9094  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9095    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9096  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9097    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9098  } else {
9099    llvm_unreachable("Unhandled argument type in LowerVAARG");
9100  }
9101
9102  if (ArgMode == 2) {
9103    // Sanity Check: Make sure using fp_offset makes sense.
9104    assert(!getTargetMachine().Options.UseSoftFloat &&
9105           !(DAG.getMachineFunction()
9106                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9107           Subtarget->hasSSE1());
9108  }
9109
9110  // Insert VAARG_64 node into the DAG
9111  // VAARG_64 returns two values: Variable Argument Address, Chain
9112  SmallVector<SDValue, 11> InstOps;
9113  InstOps.push_back(Chain);
9114  InstOps.push_back(SrcPtr);
9115  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9116  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9117  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9118  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9119  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9120                                          VTs, &InstOps[0], InstOps.size(),
9121                                          MVT::i64,
9122                                          MachinePointerInfo(SV),
9123                                          /*Align=*/0,
9124                                          /*Volatile=*/false,
9125                                          /*ReadMem=*/true,
9126                                          /*WriteMem=*/true);
9127  Chain = VAARG.getValue(1);
9128
9129  // Load the next argument and return it
9130  return DAG.getLoad(ArgVT, dl,
9131                     Chain,
9132                     VAARG,
9133                     MachinePointerInfo(),
9134                     false, false, false, 0);
9135}
9136
9137SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9138  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9139  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9140  SDValue Chain = Op.getOperand(0);
9141  SDValue DstPtr = Op.getOperand(1);
9142  SDValue SrcPtr = Op.getOperand(2);
9143  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9144  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9145  DebugLoc DL = Op.getDebugLoc();
9146
9147  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9148                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9149                       false,
9150                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9151}
9152
9153SDValue
9154X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9155  DebugLoc dl = Op.getDebugLoc();
9156  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9157  switch (IntNo) {
9158  default: return SDValue();    // Don't custom lower most intrinsics.
9159  // Comparison intrinsics.
9160  case Intrinsic::x86_sse_comieq_ss:
9161  case Intrinsic::x86_sse_comilt_ss:
9162  case Intrinsic::x86_sse_comile_ss:
9163  case Intrinsic::x86_sse_comigt_ss:
9164  case Intrinsic::x86_sse_comige_ss:
9165  case Intrinsic::x86_sse_comineq_ss:
9166  case Intrinsic::x86_sse_ucomieq_ss:
9167  case Intrinsic::x86_sse_ucomilt_ss:
9168  case Intrinsic::x86_sse_ucomile_ss:
9169  case Intrinsic::x86_sse_ucomigt_ss:
9170  case Intrinsic::x86_sse_ucomige_ss:
9171  case Intrinsic::x86_sse_ucomineq_ss:
9172  case Intrinsic::x86_sse2_comieq_sd:
9173  case Intrinsic::x86_sse2_comilt_sd:
9174  case Intrinsic::x86_sse2_comile_sd:
9175  case Intrinsic::x86_sse2_comigt_sd:
9176  case Intrinsic::x86_sse2_comige_sd:
9177  case Intrinsic::x86_sse2_comineq_sd:
9178  case Intrinsic::x86_sse2_ucomieq_sd:
9179  case Intrinsic::x86_sse2_ucomilt_sd:
9180  case Intrinsic::x86_sse2_ucomile_sd:
9181  case Intrinsic::x86_sse2_ucomigt_sd:
9182  case Intrinsic::x86_sse2_ucomige_sd:
9183  case Intrinsic::x86_sse2_ucomineq_sd: {
9184    unsigned Opc = 0;
9185    ISD::CondCode CC = ISD::SETCC_INVALID;
9186    switch (IntNo) {
9187    default: break;
9188    case Intrinsic::x86_sse_comieq_ss:
9189    case Intrinsic::x86_sse2_comieq_sd:
9190      Opc = X86ISD::COMI;
9191      CC = ISD::SETEQ;
9192      break;
9193    case Intrinsic::x86_sse_comilt_ss:
9194    case Intrinsic::x86_sse2_comilt_sd:
9195      Opc = X86ISD::COMI;
9196      CC = ISD::SETLT;
9197      break;
9198    case Intrinsic::x86_sse_comile_ss:
9199    case Intrinsic::x86_sse2_comile_sd:
9200      Opc = X86ISD::COMI;
9201      CC = ISD::SETLE;
9202      break;
9203    case Intrinsic::x86_sse_comigt_ss:
9204    case Intrinsic::x86_sse2_comigt_sd:
9205      Opc = X86ISD::COMI;
9206      CC = ISD::SETGT;
9207      break;
9208    case Intrinsic::x86_sse_comige_ss:
9209    case Intrinsic::x86_sse2_comige_sd:
9210      Opc = X86ISD::COMI;
9211      CC = ISD::SETGE;
9212      break;
9213    case Intrinsic::x86_sse_comineq_ss:
9214    case Intrinsic::x86_sse2_comineq_sd:
9215      Opc = X86ISD::COMI;
9216      CC = ISD::SETNE;
9217      break;
9218    case Intrinsic::x86_sse_ucomieq_ss:
9219    case Intrinsic::x86_sse2_ucomieq_sd:
9220      Opc = X86ISD::UCOMI;
9221      CC = ISD::SETEQ;
9222      break;
9223    case Intrinsic::x86_sse_ucomilt_ss:
9224    case Intrinsic::x86_sse2_ucomilt_sd:
9225      Opc = X86ISD::UCOMI;
9226      CC = ISD::SETLT;
9227      break;
9228    case Intrinsic::x86_sse_ucomile_ss:
9229    case Intrinsic::x86_sse2_ucomile_sd:
9230      Opc = X86ISD::UCOMI;
9231      CC = ISD::SETLE;
9232      break;
9233    case Intrinsic::x86_sse_ucomigt_ss:
9234    case Intrinsic::x86_sse2_ucomigt_sd:
9235      Opc = X86ISD::UCOMI;
9236      CC = ISD::SETGT;
9237      break;
9238    case Intrinsic::x86_sse_ucomige_ss:
9239    case Intrinsic::x86_sse2_ucomige_sd:
9240      Opc = X86ISD::UCOMI;
9241      CC = ISD::SETGE;
9242      break;
9243    case Intrinsic::x86_sse_ucomineq_ss:
9244    case Intrinsic::x86_sse2_ucomineq_sd:
9245      Opc = X86ISD::UCOMI;
9246      CC = ISD::SETNE;
9247      break;
9248    }
9249
9250    SDValue LHS = Op.getOperand(1);
9251    SDValue RHS = Op.getOperand(2);
9252    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9253    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9254    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9255    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9256                                DAG.getConstant(X86CC, MVT::i8), Cond);
9257    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9258  }
9259  // Arithmetic intrinsics.
9260  case Intrinsic::x86_sse3_hadd_ps:
9261  case Intrinsic::x86_sse3_hadd_pd:
9262  case Intrinsic::x86_avx_hadd_ps_256:
9263  case Intrinsic::x86_avx_hadd_pd_256:
9264    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9265                       Op.getOperand(1), Op.getOperand(2));
9266  case Intrinsic::x86_sse3_hsub_ps:
9267  case Intrinsic::x86_sse3_hsub_pd:
9268  case Intrinsic::x86_avx_hsub_ps_256:
9269  case Intrinsic::x86_avx_hsub_pd_256:
9270    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9271                       Op.getOperand(1), Op.getOperand(2));
9272  case Intrinsic::x86_avx2_psllv_d:
9273  case Intrinsic::x86_avx2_psllv_q:
9274  case Intrinsic::x86_avx2_psllv_d_256:
9275  case Intrinsic::x86_avx2_psllv_q_256:
9276    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9277                      Op.getOperand(1), Op.getOperand(2));
9278  case Intrinsic::x86_avx2_psrlv_d:
9279  case Intrinsic::x86_avx2_psrlv_q:
9280  case Intrinsic::x86_avx2_psrlv_d_256:
9281  case Intrinsic::x86_avx2_psrlv_q_256:
9282    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9283                      Op.getOperand(1), Op.getOperand(2));
9284  case Intrinsic::x86_avx2_psrav_d:
9285  case Intrinsic::x86_avx2_psrav_d_256:
9286    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9287                      Op.getOperand(1), Op.getOperand(2));
9288
9289  // ptest and testp intrinsics. The intrinsic these come from are designed to
9290  // return an integer value, not just an instruction so lower it to the ptest
9291  // or testp pattern and a setcc for the result.
9292  case Intrinsic::x86_sse41_ptestz:
9293  case Intrinsic::x86_sse41_ptestc:
9294  case Intrinsic::x86_sse41_ptestnzc:
9295  case Intrinsic::x86_avx_ptestz_256:
9296  case Intrinsic::x86_avx_ptestc_256:
9297  case Intrinsic::x86_avx_ptestnzc_256:
9298  case Intrinsic::x86_avx_vtestz_ps:
9299  case Intrinsic::x86_avx_vtestc_ps:
9300  case Intrinsic::x86_avx_vtestnzc_ps:
9301  case Intrinsic::x86_avx_vtestz_pd:
9302  case Intrinsic::x86_avx_vtestc_pd:
9303  case Intrinsic::x86_avx_vtestnzc_pd:
9304  case Intrinsic::x86_avx_vtestz_ps_256:
9305  case Intrinsic::x86_avx_vtestc_ps_256:
9306  case Intrinsic::x86_avx_vtestnzc_ps_256:
9307  case Intrinsic::x86_avx_vtestz_pd_256:
9308  case Intrinsic::x86_avx_vtestc_pd_256:
9309  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9310    bool IsTestPacked = false;
9311    unsigned X86CC = 0;
9312    switch (IntNo) {
9313    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9314    case Intrinsic::x86_avx_vtestz_ps:
9315    case Intrinsic::x86_avx_vtestz_pd:
9316    case Intrinsic::x86_avx_vtestz_ps_256:
9317    case Intrinsic::x86_avx_vtestz_pd_256:
9318      IsTestPacked = true; // Fallthrough
9319    case Intrinsic::x86_sse41_ptestz:
9320    case Intrinsic::x86_avx_ptestz_256:
9321      // ZF = 1
9322      X86CC = X86::COND_E;
9323      break;
9324    case Intrinsic::x86_avx_vtestc_ps:
9325    case Intrinsic::x86_avx_vtestc_pd:
9326    case Intrinsic::x86_avx_vtestc_ps_256:
9327    case Intrinsic::x86_avx_vtestc_pd_256:
9328      IsTestPacked = true; // Fallthrough
9329    case Intrinsic::x86_sse41_ptestc:
9330    case Intrinsic::x86_avx_ptestc_256:
9331      // CF = 1
9332      X86CC = X86::COND_B;
9333      break;
9334    case Intrinsic::x86_avx_vtestnzc_ps:
9335    case Intrinsic::x86_avx_vtestnzc_pd:
9336    case Intrinsic::x86_avx_vtestnzc_ps_256:
9337    case Intrinsic::x86_avx_vtestnzc_pd_256:
9338      IsTestPacked = true; // Fallthrough
9339    case Intrinsic::x86_sse41_ptestnzc:
9340    case Intrinsic::x86_avx_ptestnzc_256:
9341      // ZF and CF = 0
9342      X86CC = X86::COND_A;
9343      break;
9344    }
9345
9346    SDValue LHS = Op.getOperand(1);
9347    SDValue RHS = Op.getOperand(2);
9348    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9349    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9350    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9351    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9352    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9353  }
9354
9355  // Fix vector shift instructions where the last operand is a non-immediate
9356  // i32 value.
9357  case Intrinsic::x86_avx2_pslli_w:
9358  case Intrinsic::x86_avx2_pslli_d:
9359  case Intrinsic::x86_avx2_pslli_q:
9360  case Intrinsic::x86_avx2_psrli_w:
9361  case Intrinsic::x86_avx2_psrli_d:
9362  case Intrinsic::x86_avx2_psrli_q:
9363  case Intrinsic::x86_avx2_psrai_w:
9364  case Intrinsic::x86_avx2_psrai_d:
9365  case Intrinsic::x86_sse2_pslli_w:
9366  case Intrinsic::x86_sse2_pslli_d:
9367  case Intrinsic::x86_sse2_pslli_q:
9368  case Intrinsic::x86_sse2_psrli_w:
9369  case Intrinsic::x86_sse2_psrli_d:
9370  case Intrinsic::x86_sse2_psrli_q:
9371  case Intrinsic::x86_sse2_psrai_w:
9372  case Intrinsic::x86_sse2_psrai_d:
9373  case Intrinsic::x86_mmx_pslli_w:
9374  case Intrinsic::x86_mmx_pslli_d:
9375  case Intrinsic::x86_mmx_pslli_q:
9376  case Intrinsic::x86_mmx_psrli_w:
9377  case Intrinsic::x86_mmx_psrli_d:
9378  case Intrinsic::x86_mmx_psrli_q:
9379  case Intrinsic::x86_mmx_psrai_w:
9380  case Intrinsic::x86_mmx_psrai_d: {
9381    SDValue ShAmt = Op.getOperand(2);
9382    if (isa<ConstantSDNode>(ShAmt))
9383      return SDValue();
9384
9385    unsigned NewIntNo = 0;
9386    EVT ShAmtVT = MVT::v4i32;
9387    switch (IntNo) {
9388    case Intrinsic::x86_sse2_pslli_w:
9389      NewIntNo = Intrinsic::x86_sse2_psll_w;
9390      break;
9391    case Intrinsic::x86_sse2_pslli_d:
9392      NewIntNo = Intrinsic::x86_sse2_psll_d;
9393      break;
9394    case Intrinsic::x86_sse2_pslli_q:
9395      NewIntNo = Intrinsic::x86_sse2_psll_q;
9396      break;
9397    case Intrinsic::x86_sse2_psrli_w:
9398      NewIntNo = Intrinsic::x86_sse2_psrl_w;
9399      break;
9400    case Intrinsic::x86_sse2_psrli_d:
9401      NewIntNo = Intrinsic::x86_sse2_psrl_d;
9402      break;
9403    case Intrinsic::x86_sse2_psrli_q:
9404      NewIntNo = Intrinsic::x86_sse2_psrl_q;
9405      break;
9406    case Intrinsic::x86_sse2_psrai_w:
9407      NewIntNo = Intrinsic::x86_sse2_psra_w;
9408      break;
9409    case Intrinsic::x86_sse2_psrai_d:
9410      NewIntNo = Intrinsic::x86_sse2_psra_d;
9411      break;
9412    case Intrinsic::x86_avx2_pslli_w:
9413      NewIntNo = Intrinsic::x86_avx2_psll_w;
9414      break;
9415    case Intrinsic::x86_avx2_pslli_d:
9416      NewIntNo = Intrinsic::x86_avx2_psll_d;
9417      break;
9418    case Intrinsic::x86_avx2_pslli_q:
9419      NewIntNo = Intrinsic::x86_avx2_psll_q;
9420      break;
9421    case Intrinsic::x86_avx2_psrli_w:
9422      NewIntNo = Intrinsic::x86_avx2_psrl_w;
9423      break;
9424    case Intrinsic::x86_avx2_psrli_d:
9425      NewIntNo = Intrinsic::x86_avx2_psrl_d;
9426      break;
9427    case Intrinsic::x86_avx2_psrli_q:
9428      NewIntNo = Intrinsic::x86_avx2_psrl_q;
9429      break;
9430    case Intrinsic::x86_avx2_psrai_w:
9431      NewIntNo = Intrinsic::x86_avx2_psra_w;
9432      break;
9433    case Intrinsic::x86_avx2_psrai_d:
9434      NewIntNo = Intrinsic::x86_avx2_psra_d;
9435      break;
9436    default: {
9437      ShAmtVT = MVT::v2i32;
9438      switch (IntNo) {
9439      case Intrinsic::x86_mmx_pslli_w:
9440        NewIntNo = Intrinsic::x86_mmx_psll_w;
9441        break;
9442      case Intrinsic::x86_mmx_pslli_d:
9443        NewIntNo = Intrinsic::x86_mmx_psll_d;
9444        break;
9445      case Intrinsic::x86_mmx_pslli_q:
9446        NewIntNo = Intrinsic::x86_mmx_psll_q;
9447        break;
9448      case Intrinsic::x86_mmx_psrli_w:
9449        NewIntNo = Intrinsic::x86_mmx_psrl_w;
9450        break;
9451      case Intrinsic::x86_mmx_psrli_d:
9452        NewIntNo = Intrinsic::x86_mmx_psrl_d;
9453        break;
9454      case Intrinsic::x86_mmx_psrli_q:
9455        NewIntNo = Intrinsic::x86_mmx_psrl_q;
9456        break;
9457      case Intrinsic::x86_mmx_psrai_w:
9458        NewIntNo = Intrinsic::x86_mmx_psra_w;
9459        break;
9460      case Intrinsic::x86_mmx_psrai_d:
9461        NewIntNo = Intrinsic::x86_mmx_psra_d;
9462        break;
9463      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9464      }
9465      break;
9466    }
9467    }
9468
9469    // The vector shift intrinsics with scalars uses 32b shift amounts but
9470    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9471    // to be zero.
9472    SDValue ShOps[4];
9473    ShOps[0] = ShAmt;
9474    ShOps[1] = DAG.getConstant(0, MVT::i32);
9475    if (ShAmtVT == MVT::v4i32) {
9476      ShOps[2] = DAG.getUNDEF(MVT::i32);
9477      ShOps[3] = DAG.getUNDEF(MVT::i32);
9478      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9479    } else {
9480      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9481// FIXME this must be lowered to get rid of the invalid type.
9482    }
9483
9484    EVT VT = Op.getValueType();
9485    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9486    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9487                       DAG.getConstant(NewIntNo, MVT::i32),
9488                       Op.getOperand(1), ShAmt);
9489  }
9490  }
9491}
9492
9493SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9494                                           SelectionDAG &DAG) const {
9495  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9496  MFI->setReturnAddressIsTaken(true);
9497
9498  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9499  DebugLoc dl = Op.getDebugLoc();
9500
9501  if (Depth > 0) {
9502    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9503    SDValue Offset =
9504      DAG.getConstant(TD->getPointerSize(),
9505                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9506    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9507                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9508                                   FrameAddr, Offset),
9509                       MachinePointerInfo(), false, false, false, 0);
9510  }
9511
9512  // Just load the return address.
9513  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9514  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9515                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9516}
9517
9518SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9519  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9520  MFI->setFrameAddressIsTaken(true);
9521
9522  EVT VT = Op.getValueType();
9523  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9524  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9525  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9526  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9527  while (Depth--)
9528    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9529                            MachinePointerInfo(),
9530                            false, false, false, 0);
9531  return FrameAddr;
9532}
9533
9534SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9535                                                     SelectionDAG &DAG) const {
9536  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9537}
9538
9539SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9540  MachineFunction &MF = DAG.getMachineFunction();
9541  SDValue Chain     = Op.getOperand(0);
9542  SDValue Offset    = Op.getOperand(1);
9543  SDValue Handler   = Op.getOperand(2);
9544  DebugLoc dl       = Op.getDebugLoc();
9545
9546  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9547                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9548                                     getPointerTy());
9549  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9550
9551  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9552                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9553  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9554  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9555                       false, false, 0);
9556  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9557  MF.getRegInfo().addLiveOut(StoreAddrReg);
9558
9559  return DAG.getNode(X86ISD::EH_RETURN, dl,
9560                     MVT::Other,
9561                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9562}
9563
9564SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9565                                                  SelectionDAG &DAG) const {
9566  return Op.getOperand(0);
9567}
9568
9569SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9570                                                SelectionDAG &DAG) const {
9571  SDValue Root = Op.getOperand(0);
9572  SDValue Trmp = Op.getOperand(1); // trampoline
9573  SDValue FPtr = Op.getOperand(2); // nested function
9574  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9575  DebugLoc dl  = Op.getDebugLoc();
9576
9577  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9578
9579  if (Subtarget->is64Bit()) {
9580    SDValue OutChains[6];
9581
9582    // Large code-model.
9583    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9584    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9585
9586    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9587    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9588
9589    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9590
9591    // Load the pointer to the nested function into R11.
9592    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9593    SDValue Addr = Trmp;
9594    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9595                                Addr, MachinePointerInfo(TrmpAddr),
9596                                false, false, 0);
9597
9598    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9599                       DAG.getConstant(2, MVT::i64));
9600    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9601                                MachinePointerInfo(TrmpAddr, 2),
9602                                false, false, 2);
9603
9604    // Load the 'nest' parameter value into R10.
9605    // R10 is specified in X86CallingConv.td
9606    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9607    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9608                       DAG.getConstant(10, MVT::i64));
9609    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9610                                Addr, MachinePointerInfo(TrmpAddr, 10),
9611                                false, false, 0);
9612
9613    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9614                       DAG.getConstant(12, MVT::i64));
9615    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9616                                MachinePointerInfo(TrmpAddr, 12),
9617                                false, false, 2);
9618
9619    // Jump to the nested function.
9620    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9621    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9622                       DAG.getConstant(20, MVT::i64));
9623    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9624                                Addr, MachinePointerInfo(TrmpAddr, 20),
9625                                false, false, 0);
9626
9627    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9628    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9629                       DAG.getConstant(22, MVT::i64));
9630    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9631                                MachinePointerInfo(TrmpAddr, 22),
9632                                false, false, 0);
9633
9634    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9635  } else {
9636    const Function *Func =
9637      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9638    CallingConv::ID CC = Func->getCallingConv();
9639    unsigned NestReg;
9640
9641    switch (CC) {
9642    default:
9643      llvm_unreachable("Unsupported calling convention");
9644    case CallingConv::C:
9645    case CallingConv::X86_StdCall: {
9646      // Pass 'nest' parameter in ECX.
9647      // Must be kept in sync with X86CallingConv.td
9648      NestReg = X86::ECX;
9649
9650      // Check that ECX wasn't needed by an 'inreg' parameter.
9651      FunctionType *FTy = Func->getFunctionType();
9652      const AttrListPtr &Attrs = Func->getAttributes();
9653
9654      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9655        unsigned InRegCount = 0;
9656        unsigned Idx = 1;
9657
9658        for (FunctionType::param_iterator I = FTy->param_begin(),
9659             E = FTy->param_end(); I != E; ++I, ++Idx)
9660          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9661            // FIXME: should only count parameters that are lowered to integers.
9662            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9663
9664        if (InRegCount > 2) {
9665          report_fatal_error("Nest register in use - reduce number of inreg"
9666                             " parameters!");
9667        }
9668      }
9669      break;
9670    }
9671    case CallingConv::X86_FastCall:
9672    case CallingConv::X86_ThisCall:
9673    case CallingConv::Fast:
9674      // Pass 'nest' parameter in EAX.
9675      // Must be kept in sync with X86CallingConv.td
9676      NestReg = X86::EAX;
9677      break;
9678    }
9679
9680    SDValue OutChains[4];
9681    SDValue Addr, Disp;
9682
9683    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9684                       DAG.getConstant(10, MVT::i32));
9685    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9686
9687    // This is storing the opcode for MOV32ri.
9688    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9689    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9690    OutChains[0] = DAG.getStore(Root, dl,
9691                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9692                                Trmp, MachinePointerInfo(TrmpAddr),
9693                                false, false, 0);
9694
9695    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9696                       DAG.getConstant(1, MVT::i32));
9697    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9698                                MachinePointerInfo(TrmpAddr, 1),
9699                                false, false, 1);
9700
9701    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9702    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9703                       DAG.getConstant(5, MVT::i32));
9704    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9705                                MachinePointerInfo(TrmpAddr, 5),
9706                                false, false, 1);
9707
9708    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9709                       DAG.getConstant(6, MVT::i32));
9710    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9711                                MachinePointerInfo(TrmpAddr, 6),
9712                                false, false, 1);
9713
9714    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9715  }
9716}
9717
9718SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9719                                            SelectionDAG &DAG) const {
9720  /*
9721   The rounding mode is in bits 11:10 of FPSR, and has the following
9722   settings:
9723     00 Round to nearest
9724     01 Round to -inf
9725     10 Round to +inf
9726     11 Round to 0
9727
9728  FLT_ROUNDS, on the other hand, expects the following:
9729    -1 Undefined
9730     0 Round to 0
9731     1 Round to nearest
9732     2 Round to +inf
9733     3 Round to -inf
9734
9735  To perform the conversion, we do:
9736    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9737  */
9738
9739  MachineFunction &MF = DAG.getMachineFunction();
9740  const TargetMachine &TM = MF.getTarget();
9741  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9742  unsigned StackAlignment = TFI.getStackAlignment();
9743  EVT VT = Op.getValueType();
9744  DebugLoc DL = Op.getDebugLoc();
9745
9746  // Save FP Control Word to stack slot
9747  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9748  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9749
9750
9751  MachineMemOperand *MMO =
9752   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9753                           MachineMemOperand::MOStore, 2, 2);
9754
9755  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9756  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9757                                          DAG.getVTList(MVT::Other),
9758                                          Ops, 2, MVT::i16, MMO);
9759
9760  // Load FP Control Word from stack slot
9761  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9762                            MachinePointerInfo(), false, false, false, 0);
9763
9764  // Transform as necessary
9765  SDValue CWD1 =
9766    DAG.getNode(ISD::SRL, DL, MVT::i16,
9767                DAG.getNode(ISD::AND, DL, MVT::i16,
9768                            CWD, DAG.getConstant(0x800, MVT::i16)),
9769                DAG.getConstant(11, MVT::i8));
9770  SDValue CWD2 =
9771    DAG.getNode(ISD::SRL, DL, MVT::i16,
9772                DAG.getNode(ISD::AND, DL, MVT::i16,
9773                            CWD, DAG.getConstant(0x400, MVT::i16)),
9774                DAG.getConstant(9, MVT::i8));
9775
9776  SDValue RetVal =
9777    DAG.getNode(ISD::AND, DL, MVT::i16,
9778                DAG.getNode(ISD::ADD, DL, MVT::i16,
9779                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9780                            DAG.getConstant(1, MVT::i16)),
9781                DAG.getConstant(3, MVT::i16));
9782
9783
9784  return DAG.getNode((VT.getSizeInBits() < 16 ?
9785                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9786}
9787
9788SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9789  EVT VT = Op.getValueType();
9790  EVT OpVT = VT;
9791  unsigned NumBits = VT.getSizeInBits();
9792  DebugLoc dl = Op.getDebugLoc();
9793
9794  Op = Op.getOperand(0);
9795  if (VT == MVT::i8) {
9796    // Zero extend to i32 since there is not an i8 bsr.
9797    OpVT = MVT::i32;
9798    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9799  }
9800
9801  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9802  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9803  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9804
9805  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9806  SDValue Ops[] = {
9807    Op,
9808    DAG.getConstant(NumBits+NumBits-1, OpVT),
9809    DAG.getConstant(X86::COND_E, MVT::i8),
9810    Op.getValue(1)
9811  };
9812  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9813
9814  // Finally xor with NumBits-1.
9815  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9816
9817  if (VT == MVT::i8)
9818    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9819  return Op;
9820}
9821
9822SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
9823                                                SelectionDAG &DAG) const {
9824  EVT VT = Op.getValueType();
9825  EVT OpVT = VT;
9826  unsigned NumBits = VT.getSizeInBits();
9827  DebugLoc dl = Op.getDebugLoc();
9828
9829  Op = Op.getOperand(0);
9830  if (VT == MVT::i8) {
9831    // Zero extend to i32 since there is not an i8 bsr.
9832    OpVT = MVT::i32;
9833    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9834  }
9835
9836  // Issue a bsr (scan bits in reverse).
9837  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9838  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9839
9840  // And xor with NumBits-1.
9841  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9842
9843  if (VT == MVT::i8)
9844    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9845  return Op;
9846}
9847
9848SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9849  EVT VT = Op.getValueType();
9850  unsigned NumBits = VT.getSizeInBits();
9851  DebugLoc dl = Op.getDebugLoc();
9852  Op = Op.getOperand(0);
9853
9854  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9855  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9856  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9857
9858  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9859  SDValue Ops[] = {
9860    Op,
9861    DAG.getConstant(NumBits, VT),
9862    DAG.getConstant(X86::COND_E, MVT::i8),
9863    Op.getValue(1)
9864  };
9865  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
9866}
9867
9868// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9869// ones, and then concatenate the result back.
9870static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9871  EVT VT = Op.getValueType();
9872
9873  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9874         "Unsupported value type for operation");
9875
9876  int NumElems = VT.getVectorNumElements();
9877  DebugLoc dl = Op.getDebugLoc();
9878  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9879  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9880
9881  // Extract the LHS vectors
9882  SDValue LHS = Op.getOperand(0);
9883  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9884  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9885
9886  // Extract the RHS vectors
9887  SDValue RHS = Op.getOperand(1);
9888  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9889  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9890
9891  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9892  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9893
9894  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9895                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9896                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9897}
9898
9899SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9900  assert(Op.getValueType().getSizeInBits() == 256 &&
9901         Op.getValueType().isInteger() &&
9902         "Only handle AVX 256-bit vector integer operation");
9903  return Lower256IntArith(Op, DAG);
9904}
9905
9906SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9907  assert(Op.getValueType().getSizeInBits() == 256 &&
9908         Op.getValueType().isInteger() &&
9909         "Only handle AVX 256-bit vector integer operation");
9910  return Lower256IntArith(Op, DAG);
9911}
9912
9913SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9914  EVT VT = Op.getValueType();
9915
9916  // Decompose 256-bit ops into smaller 128-bit ops.
9917  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
9918    return Lower256IntArith(Op, DAG);
9919
9920  DebugLoc dl = Op.getDebugLoc();
9921
9922  SDValue A = Op.getOperand(0);
9923  SDValue B = Op.getOperand(1);
9924
9925  if (VT == MVT::v4i64) {
9926    assert(Subtarget->hasAVX2() && "Lowering v4i64 multiply requires AVX2");
9927
9928    //  ulong2 Ahi = __builtin_ia32_psrlqi256( a, 32);
9929    //  ulong2 Bhi = __builtin_ia32_psrlqi256( b, 32);
9930    //  ulong2 AloBlo = __builtin_ia32_pmuludq256( a, b );
9931    //  ulong2 AloBhi = __builtin_ia32_pmuludq256( a, Bhi );
9932    //  ulong2 AhiBlo = __builtin_ia32_pmuludq256( Ahi, b );
9933    //
9934    //  AloBhi = __builtin_ia32_psllqi256( AloBhi, 32 );
9935    //  AhiBlo = __builtin_ia32_psllqi256( AhiBlo, 32 );
9936    //  return AloBlo + AloBhi + AhiBlo;
9937
9938    SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9939                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9940                         A, DAG.getConstant(32, MVT::i32));
9941    SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9942                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9943                         B, DAG.getConstant(32, MVT::i32));
9944    SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9945                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9946                         A, B);
9947    SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9948                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9949                         A, Bhi);
9950    SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9951                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9952                         Ahi, B);
9953    AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9954                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
9955                         AloBhi, DAG.getConstant(32, MVT::i32));
9956    AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9957                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
9958                         AhiBlo, DAG.getConstant(32, MVT::i32));
9959    SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9960    Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9961    return Res;
9962  }
9963
9964  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9965
9966  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9967  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9968  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9969  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9970  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9971  //
9972  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9973  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9974  //  return AloBlo + AloBhi + AhiBlo;
9975
9976  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9977                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9978                       A, DAG.getConstant(32, MVT::i32));
9979  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9980                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9981                       B, DAG.getConstant(32, MVT::i32));
9982  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9983                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9984                       A, B);
9985  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9986                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9987                       A, Bhi);
9988  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9989                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9990                       Ahi, B);
9991  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9992                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9993                       AloBhi, DAG.getConstant(32, MVT::i32));
9994  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9995                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9996                       AhiBlo, DAG.getConstant(32, MVT::i32));
9997  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9998  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9999  return Res;
10000}
10001
10002SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10003
10004  EVT VT = Op.getValueType();
10005  DebugLoc dl = Op.getDebugLoc();
10006  SDValue R = Op.getOperand(0);
10007  SDValue Amt = Op.getOperand(1);
10008  LLVMContext *Context = DAG.getContext();
10009
10010  if (!Subtarget->hasSSE2())
10011    return SDValue();
10012
10013  // Optimize shl/srl/sra with constant shift amount.
10014  if (isSplatVector(Amt.getNode())) {
10015    SDValue SclrAmt = Amt->getOperand(0);
10016    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10017      uint64_t ShiftAmt = C->getZExtValue();
10018
10019      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SHL) {
10020        // Make a large shift.
10021        SDValue SHL =
10022          DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10023                      DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10024                      R, DAG.getConstant(ShiftAmt, MVT::i32));
10025        // Zero out the rightmost bits.
10026        SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10027                                                       MVT::i8));
10028        return DAG.getNode(ISD::AND, dl, VT, SHL,
10029                           DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10030      }
10031
10032      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
10033       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10034                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10035                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10036
10037      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
10038       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10039                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10040                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10041
10042      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
10043       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10044                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10045                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10046
10047      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRL) {
10048        // Make a large shift.
10049        SDValue SRL =
10050          DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10051                      DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10052                      R, DAG.getConstant(ShiftAmt, MVT::i32));
10053        // Zero out the leftmost bits.
10054        SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10055                                                       MVT::i8));
10056        return DAG.getNode(ISD::AND, dl, VT, SRL,
10057                           DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10058      }
10059
10060      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
10061       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10062                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10063                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10064
10065      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
10066       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10067                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10068                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10069
10070      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
10071       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10072                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10073                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10074
10075      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
10076       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10077                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10078                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10079
10080      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
10081       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10082                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10083                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10084
10085      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRA) {
10086        if (ShiftAmt == 7) {
10087          // R s>> 7  ===  R s< 0
10088          SDValue Zeros = getZeroVector(VT, /* HasSSE2 */true,
10089                                        /* HasAVX2 */false, DAG, dl);
10090          return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10091        }
10092
10093        // R s>> a === ((R u>> a) ^ m) - m
10094        SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10095        SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10096                                                       MVT::i8));
10097        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10098        Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10099        Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10100        return Res;
10101      }
10102
10103      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10104        if (Op.getOpcode() == ISD::SHL) {
10105          // Make a large shift.
10106          SDValue SHL =
10107            DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10108                        DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
10109                        R, DAG.getConstant(ShiftAmt, MVT::i32));
10110          // Zero out the rightmost bits.
10111          SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10112                                                         MVT::i8));
10113          return DAG.getNode(ISD::AND, dl, VT, SHL,
10114                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10115        }
10116        if (Op.getOpcode() == ISD::SRL) {
10117          // Make a large shift.
10118          SDValue SRL =
10119            DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10120                        DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
10121                        R, DAG.getConstant(ShiftAmt, MVT::i32));
10122          // Zero out the leftmost bits.
10123          SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10124                                                         MVT::i8));
10125          return DAG.getNode(ISD::AND, dl, VT, SRL,
10126                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10127        }
10128        if (Op.getOpcode() == ISD::SRA) {
10129          if (ShiftAmt == 7) {
10130            // R s>> 7  ===  R s< 0
10131            SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */,
10132                                          true /* HasAVX2 */, DAG, dl);
10133            return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10134          }
10135
10136          // R s>> a === ((R u>> a) ^ m) - m
10137          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10138          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10139                                                         MVT::i8));
10140          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10141          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10142          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10143          return Res;
10144        }
10145      }
10146    }
10147  }
10148
10149  // Lower SHL with variable shift amount.
10150  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10151    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10152                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10153                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
10154
10155    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
10156
10157    std::vector<Constant*> CV(4, CI);
10158    Constant *C = ConstantVector::get(CV);
10159    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10160    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10161                                 MachinePointerInfo::getConstantPool(),
10162                                 false, false, false, 16);
10163
10164    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10165    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10166    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10167    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10168  }
10169  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10170    assert((Subtarget->hasSSE2() || Subtarget->hasAVX()) &&
10171            "Need SSE2 for pslli/pcmpeq.");
10172
10173    // a = a << 5;
10174    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10175                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10176                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
10177
10178    // Turn 'a' into a mask suitable for VSELECT
10179    SDValue VSelM = DAG.getConstant(0x80, VT);
10180    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10181    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10182                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10183                        OpVSel, VSelM);
10184
10185    SDValue CM1 = DAG.getConstant(0x0f, VT);
10186    SDValue CM2 = DAG.getConstant(0x3f, VT);
10187
10188    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10189    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10190    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10191                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10192                    DAG.getConstant(4, MVT::i32));
10193    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10194
10195    // a += a
10196    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10197    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10198    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10199                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10200                        OpVSel, VSelM);
10201
10202    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10203    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10204    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10205                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10206                    DAG.getConstant(2, MVT::i32));
10207    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10208
10209    // a += a
10210    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10211    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10212    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10213                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10214                        OpVSel, VSelM);
10215
10216    // return VSELECT(r, r+r, a);
10217    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10218                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10219    return R;
10220  }
10221
10222  // Decompose 256-bit shifts into smaller 128-bit shifts.
10223  if (VT.getSizeInBits() == 256) {
10224    int NumElems = VT.getVectorNumElements();
10225    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10226    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10227
10228    // Extract the two vectors
10229    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10230    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10231                                     DAG, dl);
10232
10233    // Recreate the shift amount vectors
10234    SDValue Amt1, Amt2;
10235    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10236      // Constant shift amount
10237      SmallVector<SDValue, 4> Amt1Csts;
10238      SmallVector<SDValue, 4> Amt2Csts;
10239      for (int i = 0; i < NumElems/2; ++i)
10240        Amt1Csts.push_back(Amt->getOperand(i));
10241      for (int i = NumElems/2; i < NumElems; ++i)
10242        Amt2Csts.push_back(Amt->getOperand(i));
10243
10244      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10245                                 &Amt1Csts[0], NumElems/2);
10246      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10247                                 &Amt2Csts[0], NumElems/2);
10248    } else {
10249      // Variable shift amount
10250      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10251      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10252                                 DAG, dl);
10253    }
10254
10255    // Issue new vector shifts for the smaller types
10256    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10257    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10258
10259    // Concatenate the result back
10260    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10261  }
10262
10263  return SDValue();
10264}
10265
10266SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10267  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10268  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10269  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10270  // has only one use.
10271  SDNode *N = Op.getNode();
10272  SDValue LHS = N->getOperand(0);
10273  SDValue RHS = N->getOperand(1);
10274  unsigned BaseOp = 0;
10275  unsigned Cond = 0;
10276  DebugLoc DL = Op.getDebugLoc();
10277  switch (Op.getOpcode()) {
10278  default: llvm_unreachable("Unknown ovf instruction!");
10279  case ISD::SADDO:
10280    // A subtract of one will be selected as a INC. Note that INC doesn't
10281    // set CF, so we can't do this for UADDO.
10282    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10283      if (C->isOne()) {
10284        BaseOp = X86ISD::INC;
10285        Cond = X86::COND_O;
10286        break;
10287      }
10288    BaseOp = X86ISD::ADD;
10289    Cond = X86::COND_O;
10290    break;
10291  case ISD::UADDO:
10292    BaseOp = X86ISD::ADD;
10293    Cond = X86::COND_B;
10294    break;
10295  case ISD::SSUBO:
10296    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10297    // set CF, so we can't do this for USUBO.
10298    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10299      if (C->isOne()) {
10300        BaseOp = X86ISD::DEC;
10301        Cond = X86::COND_O;
10302        break;
10303      }
10304    BaseOp = X86ISD::SUB;
10305    Cond = X86::COND_O;
10306    break;
10307  case ISD::USUBO:
10308    BaseOp = X86ISD::SUB;
10309    Cond = X86::COND_B;
10310    break;
10311  case ISD::SMULO:
10312    BaseOp = X86ISD::SMUL;
10313    Cond = X86::COND_O;
10314    break;
10315  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10316    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10317                                 MVT::i32);
10318    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10319
10320    SDValue SetCC =
10321      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10322                  DAG.getConstant(X86::COND_O, MVT::i32),
10323                  SDValue(Sum.getNode(), 2));
10324
10325    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10326  }
10327  }
10328
10329  // Also sets EFLAGS.
10330  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10331  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10332
10333  SDValue SetCC =
10334    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10335                DAG.getConstant(Cond, MVT::i32),
10336                SDValue(Sum.getNode(), 1));
10337
10338  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10339}
10340
10341SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10342                                                  SelectionDAG &DAG) const {
10343  DebugLoc dl = Op.getDebugLoc();
10344  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10345  EVT VT = Op.getValueType();
10346
10347  if (Subtarget->hasSSE2() && VT.isVector()) {
10348    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10349                        ExtraVT.getScalarType().getSizeInBits();
10350    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10351
10352    unsigned SHLIntrinsicsID = 0;
10353    unsigned SRAIntrinsicsID = 0;
10354    switch (VT.getSimpleVT().SimpleTy) {
10355      default:
10356        return SDValue();
10357      case MVT::v4i32:
10358        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10359        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10360        break;
10361      case MVT::v8i16:
10362        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10363        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10364        break;
10365      case MVT::v8i32:
10366      case MVT::v16i16:
10367        if (!Subtarget->hasAVX())
10368          return SDValue();
10369        if (!Subtarget->hasAVX2()) {
10370          // needs to be split
10371          int NumElems = VT.getVectorNumElements();
10372          SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10373          SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10374
10375          // Extract the LHS vectors
10376          SDValue LHS = Op.getOperand(0);
10377          SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10378          SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10379
10380          MVT EltVT = VT.getVectorElementType().getSimpleVT();
10381          EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10382
10383          EVT ExtraEltVT = ExtraVT.getVectorElementType();
10384          int ExtraNumElems = ExtraVT.getVectorNumElements();
10385          ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10386                                     ExtraNumElems/2);
10387          SDValue Extra = DAG.getValueType(ExtraVT);
10388
10389          LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10390          LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10391
10392          return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10393        }
10394        if (VT == MVT::v8i32) {
10395          SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_d;
10396          SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_d;
10397        } else {
10398          SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_w;
10399          SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_w;
10400        }
10401    }
10402
10403    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10404                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10405                         Op.getOperand(0), ShAmt);
10406
10407    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10408                       DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10409                       Tmp1, ShAmt);
10410  }
10411
10412  return SDValue();
10413}
10414
10415
10416SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10417  DebugLoc dl = Op.getDebugLoc();
10418
10419  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10420  // There isn't any reason to disable it if the target processor supports it.
10421  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10422    SDValue Chain = Op.getOperand(0);
10423    SDValue Zero = DAG.getConstant(0, MVT::i32);
10424    SDValue Ops[] = {
10425      DAG.getRegister(X86::ESP, MVT::i32), // Base
10426      DAG.getTargetConstant(1, MVT::i8),   // Scale
10427      DAG.getRegister(0, MVT::i32),        // Index
10428      DAG.getTargetConstant(0, MVT::i32),  // Disp
10429      DAG.getRegister(0, MVT::i32),        // Segment.
10430      Zero,
10431      Chain
10432    };
10433    SDNode *Res =
10434      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10435                          array_lengthof(Ops));
10436    return SDValue(Res, 0);
10437  }
10438
10439  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10440  if (!isDev)
10441    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10442
10443  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10444  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10445  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10446  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10447
10448  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10449  if (!Op1 && !Op2 && !Op3 && Op4)
10450    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10451
10452  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10453  if (Op1 && !Op2 && !Op3 && !Op4)
10454    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10455
10456  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10457  //           (MFENCE)>;
10458  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10459}
10460
10461SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10462                                             SelectionDAG &DAG) const {
10463  DebugLoc dl = Op.getDebugLoc();
10464  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10465    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10466  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10467    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10468
10469  // The only fence that needs an instruction is a sequentially-consistent
10470  // cross-thread fence.
10471  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10472    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10473    // no-sse2). There isn't any reason to disable it if the target processor
10474    // supports it.
10475    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10476      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10477
10478    SDValue Chain = Op.getOperand(0);
10479    SDValue Zero = DAG.getConstant(0, MVT::i32);
10480    SDValue Ops[] = {
10481      DAG.getRegister(X86::ESP, MVT::i32), // Base
10482      DAG.getTargetConstant(1, MVT::i8),   // Scale
10483      DAG.getRegister(0, MVT::i32),        // Index
10484      DAG.getTargetConstant(0, MVT::i32),  // Disp
10485      DAG.getRegister(0, MVT::i32),        // Segment.
10486      Zero,
10487      Chain
10488    };
10489    SDNode *Res =
10490      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10491                         array_lengthof(Ops));
10492    return SDValue(Res, 0);
10493  }
10494
10495  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10496  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10497}
10498
10499
10500SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10501  EVT T = Op.getValueType();
10502  DebugLoc DL = Op.getDebugLoc();
10503  unsigned Reg = 0;
10504  unsigned size = 0;
10505  switch(T.getSimpleVT().SimpleTy) {
10506  default:
10507    assert(false && "Invalid value type!");
10508  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10509  case MVT::i16: Reg = X86::AX;  size = 2; break;
10510  case MVT::i32: Reg = X86::EAX; size = 4; break;
10511  case MVT::i64:
10512    assert(Subtarget->is64Bit() && "Node not type legal!");
10513    Reg = X86::RAX; size = 8;
10514    break;
10515  }
10516  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10517                                    Op.getOperand(2), SDValue());
10518  SDValue Ops[] = { cpIn.getValue(0),
10519                    Op.getOperand(1),
10520                    Op.getOperand(3),
10521                    DAG.getTargetConstant(size, MVT::i8),
10522                    cpIn.getValue(1) };
10523  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10524  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10525  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10526                                           Ops, 5, T, MMO);
10527  SDValue cpOut =
10528    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10529  return cpOut;
10530}
10531
10532SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10533                                                 SelectionDAG &DAG) const {
10534  assert(Subtarget->is64Bit() && "Result not type legalized?");
10535  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10536  SDValue TheChain = Op.getOperand(0);
10537  DebugLoc dl = Op.getDebugLoc();
10538  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10539  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10540  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10541                                   rax.getValue(2));
10542  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10543                            DAG.getConstant(32, MVT::i8));
10544  SDValue Ops[] = {
10545    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10546    rdx.getValue(1)
10547  };
10548  return DAG.getMergeValues(Ops, 2, dl);
10549}
10550
10551SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10552                                            SelectionDAG &DAG) const {
10553  EVT SrcVT = Op.getOperand(0).getValueType();
10554  EVT DstVT = Op.getValueType();
10555  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10556         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10557  assert((DstVT == MVT::i64 ||
10558          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10559         "Unexpected custom BITCAST");
10560  // i64 <=> MMX conversions are Legal.
10561  if (SrcVT==MVT::i64 && DstVT.isVector())
10562    return Op;
10563  if (DstVT==MVT::i64 && SrcVT.isVector())
10564    return Op;
10565  // MMX <=> MMX conversions are Legal.
10566  if (SrcVT.isVector() && DstVT.isVector())
10567    return Op;
10568  // All other conversions need to be expanded.
10569  return SDValue();
10570}
10571
10572SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10573  SDNode *Node = Op.getNode();
10574  DebugLoc dl = Node->getDebugLoc();
10575  EVT T = Node->getValueType(0);
10576  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10577                              DAG.getConstant(0, T), Node->getOperand(2));
10578  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10579                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10580                       Node->getOperand(0),
10581                       Node->getOperand(1), negOp,
10582                       cast<AtomicSDNode>(Node)->getSrcValue(),
10583                       cast<AtomicSDNode>(Node)->getAlignment(),
10584                       cast<AtomicSDNode>(Node)->getOrdering(),
10585                       cast<AtomicSDNode>(Node)->getSynchScope());
10586}
10587
10588static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10589  SDNode *Node = Op.getNode();
10590  DebugLoc dl = Node->getDebugLoc();
10591  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10592
10593  // Convert seq_cst store -> xchg
10594  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10595  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10596  //        (The only way to get a 16-byte store is cmpxchg16b)
10597  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10598  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10599      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10600    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10601                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10602                                 Node->getOperand(0),
10603                                 Node->getOperand(1), Node->getOperand(2),
10604                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10605                                 cast<AtomicSDNode>(Node)->getOrdering(),
10606                                 cast<AtomicSDNode>(Node)->getSynchScope());
10607    return Swap.getValue(1);
10608  }
10609  // Other atomic stores have a simple pattern.
10610  return Op;
10611}
10612
10613static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10614  EVT VT = Op.getNode()->getValueType(0);
10615
10616  // Let legalize expand this if it isn't a legal type yet.
10617  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10618    return SDValue();
10619
10620  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10621
10622  unsigned Opc;
10623  bool ExtraOp = false;
10624  switch (Op.getOpcode()) {
10625  default: assert(0 && "Invalid code");
10626  case ISD::ADDC: Opc = X86ISD::ADD; break;
10627  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10628  case ISD::SUBC: Opc = X86ISD::SUB; break;
10629  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10630  }
10631
10632  if (!ExtraOp)
10633    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10634                       Op.getOperand(1));
10635  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10636                     Op.getOperand(1), Op.getOperand(2));
10637}
10638
10639/// LowerOperation - Provide custom lowering hooks for some operations.
10640///
10641SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10642  switch (Op.getOpcode()) {
10643  default: llvm_unreachable("Should not custom lower this!");
10644  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10645  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10646  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10647  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10648  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10649  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10650  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10651  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10652  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10653  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10654  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10655  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10656  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10657  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10658  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10659  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10660  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10661  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10662  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10663  case ISD::SHL_PARTS:
10664  case ISD::SRA_PARTS:
10665  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10666  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10667  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10668  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10669  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10670  case ISD::FABS:               return LowerFABS(Op, DAG);
10671  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10672  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10673  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10674  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10675  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10676  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10677  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10678  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10679  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10680  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10681  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10682  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10683  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10684  case ISD::FRAME_TO_ARGS_OFFSET:
10685                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10686  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10687  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10688  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10689  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10690  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10691  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10692  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10693  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10694  case ISD::MUL:                return LowerMUL(Op, DAG);
10695  case ISD::SRA:
10696  case ISD::SRL:
10697  case ISD::SHL:                return LowerShift(Op, DAG);
10698  case ISD::SADDO:
10699  case ISD::UADDO:
10700  case ISD::SSUBO:
10701  case ISD::USUBO:
10702  case ISD::SMULO:
10703  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10704  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10705  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10706  case ISD::ADDC:
10707  case ISD::ADDE:
10708  case ISD::SUBC:
10709  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10710  case ISD::ADD:                return LowerADD(Op, DAG);
10711  case ISD::SUB:                return LowerSUB(Op, DAG);
10712  }
10713}
10714
10715static void ReplaceATOMIC_LOAD(SDNode *Node,
10716                                  SmallVectorImpl<SDValue> &Results,
10717                                  SelectionDAG &DAG) {
10718  DebugLoc dl = Node->getDebugLoc();
10719  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10720
10721  // Convert wide load -> cmpxchg8b/cmpxchg16b
10722  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10723  //        (The only way to get a 16-byte load is cmpxchg16b)
10724  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10725  SDValue Zero = DAG.getConstant(0, VT);
10726  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10727                               Node->getOperand(0),
10728                               Node->getOperand(1), Zero, Zero,
10729                               cast<AtomicSDNode>(Node)->getMemOperand(),
10730                               cast<AtomicSDNode>(Node)->getOrdering(),
10731                               cast<AtomicSDNode>(Node)->getSynchScope());
10732  Results.push_back(Swap.getValue(0));
10733  Results.push_back(Swap.getValue(1));
10734}
10735
10736void X86TargetLowering::
10737ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10738                        SelectionDAG &DAG, unsigned NewOp) const {
10739  DebugLoc dl = Node->getDebugLoc();
10740  assert (Node->getValueType(0) == MVT::i64 &&
10741          "Only know how to expand i64 atomics");
10742
10743  SDValue Chain = Node->getOperand(0);
10744  SDValue In1 = Node->getOperand(1);
10745  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10746                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10747  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10748                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10749  SDValue Ops[] = { Chain, In1, In2L, In2H };
10750  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10751  SDValue Result =
10752    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10753                            cast<MemSDNode>(Node)->getMemOperand());
10754  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10755  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10756  Results.push_back(Result.getValue(2));
10757}
10758
10759/// ReplaceNodeResults - Replace a node with an illegal result type
10760/// with a new node built out of custom code.
10761void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10762                                           SmallVectorImpl<SDValue>&Results,
10763                                           SelectionDAG &DAG) const {
10764  DebugLoc dl = N->getDebugLoc();
10765  switch (N->getOpcode()) {
10766  default:
10767    assert(false && "Do not know how to custom type legalize this operation!");
10768    return;
10769  case ISD::SIGN_EXTEND_INREG:
10770  case ISD::ADDC:
10771  case ISD::ADDE:
10772  case ISD::SUBC:
10773  case ISD::SUBE:
10774    // We don't want to expand or promote these.
10775    return;
10776  case ISD::FP_TO_SINT: {
10777    std::pair<SDValue,SDValue> Vals =
10778        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10779    SDValue FIST = Vals.first, StackSlot = Vals.second;
10780    if (FIST.getNode() != 0) {
10781      EVT VT = N->getValueType(0);
10782      // Return a load from the stack slot.
10783      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10784                                    MachinePointerInfo(),
10785                                    false, false, false, 0));
10786    }
10787    return;
10788  }
10789  case ISD::READCYCLECOUNTER: {
10790    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10791    SDValue TheChain = N->getOperand(0);
10792    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10793    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10794                                     rd.getValue(1));
10795    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10796                                     eax.getValue(2));
10797    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10798    SDValue Ops[] = { eax, edx };
10799    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10800    Results.push_back(edx.getValue(1));
10801    return;
10802  }
10803  case ISD::ATOMIC_CMP_SWAP: {
10804    EVT T = N->getValueType(0);
10805    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10806    bool Regs64bit = T == MVT::i128;
10807    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10808    SDValue cpInL, cpInH;
10809    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10810                        DAG.getConstant(0, HalfT));
10811    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10812                        DAG.getConstant(1, HalfT));
10813    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10814                             Regs64bit ? X86::RAX : X86::EAX,
10815                             cpInL, SDValue());
10816    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10817                             Regs64bit ? X86::RDX : X86::EDX,
10818                             cpInH, cpInL.getValue(1));
10819    SDValue swapInL, swapInH;
10820    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10821                          DAG.getConstant(0, HalfT));
10822    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10823                          DAG.getConstant(1, HalfT));
10824    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10825                               Regs64bit ? X86::RBX : X86::EBX,
10826                               swapInL, cpInH.getValue(1));
10827    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10828                               Regs64bit ? X86::RCX : X86::ECX,
10829                               swapInH, swapInL.getValue(1));
10830    SDValue Ops[] = { swapInH.getValue(0),
10831                      N->getOperand(1),
10832                      swapInH.getValue(1) };
10833    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10834    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10835    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10836                                  X86ISD::LCMPXCHG8_DAG;
10837    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10838                                             Ops, 3, T, MMO);
10839    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10840                                        Regs64bit ? X86::RAX : X86::EAX,
10841                                        HalfT, Result.getValue(1));
10842    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10843                                        Regs64bit ? X86::RDX : X86::EDX,
10844                                        HalfT, cpOutL.getValue(2));
10845    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10846    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10847    Results.push_back(cpOutH.getValue(1));
10848    return;
10849  }
10850  case ISD::ATOMIC_LOAD_ADD:
10851    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10852    return;
10853  case ISD::ATOMIC_LOAD_AND:
10854    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10855    return;
10856  case ISD::ATOMIC_LOAD_NAND:
10857    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10858    return;
10859  case ISD::ATOMIC_LOAD_OR:
10860    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10861    return;
10862  case ISD::ATOMIC_LOAD_SUB:
10863    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10864    return;
10865  case ISD::ATOMIC_LOAD_XOR:
10866    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10867    return;
10868  case ISD::ATOMIC_SWAP:
10869    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10870    return;
10871  case ISD::ATOMIC_LOAD:
10872    ReplaceATOMIC_LOAD(N, Results, DAG);
10873  }
10874}
10875
10876const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10877  switch (Opcode) {
10878  default: return NULL;
10879  case X86ISD::BSF:                return "X86ISD::BSF";
10880  case X86ISD::BSR:                return "X86ISD::BSR";
10881  case X86ISD::SHLD:               return "X86ISD::SHLD";
10882  case X86ISD::SHRD:               return "X86ISD::SHRD";
10883  case X86ISD::FAND:               return "X86ISD::FAND";
10884  case X86ISD::FOR:                return "X86ISD::FOR";
10885  case X86ISD::FXOR:               return "X86ISD::FXOR";
10886  case X86ISD::FSRL:               return "X86ISD::FSRL";
10887  case X86ISD::FILD:               return "X86ISD::FILD";
10888  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10889  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10890  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10891  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10892  case X86ISD::FLD:                return "X86ISD::FLD";
10893  case X86ISD::FST:                return "X86ISD::FST";
10894  case X86ISD::CALL:               return "X86ISD::CALL";
10895  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10896  case X86ISD::BT:                 return "X86ISD::BT";
10897  case X86ISD::CMP:                return "X86ISD::CMP";
10898  case X86ISD::COMI:               return "X86ISD::COMI";
10899  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10900  case X86ISD::SETCC:              return "X86ISD::SETCC";
10901  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10902  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10903  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10904  case X86ISD::CMOV:               return "X86ISD::CMOV";
10905  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10906  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10907  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10908  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10909  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10910  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10911  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10912  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10913  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10914  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10915  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10916  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10917  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10918  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10919  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
10920  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
10921  case X86ISD::HADD:               return "X86ISD::HADD";
10922  case X86ISD::HSUB:               return "X86ISD::HSUB";
10923  case X86ISD::FHADD:              return "X86ISD::FHADD";
10924  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
10925  case X86ISD::FMAX:               return "X86ISD::FMAX";
10926  case X86ISD::FMIN:               return "X86ISD::FMIN";
10927  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10928  case X86ISD::FRCP:               return "X86ISD::FRCP";
10929  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
10930  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
10931  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
10932  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
10933  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
10934  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
10935  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
10936  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
10937  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
10938  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
10939  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
10940  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
10941  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
10942  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
10943  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
10944  case X86ISD::VSHL:               return "X86ISD::VSHL";
10945  case X86ISD::VSRL:               return "X86ISD::VSRL";
10946  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
10947  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
10948  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
10949  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
10950  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
10951  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
10952  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
10953  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
10954  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
10955  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
10956  case X86ISD::ADD:                return "X86ISD::ADD";
10957  case X86ISD::SUB:                return "X86ISD::SUB";
10958  case X86ISD::ADC:                return "X86ISD::ADC";
10959  case X86ISD::SBB:                return "X86ISD::SBB";
10960  case X86ISD::SMUL:               return "X86ISD::SMUL";
10961  case X86ISD::UMUL:               return "X86ISD::UMUL";
10962  case X86ISD::INC:                return "X86ISD::INC";
10963  case X86ISD::DEC:                return "X86ISD::DEC";
10964  case X86ISD::OR:                 return "X86ISD::OR";
10965  case X86ISD::XOR:                return "X86ISD::XOR";
10966  case X86ISD::AND:                return "X86ISD::AND";
10967  case X86ISD::ANDN:               return "X86ISD::ANDN";
10968  case X86ISD::BLSI:               return "X86ISD::BLSI";
10969  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
10970  case X86ISD::BLSR:               return "X86ISD::BLSR";
10971  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
10972  case X86ISD::PTEST:              return "X86ISD::PTEST";
10973  case X86ISD::TESTP:              return "X86ISD::TESTP";
10974  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
10975  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
10976  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
10977  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
10978  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10979  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
10980  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
10981  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10982  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10983  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10984  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
10985  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
10986  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
10987  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
10988  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
10989  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
10990  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
10991  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
10992  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
10993  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
10994  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
10995  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
10996  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
10997  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
10998  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
10999  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11000  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11001  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11002  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11003  }
11004}
11005
11006// isLegalAddressingMode - Return true if the addressing mode represented
11007// by AM is legal for this target, for a load/store of the specified type.
11008bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11009                                              Type *Ty) const {
11010  // X86 supports extremely general addressing modes.
11011  CodeModel::Model M = getTargetMachine().getCodeModel();
11012  Reloc::Model R = getTargetMachine().getRelocationModel();
11013
11014  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11015  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11016    return false;
11017
11018  if (AM.BaseGV) {
11019    unsigned GVFlags =
11020      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11021
11022    // If a reference to this global requires an extra load, we can't fold it.
11023    if (isGlobalStubReference(GVFlags))
11024      return false;
11025
11026    // If BaseGV requires a register for the PIC base, we cannot also have a
11027    // BaseReg specified.
11028    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11029      return false;
11030
11031    // If lower 4G is not available, then we must use rip-relative addressing.
11032    if ((M != CodeModel::Small || R != Reloc::Static) &&
11033        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11034      return false;
11035  }
11036
11037  switch (AM.Scale) {
11038  case 0:
11039  case 1:
11040  case 2:
11041  case 4:
11042  case 8:
11043    // These scales always work.
11044    break;
11045  case 3:
11046  case 5:
11047  case 9:
11048    // These scales are formed with basereg+scalereg.  Only accept if there is
11049    // no basereg yet.
11050    if (AM.HasBaseReg)
11051      return false;
11052    break;
11053  default:  // Other stuff never works.
11054    return false;
11055  }
11056
11057  return true;
11058}
11059
11060
11061bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11062  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11063    return false;
11064  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11065  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11066  if (NumBits1 <= NumBits2)
11067    return false;
11068  return true;
11069}
11070
11071bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11072  if (!VT1.isInteger() || !VT2.isInteger())
11073    return false;
11074  unsigned NumBits1 = VT1.getSizeInBits();
11075  unsigned NumBits2 = VT2.getSizeInBits();
11076  if (NumBits1 <= NumBits2)
11077    return false;
11078  return true;
11079}
11080
11081bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11082  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11083  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11084}
11085
11086bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11087  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11088  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11089}
11090
11091bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11092  // i16 instructions are longer (0x66 prefix) and potentially slower.
11093  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11094}
11095
11096/// isShuffleMaskLegal - Targets can use this to indicate that they only
11097/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11098/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11099/// are assumed to be legal.
11100bool
11101X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11102                                      EVT VT) const {
11103  // Very little shuffling can be done for 64-bit vectors right now.
11104  if (VT.getSizeInBits() == 64)
11105    return false;
11106
11107  // FIXME: pshufb, blends, shifts.
11108  return (VT.getVectorNumElements() == 2 ||
11109          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11110          isMOVLMask(M, VT) ||
11111          isSHUFPMask(M, VT) ||
11112          isPSHUFDMask(M, VT) ||
11113          isPSHUFHWMask(M, VT) ||
11114          isPSHUFLWMask(M, VT) ||
11115          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
11116          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11117          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11118          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11119          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11120}
11121
11122bool
11123X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11124                                          EVT VT) const {
11125  unsigned NumElts = VT.getVectorNumElements();
11126  // FIXME: This collection of masks seems suspect.
11127  if (NumElts == 2)
11128    return true;
11129  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11130    return (isMOVLMask(Mask, VT)  ||
11131            isCommutedMOVLMask(Mask, VT, true) ||
11132            isSHUFPMask(Mask, VT) ||
11133            isSHUFPMask(Mask, VT, /* Commuted */ true));
11134  }
11135  return false;
11136}
11137
11138//===----------------------------------------------------------------------===//
11139//                           X86 Scheduler Hooks
11140//===----------------------------------------------------------------------===//
11141
11142// private utility function
11143MachineBasicBlock *
11144X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11145                                                       MachineBasicBlock *MBB,
11146                                                       unsigned regOpc,
11147                                                       unsigned immOpc,
11148                                                       unsigned LoadOpc,
11149                                                       unsigned CXchgOpc,
11150                                                       unsigned notOpc,
11151                                                       unsigned EAXreg,
11152                                                       TargetRegisterClass *RC,
11153                                                       bool invSrc) const {
11154  // For the atomic bitwise operator, we generate
11155  //   thisMBB:
11156  //   newMBB:
11157  //     ld  t1 = [bitinstr.addr]
11158  //     op  t2 = t1, [bitinstr.val]
11159  //     mov EAX = t1
11160  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11161  //     bz  newMBB
11162  //     fallthrough -->nextMBB
11163  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11164  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11165  MachineFunction::iterator MBBIter = MBB;
11166  ++MBBIter;
11167
11168  /// First build the CFG
11169  MachineFunction *F = MBB->getParent();
11170  MachineBasicBlock *thisMBB = MBB;
11171  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11172  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11173  F->insert(MBBIter, newMBB);
11174  F->insert(MBBIter, nextMBB);
11175
11176  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11177  nextMBB->splice(nextMBB->begin(), thisMBB,
11178                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11179                  thisMBB->end());
11180  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11181
11182  // Update thisMBB to fall through to newMBB
11183  thisMBB->addSuccessor(newMBB);
11184
11185  // newMBB jumps to itself and fall through to nextMBB
11186  newMBB->addSuccessor(nextMBB);
11187  newMBB->addSuccessor(newMBB);
11188
11189  // Insert instructions into newMBB based on incoming instruction
11190  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11191         "unexpected number of operands");
11192  DebugLoc dl = bInstr->getDebugLoc();
11193  MachineOperand& destOper = bInstr->getOperand(0);
11194  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11195  int numArgs = bInstr->getNumOperands() - 1;
11196  for (int i=0; i < numArgs; ++i)
11197    argOpers[i] = &bInstr->getOperand(i+1);
11198
11199  // x86 address has 4 operands: base, index, scale, and displacement
11200  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11201  int valArgIndx = lastAddrIndx + 1;
11202
11203  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11204  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11205  for (int i=0; i <= lastAddrIndx; ++i)
11206    (*MIB).addOperand(*argOpers[i]);
11207
11208  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11209  if (invSrc) {
11210    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11211  }
11212  else
11213    tt = t1;
11214
11215  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11216  assert((argOpers[valArgIndx]->isReg() ||
11217          argOpers[valArgIndx]->isImm()) &&
11218         "invalid operand");
11219  if (argOpers[valArgIndx]->isReg())
11220    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11221  else
11222    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11223  MIB.addReg(tt);
11224  (*MIB).addOperand(*argOpers[valArgIndx]);
11225
11226  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11227  MIB.addReg(t1);
11228
11229  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11230  for (int i=0; i <= lastAddrIndx; ++i)
11231    (*MIB).addOperand(*argOpers[i]);
11232  MIB.addReg(t2);
11233  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11234  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11235                    bInstr->memoperands_end());
11236
11237  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11238  MIB.addReg(EAXreg);
11239
11240  // insert branch
11241  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11242
11243  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11244  return nextMBB;
11245}
11246
11247// private utility function:  64 bit atomics on 32 bit host.
11248MachineBasicBlock *
11249X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11250                                                       MachineBasicBlock *MBB,
11251                                                       unsigned regOpcL,
11252                                                       unsigned regOpcH,
11253                                                       unsigned immOpcL,
11254                                                       unsigned immOpcH,
11255                                                       bool invSrc) const {
11256  // For the atomic bitwise operator, we generate
11257  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11258  //     ld t1,t2 = [bitinstr.addr]
11259  //   newMBB:
11260  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11261  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11262  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11263  //     mov ECX, EBX <- t5, t6
11264  //     mov EAX, EDX <- t1, t2
11265  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11266  //     mov t3, t4 <- EAX, EDX
11267  //     bz  newMBB
11268  //     result in out1, out2
11269  //     fallthrough -->nextMBB
11270
11271  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11272  const unsigned LoadOpc = X86::MOV32rm;
11273  const unsigned NotOpc = X86::NOT32r;
11274  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11275  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11276  MachineFunction::iterator MBBIter = MBB;
11277  ++MBBIter;
11278
11279  /// First build the CFG
11280  MachineFunction *F = MBB->getParent();
11281  MachineBasicBlock *thisMBB = MBB;
11282  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11283  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11284  F->insert(MBBIter, newMBB);
11285  F->insert(MBBIter, nextMBB);
11286
11287  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11288  nextMBB->splice(nextMBB->begin(), thisMBB,
11289                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11290                  thisMBB->end());
11291  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11292
11293  // Update thisMBB to fall through to newMBB
11294  thisMBB->addSuccessor(newMBB);
11295
11296  // newMBB jumps to itself and fall through to nextMBB
11297  newMBB->addSuccessor(nextMBB);
11298  newMBB->addSuccessor(newMBB);
11299
11300  DebugLoc dl = bInstr->getDebugLoc();
11301  // Insert instructions into newMBB based on incoming instruction
11302  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11303  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11304         "unexpected number of operands");
11305  MachineOperand& dest1Oper = bInstr->getOperand(0);
11306  MachineOperand& dest2Oper = bInstr->getOperand(1);
11307  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11308  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11309    argOpers[i] = &bInstr->getOperand(i+2);
11310
11311    // We use some of the operands multiple times, so conservatively just
11312    // clear any kill flags that might be present.
11313    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11314      argOpers[i]->setIsKill(false);
11315  }
11316
11317  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11318  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11319
11320  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11321  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11322  for (int i=0; i <= lastAddrIndx; ++i)
11323    (*MIB).addOperand(*argOpers[i]);
11324  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11325  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11326  // add 4 to displacement.
11327  for (int i=0; i <= lastAddrIndx-2; ++i)
11328    (*MIB).addOperand(*argOpers[i]);
11329  MachineOperand newOp3 = *(argOpers[3]);
11330  if (newOp3.isImm())
11331    newOp3.setImm(newOp3.getImm()+4);
11332  else
11333    newOp3.setOffset(newOp3.getOffset()+4);
11334  (*MIB).addOperand(newOp3);
11335  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11336
11337  // t3/4 are defined later, at the bottom of the loop
11338  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11339  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11340  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11341    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11342  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11343    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11344
11345  // The subsequent operations should be using the destination registers of
11346  //the PHI instructions.
11347  if (invSrc) {
11348    t1 = F->getRegInfo().createVirtualRegister(RC);
11349    t2 = F->getRegInfo().createVirtualRegister(RC);
11350    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11351    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11352  } else {
11353    t1 = dest1Oper.getReg();
11354    t2 = dest2Oper.getReg();
11355  }
11356
11357  int valArgIndx = lastAddrIndx + 1;
11358  assert((argOpers[valArgIndx]->isReg() ||
11359          argOpers[valArgIndx]->isImm()) &&
11360         "invalid operand");
11361  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11362  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11363  if (argOpers[valArgIndx]->isReg())
11364    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11365  else
11366    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11367  if (regOpcL != X86::MOV32rr)
11368    MIB.addReg(t1);
11369  (*MIB).addOperand(*argOpers[valArgIndx]);
11370  assert(argOpers[valArgIndx + 1]->isReg() ==
11371         argOpers[valArgIndx]->isReg());
11372  assert(argOpers[valArgIndx + 1]->isImm() ==
11373         argOpers[valArgIndx]->isImm());
11374  if (argOpers[valArgIndx + 1]->isReg())
11375    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11376  else
11377    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11378  if (regOpcH != X86::MOV32rr)
11379    MIB.addReg(t2);
11380  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11381
11382  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11383  MIB.addReg(t1);
11384  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11385  MIB.addReg(t2);
11386
11387  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11388  MIB.addReg(t5);
11389  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11390  MIB.addReg(t6);
11391
11392  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11393  for (int i=0; i <= lastAddrIndx; ++i)
11394    (*MIB).addOperand(*argOpers[i]);
11395
11396  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11397  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11398                    bInstr->memoperands_end());
11399
11400  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11401  MIB.addReg(X86::EAX);
11402  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11403  MIB.addReg(X86::EDX);
11404
11405  // insert branch
11406  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11407
11408  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11409  return nextMBB;
11410}
11411
11412// private utility function
11413MachineBasicBlock *
11414X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11415                                                      MachineBasicBlock *MBB,
11416                                                      unsigned cmovOpc) const {
11417  // For the atomic min/max operator, we generate
11418  //   thisMBB:
11419  //   newMBB:
11420  //     ld t1 = [min/max.addr]
11421  //     mov t2 = [min/max.val]
11422  //     cmp  t1, t2
11423  //     cmov[cond] t2 = t1
11424  //     mov EAX = t1
11425  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11426  //     bz   newMBB
11427  //     fallthrough -->nextMBB
11428  //
11429  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11430  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11431  MachineFunction::iterator MBBIter = MBB;
11432  ++MBBIter;
11433
11434  /// First build the CFG
11435  MachineFunction *F = MBB->getParent();
11436  MachineBasicBlock *thisMBB = MBB;
11437  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11438  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11439  F->insert(MBBIter, newMBB);
11440  F->insert(MBBIter, nextMBB);
11441
11442  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11443  nextMBB->splice(nextMBB->begin(), thisMBB,
11444                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11445                  thisMBB->end());
11446  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11447
11448  // Update thisMBB to fall through to newMBB
11449  thisMBB->addSuccessor(newMBB);
11450
11451  // newMBB jumps to newMBB and fall through to nextMBB
11452  newMBB->addSuccessor(nextMBB);
11453  newMBB->addSuccessor(newMBB);
11454
11455  DebugLoc dl = mInstr->getDebugLoc();
11456  // Insert instructions into newMBB based on incoming instruction
11457  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11458         "unexpected number of operands");
11459  MachineOperand& destOper = mInstr->getOperand(0);
11460  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11461  int numArgs = mInstr->getNumOperands() - 1;
11462  for (int i=0; i < numArgs; ++i)
11463    argOpers[i] = &mInstr->getOperand(i+1);
11464
11465  // x86 address has 4 operands: base, index, scale, and displacement
11466  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11467  int valArgIndx = lastAddrIndx + 1;
11468
11469  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11470  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11471  for (int i=0; i <= lastAddrIndx; ++i)
11472    (*MIB).addOperand(*argOpers[i]);
11473
11474  // We only support register and immediate values
11475  assert((argOpers[valArgIndx]->isReg() ||
11476          argOpers[valArgIndx]->isImm()) &&
11477         "invalid operand");
11478
11479  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11480  if (argOpers[valArgIndx]->isReg())
11481    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11482  else
11483    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11484  (*MIB).addOperand(*argOpers[valArgIndx]);
11485
11486  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11487  MIB.addReg(t1);
11488
11489  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11490  MIB.addReg(t1);
11491  MIB.addReg(t2);
11492
11493  // Generate movc
11494  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11495  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11496  MIB.addReg(t2);
11497  MIB.addReg(t1);
11498
11499  // Cmp and exchange if none has modified the memory location
11500  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11501  for (int i=0; i <= lastAddrIndx; ++i)
11502    (*MIB).addOperand(*argOpers[i]);
11503  MIB.addReg(t3);
11504  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11505  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11506                    mInstr->memoperands_end());
11507
11508  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11509  MIB.addReg(X86::EAX);
11510
11511  // insert branch
11512  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11513
11514  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11515  return nextMBB;
11516}
11517
11518// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11519// or XMM0_V32I8 in AVX all of this code can be replaced with that
11520// in the .td file.
11521MachineBasicBlock *
11522X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11523                            unsigned numArgs, bool memArg) const {
11524  assert(Subtarget->hasSSE42() &&
11525         "Target must have SSE4.2 or AVX features enabled");
11526
11527  DebugLoc dl = MI->getDebugLoc();
11528  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11529  unsigned Opc;
11530  if (!Subtarget->hasAVX()) {
11531    if (memArg)
11532      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11533    else
11534      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11535  } else {
11536    if (memArg)
11537      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11538    else
11539      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11540  }
11541
11542  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11543  for (unsigned i = 0; i < numArgs; ++i) {
11544    MachineOperand &Op = MI->getOperand(i+1);
11545    if (!(Op.isReg() && Op.isImplicit()))
11546      MIB.addOperand(Op);
11547  }
11548  BuildMI(*BB, MI, dl,
11549    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11550             MI->getOperand(0).getReg())
11551    .addReg(X86::XMM0);
11552
11553  MI->eraseFromParent();
11554  return BB;
11555}
11556
11557MachineBasicBlock *
11558X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11559  DebugLoc dl = MI->getDebugLoc();
11560  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11561
11562  // Address into RAX/EAX, other two args into ECX, EDX.
11563  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11564  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11565  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11566  for (int i = 0; i < X86::AddrNumOperands; ++i)
11567    MIB.addOperand(MI->getOperand(i));
11568
11569  unsigned ValOps = X86::AddrNumOperands;
11570  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11571    .addReg(MI->getOperand(ValOps).getReg());
11572  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11573    .addReg(MI->getOperand(ValOps+1).getReg());
11574
11575  // The instruction doesn't actually take any operands though.
11576  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11577
11578  MI->eraseFromParent(); // The pseudo is gone now.
11579  return BB;
11580}
11581
11582MachineBasicBlock *
11583X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11584  DebugLoc dl = MI->getDebugLoc();
11585  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11586
11587  // First arg in ECX, the second in EAX.
11588  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11589    .addReg(MI->getOperand(0).getReg());
11590  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11591    .addReg(MI->getOperand(1).getReg());
11592
11593  // The instruction doesn't actually take any operands though.
11594  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11595
11596  MI->eraseFromParent(); // The pseudo is gone now.
11597  return BB;
11598}
11599
11600MachineBasicBlock *
11601X86TargetLowering::EmitVAARG64WithCustomInserter(
11602                   MachineInstr *MI,
11603                   MachineBasicBlock *MBB) const {
11604  // Emit va_arg instruction on X86-64.
11605
11606  // Operands to this pseudo-instruction:
11607  // 0  ) Output        : destination address (reg)
11608  // 1-5) Input         : va_list address (addr, i64mem)
11609  // 6  ) ArgSize       : Size (in bytes) of vararg type
11610  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11611  // 8  ) Align         : Alignment of type
11612  // 9  ) EFLAGS (implicit-def)
11613
11614  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11615  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11616
11617  unsigned DestReg = MI->getOperand(0).getReg();
11618  MachineOperand &Base = MI->getOperand(1);
11619  MachineOperand &Scale = MI->getOperand(2);
11620  MachineOperand &Index = MI->getOperand(3);
11621  MachineOperand &Disp = MI->getOperand(4);
11622  MachineOperand &Segment = MI->getOperand(5);
11623  unsigned ArgSize = MI->getOperand(6).getImm();
11624  unsigned ArgMode = MI->getOperand(7).getImm();
11625  unsigned Align = MI->getOperand(8).getImm();
11626
11627  // Memory Reference
11628  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11629  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11630  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11631
11632  // Machine Information
11633  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11634  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11635  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11636  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11637  DebugLoc DL = MI->getDebugLoc();
11638
11639  // struct va_list {
11640  //   i32   gp_offset
11641  //   i32   fp_offset
11642  //   i64   overflow_area (address)
11643  //   i64   reg_save_area (address)
11644  // }
11645  // sizeof(va_list) = 24
11646  // alignment(va_list) = 8
11647
11648  unsigned TotalNumIntRegs = 6;
11649  unsigned TotalNumXMMRegs = 8;
11650  bool UseGPOffset = (ArgMode == 1);
11651  bool UseFPOffset = (ArgMode == 2);
11652  unsigned MaxOffset = TotalNumIntRegs * 8 +
11653                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11654
11655  /* Align ArgSize to a multiple of 8 */
11656  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11657  bool NeedsAlign = (Align > 8);
11658
11659  MachineBasicBlock *thisMBB = MBB;
11660  MachineBasicBlock *overflowMBB;
11661  MachineBasicBlock *offsetMBB;
11662  MachineBasicBlock *endMBB;
11663
11664  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11665  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11666  unsigned OffsetReg = 0;
11667
11668  if (!UseGPOffset && !UseFPOffset) {
11669    // If we only pull from the overflow region, we don't create a branch.
11670    // We don't need to alter control flow.
11671    OffsetDestReg = 0; // unused
11672    OverflowDestReg = DestReg;
11673
11674    offsetMBB = NULL;
11675    overflowMBB = thisMBB;
11676    endMBB = thisMBB;
11677  } else {
11678    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11679    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11680    // If not, pull from overflow_area. (branch to overflowMBB)
11681    //
11682    //       thisMBB
11683    //         |     .
11684    //         |        .
11685    //     offsetMBB   overflowMBB
11686    //         |        .
11687    //         |     .
11688    //        endMBB
11689
11690    // Registers for the PHI in endMBB
11691    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11692    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11693
11694    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11695    MachineFunction *MF = MBB->getParent();
11696    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11697    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11698    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11699
11700    MachineFunction::iterator MBBIter = MBB;
11701    ++MBBIter;
11702
11703    // Insert the new basic blocks
11704    MF->insert(MBBIter, offsetMBB);
11705    MF->insert(MBBIter, overflowMBB);
11706    MF->insert(MBBIter, endMBB);
11707
11708    // Transfer the remainder of MBB and its successor edges to endMBB.
11709    endMBB->splice(endMBB->begin(), thisMBB,
11710                    llvm::next(MachineBasicBlock::iterator(MI)),
11711                    thisMBB->end());
11712    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11713
11714    // Make offsetMBB and overflowMBB successors of thisMBB
11715    thisMBB->addSuccessor(offsetMBB);
11716    thisMBB->addSuccessor(overflowMBB);
11717
11718    // endMBB is a successor of both offsetMBB and overflowMBB
11719    offsetMBB->addSuccessor(endMBB);
11720    overflowMBB->addSuccessor(endMBB);
11721
11722    // Load the offset value into a register
11723    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11724    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11725      .addOperand(Base)
11726      .addOperand(Scale)
11727      .addOperand(Index)
11728      .addDisp(Disp, UseFPOffset ? 4 : 0)
11729      .addOperand(Segment)
11730      .setMemRefs(MMOBegin, MMOEnd);
11731
11732    // Check if there is enough room left to pull this argument.
11733    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11734      .addReg(OffsetReg)
11735      .addImm(MaxOffset + 8 - ArgSizeA8);
11736
11737    // Branch to "overflowMBB" if offset >= max
11738    // Fall through to "offsetMBB" otherwise
11739    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11740      .addMBB(overflowMBB);
11741  }
11742
11743  // In offsetMBB, emit code to use the reg_save_area.
11744  if (offsetMBB) {
11745    assert(OffsetReg != 0);
11746
11747    // Read the reg_save_area address.
11748    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11749    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11750      .addOperand(Base)
11751      .addOperand(Scale)
11752      .addOperand(Index)
11753      .addDisp(Disp, 16)
11754      .addOperand(Segment)
11755      .setMemRefs(MMOBegin, MMOEnd);
11756
11757    // Zero-extend the offset
11758    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11759      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11760        .addImm(0)
11761        .addReg(OffsetReg)
11762        .addImm(X86::sub_32bit);
11763
11764    // Add the offset to the reg_save_area to get the final address.
11765    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11766      .addReg(OffsetReg64)
11767      .addReg(RegSaveReg);
11768
11769    // Compute the offset for the next argument
11770    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11771    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11772      .addReg(OffsetReg)
11773      .addImm(UseFPOffset ? 16 : 8);
11774
11775    // Store it back into the va_list.
11776    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11777      .addOperand(Base)
11778      .addOperand(Scale)
11779      .addOperand(Index)
11780      .addDisp(Disp, UseFPOffset ? 4 : 0)
11781      .addOperand(Segment)
11782      .addReg(NextOffsetReg)
11783      .setMemRefs(MMOBegin, MMOEnd);
11784
11785    // Jump to endMBB
11786    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11787      .addMBB(endMBB);
11788  }
11789
11790  //
11791  // Emit code to use overflow area
11792  //
11793
11794  // Load the overflow_area address into a register.
11795  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11796  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11797    .addOperand(Base)
11798    .addOperand(Scale)
11799    .addOperand(Index)
11800    .addDisp(Disp, 8)
11801    .addOperand(Segment)
11802    .setMemRefs(MMOBegin, MMOEnd);
11803
11804  // If we need to align it, do so. Otherwise, just copy the address
11805  // to OverflowDestReg.
11806  if (NeedsAlign) {
11807    // Align the overflow address
11808    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11809    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11810
11811    // aligned_addr = (addr + (align-1)) & ~(align-1)
11812    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11813      .addReg(OverflowAddrReg)
11814      .addImm(Align-1);
11815
11816    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11817      .addReg(TmpReg)
11818      .addImm(~(uint64_t)(Align-1));
11819  } else {
11820    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11821      .addReg(OverflowAddrReg);
11822  }
11823
11824  // Compute the next overflow address after this argument.
11825  // (the overflow address should be kept 8-byte aligned)
11826  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11827  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11828    .addReg(OverflowDestReg)
11829    .addImm(ArgSizeA8);
11830
11831  // Store the new overflow address.
11832  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11833    .addOperand(Base)
11834    .addOperand(Scale)
11835    .addOperand(Index)
11836    .addDisp(Disp, 8)
11837    .addOperand(Segment)
11838    .addReg(NextAddrReg)
11839    .setMemRefs(MMOBegin, MMOEnd);
11840
11841  // If we branched, emit the PHI to the front of endMBB.
11842  if (offsetMBB) {
11843    BuildMI(*endMBB, endMBB->begin(), DL,
11844            TII->get(X86::PHI), DestReg)
11845      .addReg(OffsetDestReg).addMBB(offsetMBB)
11846      .addReg(OverflowDestReg).addMBB(overflowMBB);
11847  }
11848
11849  // Erase the pseudo instruction
11850  MI->eraseFromParent();
11851
11852  return endMBB;
11853}
11854
11855MachineBasicBlock *
11856X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11857                                                 MachineInstr *MI,
11858                                                 MachineBasicBlock *MBB) const {
11859  // Emit code to save XMM registers to the stack. The ABI says that the
11860  // number of registers to save is given in %al, so it's theoretically
11861  // possible to do an indirect jump trick to avoid saving all of them,
11862  // however this code takes a simpler approach and just executes all
11863  // of the stores if %al is non-zero. It's less code, and it's probably
11864  // easier on the hardware branch predictor, and stores aren't all that
11865  // expensive anyway.
11866
11867  // Create the new basic blocks. One block contains all the XMM stores,
11868  // and one block is the final destination regardless of whether any
11869  // stores were performed.
11870  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11871  MachineFunction *F = MBB->getParent();
11872  MachineFunction::iterator MBBIter = MBB;
11873  ++MBBIter;
11874  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11875  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11876  F->insert(MBBIter, XMMSaveMBB);
11877  F->insert(MBBIter, EndMBB);
11878
11879  // Transfer the remainder of MBB and its successor edges to EndMBB.
11880  EndMBB->splice(EndMBB->begin(), MBB,
11881                 llvm::next(MachineBasicBlock::iterator(MI)),
11882                 MBB->end());
11883  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11884
11885  // The original block will now fall through to the XMM save block.
11886  MBB->addSuccessor(XMMSaveMBB);
11887  // The XMMSaveMBB will fall through to the end block.
11888  XMMSaveMBB->addSuccessor(EndMBB);
11889
11890  // Now add the instructions.
11891  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11892  DebugLoc DL = MI->getDebugLoc();
11893
11894  unsigned CountReg = MI->getOperand(0).getReg();
11895  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11896  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11897
11898  if (!Subtarget->isTargetWin64()) {
11899    // If %al is 0, branch around the XMM save block.
11900    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11901    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11902    MBB->addSuccessor(EndMBB);
11903  }
11904
11905  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11906  // In the XMM save block, save all the XMM argument registers.
11907  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11908    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11909    MachineMemOperand *MMO =
11910      F->getMachineMemOperand(
11911          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11912        MachineMemOperand::MOStore,
11913        /*Size=*/16, /*Align=*/16);
11914    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11915      .addFrameIndex(RegSaveFrameIndex)
11916      .addImm(/*Scale=*/1)
11917      .addReg(/*IndexReg=*/0)
11918      .addImm(/*Disp=*/Offset)
11919      .addReg(/*Segment=*/0)
11920      .addReg(MI->getOperand(i).getReg())
11921      .addMemOperand(MMO);
11922  }
11923
11924  MI->eraseFromParent();   // The pseudo instruction is gone now.
11925
11926  return EndMBB;
11927}
11928
11929MachineBasicBlock *
11930X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11931                                     MachineBasicBlock *BB) const {
11932  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11933  DebugLoc DL = MI->getDebugLoc();
11934
11935  // To "insert" a SELECT_CC instruction, we actually have to insert the
11936  // diamond control-flow pattern.  The incoming instruction knows the
11937  // destination vreg to set, the condition code register to branch on, the
11938  // true/false values to select between, and a branch opcode to use.
11939  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11940  MachineFunction::iterator It = BB;
11941  ++It;
11942
11943  //  thisMBB:
11944  //  ...
11945  //   TrueVal = ...
11946  //   cmpTY ccX, r1, r2
11947  //   bCC copy1MBB
11948  //   fallthrough --> copy0MBB
11949  MachineBasicBlock *thisMBB = BB;
11950  MachineFunction *F = BB->getParent();
11951  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11952  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11953  F->insert(It, copy0MBB);
11954  F->insert(It, sinkMBB);
11955
11956  // If the EFLAGS register isn't dead in the terminator, then claim that it's
11957  // live into the sink and copy blocks.
11958  if (!MI->killsRegister(X86::EFLAGS)) {
11959    copy0MBB->addLiveIn(X86::EFLAGS);
11960    sinkMBB->addLiveIn(X86::EFLAGS);
11961  }
11962
11963  // Transfer the remainder of BB and its successor edges to sinkMBB.
11964  sinkMBB->splice(sinkMBB->begin(), BB,
11965                  llvm::next(MachineBasicBlock::iterator(MI)),
11966                  BB->end());
11967  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11968
11969  // Add the true and fallthrough blocks as its successors.
11970  BB->addSuccessor(copy0MBB);
11971  BB->addSuccessor(sinkMBB);
11972
11973  // Create the conditional branch instruction.
11974  unsigned Opc =
11975    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11976  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11977
11978  //  copy0MBB:
11979  //   %FalseValue = ...
11980  //   # fallthrough to sinkMBB
11981  copy0MBB->addSuccessor(sinkMBB);
11982
11983  //  sinkMBB:
11984  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11985  //  ...
11986  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11987          TII->get(X86::PHI), MI->getOperand(0).getReg())
11988    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11989    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11990
11991  MI->eraseFromParent();   // The pseudo instruction is gone now.
11992  return sinkMBB;
11993}
11994
11995MachineBasicBlock *
11996X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
11997                                        bool Is64Bit) const {
11998  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11999  DebugLoc DL = MI->getDebugLoc();
12000  MachineFunction *MF = BB->getParent();
12001  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12002
12003  assert(getTargetMachine().Options.EnableSegmentedStacks);
12004
12005  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12006  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12007
12008  // BB:
12009  //  ... [Till the alloca]
12010  // If stacklet is not large enough, jump to mallocMBB
12011  //
12012  // bumpMBB:
12013  //  Allocate by subtracting from RSP
12014  //  Jump to continueMBB
12015  //
12016  // mallocMBB:
12017  //  Allocate by call to runtime
12018  //
12019  // continueMBB:
12020  //  ...
12021  //  [rest of original BB]
12022  //
12023
12024  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12025  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12026  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12027
12028  MachineRegisterInfo &MRI = MF->getRegInfo();
12029  const TargetRegisterClass *AddrRegClass =
12030    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12031
12032  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12033    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12034    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12035    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12036    sizeVReg = MI->getOperand(1).getReg(),
12037    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12038
12039  MachineFunction::iterator MBBIter = BB;
12040  ++MBBIter;
12041
12042  MF->insert(MBBIter, bumpMBB);
12043  MF->insert(MBBIter, mallocMBB);
12044  MF->insert(MBBIter, continueMBB);
12045
12046  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12047                      (MachineBasicBlock::iterator(MI)), BB->end());
12048  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12049
12050  // Add code to the main basic block to check if the stack limit has been hit,
12051  // and if so, jump to mallocMBB otherwise to bumpMBB.
12052  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12053  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12054    .addReg(tmpSPVReg).addReg(sizeVReg);
12055  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12056    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12057    .addReg(SPLimitVReg);
12058  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12059
12060  // bumpMBB simply decreases the stack pointer, since we know the current
12061  // stacklet has enough space.
12062  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12063    .addReg(SPLimitVReg);
12064  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12065    .addReg(SPLimitVReg);
12066  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12067
12068  // Calls into a routine in libgcc to allocate more space from the heap.
12069  if (Is64Bit) {
12070    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12071      .addReg(sizeVReg);
12072    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12073    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
12074  } else {
12075    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12076      .addImm(12);
12077    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12078    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12079      .addExternalSymbol("__morestack_allocate_stack_space");
12080  }
12081
12082  if (!Is64Bit)
12083    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12084      .addImm(16);
12085
12086  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12087    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12088  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12089
12090  // Set up the CFG correctly.
12091  BB->addSuccessor(bumpMBB);
12092  BB->addSuccessor(mallocMBB);
12093  mallocMBB->addSuccessor(continueMBB);
12094  bumpMBB->addSuccessor(continueMBB);
12095
12096  // Take care of the PHI nodes.
12097  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12098          MI->getOperand(0).getReg())
12099    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12100    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12101
12102  // Delete the original pseudo instruction.
12103  MI->eraseFromParent();
12104
12105  // And we're done.
12106  return continueMBB;
12107}
12108
12109MachineBasicBlock *
12110X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12111                                          MachineBasicBlock *BB) const {
12112  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12113  DebugLoc DL = MI->getDebugLoc();
12114
12115  assert(!Subtarget->isTargetEnvMacho());
12116
12117  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12118  // non-trivial part is impdef of ESP.
12119
12120  if (Subtarget->isTargetWin64()) {
12121    if (Subtarget->isTargetCygMing()) {
12122      // ___chkstk(Mingw64):
12123      // Clobbers R10, R11, RAX and EFLAGS.
12124      // Updates RSP.
12125      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12126        .addExternalSymbol("___chkstk")
12127        .addReg(X86::RAX, RegState::Implicit)
12128        .addReg(X86::RSP, RegState::Implicit)
12129        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12130        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12131        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12132    } else {
12133      // __chkstk(MSVCRT): does not update stack pointer.
12134      // Clobbers R10, R11 and EFLAGS.
12135      // FIXME: RAX(allocated size) might be reused and not killed.
12136      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12137        .addExternalSymbol("__chkstk")
12138        .addReg(X86::RAX, RegState::Implicit)
12139        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12140      // RAX has the offset to subtracted from RSP.
12141      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12142        .addReg(X86::RSP)
12143        .addReg(X86::RAX);
12144    }
12145  } else {
12146    const char *StackProbeSymbol =
12147      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12148
12149    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12150      .addExternalSymbol(StackProbeSymbol)
12151      .addReg(X86::EAX, RegState::Implicit)
12152      .addReg(X86::ESP, RegState::Implicit)
12153      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12154      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12155      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12156  }
12157
12158  MI->eraseFromParent();   // The pseudo instruction is gone now.
12159  return BB;
12160}
12161
12162MachineBasicBlock *
12163X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12164                                      MachineBasicBlock *BB) const {
12165  // This is pretty easy.  We're taking the value that we received from
12166  // our load from the relocation, sticking it in either RDI (x86-64)
12167  // or EAX and doing an indirect call.  The return value will then
12168  // be in the normal return register.
12169  const X86InstrInfo *TII
12170    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12171  DebugLoc DL = MI->getDebugLoc();
12172  MachineFunction *F = BB->getParent();
12173
12174  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12175  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12176
12177  if (Subtarget->is64Bit()) {
12178    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12179                                      TII->get(X86::MOV64rm), X86::RDI)
12180    .addReg(X86::RIP)
12181    .addImm(0).addReg(0)
12182    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12183                      MI->getOperand(3).getTargetFlags())
12184    .addReg(0);
12185    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12186    addDirectMem(MIB, X86::RDI);
12187  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12188    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12189                                      TII->get(X86::MOV32rm), X86::EAX)
12190    .addReg(0)
12191    .addImm(0).addReg(0)
12192    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12193                      MI->getOperand(3).getTargetFlags())
12194    .addReg(0);
12195    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12196    addDirectMem(MIB, X86::EAX);
12197  } else {
12198    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12199                                      TII->get(X86::MOV32rm), X86::EAX)
12200    .addReg(TII->getGlobalBaseReg(F))
12201    .addImm(0).addReg(0)
12202    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12203                      MI->getOperand(3).getTargetFlags())
12204    .addReg(0);
12205    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12206    addDirectMem(MIB, X86::EAX);
12207  }
12208
12209  MI->eraseFromParent(); // The pseudo instruction is gone now.
12210  return BB;
12211}
12212
12213MachineBasicBlock *
12214X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12215                                               MachineBasicBlock *BB) const {
12216  switch (MI->getOpcode()) {
12217  default: assert(0 && "Unexpected instr type to insert");
12218  case X86::TAILJMPd64:
12219  case X86::TAILJMPr64:
12220  case X86::TAILJMPm64:
12221    assert(0 && "TAILJMP64 would not be touched here.");
12222  case X86::TCRETURNdi64:
12223  case X86::TCRETURNri64:
12224  case X86::TCRETURNmi64:
12225    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
12226    // On AMD64, additional defs should be added before register allocation.
12227    if (!Subtarget->isTargetWin64()) {
12228      MI->addRegisterDefined(X86::RSI);
12229      MI->addRegisterDefined(X86::RDI);
12230      MI->addRegisterDefined(X86::XMM6);
12231      MI->addRegisterDefined(X86::XMM7);
12232      MI->addRegisterDefined(X86::XMM8);
12233      MI->addRegisterDefined(X86::XMM9);
12234      MI->addRegisterDefined(X86::XMM10);
12235      MI->addRegisterDefined(X86::XMM11);
12236      MI->addRegisterDefined(X86::XMM12);
12237      MI->addRegisterDefined(X86::XMM13);
12238      MI->addRegisterDefined(X86::XMM14);
12239      MI->addRegisterDefined(X86::XMM15);
12240    }
12241    return BB;
12242  case X86::WIN_ALLOCA:
12243    return EmitLoweredWinAlloca(MI, BB);
12244  case X86::SEG_ALLOCA_32:
12245    return EmitLoweredSegAlloca(MI, BB, false);
12246  case X86::SEG_ALLOCA_64:
12247    return EmitLoweredSegAlloca(MI, BB, true);
12248  case X86::TLSCall_32:
12249  case X86::TLSCall_64:
12250    return EmitLoweredTLSCall(MI, BB);
12251  case X86::CMOV_GR8:
12252  case X86::CMOV_FR32:
12253  case X86::CMOV_FR64:
12254  case X86::CMOV_V4F32:
12255  case X86::CMOV_V2F64:
12256  case X86::CMOV_V2I64:
12257  case X86::CMOV_V8F32:
12258  case X86::CMOV_V4F64:
12259  case X86::CMOV_V4I64:
12260  case X86::CMOV_GR16:
12261  case X86::CMOV_GR32:
12262  case X86::CMOV_RFP32:
12263  case X86::CMOV_RFP64:
12264  case X86::CMOV_RFP80:
12265    return EmitLoweredSelect(MI, BB);
12266
12267  case X86::FP32_TO_INT16_IN_MEM:
12268  case X86::FP32_TO_INT32_IN_MEM:
12269  case X86::FP32_TO_INT64_IN_MEM:
12270  case X86::FP64_TO_INT16_IN_MEM:
12271  case X86::FP64_TO_INT32_IN_MEM:
12272  case X86::FP64_TO_INT64_IN_MEM:
12273  case X86::FP80_TO_INT16_IN_MEM:
12274  case X86::FP80_TO_INT32_IN_MEM:
12275  case X86::FP80_TO_INT64_IN_MEM: {
12276    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12277    DebugLoc DL = MI->getDebugLoc();
12278
12279    // Change the floating point control register to use "round towards zero"
12280    // mode when truncating to an integer value.
12281    MachineFunction *F = BB->getParent();
12282    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12283    addFrameReference(BuildMI(*BB, MI, DL,
12284                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12285
12286    // Load the old value of the high byte of the control word...
12287    unsigned OldCW =
12288      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12289    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12290                      CWFrameIdx);
12291
12292    // Set the high part to be round to zero...
12293    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12294      .addImm(0xC7F);
12295
12296    // Reload the modified control word now...
12297    addFrameReference(BuildMI(*BB, MI, DL,
12298                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12299
12300    // Restore the memory image of control word to original value
12301    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12302      .addReg(OldCW);
12303
12304    // Get the X86 opcode to use.
12305    unsigned Opc;
12306    switch (MI->getOpcode()) {
12307    default: llvm_unreachable("illegal opcode!");
12308    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12309    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12310    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12311    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12312    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12313    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12314    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12315    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12316    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12317    }
12318
12319    X86AddressMode AM;
12320    MachineOperand &Op = MI->getOperand(0);
12321    if (Op.isReg()) {
12322      AM.BaseType = X86AddressMode::RegBase;
12323      AM.Base.Reg = Op.getReg();
12324    } else {
12325      AM.BaseType = X86AddressMode::FrameIndexBase;
12326      AM.Base.FrameIndex = Op.getIndex();
12327    }
12328    Op = MI->getOperand(1);
12329    if (Op.isImm())
12330      AM.Scale = Op.getImm();
12331    Op = MI->getOperand(2);
12332    if (Op.isImm())
12333      AM.IndexReg = Op.getImm();
12334    Op = MI->getOperand(3);
12335    if (Op.isGlobal()) {
12336      AM.GV = Op.getGlobal();
12337    } else {
12338      AM.Disp = Op.getImm();
12339    }
12340    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12341                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12342
12343    // Reload the original control word now.
12344    addFrameReference(BuildMI(*BB, MI, DL,
12345                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12346
12347    MI->eraseFromParent();   // The pseudo instruction is gone now.
12348    return BB;
12349  }
12350    // String/text processing lowering.
12351  case X86::PCMPISTRM128REG:
12352  case X86::VPCMPISTRM128REG:
12353    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12354  case X86::PCMPISTRM128MEM:
12355  case X86::VPCMPISTRM128MEM:
12356    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12357  case X86::PCMPESTRM128REG:
12358  case X86::VPCMPESTRM128REG:
12359    return EmitPCMP(MI, BB, 5, false /* in mem */);
12360  case X86::PCMPESTRM128MEM:
12361  case X86::VPCMPESTRM128MEM:
12362    return EmitPCMP(MI, BB, 5, true /* in mem */);
12363
12364    // Thread synchronization.
12365  case X86::MONITOR:
12366    return EmitMonitor(MI, BB);
12367  case X86::MWAIT:
12368    return EmitMwait(MI, BB);
12369
12370    // Atomic Lowering.
12371  case X86::ATOMAND32:
12372    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12373                                               X86::AND32ri, X86::MOV32rm,
12374                                               X86::LCMPXCHG32,
12375                                               X86::NOT32r, X86::EAX,
12376                                               X86::GR32RegisterClass);
12377  case X86::ATOMOR32:
12378    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12379                                               X86::OR32ri, X86::MOV32rm,
12380                                               X86::LCMPXCHG32,
12381                                               X86::NOT32r, X86::EAX,
12382                                               X86::GR32RegisterClass);
12383  case X86::ATOMXOR32:
12384    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12385                                               X86::XOR32ri, X86::MOV32rm,
12386                                               X86::LCMPXCHG32,
12387                                               X86::NOT32r, X86::EAX,
12388                                               X86::GR32RegisterClass);
12389  case X86::ATOMNAND32:
12390    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12391                                               X86::AND32ri, X86::MOV32rm,
12392                                               X86::LCMPXCHG32,
12393                                               X86::NOT32r, X86::EAX,
12394                                               X86::GR32RegisterClass, true);
12395  case X86::ATOMMIN32:
12396    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12397  case X86::ATOMMAX32:
12398    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12399  case X86::ATOMUMIN32:
12400    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12401  case X86::ATOMUMAX32:
12402    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12403
12404  case X86::ATOMAND16:
12405    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12406                                               X86::AND16ri, X86::MOV16rm,
12407                                               X86::LCMPXCHG16,
12408                                               X86::NOT16r, X86::AX,
12409                                               X86::GR16RegisterClass);
12410  case X86::ATOMOR16:
12411    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12412                                               X86::OR16ri, X86::MOV16rm,
12413                                               X86::LCMPXCHG16,
12414                                               X86::NOT16r, X86::AX,
12415                                               X86::GR16RegisterClass);
12416  case X86::ATOMXOR16:
12417    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12418                                               X86::XOR16ri, X86::MOV16rm,
12419                                               X86::LCMPXCHG16,
12420                                               X86::NOT16r, X86::AX,
12421                                               X86::GR16RegisterClass);
12422  case X86::ATOMNAND16:
12423    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12424                                               X86::AND16ri, X86::MOV16rm,
12425                                               X86::LCMPXCHG16,
12426                                               X86::NOT16r, X86::AX,
12427                                               X86::GR16RegisterClass, true);
12428  case X86::ATOMMIN16:
12429    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12430  case X86::ATOMMAX16:
12431    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12432  case X86::ATOMUMIN16:
12433    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12434  case X86::ATOMUMAX16:
12435    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12436
12437  case X86::ATOMAND8:
12438    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12439                                               X86::AND8ri, X86::MOV8rm,
12440                                               X86::LCMPXCHG8,
12441                                               X86::NOT8r, X86::AL,
12442                                               X86::GR8RegisterClass);
12443  case X86::ATOMOR8:
12444    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12445                                               X86::OR8ri, X86::MOV8rm,
12446                                               X86::LCMPXCHG8,
12447                                               X86::NOT8r, X86::AL,
12448                                               X86::GR8RegisterClass);
12449  case X86::ATOMXOR8:
12450    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12451                                               X86::XOR8ri, X86::MOV8rm,
12452                                               X86::LCMPXCHG8,
12453                                               X86::NOT8r, X86::AL,
12454                                               X86::GR8RegisterClass);
12455  case X86::ATOMNAND8:
12456    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12457                                               X86::AND8ri, X86::MOV8rm,
12458                                               X86::LCMPXCHG8,
12459                                               X86::NOT8r, X86::AL,
12460                                               X86::GR8RegisterClass, true);
12461  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12462  // This group is for 64-bit host.
12463  case X86::ATOMAND64:
12464    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12465                                               X86::AND64ri32, X86::MOV64rm,
12466                                               X86::LCMPXCHG64,
12467                                               X86::NOT64r, X86::RAX,
12468                                               X86::GR64RegisterClass);
12469  case X86::ATOMOR64:
12470    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12471                                               X86::OR64ri32, X86::MOV64rm,
12472                                               X86::LCMPXCHG64,
12473                                               X86::NOT64r, X86::RAX,
12474                                               X86::GR64RegisterClass);
12475  case X86::ATOMXOR64:
12476    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12477                                               X86::XOR64ri32, X86::MOV64rm,
12478                                               X86::LCMPXCHG64,
12479                                               X86::NOT64r, X86::RAX,
12480                                               X86::GR64RegisterClass);
12481  case X86::ATOMNAND64:
12482    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12483                                               X86::AND64ri32, X86::MOV64rm,
12484                                               X86::LCMPXCHG64,
12485                                               X86::NOT64r, X86::RAX,
12486                                               X86::GR64RegisterClass, true);
12487  case X86::ATOMMIN64:
12488    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12489  case X86::ATOMMAX64:
12490    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12491  case X86::ATOMUMIN64:
12492    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12493  case X86::ATOMUMAX64:
12494    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12495
12496  // This group does 64-bit operations on a 32-bit host.
12497  case X86::ATOMAND6432:
12498    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12499                                               X86::AND32rr, X86::AND32rr,
12500                                               X86::AND32ri, X86::AND32ri,
12501                                               false);
12502  case X86::ATOMOR6432:
12503    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12504                                               X86::OR32rr, X86::OR32rr,
12505                                               X86::OR32ri, X86::OR32ri,
12506                                               false);
12507  case X86::ATOMXOR6432:
12508    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12509                                               X86::XOR32rr, X86::XOR32rr,
12510                                               X86::XOR32ri, X86::XOR32ri,
12511                                               false);
12512  case X86::ATOMNAND6432:
12513    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12514                                               X86::AND32rr, X86::AND32rr,
12515                                               X86::AND32ri, X86::AND32ri,
12516                                               true);
12517  case X86::ATOMADD6432:
12518    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12519                                               X86::ADD32rr, X86::ADC32rr,
12520                                               X86::ADD32ri, X86::ADC32ri,
12521                                               false);
12522  case X86::ATOMSUB6432:
12523    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12524                                               X86::SUB32rr, X86::SBB32rr,
12525                                               X86::SUB32ri, X86::SBB32ri,
12526                                               false);
12527  case X86::ATOMSWAP6432:
12528    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12529                                               X86::MOV32rr, X86::MOV32rr,
12530                                               X86::MOV32ri, X86::MOV32ri,
12531                                               false);
12532  case X86::VASTART_SAVE_XMM_REGS:
12533    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12534
12535  case X86::VAARG_64:
12536    return EmitVAARG64WithCustomInserter(MI, BB);
12537  }
12538}
12539
12540//===----------------------------------------------------------------------===//
12541//                           X86 Optimization Hooks
12542//===----------------------------------------------------------------------===//
12543
12544void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12545                                                       const APInt &Mask,
12546                                                       APInt &KnownZero,
12547                                                       APInt &KnownOne,
12548                                                       const SelectionDAG &DAG,
12549                                                       unsigned Depth) const {
12550  unsigned Opc = Op.getOpcode();
12551  assert((Opc >= ISD::BUILTIN_OP_END ||
12552          Opc == ISD::INTRINSIC_WO_CHAIN ||
12553          Opc == ISD::INTRINSIC_W_CHAIN ||
12554          Opc == ISD::INTRINSIC_VOID) &&
12555         "Should use MaskedValueIsZero if you don't know whether Op"
12556         " is a target node!");
12557
12558  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12559  switch (Opc) {
12560  default: break;
12561  case X86ISD::ADD:
12562  case X86ISD::SUB:
12563  case X86ISD::ADC:
12564  case X86ISD::SBB:
12565  case X86ISD::SMUL:
12566  case X86ISD::UMUL:
12567  case X86ISD::INC:
12568  case X86ISD::DEC:
12569  case X86ISD::OR:
12570  case X86ISD::XOR:
12571  case X86ISD::AND:
12572    // These nodes' second result is a boolean.
12573    if (Op.getResNo() == 0)
12574      break;
12575    // Fallthrough
12576  case X86ISD::SETCC:
12577    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12578                                       Mask.getBitWidth() - 1);
12579    break;
12580  case ISD::INTRINSIC_WO_CHAIN: {
12581    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12582    unsigned NumLoBits = 0;
12583    switch (IntId) {
12584    default: break;
12585    case Intrinsic::x86_sse_movmsk_ps:
12586    case Intrinsic::x86_avx_movmsk_ps_256:
12587    case Intrinsic::x86_sse2_movmsk_pd:
12588    case Intrinsic::x86_avx_movmsk_pd_256:
12589    case Intrinsic::x86_mmx_pmovmskb:
12590    case Intrinsic::x86_sse2_pmovmskb_128:
12591    case Intrinsic::x86_avx2_pmovmskb: {
12592      // High bits of movmskp{s|d}, pmovmskb are known zero.
12593      switch (IntId) {
12594        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12595        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12596        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12597        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12598        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12599        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12600        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12601      }
12602      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12603                                        Mask.getBitWidth() - NumLoBits);
12604      break;
12605    }
12606    }
12607    break;
12608  }
12609  }
12610}
12611
12612unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12613                                                         unsigned Depth) const {
12614  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12615  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12616    return Op.getValueType().getScalarType().getSizeInBits();
12617
12618  // Fallback case.
12619  return 1;
12620}
12621
12622/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12623/// node is a GlobalAddress + offset.
12624bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12625                                       const GlobalValue* &GA,
12626                                       int64_t &Offset) const {
12627  if (N->getOpcode() == X86ISD::Wrapper) {
12628    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12629      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12630      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12631      return true;
12632    }
12633  }
12634  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12635}
12636
12637/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12638/// same as extracting the high 128-bit part of 256-bit vector and then
12639/// inserting the result into the low part of a new 256-bit vector
12640static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12641  EVT VT = SVOp->getValueType(0);
12642  int NumElems = VT.getVectorNumElements();
12643
12644  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12645  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12646    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12647        SVOp->getMaskElt(j) >= 0)
12648      return false;
12649
12650  return true;
12651}
12652
12653/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12654/// same as extracting the low 128-bit part of 256-bit vector and then
12655/// inserting the result into the high part of a new 256-bit vector
12656static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12657  EVT VT = SVOp->getValueType(0);
12658  int NumElems = VT.getVectorNumElements();
12659
12660  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12661  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12662    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12663        SVOp->getMaskElt(j) >= 0)
12664      return false;
12665
12666  return true;
12667}
12668
12669/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12670static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12671                                        TargetLowering::DAGCombinerInfo &DCI,
12672                                        bool HasAVX2) {
12673  DebugLoc dl = N->getDebugLoc();
12674  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12675  SDValue V1 = SVOp->getOperand(0);
12676  SDValue V2 = SVOp->getOperand(1);
12677  EVT VT = SVOp->getValueType(0);
12678  int NumElems = VT.getVectorNumElements();
12679
12680  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12681      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12682    //
12683    //                   0,0,0,...
12684    //                      |
12685    //    V      UNDEF    BUILD_VECTOR    UNDEF
12686    //     \      /           \           /
12687    //  CONCAT_VECTOR         CONCAT_VECTOR
12688    //         \                  /
12689    //          \                /
12690    //          RESULT: V + zero extended
12691    //
12692    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12693        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12694        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12695      return SDValue();
12696
12697    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12698      return SDValue();
12699
12700    // To match the shuffle mask, the first half of the mask should
12701    // be exactly the first vector, and all the rest a splat with the
12702    // first element of the second one.
12703    for (int i = 0; i < NumElems/2; ++i)
12704      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12705          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12706        return SDValue();
12707
12708    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12709    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12710      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12711      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12712      SDValue ResNode =
12713        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12714                                Ld->getMemoryVT(),
12715                                Ld->getPointerInfo(),
12716                                Ld->getAlignment(),
12717                                false/*isVolatile*/, true/*ReadMem*/,
12718                                false/*WriteMem*/);
12719      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12720    }
12721
12722    // Emit a zeroed vector and insert the desired subvector on its
12723    // first half.
12724    SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, HasAVX2, DAG, dl);
12725    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12726                         DAG.getConstant(0, MVT::i32), DAG, dl);
12727    return DCI.CombineTo(N, InsV);
12728  }
12729
12730  //===--------------------------------------------------------------------===//
12731  // Combine some shuffles into subvector extracts and inserts:
12732  //
12733
12734  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12735  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12736    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12737                                    DAG, dl);
12738    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12739                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12740    return DCI.CombineTo(N, InsV);
12741  }
12742
12743  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12744  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12745    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12746    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12747                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12748    return DCI.CombineTo(N, InsV);
12749  }
12750
12751  return SDValue();
12752}
12753
12754/// PerformShuffleCombine - Performs several different shuffle combines.
12755static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12756                                     TargetLowering::DAGCombinerInfo &DCI,
12757                                     const X86Subtarget *Subtarget) {
12758  DebugLoc dl = N->getDebugLoc();
12759  EVT VT = N->getValueType(0);
12760
12761  // Don't create instructions with illegal types after legalize types has run.
12762  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12763  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12764    return SDValue();
12765
12766  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12767  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12768      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12769    return PerformShuffleCombine256(N, DAG, DCI, Subtarget->hasAVX2());
12770
12771  // Only handle 128 wide vector from here on.
12772  if (VT.getSizeInBits() != 128)
12773    return SDValue();
12774
12775  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12776  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12777  // consecutive, non-overlapping, and in the right order.
12778  SmallVector<SDValue, 16> Elts;
12779  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12780    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12781
12782  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12783}
12784
12785/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12786/// generation and convert it from being a bunch of shuffles and extracts
12787/// to a simple store and scalar loads to extract the elements.
12788static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12789                                                const TargetLowering &TLI) {
12790  SDValue InputVector = N->getOperand(0);
12791
12792  // Only operate on vectors of 4 elements, where the alternative shuffling
12793  // gets to be more expensive.
12794  if (InputVector.getValueType() != MVT::v4i32)
12795    return SDValue();
12796
12797  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12798  // single use which is a sign-extend or zero-extend, and all elements are
12799  // used.
12800  SmallVector<SDNode *, 4> Uses;
12801  unsigned ExtractedElements = 0;
12802  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12803       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12804    if (UI.getUse().getResNo() != InputVector.getResNo())
12805      return SDValue();
12806
12807    SDNode *Extract = *UI;
12808    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12809      return SDValue();
12810
12811    if (Extract->getValueType(0) != MVT::i32)
12812      return SDValue();
12813    if (!Extract->hasOneUse())
12814      return SDValue();
12815    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12816        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12817      return SDValue();
12818    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12819      return SDValue();
12820
12821    // Record which element was extracted.
12822    ExtractedElements |=
12823      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12824
12825    Uses.push_back(Extract);
12826  }
12827
12828  // If not all the elements were used, this may not be worthwhile.
12829  if (ExtractedElements != 15)
12830    return SDValue();
12831
12832  // Ok, we've now decided to do the transformation.
12833  DebugLoc dl = InputVector.getDebugLoc();
12834
12835  // Store the value to a temporary stack slot.
12836  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12837  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12838                            MachinePointerInfo(), false, false, 0);
12839
12840  // Replace each use (extract) with a load of the appropriate element.
12841  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12842       UE = Uses.end(); UI != UE; ++UI) {
12843    SDNode *Extract = *UI;
12844
12845    // cOMpute the element's address.
12846    SDValue Idx = Extract->getOperand(1);
12847    unsigned EltSize =
12848        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12849    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12850    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12851
12852    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12853                                     StackPtr, OffsetVal);
12854
12855    // Load the scalar.
12856    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12857                                     ScalarAddr, MachinePointerInfo(),
12858                                     false, false, false, 0);
12859
12860    // Replace the exact with the load.
12861    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12862  }
12863
12864  // The replacement was made in place; don't return anything.
12865  return SDValue();
12866}
12867
12868/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
12869/// nodes.
12870static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12871                                    TargetLowering::DAGCombinerInfo &DCI,
12872                                    const X86Subtarget *Subtarget) {
12873  DebugLoc DL = N->getDebugLoc();
12874  SDValue Cond = N->getOperand(0);
12875  // Get the LHS/RHS of the select.
12876  SDValue LHS = N->getOperand(1);
12877  SDValue RHS = N->getOperand(2);
12878  EVT VT = LHS.getValueType();
12879
12880  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12881  // instructions match the semantics of the common C idiom x<y?x:y but not
12882  // x<=y?x:y, because of how they handle negative zero (which can be
12883  // ignored in unsafe-math mode).
12884  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
12885      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
12886      (Subtarget->hasSSE2() ||
12887       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
12888    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12889
12890    unsigned Opcode = 0;
12891    // Check for x CC y ? x : y.
12892    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12893        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12894      switch (CC) {
12895      default: break;
12896      case ISD::SETULT:
12897        // Converting this to a min would handle NaNs incorrectly, and swapping
12898        // the operands would cause it to handle comparisons between positive
12899        // and negative zero incorrectly.
12900        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12901          if (!DAG.getTarget().Options.UnsafeFPMath &&
12902              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12903            break;
12904          std::swap(LHS, RHS);
12905        }
12906        Opcode = X86ISD::FMIN;
12907        break;
12908      case ISD::SETOLE:
12909        // Converting this to a min would handle comparisons between positive
12910        // and negative zero incorrectly.
12911        if (!DAG.getTarget().Options.UnsafeFPMath &&
12912            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12913          break;
12914        Opcode = X86ISD::FMIN;
12915        break;
12916      case ISD::SETULE:
12917        // Converting this to a min would handle both negative zeros and NaNs
12918        // incorrectly, but we can swap the operands to fix both.
12919        std::swap(LHS, RHS);
12920      case ISD::SETOLT:
12921      case ISD::SETLT:
12922      case ISD::SETLE:
12923        Opcode = X86ISD::FMIN;
12924        break;
12925
12926      case ISD::SETOGE:
12927        // Converting this to a max would handle comparisons between positive
12928        // and negative zero incorrectly.
12929        if (!DAG.getTarget().Options.UnsafeFPMath &&
12930            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12931          break;
12932        Opcode = X86ISD::FMAX;
12933        break;
12934      case ISD::SETUGT:
12935        // Converting this to a max would handle NaNs incorrectly, and swapping
12936        // the operands would cause it to handle comparisons between positive
12937        // and negative zero incorrectly.
12938        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12939          if (!DAG.getTarget().Options.UnsafeFPMath &&
12940              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12941            break;
12942          std::swap(LHS, RHS);
12943        }
12944        Opcode = X86ISD::FMAX;
12945        break;
12946      case ISD::SETUGE:
12947        // Converting this to a max would handle both negative zeros and NaNs
12948        // incorrectly, but we can swap the operands to fix both.
12949        std::swap(LHS, RHS);
12950      case ISD::SETOGT:
12951      case ISD::SETGT:
12952      case ISD::SETGE:
12953        Opcode = X86ISD::FMAX;
12954        break;
12955      }
12956    // Check for x CC y ? y : x -- a min/max with reversed arms.
12957    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12958               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12959      switch (CC) {
12960      default: break;
12961      case ISD::SETOGE:
12962        // Converting this to a min would handle comparisons between positive
12963        // and negative zero incorrectly, and swapping the operands would
12964        // cause it to handle NaNs incorrectly.
12965        if (!DAG.getTarget().Options.UnsafeFPMath &&
12966            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12967          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12968            break;
12969          std::swap(LHS, RHS);
12970        }
12971        Opcode = X86ISD::FMIN;
12972        break;
12973      case ISD::SETUGT:
12974        // Converting this to a min would handle NaNs incorrectly.
12975        if (!DAG.getTarget().Options.UnsafeFPMath &&
12976            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12977          break;
12978        Opcode = X86ISD::FMIN;
12979        break;
12980      case ISD::SETUGE:
12981        // Converting this to a min would handle both negative zeros and NaNs
12982        // incorrectly, but we can swap the operands to fix both.
12983        std::swap(LHS, RHS);
12984      case ISD::SETOGT:
12985      case ISD::SETGT:
12986      case ISD::SETGE:
12987        Opcode = X86ISD::FMIN;
12988        break;
12989
12990      case ISD::SETULT:
12991        // Converting this to a max would handle NaNs incorrectly.
12992        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12993          break;
12994        Opcode = X86ISD::FMAX;
12995        break;
12996      case ISD::SETOLE:
12997        // Converting this to a max would handle comparisons between positive
12998        // and negative zero incorrectly, and swapping the operands would
12999        // cause it to handle NaNs incorrectly.
13000        if (!DAG.getTarget().Options.UnsafeFPMath &&
13001            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13002          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13003            break;
13004          std::swap(LHS, RHS);
13005        }
13006        Opcode = X86ISD::FMAX;
13007        break;
13008      case ISD::SETULE:
13009        // Converting this to a max would handle both negative zeros and NaNs
13010        // incorrectly, but we can swap the operands to fix both.
13011        std::swap(LHS, RHS);
13012      case ISD::SETOLT:
13013      case ISD::SETLT:
13014      case ISD::SETLE:
13015        Opcode = X86ISD::FMAX;
13016        break;
13017      }
13018    }
13019
13020    if (Opcode)
13021      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13022  }
13023
13024  // If this is a select between two integer constants, try to do some
13025  // optimizations.
13026  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13027    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13028      // Don't do this for crazy integer types.
13029      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13030        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13031        // so that TrueC (the true value) is larger than FalseC.
13032        bool NeedsCondInvert = false;
13033
13034        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13035            // Efficiently invertible.
13036            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13037             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13038              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13039          NeedsCondInvert = true;
13040          std::swap(TrueC, FalseC);
13041        }
13042
13043        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13044        if (FalseC->getAPIntValue() == 0 &&
13045            TrueC->getAPIntValue().isPowerOf2()) {
13046          if (NeedsCondInvert) // Invert the condition if needed.
13047            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13048                               DAG.getConstant(1, Cond.getValueType()));
13049
13050          // Zero extend the condition if needed.
13051          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13052
13053          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13054          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13055                             DAG.getConstant(ShAmt, MVT::i8));
13056        }
13057
13058        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13059        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13060          if (NeedsCondInvert) // Invert the condition if needed.
13061            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13062                               DAG.getConstant(1, Cond.getValueType()));
13063
13064          // Zero extend the condition if needed.
13065          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13066                             FalseC->getValueType(0), Cond);
13067          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13068                             SDValue(FalseC, 0));
13069        }
13070
13071        // Optimize cases that will turn into an LEA instruction.  This requires
13072        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13073        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13074          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13075          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13076
13077          bool isFastMultiplier = false;
13078          if (Diff < 10) {
13079            switch ((unsigned char)Diff) {
13080              default: break;
13081              case 1:  // result = add base, cond
13082              case 2:  // result = lea base(    , cond*2)
13083              case 3:  // result = lea base(cond, cond*2)
13084              case 4:  // result = lea base(    , cond*4)
13085              case 5:  // result = lea base(cond, cond*4)
13086              case 8:  // result = lea base(    , cond*8)
13087              case 9:  // result = lea base(cond, cond*8)
13088                isFastMultiplier = true;
13089                break;
13090            }
13091          }
13092
13093          if (isFastMultiplier) {
13094            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13095            if (NeedsCondInvert) // Invert the condition if needed.
13096              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13097                                 DAG.getConstant(1, Cond.getValueType()));
13098
13099            // Zero extend the condition if needed.
13100            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13101                               Cond);
13102            // Scale the condition by the difference.
13103            if (Diff != 1)
13104              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13105                                 DAG.getConstant(Diff, Cond.getValueType()));
13106
13107            // Add the base if non-zero.
13108            if (FalseC->getAPIntValue() != 0)
13109              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13110                                 SDValue(FalseC, 0));
13111            return Cond;
13112          }
13113        }
13114      }
13115  }
13116
13117  // Canonicalize max and min:
13118  // (x > y) ? x : y -> (x >= y) ? x : y
13119  // (x < y) ? x : y -> (x <= y) ? x : y
13120  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13121  // the need for an extra compare
13122  // against zero. e.g.
13123  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13124  // subl   %esi, %edi
13125  // testl  %edi, %edi
13126  // movl   $0, %eax
13127  // cmovgl %edi, %eax
13128  // =>
13129  // xorl   %eax, %eax
13130  // subl   %esi, $edi
13131  // cmovsl %eax, %edi
13132  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13133      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13134      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13135    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13136    switch (CC) {
13137    default: break;
13138    case ISD::SETLT:
13139    case ISD::SETGT: {
13140      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13141      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13142                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13143      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13144    }
13145    }
13146  }
13147
13148  // If we know that this node is legal then we know that it is going to be
13149  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13150  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13151  // to simplify previous instructions.
13152  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13153  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13154      !DCI.isBeforeLegalize() &&
13155      TLI.isOperationLegal(ISD::VSELECT, VT)) {
13156    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13157    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13158    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13159
13160    APInt KnownZero, KnownOne;
13161    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13162                                          DCI.isBeforeLegalizeOps());
13163    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13164        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13165      DCI.CommitTargetLoweringOpt(TLO);
13166  }
13167
13168  return SDValue();
13169}
13170
13171/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13172static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13173                                  TargetLowering::DAGCombinerInfo &DCI) {
13174  DebugLoc DL = N->getDebugLoc();
13175
13176  // If the flag operand isn't dead, don't touch this CMOV.
13177  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13178    return SDValue();
13179
13180  SDValue FalseOp = N->getOperand(0);
13181  SDValue TrueOp = N->getOperand(1);
13182  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13183  SDValue Cond = N->getOperand(3);
13184  if (CC == X86::COND_E || CC == X86::COND_NE) {
13185    switch (Cond.getOpcode()) {
13186    default: break;
13187    case X86ISD::BSR:
13188    case X86ISD::BSF:
13189      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13190      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13191        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13192    }
13193  }
13194
13195  // If this is a select between two integer constants, try to do some
13196  // optimizations.  Note that the operands are ordered the opposite of SELECT
13197  // operands.
13198  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13199    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13200      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13201      // larger than FalseC (the false value).
13202      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13203        CC = X86::GetOppositeBranchCondition(CC);
13204        std::swap(TrueC, FalseC);
13205      }
13206
13207      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13208      // This is efficient for any integer data type (including i8/i16) and
13209      // shift amount.
13210      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13211        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13212                           DAG.getConstant(CC, MVT::i8), Cond);
13213
13214        // Zero extend the condition if needed.
13215        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13216
13217        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13218        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13219                           DAG.getConstant(ShAmt, MVT::i8));
13220        if (N->getNumValues() == 2)  // Dead flag value?
13221          return DCI.CombineTo(N, Cond, SDValue());
13222        return Cond;
13223      }
13224
13225      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13226      // for any integer data type, including i8/i16.
13227      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13228        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13229                           DAG.getConstant(CC, MVT::i8), Cond);
13230
13231        // Zero extend the condition if needed.
13232        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13233                           FalseC->getValueType(0), Cond);
13234        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13235                           SDValue(FalseC, 0));
13236
13237        if (N->getNumValues() == 2)  // Dead flag value?
13238          return DCI.CombineTo(N, Cond, SDValue());
13239        return Cond;
13240      }
13241
13242      // Optimize cases that will turn into an LEA instruction.  This requires
13243      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13244      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13245        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13246        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13247
13248        bool isFastMultiplier = false;
13249        if (Diff < 10) {
13250          switch ((unsigned char)Diff) {
13251          default: break;
13252          case 1:  // result = add base, cond
13253          case 2:  // result = lea base(    , cond*2)
13254          case 3:  // result = lea base(cond, cond*2)
13255          case 4:  // result = lea base(    , cond*4)
13256          case 5:  // result = lea base(cond, cond*4)
13257          case 8:  // result = lea base(    , cond*8)
13258          case 9:  // result = lea base(cond, cond*8)
13259            isFastMultiplier = true;
13260            break;
13261          }
13262        }
13263
13264        if (isFastMultiplier) {
13265          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13266          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13267                             DAG.getConstant(CC, MVT::i8), Cond);
13268          // Zero extend the condition if needed.
13269          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13270                             Cond);
13271          // Scale the condition by the difference.
13272          if (Diff != 1)
13273            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13274                               DAG.getConstant(Diff, Cond.getValueType()));
13275
13276          // Add the base if non-zero.
13277          if (FalseC->getAPIntValue() != 0)
13278            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13279                               SDValue(FalseC, 0));
13280          if (N->getNumValues() == 2)  // Dead flag value?
13281            return DCI.CombineTo(N, Cond, SDValue());
13282          return Cond;
13283        }
13284      }
13285    }
13286  }
13287  return SDValue();
13288}
13289
13290
13291/// PerformMulCombine - Optimize a single multiply with constant into two
13292/// in order to implement it with two cheaper instructions, e.g.
13293/// LEA + SHL, LEA + LEA.
13294static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13295                                 TargetLowering::DAGCombinerInfo &DCI) {
13296  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13297    return SDValue();
13298
13299  EVT VT = N->getValueType(0);
13300  if (VT != MVT::i64)
13301    return SDValue();
13302
13303  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13304  if (!C)
13305    return SDValue();
13306  uint64_t MulAmt = C->getZExtValue();
13307  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13308    return SDValue();
13309
13310  uint64_t MulAmt1 = 0;
13311  uint64_t MulAmt2 = 0;
13312  if ((MulAmt % 9) == 0) {
13313    MulAmt1 = 9;
13314    MulAmt2 = MulAmt / 9;
13315  } else if ((MulAmt % 5) == 0) {
13316    MulAmt1 = 5;
13317    MulAmt2 = MulAmt / 5;
13318  } else if ((MulAmt % 3) == 0) {
13319    MulAmt1 = 3;
13320    MulAmt2 = MulAmt / 3;
13321  }
13322  if (MulAmt2 &&
13323      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13324    DebugLoc DL = N->getDebugLoc();
13325
13326    if (isPowerOf2_64(MulAmt2) &&
13327        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13328      // If second multiplifer is pow2, issue it first. We want the multiply by
13329      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13330      // is an add.
13331      std::swap(MulAmt1, MulAmt2);
13332
13333    SDValue NewMul;
13334    if (isPowerOf2_64(MulAmt1))
13335      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13336                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13337    else
13338      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13339                           DAG.getConstant(MulAmt1, VT));
13340
13341    if (isPowerOf2_64(MulAmt2))
13342      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13343                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13344    else
13345      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13346                           DAG.getConstant(MulAmt2, VT));
13347
13348    // Do not add new nodes to DAG combiner worklist.
13349    DCI.CombineTo(N, NewMul, false);
13350  }
13351  return SDValue();
13352}
13353
13354static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13355  SDValue N0 = N->getOperand(0);
13356  SDValue N1 = N->getOperand(1);
13357  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13358  EVT VT = N0.getValueType();
13359
13360  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13361  // since the result of setcc_c is all zero's or all ones.
13362  if (VT.isInteger() && !VT.isVector() &&
13363      N1C && N0.getOpcode() == ISD::AND &&
13364      N0.getOperand(1).getOpcode() == ISD::Constant) {
13365    SDValue N00 = N0.getOperand(0);
13366    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13367        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13368          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13369         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13370      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13371      APInt ShAmt = N1C->getAPIntValue();
13372      Mask = Mask.shl(ShAmt);
13373      if (Mask != 0)
13374        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13375                           N00, DAG.getConstant(Mask, VT));
13376    }
13377  }
13378
13379
13380  // Hardware support for vector shifts is sparse which makes us scalarize the
13381  // vector operations in many cases. Also, on sandybridge ADD is faster than
13382  // shl.
13383  // (shl V, 1) -> add V,V
13384  if (isSplatVector(N1.getNode())) {
13385    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13386    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13387    // We shift all of the values by one. In many cases we do not have
13388    // hardware support for this operation. This is better expressed as an ADD
13389    // of two values.
13390    if (N1C && (1 == N1C->getZExtValue())) {
13391      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13392    }
13393  }
13394
13395  return SDValue();
13396}
13397
13398/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13399///                       when possible.
13400static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13401                                   const X86Subtarget *Subtarget) {
13402  EVT VT = N->getValueType(0);
13403  if (N->getOpcode() == ISD::SHL) {
13404    SDValue V = PerformSHLCombine(N, DAG);
13405    if (V.getNode()) return V;
13406  }
13407
13408  // On X86 with SSE2 support, we can transform this to a vector shift if
13409  // all elements are shifted by the same amount.  We can't do this in legalize
13410  // because the a constant vector is typically transformed to a constant pool
13411  // so we have no knowledge of the shift amount.
13412  if (!Subtarget->hasSSE2())
13413    return SDValue();
13414
13415  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13416      (!Subtarget->hasAVX2() ||
13417       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13418    return SDValue();
13419
13420  SDValue ShAmtOp = N->getOperand(1);
13421  EVT EltVT = VT.getVectorElementType();
13422  DebugLoc DL = N->getDebugLoc();
13423  SDValue BaseShAmt = SDValue();
13424  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13425    unsigned NumElts = VT.getVectorNumElements();
13426    unsigned i = 0;
13427    for (; i != NumElts; ++i) {
13428      SDValue Arg = ShAmtOp.getOperand(i);
13429      if (Arg.getOpcode() == ISD::UNDEF) continue;
13430      BaseShAmt = Arg;
13431      break;
13432    }
13433    // Handle the case where the build_vector is all undef
13434    // FIXME: Should DAG allow this?
13435    if (i == NumElts)
13436      return SDValue();
13437
13438    for (; i != NumElts; ++i) {
13439      SDValue Arg = ShAmtOp.getOperand(i);
13440      if (Arg.getOpcode() == ISD::UNDEF) continue;
13441      if (Arg != BaseShAmt) {
13442        return SDValue();
13443      }
13444    }
13445  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13446             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13447    SDValue InVec = ShAmtOp.getOperand(0);
13448    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13449      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13450      unsigned i = 0;
13451      for (; i != NumElts; ++i) {
13452        SDValue Arg = InVec.getOperand(i);
13453        if (Arg.getOpcode() == ISD::UNDEF) continue;
13454        BaseShAmt = Arg;
13455        break;
13456      }
13457    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13458       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13459         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13460         if (C->getZExtValue() == SplatIdx)
13461           BaseShAmt = InVec.getOperand(1);
13462       }
13463    }
13464    if (BaseShAmt.getNode() == 0)
13465      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13466                              DAG.getIntPtrConstant(0));
13467  } else
13468    return SDValue();
13469
13470  // The shift amount is an i32.
13471  if (EltVT.bitsGT(MVT::i32))
13472    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13473  else if (EltVT.bitsLT(MVT::i32))
13474    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13475
13476  // The shift amount is identical so we can do a vector shift.
13477  SDValue  ValOp = N->getOperand(0);
13478  switch (N->getOpcode()) {
13479  default:
13480    llvm_unreachable("Unknown shift opcode!");
13481    break;
13482  case ISD::SHL:
13483    if (VT == MVT::v2i64)
13484      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13485                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13486                         ValOp, BaseShAmt);
13487    if (VT == MVT::v4i32)
13488      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13489                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13490                         ValOp, BaseShAmt);
13491    if (VT == MVT::v8i16)
13492      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13493                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13494                         ValOp, BaseShAmt);
13495    if (VT == MVT::v4i64)
13496      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13497                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
13498                         ValOp, BaseShAmt);
13499    if (VT == MVT::v8i32)
13500      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13501                         DAG.getConstant(Intrinsic::x86_avx2_pslli_d, MVT::i32),
13502                         ValOp, BaseShAmt);
13503    if (VT == MVT::v16i16)
13504      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13505                         DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
13506                         ValOp, BaseShAmt);
13507    break;
13508  case ISD::SRA:
13509    if (VT == MVT::v4i32)
13510      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13511                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13512                         ValOp, BaseShAmt);
13513    if (VT == MVT::v8i16)
13514      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13515                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13516                         ValOp, BaseShAmt);
13517    if (VT == MVT::v8i32)
13518      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13519                         DAG.getConstant(Intrinsic::x86_avx2_psrai_d, MVT::i32),
13520                         ValOp, BaseShAmt);
13521    if (VT == MVT::v16i16)
13522      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13523                         DAG.getConstant(Intrinsic::x86_avx2_psrai_w, MVT::i32),
13524                         ValOp, BaseShAmt);
13525    break;
13526  case ISD::SRL:
13527    if (VT == MVT::v2i64)
13528      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13529                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13530                         ValOp, BaseShAmt);
13531    if (VT == MVT::v4i32)
13532      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13533                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13534                         ValOp, BaseShAmt);
13535    if (VT ==  MVT::v8i16)
13536      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13537                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13538                         ValOp, BaseShAmt);
13539    if (VT == MVT::v4i64)
13540      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13541                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
13542                         ValOp, BaseShAmt);
13543    if (VT == MVT::v8i32)
13544      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13545                         DAG.getConstant(Intrinsic::x86_avx2_psrli_d, MVT::i32),
13546                         ValOp, BaseShAmt);
13547    if (VT ==  MVT::v16i16)
13548      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13549                         DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
13550                         ValOp, BaseShAmt);
13551    break;
13552  }
13553  return SDValue();
13554}
13555
13556
13557// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13558// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13559// and friends.  Likewise for OR -> CMPNEQSS.
13560static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13561                            TargetLowering::DAGCombinerInfo &DCI,
13562                            const X86Subtarget *Subtarget) {
13563  unsigned opcode;
13564
13565  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13566  // we're requiring SSE2 for both.
13567  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13568    SDValue N0 = N->getOperand(0);
13569    SDValue N1 = N->getOperand(1);
13570    SDValue CMP0 = N0->getOperand(1);
13571    SDValue CMP1 = N1->getOperand(1);
13572    DebugLoc DL = N->getDebugLoc();
13573
13574    // The SETCCs should both refer to the same CMP.
13575    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13576      return SDValue();
13577
13578    SDValue CMP00 = CMP0->getOperand(0);
13579    SDValue CMP01 = CMP0->getOperand(1);
13580    EVT     VT    = CMP00.getValueType();
13581
13582    if (VT == MVT::f32 || VT == MVT::f64) {
13583      bool ExpectingFlags = false;
13584      // Check for any users that want flags:
13585      for (SDNode::use_iterator UI = N->use_begin(),
13586             UE = N->use_end();
13587           !ExpectingFlags && UI != UE; ++UI)
13588        switch (UI->getOpcode()) {
13589        default:
13590        case ISD::BR_CC:
13591        case ISD::BRCOND:
13592        case ISD::SELECT:
13593          ExpectingFlags = true;
13594          break;
13595        case ISD::CopyToReg:
13596        case ISD::SIGN_EXTEND:
13597        case ISD::ZERO_EXTEND:
13598        case ISD::ANY_EXTEND:
13599          break;
13600        }
13601
13602      if (!ExpectingFlags) {
13603        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13604        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13605
13606        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13607          X86::CondCode tmp = cc0;
13608          cc0 = cc1;
13609          cc1 = tmp;
13610        }
13611
13612        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13613            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13614          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13615          X86ISD::NodeType NTOperator = is64BitFP ?
13616            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13617          // FIXME: need symbolic constants for these magic numbers.
13618          // See X86ATTInstPrinter.cpp:printSSECC().
13619          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13620          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13621                                              DAG.getConstant(x86cc, MVT::i8));
13622          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13623                                              OnesOrZeroesF);
13624          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13625                                      DAG.getConstant(1, MVT::i32));
13626          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13627          return OneBitOfTruth;
13628        }
13629      }
13630    }
13631  }
13632  return SDValue();
13633}
13634
13635/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13636/// so it can be folded inside ANDNP.
13637static bool CanFoldXORWithAllOnes(const SDNode *N) {
13638  EVT VT = N->getValueType(0);
13639
13640  // Match direct AllOnes for 128 and 256-bit vectors
13641  if (ISD::isBuildVectorAllOnes(N))
13642    return true;
13643
13644  // Look through a bit convert.
13645  if (N->getOpcode() == ISD::BITCAST)
13646    N = N->getOperand(0).getNode();
13647
13648  // Sometimes the operand may come from a insert_subvector building a 256-bit
13649  // allones vector
13650  if (VT.getSizeInBits() == 256 &&
13651      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13652    SDValue V1 = N->getOperand(0);
13653    SDValue V2 = N->getOperand(1);
13654
13655    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13656        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13657        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13658        ISD::isBuildVectorAllOnes(V2.getNode()))
13659      return true;
13660  }
13661
13662  return false;
13663}
13664
13665static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13666                                 TargetLowering::DAGCombinerInfo &DCI,
13667                                 const X86Subtarget *Subtarget) {
13668  if (DCI.isBeforeLegalizeOps())
13669    return SDValue();
13670
13671  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13672  if (R.getNode())
13673    return R;
13674
13675  EVT VT = N->getValueType(0);
13676
13677  // Create ANDN, BLSI, and BLSR instructions
13678  // BLSI is X & (-X)
13679  // BLSR is X & (X-1)
13680  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13681    SDValue N0 = N->getOperand(0);
13682    SDValue N1 = N->getOperand(1);
13683    DebugLoc DL = N->getDebugLoc();
13684
13685    // Check LHS for not
13686    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13687      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13688    // Check RHS for not
13689    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13690      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13691
13692    // Check LHS for neg
13693    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13694        isZero(N0.getOperand(0)))
13695      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13696
13697    // Check RHS for neg
13698    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13699        isZero(N1.getOperand(0)))
13700      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13701
13702    // Check LHS for X-1
13703    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13704        isAllOnes(N0.getOperand(1)))
13705      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13706
13707    // Check RHS for X-1
13708    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13709        isAllOnes(N1.getOperand(1)))
13710      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13711
13712    return SDValue();
13713  }
13714
13715  // Want to form ANDNP nodes:
13716  // 1) In the hopes of then easily combining them with OR and AND nodes
13717  //    to form PBLEND/PSIGN.
13718  // 2) To match ANDN packed intrinsics
13719  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13720    return SDValue();
13721
13722  SDValue N0 = N->getOperand(0);
13723  SDValue N1 = N->getOperand(1);
13724  DebugLoc DL = N->getDebugLoc();
13725
13726  // Check LHS for vnot
13727  if (N0.getOpcode() == ISD::XOR &&
13728      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13729      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13730    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13731
13732  // Check RHS for vnot
13733  if (N1.getOpcode() == ISD::XOR &&
13734      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13735      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13736    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13737
13738  return SDValue();
13739}
13740
13741static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13742                                TargetLowering::DAGCombinerInfo &DCI,
13743                                const X86Subtarget *Subtarget) {
13744  if (DCI.isBeforeLegalizeOps())
13745    return SDValue();
13746
13747  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13748  if (R.getNode())
13749    return R;
13750
13751  EVT VT = N->getValueType(0);
13752
13753  SDValue N0 = N->getOperand(0);
13754  SDValue N1 = N->getOperand(1);
13755
13756  // look for psign/blend
13757  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
13758    if (!Subtarget->hasSSSE3() ||
13759        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
13760      return SDValue();
13761
13762    // Canonicalize pandn to RHS
13763    if (N0.getOpcode() == X86ISD::ANDNP)
13764      std::swap(N0, N1);
13765    // or (and (m, y), (pandn m, x))
13766    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13767      SDValue Mask = N1.getOperand(0);
13768      SDValue X    = N1.getOperand(1);
13769      SDValue Y;
13770      if (N0.getOperand(0) == Mask)
13771        Y = N0.getOperand(1);
13772      if (N0.getOperand(1) == Mask)
13773        Y = N0.getOperand(0);
13774
13775      // Check to see if the mask appeared in both the AND and ANDNP and
13776      if (!Y.getNode())
13777        return SDValue();
13778
13779      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13780      if (Mask.getOpcode() != ISD::BITCAST ||
13781          X.getOpcode() != ISD::BITCAST ||
13782          Y.getOpcode() != ISD::BITCAST)
13783        return SDValue();
13784
13785      // Look through mask bitcast.
13786      Mask = Mask.getOperand(0);
13787      EVT MaskVT = Mask.getValueType();
13788
13789      // Validate that the Mask operand is a vector sra node.  The sra node
13790      // will be an intrinsic.
13791      if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13792        return SDValue();
13793
13794      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13795      // there is no psrai.b
13796      switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13797      case Intrinsic::x86_sse2_psrai_w:
13798      case Intrinsic::x86_sse2_psrai_d:
13799      case Intrinsic::x86_avx2_psrai_w:
13800      case Intrinsic::x86_avx2_psrai_d:
13801        break;
13802      default: return SDValue();
13803      }
13804
13805      // Check that the SRA is all signbits.
13806      SDValue SraC = Mask.getOperand(2);
13807      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13808      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13809      if ((SraAmt + 1) != EltBits)
13810        return SDValue();
13811
13812      DebugLoc DL = N->getDebugLoc();
13813
13814      // Now we know we at least have a plendvb with the mask val.  See if
13815      // we can form a psignb/w/d.
13816      // psign = x.type == y.type == mask.type && y = sub(0, x);
13817      X = X.getOperand(0);
13818      Y = Y.getOperand(0);
13819      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13820          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13821          X.getValueType() == MaskVT && X.getValueType() == Y.getValueType() &&
13822          (EltBits == 8 || EltBits == 16 || EltBits == 32)) {
13823        SDValue Sign = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X,
13824                                   Mask.getOperand(1));
13825        return DAG.getNode(ISD::BITCAST, DL, VT, Sign);
13826      }
13827      // PBLENDVB only available on SSE 4.1
13828      if (!Subtarget->hasSSE41())
13829        return SDValue();
13830
13831      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
13832
13833      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
13834      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
13835      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
13836      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
13837      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13838    }
13839  }
13840
13841  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
13842    return SDValue();
13843
13844  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13845  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13846    std::swap(N0, N1);
13847  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13848    return SDValue();
13849  if (!N0.hasOneUse() || !N1.hasOneUse())
13850    return SDValue();
13851
13852  SDValue ShAmt0 = N0.getOperand(1);
13853  if (ShAmt0.getValueType() != MVT::i8)
13854    return SDValue();
13855  SDValue ShAmt1 = N1.getOperand(1);
13856  if (ShAmt1.getValueType() != MVT::i8)
13857    return SDValue();
13858  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13859    ShAmt0 = ShAmt0.getOperand(0);
13860  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13861    ShAmt1 = ShAmt1.getOperand(0);
13862
13863  DebugLoc DL = N->getDebugLoc();
13864  unsigned Opc = X86ISD::SHLD;
13865  SDValue Op0 = N0.getOperand(0);
13866  SDValue Op1 = N1.getOperand(0);
13867  if (ShAmt0.getOpcode() == ISD::SUB) {
13868    Opc = X86ISD::SHRD;
13869    std::swap(Op0, Op1);
13870    std::swap(ShAmt0, ShAmt1);
13871  }
13872
13873  unsigned Bits = VT.getSizeInBits();
13874  if (ShAmt1.getOpcode() == ISD::SUB) {
13875    SDValue Sum = ShAmt1.getOperand(0);
13876    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13877      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13878      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13879        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13880      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13881        return DAG.getNode(Opc, DL, VT,
13882                           Op0, Op1,
13883                           DAG.getNode(ISD::TRUNCATE, DL,
13884                                       MVT::i8, ShAmt0));
13885    }
13886  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13887    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13888    if (ShAmt0C &&
13889        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13890      return DAG.getNode(Opc, DL, VT,
13891                         N0.getOperand(0), N1.getOperand(0),
13892                         DAG.getNode(ISD::TRUNCATE, DL,
13893                                       MVT::i8, ShAmt0));
13894  }
13895
13896  return SDValue();
13897}
13898
13899// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
13900static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
13901                                 TargetLowering::DAGCombinerInfo &DCI,
13902                                 const X86Subtarget *Subtarget) {
13903  if (DCI.isBeforeLegalizeOps())
13904    return SDValue();
13905
13906  EVT VT = N->getValueType(0);
13907
13908  if (VT != MVT::i32 && VT != MVT::i64)
13909    return SDValue();
13910
13911  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
13912
13913  // Create BLSMSK instructions by finding X ^ (X-1)
13914  SDValue N0 = N->getOperand(0);
13915  SDValue N1 = N->getOperand(1);
13916  DebugLoc DL = N->getDebugLoc();
13917
13918  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13919      isAllOnes(N0.getOperand(1)))
13920    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
13921
13922  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13923      isAllOnes(N1.getOperand(1)))
13924    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
13925
13926  return SDValue();
13927}
13928
13929/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
13930static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
13931                                   const X86Subtarget *Subtarget) {
13932  LoadSDNode *Ld = cast<LoadSDNode>(N);
13933  EVT RegVT = Ld->getValueType(0);
13934  EVT MemVT = Ld->getMemoryVT();
13935  DebugLoc dl = Ld->getDebugLoc();
13936  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13937
13938  ISD::LoadExtType Ext = Ld->getExtensionType();
13939
13940  // If this is a vector EXT Load then attempt to optimize it using a
13941  // shuffle. We need SSE4 for the shuffles.
13942  // TODO: It is possible to support ZExt by zeroing the undef values
13943  // during the shuffle phase or after the shuffle.
13944  if (RegVT.isVector() && RegVT.isInteger() &&
13945      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
13946    assert(MemVT != RegVT && "Cannot extend to the same type");
13947    assert(MemVT.isVector() && "Must load a vector from memory");
13948
13949    unsigned NumElems = RegVT.getVectorNumElements();
13950    unsigned RegSz = RegVT.getSizeInBits();
13951    unsigned MemSz = MemVT.getSizeInBits();
13952    assert(RegSz > MemSz && "Register size must be greater than the mem size");
13953    // All sizes must be a power of two
13954    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
13955
13956    // Attempt to load the original value using a single load op.
13957    // Find a scalar type which is equal to the loaded word size.
13958    MVT SclrLoadTy = MVT::i8;
13959    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13960         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13961      MVT Tp = (MVT::SimpleValueType)tp;
13962      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
13963        SclrLoadTy = Tp;
13964        break;
13965      }
13966    }
13967
13968    // Proceed if a load word is found.
13969    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
13970
13971    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
13972      RegSz/SclrLoadTy.getSizeInBits());
13973
13974    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
13975                                  RegSz/MemVT.getScalarType().getSizeInBits());
13976    // Can't shuffle using an illegal type.
13977    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13978
13979    // Perform a single load.
13980    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
13981                                  Ld->getBasePtr(),
13982                                  Ld->getPointerInfo(), Ld->isVolatile(),
13983                                  Ld->isNonTemporal(), Ld->isInvariant(),
13984                                  Ld->getAlignment());
13985
13986    // Insert the word loaded into a vector.
13987    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
13988      LoadUnitVecVT, ScalarLoad);
13989
13990    // Bitcast the loaded value to a vector of the original element type, in
13991    // the size of the target vector type.
13992    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
13993                                    ScalarInVector);
13994    unsigned SizeRatio = RegSz/MemSz;
13995
13996    // Redistribute the loaded elements into the different locations.
13997    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13998    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
13999
14000    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14001                                DAG.getUNDEF(SlicedVec.getValueType()),
14002                                ShuffleVec.data());
14003
14004    // Bitcast to the requested type.
14005    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14006    // Replace the original load with the new sequence
14007    // and return the new chain.
14008    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14009    return SDValue(ScalarLoad.getNode(), 1);
14010  }
14011
14012  return SDValue();
14013}
14014
14015/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14016static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14017                                   const X86Subtarget *Subtarget) {
14018  StoreSDNode *St = cast<StoreSDNode>(N);
14019  EVT VT = St->getValue().getValueType();
14020  EVT StVT = St->getMemoryVT();
14021  DebugLoc dl = St->getDebugLoc();
14022  SDValue StoredVal = St->getOperand(1);
14023  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14024
14025  // If we are saving a concatenation of two XMM registers, perform two stores.
14026  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14027  // 128-bit ones. If in the future the cost becomes only one memory access the
14028  // first version would be better.
14029  if (VT.getSizeInBits() == 256 &&
14030    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14031    StoredVal.getNumOperands() == 2) {
14032
14033    SDValue Value0 = StoredVal.getOperand(0);
14034    SDValue Value1 = StoredVal.getOperand(1);
14035
14036    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14037    SDValue Ptr0 = St->getBasePtr();
14038    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14039
14040    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14041                                St->getPointerInfo(), St->isVolatile(),
14042                                St->isNonTemporal(), St->getAlignment());
14043    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14044                                St->getPointerInfo(), St->isVolatile(),
14045                                St->isNonTemporal(), St->getAlignment());
14046    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14047  }
14048
14049  // Optimize trunc store (of multiple scalars) to shuffle and store.
14050  // First, pack all of the elements in one place. Next, store to memory
14051  // in fewer chunks.
14052  if (St->isTruncatingStore() && VT.isVector()) {
14053    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14054    unsigned NumElems = VT.getVectorNumElements();
14055    assert(StVT != VT && "Cannot truncate to the same type");
14056    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14057    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14058
14059    // From, To sizes and ElemCount must be pow of two
14060    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14061    // We are going to use the original vector elt for storing.
14062    // Accumulated smaller vector elements must be a multiple of the store size.
14063    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14064
14065    unsigned SizeRatio  = FromSz / ToSz;
14066
14067    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14068
14069    // Create a type on which we perform the shuffle
14070    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14071            StVT.getScalarType(), NumElems*SizeRatio);
14072
14073    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14074
14075    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14076    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14077    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14078
14079    // Can't shuffle using an illegal type
14080    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14081
14082    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14083                                DAG.getUNDEF(WideVec.getValueType()),
14084                                ShuffleVec.data());
14085    // At this point all of the data is stored at the bottom of the
14086    // register. We now need to save it to mem.
14087
14088    // Find the largest store unit
14089    MVT StoreType = MVT::i8;
14090    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14091         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14092      MVT Tp = (MVT::SimpleValueType)tp;
14093      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14094        StoreType = Tp;
14095    }
14096
14097    // Bitcast the original vector into a vector of store-size units
14098    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14099            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14100    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14101    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14102    SmallVector<SDValue, 8> Chains;
14103    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14104                                        TLI.getPointerTy());
14105    SDValue Ptr = St->getBasePtr();
14106
14107    // Perform one or more big stores into memory.
14108    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14109      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14110                                   StoreType, ShuffWide,
14111                                   DAG.getIntPtrConstant(i));
14112      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14113                                St->getPointerInfo(), St->isVolatile(),
14114                                St->isNonTemporal(), St->getAlignment());
14115      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14116      Chains.push_back(Ch);
14117    }
14118
14119    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14120                               Chains.size());
14121  }
14122
14123
14124  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14125  // the FP state in cases where an emms may be missing.
14126  // A preferable solution to the general problem is to figure out the right
14127  // places to insert EMMS.  This qualifies as a quick hack.
14128
14129  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14130  if (VT.getSizeInBits() != 64)
14131    return SDValue();
14132
14133  const Function *F = DAG.getMachineFunction().getFunction();
14134  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14135  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14136                     && Subtarget->hasSSE2();
14137  if ((VT.isVector() ||
14138       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14139      isa<LoadSDNode>(St->getValue()) &&
14140      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14141      St->getChain().hasOneUse() && !St->isVolatile()) {
14142    SDNode* LdVal = St->getValue().getNode();
14143    LoadSDNode *Ld = 0;
14144    int TokenFactorIndex = -1;
14145    SmallVector<SDValue, 8> Ops;
14146    SDNode* ChainVal = St->getChain().getNode();
14147    // Must be a store of a load.  We currently handle two cases:  the load
14148    // is a direct child, and it's under an intervening TokenFactor.  It is
14149    // possible to dig deeper under nested TokenFactors.
14150    if (ChainVal == LdVal)
14151      Ld = cast<LoadSDNode>(St->getChain());
14152    else if (St->getValue().hasOneUse() &&
14153             ChainVal->getOpcode() == ISD::TokenFactor) {
14154      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
14155        if (ChainVal->getOperand(i).getNode() == LdVal) {
14156          TokenFactorIndex = i;
14157          Ld = cast<LoadSDNode>(St->getValue());
14158        } else
14159          Ops.push_back(ChainVal->getOperand(i));
14160      }
14161    }
14162
14163    if (!Ld || !ISD::isNormalLoad(Ld))
14164      return SDValue();
14165
14166    // If this is not the MMX case, i.e. we are just turning i64 load/store
14167    // into f64 load/store, avoid the transformation if there are multiple
14168    // uses of the loaded value.
14169    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14170      return SDValue();
14171
14172    DebugLoc LdDL = Ld->getDebugLoc();
14173    DebugLoc StDL = N->getDebugLoc();
14174    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14175    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14176    // pair instead.
14177    if (Subtarget->is64Bit() || F64IsLegal) {
14178      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14179      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14180                                  Ld->getPointerInfo(), Ld->isVolatile(),
14181                                  Ld->isNonTemporal(), Ld->isInvariant(),
14182                                  Ld->getAlignment());
14183      SDValue NewChain = NewLd.getValue(1);
14184      if (TokenFactorIndex != -1) {
14185        Ops.push_back(NewChain);
14186        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14187                               Ops.size());
14188      }
14189      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14190                          St->getPointerInfo(),
14191                          St->isVolatile(), St->isNonTemporal(),
14192                          St->getAlignment());
14193    }
14194
14195    // Otherwise, lower to two pairs of 32-bit loads / stores.
14196    SDValue LoAddr = Ld->getBasePtr();
14197    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14198                                 DAG.getConstant(4, MVT::i32));
14199
14200    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14201                               Ld->getPointerInfo(),
14202                               Ld->isVolatile(), Ld->isNonTemporal(),
14203                               Ld->isInvariant(), Ld->getAlignment());
14204    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14205                               Ld->getPointerInfo().getWithOffset(4),
14206                               Ld->isVolatile(), Ld->isNonTemporal(),
14207                               Ld->isInvariant(),
14208                               MinAlign(Ld->getAlignment(), 4));
14209
14210    SDValue NewChain = LoLd.getValue(1);
14211    if (TokenFactorIndex != -1) {
14212      Ops.push_back(LoLd);
14213      Ops.push_back(HiLd);
14214      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14215                             Ops.size());
14216    }
14217
14218    LoAddr = St->getBasePtr();
14219    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14220                         DAG.getConstant(4, MVT::i32));
14221
14222    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14223                                St->getPointerInfo(),
14224                                St->isVolatile(), St->isNonTemporal(),
14225                                St->getAlignment());
14226    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14227                                St->getPointerInfo().getWithOffset(4),
14228                                St->isVolatile(),
14229                                St->isNonTemporal(),
14230                                MinAlign(St->getAlignment(), 4));
14231    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14232  }
14233  return SDValue();
14234}
14235
14236/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14237/// and return the operands for the horizontal operation in LHS and RHS.  A
14238/// horizontal operation performs the binary operation on successive elements
14239/// of its first operand, then on successive elements of its second operand,
14240/// returning the resulting values in a vector.  For example, if
14241///   A = < float a0, float a1, float a2, float a3 >
14242/// and
14243///   B = < float b0, float b1, float b2, float b3 >
14244/// then the result of doing a horizontal operation on A and B is
14245///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14246/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14247/// A horizontal-op B, for some already available A and B, and if so then LHS is
14248/// set to A, RHS to B, and the routine returns 'true'.
14249/// Note that the binary operation should have the property that if one of the
14250/// operands is UNDEF then the result is UNDEF.
14251static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14252  // Look for the following pattern: if
14253  //   A = < float a0, float a1, float a2, float a3 >
14254  //   B = < float b0, float b1, float b2, float b3 >
14255  // and
14256  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14257  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14258  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14259  // which is A horizontal-op B.
14260
14261  // At least one of the operands should be a vector shuffle.
14262  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14263      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14264    return false;
14265
14266  EVT VT = LHS.getValueType();
14267
14268  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14269         "Unsupported vector type for horizontal add/sub");
14270
14271  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14272  // operate independently on 128-bit lanes.
14273  unsigned NumElts = VT.getVectorNumElements();
14274  unsigned NumLanes = VT.getSizeInBits()/128;
14275  unsigned NumLaneElts = NumElts / NumLanes;
14276  assert((NumLaneElts % 2 == 0) &&
14277         "Vector type should have an even number of elements in each lane");
14278  unsigned HalfLaneElts = NumLaneElts/2;
14279
14280  // View LHS in the form
14281  //   LHS = VECTOR_SHUFFLE A, B, LMask
14282  // If LHS is not a shuffle then pretend it is the shuffle
14283  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14284  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14285  // type VT.
14286  SDValue A, B;
14287  SmallVector<int, 16> LMask(NumElts);
14288  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14289    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14290      A = LHS.getOperand(0);
14291    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14292      B = LHS.getOperand(1);
14293    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14294    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14295  } else {
14296    if (LHS.getOpcode() != ISD::UNDEF)
14297      A = LHS;
14298    for (unsigned i = 0; i != NumElts; ++i)
14299      LMask[i] = i;
14300  }
14301
14302  // Likewise, view RHS in the form
14303  //   RHS = VECTOR_SHUFFLE C, D, RMask
14304  SDValue C, D;
14305  SmallVector<int, 16> RMask(NumElts);
14306  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14307    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14308      C = RHS.getOperand(0);
14309    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14310      D = RHS.getOperand(1);
14311    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14312    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14313  } else {
14314    if (RHS.getOpcode() != ISD::UNDEF)
14315      C = RHS;
14316    for (unsigned i = 0; i != NumElts; ++i)
14317      RMask[i] = i;
14318  }
14319
14320  // Check that the shuffles are both shuffling the same vectors.
14321  if (!(A == C && B == D) && !(A == D && B == C))
14322    return false;
14323
14324  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14325  if (!A.getNode() && !B.getNode())
14326    return false;
14327
14328  // If A and B occur in reverse order in RHS, then "swap" them (which means
14329  // rewriting the mask).
14330  if (A != C)
14331    CommuteVectorShuffleMask(RMask, NumElts);
14332
14333  // At this point LHS and RHS are equivalent to
14334  //   LHS = VECTOR_SHUFFLE A, B, LMask
14335  //   RHS = VECTOR_SHUFFLE A, B, RMask
14336  // Check that the masks correspond to performing a horizontal operation.
14337  for (unsigned i = 0; i != NumElts; ++i) {
14338    int LIdx = LMask[i], RIdx = RMask[i];
14339
14340    // Ignore any UNDEF components.
14341    if (LIdx < 0 || RIdx < 0 ||
14342        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14343        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14344      continue;
14345
14346    // Check that successive elements are being operated on.  If not, this is
14347    // not a horizontal operation.
14348    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14349    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14350    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14351    if (!(LIdx == Index && RIdx == Index + 1) &&
14352        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14353      return false;
14354  }
14355
14356  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14357  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14358  return true;
14359}
14360
14361/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14362static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14363                                  const X86Subtarget *Subtarget) {
14364  EVT VT = N->getValueType(0);
14365  SDValue LHS = N->getOperand(0);
14366  SDValue RHS = N->getOperand(1);
14367
14368  // Try to synthesize horizontal adds from adds of shuffles.
14369  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14370       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14371      isHorizontalBinOp(LHS, RHS, true))
14372    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14373  return SDValue();
14374}
14375
14376/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14377static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14378                                  const X86Subtarget *Subtarget) {
14379  EVT VT = N->getValueType(0);
14380  SDValue LHS = N->getOperand(0);
14381  SDValue RHS = N->getOperand(1);
14382
14383  // Try to synthesize horizontal subs from subs of shuffles.
14384  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14385       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14386      isHorizontalBinOp(LHS, RHS, false))
14387    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14388  return SDValue();
14389}
14390
14391/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14392/// X86ISD::FXOR nodes.
14393static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14394  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14395  // F[X]OR(0.0, x) -> x
14396  // F[X]OR(x, 0.0) -> x
14397  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14398    if (C->getValueAPF().isPosZero())
14399      return N->getOperand(1);
14400  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14401    if (C->getValueAPF().isPosZero())
14402      return N->getOperand(0);
14403  return SDValue();
14404}
14405
14406/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14407static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14408  // FAND(0.0, x) -> 0.0
14409  // FAND(x, 0.0) -> 0.0
14410  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14411    if (C->getValueAPF().isPosZero())
14412      return N->getOperand(0);
14413  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14414    if (C->getValueAPF().isPosZero())
14415      return N->getOperand(1);
14416  return SDValue();
14417}
14418
14419static SDValue PerformBTCombine(SDNode *N,
14420                                SelectionDAG &DAG,
14421                                TargetLowering::DAGCombinerInfo &DCI) {
14422  // BT ignores high bits in the bit index operand.
14423  SDValue Op1 = N->getOperand(1);
14424  if (Op1.hasOneUse()) {
14425    unsigned BitWidth = Op1.getValueSizeInBits();
14426    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14427    APInt KnownZero, KnownOne;
14428    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14429                                          !DCI.isBeforeLegalizeOps());
14430    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14431    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14432        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14433      DCI.CommitTargetLoweringOpt(TLO);
14434  }
14435  return SDValue();
14436}
14437
14438static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14439  SDValue Op = N->getOperand(0);
14440  if (Op.getOpcode() == ISD::BITCAST)
14441    Op = Op.getOperand(0);
14442  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14443  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14444      VT.getVectorElementType().getSizeInBits() ==
14445      OpVT.getVectorElementType().getSizeInBits()) {
14446    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14447  }
14448  return SDValue();
14449}
14450
14451static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
14452  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14453  //           (and (i32 x86isd::setcc_carry), 1)
14454  // This eliminates the zext. This transformation is necessary because
14455  // ISD::SETCC is always legalized to i8.
14456  DebugLoc dl = N->getDebugLoc();
14457  SDValue N0 = N->getOperand(0);
14458  EVT VT = N->getValueType(0);
14459  if (N0.getOpcode() == ISD::AND &&
14460      N0.hasOneUse() &&
14461      N0.getOperand(0).hasOneUse()) {
14462    SDValue N00 = N0.getOperand(0);
14463    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14464      return SDValue();
14465    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14466    if (!C || C->getZExtValue() != 1)
14467      return SDValue();
14468    return DAG.getNode(ISD::AND, dl, VT,
14469                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14470                                   N00.getOperand(0), N00.getOperand(1)),
14471                       DAG.getConstant(1, VT));
14472  }
14473
14474  return SDValue();
14475}
14476
14477// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14478static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14479  unsigned X86CC = N->getConstantOperandVal(0);
14480  SDValue EFLAG = N->getOperand(1);
14481  DebugLoc DL = N->getDebugLoc();
14482
14483  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14484  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14485  // cases.
14486  if (X86CC == X86::COND_B)
14487    return DAG.getNode(ISD::AND, DL, MVT::i8,
14488                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14489                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14490                       DAG.getConstant(1, MVT::i8));
14491
14492  return SDValue();
14493}
14494
14495static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14496                                        const X86TargetLowering *XTLI) {
14497  SDValue Op0 = N->getOperand(0);
14498  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14499  // a 32-bit target where SSE doesn't support i64->FP operations.
14500  if (Op0.getOpcode() == ISD::LOAD) {
14501    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14502    EVT VT = Ld->getValueType(0);
14503    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14504        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14505        !XTLI->getSubtarget()->is64Bit() &&
14506        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14507      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14508                                          Ld->getChain(), Op0, DAG);
14509      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14510      return FILDChain;
14511    }
14512  }
14513  return SDValue();
14514}
14515
14516// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14517static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14518                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14519  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14520  // the result is either zero or one (depending on the input carry bit).
14521  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14522  if (X86::isZeroNode(N->getOperand(0)) &&
14523      X86::isZeroNode(N->getOperand(1)) &&
14524      // We don't have a good way to replace an EFLAGS use, so only do this when
14525      // dead right now.
14526      SDValue(N, 1).use_empty()) {
14527    DebugLoc DL = N->getDebugLoc();
14528    EVT VT = N->getValueType(0);
14529    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14530    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14531                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14532                                           DAG.getConstant(X86::COND_B,MVT::i8),
14533                                           N->getOperand(2)),
14534                               DAG.getConstant(1, VT));
14535    return DCI.CombineTo(N, Res1, CarryOut);
14536  }
14537
14538  return SDValue();
14539}
14540
14541// fold (add Y, (sete  X, 0)) -> adc  0, Y
14542//      (add Y, (setne X, 0)) -> sbb -1, Y
14543//      (sub (sete  X, 0), Y) -> sbb  0, Y
14544//      (sub (setne X, 0), Y) -> adc -1, Y
14545static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14546  DebugLoc DL = N->getDebugLoc();
14547
14548  // Look through ZExts.
14549  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14550  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14551    return SDValue();
14552
14553  SDValue SetCC = Ext.getOperand(0);
14554  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14555    return SDValue();
14556
14557  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14558  if (CC != X86::COND_E && CC != X86::COND_NE)
14559    return SDValue();
14560
14561  SDValue Cmp = SetCC.getOperand(1);
14562  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14563      !X86::isZeroNode(Cmp.getOperand(1)) ||
14564      !Cmp.getOperand(0).getValueType().isInteger())
14565    return SDValue();
14566
14567  SDValue CmpOp0 = Cmp.getOperand(0);
14568  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14569                               DAG.getConstant(1, CmpOp0.getValueType()));
14570
14571  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14572  if (CC == X86::COND_NE)
14573    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14574                       DL, OtherVal.getValueType(), OtherVal,
14575                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14576  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14577                     DL, OtherVal.getValueType(), OtherVal,
14578                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14579}
14580
14581/// PerformADDCombine - Do target-specific dag combines on integer adds.
14582static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14583                                 const X86Subtarget *Subtarget) {
14584  EVT VT = N->getValueType(0);
14585  SDValue Op0 = N->getOperand(0);
14586  SDValue Op1 = N->getOperand(1);
14587
14588  // Try to synthesize horizontal adds from adds of shuffles.
14589  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14590       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14591      isHorizontalBinOp(Op0, Op1, true))
14592    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14593
14594  return OptimizeConditionalInDecrement(N, DAG);
14595}
14596
14597static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14598                                 const X86Subtarget *Subtarget) {
14599  SDValue Op0 = N->getOperand(0);
14600  SDValue Op1 = N->getOperand(1);
14601
14602  // X86 can't encode an immediate LHS of a sub. See if we can push the
14603  // negation into a preceding instruction.
14604  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14605    // If the RHS of the sub is a XOR with one use and a constant, invert the
14606    // immediate. Then add one to the LHS of the sub so we can turn
14607    // X-Y -> X+~Y+1, saving one register.
14608    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14609        isa<ConstantSDNode>(Op1.getOperand(1))) {
14610      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14611      EVT VT = Op0.getValueType();
14612      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14613                                   Op1.getOperand(0),
14614                                   DAG.getConstant(~XorC, VT));
14615      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14616                         DAG.getConstant(C->getAPIntValue()+1, VT));
14617    }
14618  }
14619
14620  // Try to synthesize horizontal adds from adds of shuffles.
14621  EVT VT = N->getValueType(0);
14622  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14623       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14624      isHorizontalBinOp(Op0, Op1, true))
14625    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14626
14627  return OptimizeConditionalInDecrement(N, DAG);
14628}
14629
14630SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14631                                             DAGCombinerInfo &DCI) const {
14632  SelectionDAG &DAG = DCI.DAG;
14633  switch (N->getOpcode()) {
14634  default: break;
14635  case ISD::EXTRACT_VECTOR_ELT:
14636    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14637  case ISD::VSELECT:
14638  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
14639  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14640  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
14641  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
14642  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14643  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14644  case ISD::SHL:
14645  case ISD::SRA:
14646  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
14647  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14648  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14649  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
14650  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14651  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14652  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14653  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14654  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14655  case X86ISD::FXOR:
14656  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14657  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14658  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14659  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14660  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
14661  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14662  case X86ISD::SHUFP:       // Handle all target specific shuffles
14663  case X86ISD::PALIGN:
14664  case X86ISD::UNPCKH:
14665  case X86ISD::UNPCKL:
14666  case X86ISD::MOVHLPS:
14667  case X86ISD::MOVLHPS:
14668  case X86ISD::PSHUFD:
14669  case X86ISD::PSHUFHW:
14670  case X86ISD::PSHUFLW:
14671  case X86ISD::MOVSS:
14672  case X86ISD::MOVSD:
14673  case X86ISD::VPERMILP:
14674  case X86ISD::VPERM2X128:
14675  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14676  }
14677
14678  return SDValue();
14679}
14680
14681/// isTypeDesirableForOp - Return true if the target has native support for
14682/// the specified value type and it is 'desirable' to use the type for the
14683/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14684/// instruction encodings are longer and some i16 instructions are slow.
14685bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14686  if (!isTypeLegal(VT))
14687    return false;
14688  if (VT != MVT::i16)
14689    return true;
14690
14691  switch (Opc) {
14692  default:
14693    return true;
14694  case ISD::LOAD:
14695  case ISD::SIGN_EXTEND:
14696  case ISD::ZERO_EXTEND:
14697  case ISD::ANY_EXTEND:
14698  case ISD::SHL:
14699  case ISD::SRL:
14700  case ISD::SUB:
14701  case ISD::ADD:
14702  case ISD::MUL:
14703  case ISD::AND:
14704  case ISD::OR:
14705  case ISD::XOR:
14706    return false;
14707  }
14708}
14709
14710/// IsDesirableToPromoteOp - This method query the target whether it is
14711/// beneficial for dag combiner to promote the specified node. If true, it
14712/// should return the desired promotion type by reference.
14713bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14714  EVT VT = Op.getValueType();
14715  if (VT != MVT::i16)
14716    return false;
14717
14718  bool Promote = false;
14719  bool Commute = false;
14720  switch (Op.getOpcode()) {
14721  default: break;
14722  case ISD::LOAD: {
14723    LoadSDNode *LD = cast<LoadSDNode>(Op);
14724    // If the non-extending load has a single use and it's not live out, then it
14725    // might be folded.
14726    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14727                                                     Op.hasOneUse()*/) {
14728      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14729             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14730        // The only case where we'd want to promote LOAD (rather then it being
14731        // promoted as an operand is when it's only use is liveout.
14732        if (UI->getOpcode() != ISD::CopyToReg)
14733          return false;
14734      }
14735    }
14736    Promote = true;
14737    break;
14738  }
14739  case ISD::SIGN_EXTEND:
14740  case ISD::ZERO_EXTEND:
14741  case ISD::ANY_EXTEND:
14742    Promote = true;
14743    break;
14744  case ISD::SHL:
14745  case ISD::SRL: {
14746    SDValue N0 = Op.getOperand(0);
14747    // Look out for (store (shl (load), x)).
14748    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14749      return false;
14750    Promote = true;
14751    break;
14752  }
14753  case ISD::ADD:
14754  case ISD::MUL:
14755  case ISD::AND:
14756  case ISD::OR:
14757  case ISD::XOR:
14758    Commute = true;
14759    // fallthrough
14760  case ISD::SUB: {
14761    SDValue N0 = Op.getOperand(0);
14762    SDValue N1 = Op.getOperand(1);
14763    if (!Commute && MayFoldLoad(N1))
14764      return false;
14765    // Avoid disabling potential load folding opportunities.
14766    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14767      return false;
14768    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14769      return false;
14770    Promote = true;
14771  }
14772  }
14773
14774  PVT = MVT::i32;
14775  return Promote;
14776}
14777
14778//===----------------------------------------------------------------------===//
14779//                           X86 Inline Assembly Support
14780//===----------------------------------------------------------------------===//
14781
14782namespace {
14783  // Helper to match a string separated by whitespace.
14784  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
14785    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
14786
14787    for (unsigned i = 0, e = args.size(); i != e; ++i) {
14788      StringRef piece(*args[i]);
14789      if (!s.startswith(piece)) // Check if the piece matches.
14790        return false;
14791
14792      s = s.substr(piece.size());
14793      StringRef::size_type pos = s.find_first_not_of(" \t");
14794      if (pos == 0) // We matched a prefix.
14795        return false;
14796
14797      s = s.substr(pos);
14798    }
14799
14800    return s.empty();
14801  }
14802  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
14803}
14804
14805bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14806  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14807
14808  std::string AsmStr = IA->getAsmString();
14809
14810  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14811  if (!Ty || Ty->getBitWidth() % 16 != 0)
14812    return false;
14813
14814  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14815  SmallVector<StringRef, 4> AsmPieces;
14816  SplitString(AsmStr, AsmPieces, ";\n");
14817
14818  switch (AsmPieces.size()) {
14819  default: return false;
14820  case 1:
14821    // FIXME: this should verify that we are targeting a 486 or better.  If not,
14822    // we will turn this bswap into something that will be lowered to logical
14823    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
14824    // lower so don't worry about this.
14825    // bswap $0
14826    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
14827        matchAsm(AsmPieces[0], "bswapl", "$0") ||
14828        matchAsm(AsmPieces[0], "bswapq", "$0") ||
14829        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
14830        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
14831        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
14832      // No need to check constraints, nothing other than the equivalent of
14833      // "=r,0" would be valid here.
14834      return IntrinsicLowering::LowerToByteSwap(CI);
14835    }
14836
14837    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
14838    if (CI->getType()->isIntegerTy(16) &&
14839        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14840        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
14841         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
14842      AsmPieces.clear();
14843      const std::string &ConstraintsStr = IA->getConstraintString();
14844      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14845      std::sort(AsmPieces.begin(), AsmPieces.end());
14846      if (AsmPieces.size() == 4 &&
14847          AsmPieces[0] == "~{cc}" &&
14848          AsmPieces[1] == "~{dirflag}" &&
14849          AsmPieces[2] == "~{flags}" &&
14850          AsmPieces[3] == "~{fpsr}")
14851      return IntrinsicLowering::LowerToByteSwap(CI);
14852    }
14853    break;
14854  case 3:
14855    if (CI->getType()->isIntegerTy(32) &&
14856        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14857        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
14858        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
14859        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
14860      AsmPieces.clear();
14861      const std::string &ConstraintsStr = IA->getConstraintString();
14862      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14863      std::sort(AsmPieces.begin(), AsmPieces.end());
14864      if (AsmPieces.size() == 4 &&
14865          AsmPieces[0] == "~{cc}" &&
14866          AsmPieces[1] == "~{dirflag}" &&
14867          AsmPieces[2] == "~{flags}" &&
14868          AsmPieces[3] == "~{fpsr}")
14869        return IntrinsicLowering::LowerToByteSwap(CI);
14870    }
14871
14872    if (CI->getType()->isIntegerTy(64)) {
14873      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14874      if (Constraints.size() >= 2 &&
14875          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14876          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14877        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
14878        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
14879            matchAsm(AsmPieces[1], "bswap", "%edx") &&
14880            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
14881          return IntrinsicLowering::LowerToByteSwap(CI);
14882      }
14883    }
14884    break;
14885  }
14886  return false;
14887}
14888
14889
14890
14891/// getConstraintType - Given a constraint letter, return the type of
14892/// constraint it is for this target.
14893X86TargetLowering::ConstraintType
14894X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14895  if (Constraint.size() == 1) {
14896    switch (Constraint[0]) {
14897    case 'R':
14898    case 'q':
14899    case 'Q':
14900    case 'f':
14901    case 't':
14902    case 'u':
14903    case 'y':
14904    case 'x':
14905    case 'Y':
14906    case 'l':
14907      return C_RegisterClass;
14908    case 'a':
14909    case 'b':
14910    case 'c':
14911    case 'd':
14912    case 'S':
14913    case 'D':
14914    case 'A':
14915      return C_Register;
14916    case 'I':
14917    case 'J':
14918    case 'K':
14919    case 'L':
14920    case 'M':
14921    case 'N':
14922    case 'G':
14923    case 'C':
14924    case 'e':
14925    case 'Z':
14926      return C_Other;
14927    default:
14928      break;
14929    }
14930  }
14931  return TargetLowering::getConstraintType(Constraint);
14932}
14933
14934/// Examine constraint type and operand type and determine a weight value.
14935/// This object must already have been set up with the operand type
14936/// and the current alternative constraint selected.
14937TargetLowering::ConstraintWeight
14938  X86TargetLowering::getSingleConstraintMatchWeight(
14939    AsmOperandInfo &info, const char *constraint) const {
14940  ConstraintWeight weight = CW_Invalid;
14941  Value *CallOperandVal = info.CallOperandVal;
14942    // If we don't have a value, we can't do a match,
14943    // but allow it at the lowest weight.
14944  if (CallOperandVal == NULL)
14945    return CW_Default;
14946  Type *type = CallOperandVal->getType();
14947  // Look at the constraint type.
14948  switch (*constraint) {
14949  default:
14950    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14951  case 'R':
14952  case 'q':
14953  case 'Q':
14954  case 'a':
14955  case 'b':
14956  case 'c':
14957  case 'd':
14958  case 'S':
14959  case 'D':
14960  case 'A':
14961    if (CallOperandVal->getType()->isIntegerTy())
14962      weight = CW_SpecificReg;
14963    break;
14964  case 'f':
14965  case 't':
14966  case 'u':
14967      if (type->isFloatingPointTy())
14968        weight = CW_SpecificReg;
14969      break;
14970  case 'y':
14971      if (type->isX86_MMXTy() && Subtarget->hasMMX())
14972        weight = CW_SpecificReg;
14973      break;
14974  case 'x':
14975  case 'Y':
14976    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
14977        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
14978      weight = CW_Register;
14979    break;
14980  case 'I':
14981    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14982      if (C->getZExtValue() <= 31)
14983        weight = CW_Constant;
14984    }
14985    break;
14986  case 'J':
14987    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14988      if (C->getZExtValue() <= 63)
14989        weight = CW_Constant;
14990    }
14991    break;
14992  case 'K':
14993    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14994      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
14995        weight = CW_Constant;
14996    }
14997    break;
14998  case 'L':
14999    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15000      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15001        weight = CW_Constant;
15002    }
15003    break;
15004  case 'M':
15005    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15006      if (C->getZExtValue() <= 3)
15007        weight = CW_Constant;
15008    }
15009    break;
15010  case 'N':
15011    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15012      if (C->getZExtValue() <= 0xff)
15013        weight = CW_Constant;
15014    }
15015    break;
15016  case 'G':
15017  case 'C':
15018    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15019      weight = CW_Constant;
15020    }
15021    break;
15022  case 'e':
15023    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15024      if ((C->getSExtValue() >= -0x80000000LL) &&
15025          (C->getSExtValue() <= 0x7fffffffLL))
15026        weight = CW_Constant;
15027    }
15028    break;
15029  case 'Z':
15030    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15031      if (C->getZExtValue() <= 0xffffffff)
15032        weight = CW_Constant;
15033    }
15034    break;
15035  }
15036  return weight;
15037}
15038
15039/// LowerXConstraint - try to replace an X constraint, which matches anything,
15040/// with another that has more specific requirements based on the type of the
15041/// corresponding operand.
15042const char *X86TargetLowering::
15043LowerXConstraint(EVT ConstraintVT) const {
15044  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15045  // 'f' like normal targets.
15046  if (ConstraintVT.isFloatingPoint()) {
15047    if (Subtarget->hasSSE2())
15048      return "Y";
15049    if (Subtarget->hasSSE1())
15050      return "x";
15051  }
15052
15053  return TargetLowering::LowerXConstraint(ConstraintVT);
15054}
15055
15056/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15057/// vector.  If it is invalid, don't add anything to Ops.
15058void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15059                                                     std::string &Constraint,
15060                                                     std::vector<SDValue>&Ops,
15061                                                     SelectionDAG &DAG) const {
15062  SDValue Result(0, 0);
15063
15064  // Only support length 1 constraints for now.
15065  if (Constraint.length() > 1) return;
15066
15067  char ConstraintLetter = Constraint[0];
15068  switch (ConstraintLetter) {
15069  default: break;
15070  case 'I':
15071    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15072      if (C->getZExtValue() <= 31) {
15073        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15074        break;
15075      }
15076    }
15077    return;
15078  case 'J':
15079    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15080      if (C->getZExtValue() <= 63) {
15081        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15082        break;
15083      }
15084    }
15085    return;
15086  case 'K':
15087    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15088      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15089        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15090        break;
15091      }
15092    }
15093    return;
15094  case 'N':
15095    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15096      if (C->getZExtValue() <= 255) {
15097        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15098        break;
15099      }
15100    }
15101    return;
15102  case 'e': {
15103    // 32-bit signed value
15104    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15105      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15106                                           C->getSExtValue())) {
15107        // Widen to 64 bits here to get it sign extended.
15108        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15109        break;
15110      }
15111    // FIXME gcc accepts some relocatable values here too, but only in certain
15112    // memory models; it's complicated.
15113    }
15114    return;
15115  }
15116  case 'Z': {
15117    // 32-bit unsigned value
15118    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15119      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15120                                           C->getZExtValue())) {
15121        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15122        break;
15123      }
15124    }
15125    // FIXME gcc accepts some relocatable values here too, but only in certain
15126    // memory models; it's complicated.
15127    return;
15128  }
15129  case 'i': {
15130    // Literal immediates are always ok.
15131    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15132      // Widen to 64 bits here to get it sign extended.
15133      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15134      break;
15135    }
15136
15137    // In any sort of PIC mode addresses need to be computed at runtime by
15138    // adding in a register or some sort of table lookup.  These can't
15139    // be used as immediates.
15140    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15141      return;
15142
15143    // If we are in non-pic codegen mode, we allow the address of a global (with
15144    // an optional displacement) to be used with 'i'.
15145    GlobalAddressSDNode *GA = 0;
15146    int64_t Offset = 0;
15147
15148    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15149    while (1) {
15150      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15151        Offset += GA->getOffset();
15152        break;
15153      } else if (Op.getOpcode() == ISD::ADD) {
15154        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15155          Offset += C->getZExtValue();
15156          Op = Op.getOperand(0);
15157          continue;
15158        }
15159      } else if (Op.getOpcode() == ISD::SUB) {
15160        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15161          Offset += -C->getZExtValue();
15162          Op = Op.getOperand(0);
15163          continue;
15164        }
15165      }
15166
15167      // Otherwise, this isn't something we can handle, reject it.
15168      return;
15169    }
15170
15171    const GlobalValue *GV = GA->getGlobal();
15172    // If we require an extra load to get this address, as in PIC mode, we
15173    // can't accept it.
15174    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15175                                                        getTargetMachine())))
15176      return;
15177
15178    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15179                                        GA->getValueType(0), Offset);
15180    break;
15181  }
15182  }
15183
15184  if (Result.getNode()) {
15185    Ops.push_back(Result);
15186    return;
15187  }
15188  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15189}
15190
15191std::pair<unsigned, const TargetRegisterClass*>
15192X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15193                                                EVT VT) const {
15194  // First, see if this is a constraint that directly corresponds to an LLVM
15195  // register class.
15196  if (Constraint.size() == 1) {
15197    // GCC Constraint Letters
15198    switch (Constraint[0]) {
15199    default: break;
15200      // TODO: Slight differences here in allocation order and leaving
15201      // RIP in the class. Do they matter any more here than they do
15202      // in the normal allocation?
15203    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15204      if (Subtarget->is64Bit()) {
15205	if (VT == MVT::i32 || VT == MVT::f32)
15206	  return std::make_pair(0U, X86::GR32RegisterClass);
15207	else if (VT == MVT::i16)
15208	  return std::make_pair(0U, X86::GR16RegisterClass);
15209	else if (VT == MVT::i8 || VT == MVT::i1)
15210	  return std::make_pair(0U, X86::GR8RegisterClass);
15211	else if (VT == MVT::i64 || VT == MVT::f64)
15212	  return std::make_pair(0U, X86::GR64RegisterClass);
15213	break;
15214      }
15215      // 32-bit fallthrough
15216    case 'Q':   // Q_REGS
15217      if (VT == MVT::i32 || VT == MVT::f32)
15218	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15219      else if (VT == MVT::i16)
15220	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15221      else if (VT == MVT::i8 || VT == MVT::i1)
15222	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15223      else if (VT == MVT::i64)
15224	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15225      break;
15226    case 'r':   // GENERAL_REGS
15227    case 'l':   // INDEX_REGS
15228      if (VT == MVT::i8 || VT == MVT::i1)
15229        return std::make_pair(0U, X86::GR8RegisterClass);
15230      if (VT == MVT::i16)
15231        return std::make_pair(0U, X86::GR16RegisterClass);
15232      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15233        return std::make_pair(0U, X86::GR32RegisterClass);
15234      return std::make_pair(0U, X86::GR64RegisterClass);
15235    case 'R':   // LEGACY_REGS
15236      if (VT == MVT::i8 || VT == MVT::i1)
15237        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15238      if (VT == MVT::i16)
15239        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15240      if (VT == MVT::i32 || !Subtarget->is64Bit())
15241        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15242      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15243    case 'f':  // FP Stack registers.
15244      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15245      // value to the correct fpstack register class.
15246      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15247        return std::make_pair(0U, X86::RFP32RegisterClass);
15248      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15249        return std::make_pair(0U, X86::RFP64RegisterClass);
15250      return std::make_pair(0U, X86::RFP80RegisterClass);
15251    case 'y':   // MMX_REGS if MMX allowed.
15252      if (!Subtarget->hasMMX()) break;
15253      return std::make_pair(0U, X86::VR64RegisterClass);
15254    case 'Y':   // SSE_REGS if SSE2 allowed
15255      if (!Subtarget->hasSSE2()) break;
15256      // FALL THROUGH.
15257    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15258      if (!Subtarget->hasSSE1()) break;
15259
15260      switch (VT.getSimpleVT().SimpleTy) {
15261      default: break;
15262      // Scalar SSE types.
15263      case MVT::f32:
15264      case MVT::i32:
15265        return std::make_pair(0U, X86::FR32RegisterClass);
15266      case MVT::f64:
15267      case MVT::i64:
15268        return std::make_pair(0U, X86::FR64RegisterClass);
15269      // Vector types.
15270      case MVT::v16i8:
15271      case MVT::v8i16:
15272      case MVT::v4i32:
15273      case MVT::v2i64:
15274      case MVT::v4f32:
15275      case MVT::v2f64:
15276        return std::make_pair(0U, X86::VR128RegisterClass);
15277      // AVX types.
15278      case MVT::v32i8:
15279      case MVT::v16i16:
15280      case MVT::v8i32:
15281      case MVT::v4i64:
15282      case MVT::v8f32:
15283      case MVT::v4f64:
15284        return std::make_pair(0U, X86::VR256RegisterClass);
15285
15286      }
15287      break;
15288    }
15289  }
15290
15291  // Use the default implementation in TargetLowering to convert the register
15292  // constraint into a member of a register class.
15293  std::pair<unsigned, const TargetRegisterClass*> Res;
15294  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15295
15296  // Not found as a standard register?
15297  if (Res.second == 0) {
15298    // Map st(0) -> st(7) -> ST0
15299    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15300        tolower(Constraint[1]) == 's' &&
15301        tolower(Constraint[2]) == 't' &&
15302        Constraint[3] == '(' &&
15303        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15304        Constraint[5] == ')' &&
15305        Constraint[6] == '}') {
15306
15307      Res.first = X86::ST0+Constraint[4]-'0';
15308      Res.second = X86::RFP80RegisterClass;
15309      return Res;
15310    }
15311
15312    // GCC allows "st(0)" to be called just plain "st".
15313    if (StringRef("{st}").equals_lower(Constraint)) {
15314      Res.first = X86::ST0;
15315      Res.second = X86::RFP80RegisterClass;
15316      return Res;
15317    }
15318
15319    // flags -> EFLAGS
15320    if (StringRef("{flags}").equals_lower(Constraint)) {
15321      Res.first = X86::EFLAGS;
15322      Res.second = X86::CCRRegisterClass;
15323      return Res;
15324    }
15325
15326    // 'A' means EAX + EDX.
15327    if (Constraint == "A") {
15328      Res.first = X86::EAX;
15329      Res.second = X86::GR32_ADRegisterClass;
15330      return Res;
15331    }
15332    return Res;
15333  }
15334
15335  // Otherwise, check to see if this is a register class of the wrong value
15336  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15337  // turn into {ax},{dx}.
15338  if (Res.second->hasType(VT))
15339    return Res;   // Correct type already, nothing to do.
15340
15341  // All of the single-register GCC register classes map their values onto
15342  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15343  // really want an 8-bit or 32-bit register, map to the appropriate register
15344  // class and return the appropriate register.
15345  if (Res.second == X86::GR16RegisterClass) {
15346    if (VT == MVT::i8) {
15347      unsigned DestReg = 0;
15348      switch (Res.first) {
15349      default: break;
15350      case X86::AX: DestReg = X86::AL; break;
15351      case X86::DX: DestReg = X86::DL; break;
15352      case X86::CX: DestReg = X86::CL; break;
15353      case X86::BX: DestReg = X86::BL; break;
15354      }
15355      if (DestReg) {
15356        Res.first = DestReg;
15357        Res.second = X86::GR8RegisterClass;
15358      }
15359    } else if (VT == MVT::i32) {
15360      unsigned DestReg = 0;
15361      switch (Res.first) {
15362      default: break;
15363      case X86::AX: DestReg = X86::EAX; break;
15364      case X86::DX: DestReg = X86::EDX; break;
15365      case X86::CX: DestReg = X86::ECX; break;
15366      case X86::BX: DestReg = X86::EBX; break;
15367      case X86::SI: DestReg = X86::ESI; break;
15368      case X86::DI: DestReg = X86::EDI; break;
15369      case X86::BP: DestReg = X86::EBP; break;
15370      case X86::SP: DestReg = X86::ESP; break;
15371      }
15372      if (DestReg) {
15373        Res.first = DestReg;
15374        Res.second = X86::GR32RegisterClass;
15375      }
15376    } else if (VT == MVT::i64) {
15377      unsigned DestReg = 0;
15378      switch (Res.first) {
15379      default: break;
15380      case X86::AX: DestReg = X86::RAX; break;
15381      case X86::DX: DestReg = X86::RDX; break;
15382      case X86::CX: DestReg = X86::RCX; break;
15383      case X86::BX: DestReg = X86::RBX; break;
15384      case X86::SI: DestReg = X86::RSI; break;
15385      case X86::DI: DestReg = X86::RDI; break;
15386      case X86::BP: DestReg = X86::RBP; break;
15387      case X86::SP: DestReg = X86::RSP; break;
15388      }
15389      if (DestReg) {
15390        Res.first = DestReg;
15391        Res.second = X86::GR64RegisterClass;
15392      }
15393    }
15394  } else if (Res.second == X86::FR32RegisterClass ||
15395             Res.second == X86::FR64RegisterClass ||
15396             Res.second == X86::VR128RegisterClass) {
15397    // Handle references to XMM physical registers that got mapped into the
15398    // wrong class.  This can happen with constraints like {xmm0} where the
15399    // target independent register mapper will just pick the first match it can
15400    // find, ignoring the required type.
15401    if (VT == MVT::f32)
15402      Res.second = X86::FR32RegisterClass;
15403    else if (VT == MVT::f64)
15404      Res.second = X86::FR64RegisterClass;
15405    else if (X86::VR128RegisterClass->hasType(VT))
15406      Res.second = X86::VR128RegisterClass;
15407  }
15408
15409  return Res;
15410}
15411