X86ISelLowering.cpp revision 3efc0778c9baacc3dff4c50b62396d14f2420ba5
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalAlias.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/LLVMContext.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCExpr.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Dwarf.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52using namespace llvm;
53using namespace dwarf;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57static cl::opt<bool>
58DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
59
60// Forward declarations.
61static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                       SDValue V2);
63
64static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
65
66  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
67
68  if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
69    if (is64Bit) return new X8664_MachoTargetObjectFile();
70    return new TargetLoweringObjectFileMachO();
71  } else if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
72    if (is64Bit) return new X8664_ELFTargetObjectFile(TM);
73    return new X8632_ELFTargetObjectFile(TM);
74  } else if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) {
75    return new TargetLoweringObjectFileCOFF();
76  }
77  llvm_unreachable("unknown subtarget type");
78}
79
80X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
81  : TargetLowering(TM, createTLOF(TM)) {
82  Subtarget = &TM.getSubtarget<X86Subtarget>();
83  X86ScalarSSEf64 = Subtarget->hasSSE2();
84  X86ScalarSSEf32 = Subtarget->hasSSE1();
85  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
86
87  RegInfo = TM.getRegisterInfo();
88  TD = getTargetData();
89
90  // Set up the TargetLowering object.
91
92  // X86 is weird, it always uses i8 for shift amounts and setcc results.
93  setShiftAmountType(MVT::i8);
94  setBooleanContents(ZeroOrOneBooleanContent);
95  setSchedulingPreference(Sched::RegPressure);
96  setStackPointerRegisterToSaveRestore(X86StackPtr);
97
98  if (Subtarget->isTargetDarwin()) {
99    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
100    setUseUnderscoreSetJmp(false);
101    setUseUnderscoreLongJmp(false);
102  } else if (Subtarget->isTargetMingw()) {
103    // MS runtime is weird: it exports _setjmp, but longjmp!
104    setUseUnderscoreSetJmp(true);
105    setUseUnderscoreLongJmp(false);
106  } else {
107    setUseUnderscoreSetJmp(true);
108    setUseUnderscoreLongJmp(true);
109  }
110
111  // Set up the register classes.
112  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
113  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
114  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
115  if (Subtarget->is64Bit())
116    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
117
118  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
119
120  // We don't accept any truncstore of integer registers.
121  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
122  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
123  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
124  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
125  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
126  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
127
128  // SETOEQ and SETUNE require checking two conditions.
129  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
130  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
131  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
132  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
133  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
134  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
135
136  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
137  // operation.
138  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
139  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
140  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
141
142  if (Subtarget->is64Bit()) {
143    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
144    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
145  } else if (!UseSoftFloat) {
146    // We have an algorithm for SSE2->double, and we turn this into a
147    // 64-bit FILD followed by conditional FADD for other targets.
148    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
149    // We have an algorithm for SSE2, and we turn this into a 64-bit
150    // FILD for other targets.
151    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
152  }
153
154  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
155  // this operation.
156  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
157  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
158
159  if (!UseSoftFloat) {
160    // SSE has no i16 to fp conversion, only i32
161    if (X86ScalarSSEf32) {
162      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
163      // f32 and f64 cases are Legal, f80 case is not
164      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
165    } else {
166      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
167      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
168    }
169  } else {
170    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
171    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
172  }
173
174  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
175  // are Legal, f80 is custom lowered.
176  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
177  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
178
179  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
180  // this operation.
181  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
182  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
183
184  if (X86ScalarSSEf32) {
185    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
186    // f32 and f64 cases are Legal, f80 case is not
187    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
188  } else {
189    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
190    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
191  }
192
193  // Handle FP_TO_UINT by promoting the destination to a larger signed
194  // conversion.
195  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
196  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
197  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
198
199  if (Subtarget->is64Bit()) {
200    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
201    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
202  } else if (!UseSoftFloat) {
203    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
204      // Expand FP_TO_UINT into a select.
205      // FIXME: We would like to use a Custom expander here eventually to do
206      // the optimal thing for SSE vs. the default expansion in the legalizer.
207      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
208    else
209      // With SSE3 we can use fisttpll to convert to a signed i64; without
210      // SSE, we're stuck with a fistpll.
211      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
212  }
213
214  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
215  if (!X86ScalarSSEf64) {
216    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
217    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
218    if (Subtarget->is64Bit()) {
219      setOperationAction(ISD::BIT_CONVERT    , MVT::f64  , Expand);
220      // Without SSE, i64->f64 goes through memory; i64->MMX is Legal.
221      if (Subtarget->hasMMX() && !DisableMMX)
222        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Custom);
223      else
224        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Expand);
225    }
226  }
227
228  // Scalar integer divide and remainder are lowered to use operations that
229  // produce two results, to match the available instructions. This exposes
230  // the two-result form to trivial CSE, which is able to combine x/y and x%y
231  // into a single instruction.
232  //
233  // Scalar integer multiply-high is also lowered to use two-result
234  // operations, to match the available instructions. However, plain multiply
235  // (low) operations are left as Legal, as there are single-result
236  // instructions for this in x86. Using the two-result multiply instructions
237  // when both high and low results are needed must be arranged by dagcombine.
238  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
239  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
240  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
241  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
242  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
243  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
244  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
245  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
246  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
247  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
248  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
249  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
250  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
251  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
252  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
253  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
254  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
255  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
256  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
257  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
258  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
259  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
260  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
261  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
262
263  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
264  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
265  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
266  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
267  if (Subtarget->is64Bit())
268    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
269  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
270  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
271  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
272  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
273  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
274  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
275  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
276  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
277
278  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
279  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
280  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
281  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
282  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
283  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
284  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
287  if (Subtarget->is64Bit()) {
288    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
289    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
290    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
291  }
292
293  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
294  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
295
296  // These should be promoted to a larger select which is supported.
297  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
298  // X86 wants to expand cmov itself.
299  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
300  setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
301  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
302  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
303  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
304  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
305  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
306  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
307  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
308  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
309  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
310  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
313    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
314  }
315  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
316
317  // Darwin ABI issue.
318  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
319  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
320  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
321  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
322  if (Subtarget->is64Bit())
323    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
324  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
325  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
326  if (Subtarget->is64Bit()) {
327    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
328    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
329    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
330    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
331    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
332  }
333  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
334  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
335  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
336  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
337  if (Subtarget->is64Bit()) {
338    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
339    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
340    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
341  }
342
343  if (Subtarget->hasSSE1())
344    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
345
346  // We may not have a libcall for MEMBARRIER so we should lower this.
347  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
348
349  // On X86 and X86-64, atomic operations are lowered to locked instructions.
350  // Locked instructions, in turn, have implicit fence semantics (all memory
351  // operations are flushed before issuing the locked instruction, and they
352  // are not buffered), so we can fold away the common pattern of
353  // fence-atomic-fence.
354  setShouldFoldAtomicFences(true);
355
356  // Expand certain atomics
357  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
358  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
359  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
360  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
361
362  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
363  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
364  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
365  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
366
367  if (!Subtarget->is64Bit()) {
368    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
369    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
371    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
372    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
373    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
374    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
375  }
376
377  // FIXME - use subtarget debug flags
378  if (!Subtarget->isTargetDarwin() &&
379      !Subtarget->isTargetELF() &&
380      !Subtarget->isTargetCygMing()) {
381    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
382  }
383
384  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
385  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
386  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
387  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
388  if (Subtarget->is64Bit()) {
389    setExceptionPointerRegister(X86::RAX);
390    setExceptionSelectorRegister(X86::RDX);
391  } else {
392    setExceptionPointerRegister(X86::EAX);
393    setExceptionSelectorRegister(X86::EDX);
394  }
395  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
396  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
397
398  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
399
400  setOperationAction(ISD::TRAP, MVT::Other, Legal);
401
402  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
403  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
404  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
405  if (Subtarget->is64Bit()) {
406    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
407    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
408  } else {
409    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
410    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
411  }
412
413  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
414  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
415  if (Subtarget->is64Bit())
416    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
417  if (Subtarget->isTargetCygMing())
418    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
419  else
420    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
421
422  if (!UseSoftFloat && X86ScalarSSEf64) {
423    // f32 and f64 use SSE.
424    // Set up the FP register classes.
425    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
426    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
427
428    // Use ANDPD to simulate FABS.
429    setOperationAction(ISD::FABS , MVT::f64, Custom);
430    setOperationAction(ISD::FABS , MVT::f32, Custom);
431
432    // Use XORP to simulate FNEG.
433    setOperationAction(ISD::FNEG , MVT::f64, Custom);
434    setOperationAction(ISD::FNEG , MVT::f32, Custom);
435
436    // Use ANDPD and ORPD to simulate FCOPYSIGN.
437    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
438    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
439
440    // We don't support sin/cos/fmod
441    setOperationAction(ISD::FSIN , MVT::f64, Expand);
442    setOperationAction(ISD::FCOS , MVT::f64, Expand);
443    setOperationAction(ISD::FSIN , MVT::f32, Expand);
444    setOperationAction(ISD::FCOS , MVT::f32, Expand);
445
446    // Expand FP immediates into loads from the stack, except for the special
447    // cases we handle.
448    addLegalFPImmediate(APFloat(+0.0)); // xorpd
449    addLegalFPImmediate(APFloat(+0.0f)); // xorps
450  } else if (!UseSoftFloat && X86ScalarSSEf32) {
451    // Use SSE for f32, x87 for f64.
452    // Set up the FP register classes.
453    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
454    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
455
456    // Use ANDPS to simulate FABS.
457    setOperationAction(ISD::FABS , MVT::f32, Custom);
458
459    // Use XORP to simulate FNEG.
460    setOperationAction(ISD::FNEG , MVT::f32, Custom);
461
462    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
463
464    // Use ANDPS and ORPS to simulate FCOPYSIGN.
465    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
466    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
467
468    // We don't support sin/cos/fmod
469    setOperationAction(ISD::FSIN , MVT::f32, Expand);
470    setOperationAction(ISD::FCOS , MVT::f32, Expand);
471
472    // Special cases we handle for FP constants.
473    addLegalFPImmediate(APFloat(+0.0f)); // xorps
474    addLegalFPImmediate(APFloat(+0.0)); // FLD0
475    addLegalFPImmediate(APFloat(+1.0)); // FLD1
476    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
477    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
478
479    if (!UnsafeFPMath) {
480      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
481      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
482    }
483  } else if (!UseSoftFloat) {
484    // f32 and f64 in x87.
485    // Set up the FP register classes.
486    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
487    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
488
489    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
490    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
491    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
492    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
493
494    if (!UnsafeFPMath) {
495      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
496      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
497    }
498    addLegalFPImmediate(APFloat(+0.0)); // FLD0
499    addLegalFPImmediate(APFloat(+1.0)); // FLD1
500    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
501    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
502    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
503    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
504    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
505    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
506  }
507
508  // Long double always uses X87.
509  if (!UseSoftFloat) {
510    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
511    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
512    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
513    {
514      bool ignored;
515      APFloat TmpFlt(+0.0);
516      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
517                     &ignored);
518      addLegalFPImmediate(TmpFlt);  // FLD0
519      TmpFlt.changeSign();
520      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
521      APFloat TmpFlt2(+1.0);
522      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
523                      &ignored);
524      addLegalFPImmediate(TmpFlt2);  // FLD1
525      TmpFlt2.changeSign();
526      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
527    }
528
529    if (!UnsafeFPMath) {
530      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
531      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
532    }
533  }
534
535  // Always use a library call for pow.
536  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
537  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
538  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
539
540  setOperationAction(ISD::FLOG, MVT::f80, Expand);
541  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
542  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
543  setOperationAction(ISD::FEXP, MVT::f80, Expand);
544  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
545
546  // First set operation action for all vector types to either promote
547  // (for widening) or expand (for scalarization). Then we will selectively
548  // turn on ones that can be effectively codegen'd.
549  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
550       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
551    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
566    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
567    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
600    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
604    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
605         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
606      setTruncStoreAction((MVT::SimpleValueType)VT,
607                          (MVT::SimpleValueType)InnerVT, Expand);
608    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
609    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
610    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
611  }
612
613  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
614  // with -msoft-float, disable use of MMX as well.
615  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
616    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass, false);
617    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass, false);
618    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass, false);
619
620    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass, false);
621
622    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
623    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
624    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
625    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
626
627    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
628    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
629    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
630    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
631
632    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
633    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
634
635    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
636    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
637    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
638    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
639    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
640    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
641    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
642
643    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
644    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
645    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
646    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
647    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
648    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
649    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
650
651    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
652    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
653    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
654    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
655    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
656    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
657    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
658
659    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
660    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
661    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
662    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
663    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
664    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
665    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
666
667    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
668    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
669    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
670    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
671
672    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
673    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
674    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
675    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
676
677    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
678    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
679    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
680
681    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
682
683    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
684    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
685    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
686    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
687    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
688    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
689    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
690
691    if (!X86ScalarSSEf64 && Subtarget->is64Bit()) {
692      setOperationAction(ISD::BIT_CONVERT,        MVT::v8i8,  Custom);
693      setOperationAction(ISD::BIT_CONVERT,        MVT::v4i16, Custom);
694      setOperationAction(ISD::BIT_CONVERT,        MVT::v2i32, Custom);
695      setOperationAction(ISD::BIT_CONVERT,        MVT::v1i64, Custom);
696    }
697  }
698
699  if (!UseSoftFloat && Subtarget->hasSSE1()) {
700    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
701
702    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
703    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
704    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
705    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
706    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
707    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
708    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
709    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
710    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
711    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
712    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
713    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
714  }
715
716  if (!UseSoftFloat && Subtarget->hasSSE2()) {
717    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
718
719    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
720    // registers cannot be used even for integer operations.
721    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
722    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
723    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
724    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
725
726    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
727    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
728    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
729    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
730    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
731    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
732    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
733    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
734    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
735    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
736    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
737    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
738    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
739    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
740    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
741    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
742
743    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
744    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
745    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
746    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
747
748    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
749    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
750    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
751    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
752    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
753
754    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
755    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
756    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
757    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
758    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
759
760    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
761    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
762      EVT VT = (MVT::SimpleValueType)i;
763      // Do not attempt to custom lower non-power-of-2 vectors
764      if (!isPowerOf2_32(VT.getVectorNumElements()))
765        continue;
766      // Do not attempt to custom lower non-128-bit vectors
767      if (!VT.is128BitVector())
768        continue;
769      setOperationAction(ISD::BUILD_VECTOR,
770                         VT.getSimpleVT().SimpleTy, Custom);
771      setOperationAction(ISD::VECTOR_SHUFFLE,
772                         VT.getSimpleVT().SimpleTy, Custom);
773      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
774                         VT.getSimpleVT().SimpleTy, Custom);
775    }
776
777    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
778    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
779    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
780    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
781    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
782    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
783
784    if (Subtarget->is64Bit()) {
785      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
786      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
787    }
788
789    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
790    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
791      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
792      EVT VT = SVT;
793
794      // Do not attempt to promote non-128-bit vectors
795      if (!VT.is128BitVector())
796        continue;
797
798      setOperationAction(ISD::AND,    SVT, Promote);
799      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
800      setOperationAction(ISD::OR,     SVT, Promote);
801      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
802      setOperationAction(ISD::XOR,    SVT, Promote);
803      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
804      setOperationAction(ISD::LOAD,   SVT, Promote);
805      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
806      setOperationAction(ISD::SELECT, SVT, Promote);
807      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
808    }
809
810    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
811
812    // Custom lower v2i64 and v2f64 selects.
813    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
814    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
815    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
816    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
817
818    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
819    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
820    if (!DisableMMX && Subtarget->hasMMX()) {
821      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
822      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
823    }
824  }
825
826  if (Subtarget->hasSSE41()) {
827    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
828    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
829    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
830    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
831    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
832    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
833    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
834    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
835    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
836    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
837
838    // FIXME: Do we need to handle scalar-to-vector here?
839    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
840
841    // Can turn SHL into an integer multiply.
842    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
843    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
844
845    // i8 and i16 vectors are custom , because the source register and source
846    // source memory operand types are not the same width.  f32 vectors are
847    // custom since the immediate controlling the insert encodes additional
848    // information.
849    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
850    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
851    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
852    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
853
854    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
855    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
856    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
857    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
858
859    if (Subtarget->is64Bit()) {
860      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
861      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
862    }
863  }
864
865  if (Subtarget->hasSSE42()) {
866    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
867  }
868
869  if (!UseSoftFloat && Subtarget->hasAVX()) {
870    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
871    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
872    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
873    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
874    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
875
876    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
877    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
878    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
879    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
880    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
881    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
882    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
883    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
884    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
885    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
886    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
887    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
888    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
889    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
890    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
891
892    // Operations to consider commented out -v16i16 v32i8
893    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
894    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
895    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
896    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
897    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
898    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
899    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
900    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
901    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
902    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
903    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
904    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
905    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
906    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
907
908    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
909    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
910    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
911    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
912
913    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
914    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
915    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
916    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
917    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
918
919    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
920    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
921    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
922    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
923    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
924    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
925
926#if 0
927    // Not sure we want to do this since there are no 256-bit integer
928    // operations in AVX
929
930    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
931    // This includes 256-bit vectors
932    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
933      EVT VT = (MVT::SimpleValueType)i;
934
935      // Do not attempt to custom lower non-power-of-2 vectors
936      if (!isPowerOf2_32(VT.getVectorNumElements()))
937        continue;
938
939      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
940      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
941      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
942    }
943
944    if (Subtarget->is64Bit()) {
945      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
946      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
947    }
948#endif
949
950#if 0
951    // Not sure we want to do this since there are no 256-bit integer
952    // operations in AVX
953
954    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
955    // Including 256-bit vectors
956    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
957      EVT VT = (MVT::SimpleValueType)i;
958
959      if (!VT.is256BitVector()) {
960        continue;
961      }
962      setOperationAction(ISD::AND,    VT, Promote);
963      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
964      setOperationAction(ISD::OR,     VT, Promote);
965      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
966      setOperationAction(ISD::XOR,    VT, Promote);
967      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
968      setOperationAction(ISD::LOAD,   VT, Promote);
969      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
970      setOperationAction(ISD::SELECT, VT, Promote);
971      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
972    }
973
974    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
975#endif
976  }
977
978  // We want to custom lower some of our intrinsics.
979  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
980
981  // Add/Sub/Mul with overflow operations are custom lowered.
982  setOperationAction(ISD::SADDO, MVT::i32, Custom);
983  setOperationAction(ISD::UADDO, MVT::i32, Custom);
984  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
985  setOperationAction(ISD::USUBO, MVT::i32, Custom);
986  setOperationAction(ISD::SMULO, MVT::i32, Custom);
987
988  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
989  // handle type legalization for these operations here.
990  //
991  // FIXME: We really should do custom legalization for addition and
992  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
993  // than generic legalization for 64-bit multiplication-with-overflow, though.
994  if (Subtarget->is64Bit()) {
995    setOperationAction(ISD::SADDO, MVT::i64, Custom);
996    setOperationAction(ISD::UADDO, MVT::i64, Custom);
997    setOperationAction(ISD::SSUBO, MVT::i64, Custom);
998    setOperationAction(ISD::USUBO, MVT::i64, Custom);
999    setOperationAction(ISD::SMULO, MVT::i64, Custom);
1000  }
1001
1002  if (!Subtarget->is64Bit()) {
1003    // These libcalls are not available in 32-bit.
1004    setLibcallName(RTLIB::SHL_I128, 0);
1005    setLibcallName(RTLIB::SRL_I128, 0);
1006    setLibcallName(RTLIB::SRA_I128, 0);
1007  }
1008
1009  // We have target-specific dag combine patterns for the following nodes:
1010  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1011  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1012  setTargetDAGCombine(ISD::BUILD_VECTOR);
1013  setTargetDAGCombine(ISD::SELECT);
1014  setTargetDAGCombine(ISD::SHL);
1015  setTargetDAGCombine(ISD::SRA);
1016  setTargetDAGCombine(ISD::SRL);
1017  setTargetDAGCombine(ISD::OR);
1018  setTargetDAGCombine(ISD::STORE);
1019  setTargetDAGCombine(ISD::ZERO_EXTEND);
1020  if (Subtarget->is64Bit())
1021    setTargetDAGCombine(ISD::MUL);
1022
1023  computeRegisterProperties();
1024
1025  // FIXME: These should be based on subtarget info. Plus, the values should
1026  // be smaller when we are in optimizing for size mode.
1027  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1028  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1029  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1030  setPrefLoopAlignment(16);
1031  benefitFromCodePlacementOpt = true;
1032}
1033
1034
1035MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1036  return MVT::i8;
1037}
1038
1039
1040/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1041/// the desired ByVal argument alignment.
1042static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1043  if (MaxAlign == 16)
1044    return;
1045  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1046    if (VTy->getBitWidth() == 128)
1047      MaxAlign = 16;
1048  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1049    unsigned EltAlign = 0;
1050    getMaxByValAlign(ATy->getElementType(), EltAlign);
1051    if (EltAlign > MaxAlign)
1052      MaxAlign = EltAlign;
1053  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1054    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1055      unsigned EltAlign = 0;
1056      getMaxByValAlign(STy->getElementType(i), EltAlign);
1057      if (EltAlign > MaxAlign)
1058        MaxAlign = EltAlign;
1059      if (MaxAlign == 16)
1060        break;
1061    }
1062  }
1063  return;
1064}
1065
1066/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1067/// function arguments in the caller parameter area. For X86, aggregates
1068/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1069/// are at 4-byte boundaries.
1070unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1071  if (Subtarget->is64Bit()) {
1072    // Max of 8 and alignment of type.
1073    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1074    if (TyAlign > 8)
1075      return TyAlign;
1076    return 8;
1077  }
1078
1079  unsigned Align = 4;
1080  if (Subtarget->hasSSE1())
1081    getMaxByValAlign(Ty, Align);
1082  return Align;
1083}
1084
1085/// getOptimalMemOpType - Returns the target specific optimal type for load
1086/// and store operations as a result of memset, memcpy, and memmove
1087/// lowering. If DstAlign is zero that means it's safe to destination
1088/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1089/// means there isn't a need to check it against alignment requirement,
1090/// probably because the source does not need to be loaded. If
1091/// 'NonScalarIntSafe' is true, that means it's safe to return a
1092/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1093/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1094/// constant so it does not need to be loaded.
1095/// It returns EVT::Other if the type should be determined using generic
1096/// target-independent logic.
1097EVT
1098X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1099                                       unsigned DstAlign, unsigned SrcAlign,
1100                                       bool NonScalarIntSafe,
1101                                       bool MemcpyStrSrc,
1102                                       MachineFunction &MF) const {
1103  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1104  // linux.  This is because the stack realignment code can't handle certain
1105  // cases like PR2962.  This should be removed when PR2962 is fixed.
1106  const Function *F = MF.getFunction();
1107  if (NonScalarIntSafe &&
1108      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1109    if (Size >= 16 &&
1110        (Subtarget->isUnalignedMemAccessFast() ||
1111         ((DstAlign == 0 || DstAlign >= 16) &&
1112          (SrcAlign == 0 || SrcAlign >= 16))) &&
1113        Subtarget->getStackAlignment() >= 16) {
1114      if (Subtarget->hasSSE2())
1115        return MVT::v4i32;
1116      if (Subtarget->hasSSE1())
1117        return MVT::v4f32;
1118    } else if (!MemcpyStrSrc && Size >= 8 &&
1119               !Subtarget->is64Bit() &&
1120               Subtarget->getStackAlignment() >= 8 &&
1121               Subtarget->hasSSE2()) {
1122      // Do not use f64 to lower memcpy if source is string constant. It's
1123      // better to use i32 to avoid the loads.
1124      return MVT::f64;
1125    }
1126  }
1127  if (Subtarget->is64Bit() && Size >= 8)
1128    return MVT::i64;
1129  return MVT::i32;
1130}
1131
1132/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1133/// current function.  The returned value is a member of the
1134/// MachineJumpTableInfo::JTEntryKind enum.
1135unsigned X86TargetLowering::getJumpTableEncoding() const {
1136  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1137  // symbol.
1138  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1139      Subtarget->isPICStyleGOT())
1140    return MachineJumpTableInfo::EK_Custom32;
1141
1142  // Otherwise, use the normal jump table encoding heuristics.
1143  return TargetLowering::getJumpTableEncoding();
1144}
1145
1146/// getPICBaseSymbol - Return the X86-32 PIC base.
1147MCSymbol *
1148X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1149                                    MCContext &Ctx) const {
1150  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1151  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1152                               Twine(MF->getFunctionNumber())+"$pb");
1153}
1154
1155
1156const MCExpr *
1157X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1158                                             const MachineBasicBlock *MBB,
1159                                             unsigned uid,MCContext &Ctx) const{
1160  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1161         Subtarget->isPICStyleGOT());
1162  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1163  // entries.
1164  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1165                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1166}
1167
1168/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1169/// jumptable.
1170SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1171                                                    SelectionDAG &DAG) const {
1172  if (!Subtarget->is64Bit())
1173    // This doesn't have DebugLoc associated with it, but is not really the
1174    // same as a Register.
1175    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1176  return Table;
1177}
1178
1179/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1180/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1181/// MCExpr.
1182const MCExpr *X86TargetLowering::
1183getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1184                             MCContext &Ctx) const {
1185  // X86-64 uses RIP relative addressing based on the jump table label.
1186  if (Subtarget->isPICStyleRIPRel())
1187    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1188
1189  // Otherwise, the reference is relative to the PIC base.
1190  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1191}
1192
1193/// getFunctionAlignment - Return the Log2 alignment of this function.
1194unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1195  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1196}
1197
1198std::pair<const TargetRegisterClass*, uint8_t>
1199X86TargetLowering::findRepresentativeClass(EVT VT) const{
1200  const TargetRegisterClass *RRC = 0;
1201  uint8_t Cost = 1;
1202  switch (VT.getSimpleVT().SimpleTy) {
1203  default:
1204    return TargetLowering::findRepresentativeClass(VT);
1205  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1206    RRC = (Subtarget->is64Bit()
1207           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1208    break;
1209  case MVT::v8i8: case MVT::v4i16:
1210  case MVT::v2i32: case MVT::v1i64:
1211    RRC = X86::VR64RegisterClass;
1212    break;
1213  case MVT::f32: case MVT::f64:
1214  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1215  case MVT::v4f32: case MVT::v2f64:
1216  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1217  case MVT::v4f64:
1218    RRC = X86::VR128RegisterClass;
1219    break;
1220  }
1221  return std::make_pair(RRC, Cost);
1222}
1223
1224unsigned
1225X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1226                                       MachineFunction &MF) const {
1227  unsigned FPDiff = RegInfo->hasFP(MF) ? 1 : 0;
1228  switch (RC->getID()) {
1229  default:
1230    return 0;
1231  case X86::GR32RegClassID:
1232    return 4 - FPDiff;
1233  case X86::GR64RegClassID:
1234    return 8 - FPDiff;
1235  case X86::VR128RegClassID:
1236    return Subtarget->is64Bit() ? 10 : 4;
1237  case X86::VR64RegClassID:
1238    return 4;
1239  }
1240}
1241
1242bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1243                                               unsigned &Offset) const {
1244  if (!Subtarget->isTargetLinux())
1245    return false;
1246
1247  if (Subtarget->is64Bit()) {
1248    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1249    Offset = 0x28;
1250    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1251      AddressSpace = 256;
1252    else
1253      AddressSpace = 257;
1254  } else {
1255    // %gs:0x14 on i386
1256    Offset = 0x14;
1257    AddressSpace = 256;
1258  }
1259  return true;
1260}
1261
1262
1263//===----------------------------------------------------------------------===//
1264//               Return Value Calling Convention Implementation
1265//===----------------------------------------------------------------------===//
1266
1267#include "X86GenCallingConv.inc"
1268
1269bool
1270X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1271                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1272                        LLVMContext &Context) const {
1273  SmallVector<CCValAssign, 16> RVLocs;
1274  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1275                 RVLocs, Context);
1276  return CCInfo.CheckReturn(Outs, RetCC_X86);
1277}
1278
1279SDValue
1280X86TargetLowering::LowerReturn(SDValue Chain,
1281                               CallingConv::ID CallConv, bool isVarArg,
1282                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1283                               const SmallVectorImpl<SDValue> &OutVals,
1284                               DebugLoc dl, SelectionDAG &DAG) const {
1285  MachineFunction &MF = DAG.getMachineFunction();
1286  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1287
1288  SmallVector<CCValAssign, 16> RVLocs;
1289  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1290                 RVLocs, *DAG.getContext());
1291  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1292
1293  // Add the regs to the liveout set for the function.
1294  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1295  for (unsigned i = 0; i != RVLocs.size(); ++i)
1296    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1297      MRI.addLiveOut(RVLocs[i].getLocReg());
1298
1299  SDValue Flag;
1300
1301  SmallVector<SDValue, 6> RetOps;
1302  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1303  // Operand #1 = Bytes To Pop
1304  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1305                   MVT::i16));
1306
1307  // Copy the result values into the output registers.
1308  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1309    CCValAssign &VA = RVLocs[i];
1310    assert(VA.isRegLoc() && "Can only return in registers!");
1311    SDValue ValToCopy = OutVals[i];
1312    EVT ValVT = ValToCopy.getValueType();
1313
1314    // If this is x86-64, and we disabled SSE, we can't return FP values
1315    if ((ValVT == MVT::f32 || ValVT == MVT::f64) &&
1316        (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1317      report_fatal_error("SSE register return with SSE disabled");
1318    }
1319    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1320    // llvm-gcc has never done it right and no one has noticed, so this
1321    // should be OK for now.
1322    if (ValVT == MVT::f64 &&
1323        (Subtarget->is64Bit() && !Subtarget->hasSSE2())) {
1324      report_fatal_error("SSE2 register return with SSE2 disabled");
1325    }
1326
1327    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1328    // the RET instruction and handled by the FP Stackifier.
1329    if (VA.getLocReg() == X86::ST0 ||
1330        VA.getLocReg() == X86::ST1) {
1331      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1332      // change the value to the FP stack register class.
1333      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1334        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1335      RetOps.push_back(ValToCopy);
1336      // Don't emit a copytoreg.
1337      continue;
1338    }
1339
1340    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1341    // which is returned in RAX / RDX.
1342    if (Subtarget->is64Bit()) {
1343      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1344        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1345        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1346          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1347                                  ValToCopy);
1348      }
1349    }
1350
1351    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1352    Flag = Chain.getValue(1);
1353  }
1354
1355  // The x86-64 ABI for returning structs by value requires that we copy
1356  // the sret argument into %rax for the return. We saved the argument into
1357  // a virtual register in the entry block, so now we copy the value out
1358  // and into %rax.
1359  if (Subtarget->is64Bit() &&
1360      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1361    MachineFunction &MF = DAG.getMachineFunction();
1362    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1363    unsigned Reg = FuncInfo->getSRetReturnReg();
1364    assert(Reg &&
1365           "SRetReturnReg should have been set in LowerFormalArguments().");
1366    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1367
1368    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1369    Flag = Chain.getValue(1);
1370
1371    // RAX now acts like a return value.
1372    MRI.addLiveOut(X86::RAX);
1373  }
1374
1375  RetOps[0] = Chain;  // Update chain.
1376
1377  // Add the flag if we have it.
1378  if (Flag.getNode())
1379    RetOps.push_back(Flag);
1380
1381  return DAG.getNode(X86ISD::RET_FLAG, dl,
1382                     MVT::Other, &RetOps[0], RetOps.size());
1383}
1384
1385/// LowerCallResult - Lower the result values of a call into the
1386/// appropriate copies out of appropriate physical registers.
1387///
1388SDValue
1389X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1390                                   CallingConv::ID CallConv, bool isVarArg,
1391                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1392                                   DebugLoc dl, SelectionDAG &DAG,
1393                                   SmallVectorImpl<SDValue> &InVals) const {
1394
1395  // Assign locations to each value returned by this call.
1396  SmallVector<CCValAssign, 16> RVLocs;
1397  bool Is64Bit = Subtarget->is64Bit();
1398  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1399                 RVLocs, *DAG.getContext());
1400  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1401
1402  // Copy all of the result registers out of their specified physreg.
1403  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1404    CCValAssign &VA = RVLocs[i];
1405    EVT CopyVT = VA.getValVT();
1406
1407    // If this is x86-64, and we disabled SSE, we can't return FP values
1408    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1409        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1410      report_fatal_error("SSE register return with SSE disabled");
1411    }
1412
1413    SDValue Val;
1414
1415    // If this is a call to a function that returns an fp value on the floating
1416    // point stack, we must guarantee the the value is popped from the stack, so
1417    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1418    // if the return value is not used. We use the FpGET_ST0 instructions
1419    // instead.
1420    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1421      // If we prefer to use the value in xmm registers, copy it out as f80 and
1422      // use a truncate to move it from fp stack reg to xmm reg.
1423      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1424      bool isST0 = VA.getLocReg() == X86::ST0;
1425      unsigned Opc = 0;
1426      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1427      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1428      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1429      SDValue Ops[] = { Chain, InFlag };
1430      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag,
1431                                         Ops, 2), 1);
1432      Val = Chain.getValue(0);
1433
1434      // Round the f80 to the right size, which also moves it to the appropriate
1435      // xmm register.
1436      if (CopyVT != VA.getValVT())
1437        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1438                          // This truncation won't change the value.
1439                          DAG.getIntPtrConstant(1));
1440    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1441      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1442      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1443        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1444                                   MVT::v2i64, InFlag).getValue(1);
1445        Val = Chain.getValue(0);
1446        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1447                          Val, DAG.getConstant(0, MVT::i64));
1448      } else {
1449        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1450                                   MVT::i64, InFlag).getValue(1);
1451        Val = Chain.getValue(0);
1452      }
1453      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1454    } else {
1455      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1456                                 CopyVT, InFlag).getValue(1);
1457      Val = Chain.getValue(0);
1458    }
1459    InFlag = Chain.getValue(2);
1460    InVals.push_back(Val);
1461  }
1462
1463  return Chain;
1464}
1465
1466
1467//===----------------------------------------------------------------------===//
1468//                C & StdCall & Fast Calling Convention implementation
1469//===----------------------------------------------------------------------===//
1470//  StdCall calling convention seems to be standard for many Windows' API
1471//  routines and around. It differs from C calling convention just a little:
1472//  callee should clean up the stack, not caller. Symbols should be also
1473//  decorated in some fancy way :) It doesn't support any vector arguments.
1474//  For info on fast calling convention see Fast Calling Convention (tail call)
1475//  implementation LowerX86_32FastCCCallTo.
1476
1477/// CallIsStructReturn - Determines whether a call uses struct return
1478/// semantics.
1479static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1480  if (Outs.empty())
1481    return false;
1482
1483  return Outs[0].Flags.isSRet();
1484}
1485
1486/// ArgsAreStructReturn - Determines whether a function uses struct
1487/// return semantics.
1488static bool
1489ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1490  if (Ins.empty())
1491    return false;
1492
1493  return Ins[0].Flags.isSRet();
1494}
1495
1496/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1497/// given CallingConvention value.
1498CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1499  if (Subtarget->is64Bit()) {
1500    if (CC == CallingConv::GHC)
1501      return CC_X86_64_GHC;
1502    else if (Subtarget->isTargetWin64())
1503      return CC_X86_Win64_C;
1504    else
1505      return CC_X86_64_C;
1506  }
1507
1508  if (CC == CallingConv::X86_FastCall)
1509    return CC_X86_32_FastCall;
1510  else if (CC == CallingConv::X86_ThisCall)
1511    return CC_X86_32_ThisCall;
1512  else if (CC == CallingConv::Fast)
1513    return CC_X86_32_FastCC;
1514  else if (CC == CallingConv::GHC)
1515    return CC_X86_32_GHC;
1516  else
1517    return CC_X86_32_C;
1518}
1519
1520/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1521/// by "Src" to address "Dst" with size and alignment information specified by
1522/// the specific parameter attribute. The copy will be passed as a byval
1523/// function parameter.
1524static SDValue
1525CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1526                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1527                          DebugLoc dl) {
1528  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1529  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1530                       /*isVolatile*/false, /*AlwaysInline=*/true,
1531                       NULL, 0, NULL, 0);
1532}
1533
1534/// IsTailCallConvention - Return true if the calling convention is one that
1535/// supports tail call optimization.
1536static bool IsTailCallConvention(CallingConv::ID CC) {
1537  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1538}
1539
1540/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1541/// a tailcall target by changing its ABI.
1542static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1543  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1544}
1545
1546SDValue
1547X86TargetLowering::LowerMemArgument(SDValue Chain,
1548                                    CallingConv::ID CallConv,
1549                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1550                                    DebugLoc dl, SelectionDAG &DAG,
1551                                    const CCValAssign &VA,
1552                                    MachineFrameInfo *MFI,
1553                                    unsigned i) const {
1554  // Create the nodes corresponding to a load from this parameter slot.
1555  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1556  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1557  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1558  EVT ValVT;
1559
1560  // If value is passed by pointer we have address passed instead of the value
1561  // itself.
1562  if (VA.getLocInfo() == CCValAssign::Indirect)
1563    ValVT = VA.getLocVT();
1564  else
1565    ValVT = VA.getValVT();
1566
1567  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1568  // changed with more analysis.
1569  // In case of tail call optimization mark all arguments mutable. Since they
1570  // could be overwritten by lowering of arguments in case of a tail call.
1571  if (Flags.isByVal()) {
1572    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1573                                    VA.getLocMemOffset(), isImmutable);
1574    return DAG.getFrameIndex(FI, getPointerTy());
1575  } else {
1576    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1577                                    VA.getLocMemOffset(), isImmutable);
1578    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1579    return DAG.getLoad(ValVT, dl, Chain, FIN,
1580                       PseudoSourceValue::getFixedStack(FI), 0,
1581                       false, false, 0);
1582  }
1583}
1584
1585SDValue
1586X86TargetLowering::LowerFormalArguments(SDValue Chain,
1587                                        CallingConv::ID CallConv,
1588                                        bool isVarArg,
1589                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1590                                        DebugLoc dl,
1591                                        SelectionDAG &DAG,
1592                                        SmallVectorImpl<SDValue> &InVals)
1593                                          const {
1594  MachineFunction &MF = DAG.getMachineFunction();
1595  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1596
1597  const Function* Fn = MF.getFunction();
1598  if (Fn->hasExternalLinkage() &&
1599      Subtarget->isTargetCygMing() &&
1600      Fn->getName() == "main")
1601    FuncInfo->setForceFramePointer(true);
1602
1603  MachineFrameInfo *MFI = MF.getFrameInfo();
1604  bool Is64Bit = Subtarget->is64Bit();
1605  bool IsWin64 = Subtarget->isTargetWin64();
1606
1607  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1608         "Var args not supported with calling convention fastcc or ghc");
1609
1610  // Assign locations to all of the incoming arguments.
1611  SmallVector<CCValAssign, 16> ArgLocs;
1612  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1613                 ArgLocs, *DAG.getContext());
1614  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1615
1616  unsigned LastVal = ~0U;
1617  SDValue ArgValue;
1618  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1619    CCValAssign &VA = ArgLocs[i];
1620    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1621    // places.
1622    assert(VA.getValNo() != LastVal &&
1623           "Don't support value assigned to multiple locs yet");
1624    LastVal = VA.getValNo();
1625
1626    if (VA.isRegLoc()) {
1627      EVT RegVT = VA.getLocVT();
1628      TargetRegisterClass *RC = NULL;
1629      if (RegVT == MVT::i32)
1630        RC = X86::GR32RegisterClass;
1631      else if (Is64Bit && RegVT == MVT::i64)
1632        RC = X86::GR64RegisterClass;
1633      else if (RegVT == MVT::f32)
1634        RC = X86::FR32RegisterClass;
1635      else if (RegVT == MVT::f64)
1636        RC = X86::FR64RegisterClass;
1637      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1638        RC = X86::VR256RegisterClass;
1639      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1640        RC = X86::VR128RegisterClass;
1641      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1642        RC = X86::VR64RegisterClass;
1643      else
1644        llvm_unreachable("Unknown argument type!");
1645
1646      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1647      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1648
1649      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1650      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1651      // right size.
1652      if (VA.getLocInfo() == CCValAssign::SExt)
1653        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1654                               DAG.getValueType(VA.getValVT()));
1655      else if (VA.getLocInfo() == CCValAssign::ZExt)
1656        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1657                               DAG.getValueType(VA.getValVT()));
1658      else if (VA.getLocInfo() == CCValAssign::BCvt)
1659        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1660
1661      if (VA.isExtInLoc()) {
1662        // Handle MMX values passed in XMM regs.
1663        if (RegVT.isVector()) {
1664          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1665                                 ArgValue, DAG.getConstant(0, MVT::i64));
1666          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1667        } else
1668          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1669      }
1670    } else {
1671      assert(VA.isMemLoc());
1672      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1673    }
1674
1675    // If value is passed via pointer - do a load.
1676    if (VA.getLocInfo() == CCValAssign::Indirect)
1677      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1678                             false, false, 0);
1679
1680    InVals.push_back(ArgValue);
1681  }
1682
1683  // The x86-64 ABI for returning structs by value requires that we copy
1684  // the sret argument into %rax for the return. Save the argument into
1685  // a virtual register so that we can access it from the return points.
1686  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1687    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1688    unsigned Reg = FuncInfo->getSRetReturnReg();
1689    if (!Reg) {
1690      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1691      FuncInfo->setSRetReturnReg(Reg);
1692    }
1693    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1694    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1695  }
1696
1697  unsigned StackSize = CCInfo.getNextStackOffset();
1698  // Align stack specially for tail calls.
1699  if (FuncIsMadeTailCallSafe(CallConv))
1700    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1701
1702  // If the function takes variable number of arguments, make a frame index for
1703  // the start of the first vararg value... for expansion of llvm.va_start.
1704  if (isVarArg) {
1705    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1706                    CallConv != CallingConv::X86_ThisCall)) {
1707      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1708    }
1709    if (Is64Bit) {
1710      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1711
1712      // FIXME: We should really autogenerate these arrays
1713      static const unsigned GPR64ArgRegsWin64[] = {
1714        X86::RCX, X86::RDX, X86::R8,  X86::R9
1715      };
1716      static const unsigned XMMArgRegsWin64[] = {
1717        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1718      };
1719      static const unsigned GPR64ArgRegs64Bit[] = {
1720        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1721      };
1722      static const unsigned XMMArgRegs64Bit[] = {
1723        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1724        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1725      };
1726      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1727
1728      if (IsWin64) {
1729        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1730        GPR64ArgRegs = GPR64ArgRegsWin64;
1731        XMMArgRegs = XMMArgRegsWin64;
1732      } else {
1733        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1734        GPR64ArgRegs = GPR64ArgRegs64Bit;
1735        XMMArgRegs = XMMArgRegs64Bit;
1736      }
1737      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1738                                                       TotalNumIntRegs);
1739      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1740                                                       TotalNumXMMRegs);
1741
1742      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1743      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1744             "SSE register cannot be used when SSE is disabled!");
1745      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1746             "SSE register cannot be used when SSE is disabled!");
1747      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1748        // Kernel mode asks for SSE to be disabled, so don't push them
1749        // on the stack.
1750        TotalNumXMMRegs = 0;
1751
1752      // For X86-64, if there are vararg parameters that are passed via
1753      // registers, then we must store them to their spots on the stack so they
1754      // may be loaded by deferencing the result of va_next.
1755      FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1756      FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1757      FuncInfo->setRegSaveFrameIndex(
1758        MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1759                               false));
1760
1761      // Store the integer parameter registers.
1762      SmallVector<SDValue, 8> MemOps;
1763      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1764                                        getPointerTy());
1765      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1766      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1767        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1768                                  DAG.getIntPtrConstant(Offset));
1769        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1770                                     X86::GR64RegisterClass);
1771        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1772        SDValue Store =
1773          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1774                       PseudoSourceValue::getFixedStack(
1775                         FuncInfo->getRegSaveFrameIndex()),
1776                       Offset, false, false, 0);
1777        MemOps.push_back(Store);
1778        Offset += 8;
1779      }
1780
1781      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1782        // Now store the XMM (fp + vector) parameter registers.
1783        SmallVector<SDValue, 11> SaveXMMOps;
1784        SaveXMMOps.push_back(Chain);
1785
1786        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1787        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1788        SaveXMMOps.push_back(ALVal);
1789
1790        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1791                               FuncInfo->getRegSaveFrameIndex()));
1792        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1793                               FuncInfo->getVarArgsFPOffset()));
1794
1795        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1796          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1797                                       X86::VR128RegisterClass);
1798          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1799          SaveXMMOps.push_back(Val);
1800        }
1801        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1802                                     MVT::Other,
1803                                     &SaveXMMOps[0], SaveXMMOps.size()));
1804      }
1805
1806      if (!MemOps.empty())
1807        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1808                            &MemOps[0], MemOps.size());
1809    }
1810  }
1811
1812  // Some CCs need callee pop.
1813  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1814    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1815  } else {
1816    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1817    // If this is an sret function, the return should pop the hidden pointer.
1818    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1819      FuncInfo->setBytesToPopOnReturn(4);
1820  }
1821
1822  if (!Is64Bit) {
1823    // RegSaveFrameIndex is X86-64 only.
1824    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1825    if (CallConv == CallingConv::X86_FastCall ||
1826        CallConv == CallingConv::X86_ThisCall)
1827      // fastcc functions can't have varargs.
1828      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1829  }
1830
1831  return Chain;
1832}
1833
1834SDValue
1835X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1836                                    SDValue StackPtr, SDValue Arg,
1837                                    DebugLoc dl, SelectionDAG &DAG,
1838                                    const CCValAssign &VA,
1839                                    ISD::ArgFlagsTy Flags) const {
1840  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1841  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1842  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1843  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1844  if (Flags.isByVal()) {
1845    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1846  }
1847  return DAG.getStore(Chain, dl, Arg, PtrOff,
1848                      PseudoSourceValue::getStack(), LocMemOffset,
1849                      false, false, 0);
1850}
1851
1852/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1853/// optimization is performed and it is required.
1854SDValue
1855X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1856                                           SDValue &OutRetAddr, SDValue Chain,
1857                                           bool IsTailCall, bool Is64Bit,
1858                                           int FPDiff, DebugLoc dl) const {
1859  // Adjust the Return address stack slot.
1860  EVT VT = getPointerTy();
1861  OutRetAddr = getReturnAddressFrameIndex(DAG);
1862
1863  // Load the "old" Return address.
1864  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1865  return SDValue(OutRetAddr.getNode(), 1);
1866}
1867
1868/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1869/// optimization is performed and it is required (FPDiff!=0).
1870static SDValue
1871EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1872                         SDValue Chain, SDValue RetAddrFrIdx,
1873                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1874  // Store the return address to the appropriate stack slot.
1875  if (!FPDiff) return Chain;
1876  // Calculate the new stack slot for the return address.
1877  int SlotSize = Is64Bit ? 8 : 4;
1878  int NewReturnAddrFI =
1879    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1880  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1881  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1882  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1883                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1884                       false, false, 0);
1885  return Chain;
1886}
1887
1888SDValue
1889X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1890                             CallingConv::ID CallConv, bool isVarArg,
1891                             bool &isTailCall,
1892                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1893                             const SmallVectorImpl<SDValue> &OutVals,
1894                             const SmallVectorImpl<ISD::InputArg> &Ins,
1895                             DebugLoc dl, SelectionDAG &DAG,
1896                             SmallVectorImpl<SDValue> &InVals) const {
1897  MachineFunction &MF = DAG.getMachineFunction();
1898  bool Is64Bit        = Subtarget->is64Bit();
1899  bool IsStructRet    = CallIsStructReturn(Outs);
1900  bool IsSibcall      = false;
1901
1902  if (isTailCall) {
1903    // Check if it's really possible to do a tail call.
1904    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1905                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1906                                                   Outs, OutVals, Ins, DAG);
1907
1908    // Sibcalls are automatically detected tailcalls which do not require
1909    // ABI changes.
1910    if (!GuaranteedTailCallOpt && isTailCall)
1911      IsSibcall = true;
1912
1913    if (isTailCall)
1914      ++NumTailCalls;
1915  }
1916
1917  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1918         "Var args not supported with calling convention fastcc or ghc");
1919
1920  // Analyze operands of the call, assigning locations to each operand.
1921  SmallVector<CCValAssign, 16> ArgLocs;
1922  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1923                 ArgLocs, *DAG.getContext());
1924  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1925
1926  // Get a count of how many bytes are to be pushed on the stack.
1927  unsigned NumBytes = CCInfo.getNextStackOffset();
1928  if (IsSibcall)
1929    // This is a sibcall. The memory operands are available in caller's
1930    // own caller's stack.
1931    NumBytes = 0;
1932  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1933    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1934
1935  int FPDiff = 0;
1936  if (isTailCall && !IsSibcall) {
1937    // Lower arguments at fp - stackoffset + fpdiff.
1938    unsigned NumBytesCallerPushed =
1939      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1940    FPDiff = NumBytesCallerPushed - NumBytes;
1941
1942    // Set the delta of movement of the returnaddr stackslot.
1943    // But only set if delta is greater than previous delta.
1944    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1945      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1946  }
1947
1948  if (!IsSibcall)
1949    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1950
1951  SDValue RetAddrFrIdx;
1952  // Load return adress for tail calls.
1953  if (isTailCall && FPDiff)
1954    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1955                                    Is64Bit, FPDiff, dl);
1956
1957  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1958  SmallVector<SDValue, 8> MemOpChains;
1959  SDValue StackPtr;
1960
1961  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1962  // of tail call optimization arguments are handle later.
1963  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1964    CCValAssign &VA = ArgLocs[i];
1965    EVT RegVT = VA.getLocVT();
1966    SDValue Arg = OutVals[i];
1967    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1968    bool isByVal = Flags.isByVal();
1969
1970    // Promote the value if needed.
1971    switch (VA.getLocInfo()) {
1972    default: llvm_unreachable("Unknown loc info!");
1973    case CCValAssign::Full: break;
1974    case CCValAssign::SExt:
1975      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1976      break;
1977    case CCValAssign::ZExt:
1978      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1979      break;
1980    case CCValAssign::AExt:
1981      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1982        // Special case: passing MMX values in XMM registers.
1983        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1984        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1985        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1986      } else
1987        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1988      break;
1989    case CCValAssign::BCvt:
1990      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1991      break;
1992    case CCValAssign::Indirect: {
1993      // Store the argument.
1994      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1995      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1996      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1997                           PseudoSourceValue::getFixedStack(FI), 0,
1998                           false, false, 0);
1999      Arg = SpillSlot;
2000      break;
2001    }
2002    }
2003
2004    if (VA.isRegLoc()) {
2005      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2006    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2007      assert(VA.isMemLoc());
2008      if (StackPtr.getNode() == 0)
2009        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2010      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2011                                             dl, DAG, VA, Flags));
2012    }
2013  }
2014
2015  if (!MemOpChains.empty())
2016    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2017                        &MemOpChains[0], MemOpChains.size());
2018
2019  // Build a sequence of copy-to-reg nodes chained together with token chain
2020  // and flag operands which copy the outgoing args into registers.
2021  SDValue InFlag;
2022  // Tail call byval lowering might overwrite argument registers so in case of
2023  // tail call optimization the copies to registers are lowered later.
2024  if (!isTailCall)
2025    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2026      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2027                               RegsToPass[i].second, InFlag);
2028      InFlag = Chain.getValue(1);
2029    }
2030
2031  if (Subtarget->isPICStyleGOT()) {
2032    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2033    // GOT pointer.
2034    if (!isTailCall) {
2035      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2036                               DAG.getNode(X86ISD::GlobalBaseReg,
2037                                           DebugLoc(), getPointerTy()),
2038                               InFlag);
2039      InFlag = Chain.getValue(1);
2040    } else {
2041      // If we are tail calling and generating PIC/GOT style code load the
2042      // address of the callee into ECX. The value in ecx is used as target of
2043      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2044      // for tail calls on PIC/GOT architectures. Normally we would just put the
2045      // address of GOT into ebx and then call target@PLT. But for tail calls
2046      // ebx would be restored (since ebx is callee saved) before jumping to the
2047      // target@PLT.
2048
2049      // Note: The actual moving to ECX is done further down.
2050      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2051      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2052          !G->getGlobal()->hasProtectedVisibility())
2053        Callee = LowerGlobalAddress(Callee, DAG);
2054      else if (isa<ExternalSymbolSDNode>(Callee))
2055        Callee = LowerExternalSymbol(Callee, DAG);
2056    }
2057  }
2058
2059  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2060    // From AMD64 ABI document:
2061    // For calls that may call functions that use varargs or stdargs
2062    // (prototype-less calls or calls to functions containing ellipsis (...) in
2063    // the declaration) %al is used as hidden argument to specify the number
2064    // of SSE registers used. The contents of %al do not need to match exactly
2065    // the number of registers, but must be an ubound on the number of SSE
2066    // registers used and is in the range 0 - 8 inclusive.
2067
2068    // Count the number of XMM registers allocated.
2069    static const unsigned XMMArgRegs[] = {
2070      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2071      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2072    };
2073    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2074    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2075           && "SSE registers cannot be used when SSE is disabled");
2076
2077    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2078                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2079    InFlag = Chain.getValue(1);
2080  }
2081
2082
2083  // For tail calls lower the arguments to the 'real' stack slot.
2084  if (isTailCall) {
2085    // Force all the incoming stack arguments to be loaded from the stack
2086    // before any new outgoing arguments are stored to the stack, because the
2087    // outgoing stack slots may alias the incoming argument stack slots, and
2088    // the alias isn't otherwise explicit. This is slightly more conservative
2089    // than necessary, because it means that each store effectively depends
2090    // on every argument instead of just those arguments it would clobber.
2091    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2092
2093    SmallVector<SDValue, 8> MemOpChains2;
2094    SDValue FIN;
2095    int FI = 0;
2096    // Do not flag preceeding copytoreg stuff together with the following stuff.
2097    InFlag = SDValue();
2098    if (GuaranteedTailCallOpt) {
2099      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2100        CCValAssign &VA = ArgLocs[i];
2101        if (VA.isRegLoc())
2102          continue;
2103        assert(VA.isMemLoc());
2104        SDValue Arg = OutVals[i];
2105        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2106        // Create frame index.
2107        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2108        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2109        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2110        FIN = DAG.getFrameIndex(FI, getPointerTy());
2111
2112        if (Flags.isByVal()) {
2113          // Copy relative to framepointer.
2114          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2115          if (StackPtr.getNode() == 0)
2116            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2117                                          getPointerTy());
2118          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2119
2120          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2121                                                           ArgChain,
2122                                                           Flags, DAG, dl));
2123        } else {
2124          // Store relative to framepointer.
2125          MemOpChains2.push_back(
2126            DAG.getStore(ArgChain, dl, Arg, FIN,
2127                         PseudoSourceValue::getFixedStack(FI), 0,
2128                         false, false, 0));
2129        }
2130      }
2131    }
2132
2133    if (!MemOpChains2.empty())
2134      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2135                          &MemOpChains2[0], MemOpChains2.size());
2136
2137    // Copy arguments to their registers.
2138    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2139      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2140                               RegsToPass[i].second, InFlag);
2141      InFlag = Chain.getValue(1);
2142    }
2143    InFlag =SDValue();
2144
2145    // Store the return address to the appropriate stack slot.
2146    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2147                                     FPDiff, dl);
2148  }
2149
2150  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2151    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2152    // In the 64-bit large code model, we have to make all calls
2153    // through a register, since the call instruction's 32-bit
2154    // pc-relative offset may not be large enough to hold the whole
2155    // address.
2156  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2157    // If the callee is a GlobalAddress node (quite common, every direct call
2158    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2159    // it.
2160
2161    // We should use extra load for direct calls to dllimported functions in
2162    // non-JIT mode.
2163    const GlobalValue *GV = G->getGlobal();
2164    if (!GV->hasDLLImportLinkage()) {
2165      unsigned char OpFlags = 0;
2166
2167      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2168      // external symbols most go through the PLT in PIC mode.  If the symbol
2169      // has hidden or protected visibility, or if it is static or local, then
2170      // we don't need to use the PLT - we can directly call it.
2171      if (Subtarget->isTargetELF() &&
2172          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2173          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2174        OpFlags = X86II::MO_PLT;
2175      } else if (Subtarget->isPICStyleStubAny() &&
2176               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2177               Subtarget->getDarwinVers() < 9) {
2178        // PC-relative references to external symbols should go through $stub,
2179        // unless we're building with the leopard linker or later, which
2180        // automatically synthesizes these stubs.
2181        OpFlags = X86II::MO_DARWIN_STUB;
2182      }
2183
2184      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2185                                          G->getOffset(), OpFlags);
2186    }
2187  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2188    unsigned char OpFlags = 0;
2189
2190    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2191    // symbols should go through the PLT.
2192    if (Subtarget->isTargetELF() &&
2193        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2194      OpFlags = X86II::MO_PLT;
2195    } else if (Subtarget->isPICStyleStubAny() &&
2196             Subtarget->getDarwinVers() < 9) {
2197      // PC-relative references to external symbols should go through $stub,
2198      // unless we're building with the leopard linker or later, which
2199      // automatically synthesizes these stubs.
2200      OpFlags = X86II::MO_DARWIN_STUB;
2201    }
2202
2203    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2204                                         OpFlags);
2205  }
2206
2207  // Returns a chain & a flag for retval copy to use.
2208  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2209  SmallVector<SDValue, 8> Ops;
2210
2211  if (!IsSibcall && isTailCall) {
2212    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2213                           DAG.getIntPtrConstant(0, true), InFlag);
2214    InFlag = Chain.getValue(1);
2215  }
2216
2217  Ops.push_back(Chain);
2218  Ops.push_back(Callee);
2219
2220  if (isTailCall)
2221    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2222
2223  // Add argument registers to the end of the list so that they are known live
2224  // into the call.
2225  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2226    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2227                                  RegsToPass[i].second.getValueType()));
2228
2229  // Add an implicit use GOT pointer in EBX.
2230  if (!isTailCall && Subtarget->isPICStyleGOT())
2231    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2232
2233  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2234  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64())
2235    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2236
2237  if (InFlag.getNode())
2238    Ops.push_back(InFlag);
2239
2240  if (isTailCall) {
2241    // We used to do:
2242    //// If this is the first return lowered for this function, add the regs
2243    //// to the liveout set for the function.
2244    // This isn't right, although it's probably harmless on x86; liveouts
2245    // should be computed from returns not tail calls.  Consider a void
2246    // function making a tail call to a function returning int.
2247    return DAG.getNode(X86ISD::TC_RETURN, dl,
2248                       NodeTys, &Ops[0], Ops.size());
2249  }
2250
2251  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2252  InFlag = Chain.getValue(1);
2253
2254  // Create the CALLSEQ_END node.
2255  unsigned NumBytesForCalleeToPush;
2256  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2257    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2258  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2259    // If this is a call to a struct-return function, the callee
2260    // pops the hidden struct pointer, so we have to push it back.
2261    // This is common for Darwin/X86, Linux & Mingw32 targets.
2262    NumBytesForCalleeToPush = 4;
2263  else
2264    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2265
2266  // Returns a flag for retval copy to use.
2267  if (!IsSibcall) {
2268    Chain = DAG.getCALLSEQ_END(Chain,
2269                               DAG.getIntPtrConstant(NumBytes, true),
2270                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2271                                                     true),
2272                               InFlag);
2273    InFlag = Chain.getValue(1);
2274  }
2275
2276  // Handle result values, copying them out of physregs into vregs that we
2277  // return.
2278  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2279                         Ins, dl, DAG, InVals);
2280}
2281
2282
2283//===----------------------------------------------------------------------===//
2284//                Fast Calling Convention (tail call) implementation
2285//===----------------------------------------------------------------------===//
2286
2287//  Like std call, callee cleans arguments, convention except that ECX is
2288//  reserved for storing the tail called function address. Only 2 registers are
2289//  free for argument passing (inreg). Tail call optimization is performed
2290//  provided:
2291//                * tailcallopt is enabled
2292//                * caller/callee are fastcc
2293//  On X86_64 architecture with GOT-style position independent code only local
2294//  (within module) calls are supported at the moment.
2295//  To keep the stack aligned according to platform abi the function
2296//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2297//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2298//  If a tail called function callee has more arguments than the caller the
2299//  caller needs to make sure that there is room to move the RETADDR to. This is
2300//  achieved by reserving an area the size of the argument delta right after the
2301//  original REtADDR, but before the saved framepointer or the spilled registers
2302//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2303//  stack layout:
2304//    arg1
2305//    arg2
2306//    RETADDR
2307//    [ new RETADDR
2308//      move area ]
2309//    (possible EBP)
2310//    ESI
2311//    EDI
2312//    local1 ..
2313
2314/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2315/// for a 16 byte align requirement.
2316unsigned
2317X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2318                                               SelectionDAG& DAG) const {
2319  MachineFunction &MF = DAG.getMachineFunction();
2320  const TargetMachine &TM = MF.getTarget();
2321  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2322  unsigned StackAlignment = TFI.getStackAlignment();
2323  uint64_t AlignMask = StackAlignment - 1;
2324  int64_t Offset = StackSize;
2325  uint64_t SlotSize = TD->getPointerSize();
2326  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2327    // Number smaller than 12 so just add the difference.
2328    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2329  } else {
2330    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2331    Offset = ((~AlignMask) & Offset) + StackAlignment +
2332      (StackAlignment-SlotSize);
2333  }
2334  return Offset;
2335}
2336
2337/// MatchingStackOffset - Return true if the given stack call argument is
2338/// already available in the same position (relatively) of the caller's
2339/// incoming argument stack.
2340static
2341bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2342                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2343                         const X86InstrInfo *TII) {
2344  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2345  int FI = INT_MAX;
2346  if (Arg.getOpcode() == ISD::CopyFromReg) {
2347    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2348    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2349      return false;
2350    MachineInstr *Def = MRI->getVRegDef(VR);
2351    if (!Def)
2352      return false;
2353    if (!Flags.isByVal()) {
2354      if (!TII->isLoadFromStackSlot(Def, FI))
2355        return false;
2356    } else {
2357      unsigned Opcode = Def->getOpcode();
2358      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2359          Def->getOperand(1).isFI()) {
2360        FI = Def->getOperand(1).getIndex();
2361        Bytes = Flags.getByValSize();
2362      } else
2363        return false;
2364    }
2365  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2366    if (Flags.isByVal())
2367      // ByVal argument is passed in as a pointer but it's now being
2368      // dereferenced. e.g.
2369      // define @foo(%struct.X* %A) {
2370      //   tail call @bar(%struct.X* byval %A)
2371      // }
2372      return false;
2373    SDValue Ptr = Ld->getBasePtr();
2374    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2375    if (!FINode)
2376      return false;
2377    FI = FINode->getIndex();
2378  } else
2379    return false;
2380
2381  assert(FI != INT_MAX);
2382  if (!MFI->isFixedObjectIndex(FI))
2383    return false;
2384  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2385}
2386
2387/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2388/// for tail call optimization. Targets which want to do tail call
2389/// optimization should implement this function.
2390bool
2391X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2392                                                     CallingConv::ID CalleeCC,
2393                                                     bool isVarArg,
2394                                                     bool isCalleeStructRet,
2395                                                     bool isCallerStructRet,
2396                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2397                                    const SmallVectorImpl<SDValue> &OutVals,
2398                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2399                                                     SelectionDAG& DAG) const {
2400  if (!IsTailCallConvention(CalleeCC) &&
2401      CalleeCC != CallingConv::C)
2402    return false;
2403
2404  // If -tailcallopt is specified, make fastcc functions tail-callable.
2405  const MachineFunction &MF = DAG.getMachineFunction();
2406  const Function *CallerF = DAG.getMachineFunction().getFunction();
2407  CallingConv::ID CallerCC = CallerF->getCallingConv();
2408  bool CCMatch = CallerCC == CalleeCC;
2409
2410  if (GuaranteedTailCallOpt) {
2411    if (IsTailCallConvention(CalleeCC) && CCMatch)
2412      return true;
2413    return false;
2414  }
2415
2416  // Look for obvious safe cases to perform tail call optimization that do not
2417  // require ABI changes. This is what gcc calls sibcall.
2418
2419  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2420  // emit a special epilogue.
2421  if (RegInfo->needsStackRealignment(MF))
2422    return false;
2423
2424  // Do not sibcall optimize vararg calls unless the call site is not passing
2425  // any arguments.
2426  if (isVarArg && !Outs.empty())
2427    return false;
2428
2429  // Also avoid sibcall optimization if either caller or callee uses struct
2430  // return semantics.
2431  if (isCalleeStructRet || isCallerStructRet)
2432    return false;
2433
2434  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2435  // Therefore if it's not used by the call it is not safe to optimize this into
2436  // a sibcall.
2437  bool Unused = false;
2438  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2439    if (!Ins[i].Used) {
2440      Unused = true;
2441      break;
2442    }
2443  }
2444  if (Unused) {
2445    SmallVector<CCValAssign, 16> RVLocs;
2446    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2447                   RVLocs, *DAG.getContext());
2448    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2449    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2450      CCValAssign &VA = RVLocs[i];
2451      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2452        return false;
2453    }
2454  }
2455
2456  // If the calling conventions do not match, then we'd better make sure the
2457  // results are returned in the same way as what the caller expects.
2458  if (!CCMatch) {
2459    SmallVector<CCValAssign, 16> RVLocs1;
2460    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2461                    RVLocs1, *DAG.getContext());
2462    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2463
2464    SmallVector<CCValAssign, 16> RVLocs2;
2465    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2466                    RVLocs2, *DAG.getContext());
2467    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2468
2469    if (RVLocs1.size() != RVLocs2.size())
2470      return false;
2471    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2472      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2473        return false;
2474      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2475        return false;
2476      if (RVLocs1[i].isRegLoc()) {
2477        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2478          return false;
2479      } else {
2480        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2481          return false;
2482      }
2483    }
2484  }
2485
2486  // If the callee takes no arguments then go on to check the results of the
2487  // call.
2488  if (!Outs.empty()) {
2489    // Check if stack adjustment is needed. For now, do not do this if any
2490    // argument is passed on the stack.
2491    SmallVector<CCValAssign, 16> ArgLocs;
2492    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2493                   ArgLocs, *DAG.getContext());
2494    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2495    if (CCInfo.getNextStackOffset()) {
2496      MachineFunction &MF = DAG.getMachineFunction();
2497      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2498        return false;
2499      if (Subtarget->isTargetWin64())
2500        // Win64 ABI has additional complications.
2501        return false;
2502
2503      // Check if the arguments are already laid out in the right way as
2504      // the caller's fixed stack objects.
2505      MachineFrameInfo *MFI = MF.getFrameInfo();
2506      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2507      const X86InstrInfo *TII =
2508        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2509      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2510        CCValAssign &VA = ArgLocs[i];
2511        SDValue Arg = OutVals[i];
2512        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2513        if (VA.getLocInfo() == CCValAssign::Indirect)
2514          return false;
2515        if (!VA.isRegLoc()) {
2516          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2517                                   MFI, MRI, TII))
2518            return false;
2519        }
2520      }
2521    }
2522
2523    // If the tailcall address may be in a register, then make sure it's
2524    // possible to register allocate for it. In 32-bit, the call address can
2525    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2526    // callee-saved registers are restored. These happen to be the same
2527    // registers used to pass 'inreg' arguments so watch out for those.
2528    if (!Subtarget->is64Bit() &&
2529        !isa<GlobalAddressSDNode>(Callee) &&
2530        !isa<ExternalSymbolSDNode>(Callee)) {
2531      unsigned NumInRegs = 0;
2532      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2533        CCValAssign &VA = ArgLocs[i];
2534        if (!VA.isRegLoc())
2535          continue;
2536        unsigned Reg = VA.getLocReg();
2537        switch (Reg) {
2538        default: break;
2539        case X86::EAX: case X86::EDX: case X86::ECX:
2540          if (++NumInRegs == 3)
2541            return false;
2542          break;
2543        }
2544      }
2545    }
2546  }
2547
2548  return true;
2549}
2550
2551FastISel *
2552X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2553  return X86::createFastISel(funcInfo);
2554}
2555
2556
2557//===----------------------------------------------------------------------===//
2558//                           Other Lowering Hooks
2559//===----------------------------------------------------------------------===//
2560
2561static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2562              SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2563
2564  switch(Opc) {
2565  default: llvm_unreachable("Unknown x86 shuffle node");
2566  case X86ISD::PSHUFHW:
2567  case X86ISD::PSHUFLW:
2568    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2569  }
2570
2571  return SDValue();
2572}
2573
2574SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2575  MachineFunction &MF = DAG.getMachineFunction();
2576  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2577  int ReturnAddrIndex = FuncInfo->getRAIndex();
2578
2579  if (ReturnAddrIndex == 0) {
2580    // Set up a frame object for the return address.
2581    uint64_t SlotSize = TD->getPointerSize();
2582    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2583                                                           false);
2584    FuncInfo->setRAIndex(ReturnAddrIndex);
2585  }
2586
2587  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2588}
2589
2590
2591bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2592                                       bool hasSymbolicDisplacement) {
2593  // Offset should fit into 32 bit immediate field.
2594  if (!isInt<32>(Offset))
2595    return false;
2596
2597  // If we don't have a symbolic displacement - we don't have any extra
2598  // restrictions.
2599  if (!hasSymbolicDisplacement)
2600    return true;
2601
2602  // FIXME: Some tweaks might be needed for medium code model.
2603  if (M != CodeModel::Small && M != CodeModel::Kernel)
2604    return false;
2605
2606  // For small code model we assume that latest object is 16MB before end of 31
2607  // bits boundary. We may also accept pretty large negative constants knowing
2608  // that all objects are in the positive half of address space.
2609  if (M == CodeModel::Small && Offset < 16*1024*1024)
2610    return true;
2611
2612  // For kernel code model we know that all object resist in the negative half
2613  // of 32bits address space. We may not accept negative offsets, since they may
2614  // be just off and we may accept pretty large positive ones.
2615  if (M == CodeModel::Kernel && Offset > 0)
2616    return true;
2617
2618  return false;
2619}
2620
2621/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2622/// specific condition code, returning the condition code and the LHS/RHS of the
2623/// comparison to make.
2624static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2625                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2626  if (!isFP) {
2627    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2628      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2629        // X > -1   -> X == 0, jump !sign.
2630        RHS = DAG.getConstant(0, RHS.getValueType());
2631        return X86::COND_NS;
2632      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2633        // X < 0   -> X == 0, jump on sign.
2634        return X86::COND_S;
2635      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2636        // X < 1   -> X <= 0
2637        RHS = DAG.getConstant(0, RHS.getValueType());
2638        return X86::COND_LE;
2639      }
2640    }
2641
2642    switch (SetCCOpcode) {
2643    default: llvm_unreachable("Invalid integer condition!");
2644    case ISD::SETEQ:  return X86::COND_E;
2645    case ISD::SETGT:  return X86::COND_G;
2646    case ISD::SETGE:  return X86::COND_GE;
2647    case ISD::SETLT:  return X86::COND_L;
2648    case ISD::SETLE:  return X86::COND_LE;
2649    case ISD::SETNE:  return X86::COND_NE;
2650    case ISD::SETULT: return X86::COND_B;
2651    case ISD::SETUGT: return X86::COND_A;
2652    case ISD::SETULE: return X86::COND_BE;
2653    case ISD::SETUGE: return X86::COND_AE;
2654    }
2655  }
2656
2657  // First determine if it is required or is profitable to flip the operands.
2658
2659  // If LHS is a foldable load, but RHS is not, flip the condition.
2660  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2661      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2662    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2663    std::swap(LHS, RHS);
2664  }
2665
2666  switch (SetCCOpcode) {
2667  default: break;
2668  case ISD::SETOLT:
2669  case ISD::SETOLE:
2670  case ISD::SETUGT:
2671  case ISD::SETUGE:
2672    std::swap(LHS, RHS);
2673    break;
2674  }
2675
2676  // On a floating point condition, the flags are set as follows:
2677  // ZF  PF  CF   op
2678  //  0 | 0 | 0 | X > Y
2679  //  0 | 0 | 1 | X < Y
2680  //  1 | 0 | 0 | X == Y
2681  //  1 | 1 | 1 | unordered
2682  switch (SetCCOpcode) {
2683  default: llvm_unreachable("Condcode should be pre-legalized away");
2684  case ISD::SETUEQ:
2685  case ISD::SETEQ:   return X86::COND_E;
2686  case ISD::SETOLT:              // flipped
2687  case ISD::SETOGT:
2688  case ISD::SETGT:   return X86::COND_A;
2689  case ISD::SETOLE:              // flipped
2690  case ISD::SETOGE:
2691  case ISD::SETGE:   return X86::COND_AE;
2692  case ISD::SETUGT:              // flipped
2693  case ISD::SETULT:
2694  case ISD::SETLT:   return X86::COND_B;
2695  case ISD::SETUGE:              // flipped
2696  case ISD::SETULE:
2697  case ISD::SETLE:   return X86::COND_BE;
2698  case ISD::SETONE:
2699  case ISD::SETNE:   return X86::COND_NE;
2700  case ISD::SETUO:   return X86::COND_P;
2701  case ISD::SETO:    return X86::COND_NP;
2702  case ISD::SETOEQ:
2703  case ISD::SETUNE:  return X86::COND_INVALID;
2704  }
2705}
2706
2707/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2708/// code. Current x86 isa includes the following FP cmov instructions:
2709/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2710static bool hasFPCMov(unsigned X86CC) {
2711  switch (X86CC) {
2712  default:
2713    return false;
2714  case X86::COND_B:
2715  case X86::COND_BE:
2716  case X86::COND_E:
2717  case X86::COND_P:
2718  case X86::COND_A:
2719  case X86::COND_AE:
2720  case X86::COND_NE:
2721  case X86::COND_NP:
2722    return true;
2723  }
2724}
2725
2726/// isFPImmLegal - Returns true if the target can instruction select the
2727/// specified FP immediate natively. If false, the legalizer will
2728/// materialize the FP immediate as a load from a constant pool.
2729bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2730  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2731    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2732      return true;
2733  }
2734  return false;
2735}
2736
2737/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2738/// the specified range (L, H].
2739static bool isUndefOrInRange(int Val, int Low, int Hi) {
2740  return (Val < 0) || (Val >= Low && Val < Hi);
2741}
2742
2743/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2744/// specified value.
2745static bool isUndefOrEqual(int Val, int CmpVal) {
2746  if (Val < 0 || Val == CmpVal)
2747    return true;
2748  return false;
2749}
2750
2751/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2752/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2753/// the second operand.
2754static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2755  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2756    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2757  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2758    return (Mask[0] < 2 && Mask[1] < 2);
2759  return false;
2760}
2761
2762bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2763  SmallVector<int, 8> M;
2764  N->getMask(M);
2765  return ::isPSHUFDMask(M, N->getValueType(0));
2766}
2767
2768/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2769/// is suitable for input to PSHUFHW.
2770static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2771  if (VT != MVT::v8i16)
2772    return false;
2773
2774  // Lower quadword copied in order or undef.
2775  for (int i = 0; i != 4; ++i)
2776    if (Mask[i] >= 0 && Mask[i] != i)
2777      return false;
2778
2779  // Upper quadword shuffled.
2780  for (int i = 4; i != 8; ++i)
2781    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2782      return false;
2783
2784  return true;
2785}
2786
2787bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2788  SmallVector<int, 8> M;
2789  N->getMask(M);
2790  return ::isPSHUFHWMask(M, N->getValueType(0));
2791}
2792
2793/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2794/// is suitable for input to PSHUFLW.
2795static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2796  if (VT != MVT::v8i16)
2797    return false;
2798
2799  // Upper quadword copied in order.
2800  for (int i = 4; i != 8; ++i)
2801    if (Mask[i] >= 0 && Mask[i] != i)
2802      return false;
2803
2804  // Lower quadword shuffled.
2805  for (int i = 0; i != 4; ++i)
2806    if (Mask[i] >= 4)
2807      return false;
2808
2809  return true;
2810}
2811
2812bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2813  SmallVector<int, 8> M;
2814  N->getMask(M);
2815  return ::isPSHUFLWMask(M, N->getValueType(0));
2816}
2817
2818/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2819/// is suitable for input to PALIGNR.
2820static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2821                          bool hasSSSE3) {
2822  int i, e = VT.getVectorNumElements();
2823
2824  // Do not handle v2i64 / v2f64 shuffles with palignr.
2825  if (e < 4 || !hasSSSE3)
2826    return false;
2827
2828  for (i = 0; i != e; ++i)
2829    if (Mask[i] >= 0)
2830      break;
2831
2832  // All undef, not a palignr.
2833  if (i == e)
2834    return false;
2835
2836  // Determine if it's ok to perform a palignr with only the LHS, since we
2837  // don't have access to the actual shuffle elements to see if RHS is undef.
2838  bool Unary = Mask[i] < (int)e;
2839  bool NeedsUnary = false;
2840
2841  int s = Mask[i] - i;
2842
2843  // Check the rest of the elements to see if they are consecutive.
2844  for (++i; i != e; ++i) {
2845    int m = Mask[i];
2846    if (m < 0)
2847      continue;
2848
2849    Unary = Unary && (m < (int)e);
2850    NeedsUnary = NeedsUnary || (m < s);
2851
2852    if (NeedsUnary && !Unary)
2853      return false;
2854    if (Unary && m != ((s+i) & (e-1)))
2855      return false;
2856    if (!Unary && m != (s+i))
2857      return false;
2858  }
2859  return true;
2860}
2861
2862bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2863  SmallVector<int, 8> M;
2864  N->getMask(M);
2865  return ::isPALIGNRMask(M, N->getValueType(0), true);
2866}
2867
2868/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2869/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2870static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2871  int NumElems = VT.getVectorNumElements();
2872  if (NumElems != 2 && NumElems != 4)
2873    return false;
2874
2875  int Half = NumElems / 2;
2876  for (int i = 0; i < Half; ++i)
2877    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2878      return false;
2879  for (int i = Half; i < NumElems; ++i)
2880    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2881      return false;
2882
2883  return true;
2884}
2885
2886bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2887  SmallVector<int, 8> M;
2888  N->getMask(M);
2889  return ::isSHUFPMask(M, N->getValueType(0));
2890}
2891
2892/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2893/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2894/// half elements to come from vector 1 (which would equal the dest.) and
2895/// the upper half to come from vector 2.
2896static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2897  int NumElems = VT.getVectorNumElements();
2898
2899  if (NumElems != 2 && NumElems != 4)
2900    return false;
2901
2902  int Half = NumElems / 2;
2903  for (int i = 0; i < Half; ++i)
2904    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2905      return false;
2906  for (int i = Half; i < NumElems; ++i)
2907    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2908      return false;
2909  return true;
2910}
2911
2912static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2913  SmallVector<int, 8> M;
2914  N->getMask(M);
2915  return isCommutedSHUFPMask(M, N->getValueType(0));
2916}
2917
2918/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2919/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2920bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2921  if (N->getValueType(0).getVectorNumElements() != 4)
2922    return false;
2923
2924  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2925  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2926         isUndefOrEqual(N->getMaskElt(1), 7) &&
2927         isUndefOrEqual(N->getMaskElt(2), 2) &&
2928         isUndefOrEqual(N->getMaskElt(3), 3);
2929}
2930
2931/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2932/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2933/// <2, 3, 2, 3>
2934bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2935  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2936
2937  if (NumElems != 4)
2938    return false;
2939
2940  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2941  isUndefOrEqual(N->getMaskElt(1), 3) &&
2942  isUndefOrEqual(N->getMaskElt(2), 2) &&
2943  isUndefOrEqual(N->getMaskElt(3), 3);
2944}
2945
2946/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2947/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2948bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2949  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2950
2951  if (NumElems != 2 && NumElems != 4)
2952    return false;
2953
2954  for (unsigned i = 0; i < NumElems/2; ++i)
2955    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2956      return false;
2957
2958  for (unsigned i = NumElems/2; i < NumElems; ++i)
2959    if (!isUndefOrEqual(N->getMaskElt(i), i))
2960      return false;
2961
2962  return true;
2963}
2964
2965/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2966/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2967bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2968  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2969
2970  if (NumElems != 2 && NumElems != 4)
2971    return false;
2972
2973  for (unsigned i = 0; i < NumElems/2; ++i)
2974    if (!isUndefOrEqual(N->getMaskElt(i), i))
2975      return false;
2976
2977  for (unsigned i = 0; i < NumElems/2; ++i)
2978    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2979      return false;
2980
2981  return true;
2982}
2983
2984/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2985/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2986static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2987                         bool V2IsSplat = false) {
2988  int NumElts = VT.getVectorNumElements();
2989  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2990    return false;
2991
2992  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2993    int BitI  = Mask[i];
2994    int BitI1 = Mask[i+1];
2995    if (!isUndefOrEqual(BitI, j))
2996      return false;
2997    if (V2IsSplat) {
2998      if (!isUndefOrEqual(BitI1, NumElts))
2999        return false;
3000    } else {
3001      if (!isUndefOrEqual(BitI1, j + NumElts))
3002        return false;
3003    }
3004  }
3005  return true;
3006}
3007
3008bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3009  SmallVector<int, 8> M;
3010  N->getMask(M);
3011  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3012}
3013
3014/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3015/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3016static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3017                         bool V2IsSplat = false) {
3018  int NumElts = VT.getVectorNumElements();
3019  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3020    return false;
3021
3022  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3023    int BitI  = Mask[i];
3024    int BitI1 = Mask[i+1];
3025    if (!isUndefOrEqual(BitI, j + NumElts/2))
3026      return false;
3027    if (V2IsSplat) {
3028      if (isUndefOrEqual(BitI1, NumElts))
3029        return false;
3030    } else {
3031      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3032        return false;
3033    }
3034  }
3035  return true;
3036}
3037
3038bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3039  SmallVector<int, 8> M;
3040  N->getMask(M);
3041  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3042}
3043
3044/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3045/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3046/// <0, 0, 1, 1>
3047static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3048  int NumElems = VT.getVectorNumElements();
3049  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3050    return false;
3051
3052  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3053    int BitI  = Mask[i];
3054    int BitI1 = Mask[i+1];
3055    if (!isUndefOrEqual(BitI, j))
3056      return false;
3057    if (!isUndefOrEqual(BitI1, j))
3058      return false;
3059  }
3060  return true;
3061}
3062
3063bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3064  SmallVector<int, 8> M;
3065  N->getMask(M);
3066  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3067}
3068
3069/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3070/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3071/// <2, 2, 3, 3>
3072static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3073  int NumElems = VT.getVectorNumElements();
3074  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3075    return false;
3076
3077  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3078    int BitI  = Mask[i];
3079    int BitI1 = Mask[i+1];
3080    if (!isUndefOrEqual(BitI, j))
3081      return false;
3082    if (!isUndefOrEqual(BitI1, j))
3083      return false;
3084  }
3085  return true;
3086}
3087
3088bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3089  SmallVector<int, 8> M;
3090  N->getMask(M);
3091  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3092}
3093
3094/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3095/// specifies a shuffle of elements that is suitable for input to MOVSS,
3096/// MOVSD, and MOVD, i.e. setting the lowest element.
3097static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3098  if (VT.getVectorElementType().getSizeInBits() < 32)
3099    return false;
3100
3101  int NumElts = VT.getVectorNumElements();
3102
3103  if (!isUndefOrEqual(Mask[0], NumElts))
3104    return false;
3105
3106  for (int i = 1; i < NumElts; ++i)
3107    if (!isUndefOrEqual(Mask[i], i))
3108      return false;
3109
3110  return true;
3111}
3112
3113bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3114  SmallVector<int, 8> M;
3115  N->getMask(M);
3116  return ::isMOVLMask(M, N->getValueType(0));
3117}
3118
3119/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3120/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3121/// element of vector 2 and the other elements to come from vector 1 in order.
3122static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3123                               bool V2IsSplat = false, bool V2IsUndef = false) {
3124  int NumOps = VT.getVectorNumElements();
3125  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3126    return false;
3127
3128  if (!isUndefOrEqual(Mask[0], 0))
3129    return false;
3130
3131  for (int i = 1; i < NumOps; ++i)
3132    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3133          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3134          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3135      return false;
3136
3137  return true;
3138}
3139
3140static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3141                           bool V2IsUndef = false) {
3142  SmallVector<int, 8> M;
3143  N->getMask(M);
3144  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3145}
3146
3147/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3148/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3149bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3150  if (N->getValueType(0).getVectorNumElements() != 4)
3151    return false;
3152
3153  // Expect 1, 1, 3, 3
3154  for (unsigned i = 0; i < 2; ++i) {
3155    int Elt = N->getMaskElt(i);
3156    if (Elt >= 0 && Elt != 1)
3157      return false;
3158  }
3159
3160  bool HasHi = false;
3161  for (unsigned i = 2; i < 4; ++i) {
3162    int Elt = N->getMaskElt(i);
3163    if (Elt >= 0 && Elt != 3)
3164      return false;
3165    if (Elt == 3)
3166      HasHi = true;
3167  }
3168  // Don't use movshdup if it can be done with a shufps.
3169  // FIXME: verify that matching u, u, 3, 3 is what we want.
3170  return HasHi;
3171}
3172
3173/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3174/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3175bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3176  if (N->getValueType(0).getVectorNumElements() != 4)
3177    return false;
3178
3179  // Expect 0, 0, 2, 2
3180  for (unsigned i = 0; i < 2; ++i)
3181    if (N->getMaskElt(i) > 0)
3182      return false;
3183
3184  bool HasHi = false;
3185  for (unsigned i = 2; i < 4; ++i) {
3186    int Elt = N->getMaskElt(i);
3187    if (Elt >= 0 && Elt != 2)
3188      return false;
3189    if (Elt == 2)
3190      HasHi = true;
3191  }
3192  // Don't use movsldup if it can be done with a shufps.
3193  return HasHi;
3194}
3195
3196/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3197/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3198bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3199  int e = N->getValueType(0).getVectorNumElements() / 2;
3200
3201  for (int i = 0; i < e; ++i)
3202    if (!isUndefOrEqual(N->getMaskElt(i), i))
3203      return false;
3204  for (int i = 0; i < e; ++i)
3205    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3206      return false;
3207  return true;
3208}
3209
3210/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3211/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3212unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3213  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3214  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3215
3216  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3217  unsigned Mask = 0;
3218  for (int i = 0; i < NumOperands; ++i) {
3219    int Val = SVOp->getMaskElt(NumOperands-i-1);
3220    if (Val < 0) Val = 0;
3221    if (Val >= NumOperands) Val -= NumOperands;
3222    Mask |= Val;
3223    if (i != NumOperands - 1)
3224      Mask <<= Shift;
3225  }
3226  return Mask;
3227}
3228
3229/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3230/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3231unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3232  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3233  unsigned Mask = 0;
3234  // 8 nodes, but we only care about the last 4.
3235  for (unsigned i = 7; i >= 4; --i) {
3236    int Val = SVOp->getMaskElt(i);
3237    if (Val >= 0)
3238      Mask |= (Val - 4);
3239    if (i != 4)
3240      Mask <<= 2;
3241  }
3242  return Mask;
3243}
3244
3245/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3246/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3247unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3248  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3249  unsigned Mask = 0;
3250  // 8 nodes, but we only care about the first 4.
3251  for (int i = 3; i >= 0; --i) {
3252    int Val = SVOp->getMaskElt(i);
3253    if (Val >= 0)
3254      Mask |= Val;
3255    if (i != 0)
3256      Mask <<= 2;
3257  }
3258  return Mask;
3259}
3260
3261/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3262/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3263unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3264  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3265  EVT VVT = N->getValueType(0);
3266  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3267  int Val = 0;
3268
3269  unsigned i, e;
3270  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3271    Val = SVOp->getMaskElt(i);
3272    if (Val >= 0)
3273      break;
3274  }
3275  return (Val - i) * EltSize;
3276}
3277
3278/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3279/// constant +0.0.
3280bool X86::isZeroNode(SDValue Elt) {
3281  return ((isa<ConstantSDNode>(Elt) &&
3282           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3283          (isa<ConstantFPSDNode>(Elt) &&
3284           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3285}
3286
3287/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3288/// their permute mask.
3289static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3290                                    SelectionDAG &DAG) {
3291  EVT VT = SVOp->getValueType(0);
3292  unsigned NumElems = VT.getVectorNumElements();
3293  SmallVector<int, 8> MaskVec;
3294
3295  for (unsigned i = 0; i != NumElems; ++i) {
3296    int idx = SVOp->getMaskElt(i);
3297    if (idx < 0)
3298      MaskVec.push_back(idx);
3299    else if (idx < (int)NumElems)
3300      MaskVec.push_back(idx + NumElems);
3301    else
3302      MaskVec.push_back(idx - NumElems);
3303  }
3304  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3305                              SVOp->getOperand(0), &MaskVec[0]);
3306}
3307
3308/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3309/// the two vector operands have swapped position.
3310static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3311  unsigned NumElems = VT.getVectorNumElements();
3312  for (unsigned i = 0; i != NumElems; ++i) {
3313    int idx = Mask[i];
3314    if (idx < 0)
3315      continue;
3316    else if (idx < (int)NumElems)
3317      Mask[i] = idx + NumElems;
3318    else
3319      Mask[i] = idx - NumElems;
3320  }
3321}
3322
3323/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3324/// match movhlps. The lower half elements should come from upper half of
3325/// V1 (and in order), and the upper half elements should come from the upper
3326/// half of V2 (and in order).
3327static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3328  if (Op->getValueType(0).getVectorNumElements() != 4)
3329    return false;
3330  for (unsigned i = 0, e = 2; i != e; ++i)
3331    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3332      return false;
3333  for (unsigned i = 2; i != 4; ++i)
3334    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3335      return false;
3336  return true;
3337}
3338
3339/// isScalarLoadToVector - Returns true if the node is a scalar load that
3340/// is promoted to a vector. It also returns the LoadSDNode by reference if
3341/// required.
3342static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3343  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3344    return false;
3345  N = N->getOperand(0).getNode();
3346  if (!ISD::isNON_EXTLoad(N))
3347    return false;
3348  if (LD)
3349    *LD = cast<LoadSDNode>(N);
3350  return true;
3351}
3352
3353/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3354/// match movlp{s|d}. The lower half elements should come from lower half of
3355/// V1 (and in order), and the upper half elements should come from the upper
3356/// half of V2 (and in order). And since V1 will become the source of the
3357/// MOVLP, it must be either a vector load or a scalar load to vector.
3358static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3359                               ShuffleVectorSDNode *Op) {
3360  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3361    return false;
3362  // Is V2 is a vector load, don't do this transformation. We will try to use
3363  // load folding shufps op.
3364  if (ISD::isNON_EXTLoad(V2))
3365    return false;
3366
3367  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3368
3369  if (NumElems != 2 && NumElems != 4)
3370    return false;
3371  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3372    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3373      return false;
3374  for (unsigned i = NumElems/2; i != NumElems; ++i)
3375    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3376      return false;
3377  return true;
3378}
3379
3380/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3381/// all the same.
3382static bool isSplatVector(SDNode *N) {
3383  if (N->getOpcode() != ISD::BUILD_VECTOR)
3384    return false;
3385
3386  SDValue SplatValue = N->getOperand(0);
3387  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3388    if (N->getOperand(i) != SplatValue)
3389      return false;
3390  return true;
3391}
3392
3393/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3394/// to an zero vector.
3395/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3396static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3397  SDValue V1 = N->getOperand(0);
3398  SDValue V2 = N->getOperand(1);
3399  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3400  for (unsigned i = 0; i != NumElems; ++i) {
3401    int Idx = N->getMaskElt(i);
3402    if (Idx >= (int)NumElems) {
3403      unsigned Opc = V2.getOpcode();
3404      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3405        continue;
3406      if (Opc != ISD::BUILD_VECTOR ||
3407          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3408        return false;
3409    } else if (Idx >= 0) {
3410      unsigned Opc = V1.getOpcode();
3411      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3412        continue;
3413      if (Opc != ISD::BUILD_VECTOR ||
3414          !X86::isZeroNode(V1.getOperand(Idx)))
3415        return false;
3416    }
3417  }
3418  return true;
3419}
3420
3421/// getZeroVector - Returns a vector of specified type with all zero elements.
3422///
3423static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3424                             DebugLoc dl) {
3425  assert(VT.isVector() && "Expected a vector type");
3426
3427  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted
3428  // to their dest type. This ensures they get CSE'd.
3429  SDValue Vec;
3430  if (VT.getSizeInBits() == 64) { // MMX
3431    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3432    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3433  } else if (VT.getSizeInBits() == 128) {
3434    if (HasSSE2) {  // SSE2
3435      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3436      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3437    } else { // SSE1
3438      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3439      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3440    }
3441  } else if (VT.getSizeInBits() == 256) { // AVX
3442    // 256-bit logic and arithmetic instructions in AVX are
3443    // all floating-point, no support for integer ops. Default
3444    // to emitting fp zeroed vectors then.
3445    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3446    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3447    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3448  }
3449  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3450}
3451
3452/// getOnesVector - Returns a vector of specified type with all bits set.
3453///
3454static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3455  assert(VT.isVector() && "Expected a vector type");
3456
3457  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3458  // type.  This ensures they get CSE'd.
3459  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3460  SDValue Vec;
3461  if (VT.getSizeInBits() == 64) // MMX
3462    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3463  else // SSE
3464    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3465  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3466}
3467
3468
3469/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3470/// that point to V2 points to its first element.
3471static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3472  EVT VT = SVOp->getValueType(0);
3473  unsigned NumElems = VT.getVectorNumElements();
3474
3475  bool Changed = false;
3476  SmallVector<int, 8> MaskVec;
3477  SVOp->getMask(MaskVec);
3478
3479  for (unsigned i = 0; i != NumElems; ++i) {
3480    if (MaskVec[i] > (int)NumElems) {
3481      MaskVec[i] = NumElems;
3482      Changed = true;
3483    }
3484  }
3485  if (Changed)
3486    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3487                                SVOp->getOperand(1), &MaskVec[0]);
3488  return SDValue(SVOp, 0);
3489}
3490
3491/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3492/// operation of specified width.
3493static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3494                       SDValue V2) {
3495  unsigned NumElems = VT.getVectorNumElements();
3496  SmallVector<int, 8> Mask;
3497  Mask.push_back(NumElems);
3498  for (unsigned i = 1; i != NumElems; ++i)
3499    Mask.push_back(i);
3500  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3501}
3502
3503/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3504static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3505                          SDValue V2) {
3506  unsigned NumElems = VT.getVectorNumElements();
3507  SmallVector<int, 8> Mask;
3508  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3509    Mask.push_back(i);
3510    Mask.push_back(i + NumElems);
3511  }
3512  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3513}
3514
3515/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3516static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3517                          SDValue V2) {
3518  unsigned NumElems = VT.getVectorNumElements();
3519  unsigned Half = NumElems/2;
3520  SmallVector<int, 8> Mask;
3521  for (unsigned i = 0; i != Half; ++i) {
3522    Mask.push_back(i + Half);
3523    Mask.push_back(i + NumElems + Half);
3524  }
3525  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3526}
3527
3528/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3529static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3530  if (SV->getValueType(0).getVectorNumElements() <= 4)
3531    return SDValue(SV, 0);
3532
3533  EVT PVT = MVT::v4f32;
3534  EVT VT = SV->getValueType(0);
3535  DebugLoc dl = SV->getDebugLoc();
3536  SDValue V1 = SV->getOperand(0);
3537  int NumElems = VT.getVectorNumElements();
3538  int EltNo = SV->getSplatIndex();
3539
3540  // unpack elements to the correct location
3541  while (NumElems > 4) {
3542    if (EltNo < NumElems/2) {
3543      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3544    } else {
3545      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3546      EltNo -= NumElems/2;
3547    }
3548    NumElems >>= 1;
3549  }
3550
3551  // Perform the splat.
3552  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3553  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3554  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3555  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3556}
3557
3558/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3559/// vector of zero or undef vector.  This produces a shuffle where the low
3560/// element of V2 is swizzled into the zero/undef vector, landing at element
3561/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3562static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3563                                             bool isZero, bool HasSSE2,
3564                                             SelectionDAG &DAG) {
3565  EVT VT = V2.getValueType();
3566  SDValue V1 = isZero
3567    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3568  unsigned NumElems = VT.getVectorNumElements();
3569  SmallVector<int, 16> MaskVec;
3570  for (unsigned i = 0; i != NumElems; ++i)
3571    // If this is the insertion idx, put the low elt of V2 here.
3572    MaskVec.push_back(i == Idx ? NumElems : i);
3573  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3574}
3575
3576/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3577/// a shuffle that is zero.
3578static
3579unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3580                                  bool Low, SelectionDAG &DAG) {
3581  unsigned NumZeros = 0;
3582  for (int i = 0; i < NumElems; ++i) {
3583    unsigned Index = Low ? i : NumElems-i-1;
3584    int Idx = SVOp->getMaskElt(Index);
3585    if (Idx < 0) {
3586      ++NumZeros;
3587      continue;
3588    }
3589    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3590    if (Elt.getNode() && X86::isZeroNode(Elt))
3591      ++NumZeros;
3592    else
3593      break;
3594  }
3595  return NumZeros;
3596}
3597
3598/// isVectorShift - Returns true if the shuffle can be implemented as a
3599/// logical left or right shift of a vector.
3600/// FIXME: split into pslldqi, psrldqi, palignr variants.
3601static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3602                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3603  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3604
3605  isLeft = true;
3606  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3607  if (!NumZeros) {
3608    isLeft = false;
3609    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3610    if (!NumZeros)
3611      return false;
3612  }
3613  bool SeenV1 = false;
3614  bool SeenV2 = false;
3615  for (unsigned i = NumZeros; i < NumElems; ++i) {
3616    unsigned Val = isLeft ? (i - NumZeros) : i;
3617    int Idx_ = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3618    if (Idx_ < 0)
3619      continue;
3620    unsigned Idx = (unsigned) Idx_;
3621    if (Idx < NumElems)
3622      SeenV1 = true;
3623    else {
3624      Idx -= NumElems;
3625      SeenV2 = true;
3626    }
3627    if (Idx != Val)
3628      return false;
3629  }
3630  if (SeenV1 && SeenV2)
3631    return false;
3632
3633  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3634  ShAmt = NumZeros;
3635  return true;
3636}
3637
3638
3639/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3640///
3641static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3642                                       unsigned NumNonZero, unsigned NumZero,
3643                                       SelectionDAG &DAG,
3644                                       const TargetLowering &TLI) {
3645  if (NumNonZero > 8)
3646    return SDValue();
3647
3648  DebugLoc dl = Op.getDebugLoc();
3649  SDValue V(0, 0);
3650  bool First = true;
3651  for (unsigned i = 0; i < 16; ++i) {
3652    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3653    if (ThisIsNonZero && First) {
3654      if (NumZero)
3655        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3656      else
3657        V = DAG.getUNDEF(MVT::v8i16);
3658      First = false;
3659    }
3660
3661    if ((i & 1) != 0) {
3662      SDValue ThisElt(0, 0), LastElt(0, 0);
3663      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3664      if (LastIsNonZero) {
3665        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3666                              MVT::i16, Op.getOperand(i-1));
3667      }
3668      if (ThisIsNonZero) {
3669        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3670        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3671                              ThisElt, DAG.getConstant(8, MVT::i8));
3672        if (LastIsNonZero)
3673          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3674      } else
3675        ThisElt = LastElt;
3676
3677      if (ThisElt.getNode())
3678        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3679                        DAG.getIntPtrConstant(i/2));
3680    }
3681  }
3682
3683  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3684}
3685
3686/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3687///
3688static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3689                                     unsigned NumNonZero, unsigned NumZero,
3690                                     SelectionDAG &DAG,
3691                                     const TargetLowering &TLI) {
3692  if (NumNonZero > 4)
3693    return SDValue();
3694
3695  DebugLoc dl = Op.getDebugLoc();
3696  SDValue V(0, 0);
3697  bool First = true;
3698  for (unsigned i = 0; i < 8; ++i) {
3699    bool isNonZero = (NonZeros & (1 << i)) != 0;
3700    if (isNonZero) {
3701      if (First) {
3702        if (NumZero)
3703          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3704        else
3705          V = DAG.getUNDEF(MVT::v8i16);
3706        First = false;
3707      }
3708      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3709                      MVT::v8i16, V, Op.getOperand(i),
3710                      DAG.getIntPtrConstant(i));
3711    }
3712  }
3713
3714  return V;
3715}
3716
3717/// getVShift - Return a vector logical shift node.
3718///
3719static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3720                         unsigned NumBits, SelectionDAG &DAG,
3721                         const TargetLowering &TLI, DebugLoc dl) {
3722  bool isMMX = VT.getSizeInBits() == 64;
3723  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3724  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3725  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3726  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3727                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3728                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3729}
3730
3731SDValue
3732X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3733                                          SelectionDAG &DAG) const {
3734
3735  // Check if the scalar load can be widened into a vector load. And if
3736  // the address is "base + cst" see if the cst can be "absorbed" into
3737  // the shuffle mask.
3738  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3739    SDValue Ptr = LD->getBasePtr();
3740    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3741      return SDValue();
3742    EVT PVT = LD->getValueType(0);
3743    if (PVT != MVT::i32 && PVT != MVT::f32)
3744      return SDValue();
3745
3746    int FI = -1;
3747    int64_t Offset = 0;
3748    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3749      FI = FINode->getIndex();
3750      Offset = 0;
3751    } else if (Ptr.getOpcode() == ISD::ADD &&
3752               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3753               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3754      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3755      Offset = Ptr.getConstantOperandVal(1);
3756      Ptr = Ptr.getOperand(0);
3757    } else {
3758      return SDValue();
3759    }
3760
3761    SDValue Chain = LD->getChain();
3762    // Make sure the stack object alignment is at least 16.
3763    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3764    if (DAG.InferPtrAlignment(Ptr) < 16) {
3765      if (MFI->isFixedObjectIndex(FI)) {
3766        // Can't change the alignment. FIXME: It's possible to compute
3767        // the exact stack offset and reference FI + adjust offset instead.
3768        // If someone *really* cares about this. That's the way to implement it.
3769        return SDValue();
3770      } else {
3771        MFI->setObjectAlignment(FI, 16);
3772      }
3773    }
3774
3775    // (Offset % 16) must be multiple of 4. Then address is then
3776    // Ptr + (Offset & ~15).
3777    if (Offset < 0)
3778      return SDValue();
3779    if ((Offset % 16) & 3)
3780      return SDValue();
3781    int64_t StartOffset = Offset & ~15;
3782    if (StartOffset)
3783      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3784                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3785
3786    int EltNo = (Offset - StartOffset) >> 2;
3787    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3788    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3789    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3790                             false, false, 0);
3791    // Canonicalize it to a v4i32 shuffle.
3792    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3793    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3794                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3795                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3796  }
3797
3798  return SDValue();
3799}
3800
3801/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
3802/// vector of type 'VT', see if the elements can be replaced by a single large
3803/// load which has the same value as a build_vector whose operands are 'elts'.
3804///
3805/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
3806///
3807/// FIXME: we'd also like to handle the case where the last elements are zero
3808/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
3809/// There's even a handy isZeroNode for that purpose.
3810static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
3811                                        DebugLoc &dl, SelectionDAG &DAG) {
3812  EVT EltVT = VT.getVectorElementType();
3813  unsigned NumElems = Elts.size();
3814
3815  LoadSDNode *LDBase = NULL;
3816  unsigned LastLoadedElt = -1U;
3817
3818  // For each element in the initializer, see if we've found a load or an undef.
3819  // If we don't find an initial load element, or later load elements are
3820  // non-consecutive, bail out.
3821  for (unsigned i = 0; i < NumElems; ++i) {
3822    SDValue Elt = Elts[i];
3823
3824    if (!Elt.getNode() ||
3825        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
3826      return SDValue();
3827    if (!LDBase) {
3828      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
3829        return SDValue();
3830      LDBase = cast<LoadSDNode>(Elt.getNode());
3831      LastLoadedElt = i;
3832      continue;
3833    }
3834    if (Elt.getOpcode() == ISD::UNDEF)
3835      continue;
3836
3837    LoadSDNode *LD = cast<LoadSDNode>(Elt);
3838    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
3839      return SDValue();
3840    LastLoadedElt = i;
3841  }
3842
3843  // If we have found an entire vector of loads and undefs, then return a large
3844  // load of the entire vector width starting at the base pointer.  If we found
3845  // consecutive loads for the low half, generate a vzext_load node.
3846  if (LastLoadedElt == NumElems - 1) {
3847    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
3848      return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3849                         LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3850                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
3851    return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3852                       LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3853                       LDBase->isVolatile(), LDBase->isNonTemporal(),
3854                       LDBase->getAlignment());
3855  } else if (NumElems == 4 && LastLoadedElt == 1) {
3856    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
3857    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
3858    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
3859    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
3860  }
3861  return SDValue();
3862}
3863
3864SDValue
3865X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
3866  DebugLoc dl = Op.getDebugLoc();
3867  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1 and
3868  // all one's are handled with pcmpeqd. In AVX, zero's are handled with
3869  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
3870  // is present, so AllOnes is ignored.
3871  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
3872      (Op.getValueType().getSizeInBits() != 256 &&
3873       ISD::isBuildVectorAllOnes(Op.getNode()))) {
3874    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3875    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3876    // eliminated on x86-32 hosts.
3877    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3878      return Op;
3879
3880    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3881      return getOnesVector(Op.getValueType(), DAG, dl);
3882    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3883  }
3884
3885  EVT VT = Op.getValueType();
3886  EVT ExtVT = VT.getVectorElementType();
3887  unsigned EVTBits = ExtVT.getSizeInBits();
3888
3889  unsigned NumElems = Op.getNumOperands();
3890  unsigned NumZero  = 0;
3891  unsigned NumNonZero = 0;
3892  unsigned NonZeros = 0;
3893  bool IsAllConstants = true;
3894  SmallSet<SDValue, 8> Values;
3895  for (unsigned i = 0; i < NumElems; ++i) {
3896    SDValue Elt = Op.getOperand(i);
3897    if (Elt.getOpcode() == ISD::UNDEF)
3898      continue;
3899    Values.insert(Elt);
3900    if (Elt.getOpcode() != ISD::Constant &&
3901        Elt.getOpcode() != ISD::ConstantFP)
3902      IsAllConstants = false;
3903    if (X86::isZeroNode(Elt))
3904      NumZero++;
3905    else {
3906      NonZeros |= (1 << i);
3907      NumNonZero++;
3908    }
3909  }
3910
3911  if (NumNonZero == 0) {
3912    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3913    return DAG.getUNDEF(VT);
3914  }
3915
3916  // Special case for single non-zero, non-undef, element.
3917  if (NumNonZero == 1) {
3918    unsigned Idx = CountTrailingZeros_32(NonZeros);
3919    SDValue Item = Op.getOperand(Idx);
3920
3921    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3922    // the value are obviously zero, truncate the value to i32 and do the
3923    // insertion that way.  Only do this if the value is non-constant or if the
3924    // value is a constant being inserted into element 0.  It is cheaper to do
3925    // a constant pool load than it is to do a movd + shuffle.
3926    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3927        (!IsAllConstants || Idx == 0)) {
3928      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3929        // Handle MMX and SSE both.
3930        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3931        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3932
3933        // Truncate the value (which may itself be a constant) to i32, and
3934        // convert it to a vector with movd (S2V+shuffle to zero extend).
3935        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3936        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3937        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3938                                           Subtarget->hasSSE2(), DAG);
3939
3940        // Now we have our 32-bit value zero extended in the low element of
3941        // a vector.  If Idx != 0, swizzle it into place.
3942        if (Idx != 0) {
3943          SmallVector<int, 4> Mask;
3944          Mask.push_back(Idx);
3945          for (unsigned i = 1; i != VecElts; ++i)
3946            Mask.push_back(i);
3947          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3948                                      DAG.getUNDEF(Item.getValueType()),
3949                                      &Mask[0]);
3950        }
3951        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3952      }
3953    }
3954
3955    // If we have a constant or non-constant insertion into the low element of
3956    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3957    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3958    // depending on what the source datatype is.
3959    if (Idx == 0) {
3960      if (NumZero == 0) {
3961        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3962      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3963          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3964        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3965        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3966        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3967                                           DAG);
3968      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3969        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3970        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3971        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3972        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3973                                           Subtarget->hasSSE2(), DAG);
3974        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3975      }
3976    }
3977
3978    // Is it a vector logical left shift?
3979    if (NumElems == 2 && Idx == 1 &&
3980        X86::isZeroNode(Op.getOperand(0)) &&
3981        !X86::isZeroNode(Op.getOperand(1))) {
3982      unsigned NumBits = VT.getSizeInBits();
3983      return getVShift(true, VT,
3984                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3985                                   VT, Op.getOperand(1)),
3986                       NumBits/2, DAG, *this, dl);
3987    }
3988
3989    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3990      return SDValue();
3991
3992    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3993    // is a non-constant being inserted into an element other than the low one,
3994    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3995    // movd/movss) to move this into the low element, then shuffle it into
3996    // place.
3997    if (EVTBits == 32) {
3998      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3999
4000      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4001      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4002                                         Subtarget->hasSSE2(), DAG);
4003      SmallVector<int, 8> MaskVec;
4004      for (unsigned i = 0; i < NumElems; i++)
4005        MaskVec.push_back(i == Idx ? 0 : 1);
4006      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4007    }
4008  }
4009
4010  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4011  if (Values.size() == 1) {
4012    if (EVTBits == 32) {
4013      // Instead of a shuffle like this:
4014      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4015      // Check if it's possible to issue this instead.
4016      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4017      unsigned Idx = CountTrailingZeros_32(NonZeros);
4018      SDValue Item = Op.getOperand(Idx);
4019      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4020        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4021    }
4022    return SDValue();
4023  }
4024
4025  // A vector full of immediates; various special cases are already
4026  // handled, so this is best done with a single constant-pool load.
4027  if (IsAllConstants)
4028    return SDValue();
4029
4030  // Let legalizer expand 2-wide build_vectors.
4031  if (EVTBits == 64) {
4032    if (NumNonZero == 1) {
4033      // One half is zero or undef.
4034      unsigned Idx = CountTrailingZeros_32(NonZeros);
4035      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4036                                 Op.getOperand(Idx));
4037      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4038                                         Subtarget->hasSSE2(), DAG);
4039    }
4040    return SDValue();
4041  }
4042
4043  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4044  if (EVTBits == 8 && NumElems == 16) {
4045    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4046                                        *this);
4047    if (V.getNode()) return V;
4048  }
4049
4050  if (EVTBits == 16 && NumElems == 8) {
4051    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4052                                        *this);
4053    if (V.getNode()) return V;
4054  }
4055
4056  // If element VT is == 32 bits, turn it into a number of shuffles.
4057  SmallVector<SDValue, 8> V;
4058  V.resize(NumElems);
4059  if (NumElems == 4 && NumZero > 0) {
4060    for (unsigned i = 0; i < 4; ++i) {
4061      bool isZero = !(NonZeros & (1 << i));
4062      if (isZero)
4063        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4064      else
4065        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4066    }
4067
4068    for (unsigned i = 0; i < 2; ++i) {
4069      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4070        default: break;
4071        case 0:
4072          V[i] = V[i*2];  // Must be a zero vector.
4073          break;
4074        case 1:
4075          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4076          break;
4077        case 2:
4078          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4079          break;
4080        case 3:
4081          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4082          break;
4083      }
4084    }
4085
4086    SmallVector<int, 8> MaskVec;
4087    bool Reverse = (NonZeros & 0x3) == 2;
4088    for (unsigned i = 0; i < 2; ++i)
4089      MaskVec.push_back(Reverse ? 1-i : i);
4090    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4091    for (unsigned i = 0; i < 2; ++i)
4092      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4093    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4094  }
4095
4096  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4097    // Check for a build vector of consecutive loads.
4098    for (unsigned i = 0; i < NumElems; ++i)
4099      V[i] = Op.getOperand(i);
4100
4101    // Check for elements which are consecutive loads.
4102    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4103    if (LD.getNode())
4104      return LD;
4105
4106    // For SSE 4.1, use inserts into undef.
4107    if (getSubtarget()->hasSSE41()) {
4108      V[0] = DAG.getUNDEF(VT);
4109      for (unsigned i = 0; i < NumElems; ++i)
4110        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4111          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
4112                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4113      return V[0];
4114    }
4115
4116    // Otherwise, expand into a number of unpckl*
4117    // e.g. for v4f32
4118    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4119    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4120    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4121    for (unsigned i = 0; i < NumElems; ++i)
4122      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4123    NumElems >>= 1;
4124    while (NumElems != 0) {
4125      for (unsigned i = 0; i < NumElems; ++i)
4126        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
4127      NumElems >>= 1;
4128    }
4129    return V[0];
4130  }
4131  return SDValue();
4132}
4133
4134SDValue
4135X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4136  // We support concatenate two MMX registers and place them in a MMX
4137  // register.  This is better than doing a stack convert.
4138  DebugLoc dl = Op.getDebugLoc();
4139  EVT ResVT = Op.getValueType();
4140  assert(Op.getNumOperands() == 2);
4141  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4142         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4143  int Mask[2];
4144  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
4145  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4146  InVec = Op.getOperand(1);
4147  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4148    unsigned NumElts = ResVT.getVectorNumElements();
4149    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4150    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4151                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4152  } else {
4153    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
4154    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4155    Mask[0] = 0; Mask[1] = 2;
4156    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4157  }
4158  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4159}
4160
4161// v8i16 shuffles - Prefer shuffles in the following order:
4162// 1. [all]   pshuflw, pshufhw, optional move
4163// 2. [ssse3] 1 x pshufb
4164// 3. [ssse3] 2 x pshufb + 1 x por
4165// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4166SDValue
4167X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4168                                            SelectionDAG &DAG) const {
4169  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4170  SDValue V1 = SVOp->getOperand(0);
4171  SDValue V2 = SVOp->getOperand(1);
4172  DebugLoc dl = SVOp->getDebugLoc();
4173  SmallVector<int, 8> MaskVals;
4174
4175  // Determine if more than 1 of the words in each of the low and high quadwords
4176  // of the result come from the same quadword of one of the two inputs.  Undef
4177  // mask values count as coming from any quadword, for better codegen.
4178  SmallVector<unsigned, 4> LoQuad(4);
4179  SmallVector<unsigned, 4> HiQuad(4);
4180  BitVector InputQuads(4);
4181  for (unsigned i = 0; i < 8; ++i) {
4182    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4183    int EltIdx = SVOp->getMaskElt(i);
4184    MaskVals.push_back(EltIdx);
4185    if (EltIdx < 0) {
4186      ++Quad[0];
4187      ++Quad[1];
4188      ++Quad[2];
4189      ++Quad[3];
4190      continue;
4191    }
4192    ++Quad[EltIdx / 4];
4193    InputQuads.set(EltIdx / 4);
4194  }
4195
4196  int BestLoQuad = -1;
4197  unsigned MaxQuad = 1;
4198  for (unsigned i = 0; i < 4; ++i) {
4199    if (LoQuad[i] > MaxQuad) {
4200      BestLoQuad = i;
4201      MaxQuad = LoQuad[i];
4202    }
4203  }
4204
4205  int BestHiQuad = -1;
4206  MaxQuad = 1;
4207  for (unsigned i = 0; i < 4; ++i) {
4208    if (HiQuad[i] > MaxQuad) {
4209      BestHiQuad = i;
4210      MaxQuad = HiQuad[i];
4211    }
4212  }
4213
4214  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4215  // of the two input vectors, shuffle them into one input vector so only a
4216  // single pshufb instruction is necessary. If There are more than 2 input
4217  // quads, disable the next transformation since it does not help SSSE3.
4218  bool V1Used = InputQuads[0] || InputQuads[1];
4219  bool V2Used = InputQuads[2] || InputQuads[3];
4220  if (Subtarget->hasSSSE3()) {
4221    if (InputQuads.count() == 2 && V1Used && V2Used) {
4222      BestLoQuad = InputQuads.find_first();
4223      BestHiQuad = InputQuads.find_next(BestLoQuad);
4224    }
4225    if (InputQuads.count() > 2) {
4226      BestLoQuad = -1;
4227      BestHiQuad = -1;
4228    }
4229  }
4230
4231  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4232  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4233  // words from all 4 input quadwords.
4234  SDValue NewV;
4235  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4236    SmallVector<int, 8> MaskV;
4237    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4238    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4239    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4240                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4241                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4242    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE)
4243      NewV = LowerVECTOR_SHUFFLE(NewV, DAG);
4244    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4245
4246    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4247    // source words for the shuffle, to aid later transformations.
4248    bool AllWordsInNewV = true;
4249    bool InOrder[2] = { true, true };
4250    for (unsigned i = 0; i != 8; ++i) {
4251      int idx = MaskVals[i];
4252      if (idx != (int)i)
4253        InOrder[i/4] = false;
4254      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4255        continue;
4256      AllWordsInNewV = false;
4257      break;
4258    }
4259
4260    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4261    if (AllWordsInNewV) {
4262      for (int i = 0; i != 8; ++i) {
4263        int idx = MaskVals[i];
4264        if (idx < 0)
4265          continue;
4266        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4267        if ((idx != i) && idx < 4)
4268          pshufhw = false;
4269        if ((idx != i) && idx > 3)
4270          pshuflw = false;
4271      }
4272      V1 = NewV;
4273      V2Used = false;
4274      BestLoQuad = 0;
4275      BestHiQuad = 1;
4276    }
4277
4278    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4279    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4280    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4281      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4282      unsigned TargetMask = 0;
4283      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4284                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4285      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4286                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4287      V1 = NewV.getOperand(0);
4288      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, V1, TargetMask, DAG);
4289    }
4290  }
4291
4292  // If we have SSSE3, and all words of the result are from 1 input vector,
4293  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4294  // is present, fall back to case 4.
4295  if (Subtarget->hasSSSE3()) {
4296    SmallVector<SDValue,16> pshufbMask;
4297
4298    // If we have elements from both input vectors, set the high bit of the
4299    // shuffle mask element to zero out elements that come from V2 in the V1
4300    // mask, and elements that come from V1 in the V2 mask, so that the two
4301    // results can be OR'd together.
4302    bool TwoInputs = V1Used && V2Used;
4303    for (unsigned i = 0; i != 8; ++i) {
4304      int EltIdx = MaskVals[i] * 2;
4305      if (TwoInputs && (EltIdx >= 16)) {
4306        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4307        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4308        continue;
4309      }
4310      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4311      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4312    }
4313    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4314    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4315                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4316                                 MVT::v16i8, &pshufbMask[0], 16));
4317    if (!TwoInputs)
4318      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4319
4320    // Calculate the shuffle mask for the second input, shuffle it, and
4321    // OR it with the first shuffled input.
4322    pshufbMask.clear();
4323    for (unsigned i = 0; i != 8; ++i) {
4324      int EltIdx = MaskVals[i] * 2;
4325      if (EltIdx < 16) {
4326        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4327        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4328        continue;
4329      }
4330      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4331      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4332    }
4333    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4334    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4335                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4336                                 MVT::v16i8, &pshufbMask[0], 16));
4337    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4338    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4339  }
4340
4341  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4342  // and update MaskVals with new element order.
4343  BitVector InOrder(8);
4344  if (BestLoQuad >= 0) {
4345    SmallVector<int, 8> MaskV;
4346    for (int i = 0; i != 4; ++i) {
4347      int idx = MaskVals[i];
4348      if (idx < 0) {
4349        MaskV.push_back(-1);
4350        InOrder.set(i);
4351      } else if ((idx / 4) == BestLoQuad) {
4352        MaskV.push_back(idx & 3);
4353        InOrder.set(i);
4354      } else {
4355        MaskV.push_back(-1);
4356      }
4357    }
4358    for (unsigned i = 4; i != 8; ++i)
4359      MaskV.push_back(i);
4360    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4361                                &MaskV[0]);
4362  }
4363
4364  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4365  // and update MaskVals with the new element order.
4366  if (BestHiQuad >= 0) {
4367    SmallVector<int, 8> MaskV;
4368    for (unsigned i = 0; i != 4; ++i)
4369      MaskV.push_back(i);
4370    for (unsigned i = 4; i != 8; ++i) {
4371      int idx = MaskVals[i];
4372      if (idx < 0) {
4373        MaskV.push_back(-1);
4374        InOrder.set(i);
4375      } else if ((idx / 4) == BestHiQuad) {
4376        MaskV.push_back((idx & 3) + 4);
4377        InOrder.set(i);
4378      } else {
4379        MaskV.push_back(-1);
4380      }
4381    }
4382    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4383                                &MaskV[0]);
4384  }
4385
4386  // In case BestHi & BestLo were both -1, which means each quadword has a word
4387  // from each of the four input quadwords, calculate the InOrder bitvector now
4388  // before falling through to the insert/extract cleanup.
4389  if (BestLoQuad == -1 && BestHiQuad == -1) {
4390    NewV = V1;
4391    for (int i = 0; i != 8; ++i)
4392      if (MaskVals[i] < 0 || MaskVals[i] == i)
4393        InOrder.set(i);
4394  }
4395
4396  // The other elements are put in the right place using pextrw and pinsrw.
4397  for (unsigned i = 0; i != 8; ++i) {
4398    if (InOrder[i])
4399      continue;
4400    int EltIdx = MaskVals[i];
4401    if (EltIdx < 0)
4402      continue;
4403    SDValue ExtOp = (EltIdx < 8)
4404    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4405                  DAG.getIntPtrConstant(EltIdx))
4406    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4407                  DAG.getIntPtrConstant(EltIdx - 8));
4408    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4409                       DAG.getIntPtrConstant(i));
4410  }
4411  return NewV;
4412}
4413
4414// v16i8 shuffles - Prefer shuffles in the following order:
4415// 1. [ssse3] 1 x pshufb
4416// 2. [ssse3] 2 x pshufb + 1 x por
4417// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4418static
4419SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4420                                 SelectionDAG &DAG,
4421                                 const X86TargetLowering &TLI) {
4422  SDValue V1 = SVOp->getOperand(0);
4423  SDValue V2 = SVOp->getOperand(1);
4424  DebugLoc dl = SVOp->getDebugLoc();
4425  SmallVector<int, 16> MaskVals;
4426  SVOp->getMask(MaskVals);
4427
4428  // If we have SSSE3, case 1 is generated when all result bytes come from
4429  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4430  // present, fall back to case 3.
4431  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4432  bool V1Only = true;
4433  bool V2Only = true;
4434  for (unsigned i = 0; i < 16; ++i) {
4435    int EltIdx = MaskVals[i];
4436    if (EltIdx < 0)
4437      continue;
4438    if (EltIdx < 16)
4439      V2Only = false;
4440    else
4441      V1Only = false;
4442  }
4443
4444  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4445  if (TLI.getSubtarget()->hasSSSE3()) {
4446    SmallVector<SDValue,16> pshufbMask;
4447
4448    // If all result elements are from one input vector, then only translate
4449    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4450    //
4451    // Otherwise, we have elements from both input vectors, and must zero out
4452    // elements that come from V2 in the first mask, and V1 in the second mask
4453    // so that we can OR them together.
4454    bool TwoInputs = !(V1Only || V2Only);
4455    for (unsigned i = 0; i != 16; ++i) {
4456      int EltIdx = MaskVals[i];
4457      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4458        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4459        continue;
4460      }
4461      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4462    }
4463    // If all the elements are from V2, assign it to V1 and return after
4464    // building the first pshufb.
4465    if (V2Only)
4466      V1 = V2;
4467    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4468                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4469                                 MVT::v16i8, &pshufbMask[0], 16));
4470    if (!TwoInputs)
4471      return V1;
4472
4473    // Calculate the shuffle mask for the second input, shuffle it, and
4474    // OR it with the first shuffled input.
4475    pshufbMask.clear();
4476    for (unsigned i = 0; i != 16; ++i) {
4477      int EltIdx = MaskVals[i];
4478      if (EltIdx < 16) {
4479        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4480        continue;
4481      }
4482      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4483    }
4484    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4485                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4486                                 MVT::v16i8, &pshufbMask[0], 16));
4487    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4488  }
4489
4490  // No SSSE3 - Calculate in place words and then fix all out of place words
4491  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4492  // the 16 different words that comprise the two doublequadword input vectors.
4493  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4494  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4495  SDValue NewV = V2Only ? V2 : V1;
4496  for (int i = 0; i != 8; ++i) {
4497    int Elt0 = MaskVals[i*2];
4498    int Elt1 = MaskVals[i*2+1];
4499
4500    // This word of the result is all undef, skip it.
4501    if (Elt0 < 0 && Elt1 < 0)
4502      continue;
4503
4504    // This word of the result is already in the correct place, skip it.
4505    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4506      continue;
4507    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4508      continue;
4509
4510    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4511    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4512    SDValue InsElt;
4513
4514    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4515    // using a single extract together, load it and store it.
4516    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4517      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4518                           DAG.getIntPtrConstant(Elt1 / 2));
4519      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4520                        DAG.getIntPtrConstant(i));
4521      continue;
4522    }
4523
4524    // If Elt1 is defined, extract it from the appropriate source.  If the
4525    // source byte is not also odd, shift the extracted word left 8 bits
4526    // otherwise clear the bottom 8 bits if we need to do an or.
4527    if (Elt1 >= 0) {
4528      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4529                           DAG.getIntPtrConstant(Elt1 / 2));
4530      if ((Elt1 & 1) == 0)
4531        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4532                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4533      else if (Elt0 >= 0)
4534        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4535                             DAG.getConstant(0xFF00, MVT::i16));
4536    }
4537    // If Elt0 is defined, extract it from the appropriate source.  If the
4538    // source byte is not also even, shift the extracted word right 8 bits. If
4539    // Elt1 was also defined, OR the extracted values together before
4540    // inserting them in the result.
4541    if (Elt0 >= 0) {
4542      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4543                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4544      if ((Elt0 & 1) != 0)
4545        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4546                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4547      else if (Elt1 >= 0)
4548        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4549                             DAG.getConstant(0x00FF, MVT::i16));
4550      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4551                         : InsElt0;
4552    }
4553    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4554                       DAG.getIntPtrConstant(i));
4555  }
4556  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4557}
4558
4559/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4560/// ones, or rewriting v4i32 / v2i32 as 2 wide ones if possible. This can be
4561/// done when every pair / quad of shuffle mask elements point to elements in
4562/// the right sequence. e.g.
4563/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4564static
4565SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4566                                 SelectionDAG &DAG,
4567                                 const TargetLowering &TLI, DebugLoc dl) {
4568  EVT VT = SVOp->getValueType(0);
4569  SDValue V1 = SVOp->getOperand(0);
4570  SDValue V2 = SVOp->getOperand(1);
4571  unsigned NumElems = VT.getVectorNumElements();
4572  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4573  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
4574  EVT NewVT = MaskVT;
4575  switch (VT.getSimpleVT().SimpleTy) {
4576  default: assert(false && "Unexpected!");
4577  case MVT::v4f32: NewVT = MVT::v2f64; break;
4578  case MVT::v4i32: NewVT = MVT::v2i64; break;
4579  case MVT::v8i16: NewVT = MVT::v4i32; break;
4580  case MVT::v16i8: NewVT = MVT::v4i32; break;
4581  }
4582
4583  if (NewWidth == 2) {
4584    if (VT.isInteger())
4585      NewVT = MVT::v2i64;
4586    else
4587      NewVT = MVT::v2f64;
4588  }
4589  int Scale = NumElems / NewWidth;
4590  SmallVector<int, 8> MaskVec;
4591  for (unsigned i = 0; i < NumElems; i += Scale) {
4592    int StartIdx = -1;
4593    for (int j = 0; j < Scale; ++j) {
4594      int EltIdx = SVOp->getMaskElt(i+j);
4595      if (EltIdx < 0)
4596        continue;
4597      if (StartIdx == -1)
4598        StartIdx = EltIdx - (EltIdx % Scale);
4599      if (EltIdx != StartIdx + j)
4600        return SDValue();
4601    }
4602    if (StartIdx == -1)
4603      MaskVec.push_back(-1);
4604    else
4605      MaskVec.push_back(StartIdx / Scale);
4606  }
4607
4608  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4609  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4610  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4611}
4612
4613/// getVZextMovL - Return a zero-extending vector move low node.
4614///
4615static SDValue getVZextMovL(EVT VT, EVT OpVT,
4616                            SDValue SrcOp, SelectionDAG &DAG,
4617                            const X86Subtarget *Subtarget, DebugLoc dl) {
4618  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4619    LoadSDNode *LD = NULL;
4620    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4621      LD = dyn_cast<LoadSDNode>(SrcOp);
4622    if (!LD) {
4623      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4624      // instead.
4625      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4626      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4627          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4628          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4629          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4630        // PR2108
4631        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4632        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4633                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4634                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4635                                                   OpVT,
4636                                                   SrcOp.getOperand(0)
4637                                                          .getOperand(0))));
4638      }
4639    }
4640  }
4641
4642  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4643                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4644                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4645                                             OpVT, SrcOp)));
4646}
4647
4648/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4649/// shuffles.
4650static SDValue
4651LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4652  SDValue V1 = SVOp->getOperand(0);
4653  SDValue V2 = SVOp->getOperand(1);
4654  DebugLoc dl = SVOp->getDebugLoc();
4655  EVT VT = SVOp->getValueType(0);
4656
4657  SmallVector<std::pair<int, int>, 8> Locs;
4658  Locs.resize(4);
4659  SmallVector<int, 8> Mask1(4U, -1);
4660  SmallVector<int, 8> PermMask;
4661  SVOp->getMask(PermMask);
4662
4663  unsigned NumHi = 0;
4664  unsigned NumLo = 0;
4665  for (unsigned i = 0; i != 4; ++i) {
4666    int Idx = PermMask[i];
4667    if (Idx < 0) {
4668      Locs[i] = std::make_pair(-1, -1);
4669    } else {
4670      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4671      if (Idx < 4) {
4672        Locs[i] = std::make_pair(0, NumLo);
4673        Mask1[NumLo] = Idx;
4674        NumLo++;
4675      } else {
4676        Locs[i] = std::make_pair(1, NumHi);
4677        if (2+NumHi < 4)
4678          Mask1[2+NumHi] = Idx;
4679        NumHi++;
4680      }
4681    }
4682  }
4683
4684  if (NumLo <= 2 && NumHi <= 2) {
4685    // If no more than two elements come from either vector. This can be
4686    // implemented with two shuffles. First shuffle gather the elements.
4687    // The second shuffle, which takes the first shuffle as both of its
4688    // vector operands, put the elements into the right order.
4689    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4690
4691    SmallVector<int, 8> Mask2(4U, -1);
4692
4693    for (unsigned i = 0; i != 4; ++i) {
4694      if (Locs[i].first == -1)
4695        continue;
4696      else {
4697        unsigned Idx = (i < 2) ? 0 : 4;
4698        Idx += Locs[i].first * 2 + Locs[i].second;
4699        Mask2[i] = Idx;
4700      }
4701    }
4702
4703    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4704  } else if (NumLo == 3 || NumHi == 3) {
4705    // Otherwise, we must have three elements from one vector, call it X, and
4706    // one element from the other, call it Y.  First, use a shufps to build an
4707    // intermediate vector with the one element from Y and the element from X
4708    // that will be in the same half in the final destination (the indexes don't
4709    // matter). Then, use a shufps to build the final vector, taking the half
4710    // containing the element from Y from the intermediate, and the other half
4711    // from X.
4712    if (NumHi == 3) {
4713      // Normalize it so the 3 elements come from V1.
4714      CommuteVectorShuffleMask(PermMask, VT);
4715      std::swap(V1, V2);
4716    }
4717
4718    // Find the element from V2.
4719    unsigned HiIndex;
4720    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4721      int Val = PermMask[HiIndex];
4722      if (Val < 0)
4723        continue;
4724      if (Val >= 4)
4725        break;
4726    }
4727
4728    Mask1[0] = PermMask[HiIndex];
4729    Mask1[1] = -1;
4730    Mask1[2] = PermMask[HiIndex^1];
4731    Mask1[3] = -1;
4732    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4733
4734    if (HiIndex >= 2) {
4735      Mask1[0] = PermMask[0];
4736      Mask1[1] = PermMask[1];
4737      Mask1[2] = HiIndex & 1 ? 6 : 4;
4738      Mask1[3] = HiIndex & 1 ? 4 : 6;
4739      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4740    } else {
4741      Mask1[0] = HiIndex & 1 ? 2 : 0;
4742      Mask1[1] = HiIndex & 1 ? 0 : 2;
4743      Mask1[2] = PermMask[2];
4744      Mask1[3] = PermMask[3];
4745      if (Mask1[2] >= 0)
4746        Mask1[2] += 4;
4747      if (Mask1[3] >= 0)
4748        Mask1[3] += 4;
4749      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4750    }
4751  }
4752
4753  // Break it into (shuffle shuffle_hi, shuffle_lo).
4754  Locs.clear();
4755  SmallVector<int,8> LoMask(4U, -1);
4756  SmallVector<int,8> HiMask(4U, -1);
4757
4758  SmallVector<int,8> *MaskPtr = &LoMask;
4759  unsigned MaskIdx = 0;
4760  unsigned LoIdx = 0;
4761  unsigned HiIdx = 2;
4762  for (unsigned i = 0; i != 4; ++i) {
4763    if (i == 2) {
4764      MaskPtr = &HiMask;
4765      MaskIdx = 1;
4766      LoIdx = 0;
4767      HiIdx = 2;
4768    }
4769    int Idx = PermMask[i];
4770    if (Idx < 0) {
4771      Locs[i] = std::make_pair(-1, -1);
4772    } else if (Idx < 4) {
4773      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4774      (*MaskPtr)[LoIdx] = Idx;
4775      LoIdx++;
4776    } else {
4777      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4778      (*MaskPtr)[HiIdx] = Idx;
4779      HiIdx++;
4780    }
4781  }
4782
4783  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4784  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4785  SmallVector<int, 8> MaskOps;
4786  for (unsigned i = 0; i != 4; ++i) {
4787    if (Locs[i].first == -1) {
4788      MaskOps.push_back(-1);
4789    } else {
4790      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4791      MaskOps.push_back(Idx);
4792    }
4793  }
4794  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4795}
4796
4797SDValue
4798X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
4799  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4800  SDValue V1 = Op.getOperand(0);
4801  SDValue V2 = Op.getOperand(1);
4802  EVT VT = Op.getValueType();
4803  DebugLoc dl = Op.getDebugLoc();
4804  unsigned NumElems = VT.getVectorNumElements();
4805  bool isMMX = VT.getSizeInBits() == 64;
4806  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4807  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4808  bool V1IsSplat = false;
4809  bool V2IsSplat = false;
4810
4811  if (isZeroShuffle(SVOp))
4812    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4813
4814  // Promote splats to v4f32.
4815  if (SVOp->isSplat()) {
4816    if (isMMX || NumElems < 4)
4817      return Op;
4818    return PromoteSplat(SVOp, DAG);
4819  }
4820
4821  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4822  // do it!
4823  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4824    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4825    if (NewOp.getNode())
4826      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4827                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4828  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4829    // FIXME: Figure out a cleaner way to do this.
4830    // Try to make use of movq to zero out the top part.
4831    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4832      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4833      if (NewOp.getNode()) {
4834        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4835          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4836                              DAG, Subtarget, dl);
4837      }
4838    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4839      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4840      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4841        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4842                            DAG, Subtarget, dl);
4843    }
4844  }
4845
4846  if (X86::isPSHUFDMask(SVOp))
4847    return Op;
4848
4849  // Check if this can be converted into a logical shift.
4850  bool isLeft = false;
4851  unsigned ShAmt = 0;
4852  SDValue ShVal;
4853  bool isShift = getSubtarget()->hasSSE2() &&
4854    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4855  if (isShift && ShVal.hasOneUse()) {
4856    // If the shifted value has multiple uses, it may be cheaper to use
4857    // v_set0 + movlhps or movhlps, etc.
4858    EVT EltVT = VT.getVectorElementType();
4859    ShAmt *= EltVT.getSizeInBits();
4860    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4861  }
4862
4863  if (X86::isMOVLMask(SVOp)) {
4864    if (V1IsUndef)
4865      return V2;
4866    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4867      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4868    if (!isMMX)
4869      return Op;
4870  }
4871
4872  // FIXME: fold these into legal mask.
4873  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4874                 X86::isMOVSLDUPMask(SVOp) ||
4875                 X86::isMOVHLPSMask(SVOp) ||
4876                 X86::isMOVLHPSMask(SVOp) ||
4877                 X86::isMOVLPMask(SVOp)))
4878    return Op;
4879
4880  if (ShouldXformToMOVHLPS(SVOp) ||
4881      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4882    return CommuteVectorShuffle(SVOp, DAG);
4883
4884  if (isShift) {
4885    // No better options. Use a vshl / vsrl.
4886    EVT EltVT = VT.getVectorElementType();
4887    ShAmt *= EltVT.getSizeInBits();
4888    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4889  }
4890
4891  bool Commuted = false;
4892  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4893  // 1,1,1,1 -> v8i16 though.
4894  V1IsSplat = isSplatVector(V1.getNode());
4895  V2IsSplat = isSplatVector(V2.getNode());
4896
4897  // Canonicalize the splat or undef, if present, to be on the RHS.
4898  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4899    Op = CommuteVectorShuffle(SVOp, DAG);
4900    SVOp = cast<ShuffleVectorSDNode>(Op);
4901    V1 = SVOp->getOperand(0);
4902    V2 = SVOp->getOperand(1);
4903    std::swap(V1IsSplat, V2IsSplat);
4904    std::swap(V1IsUndef, V2IsUndef);
4905    Commuted = true;
4906  }
4907
4908  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4909    // Shuffling low element of v1 into undef, just return v1.
4910    if (V2IsUndef)
4911      return V1;
4912    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4913    // the instruction selector will not match, so get a canonical MOVL with
4914    // swapped operands to undo the commute.
4915    return getMOVL(DAG, dl, VT, V2, V1);
4916  }
4917
4918  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4919      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4920      X86::isUNPCKLMask(SVOp) ||
4921      X86::isUNPCKHMask(SVOp))
4922    return Op;
4923
4924  if (V2IsSplat) {
4925    // Normalize mask so all entries that point to V2 points to its first
4926    // element then try to match unpck{h|l} again. If match, return a
4927    // new vector_shuffle with the corrected mask.
4928    SDValue NewMask = NormalizeMask(SVOp, DAG);
4929    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4930    if (NSVOp != SVOp) {
4931      if (X86::isUNPCKLMask(NSVOp, true)) {
4932        return NewMask;
4933      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4934        return NewMask;
4935      }
4936    }
4937  }
4938
4939  if (Commuted) {
4940    // Commute is back and try unpck* again.
4941    // FIXME: this seems wrong.
4942    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4943    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4944    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4945        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4946        X86::isUNPCKLMask(NewSVOp) ||
4947        X86::isUNPCKHMask(NewSVOp))
4948      return NewOp;
4949  }
4950
4951  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4952
4953  // Normalize the node to match x86 shuffle ops if needed
4954  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4955    return CommuteVectorShuffle(SVOp, DAG);
4956
4957  // Check for legal shuffle and return?
4958  SmallVector<int, 16> PermMask;
4959  SVOp->getMask(PermMask);
4960  if (isShuffleMaskLegal(PermMask, VT))
4961    return Op;
4962
4963  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4964  if (VT == MVT::v8i16) {
4965    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
4966    if (NewOp.getNode())
4967      return NewOp;
4968  }
4969
4970  if (VT == MVT::v16i8) {
4971    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4972    if (NewOp.getNode())
4973      return NewOp;
4974  }
4975
4976  // Handle all 4 wide cases with a number of shuffles except for MMX.
4977  if (NumElems == 4 && !isMMX)
4978    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4979
4980  return SDValue();
4981}
4982
4983SDValue
4984X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4985                                                SelectionDAG &DAG) const {
4986  EVT VT = Op.getValueType();
4987  DebugLoc dl = Op.getDebugLoc();
4988  if (VT.getSizeInBits() == 8) {
4989    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4990                                    Op.getOperand(0), Op.getOperand(1));
4991    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4992                                    DAG.getValueType(VT));
4993    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4994  } else if (VT.getSizeInBits() == 16) {
4995    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4996    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4997    if (Idx == 0)
4998      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4999                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5000                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5001                                                 MVT::v4i32,
5002                                                 Op.getOperand(0)),
5003                                     Op.getOperand(1)));
5004    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5005                                    Op.getOperand(0), Op.getOperand(1));
5006    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5007                                    DAG.getValueType(VT));
5008    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5009  } else if (VT == MVT::f32) {
5010    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5011    // the result back to FR32 register. It's only worth matching if the
5012    // result has a single use which is a store or a bitcast to i32.  And in
5013    // the case of a store, it's not worth it if the index is a constant 0,
5014    // because a MOVSSmr can be used instead, which is smaller and faster.
5015    if (!Op.hasOneUse())
5016      return SDValue();
5017    SDNode *User = *Op.getNode()->use_begin();
5018    if ((User->getOpcode() != ISD::STORE ||
5019         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5020          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5021        (User->getOpcode() != ISD::BIT_CONVERT ||
5022         User->getValueType(0) != MVT::i32))
5023      return SDValue();
5024    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5025                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
5026                                              Op.getOperand(0)),
5027                                              Op.getOperand(1));
5028    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
5029  } else if (VT == MVT::i32) {
5030    // ExtractPS works with constant index.
5031    if (isa<ConstantSDNode>(Op.getOperand(1)))
5032      return Op;
5033  }
5034  return SDValue();
5035}
5036
5037
5038SDValue
5039X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5040                                           SelectionDAG &DAG) const {
5041  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5042    return SDValue();
5043
5044  if (Subtarget->hasSSE41()) {
5045    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5046    if (Res.getNode())
5047      return Res;
5048  }
5049
5050  EVT VT = Op.getValueType();
5051  DebugLoc dl = Op.getDebugLoc();
5052  // TODO: handle v16i8.
5053  if (VT.getSizeInBits() == 16) {
5054    SDValue Vec = Op.getOperand(0);
5055    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5056    if (Idx == 0)
5057      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5058                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5059                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5060                                                 MVT::v4i32, Vec),
5061                                     Op.getOperand(1)));
5062    // Transform it so it match pextrw which produces a 32-bit result.
5063    EVT EltVT = MVT::i32;
5064    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5065                                    Op.getOperand(0), Op.getOperand(1));
5066    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5067                                    DAG.getValueType(VT));
5068    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5069  } else if (VT.getSizeInBits() == 32) {
5070    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5071    if (Idx == 0)
5072      return Op;
5073
5074    // SHUFPS the element to the lowest double word, then movss.
5075    int Mask[4] = { Idx, -1, -1, -1 };
5076    EVT VVT = Op.getOperand(0).getValueType();
5077    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5078                                       DAG.getUNDEF(VVT), Mask);
5079    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5080                       DAG.getIntPtrConstant(0));
5081  } else if (VT.getSizeInBits() == 64) {
5082    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5083    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5084    //        to match extract_elt for f64.
5085    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5086    if (Idx == 0)
5087      return Op;
5088
5089    // UNPCKHPD the element to the lowest double word, then movsd.
5090    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5091    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5092    int Mask[2] = { 1, -1 };
5093    EVT VVT = Op.getOperand(0).getValueType();
5094    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5095                                       DAG.getUNDEF(VVT), Mask);
5096    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5097                       DAG.getIntPtrConstant(0));
5098  }
5099
5100  return SDValue();
5101}
5102
5103SDValue
5104X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5105                                               SelectionDAG &DAG) const {
5106  EVT VT = Op.getValueType();
5107  EVT EltVT = VT.getVectorElementType();
5108  DebugLoc dl = Op.getDebugLoc();
5109
5110  SDValue N0 = Op.getOperand(0);
5111  SDValue N1 = Op.getOperand(1);
5112  SDValue N2 = Op.getOperand(2);
5113
5114  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5115      isa<ConstantSDNode>(N2)) {
5116    unsigned Opc;
5117    if (VT == MVT::v8i16)
5118      Opc = X86ISD::PINSRW;
5119    else if (VT == MVT::v4i16)
5120      Opc = X86ISD::MMX_PINSRW;
5121    else if (VT == MVT::v16i8)
5122      Opc = X86ISD::PINSRB;
5123    else
5124      Opc = X86ISD::PINSRB;
5125
5126    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5127    // argument.
5128    if (N1.getValueType() != MVT::i32)
5129      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5130    if (N2.getValueType() != MVT::i32)
5131      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5132    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5133  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5134    // Bits [7:6] of the constant are the source select.  This will always be
5135    //  zero here.  The DAG Combiner may combine an extract_elt index into these
5136    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
5137    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
5138    // Bits [5:4] of the constant are the destination select.  This is the
5139    //  value of the incoming immediate.
5140    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
5141    //   combine either bitwise AND or insert of float 0.0 to set these bits.
5142    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5143    // Create this as a scalar to vector..
5144    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5145    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5146  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5147    // PINSR* works with constant index.
5148    return Op;
5149  }
5150  return SDValue();
5151}
5152
5153SDValue
5154X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5155  EVT VT = Op.getValueType();
5156  EVT EltVT = VT.getVectorElementType();
5157
5158  if (Subtarget->hasSSE41())
5159    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5160
5161  if (EltVT == MVT::i8)
5162    return SDValue();
5163
5164  DebugLoc dl = Op.getDebugLoc();
5165  SDValue N0 = Op.getOperand(0);
5166  SDValue N1 = Op.getOperand(1);
5167  SDValue N2 = Op.getOperand(2);
5168
5169  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5170    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5171    // as its second argument.
5172    if (N1.getValueType() != MVT::i32)
5173      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5174    if (N2.getValueType() != MVT::i32)
5175      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5176    return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
5177                       dl, VT, N0, N1, N2);
5178  }
5179  return SDValue();
5180}
5181
5182SDValue
5183X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5184  DebugLoc dl = Op.getDebugLoc();
5185
5186  if (Op.getValueType() == MVT::v1i64 &&
5187      Op.getOperand(0).getValueType() == MVT::i64)
5188    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5189
5190  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5191  EVT VT = MVT::v2i32;
5192  switch (Op.getValueType().getSimpleVT().SimpleTy) {
5193  default: break;
5194  case MVT::v16i8:
5195  case MVT::v8i16:
5196    VT = MVT::v4i32;
5197    break;
5198  }
5199  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5200                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
5201}
5202
5203// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5204// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5205// one of the above mentioned nodes. It has to be wrapped because otherwise
5206// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5207// be used to form addressing mode. These wrapped nodes will be selected
5208// into MOV32ri.
5209SDValue
5210X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5211  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5212
5213  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5214  // global base reg.
5215  unsigned char OpFlag = 0;
5216  unsigned WrapperKind = X86ISD::Wrapper;
5217  CodeModel::Model M = getTargetMachine().getCodeModel();
5218
5219  if (Subtarget->isPICStyleRIPRel() &&
5220      (M == CodeModel::Small || M == CodeModel::Kernel))
5221    WrapperKind = X86ISD::WrapperRIP;
5222  else if (Subtarget->isPICStyleGOT())
5223    OpFlag = X86II::MO_GOTOFF;
5224  else if (Subtarget->isPICStyleStubPIC())
5225    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5226
5227  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5228                                             CP->getAlignment(),
5229                                             CP->getOffset(), OpFlag);
5230  DebugLoc DL = CP->getDebugLoc();
5231  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5232  // With PIC, the address is actually $g + Offset.
5233  if (OpFlag) {
5234    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5235                         DAG.getNode(X86ISD::GlobalBaseReg,
5236                                     DebugLoc(), getPointerTy()),
5237                         Result);
5238  }
5239
5240  return Result;
5241}
5242
5243SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5244  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5245
5246  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5247  // global base reg.
5248  unsigned char OpFlag = 0;
5249  unsigned WrapperKind = X86ISD::Wrapper;
5250  CodeModel::Model M = getTargetMachine().getCodeModel();
5251
5252  if (Subtarget->isPICStyleRIPRel() &&
5253      (M == CodeModel::Small || M == CodeModel::Kernel))
5254    WrapperKind = X86ISD::WrapperRIP;
5255  else if (Subtarget->isPICStyleGOT())
5256    OpFlag = X86II::MO_GOTOFF;
5257  else if (Subtarget->isPICStyleStubPIC())
5258    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5259
5260  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5261                                          OpFlag);
5262  DebugLoc DL = JT->getDebugLoc();
5263  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5264
5265  // With PIC, the address is actually $g + Offset.
5266  if (OpFlag) {
5267    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5268                         DAG.getNode(X86ISD::GlobalBaseReg,
5269                                     DebugLoc(), getPointerTy()),
5270                         Result);
5271  }
5272
5273  return Result;
5274}
5275
5276SDValue
5277X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5278  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5279
5280  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5281  // global base reg.
5282  unsigned char OpFlag = 0;
5283  unsigned WrapperKind = X86ISD::Wrapper;
5284  CodeModel::Model M = getTargetMachine().getCodeModel();
5285
5286  if (Subtarget->isPICStyleRIPRel() &&
5287      (M == CodeModel::Small || M == CodeModel::Kernel))
5288    WrapperKind = X86ISD::WrapperRIP;
5289  else if (Subtarget->isPICStyleGOT())
5290    OpFlag = X86II::MO_GOTOFF;
5291  else if (Subtarget->isPICStyleStubPIC())
5292    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5293
5294  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5295
5296  DebugLoc DL = Op.getDebugLoc();
5297  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5298
5299
5300  // With PIC, the address is actually $g + Offset.
5301  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5302      !Subtarget->is64Bit()) {
5303    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5304                         DAG.getNode(X86ISD::GlobalBaseReg,
5305                                     DebugLoc(), getPointerTy()),
5306                         Result);
5307  }
5308
5309  return Result;
5310}
5311
5312SDValue
5313X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5314  // Create the TargetBlockAddressAddress node.
5315  unsigned char OpFlags =
5316    Subtarget->ClassifyBlockAddressReference();
5317  CodeModel::Model M = getTargetMachine().getCodeModel();
5318  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5319  DebugLoc dl = Op.getDebugLoc();
5320  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5321                                       /*isTarget=*/true, OpFlags);
5322
5323  if (Subtarget->isPICStyleRIPRel() &&
5324      (M == CodeModel::Small || M == CodeModel::Kernel))
5325    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5326  else
5327    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5328
5329  // With PIC, the address is actually $g + Offset.
5330  if (isGlobalRelativeToPICBase(OpFlags)) {
5331    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5332                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5333                         Result);
5334  }
5335
5336  return Result;
5337}
5338
5339SDValue
5340X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5341                                      int64_t Offset,
5342                                      SelectionDAG &DAG) const {
5343  // Create the TargetGlobalAddress node, folding in the constant
5344  // offset if it is legal.
5345  unsigned char OpFlags =
5346    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5347  CodeModel::Model M = getTargetMachine().getCodeModel();
5348  SDValue Result;
5349  if (OpFlags == X86II::MO_NO_FLAG &&
5350      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5351    // A direct static reference to a global.
5352    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
5353    Offset = 0;
5354  } else {
5355    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
5356  }
5357
5358  if (Subtarget->isPICStyleRIPRel() &&
5359      (M == CodeModel::Small || M == CodeModel::Kernel))
5360    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5361  else
5362    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5363
5364  // With PIC, the address is actually $g + Offset.
5365  if (isGlobalRelativeToPICBase(OpFlags)) {
5366    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5367                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5368                         Result);
5369  }
5370
5371  // For globals that require a load from a stub to get the address, emit the
5372  // load.
5373  if (isGlobalStubReference(OpFlags))
5374    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5375                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5376
5377  // If there was a non-zero offset that we didn't fold, create an explicit
5378  // addition for it.
5379  if (Offset != 0)
5380    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5381                         DAG.getConstant(Offset, getPointerTy()));
5382
5383  return Result;
5384}
5385
5386SDValue
5387X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
5388  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5389  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5390  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5391}
5392
5393static SDValue
5394GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5395           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5396           unsigned char OperandFlags) {
5397  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5398  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5399  DebugLoc dl = GA->getDebugLoc();
5400  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5401                                           GA->getValueType(0),
5402                                           GA->getOffset(),
5403                                           OperandFlags);
5404  if (InFlag) {
5405    SDValue Ops[] = { Chain,  TGA, *InFlag };
5406    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5407  } else {
5408    SDValue Ops[]  = { Chain, TGA };
5409    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5410  }
5411
5412  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5413  MFI->setAdjustsStack(true);
5414
5415  SDValue Flag = Chain.getValue(1);
5416  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5417}
5418
5419// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5420static SDValue
5421LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5422                                const EVT PtrVT) {
5423  SDValue InFlag;
5424  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5425  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5426                                     DAG.getNode(X86ISD::GlobalBaseReg,
5427                                                 DebugLoc(), PtrVT), InFlag);
5428  InFlag = Chain.getValue(1);
5429
5430  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5431}
5432
5433// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5434static SDValue
5435LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5436                                const EVT PtrVT) {
5437  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5438                    X86::RAX, X86II::MO_TLSGD);
5439}
5440
5441// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5442// "local exec" model.
5443static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5444                                   const EVT PtrVT, TLSModel::Model model,
5445                                   bool is64Bit) {
5446  DebugLoc dl = GA->getDebugLoc();
5447  // Get the Thread Pointer
5448  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5449                             DebugLoc(), PtrVT,
5450                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5451                                             MVT::i32));
5452
5453  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5454                                      NULL, 0, false, false, 0);
5455
5456  unsigned char OperandFlags = 0;
5457  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5458  // initialexec.
5459  unsigned WrapperKind = X86ISD::Wrapper;
5460  if (model == TLSModel::LocalExec) {
5461    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5462  } else if (is64Bit) {
5463    assert(model == TLSModel::InitialExec);
5464    OperandFlags = X86II::MO_GOTTPOFF;
5465    WrapperKind = X86ISD::WrapperRIP;
5466  } else {
5467    assert(model == TLSModel::InitialExec);
5468    OperandFlags = X86II::MO_INDNTPOFF;
5469  }
5470
5471  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5472  // exec)
5473  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5474                                           GA->getValueType(0),
5475                                           GA->getOffset(), OperandFlags);
5476  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5477
5478  if (model == TLSModel::InitialExec)
5479    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5480                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5481
5482  // The address of the thread local variable is the add of the thread
5483  // pointer with the offset of the variable.
5484  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5485}
5486
5487SDValue
5488X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
5489
5490  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5491  const GlobalValue *GV = GA->getGlobal();
5492
5493  if (Subtarget->isTargetELF()) {
5494    // TODO: implement the "local dynamic" model
5495    // TODO: implement the "initial exec"model for pic executables
5496
5497    // If GV is an alias then use the aliasee for determining
5498    // thread-localness.
5499    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5500      GV = GA->resolveAliasedGlobal(false);
5501
5502    TLSModel::Model model
5503      = getTLSModel(GV, getTargetMachine().getRelocationModel());
5504
5505    switch (model) {
5506      case TLSModel::GeneralDynamic:
5507      case TLSModel::LocalDynamic: // not implemented
5508        if (Subtarget->is64Bit())
5509          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5510        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5511
5512      case TLSModel::InitialExec:
5513      case TLSModel::LocalExec:
5514        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5515                                   Subtarget->is64Bit());
5516    }
5517  } else if (Subtarget->isTargetDarwin()) {
5518    // Darwin only has one model of TLS.  Lower to that.
5519    unsigned char OpFlag = 0;
5520    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
5521                           X86ISD::WrapperRIP : X86ISD::Wrapper;
5522
5523    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5524    // global base reg.
5525    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
5526                  !Subtarget->is64Bit();
5527    if (PIC32)
5528      OpFlag = X86II::MO_TLVP_PIC_BASE;
5529    else
5530      OpFlag = X86II::MO_TLVP;
5531    DebugLoc DL = Op.getDebugLoc();
5532    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
5533                                                getPointerTy(),
5534                                                GA->getOffset(), OpFlag);
5535    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5536
5537    // With PIC32, the address is actually $g + Offset.
5538    if (PIC32)
5539      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5540                           DAG.getNode(X86ISD::GlobalBaseReg,
5541                                       DebugLoc(), getPointerTy()),
5542                           Offset);
5543
5544    // Lowering the machine isd will make sure everything is in the right
5545    // location.
5546    SDValue Args[] = { Offset };
5547    SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1);
5548
5549    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
5550    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5551    MFI->setAdjustsStack(true);
5552
5553    // And our return value (tls address) is in the standard call return value
5554    // location.
5555    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
5556    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
5557  }
5558
5559  assert(false &&
5560         "TLS not implemented for this target.");
5561
5562  llvm_unreachable("Unreachable");
5563  return SDValue();
5564}
5565
5566
5567/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5568/// take a 2 x i32 value to shift plus a shift amount.
5569SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
5570  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5571  EVT VT = Op.getValueType();
5572  unsigned VTBits = VT.getSizeInBits();
5573  DebugLoc dl = Op.getDebugLoc();
5574  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5575  SDValue ShOpLo = Op.getOperand(0);
5576  SDValue ShOpHi = Op.getOperand(1);
5577  SDValue ShAmt  = Op.getOperand(2);
5578  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5579                                     DAG.getConstant(VTBits - 1, MVT::i8))
5580                       : DAG.getConstant(0, VT);
5581
5582  SDValue Tmp2, Tmp3;
5583  if (Op.getOpcode() == ISD::SHL_PARTS) {
5584    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5585    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5586  } else {
5587    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5588    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5589  }
5590
5591  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5592                                DAG.getConstant(VTBits, MVT::i8));
5593  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
5594                             AndNode, DAG.getConstant(0, MVT::i8));
5595
5596  SDValue Hi, Lo;
5597  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5598  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5599  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5600
5601  if (Op.getOpcode() == ISD::SHL_PARTS) {
5602    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5603    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5604  } else {
5605    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5606    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5607  }
5608
5609  SDValue Ops[2] = { Lo, Hi };
5610  return DAG.getMergeValues(Ops, 2, dl);
5611}
5612
5613SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
5614                                           SelectionDAG &DAG) const {
5615  EVT SrcVT = Op.getOperand(0).getValueType();
5616
5617  if (SrcVT.isVector()) {
5618    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5619      return Op;
5620    }
5621    return SDValue();
5622  }
5623
5624  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5625         "Unknown SINT_TO_FP to lower!");
5626
5627  // These are really Legal; return the operand so the caller accepts it as
5628  // Legal.
5629  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5630    return Op;
5631  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5632      Subtarget->is64Bit()) {
5633    return Op;
5634  }
5635
5636  DebugLoc dl = Op.getDebugLoc();
5637  unsigned Size = SrcVT.getSizeInBits()/8;
5638  MachineFunction &MF = DAG.getMachineFunction();
5639  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5640  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5641  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5642                               StackSlot,
5643                               PseudoSourceValue::getFixedStack(SSFI), 0,
5644                               false, false, 0);
5645  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5646}
5647
5648SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5649                                     SDValue StackSlot,
5650                                     SelectionDAG &DAG) const {
5651  // Build the FILD
5652  DebugLoc dl = Op.getDebugLoc();
5653  SDVTList Tys;
5654  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5655  if (useSSE)
5656    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5657  else
5658    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5659  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5660  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5661                               Tys, Ops, array_lengthof(Ops));
5662
5663  if (useSSE) {
5664    Chain = Result.getValue(1);
5665    SDValue InFlag = Result.getValue(2);
5666
5667    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5668    // shouldn't be necessary except that RFP cannot be live across
5669    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5670    MachineFunction &MF = DAG.getMachineFunction();
5671    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5672    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5673    Tys = DAG.getVTList(MVT::Other);
5674    SDValue Ops[] = {
5675      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5676    };
5677    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5678    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5679                         PseudoSourceValue::getFixedStack(SSFI), 0,
5680                         false, false, 0);
5681  }
5682
5683  return Result;
5684}
5685
5686// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5687SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
5688                                               SelectionDAG &DAG) const {
5689  // This algorithm is not obvious. Here it is in C code, more or less:
5690  /*
5691    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5692      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5693      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5694
5695      // Copy ints to xmm registers.
5696      __m128i xh = _mm_cvtsi32_si128( hi );
5697      __m128i xl = _mm_cvtsi32_si128( lo );
5698
5699      // Combine into low half of a single xmm register.
5700      __m128i x = _mm_unpacklo_epi32( xh, xl );
5701      __m128d d;
5702      double sd;
5703
5704      // Merge in appropriate exponents to give the integer bits the right
5705      // magnitude.
5706      x = _mm_unpacklo_epi32( x, exp );
5707
5708      // Subtract away the biases to deal with the IEEE-754 double precision
5709      // implicit 1.
5710      d = _mm_sub_pd( (__m128d) x, bias );
5711
5712      // All conversions up to here are exact. The correctly rounded result is
5713      // calculated using the current rounding mode using the following
5714      // horizontal add.
5715      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5716      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5717                                // store doesn't really need to be here (except
5718                                // maybe to zero the other double)
5719      return sd;
5720    }
5721  */
5722
5723  DebugLoc dl = Op.getDebugLoc();
5724  LLVMContext *Context = DAG.getContext();
5725
5726  // Build some magic constants.
5727  std::vector<Constant*> CV0;
5728  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5729  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5730  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5731  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5732  Constant *C0 = ConstantVector::get(CV0);
5733  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5734
5735  std::vector<Constant*> CV1;
5736  CV1.push_back(
5737    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5738  CV1.push_back(
5739    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5740  Constant *C1 = ConstantVector::get(CV1);
5741  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5742
5743  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5744                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5745                                        Op.getOperand(0),
5746                                        DAG.getIntPtrConstant(1)));
5747  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5748                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5749                                        Op.getOperand(0),
5750                                        DAG.getIntPtrConstant(0)));
5751  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5752  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5753                              PseudoSourceValue::getConstantPool(), 0,
5754                              false, false, 16);
5755  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5756  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5757  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5758                              PseudoSourceValue::getConstantPool(), 0,
5759                              false, false, 16);
5760  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5761
5762  // Add the halves; easiest way is to swap them into another reg first.
5763  int ShufMask[2] = { 1, -1 };
5764  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5765                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5766  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5767  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5768                     DAG.getIntPtrConstant(0));
5769}
5770
5771// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5772SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
5773                                               SelectionDAG &DAG) const {
5774  DebugLoc dl = Op.getDebugLoc();
5775  // FP constant to bias correct the final result.
5776  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5777                                   MVT::f64);
5778
5779  // Load the 32-bit value into an XMM register.
5780  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5781                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5782                                         Op.getOperand(0),
5783                                         DAG.getIntPtrConstant(0)));
5784
5785  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5786                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5787                     DAG.getIntPtrConstant(0));
5788
5789  // Or the load with the bias.
5790  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5791                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5792                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5793                                                   MVT::v2f64, Load)),
5794                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5795                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5796                                                   MVT::v2f64, Bias)));
5797  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5798                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5799                   DAG.getIntPtrConstant(0));
5800
5801  // Subtract the bias.
5802  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5803
5804  // Handle final rounding.
5805  EVT DestVT = Op.getValueType();
5806
5807  if (DestVT.bitsLT(MVT::f64)) {
5808    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5809                       DAG.getIntPtrConstant(0));
5810  } else if (DestVT.bitsGT(MVT::f64)) {
5811    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5812  }
5813
5814  // Handle final rounding.
5815  return Sub;
5816}
5817
5818SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
5819                                           SelectionDAG &DAG) const {
5820  SDValue N0 = Op.getOperand(0);
5821  DebugLoc dl = Op.getDebugLoc();
5822
5823  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
5824  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5825  // the optimization here.
5826  if (DAG.SignBitIsZero(N0))
5827    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5828
5829  EVT SrcVT = N0.getValueType();
5830  EVT DstVT = Op.getValueType();
5831  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
5832    return LowerUINT_TO_FP_i64(Op, DAG);
5833  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
5834    return LowerUINT_TO_FP_i32(Op, DAG);
5835
5836  // Make a 64-bit buffer, and use it to build an FILD.
5837  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5838  if (SrcVT == MVT::i32) {
5839    SDValue WordOff = DAG.getConstant(4, getPointerTy());
5840    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5841                                     getPointerTy(), StackSlot, WordOff);
5842    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5843                                  StackSlot, NULL, 0, false, false, 0);
5844    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5845                                  OffsetSlot, NULL, 0, false, false, 0);
5846    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5847    return Fild;
5848  }
5849
5850  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
5851  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5852                                StackSlot, NULL, 0, false, false, 0);
5853  // For i64 source, we need to add the appropriate power of 2 if the input
5854  // was negative.  This is the same as the optimization in
5855  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
5856  // we must be careful to do the computation in x87 extended precision, not
5857  // in SSE. (The generic code can't know it's OK to do this, or how to.)
5858  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
5859  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
5860  SDValue Fild = DAG.getNode(X86ISD::FILD, dl, Tys, Ops, 3);
5861
5862  APInt FF(32, 0x5F800000ULL);
5863
5864  // Check whether the sign bit is set.
5865  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
5866                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
5867                                 ISD::SETLT);
5868
5869  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
5870  SDValue FudgePtr = DAG.getConstantPool(
5871                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
5872                                         getPointerTy());
5873
5874  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
5875  SDValue Zero = DAG.getIntPtrConstant(0);
5876  SDValue Four = DAG.getIntPtrConstant(4);
5877  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
5878                               Zero, Four);
5879  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
5880
5881  // Load the value out, extending it from f32 to f80.
5882  // FIXME: Avoid the extend by constructing the right constant pool?
5883  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
5884                                 FudgePtr, PseudoSourceValue::getConstantPool(),
5885                                 0, MVT::f32, false, false, 4);
5886  // Extend everything to 80 bits to force it to be done on x87.
5887  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
5888  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
5889}
5890
5891std::pair<SDValue,SDValue> X86TargetLowering::
5892FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
5893  DebugLoc dl = Op.getDebugLoc();
5894
5895  EVT DstTy = Op.getValueType();
5896
5897  if (!IsSigned) {
5898    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5899    DstTy = MVT::i64;
5900  }
5901
5902  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5903         DstTy.getSimpleVT() >= MVT::i16 &&
5904         "Unknown FP_TO_SINT to lower!");
5905
5906  // These are really Legal.
5907  if (DstTy == MVT::i32 &&
5908      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5909    return std::make_pair(SDValue(), SDValue());
5910  if (Subtarget->is64Bit() &&
5911      DstTy == MVT::i64 &&
5912      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5913    return std::make_pair(SDValue(), SDValue());
5914
5915  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5916  // stack slot.
5917  MachineFunction &MF = DAG.getMachineFunction();
5918  unsigned MemSize = DstTy.getSizeInBits()/8;
5919  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5920  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5921
5922  unsigned Opc;
5923  switch (DstTy.getSimpleVT().SimpleTy) {
5924  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5925  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5926  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5927  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5928  }
5929
5930  SDValue Chain = DAG.getEntryNode();
5931  SDValue Value = Op.getOperand(0);
5932  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5933    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5934    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5935                         PseudoSourceValue::getFixedStack(SSFI), 0,
5936                         false, false, 0);
5937    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5938    SDValue Ops[] = {
5939      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5940    };
5941    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5942    Chain = Value.getValue(1);
5943    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5944    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5945  }
5946
5947  // Build the FP_TO_INT*_IN_MEM
5948  SDValue Ops[] = { Chain, Value, StackSlot };
5949  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5950
5951  return std::make_pair(FIST, StackSlot);
5952}
5953
5954SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
5955                                           SelectionDAG &DAG) const {
5956  if (Op.getValueType().isVector()) {
5957    if (Op.getValueType() == MVT::v2i32 &&
5958        Op.getOperand(0).getValueType() == MVT::v2f64) {
5959      return Op;
5960    }
5961    return SDValue();
5962  }
5963
5964  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5965  SDValue FIST = Vals.first, StackSlot = Vals.second;
5966  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5967  if (FIST.getNode() == 0) return Op;
5968
5969  // Load the result.
5970  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5971                     FIST, StackSlot, NULL, 0, false, false, 0);
5972}
5973
5974SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
5975                                           SelectionDAG &DAG) const {
5976  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5977  SDValue FIST = Vals.first, StackSlot = Vals.second;
5978  assert(FIST.getNode() && "Unexpected failure");
5979
5980  // Load the result.
5981  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5982                     FIST, StackSlot, NULL, 0, false, false, 0);
5983}
5984
5985SDValue X86TargetLowering::LowerFABS(SDValue Op,
5986                                     SelectionDAG &DAG) const {
5987  LLVMContext *Context = DAG.getContext();
5988  DebugLoc dl = Op.getDebugLoc();
5989  EVT VT = Op.getValueType();
5990  EVT EltVT = VT;
5991  if (VT.isVector())
5992    EltVT = VT.getVectorElementType();
5993  std::vector<Constant*> CV;
5994  if (EltVT == MVT::f64) {
5995    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5996    CV.push_back(C);
5997    CV.push_back(C);
5998  } else {
5999    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
6000    CV.push_back(C);
6001    CV.push_back(C);
6002    CV.push_back(C);
6003    CV.push_back(C);
6004  }
6005  Constant *C = ConstantVector::get(CV);
6006  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6007  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6008                             PseudoSourceValue::getConstantPool(), 0,
6009                             false, false, 16);
6010  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
6011}
6012
6013SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
6014  LLVMContext *Context = DAG.getContext();
6015  DebugLoc dl = Op.getDebugLoc();
6016  EVT VT = Op.getValueType();
6017  EVT EltVT = VT;
6018  if (VT.isVector())
6019    EltVT = VT.getVectorElementType();
6020  std::vector<Constant*> CV;
6021  if (EltVT == MVT::f64) {
6022    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
6023    CV.push_back(C);
6024    CV.push_back(C);
6025  } else {
6026    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
6027    CV.push_back(C);
6028    CV.push_back(C);
6029    CV.push_back(C);
6030    CV.push_back(C);
6031  }
6032  Constant *C = ConstantVector::get(CV);
6033  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6034  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6035                             PseudoSourceValue::getConstantPool(), 0,
6036                             false, false, 16);
6037  if (VT.isVector()) {
6038    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6039                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
6040                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6041                                Op.getOperand(0)),
6042                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
6043  } else {
6044    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
6045  }
6046}
6047
6048SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6049  LLVMContext *Context = DAG.getContext();
6050  SDValue Op0 = Op.getOperand(0);
6051  SDValue Op1 = Op.getOperand(1);
6052  DebugLoc dl = Op.getDebugLoc();
6053  EVT VT = Op.getValueType();
6054  EVT SrcVT = Op1.getValueType();
6055
6056  // If second operand is smaller, extend it first.
6057  if (SrcVT.bitsLT(VT)) {
6058    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
6059    SrcVT = VT;
6060  }
6061  // And if it is bigger, shrink it first.
6062  if (SrcVT.bitsGT(VT)) {
6063    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
6064    SrcVT = VT;
6065  }
6066
6067  // At this point the operands and the result should have the same
6068  // type, and that won't be f80 since that is not custom lowered.
6069
6070  // First get the sign bit of second operand.
6071  std::vector<Constant*> CV;
6072  if (SrcVT == MVT::f64) {
6073    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
6074    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6075  } else {
6076    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
6077    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6078    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6079    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6080  }
6081  Constant *C = ConstantVector::get(CV);
6082  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6083  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6084                              PseudoSourceValue::getConstantPool(), 0,
6085                              false, false, 16);
6086  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6087
6088  // Shift sign bit right or left if the two operands have different types.
6089  if (SrcVT.bitsGT(VT)) {
6090    // Op0 is MVT::f32, Op1 is MVT::f64.
6091    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6092    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6093                          DAG.getConstant(32, MVT::i32));
6094    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
6095    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6096                          DAG.getIntPtrConstant(0));
6097  }
6098
6099  // Clear first operand sign bit.
6100  CV.clear();
6101  if (VT == MVT::f64) {
6102    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6103    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6104  } else {
6105    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6106    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6107    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6108    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6109  }
6110  C = ConstantVector::get(CV);
6111  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6112  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6113                              PseudoSourceValue::getConstantPool(), 0,
6114                              false, false, 16);
6115  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6116
6117  // Or the value with the sign bit.
6118  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6119}
6120
6121/// Emit nodes that will be selected as "test Op0,Op0", or something
6122/// equivalent.
6123SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6124                                    SelectionDAG &DAG) const {
6125  DebugLoc dl = Op.getDebugLoc();
6126
6127  // CF and OF aren't always set the way we want. Determine which
6128  // of these we need.
6129  bool NeedCF = false;
6130  bool NeedOF = false;
6131  switch (X86CC) {
6132  default: break;
6133  case X86::COND_A: case X86::COND_AE:
6134  case X86::COND_B: case X86::COND_BE:
6135    NeedCF = true;
6136    break;
6137  case X86::COND_G: case X86::COND_GE:
6138  case X86::COND_L: case X86::COND_LE:
6139  case X86::COND_O: case X86::COND_NO:
6140    NeedOF = true;
6141    break;
6142  }
6143
6144  // See if we can use the EFLAGS value from the operand instead of
6145  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6146  // we prove that the arithmetic won't overflow, we can't use OF or CF.
6147  if (Op.getResNo() != 0 || NeedOF || NeedCF)
6148    // Emit a CMP with 0, which is the TEST pattern.
6149    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6150                       DAG.getConstant(0, Op.getValueType()));
6151
6152  unsigned Opcode = 0;
6153  unsigned NumOperands = 0;
6154  switch (Op.getNode()->getOpcode()) {
6155  case ISD::ADD:
6156    // Due to an isel shortcoming, be conservative if this add is likely to be
6157    // selected as part of a load-modify-store instruction. When the root node
6158    // in a match is a store, isel doesn't know how to remap non-chain non-flag
6159    // uses of other nodes in the match, such as the ADD in this case. This
6160    // leads to the ADD being left around and reselected, with the result being
6161    // two adds in the output.  Alas, even if none our users are stores, that
6162    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
6163    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
6164    // climbing the DAG back to the root, and it doesn't seem to be worth the
6165    // effort.
6166    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6167           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6168      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6169        goto default_case;
6170
6171    if (ConstantSDNode *C =
6172        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6173      // An add of one will be selected as an INC.
6174      if (C->getAPIntValue() == 1) {
6175        Opcode = X86ISD::INC;
6176        NumOperands = 1;
6177        break;
6178      }
6179
6180      // An add of negative one (subtract of one) will be selected as a DEC.
6181      if (C->getAPIntValue().isAllOnesValue()) {
6182        Opcode = X86ISD::DEC;
6183        NumOperands = 1;
6184        break;
6185      }
6186    }
6187
6188    // Otherwise use a regular EFLAGS-setting add.
6189    Opcode = X86ISD::ADD;
6190    NumOperands = 2;
6191    break;
6192  case ISD::AND: {
6193    // If the primary and result isn't used, don't bother using X86ISD::AND,
6194    // because a TEST instruction will be better.
6195    bool NonFlagUse = false;
6196    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6197           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6198      SDNode *User = *UI;
6199      unsigned UOpNo = UI.getOperandNo();
6200      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6201        // Look pass truncate.
6202        UOpNo = User->use_begin().getOperandNo();
6203        User = *User->use_begin();
6204      }
6205
6206      if (User->getOpcode() != ISD::BRCOND &&
6207          User->getOpcode() != ISD::SETCC &&
6208          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6209        NonFlagUse = true;
6210        break;
6211      }
6212    }
6213
6214    if (!NonFlagUse)
6215      break;
6216  }
6217    // FALL THROUGH
6218  case ISD::SUB:
6219  case ISD::OR:
6220  case ISD::XOR:
6221    // Due to the ISEL shortcoming noted above, be conservative if this op is
6222    // likely to be selected as part of a load-modify-store instruction.
6223    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6224           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6225      if (UI->getOpcode() == ISD::STORE)
6226        goto default_case;
6227
6228    // Otherwise use a regular EFLAGS-setting instruction.
6229    switch (Op.getNode()->getOpcode()) {
6230    default: llvm_unreachable("unexpected operator!");
6231    case ISD::SUB: Opcode = X86ISD::SUB; break;
6232    case ISD::OR:  Opcode = X86ISD::OR;  break;
6233    case ISD::XOR: Opcode = X86ISD::XOR; break;
6234    case ISD::AND: Opcode = X86ISD::AND; break;
6235    }
6236
6237    NumOperands = 2;
6238    break;
6239  case X86ISD::ADD:
6240  case X86ISD::SUB:
6241  case X86ISD::INC:
6242  case X86ISD::DEC:
6243  case X86ISD::OR:
6244  case X86ISD::XOR:
6245  case X86ISD::AND:
6246    return SDValue(Op.getNode(), 1);
6247  default:
6248  default_case:
6249    break;
6250  }
6251
6252  if (Opcode == 0)
6253    // Emit a CMP with 0, which is the TEST pattern.
6254    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6255                       DAG.getConstant(0, Op.getValueType()));
6256
6257  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6258  SmallVector<SDValue, 4> Ops;
6259  for (unsigned i = 0; i != NumOperands; ++i)
6260    Ops.push_back(Op.getOperand(i));
6261
6262  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6263  DAG.ReplaceAllUsesWith(Op, New);
6264  return SDValue(New.getNode(), 1);
6265}
6266
6267/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6268/// equivalent.
6269SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6270                                   SelectionDAG &DAG) const {
6271  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6272    if (C->getAPIntValue() == 0)
6273      return EmitTest(Op0, X86CC, DAG);
6274
6275  DebugLoc dl = Op0.getDebugLoc();
6276  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6277}
6278
6279/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6280/// if it's possible.
6281SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6282                                     DebugLoc dl, SelectionDAG &DAG) const {
6283  SDValue Op0 = And.getOperand(0);
6284  SDValue Op1 = And.getOperand(1);
6285  if (Op0.getOpcode() == ISD::TRUNCATE)
6286    Op0 = Op0.getOperand(0);
6287  if (Op1.getOpcode() == ISD::TRUNCATE)
6288    Op1 = Op1.getOperand(0);
6289
6290  SDValue LHS, RHS;
6291  if (Op1.getOpcode() == ISD::SHL)
6292    std::swap(Op0, Op1);
6293  if (Op0.getOpcode() == ISD::SHL) {
6294    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6295      if (And00C->getZExtValue() == 1) {
6296        // If we looked past a truncate, check that it's only truncating away
6297        // known zeros.
6298        unsigned BitWidth = Op0.getValueSizeInBits();
6299        unsigned AndBitWidth = And.getValueSizeInBits();
6300        if (BitWidth > AndBitWidth) {
6301          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6302          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6303          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6304            return SDValue();
6305        }
6306        LHS = Op1;
6307        RHS = Op0.getOperand(1);
6308      }
6309  } else if (Op1.getOpcode() == ISD::Constant) {
6310    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6311    SDValue AndLHS = Op0;
6312    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6313      LHS = AndLHS.getOperand(0);
6314      RHS = AndLHS.getOperand(1);
6315    }
6316  }
6317
6318  if (LHS.getNode()) {
6319    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
6320    // instruction.  Since the shift amount is in-range-or-undefined, we know
6321    // that doing a bittest on the i32 value is ok.  We extend to i32 because
6322    // the encoding for the i16 version is larger than the i32 version.
6323    // Also promote i16 to i32 for performance / code size reason.
6324    if (LHS.getValueType() == MVT::i8 ||
6325        LHS.getValueType() == MVT::i16)
6326      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6327
6328    // If the operand types disagree, extend the shift amount to match.  Since
6329    // BT ignores high bits (like shifts) we can use anyextend.
6330    if (LHS.getValueType() != RHS.getValueType())
6331      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6332
6333    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6334    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6335    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6336                       DAG.getConstant(Cond, MVT::i8), BT);
6337  }
6338
6339  return SDValue();
6340}
6341
6342SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
6343  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6344  SDValue Op0 = Op.getOperand(0);
6345  SDValue Op1 = Op.getOperand(1);
6346  DebugLoc dl = Op.getDebugLoc();
6347  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6348
6349  // Optimize to BT if possible.
6350  // Lower (X & (1 << N)) == 0 to BT(X, N).
6351  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
6352  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
6353  if (Op0.getOpcode() == ISD::AND &&
6354      Op0.hasOneUse() &&
6355      Op1.getOpcode() == ISD::Constant &&
6356      cast<ConstantSDNode>(Op1)->isNullValue() &&
6357      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6358    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
6359    if (NewSetCC.getNode())
6360      return NewSetCC;
6361  }
6362
6363  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
6364  if (Op0.getOpcode() == X86ISD::SETCC &&
6365      Op1.getOpcode() == ISD::Constant &&
6366      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
6367       cast<ConstantSDNode>(Op1)->isNullValue()) &&
6368      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6369    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
6370    bool Invert = (CC == ISD::SETNE) ^
6371      cast<ConstantSDNode>(Op1)->isNullValue();
6372    if (Invert)
6373      CCode = X86::GetOppositeBranchCondition(CCode);
6374    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6375                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
6376  }
6377
6378  bool isFP = Op1.getValueType().isFloatingPoint();
6379  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
6380  if (X86CC == X86::COND_INVALID)
6381    return SDValue();
6382
6383  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
6384
6385  // Use sbb x, x to materialize carry bit into a GPR.
6386  if (X86CC == X86::COND_B)
6387    return DAG.getNode(ISD::AND, dl, MVT::i8,
6388                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
6389                                   DAG.getConstant(X86CC, MVT::i8), Cond),
6390                       DAG.getConstant(1, MVT::i8));
6391
6392  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6393                     DAG.getConstant(X86CC, MVT::i8), Cond);
6394}
6395
6396SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
6397  SDValue Cond;
6398  SDValue Op0 = Op.getOperand(0);
6399  SDValue Op1 = Op.getOperand(1);
6400  SDValue CC = Op.getOperand(2);
6401  EVT VT = Op.getValueType();
6402  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6403  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6404  DebugLoc dl = Op.getDebugLoc();
6405
6406  if (isFP) {
6407    unsigned SSECC = 8;
6408    EVT VT0 = Op0.getValueType();
6409    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
6410    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
6411    bool Swap = false;
6412
6413    switch (SetCCOpcode) {
6414    default: break;
6415    case ISD::SETOEQ:
6416    case ISD::SETEQ:  SSECC = 0; break;
6417    case ISD::SETOGT:
6418    case ISD::SETGT: Swap = true; // Fallthrough
6419    case ISD::SETLT:
6420    case ISD::SETOLT: SSECC = 1; break;
6421    case ISD::SETOGE:
6422    case ISD::SETGE: Swap = true; // Fallthrough
6423    case ISD::SETLE:
6424    case ISD::SETOLE: SSECC = 2; break;
6425    case ISD::SETUO:  SSECC = 3; break;
6426    case ISD::SETUNE:
6427    case ISD::SETNE:  SSECC = 4; break;
6428    case ISD::SETULE: Swap = true;
6429    case ISD::SETUGE: SSECC = 5; break;
6430    case ISD::SETULT: Swap = true;
6431    case ISD::SETUGT: SSECC = 6; break;
6432    case ISD::SETO:   SSECC = 7; break;
6433    }
6434    if (Swap)
6435      std::swap(Op0, Op1);
6436
6437    // In the two special cases we can't handle, emit two comparisons.
6438    if (SSECC == 8) {
6439      if (SetCCOpcode == ISD::SETUEQ) {
6440        SDValue UNORD, EQ;
6441        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6442        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6443        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6444      }
6445      else if (SetCCOpcode == ISD::SETONE) {
6446        SDValue ORD, NEQ;
6447        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6448        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6449        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6450      }
6451      llvm_unreachable("Illegal FP comparison");
6452    }
6453    // Handle all other FP comparisons here.
6454    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6455  }
6456
6457  // We are handling one of the integer comparisons here.  Since SSE only has
6458  // GT and EQ comparisons for integer, swapping operands and multiple
6459  // operations may be required for some comparisons.
6460  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6461  bool Swap = false, Invert = false, FlipSigns = false;
6462
6463  switch (VT.getSimpleVT().SimpleTy) {
6464  default: break;
6465  case MVT::v8i8:
6466  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6467  case MVT::v4i16:
6468  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6469  case MVT::v2i32:
6470  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6471  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6472  }
6473
6474  switch (SetCCOpcode) {
6475  default: break;
6476  case ISD::SETNE:  Invert = true;
6477  case ISD::SETEQ:  Opc = EQOpc; break;
6478  case ISD::SETLT:  Swap = true;
6479  case ISD::SETGT:  Opc = GTOpc; break;
6480  case ISD::SETGE:  Swap = true;
6481  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6482  case ISD::SETULT: Swap = true;
6483  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6484  case ISD::SETUGE: Swap = true;
6485  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6486  }
6487  if (Swap)
6488    std::swap(Op0, Op1);
6489
6490  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6491  // bits of the inputs before performing those operations.
6492  if (FlipSigns) {
6493    EVT EltVT = VT.getVectorElementType();
6494    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6495                                      EltVT);
6496    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6497    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6498                                    SignBits.size());
6499    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6500    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6501  }
6502
6503  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6504
6505  // If the logical-not of the result is required, perform that now.
6506  if (Invert)
6507    Result = DAG.getNOT(dl, Result, VT);
6508
6509  return Result;
6510}
6511
6512// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6513static bool isX86LogicalCmp(SDValue Op) {
6514  unsigned Opc = Op.getNode()->getOpcode();
6515  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6516    return true;
6517  if (Op.getResNo() == 1 &&
6518      (Opc == X86ISD::ADD ||
6519       Opc == X86ISD::SUB ||
6520       Opc == X86ISD::SMUL ||
6521       Opc == X86ISD::UMUL ||
6522       Opc == X86ISD::INC ||
6523       Opc == X86ISD::DEC ||
6524       Opc == X86ISD::OR ||
6525       Opc == X86ISD::XOR ||
6526       Opc == X86ISD::AND))
6527    return true;
6528
6529  return false;
6530}
6531
6532SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
6533  bool addTest = true;
6534  SDValue Cond  = Op.getOperand(0);
6535  DebugLoc dl = Op.getDebugLoc();
6536  SDValue CC;
6537
6538  if (Cond.getOpcode() == ISD::SETCC) {
6539    SDValue NewCond = LowerSETCC(Cond, DAG);
6540    if (NewCond.getNode())
6541      Cond = NewCond;
6542  }
6543
6544  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6545  SDValue Op1 = Op.getOperand(1);
6546  SDValue Op2 = Op.getOperand(2);
6547  if (Cond.getOpcode() == X86ISD::SETCC &&
6548      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6549    SDValue Cmp = Cond.getOperand(1);
6550    if (Cmp.getOpcode() == X86ISD::CMP) {
6551      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6552      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6553      ConstantSDNode *RHSC =
6554        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6555      if (N1C && N1C->isAllOnesValue() &&
6556          N2C && N2C->isNullValue() &&
6557          RHSC && RHSC->isNullValue()) {
6558        SDValue CmpOp0 = Cmp.getOperand(0);
6559        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6560                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6561        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6562                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6563      }
6564    }
6565  }
6566
6567  // Look pass (and (setcc_carry (cmp ...)), 1).
6568  if (Cond.getOpcode() == ISD::AND &&
6569      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6570    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6571    if (C && C->getAPIntValue() == 1)
6572      Cond = Cond.getOperand(0);
6573  }
6574
6575  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6576  // setting operand in place of the X86ISD::SETCC.
6577  if (Cond.getOpcode() == X86ISD::SETCC ||
6578      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6579    CC = Cond.getOperand(0);
6580
6581    SDValue Cmp = Cond.getOperand(1);
6582    unsigned Opc = Cmp.getOpcode();
6583    EVT VT = Op.getValueType();
6584
6585    bool IllegalFPCMov = false;
6586    if (VT.isFloatingPoint() && !VT.isVector() &&
6587        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6588      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6589
6590    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6591        Opc == X86ISD::BT) { // FIXME
6592      Cond = Cmp;
6593      addTest = false;
6594    }
6595  }
6596
6597  if (addTest) {
6598    // Look pass the truncate.
6599    if (Cond.getOpcode() == ISD::TRUNCATE)
6600      Cond = Cond.getOperand(0);
6601
6602    // We know the result of AND is compared against zero. Try to match
6603    // it to BT.
6604    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6605      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6606      if (NewSetCC.getNode()) {
6607        CC = NewSetCC.getOperand(0);
6608        Cond = NewSetCC.getOperand(1);
6609        addTest = false;
6610      }
6611    }
6612  }
6613
6614  if (addTest) {
6615    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6616    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6617  }
6618
6619  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6620  // condition is true.
6621  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6622  SDValue Ops[] = { Op2, Op1, CC, Cond };
6623  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6624}
6625
6626// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6627// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6628// from the AND / OR.
6629static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6630  Opc = Op.getOpcode();
6631  if (Opc != ISD::OR && Opc != ISD::AND)
6632    return false;
6633  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6634          Op.getOperand(0).hasOneUse() &&
6635          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6636          Op.getOperand(1).hasOneUse());
6637}
6638
6639// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6640// 1 and that the SETCC node has a single use.
6641static bool isXor1OfSetCC(SDValue Op) {
6642  if (Op.getOpcode() != ISD::XOR)
6643    return false;
6644  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6645  if (N1C && N1C->getAPIntValue() == 1) {
6646    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6647      Op.getOperand(0).hasOneUse();
6648  }
6649  return false;
6650}
6651
6652SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
6653  bool addTest = true;
6654  SDValue Chain = Op.getOperand(0);
6655  SDValue Cond  = Op.getOperand(1);
6656  SDValue Dest  = Op.getOperand(2);
6657  DebugLoc dl = Op.getDebugLoc();
6658  SDValue CC;
6659
6660  if (Cond.getOpcode() == ISD::SETCC) {
6661    SDValue NewCond = LowerSETCC(Cond, DAG);
6662    if (NewCond.getNode())
6663      Cond = NewCond;
6664  }
6665#if 0
6666  // FIXME: LowerXALUO doesn't handle these!!
6667  else if (Cond.getOpcode() == X86ISD::ADD  ||
6668           Cond.getOpcode() == X86ISD::SUB  ||
6669           Cond.getOpcode() == X86ISD::SMUL ||
6670           Cond.getOpcode() == X86ISD::UMUL)
6671    Cond = LowerXALUO(Cond, DAG);
6672#endif
6673
6674  // Look pass (and (setcc_carry (cmp ...)), 1).
6675  if (Cond.getOpcode() == ISD::AND &&
6676      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6677    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6678    if (C && C->getAPIntValue() == 1)
6679      Cond = Cond.getOperand(0);
6680  }
6681
6682  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6683  // setting operand in place of the X86ISD::SETCC.
6684  if (Cond.getOpcode() == X86ISD::SETCC ||
6685      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6686    CC = Cond.getOperand(0);
6687
6688    SDValue Cmp = Cond.getOperand(1);
6689    unsigned Opc = Cmp.getOpcode();
6690    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6691    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6692      Cond = Cmp;
6693      addTest = false;
6694    } else {
6695      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6696      default: break;
6697      case X86::COND_O:
6698      case X86::COND_B:
6699        // These can only come from an arithmetic instruction with overflow,
6700        // e.g. SADDO, UADDO.
6701        Cond = Cond.getNode()->getOperand(1);
6702        addTest = false;
6703        break;
6704      }
6705    }
6706  } else {
6707    unsigned CondOpc;
6708    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6709      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6710      if (CondOpc == ISD::OR) {
6711        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6712        // two branches instead of an explicit OR instruction with a
6713        // separate test.
6714        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6715            isX86LogicalCmp(Cmp)) {
6716          CC = Cond.getOperand(0).getOperand(0);
6717          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6718                              Chain, Dest, CC, Cmp);
6719          CC = Cond.getOperand(1).getOperand(0);
6720          Cond = Cmp;
6721          addTest = false;
6722        }
6723      } else { // ISD::AND
6724        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6725        // two branches instead of an explicit AND instruction with a
6726        // separate test. However, we only do this if this block doesn't
6727        // have a fall-through edge, because this requires an explicit
6728        // jmp when the condition is false.
6729        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6730            isX86LogicalCmp(Cmp) &&
6731            Op.getNode()->hasOneUse()) {
6732          X86::CondCode CCode =
6733            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6734          CCode = X86::GetOppositeBranchCondition(CCode);
6735          CC = DAG.getConstant(CCode, MVT::i8);
6736          SDNode *User = *Op.getNode()->use_begin();
6737          // Look for an unconditional branch following this conditional branch.
6738          // We need this because we need to reverse the successors in order
6739          // to implement FCMP_OEQ.
6740          if (User->getOpcode() == ISD::BR) {
6741            SDValue FalseBB = User->getOperand(1);
6742            SDNode *NewBR =
6743              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
6744            assert(NewBR == User);
6745            (void)NewBR;
6746            Dest = FalseBB;
6747
6748            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6749                                Chain, Dest, CC, Cmp);
6750            X86::CondCode CCode =
6751              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
6752            CCode = X86::GetOppositeBranchCondition(CCode);
6753            CC = DAG.getConstant(CCode, MVT::i8);
6754            Cond = Cmp;
6755            addTest = false;
6756          }
6757        }
6758      }
6759    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
6760      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
6761      // It should be transformed during dag combiner except when the condition
6762      // is set by a arithmetics with overflow node.
6763      X86::CondCode CCode =
6764        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6765      CCode = X86::GetOppositeBranchCondition(CCode);
6766      CC = DAG.getConstant(CCode, MVT::i8);
6767      Cond = Cond.getOperand(0).getOperand(1);
6768      addTest = false;
6769    }
6770  }
6771
6772  if (addTest) {
6773    // Look pass the truncate.
6774    if (Cond.getOpcode() == ISD::TRUNCATE)
6775      Cond = Cond.getOperand(0);
6776
6777    // We know the result of AND is compared against zero. Try to match
6778    // it to BT.
6779    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6780      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6781      if (NewSetCC.getNode()) {
6782        CC = NewSetCC.getOperand(0);
6783        Cond = NewSetCC.getOperand(1);
6784        addTest = false;
6785      }
6786    }
6787  }
6788
6789  if (addTest) {
6790    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6791    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6792  }
6793  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6794                     Chain, Dest, CC, Cond);
6795}
6796
6797
6798// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
6799// Calls to _alloca is needed to probe the stack when allocating more than 4k
6800// bytes in one go. Touching the stack at 4K increments is necessary to ensure
6801// that the guard pages used by the OS virtual memory manager are allocated in
6802// correct sequence.
6803SDValue
6804X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6805                                           SelectionDAG &DAG) const {
6806  assert(Subtarget->isTargetCygMing() &&
6807         "This should be used only on Cygwin/Mingw targets");
6808  DebugLoc dl = Op.getDebugLoc();
6809
6810  // Get the inputs.
6811  SDValue Chain = Op.getOperand(0);
6812  SDValue Size  = Op.getOperand(1);
6813  // FIXME: Ensure alignment here
6814
6815  SDValue Flag;
6816
6817  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6818
6819  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6820  Flag = Chain.getValue(1);
6821
6822  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6823
6824  Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
6825  Flag = Chain.getValue(1);
6826
6827  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6828
6829  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6830  return DAG.getMergeValues(Ops1, 2, dl);
6831}
6832
6833SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
6834  MachineFunction &MF = DAG.getMachineFunction();
6835  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
6836
6837  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6838  DebugLoc dl = Op.getDebugLoc();
6839
6840  if (!Subtarget->is64Bit()) {
6841    // vastart just stores the address of the VarArgsFrameIndex slot into the
6842    // memory location argument.
6843    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
6844                                   getPointerTy());
6845    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
6846                        false, false, 0);
6847  }
6848
6849  // __va_list_tag:
6850  //   gp_offset         (0 - 6 * 8)
6851  //   fp_offset         (48 - 48 + 8 * 16)
6852  //   overflow_arg_area (point to parameters coming in memory).
6853  //   reg_save_area
6854  SmallVector<SDValue, 8> MemOps;
6855  SDValue FIN = Op.getOperand(1);
6856  // Store gp_offset
6857  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6858                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
6859                                               MVT::i32),
6860                               FIN, SV, 0, false, false, 0);
6861  MemOps.push_back(Store);
6862
6863  // Store fp_offset
6864  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6865                    FIN, DAG.getIntPtrConstant(4));
6866  Store = DAG.getStore(Op.getOperand(0), dl,
6867                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
6868                                       MVT::i32),
6869                       FIN, SV, 4, false, false, 0);
6870  MemOps.push_back(Store);
6871
6872  // Store ptr to overflow_arg_area
6873  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6874                    FIN, DAG.getIntPtrConstant(4));
6875  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
6876                                    getPointerTy());
6877  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 8,
6878                       false, false, 0);
6879  MemOps.push_back(Store);
6880
6881  // Store ptr to reg_save_area.
6882  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6883                    FIN, DAG.getIntPtrConstant(8));
6884  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
6885                                    getPointerTy());
6886  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 16,
6887                       false, false, 0);
6888  MemOps.push_back(Store);
6889  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6890                     &MemOps[0], MemOps.size());
6891}
6892
6893SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
6894  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6895  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6896
6897  report_fatal_error("VAArgInst is not yet implemented for x86-64!");
6898  return SDValue();
6899}
6900
6901SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
6902  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6903  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6904  SDValue Chain = Op.getOperand(0);
6905  SDValue DstPtr = Op.getOperand(1);
6906  SDValue SrcPtr = Op.getOperand(2);
6907  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6908  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6909  DebugLoc dl = Op.getDebugLoc();
6910
6911  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6912                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
6913                       false, DstSV, 0, SrcSV, 0);
6914}
6915
6916SDValue
6917X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
6918  DebugLoc dl = Op.getDebugLoc();
6919  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6920  switch (IntNo) {
6921  default: return SDValue();    // Don't custom lower most intrinsics.
6922  // Comparison intrinsics.
6923  case Intrinsic::x86_sse_comieq_ss:
6924  case Intrinsic::x86_sse_comilt_ss:
6925  case Intrinsic::x86_sse_comile_ss:
6926  case Intrinsic::x86_sse_comigt_ss:
6927  case Intrinsic::x86_sse_comige_ss:
6928  case Intrinsic::x86_sse_comineq_ss:
6929  case Intrinsic::x86_sse_ucomieq_ss:
6930  case Intrinsic::x86_sse_ucomilt_ss:
6931  case Intrinsic::x86_sse_ucomile_ss:
6932  case Intrinsic::x86_sse_ucomigt_ss:
6933  case Intrinsic::x86_sse_ucomige_ss:
6934  case Intrinsic::x86_sse_ucomineq_ss:
6935  case Intrinsic::x86_sse2_comieq_sd:
6936  case Intrinsic::x86_sse2_comilt_sd:
6937  case Intrinsic::x86_sse2_comile_sd:
6938  case Intrinsic::x86_sse2_comigt_sd:
6939  case Intrinsic::x86_sse2_comige_sd:
6940  case Intrinsic::x86_sse2_comineq_sd:
6941  case Intrinsic::x86_sse2_ucomieq_sd:
6942  case Intrinsic::x86_sse2_ucomilt_sd:
6943  case Intrinsic::x86_sse2_ucomile_sd:
6944  case Intrinsic::x86_sse2_ucomigt_sd:
6945  case Intrinsic::x86_sse2_ucomige_sd:
6946  case Intrinsic::x86_sse2_ucomineq_sd: {
6947    unsigned Opc = 0;
6948    ISD::CondCode CC = ISD::SETCC_INVALID;
6949    switch (IntNo) {
6950    default: break;
6951    case Intrinsic::x86_sse_comieq_ss:
6952    case Intrinsic::x86_sse2_comieq_sd:
6953      Opc = X86ISD::COMI;
6954      CC = ISD::SETEQ;
6955      break;
6956    case Intrinsic::x86_sse_comilt_ss:
6957    case Intrinsic::x86_sse2_comilt_sd:
6958      Opc = X86ISD::COMI;
6959      CC = ISD::SETLT;
6960      break;
6961    case Intrinsic::x86_sse_comile_ss:
6962    case Intrinsic::x86_sse2_comile_sd:
6963      Opc = X86ISD::COMI;
6964      CC = ISD::SETLE;
6965      break;
6966    case Intrinsic::x86_sse_comigt_ss:
6967    case Intrinsic::x86_sse2_comigt_sd:
6968      Opc = X86ISD::COMI;
6969      CC = ISD::SETGT;
6970      break;
6971    case Intrinsic::x86_sse_comige_ss:
6972    case Intrinsic::x86_sse2_comige_sd:
6973      Opc = X86ISD::COMI;
6974      CC = ISD::SETGE;
6975      break;
6976    case Intrinsic::x86_sse_comineq_ss:
6977    case Intrinsic::x86_sse2_comineq_sd:
6978      Opc = X86ISD::COMI;
6979      CC = ISD::SETNE;
6980      break;
6981    case Intrinsic::x86_sse_ucomieq_ss:
6982    case Intrinsic::x86_sse2_ucomieq_sd:
6983      Opc = X86ISD::UCOMI;
6984      CC = ISD::SETEQ;
6985      break;
6986    case Intrinsic::x86_sse_ucomilt_ss:
6987    case Intrinsic::x86_sse2_ucomilt_sd:
6988      Opc = X86ISD::UCOMI;
6989      CC = ISD::SETLT;
6990      break;
6991    case Intrinsic::x86_sse_ucomile_ss:
6992    case Intrinsic::x86_sse2_ucomile_sd:
6993      Opc = X86ISD::UCOMI;
6994      CC = ISD::SETLE;
6995      break;
6996    case Intrinsic::x86_sse_ucomigt_ss:
6997    case Intrinsic::x86_sse2_ucomigt_sd:
6998      Opc = X86ISD::UCOMI;
6999      CC = ISD::SETGT;
7000      break;
7001    case Intrinsic::x86_sse_ucomige_ss:
7002    case Intrinsic::x86_sse2_ucomige_sd:
7003      Opc = X86ISD::UCOMI;
7004      CC = ISD::SETGE;
7005      break;
7006    case Intrinsic::x86_sse_ucomineq_ss:
7007    case Intrinsic::x86_sse2_ucomineq_sd:
7008      Opc = X86ISD::UCOMI;
7009      CC = ISD::SETNE;
7010      break;
7011    }
7012
7013    SDValue LHS = Op.getOperand(1);
7014    SDValue RHS = Op.getOperand(2);
7015    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
7016    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
7017    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
7018    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7019                                DAG.getConstant(X86CC, MVT::i8), Cond);
7020    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7021  }
7022  // ptest and testp intrinsics. The intrinsic these come from are designed to
7023  // return an integer value, not just an instruction so lower it to the ptest
7024  // or testp pattern and a setcc for the result.
7025  case Intrinsic::x86_sse41_ptestz:
7026  case Intrinsic::x86_sse41_ptestc:
7027  case Intrinsic::x86_sse41_ptestnzc:
7028  case Intrinsic::x86_avx_ptestz_256:
7029  case Intrinsic::x86_avx_ptestc_256:
7030  case Intrinsic::x86_avx_ptestnzc_256:
7031  case Intrinsic::x86_avx_vtestz_ps:
7032  case Intrinsic::x86_avx_vtestc_ps:
7033  case Intrinsic::x86_avx_vtestnzc_ps:
7034  case Intrinsic::x86_avx_vtestz_pd:
7035  case Intrinsic::x86_avx_vtestc_pd:
7036  case Intrinsic::x86_avx_vtestnzc_pd:
7037  case Intrinsic::x86_avx_vtestz_ps_256:
7038  case Intrinsic::x86_avx_vtestc_ps_256:
7039  case Intrinsic::x86_avx_vtestnzc_ps_256:
7040  case Intrinsic::x86_avx_vtestz_pd_256:
7041  case Intrinsic::x86_avx_vtestc_pd_256:
7042  case Intrinsic::x86_avx_vtestnzc_pd_256: {
7043    bool IsTestPacked = false;
7044    unsigned X86CC = 0;
7045    switch (IntNo) {
7046    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7047    case Intrinsic::x86_avx_vtestz_ps:
7048    case Intrinsic::x86_avx_vtestz_pd:
7049    case Intrinsic::x86_avx_vtestz_ps_256:
7050    case Intrinsic::x86_avx_vtestz_pd_256:
7051      IsTestPacked = true; // Fallthrough
7052    case Intrinsic::x86_sse41_ptestz:
7053    case Intrinsic::x86_avx_ptestz_256:
7054      // ZF = 1
7055      X86CC = X86::COND_E;
7056      break;
7057    case Intrinsic::x86_avx_vtestc_ps:
7058    case Intrinsic::x86_avx_vtestc_pd:
7059    case Intrinsic::x86_avx_vtestc_ps_256:
7060    case Intrinsic::x86_avx_vtestc_pd_256:
7061      IsTestPacked = true; // Fallthrough
7062    case Intrinsic::x86_sse41_ptestc:
7063    case Intrinsic::x86_avx_ptestc_256:
7064      // CF = 1
7065      X86CC = X86::COND_B;
7066      break;
7067    case Intrinsic::x86_avx_vtestnzc_ps:
7068    case Intrinsic::x86_avx_vtestnzc_pd:
7069    case Intrinsic::x86_avx_vtestnzc_ps_256:
7070    case Intrinsic::x86_avx_vtestnzc_pd_256:
7071      IsTestPacked = true; // Fallthrough
7072    case Intrinsic::x86_sse41_ptestnzc:
7073    case Intrinsic::x86_avx_ptestnzc_256:
7074      // ZF and CF = 0
7075      X86CC = X86::COND_A;
7076      break;
7077    }
7078
7079    SDValue LHS = Op.getOperand(1);
7080    SDValue RHS = Op.getOperand(2);
7081    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
7082    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
7083    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7084    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7085    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7086  }
7087
7088  // Fix vector shift instructions where the last operand is a non-immediate
7089  // i32 value.
7090  case Intrinsic::x86_sse2_pslli_w:
7091  case Intrinsic::x86_sse2_pslli_d:
7092  case Intrinsic::x86_sse2_pslli_q:
7093  case Intrinsic::x86_sse2_psrli_w:
7094  case Intrinsic::x86_sse2_psrli_d:
7095  case Intrinsic::x86_sse2_psrli_q:
7096  case Intrinsic::x86_sse2_psrai_w:
7097  case Intrinsic::x86_sse2_psrai_d:
7098  case Intrinsic::x86_mmx_pslli_w:
7099  case Intrinsic::x86_mmx_pslli_d:
7100  case Intrinsic::x86_mmx_pslli_q:
7101  case Intrinsic::x86_mmx_psrli_w:
7102  case Intrinsic::x86_mmx_psrli_d:
7103  case Intrinsic::x86_mmx_psrli_q:
7104  case Intrinsic::x86_mmx_psrai_w:
7105  case Intrinsic::x86_mmx_psrai_d: {
7106    SDValue ShAmt = Op.getOperand(2);
7107    if (isa<ConstantSDNode>(ShAmt))
7108      return SDValue();
7109
7110    unsigned NewIntNo = 0;
7111    EVT ShAmtVT = MVT::v4i32;
7112    switch (IntNo) {
7113    case Intrinsic::x86_sse2_pslli_w:
7114      NewIntNo = Intrinsic::x86_sse2_psll_w;
7115      break;
7116    case Intrinsic::x86_sse2_pslli_d:
7117      NewIntNo = Intrinsic::x86_sse2_psll_d;
7118      break;
7119    case Intrinsic::x86_sse2_pslli_q:
7120      NewIntNo = Intrinsic::x86_sse2_psll_q;
7121      break;
7122    case Intrinsic::x86_sse2_psrli_w:
7123      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7124      break;
7125    case Intrinsic::x86_sse2_psrli_d:
7126      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7127      break;
7128    case Intrinsic::x86_sse2_psrli_q:
7129      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7130      break;
7131    case Intrinsic::x86_sse2_psrai_w:
7132      NewIntNo = Intrinsic::x86_sse2_psra_w;
7133      break;
7134    case Intrinsic::x86_sse2_psrai_d:
7135      NewIntNo = Intrinsic::x86_sse2_psra_d;
7136      break;
7137    default: {
7138      ShAmtVT = MVT::v2i32;
7139      switch (IntNo) {
7140      case Intrinsic::x86_mmx_pslli_w:
7141        NewIntNo = Intrinsic::x86_mmx_psll_w;
7142        break;
7143      case Intrinsic::x86_mmx_pslli_d:
7144        NewIntNo = Intrinsic::x86_mmx_psll_d;
7145        break;
7146      case Intrinsic::x86_mmx_pslli_q:
7147        NewIntNo = Intrinsic::x86_mmx_psll_q;
7148        break;
7149      case Intrinsic::x86_mmx_psrli_w:
7150        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7151        break;
7152      case Intrinsic::x86_mmx_psrli_d:
7153        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7154        break;
7155      case Intrinsic::x86_mmx_psrli_q:
7156        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7157        break;
7158      case Intrinsic::x86_mmx_psrai_w:
7159        NewIntNo = Intrinsic::x86_mmx_psra_w;
7160        break;
7161      case Intrinsic::x86_mmx_psrai_d:
7162        NewIntNo = Intrinsic::x86_mmx_psra_d;
7163        break;
7164      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7165      }
7166      break;
7167    }
7168    }
7169
7170    // The vector shift intrinsics with scalars uses 32b shift amounts but
7171    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7172    // to be zero.
7173    SDValue ShOps[4];
7174    ShOps[0] = ShAmt;
7175    ShOps[1] = DAG.getConstant(0, MVT::i32);
7176    if (ShAmtVT == MVT::v4i32) {
7177      ShOps[2] = DAG.getUNDEF(MVT::i32);
7178      ShOps[3] = DAG.getUNDEF(MVT::i32);
7179      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7180    } else {
7181      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7182    }
7183
7184    EVT VT = Op.getValueType();
7185    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7186    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7187                       DAG.getConstant(NewIntNo, MVT::i32),
7188                       Op.getOperand(1), ShAmt);
7189  }
7190  }
7191}
7192
7193SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7194                                           SelectionDAG &DAG) const {
7195  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7196  MFI->setReturnAddressIsTaken(true);
7197
7198  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7199  DebugLoc dl = Op.getDebugLoc();
7200
7201  if (Depth > 0) {
7202    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7203    SDValue Offset =
7204      DAG.getConstant(TD->getPointerSize(),
7205                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7206    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7207                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7208                                   FrameAddr, Offset),
7209                       NULL, 0, false, false, 0);
7210  }
7211
7212  // Just load the return address.
7213  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7214  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7215                     RetAddrFI, NULL, 0, false, false, 0);
7216}
7217
7218SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7219  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7220  MFI->setFrameAddressIsTaken(true);
7221
7222  EVT VT = Op.getValueType();
7223  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7224  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7225  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7226  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7227  while (Depth--)
7228    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
7229                            false, false, 0);
7230  return FrameAddr;
7231}
7232
7233SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7234                                                     SelectionDAG &DAG) const {
7235  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7236}
7237
7238SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
7239  MachineFunction &MF = DAG.getMachineFunction();
7240  SDValue Chain     = Op.getOperand(0);
7241  SDValue Offset    = Op.getOperand(1);
7242  SDValue Handler   = Op.getOperand(2);
7243  DebugLoc dl       = Op.getDebugLoc();
7244
7245  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
7246                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7247                                     getPointerTy());
7248  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7249
7250  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
7251                                  DAG.getIntPtrConstant(TD->getPointerSize()));
7252  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7253  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7254  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7255  MF.getRegInfo().addLiveOut(StoreAddrReg);
7256
7257  return DAG.getNode(X86ISD::EH_RETURN, dl,
7258                     MVT::Other,
7259                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7260}
7261
7262SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7263                                             SelectionDAG &DAG) const {
7264  SDValue Root = Op.getOperand(0);
7265  SDValue Trmp = Op.getOperand(1); // trampoline
7266  SDValue FPtr = Op.getOperand(2); // nested function
7267  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7268  DebugLoc dl  = Op.getDebugLoc();
7269
7270  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7271
7272  if (Subtarget->is64Bit()) {
7273    SDValue OutChains[6];
7274
7275    // Large code-model.
7276    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7277    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7278
7279    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7280    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7281
7282    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7283
7284    // Load the pointer to the nested function into R11.
7285    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7286    SDValue Addr = Trmp;
7287    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7288                                Addr, TrmpAddr, 0, false, false, 0);
7289
7290    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7291                       DAG.getConstant(2, MVT::i64));
7292    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7293                                false, false, 2);
7294
7295    // Load the 'nest' parameter value into R10.
7296    // R10 is specified in X86CallingConv.td
7297    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7298    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7299                       DAG.getConstant(10, MVT::i64));
7300    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7301                                Addr, TrmpAddr, 10, false, false, 0);
7302
7303    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7304                       DAG.getConstant(12, MVT::i64));
7305    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7306                                false, false, 2);
7307
7308    // Jump to the nested function.
7309    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7310    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7311                       DAG.getConstant(20, MVT::i64));
7312    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7313                                Addr, TrmpAddr, 20, false, false, 0);
7314
7315    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7316    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7317                       DAG.getConstant(22, MVT::i64));
7318    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7319                                TrmpAddr, 22, false, false, 0);
7320
7321    SDValue Ops[] =
7322      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7323    return DAG.getMergeValues(Ops, 2, dl);
7324  } else {
7325    const Function *Func =
7326      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7327    CallingConv::ID CC = Func->getCallingConv();
7328    unsigned NestReg;
7329
7330    switch (CC) {
7331    default:
7332      llvm_unreachable("Unsupported calling convention");
7333    case CallingConv::C:
7334    case CallingConv::X86_StdCall: {
7335      // Pass 'nest' parameter in ECX.
7336      // Must be kept in sync with X86CallingConv.td
7337      NestReg = X86::ECX;
7338
7339      // Check that ECX wasn't needed by an 'inreg' parameter.
7340      const FunctionType *FTy = Func->getFunctionType();
7341      const AttrListPtr &Attrs = Func->getAttributes();
7342
7343      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7344        unsigned InRegCount = 0;
7345        unsigned Idx = 1;
7346
7347        for (FunctionType::param_iterator I = FTy->param_begin(),
7348             E = FTy->param_end(); I != E; ++I, ++Idx)
7349          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7350            // FIXME: should only count parameters that are lowered to integers.
7351            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7352
7353        if (InRegCount > 2) {
7354          report_fatal_error("Nest register in use - reduce number of inreg"
7355                             " parameters!");
7356        }
7357      }
7358      break;
7359    }
7360    case CallingConv::X86_FastCall:
7361    case CallingConv::X86_ThisCall:
7362    case CallingConv::Fast:
7363      // Pass 'nest' parameter in EAX.
7364      // Must be kept in sync with X86CallingConv.td
7365      NestReg = X86::EAX;
7366      break;
7367    }
7368
7369    SDValue OutChains[4];
7370    SDValue Addr, Disp;
7371
7372    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7373                       DAG.getConstant(10, MVT::i32));
7374    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7375
7376    // This is storing the opcode for MOV32ri.
7377    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7378    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7379    OutChains[0] = DAG.getStore(Root, dl,
7380                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7381                                Trmp, TrmpAddr, 0, false, false, 0);
7382
7383    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7384                       DAG.getConstant(1, MVT::i32));
7385    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7386                                false, false, 1);
7387
7388    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7389    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7390                       DAG.getConstant(5, MVT::i32));
7391    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7392                                TrmpAddr, 5, false, false, 1);
7393
7394    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7395                       DAG.getConstant(6, MVT::i32));
7396    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7397                                false, false, 1);
7398
7399    SDValue Ops[] =
7400      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7401    return DAG.getMergeValues(Ops, 2, dl);
7402  }
7403}
7404
7405SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7406                                            SelectionDAG &DAG) const {
7407  /*
7408   The rounding mode is in bits 11:10 of FPSR, and has the following
7409   settings:
7410     00 Round to nearest
7411     01 Round to -inf
7412     10 Round to +inf
7413     11 Round to 0
7414
7415  FLT_ROUNDS, on the other hand, expects the following:
7416    -1 Undefined
7417     0 Round to 0
7418     1 Round to nearest
7419     2 Round to +inf
7420     3 Round to -inf
7421
7422  To perform the conversion, we do:
7423    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7424  */
7425
7426  MachineFunction &MF = DAG.getMachineFunction();
7427  const TargetMachine &TM = MF.getTarget();
7428  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7429  unsigned StackAlignment = TFI.getStackAlignment();
7430  EVT VT = Op.getValueType();
7431  DebugLoc dl = Op.getDebugLoc();
7432
7433  // Save FP Control Word to stack slot
7434  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7435  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7436
7437  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7438                              DAG.getEntryNode(), StackSlot);
7439
7440  // Load FP Control Word from stack slot
7441  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7442                            false, false, 0);
7443
7444  // Transform as necessary
7445  SDValue CWD1 =
7446    DAG.getNode(ISD::SRL, dl, MVT::i16,
7447                DAG.getNode(ISD::AND, dl, MVT::i16,
7448                            CWD, DAG.getConstant(0x800, MVT::i16)),
7449                DAG.getConstant(11, MVT::i8));
7450  SDValue CWD2 =
7451    DAG.getNode(ISD::SRL, dl, MVT::i16,
7452                DAG.getNode(ISD::AND, dl, MVT::i16,
7453                            CWD, DAG.getConstant(0x400, MVT::i16)),
7454                DAG.getConstant(9, MVT::i8));
7455
7456  SDValue RetVal =
7457    DAG.getNode(ISD::AND, dl, MVT::i16,
7458                DAG.getNode(ISD::ADD, dl, MVT::i16,
7459                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7460                            DAG.getConstant(1, MVT::i16)),
7461                DAG.getConstant(3, MVT::i16));
7462
7463
7464  return DAG.getNode((VT.getSizeInBits() < 16 ?
7465                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7466}
7467
7468SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
7469  EVT VT = Op.getValueType();
7470  EVT OpVT = VT;
7471  unsigned NumBits = VT.getSizeInBits();
7472  DebugLoc dl = Op.getDebugLoc();
7473
7474  Op = Op.getOperand(0);
7475  if (VT == MVT::i8) {
7476    // Zero extend to i32 since there is not an i8 bsr.
7477    OpVT = MVT::i32;
7478    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7479  }
7480
7481  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7482  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7483  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7484
7485  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7486  SDValue Ops[] = {
7487    Op,
7488    DAG.getConstant(NumBits+NumBits-1, OpVT),
7489    DAG.getConstant(X86::COND_E, MVT::i8),
7490    Op.getValue(1)
7491  };
7492  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7493
7494  // Finally xor with NumBits-1.
7495  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7496
7497  if (VT == MVT::i8)
7498    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7499  return Op;
7500}
7501
7502SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
7503  EVT VT = Op.getValueType();
7504  EVT OpVT = VT;
7505  unsigned NumBits = VT.getSizeInBits();
7506  DebugLoc dl = Op.getDebugLoc();
7507
7508  Op = Op.getOperand(0);
7509  if (VT == MVT::i8) {
7510    OpVT = MVT::i32;
7511    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7512  }
7513
7514  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7515  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7516  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7517
7518  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7519  SDValue Ops[] = {
7520    Op,
7521    DAG.getConstant(NumBits, OpVT),
7522    DAG.getConstant(X86::COND_E, MVT::i8),
7523    Op.getValue(1)
7524  };
7525  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7526
7527  if (VT == MVT::i8)
7528    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7529  return Op;
7530}
7531
7532SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
7533  EVT VT = Op.getValueType();
7534  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7535  DebugLoc dl = Op.getDebugLoc();
7536
7537  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7538  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7539  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7540  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7541  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7542  //
7543  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7544  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7545  //  return AloBlo + AloBhi + AhiBlo;
7546
7547  SDValue A = Op.getOperand(0);
7548  SDValue B = Op.getOperand(1);
7549
7550  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7551                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7552                       A, DAG.getConstant(32, MVT::i32));
7553  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7554                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7555                       B, DAG.getConstant(32, MVT::i32));
7556  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7557                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7558                       A, B);
7559  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7560                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7561                       A, Bhi);
7562  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7563                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7564                       Ahi, B);
7565  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7566                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7567                       AloBhi, DAG.getConstant(32, MVT::i32));
7568  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7569                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7570                       AhiBlo, DAG.getConstant(32, MVT::i32));
7571  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7572  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7573  return Res;
7574}
7575
7576SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
7577  EVT VT = Op.getValueType();
7578  DebugLoc dl = Op.getDebugLoc();
7579  SDValue R = Op.getOperand(0);
7580
7581  LLVMContext *Context = DAG.getContext();
7582
7583  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
7584
7585  if (VT == MVT::v4i32) {
7586    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7587                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
7588                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
7589
7590    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
7591
7592    std::vector<Constant*> CV(4, CI);
7593    Constant *C = ConstantVector::get(CV);
7594    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7595    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7596                                 PseudoSourceValue::getConstantPool(), 0,
7597                                 false, false, 16);
7598
7599    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
7600    Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, Op);
7601    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
7602    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
7603  }
7604  if (VT == MVT::v16i8) {
7605    // a = a << 5;
7606    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7607                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
7608                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
7609
7610    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
7611    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
7612
7613    std::vector<Constant*> CVM1(16, CM1);
7614    std::vector<Constant*> CVM2(16, CM2);
7615    Constant *C = ConstantVector::get(CVM1);
7616    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7617    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7618                            PseudoSourceValue::getConstantPool(), 0,
7619                            false, false, 16);
7620
7621    // r = pblendv(r, psllw(r & (char16)15, 4), a);
7622    M = DAG.getNode(ISD::AND, dl, VT, R, M);
7623    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7624                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
7625                    DAG.getConstant(4, MVT::i32));
7626    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7627                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7628                    R, M, Op);
7629    // a += a
7630    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
7631
7632    C = ConstantVector::get(CVM2);
7633    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7634    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7635                    PseudoSourceValue::getConstantPool(), 0, false, false, 16);
7636
7637    // r = pblendv(r, psllw(r & (char16)63, 2), a);
7638    M = DAG.getNode(ISD::AND, dl, VT, R, M);
7639    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7640                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
7641                    DAG.getConstant(2, MVT::i32));
7642    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7643                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7644                    R, M, Op);
7645    // a += a
7646    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
7647
7648    // return pblendv(r, r+r, a);
7649    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7650                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7651                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
7652    return R;
7653  }
7654  return SDValue();
7655}
7656
7657SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
7658  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7659  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7660  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7661  // has only one use.
7662  SDNode *N = Op.getNode();
7663  SDValue LHS = N->getOperand(0);
7664  SDValue RHS = N->getOperand(1);
7665  unsigned BaseOp = 0;
7666  unsigned Cond = 0;
7667  DebugLoc dl = Op.getDebugLoc();
7668
7669  switch (Op.getOpcode()) {
7670  default: llvm_unreachable("Unknown ovf instruction!");
7671  case ISD::SADDO:
7672    // A subtract of one will be selected as a INC. Note that INC doesn't
7673    // set CF, so we can't do this for UADDO.
7674    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7675      if (C->getAPIntValue() == 1) {
7676        BaseOp = X86ISD::INC;
7677        Cond = X86::COND_O;
7678        break;
7679      }
7680    BaseOp = X86ISD::ADD;
7681    Cond = X86::COND_O;
7682    break;
7683  case ISD::UADDO:
7684    BaseOp = X86ISD::ADD;
7685    Cond = X86::COND_B;
7686    break;
7687  case ISD::SSUBO:
7688    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7689    // set CF, so we can't do this for USUBO.
7690    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7691      if (C->getAPIntValue() == 1) {
7692        BaseOp = X86ISD::DEC;
7693        Cond = X86::COND_O;
7694        break;
7695      }
7696    BaseOp = X86ISD::SUB;
7697    Cond = X86::COND_O;
7698    break;
7699  case ISD::USUBO:
7700    BaseOp = X86ISD::SUB;
7701    Cond = X86::COND_B;
7702    break;
7703  case ISD::SMULO:
7704    BaseOp = X86ISD::SMUL;
7705    Cond = X86::COND_O;
7706    break;
7707  case ISD::UMULO:
7708    BaseOp = X86ISD::UMUL;
7709    Cond = X86::COND_B;
7710    break;
7711  }
7712
7713  // Also sets EFLAGS.
7714  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7715  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7716
7717  SDValue SetCC =
7718    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7719                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7720
7721  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7722  return Sum;
7723}
7724
7725SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
7726  DebugLoc dl = Op.getDebugLoc();
7727
7728  if (!Subtarget->hasSSE2()) {
7729    SDValue Chain = Op.getOperand(0);
7730    SDValue Zero = DAG.getConstant(0,
7731                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7732    SDValue Ops[] = {
7733      DAG.getRegister(X86::ESP, MVT::i32), // Base
7734      DAG.getTargetConstant(1, MVT::i8),   // Scale
7735      DAG.getRegister(0, MVT::i32),        // Index
7736      DAG.getTargetConstant(0, MVT::i32),  // Disp
7737      DAG.getRegister(0, MVT::i32),        // Segment.
7738      Zero,
7739      Chain
7740    };
7741    SDNode *Res =
7742      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
7743                          array_lengthof(Ops));
7744    return SDValue(Res, 0);
7745  }
7746
7747  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
7748  if (!isDev)
7749    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
7750
7751  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7752  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
7753  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7754  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
7755
7756  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
7757  if (!Op1 && !Op2 && !Op3 && Op4)
7758    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
7759
7760  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
7761  if (Op1 && !Op2 && !Op3 && !Op4)
7762    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
7763
7764  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
7765  //           (MFENCE)>;
7766  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
7767}
7768
7769SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
7770  EVT T = Op.getValueType();
7771  DebugLoc dl = Op.getDebugLoc();
7772  unsigned Reg = 0;
7773  unsigned size = 0;
7774  switch(T.getSimpleVT().SimpleTy) {
7775  default:
7776    assert(false && "Invalid value type!");
7777  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7778  case MVT::i16: Reg = X86::AX;  size = 2; break;
7779  case MVT::i32: Reg = X86::EAX; size = 4; break;
7780  case MVT::i64:
7781    assert(Subtarget->is64Bit() && "Node not type legal!");
7782    Reg = X86::RAX; size = 8;
7783    break;
7784  }
7785  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7786                                    Op.getOperand(2), SDValue());
7787  SDValue Ops[] = { cpIn.getValue(0),
7788                    Op.getOperand(1),
7789                    Op.getOperand(3),
7790                    DAG.getTargetConstant(size, MVT::i8),
7791                    cpIn.getValue(1) };
7792  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7793  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7794  SDValue cpOut =
7795    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7796  return cpOut;
7797}
7798
7799SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7800                                                 SelectionDAG &DAG) const {
7801  assert(Subtarget->is64Bit() && "Result not type legalized?");
7802  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7803  SDValue TheChain = Op.getOperand(0);
7804  DebugLoc dl = Op.getDebugLoc();
7805  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7806  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7807  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7808                                   rax.getValue(2));
7809  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7810                            DAG.getConstant(32, MVT::i8));
7811  SDValue Ops[] = {
7812    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7813    rdx.getValue(1)
7814  };
7815  return DAG.getMergeValues(Ops, 2, dl);
7816}
7817
7818SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op,
7819                                            SelectionDAG &DAG) const {
7820  EVT SrcVT = Op.getOperand(0).getValueType();
7821  EVT DstVT = Op.getValueType();
7822  assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
7823          Subtarget->hasMMX() && !DisableMMX) &&
7824         "Unexpected custom BIT_CONVERT");
7825  assert((DstVT == MVT::i64 ||
7826          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
7827         "Unexpected custom BIT_CONVERT");
7828  // i64 <=> MMX conversions are Legal.
7829  if (SrcVT==MVT::i64 && DstVT.isVector())
7830    return Op;
7831  if (DstVT==MVT::i64 && SrcVT.isVector())
7832    return Op;
7833  // MMX <=> MMX conversions are Legal.
7834  if (SrcVT.isVector() && DstVT.isVector())
7835    return Op;
7836  // All other conversions need to be expanded.
7837  return SDValue();
7838}
7839SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
7840  SDNode *Node = Op.getNode();
7841  DebugLoc dl = Node->getDebugLoc();
7842  EVT T = Node->getValueType(0);
7843  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7844                              DAG.getConstant(0, T), Node->getOperand(2));
7845  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7846                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7847                       Node->getOperand(0),
7848                       Node->getOperand(1), negOp,
7849                       cast<AtomicSDNode>(Node)->getSrcValue(),
7850                       cast<AtomicSDNode>(Node)->getAlignment());
7851}
7852
7853/// LowerOperation - Provide custom lowering hooks for some operations.
7854///
7855SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7856  switch (Op.getOpcode()) {
7857  default: llvm_unreachable("Should not custom lower this!");
7858  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
7859  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7860  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7861  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7862  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
7863  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7864  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7865  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7866  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7867  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7868  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7869  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7870  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7871  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7872  case ISD::SHL_PARTS:
7873  case ISD::SRA_PARTS:
7874  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7875  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7876  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7877  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7878  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7879  case ISD::FABS:               return LowerFABS(Op, DAG);
7880  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7881  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7882  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7883  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7884  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7885  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7886  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7887  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7888  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7889  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7890  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7891  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7892  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7893  case ISD::FRAME_TO_ARGS_OFFSET:
7894                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7895  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7896  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7897  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7898  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7899  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7900  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7901  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7902  case ISD::SHL:                return LowerSHL(Op, DAG);
7903  case ISD::SADDO:
7904  case ISD::UADDO:
7905  case ISD::SSUBO:
7906  case ISD::USUBO:
7907  case ISD::SMULO:
7908  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7909  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7910  case ISD::BIT_CONVERT:        return LowerBIT_CONVERT(Op, DAG);
7911  }
7912}
7913
7914void X86TargetLowering::
7915ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7916                        SelectionDAG &DAG, unsigned NewOp) const {
7917  EVT T = Node->getValueType(0);
7918  DebugLoc dl = Node->getDebugLoc();
7919  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7920
7921  SDValue Chain = Node->getOperand(0);
7922  SDValue In1 = Node->getOperand(1);
7923  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7924                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7925  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7926                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7927  SDValue Ops[] = { Chain, In1, In2L, In2H };
7928  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7929  SDValue Result =
7930    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7931                            cast<MemSDNode>(Node)->getMemOperand());
7932  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7933  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7934  Results.push_back(Result.getValue(2));
7935}
7936
7937/// ReplaceNodeResults - Replace a node with an illegal result type
7938/// with a new node built out of custom code.
7939void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7940                                           SmallVectorImpl<SDValue>&Results,
7941                                           SelectionDAG &DAG) const {
7942  DebugLoc dl = N->getDebugLoc();
7943  switch (N->getOpcode()) {
7944  default:
7945    assert(false && "Do not know how to custom type legalize this operation!");
7946    return;
7947  case ISD::FP_TO_SINT: {
7948    std::pair<SDValue,SDValue> Vals =
7949        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7950    SDValue FIST = Vals.first, StackSlot = Vals.second;
7951    if (FIST.getNode() != 0) {
7952      EVT VT = N->getValueType(0);
7953      // Return a load from the stack slot.
7954      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
7955                                    false, false, 0));
7956    }
7957    return;
7958  }
7959  case ISD::READCYCLECOUNTER: {
7960    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7961    SDValue TheChain = N->getOperand(0);
7962    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7963    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7964                                     rd.getValue(1));
7965    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7966                                     eax.getValue(2));
7967    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7968    SDValue Ops[] = { eax, edx };
7969    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7970    Results.push_back(edx.getValue(1));
7971    return;
7972  }
7973  case ISD::ATOMIC_CMP_SWAP: {
7974    EVT T = N->getValueType(0);
7975    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7976    SDValue cpInL, cpInH;
7977    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7978                        DAG.getConstant(0, MVT::i32));
7979    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7980                        DAG.getConstant(1, MVT::i32));
7981    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7982    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7983                             cpInL.getValue(1));
7984    SDValue swapInL, swapInH;
7985    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7986                          DAG.getConstant(0, MVT::i32));
7987    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7988                          DAG.getConstant(1, MVT::i32));
7989    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7990                               cpInH.getValue(1));
7991    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7992                               swapInL.getValue(1));
7993    SDValue Ops[] = { swapInH.getValue(0),
7994                      N->getOperand(1),
7995                      swapInH.getValue(1) };
7996    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7997    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7998    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7999                                        MVT::i32, Result.getValue(1));
8000    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
8001                                        MVT::i32, cpOutL.getValue(2));
8002    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
8003    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8004    Results.push_back(cpOutH.getValue(1));
8005    return;
8006  }
8007  case ISD::ATOMIC_LOAD_ADD:
8008    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
8009    return;
8010  case ISD::ATOMIC_LOAD_AND:
8011    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
8012    return;
8013  case ISD::ATOMIC_LOAD_NAND:
8014    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
8015    return;
8016  case ISD::ATOMIC_LOAD_OR:
8017    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
8018    return;
8019  case ISD::ATOMIC_LOAD_SUB:
8020    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
8021    return;
8022  case ISD::ATOMIC_LOAD_XOR:
8023    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
8024    return;
8025  case ISD::ATOMIC_SWAP:
8026    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
8027    return;
8028  }
8029}
8030
8031const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
8032  switch (Opcode) {
8033  default: return NULL;
8034  case X86ISD::BSF:                return "X86ISD::BSF";
8035  case X86ISD::BSR:                return "X86ISD::BSR";
8036  case X86ISD::SHLD:               return "X86ISD::SHLD";
8037  case X86ISD::SHRD:               return "X86ISD::SHRD";
8038  case X86ISD::FAND:               return "X86ISD::FAND";
8039  case X86ISD::FOR:                return "X86ISD::FOR";
8040  case X86ISD::FXOR:               return "X86ISD::FXOR";
8041  case X86ISD::FSRL:               return "X86ISD::FSRL";
8042  case X86ISD::FILD:               return "X86ISD::FILD";
8043  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
8044  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
8045  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
8046  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
8047  case X86ISD::FLD:                return "X86ISD::FLD";
8048  case X86ISD::FST:                return "X86ISD::FST";
8049  case X86ISD::CALL:               return "X86ISD::CALL";
8050  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
8051  case X86ISD::BT:                 return "X86ISD::BT";
8052  case X86ISD::CMP:                return "X86ISD::CMP";
8053  case X86ISD::COMI:               return "X86ISD::COMI";
8054  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
8055  case X86ISD::SETCC:              return "X86ISD::SETCC";
8056  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
8057  case X86ISD::CMOV:               return "X86ISD::CMOV";
8058  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
8059  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
8060  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
8061  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
8062  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
8063  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
8064  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
8065  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
8066  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
8067  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
8068  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
8069  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
8070  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
8071  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
8072  case X86ISD::FMAX:               return "X86ISD::FMAX";
8073  case X86ISD::FMIN:               return "X86ISD::FMIN";
8074  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
8075  case X86ISD::FRCP:               return "X86ISD::FRCP";
8076  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
8077  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
8078  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
8079  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
8080  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
8081  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
8082  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
8083  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
8084  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
8085  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
8086  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
8087  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
8088  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
8089  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
8090  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
8091  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
8092  case X86ISD::VSHL:               return "X86ISD::VSHL";
8093  case X86ISD::VSRL:               return "X86ISD::VSRL";
8094  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
8095  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
8096  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
8097  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
8098  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
8099  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
8100  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
8101  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
8102  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
8103  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
8104  case X86ISD::ADD:                return "X86ISD::ADD";
8105  case X86ISD::SUB:                return "X86ISD::SUB";
8106  case X86ISD::SMUL:               return "X86ISD::SMUL";
8107  case X86ISD::UMUL:               return "X86ISD::UMUL";
8108  case X86ISD::INC:                return "X86ISD::INC";
8109  case X86ISD::DEC:                return "X86ISD::DEC";
8110  case X86ISD::OR:                 return "X86ISD::OR";
8111  case X86ISD::XOR:                return "X86ISD::XOR";
8112  case X86ISD::AND:                return "X86ISD::AND";
8113  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
8114  case X86ISD::PTEST:              return "X86ISD::PTEST";
8115  case X86ISD::TESTP:              return "X86ISD::TESTP";
8116  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
8117  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
8118  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
8119  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
8120  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
8121  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
8122  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
8123  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
8124  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
8125  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
8126  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
8127  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
8128  case X86ISD::MOVHPS:             return "X86ISD::MOVHPS";
8129  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
8130  case X86ISD::MOVHPD:             return "X86ISD::MOVHPD";
8131  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
8132  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
8133  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
8134  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
8135  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
8136  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
8137  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
8138  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
8139  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
8140  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
8141  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
8142  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
8143  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
8144  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
8145  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
8146  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
8147  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
8148  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
8149  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
8150  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
8151  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
8152  case X86ISD::MINGW_ALLOCA:       return "X86ISD::MINGW_ALLOCA";
8153  }
8154}
8155
8156// isLegalAddressingMode - Return true if the addressing mode represented
8157// by AM is legal for this target, for a load/store of the specified type.
8158bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
8159                                              const Type *Ty) const {
8160  // X86 supports extremely general addressing modes.
8161  CodeModel::Model M = getTargetMachine().getCodeModel();
8162
8163  // X86 allows a sign-extended 32-bit immediate field as a displacement.
8164  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
8165    return false;
8166
8167  if (AM.BaseGV) {
8168    unsigned GVFlags =
8169      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
8170
8171    // If a reference to this global requires an extra load, we can't fold it.
8172    if (isGlobalStubReference(GVFlags))
8173      return false;
8174
8175    // If BaseGV requires a register for the PIC base, we cannot also have a
8176    // BaseReg specified.
8177    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
8178      return false;
8179
8180    // If lower 4G is not available, then we must use rip-relative addressing.
8181    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
8182      return false;
8183  }
8184
8185  switch (AM.Scale) {
8186  case 0:
8187  case 1:
8188  case 2:
8189  case 4:
8190  case 8:
8191    // These scales always work.
8192    break;
8193  case 3:
8194  case 5:
8195  case 9:
8196    // These scales are formed with basereg+scalereg.  Only accept if there is
8197    // no basereg yet.
8198    if (AM.HasBaseReg)
8199      return false;
8200    break;
8201  default:  // Other stuff never works.
8202    return false;
8203  }
8204
8205  return true;
8206}
8207
8208
8209bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
8210  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8211    return false;
8212  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8213  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8214  if (NumBits1 <= NumBits2)
8215    return false;
8216  return true;
8217}
8218
8219bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8220  if (!VT1.isInteger() || !VT2.isInteger())
8221    return false;
8222  unsigned NumBits1 = VT1.getSizeInBits();
8223  unsigned NumBits2 = VT2.getSizeInBits();
8224  if (NumBits1 <= NumBits2)
8225    return false;
8226  return true;
8227}
8228
8229bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
8230  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8231  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
8232}
8233
8234bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8235  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8236  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
8237}
8238
8239bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
8240  // i16 instructions are longer (0x66 prefix) and potentially slower.
8241  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
8242}
8243
8244/// isShuffleMaskLegal - Targets can use this to indicate that they only
8245/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8246/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8247/// are assumed to be legal.
8248bool
8249X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
8250                                      EVT VT) const {
8251  // Very little shuffling can be done for 64-bit vectors right now.
8252  if (VT.getSizeInBits() == 64)
8253    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
8254
8255  // FIXME: pshufb, blends, shifts.
8256  return (VT.getVectorNumElements() == 2 ||
8257          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
8258          isMOVLMask(M, VT) ||
8259          isSHUFPMask(M, VT) ||
8260          isPSHUFDMask(M, VT) ||
8261          isPSHUFHWMask(M, VT) ||
8262          isPSHUFLWMask(M, VT) ||
8263          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
8264          isUNPCKLMask(M, VT) ||
8265          isUNPCKHMask(M, VT) ||
8266          isUNPCKL_v_undef_Mask(M, VT) ||
8267          isUNPCKH_v_undef_Mask(M, VT));
8268}
8269
8270bool
8271X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
8272                                          EVT VT) const {
8273  unsigned NumElts = VT.getVectorNumElements();
8274  // FIXME: This collection of masks seems suspect.
8275  if (NumElts == 2)
8276    return true;
8277  if (NumElts == 4 && VT.getSizeInBits() == 128) {
8278    return (isMOVLMask(Mask, VT)  ||
8279            isCommutedMOVLMask(Mask, VT, true) ||
8280            isSHUFPMask(Mask, VT) ||
8281            isCommutedSHUFPMask(Mask, VT));
8282  }
8283  return false;
8284}
8285
8286//===----------------------------------------------------------------------===//
8287//                           X86 Scheduler Hooks
8288//===----------------------------------------------------------------------===//
8289
8290// private utility function
8291MachineBasicBlock *
8292X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
8293                                                       MachineBasicBlock *MBB,
8294                                                       unsigned regOpc,
8295                                                       unsigned immOpc,
8296                                                       unsigned LoadOpc,
8297                                                       unsigned CXchgOpc,
8298                                                       unsigned notOpc,
8299                                                       unsigned EAXreg,
8300                                                       TargetRegisterClass *RC,
8301                                                       bool invSrc) const {
8302  // For the atomic bitwise operator, we generate
8303  //   thisMBB:
8304  //   newMBB:
8305  //     ld  t1 = [bitinstr.addr]
8306  //     op  t2 = t1, [bitinstr.val]
8307  //     mov EAX = t1
8308  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8309  //     bz  newMBB
8310  //     fallthrough -->nextMBB
8311  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8312  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8313  MachineFunction::iterator MBBIter = MBB;
8314  ++MBBIter;
8315
8316  /// First build the CFG
8317  MachineFunction *F = MBB->getParent();
8318  MachineBasicBlock *thisMBB = MBB;
8319  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8320  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8321  F->insert(MBBIter, newMBB);
8322  F->insert(MBBIter, nextMBB);
8323
8324  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8325  nextMBB->splice(nextMBB->begin(), thisMBB,
8326                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8327                  thisMBB->end());
8328  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8329
8330  // Update thisMBB to fall through to newMBB
8331  thisMBB->addSuccessor(newMBB);
8332
8333  // newMBB jumps to itself and fall through to nextMBB
8334  newMBB->addSuccessor(nextMBB);
8335  newMBB->addSuccessor(newMBB);
8336
8337  // Insert instructions into newMBB based on incoming instruction
8338  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
8339         "unexpected number of operands");
8340  DebugLoc dl = bInstr->getDebugLoc();
8341  MachineOperand& destOper = bInstr->getOperand(0);
8342  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8343  int numArgs = bInstr->getNumOperands() - 1;
8344  for (int i=0; i < numArgs; ++i)
8345    argOpers[i] = &bInstr->getOperand(i+1);
8346
8347  // x86 address has 4 operands: base, index, scale, and displacement
8348  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8349  int valArgIndx = lastAddrIndx + 1;
8350
8351  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8352  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
8353  for (int i=0; i <= lastAddrIndx; ++i)
8354    (*MIB).addOperand(*argOpers[i]);
8355
8356  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
8357  if (invSrc) {
8358    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
8359  }
8360  else
8361    tt = t1;
8362
8363  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8364  assert((argOpers[valArgIndx]->isReg() ||
8365          argOpers[valArgIndx]->isImm()) &&
8366         "invalid operand");
8367  if (argOpers[valArgIndx]->isReg())
8368    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
8369  else
8370    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
8371  MIB.addReg(tt);
8372  (*MIB).addOperand(*argOpers[valArgIndx]);
8373
8374  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
8375  MIB.addReg(t1);
8376
8377  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
8378  for (int i=0; i <= lastAddrIndx; ++i)
8379    (*MIB).addOperand(*argOpers[i]);
8380  MIB.addReg(t2);
8381  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8382  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8383                    bInstr->memoperands_end());
8384
8385  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
8386  MIB.addReg(EAXreg);
8387
8388  // insert branch
8389  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8390
8391  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8392  return nextMBB;
8393}
8394
8395// private utility function:  64 bit atomics on 32 bit host.
8396MachineBasicBlock *
8397X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
8398                                                       MachineBasicBlock *MBB,
8399                                                       unsigned regOpcL,
8400                                                       unsigned regOpcH,
8401                                                       unsigned immOpcL,
8402                                                       unsigned immOpcH,
8403                                                       bool invSrc) const {
8404  // For the atomic bitwise operator, we generate
8405  //   thisMBB (instructions are in pairs, except cmpxchg8b)
8406  //     ld t1,t2 = [bitinstr.addr]
8407  //   newMBB:
8408  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
8409  //     op  t5, t6 <- out1, out2, [bitinstr.val]
8410  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
8411  //     mov ECX, EBX <- t5, t6
8412  //     mov EAX, EDX <- t1, t2
8413  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
8414  //     mov t3, t4 <- EAX, EDX
8415  //     bz  newMBB
8416  //     result in out1, out2
8417  //     fallthrough -->nextMBB
8418
8419  const TargetRegisterClass *RC = X86::GR32RegisterClass;
8420  const unsigned LoadOpc = X86::MOV32rm;
8421  const unsigned NotOpc = X86::NOT32r;
8422  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8423  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8424  MachineFunction::iterator MBBIter = MBB;
8425  ++MBBIter;
8426
8427  /// First build the CFG
8428  MachineFunction *F = MBB->getParent();
8429  MachineBasicBlock *thisMBB = MBB;
8430  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8431  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8432  F->insert(MBBIter, newMBB);
8433  F->insert(MBBIter, nextMBB);
8434
8435  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8436  nextMBB->splice(nextMBB->begin(), thisMBB,
8437                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8438                  thisMBB->end());
8439  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8440
8441  // Update thisMBB to fall through to newMBB
8442  thisMBB->addSuccessor(newMBB);
8443
8444  // newMBB jumps to itself and fall through to nextMBB
8445  newMBB->addSuccessor(nextMBB);
8446  newMBB->addSuccessor(newMBB);
8447
8448  DebugLoc dl = bInstr->getDebugLoc();
8449  // Insert instructions into newMBB based on incoming instruction
8450  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8451  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
8452         "unexpected number of operands");
8453  MachineOperand& dest1Oper = bInstr->getOperand(0);
8454  MachineOperand& dest2Oper = bInstr->getOperand(1);
8455  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8456  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
8457    argOpers[i] = &bInstr->getOperand(i+2);
8458
8459    // We use some of the operands multiple times, so conservatively just
8460    // clear any kill flags that might be present.
8461    if (argOpers[i]->isReg() && argOpers[i]->isUse())
8462      argOpers[i]->setIsKill(false);
8463  }
8464
8465  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8466  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8467
8468  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8469  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8470  for (int i=0; i <= lastAddrIndx; ++i)
8471    (*MIB).addOperand(*argOpers[i]);
8472  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8473  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8474  // add 4 to displacement.
8475  for (int i=0; i <= lastAddrIndx-2; ++i)
8476    (*MIB).addOperand(*argOpers[i]);
8477  MachineOperand newOp3 = *(argOpers[3]);
8478  if (newOp3.isImm())
8479    newOp3.setImm(newOp3.getImm()+4);
8480  else
8481    newOp3.setOffset(newOp3.getOffset()+4);
8482  (*MIB).addOperand(newOp3);
8483  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8484
8485  // t3/4 are defined later, at the bottom of the loop
8486  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8487  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8488  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8489    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8490  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8491    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8492
8493  // The subsequent operations should be using the destination registers of
8494  //the PHI instructions.
8495  if (invSrc) {
8496    t1 = F->getRegInfo().createVirtualRegister(RC);
8497    t2 = F->getRegInfo().createVirtualRegister(RC);
8498    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8499    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8500  } else {
8501    t1 = dest1Oper.getReg();
8502    t2 = dest2Oper.getReg();
8503  }
8504
8505  int valArgIndx = lastAddrIndx + 1;
8506  assert((argOpers[valArgIndx]->isReg() ||
8507          argOpers[valArgIndx]->isImm()) &&
8508         "invalid operand");
8509  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8510  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8511  if (argOpers[valArgIndx]->isReg())
8512    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8513  else
8514    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8515  if (regOpcL != X86::MOV32rr)
8516    MIB.addReg(t1);
8517  (*MIB).addOperand(*argOpers[valArgIndx]);
8518  assert(argOpers[valArgIndx + 1]->isReg() ==
8519         argOpers[valArgIndx]->isReg());
8520  assert(argOpers[valArgIndx + 1]->isImm() ==
8521         argOpers[valArgIndx]->isImm());
8522  if (argOpers[valArgIndx + 1]->isReg())
8523    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8524  else
8525    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8526  if (regOpcH != X86::MOV32rr)
8527    MIB.addReg(t2);
8528  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8529
8530  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
8531  MIB.addReg(t1);
8532  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
8533  MIB.addReg(t2);
8534
8535  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
8536  MIB.addReg(t5);
8537  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
8538  MIB.addReg(t6);
8539
8540  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8541  for (int i=0; i <= lastAddrIndx; ++i)
8542    (*MIB).addOperand(*argOpers[i]);
8543
8544  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8545  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8546                    bInstr->memoperands_end());
8547
8548  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
8549  MIB.addReg(X86::EAX);
8550  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
8551  MIB.addReg(X86::EDX);
8552
8553  // insert branch
8554  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8555
8556  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8557  return nextMBB;
8558}
8559
8560// private utility function
8561MachineBasicBlock *
8562X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8563                                                      MachineBasicBlock *MBB,
8564                                                      unsigned cmovOpc) const {
8565  // For the atomic min/max operator, we generate
8566  //   thisMBB:
8567  //   newMBB:
8568  //     ld t1 = [min/max.addr]
8569  //     mov t2 = [min/max.val]
8570  //     cmp  t1, t2
8571  //     cmov[cond] t2 = t1
8572  //     mov EAX = t1
8573  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8574  //     bz   newMBB
8575  //     fallthrough -->nextMBB
8576  //
8577  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8578  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8579  MachineFunction::iterator MBBIter = MBB;
8580  ++MBBIter;
8581
8582  /// First build the CFG
8583  MachineFunction *F = MBB->getParent();
8584  MachineBasicBlock *thisMBB = MBB;
8585  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8586  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8587  F->insert(MBBIter, newMBB);
8588  F->insert(MBBIter, nextMBB);
8589
8590  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8591  nextMBB->splice(nextMBB->begin(), thisMBB,
8592                  llvm::next(MachineBasicBlock::iterator(mInstr)),
8593                  thisMBB->end());
8594  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8595
8596  // Update thisMBB to fall through to newMBB
8597  thisMBB->addSuccessor(newMBB);
8598
8599  // newMBB jumps to newMBB and fall through to nextMBB
8600  newMBB->addSuccessor(nextMBB);
8601  newMBB->addSuccessor(newMBB);
8602
8603  DebugLoc dl = mInstr->getDebugLoc();
8604  // Insert instructions into newMBB based on incoming instruction
8605  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
8606         "unexpected number of operands");
8607  MachineOperand& destOper = mInstr->getOperand(0);
8608  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8609  int numArgs = mInstr->getNumOperands() - 1;
8610  for (int i=0; i < numArgs; ++i)
8611    argOpers[i] = &mInstr->getOperand(i+1);
8612
8613  // x86 address has 4 operands: base, index, scale, and displacement
8614  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8615  int valArgIndx = lastAddrIndx + 1;
8616
8617  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8618  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8619  for (int i=0; i <= lastAddrIndx; ++i)
8620    (*MIB).addOperand(*argOpers[i]);
8621
8622  // We only support register and immediate values
8623  assert((argOpers[valArgIndx]->isReg() ||
8624          argOpers[valArgIndx]->isImm()) &&
8625         "invalid operand");
8626
8627  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8628  if (argOpers[valArgIndx]->isReg())
8629    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
8630  else
8631    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8632  (*MIB).addOperand(*argOpers[valArgIndx]);
8633
8634  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
8635  MIB.addReg(t1);
8636
8637  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8638  MIB.addReg(t1);
8639  MIB.addReg(t2);
8640
8641  // Generate movc
8642  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8643  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8644  MIB.addReg(t2);
8645  MIB.addReg(t1);
8646
8647  // Cmp and exchange if none has modified the memory location
8648  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8649  for (int i=0; i <= lastAddrIndx; ++i)
8650    (*MIB).addOperand(*argOpers[i]);
8651  MIB.addReg(t3);
8652  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8653  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8654                    mInstr->memoperands_end());
8655
8656  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
8657  MIB.addReg(X86::EAX);
8658
8659  // insert branch
8660  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8661
8662  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
8663  return nextMBB;
8664}
8665
8666// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8667// or XMM0_V32I8 in AVX all of this code can be replaced with that
8668// in the .td file.
8669MachineBasicBlock *
8670X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8671                            unsigned numArgs, bool memArg) const {
8672
8673  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
8674         "Target must have SSE4.2 or AVX features enabled");
8675
8676  DebugLoc dl = MI->getDebugLoc();
8677  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8678
8679  unsigned Opc;
8680
8681  if (!Subtarget->hasAVX()) {
8682    if (memArg)
8683      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8684    else
8685      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8686  } else {
8687    if (memArg)
8688      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
8689    else
8690      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
8691  }
8692
8693  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8694
8695  for (unsigned i = 0; i < numArgs; ++i) {
8696    MachineOperand &Op = MI->getOperand(i+1);
8697
8698    if (!(Op.isReg() && Op.isImplicit()))
8699      MIB.addOperand(Op);
8700  }
8701
8702  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8703    .addReg(X86::XMM0);
8704
8705  MI->eraseFromParent();
8706
8707  return BB;
8708}
8709
8710MachineBasicBlock *
8711X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8712                                                 MachineInstr *MI,
8713                                                 MachineBasicBlock *MBB) const {
8714  // Emit code to save XMM registers to the stack. The ABI says that the
8715  // number of registers to save is given in %al, so it's theoretically
8716  // possible to do an indirect jump trick to avoid saving all of them,
8717  // however this code takes a simpler approach and just executes all
8718  // of the stores if %al is non-zero. It's less code, and it's probably
8719  // easier on the hardware branch predictor, and stores aren't all that
8720  // expensive anyway.
8721
8722  // Create the new basic blocks. One block contains all the XMM stores,
8723  // and one block is the final destination regardless of whether any
8724  // stores were performed.
8725  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8726  MachineFunction *F = MBB->getParent();
8727  MachineFunction::iterator MBBIter = MBB;
8728  ++MBBIter;
8729  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8730  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8731  F->insert(MBBIter, XMMSaveMBB);
8732  F->insert(MBBIter, EndMBB);
8733
8734  // Transfer the remainder of MBB and its successor edges to EndMBB.
8735  EndMBB->splice(EndMBB->begin(), MBB,
8736                 llvm::next(MachineBasicBlock::iterator(MI)),
8737                 MBB->end());
8738  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
8739
8740  // The original block will now fall through to the XMM save block.
8741  MBB->addSuccessor(XMMSaveMBB);
8742  // The XMMSaveMBB will fall through to the end block.
8743  XMMSaveMBB->addSuccessor(EndMBB);
8744
8745  // Now add the instructions.
8746  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8747  DebugLoc DL = MI->getDebugLoc();
8748
8749  unsigned CountReg = MI->getOperand(0).getReg();
8750  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
8751  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
8752
8753  if (!Subtarget->isTargetWin64()) {
8754    // If %al is 0, branch around the XMM save block.
8755    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
8756    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
8757    MBB->addSuccessor(EndMBB);
8758  }
8759
8760  // In the XMM save block, save all the XMM argument registers.
8761  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
8762    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
8763    MachineMemOperand *MMO =
8764      F->getMachineMemOperand(
8765        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
8766        MachineMemOperand::MOStore, Offset,
8767        /*Size=*/16, /*Align=*/16);
8768    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
8769      .addFrameIndex(RegSaveFrameIndex)
8770      .addImm(/*Scale=*/1)
8771      .addReg(/*IndexReg=*/0)
8772      .addImm(/*Disp=*/Offset)
8773      .addReg(/*Segment=*/0)
8774      .addReg(MI->getOperand(i).getReg())
8775      .addMemOperand(MMO);
8776  }
8777
8778  MI->eraseFromParent();   // The pseudo instruction is gone now.
8779
8780  return EndMBB;
8781}
8782
8783MachineBasicBlock *
8784X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
8785                                     MachineBasicBlock *BB) const {
8786  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8787  DebugLoc DL = MI->getDebugLoc();
8788
8789  // To "insert" a SELECT_CC instruction, we actually have to insert the
8790  // diamond control-flow pattern.  The incoming instruction knows the
8791  // destination vreg to set, the condition code register to branch on, the
8792  // true/false values to select between, and a branch opcode to use.
8793  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8794  MachineFunction::iterator It = BB;
8795  ++It;
8796
8797  //  thisMBB:
8798  //  ...
8799  //   TrueVal = ...
8800  //   cmpTY ccX, r1, r2
8801  //   bCC copy1MBB
8802  //   fallthrough --> copy0MBB
8803  MachineBasicBlock *thisMBB = BB;
8804  MachineFunction *F = BB->getParent();
8805  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8806  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8807  F->insert(It, copy0MBB);
8808  F->insert(It, sinkMBB);
8809
8810  // If the EFLAGS register isn't dead in the terminator, then claim that it's
8811  // live into the sink and copy blocks.
8812  const MachineFunction *MF = BB->getParent();
8813  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
8814  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
8815
8816  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
8817    const MachineOperand &MO = MI->getOperand(I);
8818    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
8819    unsigned Reg = MO.getReg();
8820    if (Reg != X86::EFLAGS) continue;
8821    copy0MBB->addLiveIn(Reg);
8822    sinkMBB->addLiveIn(Reg);
8823  }
8824
8825  // Transfer the remainder of BB and its successor edges to sinkMBB.
8826  sinkMBB->splice(sinkMBB->begin(), BB,
8827                  llvm::next(MachineBasicBlock::iterator(MI)),
8828                  BB->end());
8829  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8830
8831  // Add the true and fallthrough blocks as its successors.
8832  BB->addSuccessor(copy0MBB);
8833  BB->addSuccessor(sinkMBB);
8834
8835  // Create the conditional branch instruction.
8836  unsigned Opc =
8837    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
8838  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
8839
8840  //  copy0MBB:
8841  //   %FalseValue = ...
8842  //   # fallthrough to sinkMBB
8843  copy0MBB->addSuccessor(sinkMBB);
8844
8845  //  sinkMBB:
8846  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8847  //  ...
8848  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
8849          TII->get(X86::PHI), MI->getOperand(0).getReg())
8850    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8851    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8852
8853  MI->eraseFromParent();   // The pseudo instruction is gone now.
8854  return sinkMBB;
8855}
8856
8857MachineBasicBlock *
8858X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
8859                                          MachineBasicBlock *BB) const {
8860  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8861  DebugLoc DL = MI->getDebugLoc();
8862
8863  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
8864  // non-trivial part is impdef of ESP.
8865  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
8866  // mingw-w64.
8867
8868  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
8869    .addExternalSymbol("_alloca")
8870    .addReg(X86::EAX, RegState::Implicit)
8871    .addReg(X86::ESP, RegState::Implicit)
8872    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
8873    .addReg(X86::ESP, RegState::Define | RegState::Implicit);
8874
8875  MI->eraseFromParent();   // The pseudo instruction is gone now.
8876  return BB;
8877}
8878
8879MachineBasicBlock *
8880X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
8881                                      MachineBasicBlock *BB) const {
8882  // This is pretty easy.  We're taking the value that we received from
8883  // our load from the relocation, sticking it in either RDI (x86-64)
8884  // or EAX and doing an indirect call.  The return value will then
8885  // be in the normal return register.
8886  const X86InstrInfo *TII
8887    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
8888  DebugLoc DL = MI->getDebugLoc();
8889  MachineFunction *F = BB->getParent();
8890  bool IsWin64 = Subtarget->isTargetWin64();
8891
8892  assert(MI->getOperand(3).isGlobal() && "This should be a global");
8893
8894  if (Subtarget->is64Bit()) {
8895    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8896                                      TII->get(X86::MOV64rm), X86::RDI)
8897    .addReg(X86::RIP)
8898    .addImm(0).addReg(0)
8899    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8900                      MI->getOperand(3).getTargetFlags())
8901    .addReg(0);
8902    MIB = BuildMI(*BB, MI, DL, TII->get(IsWin64 ? X86::WINCALL64m : X86::CALL64m));
8903    addDirectMem(MIB, X86::RDI);
8904  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
8905    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8906                                      TII->get(X86::MOV32rm), X86::EAX)
8907    .addReg(0)
8908    .addImm(0).addReg(0)
8909    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8910                      MI->getOperand(3).getTargetFlags())
8911    .addReg(0);
8912    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
8913    addDirectMem(MIB, X86::EAX);
8914  } else {
8915    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8916                                      TII->get(X86::MOV32rm), X86::EAX)
8917    .addReg(TII->getGlobalBaseReg(F))
8918    .addImm(0).addReg(0)
8919    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8920                      MI->getOperand(3).getTargetFlags())
8921    .addReg(0);
8922    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
8923    addDirectMem(MIB, X86::EAX);
8924  }
8925
8926  MI->eraseFromParent(); // The pseudo instruction is gone now.
8927  return BB;
8928}
8929
8930MachineBasicBlock *
8931X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8932                                               MachineBasicBlock *BB) const {
8933  switch (MI->getOpcode()) {
8934  default: assert(false && "Unexpected instr type to insert");
8935  case X86::MINGW_ALLOCA:
8936    return EmitLoweredMingwAlloca(MI, BB);
8937  case X86::TLSCall_32:
8938  case X86::TLSCall_64:
8939    return EmitLoweredTLSCall(MI, BB);
8940  case X86::CMOV_GR8:
8941  case X86::CMOV_V1I64:
8942  case X86::CMOV_FR32:
8943  case X86::CMOV_FR64:
8944  case X86::CMOV_V4F32:
8945  case X86::CMOV_V2F64:
8946  case X86::CMOV_V2I64:
8947  case X86::CMOV_GR16:
8948  case X86::CMOV_GR32:
8949  case X86::CMOV_RFP32:
8950  case X86::CMOV_RFP64:
8951  case X86::CMOV_RFP80:
8952    return EmitLoweredSelect(MI, BB);
8953
8954  case X86::FP32_TO_INT16_IN_MEM:
8955  case X86::FP32_TO_INT32_IN_MEM:
8956  case X86::FP32_TO_INT64_IN_MEM:
8957  case X86::FP64_TO_INT16_IN_MEM:
8958  case X86::FP64_TO_INT32_IN_MEM:
8959  case X86::FP64_TO_INT64_IN_MEM:
8960  case X86::FP80_TO_INT16_IN_MEM:
8961  case X86::FP80_TO_INT32_IN_MEM:
8962  case X86::FP80_TO_INT64_IN_MEM: {
8963    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8964    DebugLoc DL = MI->getDebugLoc();
8965
8966    // Change the floating point control register to use "round towards zero"
8967    // mode when truncating to an integer value.
8968    MachineFunction *F = BB->getParent();
8969    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
8970    addFrameReference(BuildMI(*BB, MI, DL,
8971                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
8972
8973    // Load the old value of the high byte of the control word...
8974    unsigned OldCW =
8975      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
8976    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
8977                      CWFrameIdx);
8978
8979    // Set the high part to be round to zero...
8980    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8981      .addImm(0xC7F);
8982
8983    // Reload the modified control word now...
8984    addFrameReference(BuildMI(*BB, MI, DL,
8985                              TII->get(X86::FLDCW16m)), CWFrameIdx);
8986
8987    // Restore the memory image of control word to original value
8988    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8989      .addReg(OldCW);
8990
8991    // Get the X86 opcode to use.
8992    unsigned Opc;
8993    switch (MI->getOpcode()) {
8994    default: llvm_unreachable("illegal opcode!");
8995    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8996    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8997    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8998    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8999    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
9000    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
9001    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
9002    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
9003    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
9004    }
9005
9006    X86AddressMode AM;
9007    MachineOperand &Op = MI->getOperand(0);
9008    if (Op.isReg()) {
9009      AM.BaseType = X86AddressMode::RegBase;
9010      AM.Base.Reg = Op.getReg();
9011    } else {
9012      AM.BaseType = X86AddressMode::FrameIndexBase;
9013      AM.Base.FrameIndex = Op.getIndex();
9014    }
9015    Op = MI->getOperand(1);
9016    if (Op.isImm())
9017      AM.Scale = Op.getImm();
9018    Op = MI->getOperand(2);
9019    if (Op.isImm())
9020      AM.IndexReg = Op.getImm();
9021    Op = MI->getOperand(3);
9022    if (Op.isGlobal()) {
9023      AM.GV = Op.getGlobal();
9024    } else {
9025      AM.Disp = Op.getImm();
9026    }
9027    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
9028                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
9029
9030    // Reload the original control word now.
9031    addFrameReference(BuildMI(*BB, MI, DL,
9032                              TII->get(X86::FLDCW16m)), CWFrameIdx);
9033
9034    MI->eraseFromParent();   // The pseudo instruction is gone now.
9035    return BB;
9036  }
9037    // String/text processing lowering.
9038  case X86::PCMPISTRM128REG:
9039  case X86::VPCMPISTRM128REG:
9040    return EmitPCMP(MI, BB, 3, false /* in-mem */);
9041  case X86::PCMPISTRM128MEM:
9042  case X86::VPCMPISTRM128MEM:
9043    return EmitPCMP(MI, BB, 3, true /* in-mem */);
9044  case X86::PCMPESTRM128REG:
9045  case X86::VPCMPESTRM128REG:
9046    return EmitPCMP(MI, BB, 5, false /* in mem */);
9047  case X86::PCMPESTRM128MEM:
9048  case X86::VPCMPESTRM128MEM:
9049    return EmitPCMP(MI, BB, 5, true /* in mem */);
9050
9051    // Atomic Lowering.
9052  case X86::ATOMAND32:
9053    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
9054                                               X86::AND32ri, X86::MOV32rm,
9055                                               X86::LCMPXCHG32,
9056                                               X86::NOT32r, X86::EAX,
9057                                               X86::GR32RegisterClass);
9058  case X86::ATOMOR32:
9059    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
9060                                               X86::OR32ri, X86::MOV32rm,
9061                                               X86::LCMPXCHG32,
9062                                               X86::NOT32r, X86::EAX,
9063                                               X86::GR32RegisterClass);
9064  case X86::ATOMXOR32:
9065    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
9066                                               X86::XOR32ri, X86::MOV32rm,
9067                                               X86::LCMPXCHG32,
9068                                               X86::NOT32r, X86::EAX,
9069                                               X86::GR32RegisterClass);
9070  case X86::ATOMNAND32:
9071    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
9072                                               X86::AND32ri, X86::MOV32rm,
9073                                               X86::LCMPXCHG32,
9074                                               X86::NOT32r, X86::EAX,
9075                                               X86::GR32RegisterClass, true);
9076  case X86::ATOMMIN32:
9077    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
9078  case X86::ATOMMAX32:
9079    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
9080  case X86::ATOMUMIN32:
9081    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
9082  case X86::ATOMUMAX32:
9083    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
9084
9085  case X86::ATOMAND16:
9086    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9087                                               X86::AND16ri, X86::MOV16rm,
9088                                               X86::LCMPXCHG16,
9089                                               X86::NOT16r, X86::AX,
9090                                               X86::GR16RegisterClass);
9091  case X86::ATOMOR16:
9092    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
9093                                               X86::OR16ri, X86::MOV16rm,
9094                                               X86::LCMPXCHG16,
9095                                               X86::NOT16r, X86::AX,
9096                                               X86::GR16RegisterClass);
9097  case X86::ATOMXOR16:
9098    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
9099                                               X86::XOR16ri, X86::MOV16rm,
9100                                               X86::LCMPXCHG16,
9101                                               X86::NOT16r, X86::AX,
9102                                               X86::GR16RegisterClass);
9103  case X86::ATOMNAND16:
9104    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9105                                               X86::AND16ri, X86::MOV16rm,
9106                                               X86::LCMPXCHG16,
9107                                               X86::NOT16r, X86::AX,
9108                                               X86::GR16RegisterClass, true);
9109  case X86::ATOMMIN16:
9110    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
9111  case X86::ATOMMAX16:
9112    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
9113  case X86::ATOMUMIN16:
9114    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
9115  case X86::ATOMUMAX16:
9116    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
9117
9118  case X86::ATOMAND8:
9119    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9120                                               X86::AND8ri, X86::MOV8rm,
9121                                               X86::LCMPXCHG8,
9122                                               X86::NOT8r, X86::AL,
9123                                               X86::GR8RegisterClass);
9124  case X86::ATOMOR8:
9125    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
9126                                               X86::OR8ri, X86::MOV8rm,
9127                                               X86::LCMPXCHG8,
9128                                               X86::NOT8r, X86::AL,
9129                                               X86::GR8RegisterClass);
9130  case X86::ATOMXOR8:
9131    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
9132                                               X86::XOR8ri, X86::MOV8rm,
9133                                               X86::LCMPXCHG8,
9134                                               X86::NOT8r, X86::AL,
9135                                               X86::GR8RegisterClass);
9136  case X86::ATOMNAND8:
9137    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9138                                               X86::AND8ri, X86::MOV8rm,
9139                                               X86::LCMPXCHG8,
9140                                               X86::NOT8r, X86::AL,
9141                                               X86::GR8RegisterClass, true);
9142  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
9143  // This group is for 64-bit host.
9144  case X86::ATOMAND64:
9145    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9146                                               X86::AND64ri32, X86::MOV64rm,
9147                                               X86::LCMPXCHG64,
9148                                               X86::NOT64r, X86::RAX,
9149                                               X86::GR64RegisterClass);
9150  case X86::ATOMOR64:
9151    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
9152                                               X86::OR64ri32, X86::MOV64rm,
9153                                               X86::LCMPXCHG64,
9154                                               X86::NOT64r, X86::RAX,
9155                                               X86::GR64RegisterClass);
9156  case X86::ATOMXOR64:
9157    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
9158                                               X86::XOR64ri32, X86::MOV64rm,
9159                                               X86::LCMPXCHG64,
9160                                               X86::NOT64r, X86::RAX,
9161                                               X86::GR64RegisterClass);
9162  case X86::ATOMNAND64:
9163    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9164                                               X86::AND64ri32, X86::MOV64rm,
9165                                               X86::LCMPXCHG64,
9166                                               X86::NOT64r, X86::RAX,
9167                                               X86::GR64RegisterClass, true);
9168  case X86::ATOMMIN64:
9169    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
9170  case X86::ATOMMAX64:
9171    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
9172  case X86::ATOMUMIN64:
9173    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
9174  case X86::ATOMUMAX64:
9175    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
9176
9177  // This group does 64-bit operations on a 32-bit host.
9178  case X86::ATOMAND6432:
9179    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9180                                               X86::AND32rr, X86::AND32rr,
9181                                               X86::AND32ri, X86::AND32ri,
9182                                               false);
9183  case X86::ATOMOR6432:
9184    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9185                                               X86::OR32rr, X86::OR32rr,
9186                                               X86::OR32ri, X86::OR32ri,
9187                                               false);
9188  case X86::ATOMXOR6432:
9189    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9190                                               X86::XOR32rr, X86::XOR32rr,
9191                                               X86::XOR32ri, X86::XOR32ri,
9192                                               false);
9193  case X86::ATOMNAND6432:
9194    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9195                                               X86::AND32rr, X86::AND32rr,
9196                                               X86::AND32ri, X86::AND32ri,
9197                                               true);
9198  case X86::ATOMADD6432:
9199    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9200                                               X86::ADD32rr, X86::ADC32rr,
9201                                               X86::ADD32ri, X86::ADC32ri,
9202                                               false);
9203  case X86::ATOMSUB6432:
9204    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9205                                               X86::SUB32rr, X86::SBB32rr,
9206                                               X86::SUB32ri, X86::SBB32ri,
9207                                               false);
9208  case X86::ATOMSWAP6432:
9209    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9210                                               X86::MOV32rr, X86::MOV32rr,
9211                                               X86::MOV32ri, X86::MOV32ri,
9212                                               false);
9213  case X86::VASTART_SAVE_XMM_REGS:
9214    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
9215  }
9216}
9217
9218//===----------------------------------------------------------------------===//
9219//                           X86 Optimization Hooks
9220//===----------------------------------------------------------------------===//
9221
9222void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
9223                                                       const APInt &Mask,
9224                                                       APInt &KnownZero,
9225                                                       APInt &KnownOne,
9226                                                       const SelectionDAG &DAG,
9227                                                       unsigned Depth) const {
9228  unsigned Opc = Op.getOpcode();
9229  assert((Opc >= ISD::BUILTIN_OP_END ||
9230          Opc == ISD::INTRINSIC_WO_CHAIN ||
9231          Opc == ISD::INTRINSIC_W_CHAIN ||
9232          Opc == ISD::INTRINSIC_VOID) &&
9233         "Should use MaskedValueIsZero if you don't know whether Op"
9234         " is a target node!");
9235
9236  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
9237  switch (Opc) {
9238  default: break;
9239  case X86ISD::ADD:
9240  case X86ISD::SUB:
9241  case X86ISD::SMUL:
9242  case X86ISD::UMUL:
9243  case X86ISD::INC:
9244  case X86ISD::DEC:
9245  case X86ISD::OR:
9246  case X86ISD::XOR:
9247  case X86ISD::AND:
9248    // These nodes' second result is a boolean.
9249    if (Op.getResNo() == 0)
9250      break;
9251    // Fallthrough
9252  case X86ISD::SETCC:
9253    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
9254                                       Mask.getBitWidth() - 1);
9255    break;
9256  }
9257}
9258
9259/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
9260/// node is a GlobalAddress + offset.
9261bool X86TargetLowering::isGAPlusOffset(SDNode *N,
9262                                       const GlobalValue* &GA,
9263                                       int64_t &Offset) const {
9264  if (N->getOpcode() == X86ISD::Wrapper) {
9265    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
9266      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
9267      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
9268      return true;
9269    }
9270  }
9271  return TargetLowering::isGAPlusOffset(N, GA, Offset);
9272}
9273
9274/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
9275/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
9276/// if the load addresses are consecutive, non-overlapping, and in the right
9277/// order.
9278static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
9279                                     const TargetLowering &TLI) {
9280  DebugLoc dl = N->getDebugLoc();
9281  EVT VT = N->getValueType(0);
9282  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9283
9284  if (VT.getSizeInBits() != 128)
9285    return SDValue();
9286
9287  SmallVector<SDValue, 16> Elts;
9288  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
9289    Elts.push_back(DAG.getShuffleScalarElt(SVN, i));
9290
9291  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
9292}
9293
9294/// PerformShuffleCombine - Detect vector gather/scatter index generation
9295/// and convert it from being a bunch of shuffles and extracts to a simple
9296/// store and scalar loads to extract the elements.
9297static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
9298                                                const TargetLowering &TLI) {
9299  SDValue InputVector = N->getOperand(0);
9300
9301  // Only operate on vectors of 4 elements, where the alternative shuffling
9302  // gets to be more expensive.
9303  if (InputVector.getValueType() != MVT::v4i32)
9304    return SDValue();
9305
9306  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
9307  // single use which is a sign-extend or zero-extend, and all elements are
9308  // used.
9309  SmallVector<SDNode *, 4> Uses;
9310  unsigned ExtractedElements = 0;
9311  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
9312       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
9313    if (UI.getUse().getResNo() != InputVector.getResNo())
9314      return SDValue();
9315
9316    SDNode *Extract = *UI;
9317    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9318      return SDValue();
9319
9320    if (Extract->getValueType(0) != MVT::i32)
9321      return SDValue();
9322    if (!Extract->hasOneUse())
9323      return SDValue();
9324    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
9325        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
9326      return SDValue();
9327    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
9328      return SDValue();
9329
9330    // Record which element was extracted.
9331    ExtractedElements |=
9332      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
9333
9334    Uses.push_back(Extract);
9335  }
9336
9337  // If not all the elements were used, this may not be worthwhile.
9338  if (ExtractedElements != 15)
9339    return SDValue();
9340
9341  // Ok, we've now decided to do the transformation.
9342  DebugLoc dl = InputVector.getDebugLoc();
9343
9344  // Store the value to a temporary stack slot.
9345  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
9346  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL,
9347                            0, false, false, 0);
9348
9349  // Replace each use (extract) with a load of the appropriate element.
9350  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
9351       UE = Uses.end(); UI != UE; ++UI) {
9352    SDNode *Extract = *UI;
9353
9354    // Compute the element's address.
9355    SDValue Idx = Extract->getOperand(1);
9356    unsigned EltSize =
9357        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
9358    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
9359    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
9360
9361    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
9362                                     OffsetVal, StackPtr);
9363
9364    // Load the scalar.
9365    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
9366                                     ScalarAddr, NULL, 0, false, false, 0);
9367
9368    // Replace the exact with the load.
9369    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
9370  }
9371
9372  // The replacement was made in place; don't return anything.
9373  return SDValue();
9374}
9375
9376/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
9377static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
9378                                    const X86Subtarget *Subtarget) {
9379  DebugLoc DL = N->getDebugLoc();
9380  SDValue Cond = N->getOperand(0);
9381  // Get the LHS/RHS of the select.
9382  SDValue LHS = N->getOperand(1);
9383  SDValue RHS = N->getOperand(2);
9384
9385  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
9386  // instructions match the semantics of the common C idiom x<y?x:y but not
9387  // x<=y?x:y, because of how they handle negative zero (which can be
9388  // ignored in unsafe-math mode).
9389  if (Subtarget->hasSSE2() &&
9390      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
9391      Cond.getOpcode() == ISD::SETCC) {
9392    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
9393
9394    unsigned Opcode = 0;
9395    // Check for x CC y ? x : y.
9396    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
9397        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
9398      switch (CC) {
9399      default: break;
9400      case ISD::SETULT:
9401        // Converting this to a min would handle NaNs incorrectly, and swapping
9402        // the operands would cause it to handle comparisons between positive
9403        // and negative zero incorrectly.
9404        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9405          if (!UnsafeFPMath &&
9406              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9407            break;
9408          std::swap(LHS, RHS);
9409        }
9410        Opcode = X86ISD::FMIN;
9411        break;
9412      case ISD::SETOLE:
9413        // Converting this to a min would handle comparisons between positive
9414        // and negative zero incorrectly.
9415        if (!UnsafeFPMath &&
9416            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
9417          break;
9418        Opcode = X86ISD::FMIN;
9419        break;
9420      case ISD::SETULE:
9421        // Converting this to a min would handle both negative zeros and NaNs
9422        // incorrectly, but we can swap the operands to fix both.
9423        std::swap(LHS, RHS);
9424      case ISD::SETOLT:
9425      case ISD::SETLT:
9426      case ISD::SETLE:
9427        Opcode = X86ISD::FMIN;
9428        break;
9429
9430      case ISD::SETOGE:
9431        // Converting this to a max would handle comparisons between positive
9432        // and negative zero incorrectly.
9433        if (!UnsafeFPMath &&
9434            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
9435          break;
9436        Opcode = X86ISD::FMAX;
9437        break;
9438      case ISD::SETUGT:
9439        // Converting this to a max would handle NaNs incorrectly, and swapping
9440        // the operands would cause it to handle comparisons between positive
9441        // and negative zero incorrectly.
9442        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9443          if (!UnsafeFPMath &&
9444              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9445            break;
9446          std::swap(LHS, RHS);
9447        }
9448        Opcode = X86ISD::FMAX;
9449        break;
9450      case ISD::SETUGE:
9451        // Converting this to a max would handle both negative zeros and NaNs
9452        // incorrectly, but we can swap the operands to fix both.
9453        std::swap(LHS, RHS);
9454      case ISD::SETOGT:
9455      case ISD::SETGT:
9456      case ISD::SETGE:
9457        Opcode = X86ISD::FMAX;
9458        break;
9459      }
9460    // Check for x CC y ? y : x -- a min/max with reversed arms.
9461    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
9462               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
9463      switch (CC) {
9464      default: break;
9465      case ISD::SETOGE:
9466        // Converting this to a min would handle comparisons between positive
9467        // and negative zero incorrectly, and swapping the operands would
9468        // cause it to handle NaNs incorrectly.
9469        if (!UnsafeFPMath &&
9470            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
9471          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9472            break;
9473          std::swap(LHS, RHS);
9474        }
9475        Opcode = X86ISD::FMIN;
9476        break;
9477      case ISD::SETUGT:
9478        // Converting this to a min would handle NaNs incorrectly.
9479        if (!UnsafeFPMath &&
9480            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9481          break;
9482        Opcode = X86ISD::FMIN;
9483        break;
9484      case ISD::SETUGE:
9485        // Converting this to a min would handle both negative zeros and NaNs
9486        // incorrectly, but we can swap the operands to fix both.
9487        std::swap(LHS, RHS);
9488      case ISD::SETOGT:
9489      case ISD::SETGT:
9490      case ISD::SETGE:
9491        Opcode = X86ISD::FMIN;
9492        break;
9493
9494      case ISD::SETULT:
9495        // Converting this to a max would handle NaNs incorrectly.
9496        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9497          break;
9498        Opcode = X86ISD::FMAX;
9499        break;
9500      case ISD::SETOLE:
9501        // Converting this to a max would handle comparisons between positive
9502        // and negative zero incorrectly, and swapping the operands would
9503        // cause it to handle NaNs incorrectly.
9504        if (!UnsafeFPMath &&
9505            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
9506          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9507            break;
9508          std::swap(LHS, RHS);
9509        }
9510        Opcode = X86ISD::FMAX;
9511        break;
9512      case ISD::SETULE:
9513        // Converting this to a max would handle both negative zeros and NaNs
9514        // incorrectly, but we can swap the operands to fix both.
9515        std::swap(LHS, RHS);
9516      case ISD::SETOLT:
9517      case ISD::SETLT:
9518      case ISD::SETLE:
9519        Opcode = X86ISD::FMAX;
9520        break;
9521      }
9522    }
9523
9524    if (Opcode)
9525      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
9526  }
9527
9528  // If this is a select between two integer constants, try to do some
9529  // optimizations.
9530  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
9531    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
9532      // Don't do this for crazy integer types.
9533      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
9534        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
9535        // so that TrueC (the true value) is larger than FalseC.
9536        bool NeedsCondInvert = false;
9537
9538        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
9539            // Efficiently invertible.
9540            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
9541             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
9542              isa<ConstantSDNode>(Cond.getOperand(1))))) {
9543          NeedsCondInvert = true;
9544          std::swap(TrueC, FalseC);
9545        }
9546
9547        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
9548        if (FalseC->getAPIntValue() == 0 &&
9549            TrueC->getAPIntValue().isPowerOf2()) {
9550          if (NeedsCondInvert) // Invert the condition if needed.
9551            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9552                               DAG.getConstant(1, Cond.getValueType()));
9553
9554          // Zero extend the condition if needed.
9555          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
9556
9557          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9558          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
9559                             DAG.getConstant(ShAmt, MVT::i8));
9560        }
9561
9562        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
9563        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9564          if (NeedsCondInvert) // Invert the condition if needed.
9565            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9566                               DAG.getConstant(1, Cond.getValueType()));
9567
9568          // Zero extend the condition if needed.
9569          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9570                             FalseC->getValueType(0), Cond);
9571          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9572                             SDValue(FalseC, 0));
9573        }
9574
9575        // Optimize cases that will turn into an LEA instruction.  This requires
9576        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9577        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9578          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9579          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9580
9581          bool isFastMultiplier = false;
9582          if (Diff < 10) {
9583            switch ((unsigned char)Diff) {
9584              default: break;
9585              case 1:  // result = add base, cond
9586              case 2:  // result = lea base(    , cond*2)
9587              case 3:  // result = lea base(cond, cond*2)
9588              case 4:  // result = lea base(    , cond*4)
9589              case 5:  // result = lea base(cond, cond*4)
9590              case 8:  // result = lea base(    , cond*8)
9591              case 9:  // result = lea base(cond, cond*8)
9592                isFastMultiplier = true;
9593                break;
9594            }
9595          }
9596
9597          if (isFastMultiplier) {
9598            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9599            if (NeedsCondInvert) // Invert the condition if needed.
9600              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9601                                 DAG.getConstant(1, Cond.getValueType()));
9602
9603            // Zero extend the condition if needed.
9604            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9605                               Cond);
9606            // Scale the condition by the difference.
9607            if (Diff != 1)
9608              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9609                                 DAG.getConstant(Diff, Cond.getValueType()));
9610
9611            // Add the base if non-zero.
9612            if (FalseC->getAPIntValue() != 0)
9613              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9614                                 SDValue(FalseC, 0));
9615            return Cond;
9616          }
9617        }
9618      }
9619  }
9620
9621  return SDValue();
9622}
9623
9624/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9625static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9626                                  TargetLowering::DAGCombinerInfo &DCI) {
9627  DebugLoc DL = N->getDebugLoc();
9628
9629  // If the flag operand isn't dead, don't touch this CMOV.
9630  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9631    return SDValue();
9632
9633  // If this is a select between two integer constants, try to do some
9634  // optimizations.  Note that the operands are ordered the opposite of SELECT
9635  // operands.
9636  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9637    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9638      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9639      // larger than FalseC (the false value).
9640      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9641
9642      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9643        CC = X86::GetOppositeBranchCondition(CC);
9644        std::swap(TrueC, FalseC);
9645      }
9646
9647      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9648      // This is efficient for any integer data type (including i8/i16) and
9649      // shift amount.
9650      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9651        SDValue Cond = N->getOperand(3);
9652        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9653                           DAG.getConstant(CC, MVT::i8), Cond);
9654
9655        // Zero extend the condition if needed.
9656        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9657
9658        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9659        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9660                           DAG.getConstant(ShAmt, MVT::i8));
9661        if (N->getNumValues() == 2)  // Dead flag value?
9662          return DCI.CombineTo(N, Cond, SDValue());
9663        return Cond;
9664      }
9665
9666      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9667      // for any integer data type, including i8/i16.
9668      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9669        SDValue Cond = N->getOperand(3);
9670        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9671                           DAG.getConstant(CC, MVT::i8), Cond);
9672
9673        // Zero extend the condition if needed.
9674        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9675                           FalseC->getValueType(0), Cond);
9676        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9677                           SDValue(FalseC, 0));
9678
9679        if (N->getNumValues() == 2)  // Dead flag value?
9680          return DCI.CombineTo(N, Cond, SDValue());
9681        return Cond;
9682      }
9683
9684      // Optimize cases that will turn into an LEA instruction.  This requires
9685      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9686      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9687        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9688        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9689
9690        bool isFastMultiplier = false;
9691        if (Diff < 10) {
9692          switch ((unsigned char)Diff) {
9693          default: break;
9694          case 1:  // result = add base, cond
9695          case 2:  // result = lea base(    , cond*2)
9696          case 3:  // result = lea base(cond, cond*2)
9697          case 4:  // result = lea base(    , cond*4)
9698          case 5:  // result = lea base(cond, cond*4)
9699          case 8:  // result = lea base(    , cond*8)
9700          case 9:  // result = lea base(cond, cond*8)
9701            isFastMultiplier = true;
9702            break;
9703          }
9704        }
9705
9706        if (isFastMultiplier) {
9707          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9708          SDValue Cond = N->getOperand(3);
9709          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9710                             DAG.getConstant(CC, MVT::i8), Cond);
9711          // Zero extend the condition if needed.
9712          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9713                             Cond);
9714          // Scale the condition by the difference.
9715          if (Diff != 1)
9716            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9717                               DAG.getConstant(Diff, Cond.getValueType()));
9718
9719          // Add the base if non-zero.
9720          if (FalseC->getAPIntValue() != 0)
9721            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9722                               SDValue(FalseC, 0));
9723          if (N->getNumValues() == 2)  // Dead flag value?
9724            return DCI.CombineTo(N, Cond, SDValue());
9725          return Cond;
9726        }
9727      }
9728    }
9729  }
9730  return SDValue();
9731}
9732
9733
9734/// PerformMulCombine - Optimize a single multiply with constant into two
9735/// in order to implement it with two cheaper instructions, e.g.
9736/// LEA + SHL, LEA + LEA.
9737static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9738                                 TargetLowering::DAGCombinerInfo &DCI) {
9739  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9740    return SDValue();
9741
9742  EVT VT = N->getValueType(0);
9743  if (VT != MVT::i64)
9744    return SDValue();
9745
9746  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9747  if (!C)
9748    return SDValue();
9749  uint64_t MulAmt = C->getZExtValue();
9750  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
9751    return SDValue();
9752
9753  uint64_t MulAmt1 = 0;
9754  uint64_t MulAmt2 = 0;
9755  if ((MulAmt % 9) == 0) {
9756    MulAmt1 = 9;
9757    MulAmt2 = MulAmt / 9;
9758  } else if ((MulAmt % 5) == 0) {
9759    MulAmt1 = 5;
9760    MulAmt2 = MulAmt / 5;
9761  } else if ((MulAmt % 3) == 0) {
9762    MulAmt1 = 3;
9763    MulAmt2 = MulAmt / 3;
9764  }
9765  if (MulAmt2 &&
9766      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
9767    DebugLoc DL = N->getDebugLoc();
9768
9769    if (isPowerOf2_64(MulAmt2) &&
9770        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
9771      // If second multiplifer is pow2, issue it first. We want the multiply by
9772      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
9773      // is an add.
9774      std::swap(MulAmt1, MulAmt2);
9775
9776    SDValue NewMul;
9777    if (isPowerOf2_64(MulAmt1))
9778      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
9779                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
9780    else
9781      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
9782                           DAG.getConstant(MulAmt1, VT));
9783
9784    if (isPowerOf2_64(MulAmt2))
9785      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
9786                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
9787    else
9788      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
9789                           DAG.getConstant(MulAmt2, VT));
9790
9791    // Do not add new nodes to DAG combiner worklist.
9792    DCI.CombineTo(N, NewMul, false);
9793  }
9794  return SDValue();
9795}
9796
9797static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
9798  SDValue N0 = N->getOperand(0);
9799  SDValue N1 = N->getOperand(1);
9800  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9801  EVT VT = N0.getValueType();
9802
9803  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
9804  // since the result of setcc_c is all zero's or all ones.
9805  if (N1C && N0.getOpcode() == ISD::AND &&
9806      N0.getOperand(1).getOpcode() == ISD::Constant) {
9807    SDValue N00 = N0.getOperand(0);
9808    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
9809        ((N00.getOpcode() == ISD::ANY_EXTEND ||
9810          N00.getOpcode() == ISD::ZERO_EXTEND) &&
9811         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
9812      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9813      APInt ShAmt = N1C->getAPIntValue();
9814      Mask = Mask.shl(ShAmt);
9815      if (Mask != 0)
9816        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9817                           N00, DAG.getConstant(Mask, VT));
9818    }
9819  }
9820
9821  return SDValue();
9822}
9823
9824/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
9825///                       when possible.
9826static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
9827                                   const X86Subtarget *Subtarget) {
9828  EVT VT = N->getValueType(0);
9829  if (!VT.isVector() && VT.isInteger() &&
9830      N->getOpcode() == ISD::SHL)
9831    return PerformSHLCombine(N, DAG);
9832
9833  // On X86 with SSE2 support, we can transform this to a vector shift if
9834  // all elements are shifted by the same amount.  We can't do this in legalize
9835  // because the a constant vector is typically transformed to a constant pool
9836  // so we have no knowledge of the shift amount.
9837  if (!Subtarget->hasSSE2())
9838    return SDValue();
9839
9840  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
9841    return SDValue();
9842
9843  SDValue ShAmtOp = N->getOperand(1);
9844  EVT EltVT = VT.getVectorElementType();
9845  DebugLoc DL = N->getDebugLoc();
9846  SDValue BaseShAmt = SDValue();
9847  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
9848    unsigned NumElts = VT.getVectorNumElements();
9849    unsigned i = 0;
9850    for (; i != NumElts; ++i) {
9851      SDValue Arg = ShAmtOp.getOperand(i);
9852      if (Arg.getOpcode() == ISD::UNDEF) continue;
9853      BaseShAmt = Arg;
9854      break;
9855    }
9856    for (; i != NumElts; ++i) {
9857      SDValue Arg = ShAmtOp.getOperand(i);
9858      if (Arg.getOpcode() == ISD::UNDEF) continue;
9859      if (Arg != BaseShAmt) {
9860        return SDValue();
9861      }
9862    }
9863  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
9864             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
9865    SDValue InVec = ShAmtOp.getOperand(0);
9866    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
9867      unsigned NumElts = InVec.getValueType().getVectorNumElements();
9868      unsigned i = 0;
9869      for (; i != NumElts; ++i) {
9870        SDValue Arg = InVec.getOperand(i);
9871        if (Arg.getOpcode() == ISD::UNDEF) continue;
9872        BaseShAmt = Arg;
9873        break;
9874      }
9875    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
9876       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
9877         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
9878         if (C->getZExtValue() == SplatIdx)
9879           BaseShAmt = InVec.getOperand(1);
9880       }
9881    }
9882    if (BaseShAmt.getNode() == 0)
9883      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
9884                              DAG.getIntPtrConstant(0));
9885  } else
9886    return SDValue();
9887
9888  // The shift amount is an i32.
9889  if (EltVT.bitsGT(MVT::i32))
9890    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
9891  else if (EltVT.bitsLT(MVT::i32))
9892    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
9893
9894  // The shift amount is identical so we can do a vector shift.
9895  SDValue  ValOp = N->getOperand(0);
9896  switch (N->getOpcode()) {
9897  default:
9898    llvm_unreachable("Unknown shift opcode!");
9899    break;
9900  case ISD::SHL:
9901    if (VT == MVT::v2i64)
9902      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9903                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9904                         ValOp, BaseShAmt);
9905    if (VT == MVT::v4i32)
9906      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9907                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9908                         ValOp, BaseShAmt);
9909    if (VT == MVT::v8i16)
9910      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9911                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9912                         ValOp, BaseShAmt);
9913    break;
9914  case ISD::SRA:
9915    if (VT == MVT::v4i32)
9916      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9917                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9918                         ValOp, BaseShAmt);
9919    if (VT == MVT::v8i16)
9920      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9921                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9922                         ValOp, BaseShAmt);
9923    break;
9924  case ISD::SRL:
9925    if (VT == MVT::v2i64)
9926      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9927                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9928                         ValOp, BaseShAmt);
9929    if (VT == MVT::v4i32)
9930      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9931                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9932                         ValOp, BaseShAmt);
9933    if (VT ==  MVT::v8i16)
9934      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9935                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9936                         ValOp, BaseShAmt);
9937    break;
9938  }
9939  return SDValue();
9940}
9941
9942static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
9943                                TargetLowering::DAGCombinerInfo &DCI,
9944                                const X86Subtarget *Subtarget) {
9945  if (DCI.isBeforeLegalizeOps())
9946    return SDValue();
9947
9948  EVT VT = N->getValueType(0);
9949  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
9950    return SDValue();
9951
9952  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
9953  SDValue N0 = N->getOperand(0);
9954  SDValue N1 = N->getOperand(1);
9955  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
9956    std::swap(N0, N1);
9957  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
9958    return SDValue();
9959  if (!N0.hasOneUse() || !N1.hasOneUse())
9960    return SDValue();
9961
9962  SDValue ShAmt0 = N0.getOperand(1);
9963  if (ShAmt0.getValueType() != MVT::i8)
9964    return SDValue();
9965  SDValue ShAmt1 = N1.getOperand(1);
9966  if (ShAmt1.getValueType() != MVT::i8)
9967    return SDValue();
9968  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
9969    ShAmt0 = ShAmt0.getOperand(0);
9970  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
9971    ShAmt1 = ShAmt1.getOperand(0);
9972
9973  DebugLoc DL = N->getDebugLoc();
9974  unsigned Opc = X86ISD::SHLD;
9975  SDValue Op0 = N0.getOperand(0);
9976  SDValue Op1 = N1.getOperand(0);
9977  if (ShAmt0.getOpcode() == ISD::SUB) {
9978    Opc = X86ISD::SHRD;
9979    std::swap(Op0, Op1);
9980    std::swap(ShAmt0, ShAmt1);
9981  }
9982
9983  unsigned Bits = VT.getSizeInBits();
9984  if (ShAmt1.getOpcode() == ISD::SUB) {
9985    SDValue Sum = ShAmt1.getOperand(0);
9986    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
9987      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
9988      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
9989        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
9990      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
9991        return DAG.getNode(Opc, DL, VT,
9992                           Op0, Op1,
9993                           DAG.getNode(ISD::TRUNCATE, DL,
9994                                       MVT::i8, ShAmt0));
9995    }
9996  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
9997    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
9998    if (ShAmt0C &&
9999        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
10000      return DAG.getNode(Opc, DL, VT,
10001                         N0.getOperand(0), N1.getOperand(0),
10002                         DAG.getNode(ISD::TRUNCATE, DL,
10003                                       MVT::i8, ShAmt0));
10004  }
10005
10006  return SDValue();
10007}
10008
10009/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
10010static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
10011                                   const X86Subtarget *Subtarget) {
10012  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
10013  // the FP state in cases where an emms may be missing.
10014  // A preferable solution to the general problem is to figure out the right
10015  // places to insert EMMS.  This qualifies as a quick hack.
10016
10017  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
10018  StoreSDNode *St = cast<StoreSDNode>(N);
10019  EVT VT = St->getValue().getValueType();
10020  if (VT.getSizeInBits() != 64)
10021    return SDValue();
10022
10023  const Function *F = DAG.getMachineFunction().getFunction();
10024  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
10025  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
10026    && Subtarget->hasSSE2();
10027  if ((VT.isVector() ||
10028       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
10029      isa<LoadSDNode>(St->getValue()) &&
10030      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
10031      St->getChain().hasOneUse() && !St->isVolatile()) {
10032    SDNode* LdVal = St->getValue().getNode();
10033    LoadSDNode *Ld = 0;
10034    int TokenFactorIndex = -1;
10035    SmallVector<SDValue, 8> Ops;
10036    SDNode* ChainVal = St->getChain().getNode();
10037    // Must be a store of a load.  We currently handle two cases:  the load
10038    // is a direct child, and it's under an intervening TokenFactor.  It is
10039    // possible to dig deeper under nested TokenFactors.
10040    if (ChainVal == LdVal)
10041      Ld = cast<LoadSDNode>(St->getChain());
10042    else if (St->getValue().hasOneUse() &&
10043             ChainVal->getOpcode() == ISD::TokenFactor) {
10044      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
10045        if (ChainVal->getOperand(i).getNode() == LdVal) {
10046          TokenFactorIndex = i;
10047          Ld = cast<LoadSDNode>(St->getValue());
10048        } else
10049          Ops.push_back(ChainVal->getOperand(i));
10050      }
10051    }
10052
10053    if (!Ld || !ISD::isNormalLoad(Ld))
10054      return SDValue();
10055
10056    // If this is not the MMX case, i.e. we are just turning i64 load/store
10057    // into f64 load/store, avoid the transformation if there are multiple
10058    // uses of the loaded value.
10059    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
10060      return SDValue();
10061
10062    DebugLoc LdDL = Ld->getDebugLoc();
10063    DebugLoc StDL = N->getDebugLoc();
10064    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
10065    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
10066    // pair instead.
10067    if (Subtarget->is64Bit() || F64IsLegal) {
10068      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
10069      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
10070                                  Ld->getBasePtr(), Ld->getSrcValue(),
10071                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
10072                                  Ld->isNonTemporal(), Ld->getAlignment());
10073      SDValue NewChain = NewLd.getValue(1);
10074      if (TokenFactorIndex != -1) {
10075        Ops.push_back(NewChain);
10076        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10077                               Ops.size());
10078      }
10079      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
10080                          St->getSrcValue(), St->getSrcValueOffset(),
10081                          St->isVolatile(), St->isNonTemporal(),
10082                          St->getAlignment());
10083    }
10084
10085    // Otherwise, lower to two pairs of 32-bit loads / stores.
10086    SDValue LoAddr = Ld->getBasePtr();
10087    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
10088                                 DAG.getConstant(4, MVT::i32));
10089
10090    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
10091                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
10092                               Ld->isVolatile(), Ld->isNonTemporal(),
10093                               Ld->getAlignment());
10094    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
10095                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
10096                               Ld->isVolatile(), Ld->isNonTemporal(),
10097                               MinAlign(Ld->getAlignment(), 4));
10098
10099    SDValue NewChain = LoLd.getValue(1);
10100    if (TokenFactorIndex != -1) {
10101      Ops.push_back(LoLd);
10102      Ops.push_back(HiLd);
10103      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10104                             Ops.size());
10105    }
10106
10107    LoAddr = St->getBasePtr();
10108    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
10109                         DAG.getConstant(4, MVT::i32));
10110
10111    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
10112                                St->getSrcValue(), St->getSrcValueOffset(),
10113                                St->isVolatile(), St->isNonTemporal(),
10114                                St->getAlignment());
10115    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
10116                                St->getSrcValue(),
10117                                St->getSrcValueOffset() + 4,
10118                                St->isVolatile(),
10119                                St->isNonTemporal(),
10120                                MinAlign(St->getAlignment(), 4));
10121    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
10122  }
10123  return SDValue();
10124}
10125
10126/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
10127/// X86ISD::FXOR nodes.
10128static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
10129  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
10130  // F[X]OR(0.0, x) -> x
10131  // F[X]OR(x, 0.0) -> x
10132  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10133    if (C->getValueAPF().isPosZero())
10134      return N->getOperand(1);
10135  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10136    if (C->getValueAPF().isPosZero())
10137      return N->getOperand(0);
10138  return SDValue();
10139}
10140
10141/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
10142static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
10143  // FAND(0.0, x) -> 0.0
10144  // FAND(x, 0.0) -> 0.0
10145  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10146    if (C->getValueAPF().isPosZero())
10147      return N->getOperand(0);
10148  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10149    if (C->getValueAPF().isPosZero())
10150      return N->getOperand(1);
10151  return SDValue();
10152}
10153
10154static SDValue PerformBTCombine(SDNode *N,
10155                                SelectionDAG &DAG,
10156                                TargetLowering::DAGCombinerInfo &DCI) {
10157  // BT ignores high bits in the bit index operand.
10158  SDValue Op1 = N->getOperand(1);
10159  if (Op1.hasOneUse()) {
10160    unsigned BitWidth = Op1.getValueSizeInBits();
10161    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
10162    APInt KnownZero, KnownOne;
10163    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
10164                                          !DCI.isBeforeLegalizeOps());
10165    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10166    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
10167        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
10168      DCI.CommitTargetLoweringOpt(TLO);
10169  }
10170  return SDValue();
10171}
10172
10173static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
10174  SDValue Op = N->getOperand(0);
10175  if (Op.getOpcode() == ISD::BIT_CONVERT)
10176    Op = Op.getOperand(0);
10177  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
10178  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
10179      VT.getVectorElementType().getSizeInBits() ==
10180      OpVT.getVectorElementType().getSizeInBits()) {
10181    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
10182  }
10183  return SDValue();
10184}
10185
10186static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
10187  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
10188  //           (and (i32 x86isd::setcc_carry), 1)
10189  // This eliminates the zext. This transformation is necessary because
10190  // ISD::SETCC is always legalized to i8.
10191  DebugLoc dl = N->getDebugLoc();
10192  SDValue N0 = N->getOperand(0);
10193  EVT VT = N->getValueType(0);
10194  if (N0.getOpcode() == ISD::AND &&
10195      N0.hasOneUse() &&
10196      N0.getOperand(0).hasOneUse()) {
10197    SDValue N00 = N0.getOperand(0);
10198    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
10199      return SDValue();
10200    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
10201    if (!C || C->getZExtValue() != 1)
10202      return SDValue();
10203    return DAG.getNode(ISD::AND, dl, VT,
10204                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
10205                                   N00.getOperand(0), N00.getOperand(1)),
10206                       DAG.getConstant(1, VT));
10207  }
10208
10209  return SDValue();
10210}
10211
10212SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
10213                                             DAGCombinerInfo &DCI) const {
10214  SelectionDAG &DAG = DCI.DAG;
10215  switch (N->getOpcode()) {
10216  default: break;
10217  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
10218  case ISD::EXTRACT_VECTOR_ELT:
10219                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
10220  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
10221  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
10222  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
10223  case ISD::SHL:
10224  case ISD::SRA:
10225  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
10226  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
10227  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
10228  case X86ISD::FXOR:
10229  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
10230  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
10231  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
10232  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
10233  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
10234  }
10235
10236  return SDValue();
10237}
10238
10239/// isTypeDesirableForOp - Return true if the target has native support for
10240/// the specified value type and it is 'desirable' to use the type for the
10241/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
10242/// instruction encodings are longer and some i16 instructions are slow.
10243bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
10244  if (!isTypeLegal(VT))
10245    return false;
10246  if (VT != MVT::i16)
10247    return true;
10248
10249  switch (Opc) {
10250  default:
10251    return true;
10252  case ISD::LOAD:
10253  case ISD::SIGN_EXTEND:
10254  case ISD::ZERO_EXTEND:
10255  case ISD::ANY_EXTEND:
10256  case ISD::SHL:
10257  case ISD::SRL:
10258  case ISD::SUB:
10259  case ISD::ADD:
10260  case ISD::MUL:
10261  case ISD::AND:
10262  case ISD::OR:
10263  case ISD::XOR:
10264    return false;
10265  }
10266}
10267
10268static bool MayFoldLoad(SDValue Op) {
10269  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
10270}
10271
10272static bool MayFoldIntoStore(SDValue Op) {
10273  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
10274}
10275
10276/// IsDesirableToPromoteOp - This method query the target whether it is
10277/// beneficial for dag combiner to promote the specified node. If true, it
10278/// should return the desired promotion type by reference.
10279bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
10280  EVT VT = Op.getValueType();
10281  if (VT != MVT::i16)
10282    return false;
10283
10284  bool Promote = false;
10285  bool Commute = false;
10286  switch (Op.getOpcode()) {
10287  default: break;
10288  case ISD::LOAD: {
10289    LoadSDNode *LD = cast<LoadSDNode>(Op);
10290    // If the non-extending load has a single use and it's not live out, then it
10291    // might be folded.
10292    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
10293                                                     Op.hasOneUse()*/) {
10294      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
10295             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
10296        // The only case where we'd want to promote LOAD (rather then it being
10297        // promoted as an operand is when it's only use is liveout.
10298        if (UI->getOpcode() != ISD::CopyToReg)
10299          return false;
10300      }
10301    }
10302    Promote = true;
10303    break;
10304  }
10305  case ISD::SIGN_EXTEND:
10306  case ISD::ZERO_EXTEND:
10307  case ISD::ANY_EXTEND:
10308    Promote = true;
10309    break;
10310  case ISD::SHL:
10311  case ISD::SRL: {
10312    SDValue N0 = Op.getOperand(0);
10313    // Look out for (store (shl (load), x)).
10314    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
10315      return false;
10316    Promote = true;
10317    break;
10318  }
10319  case ISD::ADD:
10320  case ISD::MUL:
10321  case ISD::AND:
10322  case ISD::OR:
10323  case ISD::XOR:
10324    Commute = true;
10325    // fallthrough
10326  case ISD::SUB: {
10327    SDValue N0 = Op.getOperand(0);
10328    SDValue N1 = Op.getOperand(1);
10329    if (!Commute && MayFoldLoad(N1))
10330      return false;
10331    // Avoid disabling potential load folding opportunities.
10332    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
10333      return false;
10334    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
10335      return false;
10336    Promote = true;
10337  }
10338  }
10339
10340  PVT = MVT::i32;
10341  return Promote;
10342}
10343
10344//===----------------------------------------------------------------------===//
10345//                           X86 Inline Assembly Support
10346//===----------------------------------------------------------------------===//
10347
10348static bool LowerToBSwap(CallInst *CI) {
10349  // FIXME: this should verify that we are targetting a 486 or better.  If not,
10350  // we will turn this bswap into something that will be lowered to logical ops
10351  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
10352  // so don't worry about this.
10353
10354  // Verify this is a simple bswap.
10355  if (CI->getNumArgOperands() != 1 ||
10356      CI->getType() != CI->getArgOperand(0)->getType() ||
10357      !CI->getType()->isIntegerTy())
10358    return false;
10359
10360  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
10361  if (!Ty || Ty->getBitWidth() % 16 != 0)
10362    return false;
10363
10364  // Okay, we can do this xform, do so now.
10365  const Type *Tys[] = { Ty };
10366  Module *M = CI->getParent()->getParent()->getParent();
10367  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
10368
10369  Value *Op = CI->getArgOperand(0);
10370  Op = CallInst::Create(Int, Op, CI->getName(), CI);
10371
10372  CI->replaceAllUsesWith(Op);
10373  CI->eraseFromParent();
10374  return true;
10375}
10376
10377bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
10378  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
10379  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
10380
10381  std::string AsmStr = IA->getAsmString();
10382
10383  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
10384  SmallVector<StringRef, 4> AsmPieces;
10385  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
10386
10387  switch (AsmPieces.size()) {
10388  default: return false;
10389  case 1:
10390    AsmStr = AsmPieces[0];
10391    AsmPieces.clear();
10392    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
10393
10394    // bswap $0
10395    if (AsmPieces.size() == 2 &&
10396        (AsmPieces[0] == "bswap" ||
10397         AsmPieces[0] == "bswapq" ||
10398         AsmPieces[0] == "bswapl") &&
10399        (AsmPieces[1] == "$0" ||
10400         AsmPieces[1] == "${0:q}")) {
10401      // No need to check constraints, nothing other than the equivalent of
10402      // "=r,0" would be valid here.
10403      return LowerToBSwap(CI);
10404    }
10405    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
10406    if (CI->getType()->isIntegerTy(16) &&
10407        AsmPieces.size() == 3 &&
10408        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
10409        AsmPieces[1] == "$$8," &&
10410        AsmPieces[2] == "${0:w}" &&
10411        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
10412      AsmPieces.clear();
10413      const std::string &Constraints = IA->getConstraintString();
10414      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
10415      std::sort(AsmPieces.begin(), AsmPieces.end());
10416      if (AsmPieces.size() == 4 &&
10417          AsmPieces[0] == "~{cc}" &&
10418          AsmPieces[1] == "~{dirflag}" &&
10419          AsmPieces[2] == "~{flags}" &&
10420          AsmPieces[3] == "~{fpsr}") {
10421        return LowerToBSwap(CI);
10422      }
10423    }
10424    break;
10425  case 3:
10426    if (CI->getType()->isIntegerTy(64) &&
10427        Constraints.size() >= 2 &&
10428        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
10429        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
10430      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
10431      SmallVector<StringRef, 4> Words;
10432      SplitString(AsmPieces[0], Words, " \t");
10433      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
10434        Words.clear();
10435        SplitString(AsmPieces[1], Words, " \t");
10436        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
10437          Words.clear();
10438          SplitString(AsmPieces[2], Words, " \t,");
10439          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
10440              Words[2] == "%edx") {
10441            return LowerToBSwap(CI);
10442          }
10443        }
10444      }
10445    }
10446    break;
10447  }
10448  return false;
10449}
10450
10451
10452
10453/// getConstraintType - Given a constraint letter, return the type of
10454/// constraint it is for this target.
10455X86TargetLowering::ConstraintType
10456X86TargetLowering::getConstraintType(const std::string &Constraint) const {
10457  if (Constraint.size() == 1) {
10458    switch (Constraint[0]) {
10459    case 'A':
10460      return C_Register;
10461    case 'f':
10462    case 'r':
10463    case 'R':
10464    case 'l':
10465    case 'q':
10466    case 'Q':
10467    case 'x':
10468    case 'y':
10469    case 'Y':
10470      return C_RegisterClass;
10471    case 'e':
10472    case 'Z':
10473      return C_Other;
10474    default:
10475      break;
10476    }
10477  }
10478  return TargetLowering::getConstraintType(Constraint);
10479}
10480
10481/// LowerXConstraint - try to replace an X constraint, which matches anything,
10482/// with another that has more specific requirements based on the type of the
10483/// corresponding operand.
10484const char *X86TargetLowering::
10485LowerXConstraint(EVT ConstraintVT) const {
10486  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
10487  // 'f' like normal targets.
10488  if (ConstraintVT.isFloatingPoint()) {
10489    if (Subtarget->hasSSE2())
10490      return "Y";
10491    if (Subtarget->hasSSE1())
10492      return "x";
10493  }
10494
10495  return TargetLowering::LowerXConstraint(ConstraintVT);
10496}
10497
10498/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10499/// vector.  If it is invalid, don't add anything to Ops.
10500void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10501                                                     char Constraint,
10502                                                     std::vector<SDValue>&Ops,
10503                                                     SelectionDAG &DAG) const {
10504  SDValue Result(0, 0);
10505
10506  switch (Constraint) {
10507  default: break;
10508  case 'I':
10509    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10510      if (C->getZExtValue() <= 31) {
10511        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10512        break;
10513      }
10514    }
10515    return;
10516  case 'J':
10517    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10518      if (C->getZExtValue() <= 63) {
10519        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10520        break;
10521      }
10522    }
10523    return;
10524  case 'K':
10525    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10526      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
10527        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10528        break;
10529      }
10530    }
10531    return;
10532  case 'N':
10533    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10534      if (C->getZExtValue() <= 255) {
10535        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10536        break;
10537      }
10538    }
10539    return;
10540  case 'e': {
10541    // 32-bit signed value
10542    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10543      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10544                                           C->getSExtValue())) {
10545        // Widen to 64 bits here to get it sign extended.
10546        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
10547        break;
10548      }
10549    // FIXME gcc accepts some relocatable values here too, but only in certain
10550    // memory models; it's complicated.
10551    }
10552    return;
10553  }
10554  case 'Z': {
10555    // 32-bit unsigned value
10556    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10557      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10558                                           C->getZExtValue())) {
10559        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10560        break;
10561      }
10562    }
10563    // FIXME gcc accepts some relocatable values here too, but only in certain
10564    // memory models; it's complicated.
10565    return;
10566  }
10567  case 'i': {
10568    // Literal immediates are always ok.
10569    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
10570      // Widen to 64 bits here to get it sign extended.
10571      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
10572      break;
10573    }
10574
10575    // In any sort of PIC mode addresses need to be computed at runtime by
10576    // adding in a register or some sort of table lookup.  These can't
10577    // be used as immediates.
10578    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
10579      return;
10580
10581    // If we are in non-pic codegen mode, we allow the address of a global (with
10582    // an optional displacement) to be used with 'i'.
10583    GlobalAddressSDNode *GA = 0;
10584    int64_t Offset = 0;
10585
10586    // Match either (GA), (GA+C), (GA+C1+C2), etc.
10587    while (1) {
10588      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
10589        Offset += GA->getOffset();
10590        break;
10591      } else if (Op.getOpcode() == ISD::ADD) {
10592        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10593          Offset += C->getZExtValue();
10594          Op = Op.getOperand(0);
10595          continue;
10596        }
10597      } else if (Op.getOpcode() == ISD::SUB) {
10598        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10599          Offset += -C->getZExtValue();
10600          Op = Op.getOperand(0);
10601          continue;
10602        }
10603      }
10604
10605      // Otherwise, this isn't something we can handle, reject it.
10606      return;
10607    }
10608
10609    const GlobalValue *GV = GA->getGlobal();
10610    // If we require an extra load to get this address, as in PIC mode, we
10611    // can't accept it.
10612    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
10613                                                        getTargetMachine())))
10614      return;
10615
10616    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
10617                                        GA->getValueType(0), Offset);
10618    break;
10619  }
10620  }
10621
10622  if (Result.getNode()) {
10623    Ops.push_back(Result);
10624    return;
10625  }
10626  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10627}
10628
10629std::vector<unsigned> X86TargetLowering::
10630getRegClassForInlineAsmConstraint(const std::string &Constraint,
10631                                  EVT VT) const {
10632  if (Constraint.size() == 1) {
10633    // FIXME: not handling fp-stack yet!
10634    switch (Constraint[0]) {      // GCC X86 Constraint Letters
10635    default: break;  // Unknown constraint letter
10636    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
10637      if (Subtarget->is64Bit()) {
10638        if (VT == MVT::i32)
10639          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
10640                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
10641                                       X86::R10D,X86::R11D,X86::R12D,
10642                                       X86::R13D,X86::R14D,X86::R15D,
10643                                       X86::EBP, X86::ESP, 0);
10644        else if (VT == MVT::i16)
10645          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
10646                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
10647                                       X86::R10W,X86::R11W,X86::R12W,
10648                                       X86::R13W,X86::R14W,X86::R15W,
10649                                       X86::BP,  X86::SP, 0);
10650        else if (VT == MVT::i8)
10651          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
10652                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10653                                       X86::R10B,X86::R11B,X86::R12B,
10654                                       X86::R13B,X86::R14B,X86::R15B,
10655                                       X86::BPL, X86::SPL, 0);
10656
10657        else if (VT == MVT::i64)
10658          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10659                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10660                                       X86::R10, X86::R11, X86::R12,
10661                                       X86::R13, X86::R14, X86::R15,
10662                                       X86::RBP, X86::RSP, 0);
10663
10664        break;
10665      }
10666      // 32-bit fallthrough
10667    case 'Q':   // Q_REGS
10668      if (VT == MVT::i32)
10669        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10670      else if (VT == MVT::i16)
10671        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10672      else if (VT == MVT::i8)
10673        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10674      else if (VT == MVT::i64)
10675        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10676      break;
10677    }
10678  }
10679
10680  return std::vector<unsigned>();
10681}
10682
10683std::pair<unsigned, const TargetRegisterClass*>
10684X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10685                                                EVT VT) const {
10686  // First, see if this is a constraint that directly corresponds to an LLVM
10687  // register class.
10688  if (Constraint.size() == 1) {
10689    // GCC Constraint Letters
10690    switch (Constraint[0]) {
10691    default: break;
10692    case 'r':   // GENERAL_REGS
10693    case 'l':   // INDEX_REGS
10694      if (VT == MVT::i8)
10695        return std::make_pair(0U, X86::GR8RegisterClass);
10696      if (VT == MVT::i16)
10697        return std::make_pair(0U, X86::GR16RegisterClass);
10698      if (VT == MVT::i32 || !Subtarget->is64Bit())
10699        return std::make_pair(0U, X86::GR32RegisterClass);
10700      return std::make_pair(0U, X86::GR64RegisterClass);
10701    case 'R':   // LEGACY_REGS
10702      if (VT == MVT::i8)
10703        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10704      if (VT == MVT::i16)
10705        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10706      if (VT == MVT::i32 || !Subtarget->is64Bit())
10707        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10708      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10709    case 'f':  // FP Stack registers.
10710      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10711      // value to the correct fpstack register class.
10712      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10713        return std::make_pair(0U, X86::RFP32RegisterClass);
10714      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10715        return std::make_pair(0U, X86::RFP64RegisterClass);
10716      return std::make_pair(0U, X86::RFP80RegisterClass);
10717    case 'y':   // MMX_REGS if MMX allowed.
10718      if (!Subtarget->hasMMX()) break;
10719      return std::make_pair(0U, X86::VR64RegisterClass);
10720    case 'Y':   // SSE_REGS if SSE2 allowed
10721      if (!Subtarget->hasSSE2()) break;
10722      // FALL THROUGH.
10723    case 'x':   // SSE_REGS if SSE1 allowed
10724      if (!Subtarget->hasSSE1()) break;
10725
10726      switch (VT.getSimpleVT().SimpleTy) {
10727      default: break;
10728      // Scalar SSE types.
10729      case MVT::f32:
10730      case MVT::i32:
10731        return std::make_pair(0U, X86::FR32RegisterClass);
10732      case MVT::f64:
10733      case MVT::i64:
10734        return std::make_pair(0U, X86::FR64RegisterClass);
10735      // Vector types.
10736      case MVT::v16i8:
10737      case MVT::v8i16:
10738      case MVT::v4i32:
10739      case MVT::v2i64:
10740      case MVT::v4f32:
10741      case MVT::v2f64:
10742        return std::make_pair(0U, X86::VR128RegisterClass);
10743      }
10744      break;
10745    }
10746  }
10747
10748  // Use the default implementation in TargetLowering to convert the register
10749  // constraint into a member of a register class.
10750  std::pair<unsigned, const TargetRegisterClass*> Res;
10751  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10752
10753  // Not found as a standard register?
10754  if (Res.second == 0) {
10755    // Map st(0) -> st(7) -> ST0
10756    if (Constraint.size() == 7 && Constraint[0] == '{' &&
10757        tolower(Constraint[1]) == 's' &&
10758        tolower(Constraint[2]) == 't' &&
10759        Constraint[3] == '(' &&
10760        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
10761        Constraint[5] == ')' &&
10762        Constraint[6] == '}') {
10763
10764      Res.first = X86::ST0+Constraint[4]-'0';
10765      Res.second = X86::RFP80RegisterClass;
10766      return Res;
10767    }
10768
10769    // GCC allows "st(0)" to be called just plain "st".
10770    if (StringRef("{st}").equals_lower(Constraint)) {
10771      Res.first = X86::ST0;
10772      Res.second = X86::RFP80RegisterClass;
10773      return Res;
10774    }
10775
10776    // flags -> EFLAGS
10777    if (StringRef("{flags}").equals_lower(Constraint)) {
10778      Res.first = X86::EFLAGS;
10779      Res.second = X86::CCRRegisterClass;
10780      return Res;
10781    }
10782
10783    // 'A' means EAX + EDX.
10784    if (Constraint == "A") {
10785      Res.first = X86::EAX;
10786      Res.second = X86::GR32_ADRegisterClass;
10787      return Res;
10788    }
10789    return Res;
10790  }
10791
10792  // Otherwise, check to see if this is a register class of the wrong value
10793  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
10794  // turn into {ax},{dx}.
10795  if (Res.second->hasType(VT))
10796    return Res;   // Correct type already, nothing to do.
10797
10798  // All of the single-register GCC register classes map their values onto
10799  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
10800  // really want an 8-bit or 32-bit register, map to the appropriate register
10801  // class and return the appropriate register.
10802  if (Res.second == X86::GR16RegisterClass) {
10803    if (VT == MVT::i8) {
10804      unsigned DestReg = 0;
10805      switch (Res.first) {
10806      default: break;
10807      case X86::AX: DestReg = X86::AL; break;
10808      case X86::DX: DestReg = X86::DL; break;
10809      case X86::CX: DestReg = X86::CL; break;
10810      case X86::BX: DestReg = X86::BL; break;
10811      }
10812      if (DestReg) {
10813        Res.first = DestReg;
10814        Res.second = X86::GR8RegisterClass;
10815      }
10816    } else if (VT == MVT::i32) {
10817      unsigned DestReg = 0;
10818      switch (Res.first) {
10819      default: break;
10820      case X86::AX: DestReg = X86::EAX; break;
10821      case X86::DX: DestReg = X86::EDX; break;
10822      case X86::CX: DestReg = X86::ECX; break;
10823      case X86::BX: DestReg = X86::EBX; break;
10824      case X86::SI: DestReg = X86::ESI; break;
10825      case X86::DI: DestReg = X86::EDI; break;
10826      case X86::BP: DestReg = X86::EBP; break;
10827      case X86::SP: DestReg = X86::ESP; break;
10828      }
10829      if (DestReg) {
10830        Res.first = DestReg;
10831        Res.second = X86::GR32RegisterClass;
10832      }
10833    } else if (VT == MVT::i64) {
10834      unsigned DestReg = 0;
10835      switch (Res.first) {
10836      default: break;
10837      case X86::AX: DestReg = X86::RAX; break;
10838      case X86::DX: DestReg = X86::RDX; break;
10839      case X86::CX: DestReg = X86::RCX; break;
10840      case X86::BX: DestReg = X86::RBX; break;
10841      case X86::SI: DestReg = X86::RSI; break;
10842      case X86::DI: DestReg = X86::RDI; break;
10843      case X86::BP: DestReg = X86::RBP; break;
10844      case X86::SP: DestReg = X86::RSP; break;
10845      }
10846      if (DestReg) {
10847        Res.first = DestReg;
10848        Res.second = X86::GR64RegisterClass;
10849      }
10850    }
10851  } else if (Res.second == X86::FR32RegisterClass ||
10852             Res.second == X86::FR64RegisterClass ||
10853             Res.second == X86::VR128RegisterClass) {
10854    // Handle references to XMM physical registers that got mapped into the
10855    // wrong class.  This can happen with constraints like {xmm0} where the
10856    // target independent register mapper will just pick the first match it can
10857    // find, ignoring the required type.
10858    if (VT == MVT::f32)
10859      Res.second = X86::FR32RegisterClass;
10860    else if (VT == MVT::f64)
10861      Res.second = X86::FR64RegisterClass;
10862    else if (X86::VR128RegisterClass->hasType(VT))
10863      Res.second = X86::VR128RegisterClass;
10864  }
10865
10866  return Res;
10867}
10868