X86ISelLowering.cpp revision 4002a1b6f1cb7c7db7965bd281fb29664fd6c816
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/PseudoSourceValue.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/StringExtras.h"
41using namespace llvm;
42
43// Forward declarations.
44static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG);
45
46X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
47  : TargetLowering(TM) {
48  Subtarget = &TM.getSubtarget<X86Subtarget>();
49  X86ScalarSSEf64 = Subtarget->hasSSE2();
50  X86ScalarSSEf32 = Subtarget->hasSSE1();
51  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
52
53  bool Fast = false;
54
55  RegInfo = TM.getRegisterInfo();
56  TD = getTargetData();
57
58  // Set up the TargetLowering object.
59
60  // X86 is weird, it always uses i8 for shift amounts and setcc results.
61  setShiftAmountType(MVT::i8);
62  setSetCCResultContents(ZeroOrOneSetCCResult);
63  setSchedulingPreference(SchedulingForRegPressure);
64  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
65  setStackPointerRegisterToSaveRestore(X86StackPtr);
66
67  if (Subtarget->isTargetDarwin()) {
68    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
69    setUseUnderscoreSetJmp(false);
70    setUseUnderscoreLongJmp(false);
71  } else if (Subtarget->isTargetMingw()) {
72    // MS runtime is weird: it exports _setjmp, but longjmp!
73    setUseUnderscoreSetJmp(true);
74    setUseUnderscoreLongJmp(false);
75  } else {
76    setUseUnderscoreSetJmp(true);
77    setUseUnderscoreLongJmp(true);
78  }
79
80  // Set up the register classes.
81  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
82  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
83  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
84  if (Subtarget->is64Bit())
85    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
86
87  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
88
89  // We don't accept any truncstore of integer registers.
90  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
91  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
92  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
93  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
94  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
95  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
96
97  // SETOEQ and SETUNE require checking two conditions.
98  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
99  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
100  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
101  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
102  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
103  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
104
105  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
106  // operation.
107  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
108  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
109  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
110
111  if (Subtarget->is64Bit()) {
112    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
113    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
114  } else {
115    if (X86ScalarSSEf64) {
116      // We have an impenetrably clever algorithm for ui64->double only.
117      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
118      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
119      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
120    } else
121      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
122  }
123
124  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
125  // this operation.
126  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
127  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
128  // SSE has no i16 to fp conversion, only i32
129  if (X86ScalarSSEf32) {
130    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
131    // f32 and f64 cases are Legal, f80 case is not
132    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
133  } else {
134    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
135    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
136  }
137
138  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
139  // are Legal, f80 is custom lowered.
140  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
141  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
142
143  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
144  // this operation.
145  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
146  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
147
148  if (X86ScalarSSEf32) {
149    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
150    // f32 and f64 cases are Legal, f80 case is not
151    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
152  } else {
153    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
154    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
155  }
156
157  // Handle FP_TO_UINT by promoting the destination to a larger signed
158  // conversion.
159  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
160  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
161  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
162
163  if (Subtarget->is64Bit()) {
164    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
165    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
166  } else {
167    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
168      // Expand FP_TO_UINT into a select.
169      // FIXME: We would like to use a Custom expander here eventually to do
170      // the optimal thing for SSE vs. the default expansion in the legalizer.
171      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
172    else
173      // With SSE3 we can use fisttpll to convert to a signed i64.
174      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
175  }
176
177  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
178  if (!X86ScalarSSEf64) {
179    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
180    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
181  }
182
183  // Scalar integer divide and remainder are lowered to use operations that
184  // produce two results, to match the available instructions. This exposes
185  // the two-result form to trivial CSE, which is able to combine x/y and x%y
186  // into a single instruction.
187  //
188  // Scalar integer multiply-high is also lowered to use two-result
189  // operations, to match the available instructions. However, plain multiply
190  // (low) operations are left as Legal, as there are single-result
191  // instructions for this in x86. Using the two-result multiply instructions
192  // when both high and low results are needed must be arranged by dagcombine.
193  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
194  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
195  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
196  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
197  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
198  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
199  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
200  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
201  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
202  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
203  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
204  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
205  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
206  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
207  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
208  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
209  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
210  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
211  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
212  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
213  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
214  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
215  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
216  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
217
218  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
219  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
220  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
221  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
222  if (Subtarget->is64Bit())
223    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
224  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
225  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
226  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
227  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
228  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
229  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
230  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
231  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
232
233  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
234  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
235  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
236  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
237  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
238  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
239  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
240  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
241  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
242  if (Subtarget->is64Bit()) {
243    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
244    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
245    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
246  }
247
248  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
249  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
250
251  // These should be promoted to a larger select which is supported.
252  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
253  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
254  // X86 wants to expand cmov itself.
255  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
256  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
257  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
258  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
259  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
260  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
261  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
262  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
263  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
264  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
265  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
266  if (Subtarget->is64Bit()) {
267    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
268    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
269  }
270  // X86 ret instruction may pop stack.
271  setOperationAction(ISD::RET             , MVT::Other, Custom);
272  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
273
274  // Darwin ABI issue.
275  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
276  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
277  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
278  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
279  if (Subtarget->is64Bit())
280    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
281  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
282  if (Subtarget->is64Bit()) {
283    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
284    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
285    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
286    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
287  }
288  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
289  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
290  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
291  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
292  if (Subtarget->is64Bit()) {
293    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
294    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
295    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
296  }
297
298  if (Subtarget->hasSSE1())
299    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
300
301  if (!Subtarget->hasSSE2())
302    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
303
304  // Expand certain atomics
305  setOperationAction(ISD::ATOMIC_CMP_SWAP_8 , MVT::i8, Custom);
306  setOperationAction(ISD::ATOMIC_CMP_SWAP_16, MVT::i16, Custom);
307  setOperationAction(ISD::ATOMIC_CMP_SWAP_32, MVT::i32, Custom);
308  setOperationAction(ISD::ATOMIC_CMP_SWAP_64, MVT::i64, Custom);
309
310  setOperationAction(ISD::ATOMIC_LOAD_SUB_8 , MVT::i8, Custom);
311  setOperationAction(ISD::ATOMIC_LOAD_SUB_16, MVT::i16, Custom);
312  setOperationAction(ISD::ATOMIC_LOAD_SUB_32, MVT::i32, Custom);
313  setOperationAction(ISD::ATOMIC_LOAD_SUB_64, MVT::i64, Custom);
314
315  if (!Subtarget->is64Bit()) {
316    setOperationAction(ISD::ATOMIC_LOAD_ADD_64, MVT::i64, Custom);
317    setOperationAction(ISD::ATOMIC_LOAD_SUB_64, MVT::i64, Custom);
318    setOperationAction(ISD::ATOMIC_LOAD_AND_64, MVT::i64, Custom);
319    setOperationAction(ISD::ATOMIC_LOAD_OR_64, MVT::i64, Custom);
320    setOperationAction(ISD::ATOMIC_LOAD_XOR_64, MVT::i64, Custom);
321    setOperationAction(ISD::ATOMIC_LOAD_NAND_64, MVT::i64, Custom);
322    setOperationAction(ISD::ATOMIC_SWAP_64, MVT::i64, Custom);
323  }
324
325  // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
326  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
327  // FIXME - use subtarget debug flags
328  if (!Subtarget->isTargetDarwin() &&
329      !Subtarget->isTargetELF() &&
330      !Subtarget->isTargetCygMing()) {
331    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
332    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
333  }
334
335  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
336  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
337  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
338  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
339  if (Subtarget->is64Bit()) {
340    setExceptionPointerRegister(X86::RAX);
341    setExceptionSelectorRegister(X86::RDX);
342  } else {
343    setExceptionPointerRegister(X86::EAX);
344    setExceptionSelectorRegister(X86::EDX);
345  }
346  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
347  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
348
349  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
350
351  setOperationAction(ISD::TRAP, MVT::Other, Legal);
352
353  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
354  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
355  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
356  if (Subtarget->is64Bit()) {
357    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
358    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
359  } else {
360    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
361    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
362  }
363
364  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
365  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
366  if (Subtarget->is64Bit())
367    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
368  if (Subtarget->isTargetCygMing())
369    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
370  else
371    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
372
373  if (X86ScalarSSEf64) {
374    // f32 and f64 use SSE.
375    // Set up the FP register classes.
376    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
377    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
378
379    // Use ANDPD to simulate FABS.
380    setOperationAction(ISD::FABS , MVT::f64, Custom);
381    setOperationAction(ISD::FABS , MVT::f32, Custom);
382
383    // Use XORP to simulate FNEG.
384    setOperationAction(ISD::FNEG , MVT::f64, Custom);
385    setOperationAction(ISD::FNEG , MVT::f32, Custom);
386
387    // Use ANDPD and ORPD to simulate FCOPYSIGN.
388    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
389    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
390
391    // We don't support sin/cos/fmod
392    setOperationAction(ISD::FSIN , MVT::f64, Expand);
393    setOperationAction(ISD::FCOS , MVT::f64, Expand);
394    setOperationAction(ISD::FSIN , MVT::f32, Expand);
395    setOperationAction(ISD::FCOS , MVT::f32, Expand);
396
397    // Expand FP immediates into loads from the stack, except for the special
398    // cases we handle.
399    addLegalFPImmediate(APFloat(+0.0)); // xorpd
400    addLegalFPImmediate(APFloat(+0.0f)); // xorps
401
402    // Floating truncations from f80 and extensions to f80 go through memory.
403    // If optimizing, we lie about this though and handle it in
404    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
405    if (Fast) {
406      setConvertAction(MVT::f32, MVT::f80, Expand);
407      setConvertAction(MVT::f64, MVT::f80, Expand);
408      setConvertAction(MVT::f80, MVT::f32, Expand);
409      setConvertAction(MVT::f80, MVT::f64, Expand);
410    }
411  } else if (X86ScalarSSEf32) {
412    // Use SSE for f32, x87 for f64.
413    // Set up the FP register classes.
414    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
415    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
416
417    // Use ANDPS to simulate FABS.
418    setOperationAction(ISD::FABS , MVT::f32, Custom);
419
420    // Use XORP to simulate FNEG.
421    setOperationAction(ISD::FNEG , MVT::f32, Custom);
422
423    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
424
425    // Use ANDPS and ORPS to simulate FCOPYSIGN.
426    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
427    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
428
429    // We don't support sin/cos/fmod
430    setOperationAction(ISD::FSIN , MVT::f32, Expand);
431    setOperationAction(ISD::FCOS , MVT::f32, Expand);
432
433    // Special cases we handle for FP constants.
434    addLegalFPImmediate(APFloat(+0.0f)); // xorps
435    addLegalFPImmediate(APFloat(+0.0)); // FLD0
436    addLegalFPImmediate(APFloat(+1.0)); // FLD1
437    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
438    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
439
440    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
441    // this though and handle it in InstructionSelectPreprocess so that
442    // dagcombine2 can hack on these.
443    if (Fast) {
444      setConvertAction(MVT::f32, MVT::f64, Expand);
445      setConvertAction(MVT::f32, MVT::f80, Expand);
446      setConvertAction(MVT::f80, MVT::f32, Expand);
447      setConvertAction(MVT::f64, MVT::f32, Expand);
448      // And x87->x87 truncations also.
449      setConvertAction(MVT::f80, MVT::f64, Expand);
450    }
451
452    if (!UnsafeFPMath) {
453      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
454      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
455    }
456  } else {
457    // f32 and f64 in x87.
458    // Set up the FP register classes.
459    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
460    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
461
462    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
463    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
464    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
465    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
466
467    // Floating truncations go through memory.  If optimizing, we lie about
468    // this though and handle it in InstructionSelectPreprocess so that
469    // dagcombine2 can hack on these.
470    if (Fast) {
471      setConvertAction(MVT::f80, MVT::f32, Expand);
472      setConvertAction(MVT::f64, MVT::f32, Expand);
473      setConvertAction(MVT::f80, MVT::f64, Expand);
474    }
475
476    if (!UnsafeFPMath) {
477      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
478      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
479    }
480    addLegalFPImmediate(APFloat(+0.0)); // FLD0
481    addLegalFPImmediate(APFloat(+1.0)); // FLD1
482    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
483    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
484    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
485    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
486    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
487    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
488  }
489
490  // Long double always uses X87.
491  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
492  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
493  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
494  {
495    bool ignored;
496    APFloat TmpFlt(+0.0);
497    TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
498                   &ignored);
499    addLegalFPImmediate(TmpFlt);  // FLD0
500    TmpFlt.changeSign();
501    addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
502    APFloat TmpFlt2(+1.0);
503    TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
504                    &ignored);
505    addLegalFPImmediate(TmpFlt2);  // FLD1
506    TmpFlt2.changeSign();
507    addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
508  }
509
510  if (!UnsafeFPMath) {
511    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
512    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
513  }
514
515  // Always use a library call for pow.
516  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
517  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
518  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
519
520  setOperationAction(ISD::FLOG, MVT::f80, Expand);
521  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
522  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
523  setOperationAction(ISD::FEXP, MVT::f80, Expand);
524  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
525
526  // First set operation action for all vector types to expand. Then we
527  // will selectively turn on ones that can be effectively codegen'd.
528  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
529       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
530    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
531    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
532    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
533    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
534    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
535    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
536    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
537    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
538    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
539    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
540    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
541    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
542    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
543    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
544    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
545    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
546    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
547    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
548    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
549    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
550    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
551    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
573  }
574
575  if (Subtarget->hasMMX()) {
576    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
577    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
578    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
579    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
580    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
581
582    // FIXME: add MMX packed arithmetics
583
584    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
585    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
586    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
587    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
588
589    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
590    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
591    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
592    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
593
594    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
595    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
596
597    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
598    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
599    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
600    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
601    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
602    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
603    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
604
605    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
606    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
607    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
608    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
609    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
610    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
611    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
612
613    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
614    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
615    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
616    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
617    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
618    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
619    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
620
621    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
622    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
623    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
624    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
625    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
626    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
627    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
628    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
629    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
630
631    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
632    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
633    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
634    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
635    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
636
637    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
638    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
639    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
640    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
641
642    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
643    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
644    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
645    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
646
647    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
648  }
649
650  if (Subtarget->hasSSE1()) {
651    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
652
653    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
654    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
655    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
656    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
657    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
658    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
659    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
660    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
661    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
662    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
663    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
664    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
665  }
666
667  if (Subtarget->hasSSE2()) {
668    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
669    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
670    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
671    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
672    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
673
674    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
675    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
676    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
677    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
678    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
679    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
680    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
681    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
682    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
683    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
684    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
685    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
686    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
687    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
688    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
689
690    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
691    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
692    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
693    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
694
695    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
696    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
697    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
698    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
699    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
700
701    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
702    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
703      MVT VT = (MVT::SimpleValueType)i;
704      // Do not attempt to custom lower non-power-of-2 vectors
705      if (!isPowerOf2_32(VT.getVectorNumElements()))
706        continue;
707      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
708      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
709      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
710    }
711    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
712    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
713    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
714    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
715    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
716    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
717    if (Subtarget->is64Bit()) {
718      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
719      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
720    }
721
722    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
723    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
724      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
725      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v2i64);
726      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
727      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v2i64);
728      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
729      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v2i64);
730      setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
731      AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v2i64);
732      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
733      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64);
734    }
735
736    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
737
738    // Custom lower v2i64 and v2f64 selects.
739    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
740    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
741    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
742    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
743
744  }
745
746  if (Subtarget->hasSSE41()) {
747    // FIXME: Do we need to handle scalar-to-vector here?
748    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
749    setOperationAction(ISD::MUL,                MVT::v2i64, Legal);
750
751    // i8 and i16 vectors are custom , because the source register and source
752    // source memory operand types are not the same width.  f32 vectors are
753    // custom since the immediate controlling the insert encodes additional
754    // information.
755    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
756    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
757    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Legal);
758    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
759
760    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
761    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
762    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
763    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
764
765    if (Subtarget->is64Bit()) {
766      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
767      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
768    }
769  }
770
771  if (Subtarget->hasSSE42()) {
772    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
773  }
774
775  // We want to custom lower some of our intrinsics.
776  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
777
778  // We have target-specific dag combine patterns for the following nodes:
779  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
780  setTargetDAGCombine(ISD::BUILD_VECTOR);
781  setTargetDAGCombine(ISD::SELECT);
782  setTargetDAGCombine(ISD::STORE);
783
784  computeRegisterProperties();
785
786  // FIXME: These should be based on subtarget info. Plus, the values should
787  // be smaller when we are in optimizing for size mode.
788  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
789  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
790  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
791  allowUnalignedMemoryAccesses = true; // x86 supports it!
792  setPrefLoopAlignment(16);
793}
794
795
796MVT X86TargetLowering::getSetCCResultType(const SDValue &) const {
797  return MVT::i8;
798}
799
800
801/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
802/// the desired ByVal argument alignment.
803static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
804  if (MaxAlign == 16)
805    return;
806  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
807    if (VTy->getBitWidth() == 128)
808      MaxAlign = 16;
809  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
810    unsigned EltAlign = 0;
811    getMaxByValAlign(ATy->getElementType(), EltAlign);
812    if (EltAlign > MaxAlign)
813      MaxAlign = EltAlign;
814  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
815    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
816      unsigned EltAlign = 0;
817      getMaxByValAlign(STy->getElementType(i), EltAlign);
818      if (EltAlign > MaxAlign)
819        MaxAlign = EltAlign;
820      if (MaxAlign == 16)
821        break;
822    }
823  }
824  return;
825}
826
827/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
828/// function arguments in the caller parameter area. For X86, aggregates
829/// that contain SSE vectors are placed at 16-byte boundaries while the rest
830/// are at 4-byte boundaries.
831unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
832  if (Subtarget->is64Bit()) {
833    // Max of 8 and alignment of type.
834    unsigned TyAlign = TD->getABITypeAlignment(Ty);
835    if (TyAlign > 8)
836      return TyAlign;
837    return 8;
838  }
839
840  unsigned Align = 4;
841  if (Subtarget->hasSSE1())
842    getMaxByValAlign(Ty, Align);
843  return Align;
844}
845
846/// getOptimalMemOpType - Returns the target specific optimal type for load
847/// and store operations as a result of memset, memcpy, and memmove
848/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
849/// determining it.
850MVT
851X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
852                                       bool isSrcConst, bool isSrcStr) const {
853  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
854  // linux.  This is because the stack realignment code can't handle certain
855  // cases like PR2962.  This should be removed when PR2962 is fixed.
856  if (Subtarget->getStackAlignment() >= 16) {
857    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
858      return MVT::v4i32;
859    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
860      return MVT::v4f32;
861  }
862  if (Subtarget->is64Bit() && Size >= 8)
863    return MVT::i64;
864  return MVT::i32;
865}
866
867
868/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
869/// jumptable.
870SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
871                                                      SelectionDAG &DAG) const {
872  if (usesGlobalOffsetTable())
873    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
874  if (!Subtarget->isPICStyleRIPRel())
875    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
876  return Table;
877}
878
879//===----------------------------------------------------------------------===//
880//               Return Value Calling Convention Implementation
881//===----------------------------------------------------------------------===//
882
883#include "X86GenCallingConv.inc"
884
885/// LowerRET - Lower an ISD::RET node.
886SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
887  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
888
889  SmallVector<CCValAssign, 16> RVLocs;
890  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
891  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
892  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
893  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
894
895  // If this is the first return lowered for this function, add the regs to the
896  // liveout set for the function.
897  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
898    for (unsigned i = 0; i != RVLocs.size(); ++i)
899      if (RVLocs[i].isRegLoc())
900        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
901  }
902  SDValue Chain = Op.getOperand(0);
903
904  // Handle tail call return.
905  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
906  if (Chain.getOpcode() == X86ISD::TAILCALL) {
907    SDValue TailCall = Chain;
908    SDValue TargetAddress = TailCall.getOperand(1);
909    SDValue StackAdjustment = TailCall.getOperand(2);
910    assert(((TargetAddress.getOpcode() == ISD::Register &&
911               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX ||
912                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
913              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
914              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
915             "Expecting an global address, external symbol, or register");
916    assert(StackAdjustment.getOpcode() == ISD::Constant &&
917           "Expecting a const value");
918
919    SmallVector<SDValue,8> Operands;
920    Operands.push_back(Chain.getOperand(0));
921    Operands.push_back(TargetAddress);
922    Operands.push_back(StackAdjustment);
923    // Copy registers used by the call. Last operand is a flag so it is not
924    // copied.
925    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
926      Operands.push_back(Chain.getOperand(i));
927    }
928    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
929                       Operands.size());
930  }
931
932  // Regular return.
933  SDValue Flag;
934
935  SmallVector<SDValue, 6> RetOps;
936  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
937  // Operand #1 = Bytes To Pop
938  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
939
940  // Copy the result values into the output registers.
941  for (unsigned i = 0; i != RVLocs.size(); ++i) {
942    CCValAssign &VA = RVLocs[i];
943    assert(VA.isRegLoc() && "Can only return in registers!");
944    SDValue ValToCopy = Op.getOperand(i*2+1);
945
946    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
947    // the RET instruction and handled by the FP Stackifier.
948    if (RVLocs[i].getLocReg() == X86::ST0 ||
949        RVLocs[i].getLocReg() == X86::ST1) {
950      // If this is a copy from an xmm register to ST(0), use an FPExtend to
951      // change the value to the FP stack register class.
952      if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT()))
953        ValToCopy = DAG.getNode(ISD::FP_EXTEND, MVT::f80, ValToCopy);
954      RetOps.push_back(ValToCopy);
955      // Don't emit a copytoreg.
956      continue;
957    }
958
959    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), ValToCopy, Flag);
960    Flag = Chain.getValue(1);
961  }
962
963  // The x86-64 ABI for returning structs by value requires that we copy
964  // the sret argument into %rax for the return. We saved the argument into
965  // a virtual register in the entry block, so now we copy the value out
966  // and into %rax.
967  if (Subtarget->is64Bit() &&
968      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
969    MachineFunction &MF = DAG.getMachineFunction();
970    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
971    unsigned Reg = FuncInfo->getSRetReturnReg();
972    if (!Reg) {
973      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
974      FuncInfo->setSRetReturnReg(Reg);
975    }
976    SDValue Val = DAG.getCopyFromReg(Chain, Reg, getPointerTy());
977
978    Chain = DAG.getCopyToReg(Chain, X86::RAX, Val, Flag);
979    Flag = Chain.getValue(1);
980  }
981
982  RetOps[0] = Chain;  // Update chain.
983
984  // Add the flag if we have it.
985  if (Flag.getNode())
986    RetOps.push_back(Flag);
987
988  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, &RetOps[0], RetOps.size());
989}
990
991
992/// LowerCallResult - Lower the result values of an ISD::CALL into the
993/// appropriate copies out of appropriate physical registers.  This assumes that
994/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
995/// being lowered.  The returns a SDNode with the same number of values as the
996/// ISD::CALL.
997SDNode *X86TargetLowering::
998LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
999                unsigned CallingConv, SelectionDAG &DAG) {
1000
1001  // Assign locations to each value returned by this call.
1002  SmallVector<CCValAssign, 16> RVLocs;
1003  bool isVarArg = TheCall->isVarArg();
1004  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
1005  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
1006
1007  SmallVector<SDValue, 8> ResultVals;
1008
1009  // Copy all of the result registers out of their specified physreg.
1010  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1011    MVT CopyVT = RVLocs[i].getValVT();
1012
1013    // If this is a call to a function that returns an fp value on the floating
1014    // point stack, but where we prefer to use the value in xmm registers, copy
1015    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1016    if ((RVLocs[i].getLocReg() == X86::ST0 ||
1017         RVLocs[i].getLocReg() == X86::ST1) &&
1018        isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
1019      CopyVT = MVT::f80;
1020    }
1021
1022    Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
1023                               CopyVT, InFlag).getValue(1);
1024    SDValue Val = Chain.getValue(0);
1025    InFlag = Chain.getValue(2);
1026
1027    if (CopyVT != RVLocs[i].getValVT()) {
1028      // Round the F80 the right size, which also moves to the appropriate xmm
1029      // register.
1030      Val = DAG.getNode(ISD::FP_ROUND, RVLocs[i].getValVT(), Val,
1031                        // This truncation won't change the value.
1032                        DAG.getIntPtrConstant(1));
1033    }
1034
1035    ResultVals.push_back(Val);
1036  }
1037
1038  // Merge everything together with a MERGE_VALUES node.
1039  ResultVals.push_back(Chain);
1040  return DAG.getMergeValues(TheCall->getVTList(), &ResultVals[0],
1041                            ResultVals.size()).getNode();
1042}
1043
1044
1045//===----------------------------------------------------------------------===//
1046//                C & StdCall & Fast Calling Convention implementation
1047//===----------------------------------------------------------------------===//
1048//  StdCall calling convention seems to be standard for many Windows' API
1049//  routines and around. It differs from C calling convention just a little:
1050//  callee should clean up the stack, not caller. Symbols should be also
1051//  decorated in some fancy way :) It doesn't support any vector arguments.
1052//  For info on fast calling convention see Fast Calling Convention (tail call)
1053//  implementation LowerX86_32FastCCCallTo.
1054
1055/// AddLiveIn - This helper function adds the specified physical register to the
1056/// MachineFunction as a live in value.  It also creates a corresponding virtual
1057/// register for it.
1058static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
1059                          const TargetRegisterClass *RC) {
1060  assert(RC->contains(PReg) && "Not the correct regclass!");
1061  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1062  MF.getRegInfo().addLiveIn(PReg, VReg);
1063  return VReg;
1064}
1065
1066/// CallIsStructReturn - Determines whether a CALL node uses struct return
1067/// semantics.
1068static bool CallIsStructReturn(CallSDNode *TheCall) {
1069  unsigned NumOps = TheCall->getNumArgs();
1070  if (!NumOps)
1071    return false;
1072
1073  return TheCall->getArgFlags(0).isSRet();
1074}
1075
1076/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1077/// return semantics.
1078static bool ArgsAreStructReturn(SDValue Op) {
1079  unsigned NumArgs = Op.getNode()->getNumValues() - 1;
1080  if (!NumArgs)
1081    return false;
1082
1083  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1084}
1085
1086/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1087/// the callee to pop its own arguments. Callee pop is necessary to support tail
1088/// calls.
1089bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
1090  if (IsVarArg)
1091    return false;
1092
1093  switch (CallingConv) {
1094  default:
1095    return false;
1096  case CallingConv::X86_StdCall:
1097    return !Subtarget->is64Bit();
1098  case CallingConv::X86_FastCall:
1099    return !Subtarget->is64Bit();
1100  case CallingConv::Fast:
1101    return PerformTailCallOpt;
1102  }
1103}
1104
1105/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1106/// given CallingConvention value.
1107CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
1108  if (Subtarget->is64Bit()) {
1109    if (Subtarget->isTargetWin64())
1110      return CC_X86_Win64_C;
1111    else if (CC == CallingConv::Fast && PerformTailCallOpt)
1112      return CC_X86_64_TailCall;
1113    else
1114      return CC_X86_64_C;
1115  }
1116
1117  if (CC == CallingConv::X86_FastCall)
1118    return CC_X86_32_FastCall;
1119  else if (CC == CallingConv::Fast)
1120    return CC_X86_32_FastCC;
1121  else
1122    return CC_X86_32_C;
1123}
1124
1125/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1126/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1127NameDecorationStyle
1128X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
1129  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1130  if (CC == CallingConv::X86_FastCall)
1131    return FastCall;
1132  else if (CC == CallingConv::X86_StdCall)
1133    return StdCall;
1134  return None;
1135}
1136
1137
1138/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1139/// in a register before calling.
1140bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1141  return !IsTailCall && !Is64Bit &&
1142    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1143    Subtarget->isPICStyleGOT();
1144}
1145
1146/// CallRequiresFnAddressInReg - Check whether the call requires the function
1147/// address to be loaded in a register.
1148bool
1149X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1150  return !Is64Bit && IsTailCall &&
1151    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1152    Subtarget->isPICStyleGOT();
1153}
1154
1155/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1156/// by "Src" to address "Dst" with size and alignment information specified by
1157/// the specific parameter attribute. The copy will be passed as a byval
1158/// function parameter.
1159static SDValue
1160CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1161                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG) {
1162  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1163  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(),
1164                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1165}
1166
1167SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
1168                                              const CCValAssign &VA,
1169                                              MachineFrameInfo *MFI,
1170                                              unsigned CC,
1171                                              SDValue Root, unsigned i) {
1172  // Create the nodes corresponding to a load from this parameter slot.
1173  ISD::ArgFlagsTy Flags =
1174    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1175  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1176  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1177
1178  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1179  // changed with more analysis.
1180  // In case of tail call optimization mark all arguments mutable. Since they
1181  // could be overwritten by lowering of arguments in case of a tail call.
1182  int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1183                                  VA.getLocMemOffset(), isImmutable);
1184  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1185  if (Flags.isByVal())
1186    return FIN;
1187  return DAG.getLoad(VA.getValVT(), Root, FIN,
1188                     PseudoSourceValue::getFixedStack(FI), 0);
1189}
1190
1191SDValue
1192X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1193  MachineFunction &MF = DAG.getMachineFunction();
1194  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1195
1196  const Function* Fn = MF.getFunction();
1197  if (Fn->hasExternalLinkage() &&
1198      Subtarget->isTargetCygMing() &&
1199      Fn->getName() == "main")
1200    FuncInfo->setForceFramePointer(true);
1201
1202  // Decorate the function name.
1203  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1204
1205  MachineFrameInfo *MFI = MF.getFrameInfo();
1206  SDValue Root = Op.getOperand(0);
1207  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1208  unsigned CC = MF.getFunction()->getCallingConv();
1209  bool Is64Bit = Subtarget->is64Bit();
1210  bool IsWin64 = Subtarget->isTargetWin64();
1211
1212  assert(!(isVarArg && CC == CallingConv::Fast) &&
1213         "Var args not supported with calling convention fastcc");
1214
1215  // Assign locations to all of the incoming arguments.
1216  SmallVector<CCValAssign, 16> ArgLocs;
1217  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1218  CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
1219
1220  SmallVector<SDValue, 8> ArgValues;
1221  unsigned LastVal = ~0U;
1222  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1223    CCValAssign &VA = ArgLocs[i];
1224    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1225    // places.
1226    assert(VA.getValNo() != LastVal &&
1227           "Don't support value assigned to multiple locs yet");
1228    LastVal = VA.getValNo();
1229
1230    if (VA.isRegLoc()) {
1231      MVT RegVT = VA.getLocVT();
1232      TargetRegisterClass *RC;
1233      if (RegVT == MVT::i32)
1234        RC = X86::GR32RegisterClass;
1235      else if (Is64Bit && RegVT == MVT::i64)
1236        RC = X86::GR64RegisterClass;
1237      else if (RegVT == MVT::f32)
1238        RC = X86::FR32RegisterClass;
1239      else if (RegVT == MVT::f64)
1240        RC = X86::FR64RegisterClass;
1241      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1242        RC = X86::VR128RegisterClass;
1243      else if (RegVT.isVector()) {
1244        assert(RegVT.getSizeInBits() == 64);
1245        if (!Is64Bit)
1246          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
1247        else {
1248          // Darwin calling convention passes MMX values in either GPRs or
1249          // XMMs in x86-64. Other targets pass them in memory.
1250          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1251            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
1252            RegVT = MVT::v2i64;
1253          } else {
1254            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
1255            RegVT = MVT::i64;
1256          }
1257        }
1258      } else {
1259        assert(0 && "Unknown argument type!");
1260      }
1261
1262      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1263      SDValue ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1264
1265      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1266      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1267      // right size.
1268      if (VA.getLocInfo() == CCValAssign::SExt)
1269        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1270                               DAG.getValueType(VA.getValVT()));
1271      else if (VA.getLocInfo() == CCValAssign::ZExt)
1272        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1273                               DAG.getValueType(VA.getValVT()));
1274
1275      if (VA.getLocInfo() != CCValAssign::Full)
1276        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1277
1278      // Handle MMX values passed in GPRs.
1279      if (Is64Bit && RegVT != VA.getLocVT()) {
1280        if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
1281          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1282        else if (RC == X86::VR128RegisterClass) {
1283          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i64, ArgValue,
1284                                 DAG.getConstant(0, MVT::i64));
1285          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1286        }
1287      }
1288
1289      ArgValues.push_back(ArgValue);
1290    } else {
1291      assert(VA.isMemLoc());
1292      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1293    }
1294  }
1295
1296  // The x86-64 ABI for returning structs by value requires that we copy
1297  // the sret argument into %rax for the return. Save the argument into
1298  // a virtual register so that we can access it from the return points.
1299  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1300    MachineFunction &MF = DAG.getMachineFunction();
1301    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1302    unsigned Reg = FuncInfo->getSRetReturnReg();
1303    if (!Reg) {
1304      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1305      FuncInfo->setSRetReturnReg(Reg);
1306    }
1307    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), Reg, ArgValues[0]);
1308    Root = DAG.getNode(ISD::TokenFactor, MVT::Other, Copy, Root);
1309  }
1310
1311  unsigned StackSize = CCInfo.getNextStackOffset();
1312  // align stack specially for tail calls
1313  if (PerformTailCallOpt && CC == CallingConv::Fast)
1314    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1315
1316  // If the function takes variable number of arguments, make a frame index for
1317  // the start of the first vararg value... for expansion of llvm.va_start.
1318  if (isVarArg) {
1319    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1320      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1321    }
1322    if (Is64Bit) {
1323      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1324
1325      // FIXME: We should really autogenerate these arrays
1326      static const unsigned GPR64ArgRegsWin64[] = {
1327        X86::RCX, X86::RDX, X86::R8,  X86::R9
1328      };
1329      static const unsigned XMMArgRegsWin64[] = {
1330        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1331      };
1332      static const unsigned GPR64ArgRegs64Bit[] = {
1333        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1334      };
1335      static const unsigned XMMArgRegs64Bit[] = {
1336        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1337        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1338      };
1339      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1340
1341      if (IsWin64) {
1342        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1343        GPR64ArgRegs = GPR64ArgRegsWin64;
1344        XMMArgRegs = XMMArgRegsWin64;
1345      } else {
1346        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1347        GPR64ArgRegs = GPR64ArgRegs64Bit;
1348        XMMArgRegs = XMMArgRegs64Bit;
1349      }
1350      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1351                                                       TotalNumIntRegs);
1352      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1353                                                       TotalNumXMMRegs);
1354
1355      // For X86-64, if there are vararg parameters that are passed via
1356      // registers, then we must store them to their spots on the stack so they
1357      // may be loaded by deferencing the result of va_next.
1358      VarArgsGPOffset = NumIntRegs * 8;
1359      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1360      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1361                                                 TotalNumXMMRegs * 16, 16);
1362
1363      // Store the integer parameter registers.
1364      SmallVector<SDValue, 8> MemOps;
1365      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1366      SDValue FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1367                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1368      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1369        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1370                                  X86::GR64RegisterClass);
1371        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1372        SDValue Store =
1373          DAG.getStore(Val.getValue(1), Val, FIN,
1374                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1375        MemOps.push_back(Store);
1376        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1377                          DAG.getIntPtrConstant(8));
1378      }
1379
1380      // Now store the XMM (fp + vector) parameter registers.
1381      FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1382                        DAG.getIntPtrConstant(VarArgsFPOffset));
1383      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1384        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1385                                  X86::VR128RegisterClass);
1386        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1387        SDValue Store =
1388          DAG.getStore(Val.getValue(1), Val, FIN,
1389                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1390        MemOps.push_back(Store);
1391        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1392                          DAG.getIntPtrConstant(16));
1393      }
1394      if (!MemOps.empty())
1395          Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1396                             &MemOps[0], MemOps.size());
1397    }
1398  }
1399
1400  ArgValues.push_back(Root);
1401
1402  // Some CCs need callee pop.
1403  if (IsCalleePop(isVarArg, CC)) {
1404    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1405    BytesCallerReserves = 0;
1406  } else {
1407    BytesToPopOnReturn  = 0; // Callee pops nothing.
1408    // If this is an sret function, the return should pop the hidden pointer.
1409    if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op))
1410      BytesToPopOnReturn = 4;
1411    BytesCallerReserves = StackSize;
1412  }
1413
1414  if (!Is64Bit) {
1415    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1416    if (CC == CallingConv::X86_FastCall)
1417      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1418  }
1419
1420  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1421
1422  // Return the new list of results.
1423  return DAG.getMergeValues(Op.getNode()->getVTList(), &ArgValues[0],
1424                            ArgValues.size()).getValue(Op.getResNo());
1425}
1426
1427SDValue
1428X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
1429                                    const SDValue &StackPtr,
1430                                    const CCValAssign &VA,
1431                                    SDValue Chain,
1432                                    SDValue Arg, ISD::ArgFlagsTy Flags) {
1433  unsigned LocMemOffset = VA.getLocMemOffset();
1434  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1435  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1436  if (Flags.isByVal()) {
1437    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG);
1438  }
1439  return DAG.getStore(Chain, Arg, PtrOff,
1440                      PseudoSourceValue::getStack(), LocMemOffset);
1441}
1442
1443/// EmitTailCallLoadRetAddr - Emit a load of return adress if tail call
1444/// optimization is performed and it is required.
1445SDValue
1446X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1447                                           SDValue &OutRetAddr,
1448                                           SDValue Chain,
1449                                           bool IsTailCall,
1450                                           bool Is64Bit,
1451                                           int FPDiff) {
1452  if (!IsTailCall || FPDiff==0) return Chain;
1453
1454  // Adjust the Return address stack slot.
1455  MVT VT = getPointerTy();
1456  OutRetAddr = getReturnAddressFrameIndex(DAG);
1457  // Load the "old" Return address.
1458  OutRetAddr = DAG.getLoad(VT, Chain,OutRetAddr, NULL, 0);
1459  return SDValue(OutRetAddr.getNode(), 1);
1460}
1461
1462/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1463/// optimization is performed and it is required (FPDiff!=0).
1464static SDValue
1465EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1466                         SDValue Chain, SDValue RetAddrFrIdx,
1467                         bool Is64Bit, int FPDiff) {
1468  // Store the return address to the appropriate stack slot.
1469  if (!FPDiff) return Chain;
1470  // Calculate the new stack slot for the return address.
1471  int SlotSize = Is64Bit ? 8 : 4;
1472  int NewReturnAddrFI =
1473    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1474  MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1475  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1476  Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx,
1477                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1478  return Chain;
1479}
1480
1481SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
1482  MachineFunction &MF = DAG.getMachineFunction();
1483  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
1484  SDValue Chain       = TheCall->getChain();
1485  unsigned CC         = TheCall->getCallingConv();
1486  bool isVarArg       = TheCall->isVarArg();
1487  bool IsTailCall     = TheCall->isTailCall() &&
1488                        CC == CallingConv::Fast && PerformTailCallOpt;
1489  SDValue Callee      = TheCall->getCallee();
1490  bool Is64Bit        = Subtarget->is64Bit();
1491  bool IsStructRet    = CallIsStructReturn(TheCall);
1492
1493  assert(!(isVarArg && CC == CallingConv::Fast) &&
1494         "Var args not supported with calling convention fastcc");
1495
1496  // Analyze operands of the call, assigning locations to each operand.
1497  SmallVector<CCValAssign, 16> ArgLocs;
1498  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1499  CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
1500
1501  // Get a count of how many bytes are to be pushed on the stack.
1502  unsigned NumBytes = CCInfo.getNextStackOffset();
1503  if (PerformTailCallOpt && CC == CallingConv::Fast)
1504    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1505
1506  int FPDiff = 0;
1507  if (IsTailCall) {
1508    // Lower arguments at fp - stackoffset + fpdiff.
1509    unsigned NumBytesCallerPushed =
1510      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1511    FPDiff = NumBytesCallerPushed - NumBytes;
1512
1513    // Set the delta of movement of the returnaddr stackslot.
1514    // But only set if delta is greater than previous delta.
1515    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1516      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1517  }
1518
1519  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1520
1521  SDValue RetAddrFrIdx;
1522  // Load return adress for tail calls.
1523  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1524                                  FPDiff);
1525
1526  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1527  SmallVector<SDValue, 8> MemOpChains;
1528  SDValue StackPtr;
1529
1530  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1531  // of tail call optimization arguments are handle later.
1532  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1533    CCValAssign &VA = ArgLocs[i];
1534    SDValue Arg = TheCall->getArg(i);
1535    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1536    bool isByVal = Flags.isByVal();
1537
1538    // Promote the value if needed.
1539    switch (VA.getLocInfo()) {
1540    default: assert(0 && "Unknown loc info!");
1541    case CCValAssign::Full: break;
1542    case CCValAssign::SExt:
1543      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1544      break;
1545    case CCValAssign::ZExt:
1546      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1547      break;
1548    case CCValAssign::AExt:
1549      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1550      break;
1551    }
1552
1553    if (VA.isRegLoc()) {
1554      if (Is64Bit) {
1555        MVT RegVT = VA.getLocVT();
1556        if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1557          switch (VA.getLocReg()) {
1558          default:
1559            break;
1560          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1561          case X86::R8: {
1562            // Special case: passing MMX values in GPR registers.
1563            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1564            break;
1565          }
1566          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1567          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1568            // Special case: passing MMX values in XMM registers.
1569            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1570            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Arg);
1571            Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
1572                              DAG.getNode(ISD::UNDEF, MVT::v2i64), Arg,
1573                              getMOVLMask(2, DAG));
1574            break;
1575          }
1576          }
1577      }
1578      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1579    } else {
1580      if (!IsTailCall || (IsTailCall && isByVal)) {
1581        assert(VA.isMemLoc());
1582        if (StackPtr.getNode() == 0)
1583          StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1584
1585        MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
1586                                               Chain, Arg, Flags));
1587      }
1588    }
1589  }
1590
1591  if (!MemOpChains.empty())
1592    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1593                        &MemOpChains[0], MemOpChains.size());
1594
1595  // Build a sequence of copy-to-reg nodes chained together with token chain
1596  // and flag operands which copy the outgoing args into registers.
1597  SDValue InFlag;
1598  // Tail call byval lowering might overwrite argument registers so in case of
1599  // tail call optimization the copies to registers are lowered later.
1600  if (!IsTailCall)
1601    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1602      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1603                               InFlag);
1604      InFlag = Chain.getValue(1);
1605    }
1606
1607  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1608  // GOT pointer.
1609  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1610    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1611                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1612                             InFlag);
1613    InFlag = Chain.getValue(1);
1614  }
1615  // If we are tail calling and generating PIC/GOT style code load the address
1616  // of the callee into ecx. The value in ecx is used as target of the tail
1617  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1618  // calls on PIC/GOT architectures. Normally we would just put the address of
1619  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1620  // restored (since ebx is callee saved) before jumping to the target@PLT.
1621  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1622    // Note: The actual moving to ecx is done further down.
1623    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1624    if (G && !G->getGlobal()->hasHiddenVisibility() &&
1625        !G->getGlobal()->hasProtectedVisibility())
1626      Callee =  LowerGlobalAddress(Callee, DAG);
1627    else if (isa<ExternalSymbolSDNode>(Callee))
1628      Callee = LowerExternalSymbol(Callee,DAG);
1629  }
1630
1631  if (Is64Bit && isVarArg) {
1632    // From AMD64 ABI document:
1633    // For calls that may call functions that use varargs or stdargs
1634    // (prototype-less calls or calls to functions containing ellipsis (...) in
1635    // the declaration) %al is used as hidden argument to specify the number
1636    // of SSE registers used. The contents of %al do not need to match exactly
1637    // the number of registers, but must be an ubound on the number of SSE
1638    // registers used and is in the range 0 - 8 inclusive.
1639
1640    // FIXME: Verify this on Win64
1641    // Count the number of XMM registers allocated.
1642    static const unsigned XMMArgRegs[] = {
1643      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1644      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1645    };
1646    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1647
1648    Chain = DAG.getCopyToReg(Chain, X86::AL,
1649                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1650    InFlag = Chain.getValue(1);
1651  }
1652
1653
1654  // For tail calls lower the arguments to the 'real' stack slot.
1655  if (IsTailCall) {
1656    SmallVector<SDValue, 8> MemOpChains2;
1657    SDValue FIN;
1658    int FI = 0;
1659    // Do not flag preceeding copytoreg stuff together with the following stuff.
1660    InFlag = SDValue();
1661    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1662      CCValAssign &VA = ArgLocs[i];
1663      if (!VA.isRegLoc()) {
1664        assert(VA.isMemLoc());
1665        SDValue Arg = TheCall->getArg(i);
1666        ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1667        // Create frame index.
1668        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1669        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1670        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1671        FIN = DAG.getFrameIndex(FI, getPointerTy());
1672
1673        if (Flags.isByVal()) {
1674          // Copy relative to framepointer.
1675          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1676          if (StackPtr.getNode() == 0)
1677            StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1678          Source = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, Source);
1679
1680          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1681                                                           Flags, DAG));
1682        } else {
1683          // Store relative to framepointer.
1684          MemOpChains2.push_back(
1685            DAG.getStore(Chain, Arg, FIN,
1686                         PseudoSourceValue::getFixedStack(FI), 0));
1687        }
1688      }
1689    }
1690
1691    if (!MemOpChains2.empty())
1692      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1693                          &MemOpChains2[0], MemOpChains2.size());
1694
1695    // Copy arguments to their registers.
1696    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1697      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1698                               InFlag);
1699      InFlag = Chain.getValue(1);
1700    }
1701    InFlag =SDValue();
1702
1703    // Store the return address to the appropriate stack slot.
1704    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1705                                     FPDiff);
1706  }
1707
1708  // If the callee is a GlobalAddress node (quite common, every direct call is)
1709  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1710  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1711    // We should use extra load for direct calls to dllimported functions in
1712    // non-JIT mode.
1713    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1714                                        getTargetMachine(), true))
1715      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy(),
1716                                          G->getOffset());
1717  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1718    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1719  } else if (IsTailCall) {
1720    unsigned Opc = Is64Bit ? X86::R9 : X86::EAX;
1721
1722    Chain = DAG.getCopyToReg(Chain,
1723                             DAG.getRegister(Opc, getPointerTy()),
1724                             Callee,InFlag);
1725    Callee = DAG.getRegister(Opc, getPointerTy());
1726    // Add register as live out.
1727    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1728  }
1729
1730  // Returns a chain & a flag for retval copy to use.
1731  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1732  SmallVector<SDValue, 8> Ops;
1733
1734  if (IsTailCall) {
1735    Ops.push_back(Chain);
1736    Ops.push_back(DAG.getIntPtrConstant(NumBytes, true));
1737    Ops.push_back(DAG.getIntPtrConstant(0, true));
1738    if (InFlag.getNode())
1739      Ops.push_back(InFlag);
1740    Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1741    InFlag = Chain.getValue(1);
1742
1743    // Returns a chain & a flag for retval copy to use.
1744    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1745    Ops.clear();
1746  }
1747
1748  Ops.push_back(Chain);
1749  Ops.push_back(Callee);
1750
1751  if (IsTailCall)
1752    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1753
1754  // Add argument registers to the end of the list so that they are known live
1755  // into the call.
1756  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1757    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1758                                  RegsToPass[i].second.getValueType()));
1759
1760  // Add an implicit use GOT pointer in EBX.
1761  if (!IsTailCall && !Is64Bit &&
1762      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1763      Subtarget->isPICStyleGOT())
1764    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1765
1766  // Add an implicit use of AL for x86 vararg functions.
1767  if (Is64Bit && isVarArg)
1768    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1769
1770  if (InFlag.getNode())
1771    Ops.push_back(InFlag);
1772
1773  if (IsTailCall) {
1774    assert(InFlag.getNode() &&
1775           "Flag must be set. Depend on flag being set in LowerRET");
1776    Chain = DAG.getNode(X86ISD::TAILCALL,
1777                        TheCall->getVTList(), &Ops[0], Ops.size());
1778
1779    return SDValue(Chain.getNode(), Op.getResNo());
1780  }
1781
1782  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1783  InFlag = Chain.getValue(1);
1784
1785  // Create the CALLSEQ_END node.
1786  unsigned NumBytesForCalleeToPush;
1787  if (IsCalleePop(isVarArg, CC))
1788    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1789  else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet)
1790    // If this is is a call to a struct-return function, the callee
1791    // pops the hidden struct pointer, so we have to push it back.
1792    // This is common for Darwin/X86, Linux & Mingw32 targets.
1793    NumBytesForCalleeToPush = 4;
1794  else
1795    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1796
1797  // Returns a flag for retval copy to use.
1798  Chain = DAG.getCALLSEQ_END(Chain,
1799                             DAG.getIntPtrConstant(NumBytes, true),
1800                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
1801                                                   true),
1802                             InFlag);
1803  InFlag = Chain.getValue(1);
1804
1805  // Handle result values, copying them out of physregs into vregs that we
1806  // return.
1807  return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
1808                 Op.getResNo());
1809}
1810
1811
1812//===----------------------------------------------------------------------===//
1813//                Fast Calling Convention (tail call) implementation
1814//===----------------------------------------------------------------------===//
1815
1816//  Like std call, callee cleans arguments, convention except that ECX is
1817//  reserved for storing the tail called function address. Only 2 registers are
1818//  free for argument passing (inreg). Tail call optimization is performed
1819//  provided:
1820//                * tailcallopt is enabled
1821//                * caller/callee are fastcc
1822//  On X86_64 architecture with GOT-style position independent code only local
1823//  (within module) calls are supported at the moment.
1824//  To keep the stack aligned according to platform abi the function
1825//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1826//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1827//  If a tail called function callee has more arguments than the caller the
1828//  caller needs to make sure that there is room to move the RETADDR to. This is
1829//  achieved by reserving an area the size of the argument delta right after the
1830//  original REtADDR, but before the saved framepointer or the spilled registers
1831//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1832//  stack layout:
1833//    arg1
1834//    arg2
1835//    RETADDR
1836//    [ new RETADDR
1837//      move area ]
1838//    (possible EBP)
1839//    ESI
1840//    EDI
1841//    local1 ..
1842
1843/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1844/// for a 16 byte align requirement.
1845unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1846                                                        SelectionDAG& DAG) {
1847  MachineFunction &MF = DAG.getMachineFunction();
1848  const TargetMachine &TM = MF.getTarget();
1849  const TargetFrameInfo &TFI = *TM.getFrameInfo();
1850  unsigned StackAlignment = TFI.getStackAlignment();
1851  uint64_t AlignMask = StackAlignment - 1;
1852  int64_t Offset = StackSize;
1853  uint64_t SlotSize = TD->getPointerSize();
1854  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1855    // Number smaller than 12 so just add the difference.
1856    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1857  } else {
1858    // Mask out lower bits, add stackalignment once plus the 12 bytes.
1859    Offset = ((~AlignMask) & Offset) + StackAlignment +
1860      (StackAlignment-SlotSize);
1861  }
1862  return Offset;
1863}
1864
1865/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1866/// following the call is a return. A function is eligible if caller/callee
1867/// calling conventions match, currently only fastcc supports tail calls, and
1868/// the function CALL is immediatly followed by a RET.
1869bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1870                                                      SDValue Ret,
1871                                                      SelectionDAG& DAG) const {
1872  if (!PerformTailCallOpt)
1873    return false;
1874
1875  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1876    MachineFunction &MF = DAG.getMachineFunction();
1877    unsigned CallerCC = MF.getFunction()->getCallingConv();
1878    unsigned CalleeCC= TheCall->getCallingConv();
1879    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1880      SDValue Callee = TheCall->getCallee();
1881      // On x86/32Bit PIC/GOT  tail calls are supported.
1882      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1883          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1884        return true;
1885
1886      // Can only do local tail calls (in same module, hidden or protected) on
1887      // x86_64 PIC/GOT at the moment.
1888      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1889        return G->getGlobal()->hasHiddenVisibility()
1890            || G->getGlobal()->hasProtectedVisibility();
1891    }
1892  }
1893
1894  return false;
1895}
1896
1897FastISel *
1898X86TargetLowering::createFastISel(MachineFunction &mf,
1899                                  MachineModuleInfo *mmo,
1900                                  DenseMap<const Value *, unsigned> &vm,
1901                                  DenseMap<const BasicBlock *,
1902                                           MachineBasicBlock *> &bm,
1903                                  DenseMap<const AllocaInst *, int> &am
1904#ifndef NDEBUG
1905                                  , SmallSet<Instruction*, 8> &cil
1906#endif
1907                                  ) {
1908  return X86::createFastISel(mf, mmo, vm, bm, am
1909#ifndef NDEBUG
1910                             , cil
1911#endif
1912                             );
1913}
1914
1915
1916//===----------------------------------------------------------------------===//
1917//                           Other Lowering Hooks
1918//===----------------------------------------------------------------------===//
1919
1920
1921SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1922  MachineFunction &MF = DAG.getMachineFunction();
1923  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1924  int ReturnAddrIndex = FuncInfo->getRAIndex();
1925  uint64_t SlotSize = TD->getPointerSize();
1926
1927  if (ReturnAddrIndex == 0) {
1928    // Set up a frame object for the return address.
1929    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
1930    FuncInfo->setRAIndex(ReturnAddrIndex);
1931  }
1932
1933  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1934}
1935
1936
1937/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1938/// specific condition code. It returns a false if it cannot do a direct
1939/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1940/// needed.
1941static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1942                           unsigned &X86CC, SDValue &LHS, SDValue &RHS,
1943                           SelectionDAG &DAG) {
1944  X86CC = X86::COND_INVALID;
1945  if (!isFP) {
1946    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1947      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1948        // X > -1   -> X == 0, jump !sign.
1949        RHS = DAG.getConstant(0, RHS.getValueType());
1950        X86CC = X86::COND_NS;
1951        return true;
1952      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1953        // X < 0   -> X == 0, jump on sign.
1954        X86CC = X86::COND_S;
1955        return true;
1956      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
1957        // X < 1   -> X <= 0
1958        RHS = DAG.getConstant(0, RHS.getValueType());
1959        X86CC = X86::COND_LE;
1960        return true;
1961      }
1962    }
1963
1964    switch (SetCCOpcode) {
1965    default: break;
1966    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1967    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1968    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1969    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1970    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1971    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1972    case ISD::SETULT: X86CC = X86::COND_B;  break;
1973    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1974    case ISD::SETULE: X86CC = X86::COND_BE; break;
1975    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1976    }
1977  } else {
1978    // First determine if it is required or is profitable to flip the operands.
1979
1980    // If LHS is a foldable load, but RHS is not, flip the condition.
1981    if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
1982        !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
1983      SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
1984      std::swap(LHS, RHS);
1985    }
1986
1987    switch (SetCCOpcode) {
1988    default: break;
1989    case ISD::SETOLT:
1990    case ISD::SETOLE:
1991    case ISD::SETUGT:
1992    case ISD::SETUGE:
1993      std::swap(LHS, RHS);
1994      break;
1995    }
1996
1997    // On a floating point condition, the flags are set as follows:
1998    // ZF  PF  CF   op
1999    //  0 | 0 | 0 | X > Y
2000    //  0 | 0 | 1 | X < Y
2001    //  1 | 0 | 0 | X == Y
2002    //  1 | 1 | 1 | unordered
2003    switch (SetCCOpcode) {
2004    default: break;
2005    case ISD::SETUEQ:
2006    case ISD::SETEQ:
2007      X86CC = X86::COND_E;
2008      break;
2009    case ISD::SETOLT:              // flipped
2010    case ISD::SETOGT:
2011    case ISD::SETGT:
2012      X86CC = X86::COND_A;
2013      break;
2014    case ISD::SETOLE:              // flipped
2015    case ISD::SETOGE:
2016    case ISD::SETGE:
2017      X86CC = X86::COND_AE;
2018      break;
2019    case ISD::SETUGT:              // flipped
2020    case ISD::SETULT:
2021    case ISD::SETLT:
2022      X86CC = X86::COND_B;
2023      break;
2024    case ISD::SETUGE:              // flipped
2025    case ISD::SETULE:
2026    case ISD::SETLE:
2027      X86CC = X86::COND_BE;
2028      break;
2029    case ISD::SETONE:
2030    case ISD::SETNE:
2031      X86CC = X86::COND_NE;
2032      break;
2033    case ISD::SETUO:
2034      X86CC = X86::COND_P;
2035      break;
2036    case ISD::SETO:
2037      X86CC = X86::COND_NP;
2038      break;
2039    }
2040  }
2041
2042  return X86CC != X86::COND_INVALID;
2043}
2044
2045/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2046/// code. Current x86 isa includes the following FP cmov instructions:
2047/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2048static bool hasFPCMov(unsigned X86CC) {
2049  switch (X86CC) {
2050  default:
2051    return false;
2052  case X86::COND_B:
2053  case X86::COND_BE:
2054  case X86::COND_E:
2055  case X86::COND_P:
2056  case X86::COND_A:
2057  case X86::COND_AE:
2058  case X86::COND_NE:
2059  case X86::COND_NP:
2060    return true;
2061  }
2062}
2063
2064/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2065/// true if Op is undef or if its value falls within the specified range (L, H].
2066static bool isUndefOrInRange(SDValue Op, unsigned Low, unsigned Hi) {
2067  if (Op.getOpcode() == ISD::UNDEF)
2068    return true;
2069
2070  unsigned Val = cast<ConstantSDNode>(Op)->getZExtValue();
2071  return (Val >= Low && Val < Hi);
2072}
2073
2074/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2075/// true if Op is undef or if its value equal to the specified value.
2076static bool isUndefOrEqual(SDValue Op, unsigned Val) {
2077  if (Op.getOpcode() == ISD::UNDEF)
2078    return true;
2079  return cast<ConstantSDNode>(Op)->getZExtValue() == Val;
2080}
2081
2082/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2083/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2084bool X86::isPSHUFDMask(SDNode *N) {
2085  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2086
2087  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2088    return false;
2089
2090  // Check if the value doesn't reference the second vector.
2091  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2092    SDValue Arg = N->getOperand(i);
2093    if (Arg.getOpcode() == ISD::UNDEF) continue;
2094    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2095    if (cast<ConstantSDNode>(Arg)->getZExtValue() >= e)
2096      return false;
2097  }
2098
2099  return true;
2100}
2101
2102/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2103/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2104bool X86::isPSHUFHWMask(SDNode *N) {
2105  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2106
2107  if (N->getNumOperands() != 8)
2108    return false;
2109
2110  // Lower quadword copied in order.
2111  for (unsigned i = 0; i != 4; ++i) {
2112    SDValue Arg = N->getOperand(i);
2113    if (Arg.getOpcode() == ISD::UNDEF) continue;
2114    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2115    if (cast<ConstantSDNode>(Arg)->getZExtValue() != i)
2116      return false;
2117  }
2118
2119  // Upper quadword shuffled.
2120  for (unsigned i = 4; i != 8; ++i) {
2121    SDValue Arg = N->getOperand(i);
2122    if (Arg.getOpcode() == ISD::UNDEF) continue;
2123    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2124    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2125    if (Val < 4 || Val > 7)
2126      return false;
2127  }
2128
2129  return true;
2130}
2131
2132/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2133/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2134bool X86::isPSHUFLWMask(SDNode *N) {
2135  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2136
2137  if (N->getNumOperands() != 8)
2138    return false;
2139
2140  // Upper quadword copied in order.
2141  for (unsigned i = 4; i != 8; ++i)
2142    if (!isUndefOrEqual(N->getOperand(i), i))
2143      return false;
2144
2145  // Lower quadword shuffled.
2146  for (unsigned i = 0; i != 4; ++i)
2147    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2148      return false;
2149
2150  return true;
2151}
2152
2153/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2154/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2155static bool isSHUFPMask(SDOperandPtr Elems, unsigned NumElems) {
2156  if (NumElems != 2 && NumElems != 4) return false;
2157
2158  unsigned Half = NumElems / 2;
2159  for (unsigned i = 0; i < Half; ++i)
2160    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2161      return false;
2162  for (unsigned i = Half; i < NumElems; ++i)
2163    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2164      return false;
2165
2166  return true;
2167}
2168
2169bool X86::isSHUFPMask(SDNode *N) {
2170  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2171  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2172}
2173
2174/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2175/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2176/// half elements to come from vector 1 (which would equal the dest.) and
2177/// the upper half to come from vector 2.
2178static bool isCommutedSHUFP(SDOperandPtr Ops, unsigned NumOps) {
2179  if (NumOps != 2 && NumOps != 4) return false;
2180
2181  unsigned Half = NumOps / 2;
2182  for (unsigned i = 0; i < Half; ++i)
2183    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2184      return false;
2185  for (unsigned i = Half; i < NumOps; ++i)
2186    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2187      return false;
2188  return true;
2189}
2190
2191static bool isCommutedSHUFP(SDNode *N) {
2192  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2193  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2194}
2195
2196/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2197/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2198bool X86::isMOVHLPSMask(SDNode *N) {
2199  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2200
2201  if (N->getNumOperands() != 4)
2202    return false;
2203
2204  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2205  return isUndefOrEqual(N->getOperand(0), 6) &&
2206         isUndefOrEqual(N->getOperand(1), 7) &&
2207         isUndefOrEqual(N->getOperand(2), 2) &&
2208         isUndefOrEqual(N->getOperand(3), 3);
2209}
2210
2211/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2212/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2213/// <2, 3, 2, 3>
2214bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2215  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2216
2217  if (N->getNumOperands() != 4)
2218    return false;
2219
2220  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2221  return isUndefOrEqual(N->getOperand(0), 2) &&
2222         isUndefOrEqual(N->getOperand(1), 3) &&
2223         isUndefOrEqual(N->getOperand(2), 2) &&
2224         isUndefOrEqual(N->getOperand(3), 3);
2225}
2226
2227/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2228/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2229bool X86::isMOVLPMask(SDNode *N) {
2230  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2231
2232  unsigned NumElems = N->getNumOperands();
2233  if (NumElems != 2 && NumElems != 4)
2234    return false;
2235
2236  for (unsigned i = 0; i < NumElems/2; ++i)
2237    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2238      return false;
2239
2240  for (unsigned i = NumElems/2; i < NumElems; ++i)
2241    if (!isUndefOrEqual(N->getOperand(i), i))
2242      return false;
2243
2244  return true;
2245}
2246
2247/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2248/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2249/// and MOVLHPS.
2250bool X86::isMOVHPMask(SDNode *N) {
2251  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2252
2253  unsigned NumElems = N->getNumOperands();
2254  if (NumElems != 2 && NumElems != 4)
2255    return false;
2256
2257  for (unsigned i = 0; i < NumElems/2; ++i)
2258    if (!isUndefOrEqual(N->getOperand(i), i))
2259      return false;
2260
2261  for (unsigned i = 0; i < NumElems/2; ++i) {
2262    SDValue Arg = N->getOperand(i + NumElems/2);
2263    if (!isUndefOrEqual(Arg, i + NumElems))
2264      return false;
2265  }
2266
2267  return true;
2268}
2269
2270/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2271/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2272bool static isUNPCKLMask(SDOperandPtr Elts, unsigned NumElts,
2273                         bool V2IsSplat = false) {
2274  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2275    return false;
2276
2277  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2278    SDValue BitI  = Elts[i];
2279    SDValue BitI1 = Elts[i+1];
2280    if (!isUndefOrEqual(BitI, j))
2281      return false;
2282    if (V2IsSplat) {
2283      if (isUndefOrEqual(BitI1, NumElts))
2284        return false;
2285    } else {
2286      if (!isUndefOrEqual(BitI1, j + NumElts))
2287        return false;
2288    }
2289  }
2290
2291  return true;
2292}
2293
2294bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2295  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2296  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2297}
2298
2299/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2300/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2301bool static isUNPCKHMask(SDOperandPtr Elts, unsigned NumElts,
2302                         bool V2IsSplat = false) {
2303  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2304    return false;
2305
2306  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2307    SDValue BitI  = Elts[i];
2308    SDValue BitI1 = Elts[i+1];
2309    if (!isUndefOrEqual(BitI, j + NumElts/2))
2310      return false;
2311    if (V2IsSplat) {
2312      if (isUndefOrEqual(BitI1, NumElts))
2313        return false;
2314    } else {
2315      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2316        return false;
2317    }
2318  }
2319
2320  return true;
2321}
2322
2323bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2324  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2325  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2326}
2327
2328/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2329/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2330/// <0, 0, 1, 1>
2331bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2332  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2333
2334  unsigned NumElems = N->getNumOperands();
2335  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2336    return false;
2337
2338  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2339    SDValue BitI  = N->getOperand(i);
2340    SDValue BitI1 = N->getOperand(i+1);
2341
2342    if (!isUndefOrEqual(BitI, j))
2343      return false;
2344    if (!isUndefOrEqual(BitI1, j))
2345      return false;
2346  }
2347
2348  return true;
2349}
2350
2351/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2352/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2353/// <2, 2, 3, 3>
2354bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2355  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2356
2357  unsigned NumElems = N->getNumOperands();
2358  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2359    return false;
2360
2361  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2362    SDValue BitI  = N->getOperand(i);
2363    SDValue BitI1 = N->getOperand(i + 1);
2364
2365    if (!isUndefOrEqual(BitI, j))
2366      return false;
2367    if (!isUndefOrEqual(BitI1, j))
2368      return false;
2369  }
2370
2371  return true;
2372}
2373
2374/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2375/// specifies a shuffle of elements that is suitable for input to MOVSS,
2376/// MOVSD, and MOVD, i.e. setting the lowest element.
2377static bool isMOVLMask(SDOperandPtr Elts, unsigned NumElts) {
2378  if (NumElts != 2 && NumElts != 4)
2379    return false;
2380
2381  if (!isUndefOrEqual(Elts[0], NumElts))
2382    return false;
2383
2384  for (unsigned i = 1; i < NumElts; ++i) {
2385    if (!isUndefOrEqual(Elts[i], i))
2386      return false;
2387  }
2388
2389  return true;
2390}
2391
2392bool X86::isMOVLMask(SDNode *N) {
2393  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2394  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2395}
2396
2397/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2398/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2399/// element of vector 2 and the other elements to come from vector 1 in order.
2400static bool isCommutedMOVL(SDOperandPtr Ops, unsigned NumOps,
2401                           bool V2IsSplat = false,
2402                           bool V2IsUndef = false) {
2403  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2404    return false;
2405
2406  if (!isUndefOrEqual(Ops[0], 0))
2407    return false;
2408
2409  for (unsigned i = 1; i < NumOps; ++i) {
2410    SDValue Arg = Ops[i];
2411    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2412          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2413          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2414      return false;
2415  }
2416
2417  return true;
2418}
2419
2420static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2421                           bool V2IsUndef = false) {
2422  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2423  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2424                        V2IsSplat, V2IsUndef);
2425}
2426
2427/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2428/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2429bool X86::isMOVSHDUPMask(SDNode *N) {
2430  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2431
2432  if (N->getNumOperands() != 4)
2433    return false;
2434
2435  // Expect 1, 1, 3, 3
2436  for (unsigned i = 0; i < 2; ++i) {
2437    SDValue Arg = N->getOperand(i);
2438    if (Arg.getOpcode() == ISD::UNDEF) continue;
2439    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2440    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2441    if (Val != 1) return false;
2442  }
2443
2444  bool HasHi = false;
2445  for (unsigned i = 2; i < 4; ++i) {
2446    SDValue Arg = N->getOperand(i);
2447    if (Arg.getOpcode() == ISD::UNDEF) continue;
2448    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2449    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2450    if (Val != 3) return false;
2451    HasHi = true;
2452  }
2453
2454  // Don't use movshdup if it can be done with a shufps.
2455  return HasHi;
2456}
2457
2458/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2459/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2460bool X86::isMOVSLDUPMask(SDNode *N) {
2461  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2462
2463  if (N->getNumOperands() != 4)
2464    return false;
2465
2466  // Expect 0, 0, 2, 2
2467  for (unsigned i = 0; i < 2; ++i) {
2468    SDValue Arg = N->getOperand(i);
2469    if (Arg.getOpcode() == ISD::UNDEF) continue;
2470    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2471    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2472    if (Val != 0) return false;
2473  }
2474
2475  bool HasHi = false;
2476  for (unsigned i = 2; i < 4; ++i) {
2477    SDValue Arg = N->getOperand(i);
2478    if (Arg.getOpcode() == ISD::UNDEF) continue;
2479    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2480    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2481    if (Val != 2) return false;
2482    HasHi = true;
2483  }
2484
2485  // Don't use movshdup if it can be done with a shufps.
2486  return HasHi;
2487}
2488
2489/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2490/// specifies a identity operation on the LHS or RHS.
2491static bool isIdentityMask(SDNode *N, bool RHS = false) {
2492  unsigned NumElems = N->getNumOperands();
2493  for (unsigned i = 0; i < NumElems; ++i)
2494    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2495      return false;
2496  return true;
2497}
2498
2499/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2500/// a splat of a single element.
2501static bool isSplatMask(SDNode *N) {
2502  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2503
2504  // This is a splat operation if each element of the permute is the same, and
2505  // if the value doesn't reference the second vector.
2506  unsigned NumElems = N->getNumOperands();
2507  SDValue ElementBase;
2508  unsigned i = 0;
2509  for (; i != NumElems; ++i) {
2510    SDValue Elt = N->getOperand(i);
2511    if (isa<ConstantSDNode>(Elt)) {
2512      ElementBase = Elt;
2513      break;
2514    }
2515  }
2516
2517  if (!ElementBase.getNode())
2518    return false;
2519
2520  for (; i != NumElems; ++i) {
2521    SDValue Arg = N->getOperand(i);
2522    if (Arg.getOpcode() == ISD::UNDEF) continue;
2523    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2524    if (Arg != ElementBase) return false;
2525  }
2526
2527  // Make sure it is a splat of the first vector operand.
2528  return cast<ConstantSDNode>(ElementBase)->getZExtValue() < NumElems;
2529}
2530
2531/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2532/// a splat of a single element and it's a 2 or 4 element mask.
2533bool X86::isSplatMask(SDNode *N) {
2534  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2535
2536  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2537  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2538    return false;
2539  return ::isSplatMask(N);
2540}
2541
2542/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2543/// specifies a splat of zero element.
2544bool X86::isSplatLoMask(SDNode *N) {
2545  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2546
2547  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2548    if (!isUndefOrEqual(N->getOperand(i), 0))
2549      return false;
2550  return true;
2551}
2552
2553/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2554/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2555bool X86::isMOVDDUPMask(SDNode *N) {
2556  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2557
2558  unsigned e = N->getNumOperands() / 2;
2559  for (unsigned i = 0; i < e; ++i)
2560    if (!isUndefOrEqual(N->getOperand(i), i))
2561      return false;
2562  for (unsigned i = 0; i < e; ++i)
2563    if (!isUndefOrEqual(N->getOperand(e+i), i))
2564      return false;
2565  return true;
2566}
2567
2568/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2569/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2570/// instructions.
2571unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2572  unsigned NumOperands = N->getNumOperands();
2573  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2574  unsigned Mask = 0;
2575  for (unsigned i = 0; i < NumOperands; ++i) {
2576    unsigned Val = 0;
2577    SDValue Arg = N->getOperand(NumOperands-i-1);
2578    if (Arg.getOpcode() != ISD::UNDEF)
2579      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2580    if (Val >= NumOperands) Val -= NumOperands;
2581    Mask |= Val;
2582    if (i != NumOperands - 1)
2583      Mask <<= Shift;
2584  }
2585
2586  return Mask;
2587}
2588
2589/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2590/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2591/// instructions.
2592unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2593  unsigned Mask = 0;
2594  // 8 nodes, but we only care about the last 4.
2595  for (unsigned i = 7; i >= 4; --i) {
2596    unsigned Val = 0;
2597    SDValue Arg = N->getOperand(i);
2598    if (Arg.getOpcode() != ISD::UNDEF)
2599      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2600    Mask |= (Val - 4);
2601    if (i != 4)
2602      Mask <<= 2;
2603  }
2604
2605  return Mask;
2606}
2607
2608/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2609/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2610/// instructions.
2611unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2612  unsigned Mask = 0;
2613  // 8 nodes, but we only care about the first 4.
2614  for (int i = 3; i >= 0; --i) {
2615    unsigned Val = 0;
2616    SDValue Arg = N->getOperand(i);
2617    if (Arg.getOpcode() != ISD::UNDEF)
2618      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2619    Mask |= Val;
2620    if (i != 0)
2621      Mask <<= 2;
2622  }
2623
2624  return Mask;
2625}
2626
2627/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2628/// specifies a 8 element shuffle that can be broken into a pair of
2629/// PSHUFHW and PSHUFLW.
2630static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2631  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2632
2633  if (N->getNumOperands() != 8)
2634    return false;
2635
2636  // Lower quadword shuffled.
2637  for (unsigned i = 0; i != 4; ++i) {
2638    SDValue Arg = N->getOperand(i);
2639    if (Arg.getOpcode() == ISD::UNDEF) continue;
2640    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2641    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2642    if (Val >= 4)
2643      return false;
2644  }
2645
2646  // Upper quadword shuffled.
2647  for (unsigned i = 4; i != 8; ++i) {
2648    SDValue Arg = N->getOperand(i);
2649    if (Arg.getOpcode() == ISD::UNDEF) continue;
2650    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2651    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2652    if (Val < 4 || Val > 7)
2653      return false;
2654  }
2655
2656  return true;
2657}
2658
2659/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2660/// values in ther permute mask.
2661static SDValue CommuteVectorShuffle(SDValue Op, SDValue &V1,
2662                                      SDValue &V2, SDValue &Mask,
2663                                      SelectionDAG &DAG) {
2664  MVT VT = Op.getValueType();
2665  MVT MaskVT = Mask.getValueType();
2666  MVT EltVT = MaskVT.getVectorElementType();
2667  unsigned NumElems = Mask.getNumOperands();
2668  SmallVector<SDValue, 8> MaskVec;
2669
2670  for (unsigned i = 0; i != NumElems; ++i) {
2671    SDValue Arg = Mask.getOperand(i);
2672    if (Arg.getOpcode() == ISD::UNDEF) {
2673      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2674      continue;
2675    }
2676    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2677    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2678    if (Val < NumElems)
2679      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2680    else
2681      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2682  }
2683
2684  std::swap(V1, V2);
2685  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2686  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2687}
2688
2689/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2690/// the two vector operands have swapped position.
2691static
2692SDValue CommuteVectorShuffleMask(SDValue Mask, SelectionDAG &DAG) {
2693  MVT MaskVT = Mask.getValueType();
2694  MVT EltVT = MaskVT.getVectorElementType();
2695  unsigned NumElems = Mask.getNumOperands();
2696  SmallVector<SDValue, 8> MaskVec;
2697  for (unsigned i = 0; i != NumElems; ++i) {
2698    SDValue Arg = Mask.getOperand(i);
2699    if (Arg.getOpcode() == ISD::UNDEF) {
2700      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2701      continue;
2702    }
2703    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2704    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2705    if (Val < NumElems)
2706      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2707    else
2708      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2709  }
2710  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2711}
2712
2713
2714/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2715/// match movhlps. The lower half elements should come from upper half of
2716/// V1 (and in order), and the upper half elements should come from the upper
2717/// half of V2 (and in order).
2718static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2719  unsigned NumElems = Mask->getNumOperands();
2720  if (NumElems != 4)
2721    return false;
2722  for (unsigned i = 0, e = 2; i != e; ++i)
2723    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2724      return false;
2725  for (unsigned i = 2; i != 4; ++i)
2726    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2727      return false;
2728  return true;
2729}
2730
2731/// isScalarLoadToVector - Returns true if the node is a scalar load that
2732/// is promoted to a vector. It also returns the LoadSDNode by reference if
2733/// required.
2734static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2735  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2736    return false;
2737  N = N->getOperand(0).getNode();
2738  if (!ISD::isNON_EXTLoad(N))
2739    return false;
2740  if (LD)
2741    *LD = cast<LoadSDNode>(N);
2742  return true;
2743}
2744
2745/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2746/// match movlp{s|d}. The lower half elements should come from lower half of
2747/// V1 (and in order), and the upper half elements should come from the upper
2748/// half of V2 (and in order). And since V1 will become the source of the
2749/// MOVLP, it must be either a vector load or a scalar load to vector.
2750static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2751  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2752    return false;
2753  // Is V2 is a vector load, don't do this transformation. We will try to use
2754  // load folding shufps op.
2755  if (ISD::isNON_EXTLoad(V2))
2756    return false;
2757
2758  unsigned NumElems = Mask->getNumOperands();
2759  if (NumElems != 2 && NumElems != 4)
2760    return false;
2761  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2762    if (!isUndefOrEqual(Mask->getOperand(i), i))
2763      return false;
2764  for (unsigned i = NumElems/2; i != NumElems; ++i)
2765    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2766      return false;
2767  return true;
2768}
2769
2770/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2771/// all the same.
2772static bool isSplatVector(SDNode *N) {
2773  if (N->getOpcode() != ISD::BUILD_VECTOR)
2774    return false;
2775
2776  SDValue SplatValue = N->getOperand(0);
2777  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2778    if (N->getOperand(i) != SplatValue)
2779      return false;
2780  return true;
2781}
2782
2783/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2784/// to an undef.
2785static bool isUndefShuffle(SDNode *N) {
2786  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2787    return false;
2788
2789  SDValue V1 = N->getOperand(0);
2790  SDValue V2 = N->getOperand(1);
2791  SDValue Mask = N->getOperand(2);
2792  unsigned NumElems = Mask.getNumOperands();
2793  for (unsigned i = 0; i != NumElems; ++i) {
2794    SDValue Arg = Mask.getOperand(i);
2795    if (Arg.getOpcode() != ISD::UNDEF) {
2796      unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2797      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2798        return false;
2799      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2800        return false;
2801    }
2802  }
2803  return true;
2804}
2805
2806/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2807/// constant +0.0.
2808static inline bool isZeroNode(SDValue Elt) {
2809  return ((isa<ConstantSDNode>(Elt) &&
2810           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2811          (isa<ConstantFPSDNode>(Elt) &&
2812           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2813}
2814
2815/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2816/// to an zero vector.
2817static bool isZeroShuffle(SDNode *N) {
2818  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2819    return false;
2820
2821  SDValue V1 = N->getOperand(0);
2822  SDValue V2 = N->getOperand(1);
2823  SDValue Mask = N->getOperand(2);
2824  unsigned NumElems = Mask.getNumOperands();
2825  for (unsigned i = 0; i != NumElems; ++i) {
2826    SDValue Arg = Mask.getOperand(i);
2827    if (Arg.getOpcode() == ISD::UNDEF)
2828      continue;
2829
2830    unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
2831    if (Idx < NumElems) {
2832      unsigned Opc = V1.getNode()->getOpcode();
2833      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2834        continue;
2835      if (Opc != ISD::BUILD_VECTOR ||
2836          !isZeroNode(V1.getNode()->getOperand(Idx)))
2837        return false;
2838    } else if (Idx >= NumElems) {
2839      unsigned Opc = V2.getNode()->getOpcode();
2840      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2841        continue;
2842      if (Opc != ISD::BUILD_VECTOR ||
2843          !isZeroNode(V2.getNode()->getOperand(Idx - NumElems)))
2844        return false;
2845    }
2846  }
2847  return true;
2848}
2849
2850/// getZeroVector - Returns a vector of specified type with all zero elements.
2851///
2852static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG) {
2853  assert(VT.isVector() && "Expected a vector type");
2854
2855  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2856  // type.  This ensures they get CSE'd.
2857  SDValue Vec;
2858  if (VT.getSizeInBits() == 64) { // MMX
2859    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2860    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2861  } else if (HasSSE2) {  // SSE2
2862    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2863    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2864  } else { // SSE1
2865    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2866    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4f32, Cst, Cst, Cst, Cst);
2867  }
2868  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2869}
2870
2871/// getOnesVector - Returns a vector of specified type with all bits set.
2872///
2873static SDValue getOnesVector(MVT VT, SelectionDAG &DAG) {
2874  assert(VT.isVector() && "Expected a vector type");
2875
2876  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2877  // type.  This ensures they get CSE'd.
2878  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2879  SDValue Vec;
2880  if (VT.getSizeInBits() == 64)  // MMX
2881    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2882  else                                              // SSE
2883    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2884  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2885}
2886
2887
2888/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2889/// that point to V2 points to its first element.
2890static SDValue NormalizeMask(SDValue Mask, SelectionDAG &DAG) {
2891  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2892
2893  bool Changed = false;
2894  SmallVector<SDValue, 8> MaskVec;
2895  unsigned NumElems = Mask.getNumOperands();
2896  for (unsigned i = 0; i != NumElems; ++i) {
2897    SDValue Arg = Mask.getOperand(i);
2898    if (Arg.getOpcode() != ISD::UNDEF) {
2899      unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2900      if (Val > NumElems) {
2901        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2902        Changed = true;
2903      }
2904    }
2905    MaskVec.push_back(Arg);
2906  }
2907
2908  if (Changed)
2909    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2910                       &MaskVec[0], MaskVec.size());
2911  return Mask;
2912}
2913
2914/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2915/// operation of specified width.
2916static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2917  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2918  MVT BaseVT = MaskVT.getVectorElementType();
2919
2920  SmallVector<SDValue, 8> MaskVec;
2921  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2922  for (unsigned i = 1; i != NumElems; ++i)
2923    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2924  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2925}
2926
2927/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2928/// of specified width.
2929static SDValue getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2930  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2931  MVT BaseVT = MaskVT.getVectorElementType();
2932  SmallVector<SDValue, 8> MaskVec;
2933  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2934    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2935    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2936  }
2937  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2938}
2939
2940/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2941/// of specified width.
2942static SDValue getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2943  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2944  MVT BaseVT = MaskVT.getVectorElementType();
2945  unsigned Half = NumElems/2;
2946  SmallVector<SDValue, 8> MaskVec;
2947  for (unsigned i = 0; i != Half; ++i) {
2948    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2949    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2950  }
2951  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2952}
2953
2954/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
2955/// element #0 of a vector with the specified index, leaving the rest of the
2956/// elements in place.
2957static SDValue getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
2958                                   SelectionDAG &DAG) {
2959  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2960  MVT BaseVT = MaskVT.getVectorElementType();
2961  SmallVector<SDValue, 8> MaskVec;
2962  // Element #0 of the result gets the elt we are replacing.
2963  MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
2964  for (unsigned i = 1; i != NumElems; ++i)
2965    MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
2966  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2967}
2968
2969/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2970static SDValue PromoteSplat(SDValue Op, SelectionDAG &DAG, bool HasSSE2) {
2971  MVT PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32;
2972  MVT VT = Op.getValueType();
2973  if (PVT == VT)
2974    return Op;
2975  SDValue V1 = Op.getOperand(0);
2976  SDValue Mask = Op.getOperand(2);
2977  unsigned NumElems = Mask.getNumOperands();
2978  // Special handling of v4f32 -> v4i32.
2979  if (VT != MVT::v4f32) {
2980    Mask = getUnpacklMask(NumElems, DAG);
2981    while (NumElems > 4) {
2982      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2983      NumElems >>= 1;
2984    }
2985    Mask = getZeroVector(MVT::v4i32, true, DAG);
2986  }
2987
2988  V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
2989  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
2990                                  DAG.getNode(ISD::UNDEF, PVT), Mask);
2991  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2992}
2993
2994/// isVectorLoad - Returns true if the node is a vector load, a scalar
2995/// load that's promoted to vector, or a load bitcasted.
2996static bool isVectorLoad(SDValue Op) {
2997  assert(Op.getValueType().isVector() && "Expected a vector type");
2998  if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR ||
2999      Op.getOpcode() == ISD::BIT_CONVERT) {
3000    return isa<LoadSDNode>(Op.getOperand(0));
3001  }
3002  return isa<LoadSDNode>(Op);
3003}
3004
3005
3006/// CanonicalizeMovddup - Cannonicalize movddup shuffle to v2f64.
3007///
3008static SDValue CanonicalizeMovddup(SDValue Op, SDValue V1, SDValue Mask,
3009                                   SelectionDAG &DAG, bool HasSSE3) {
3010  // If we have sse3 and shuffle has more than one use or input is a load, then
3011  // use movddup. Otherwise, use movlhps.
3012  bool UseMovddup = HasSSE3 && (!Op.hasOneUse() || isVectorLoad(V1));
3013  MVT PVT = UseMovddup ? MVT::v2f64 : MVT::v4f32;
3014  MVT VT = Op.getValueType();
3015  if (VT == PVT)
3016    return Op;
3017  unsigned NumElems = PVT.getVectorNumElements();
3018  if (NumElems == 2) {
3019    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3020    Mask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
3021  } else {
3022    assert(NumElems == 4);
3023    SDValue Cst0 = DAG.getTargetConstant(0, MVT::i32);
3024    SDValue Cst1 = DAG.getTargetConstant(1, MVT::i32);
3025    Mask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst0, Cst1, Cst0, Cst1);
3026  }
3027
3028  V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
3029  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
3030                                DAG.getNode(ISD::UNDEF, PVT), Mask);
3031  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
3032}
3033
3034/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3035/// vector of zero or undef vector.  This produces a shuffle where the low
3036/// element of V2 is swizzled into the zero/undef vector, landing at element
3037/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3038static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3039                                             bool isZero, bool HasSSE2,
3040                                             SelectionDAG &DAG) {
3041  MVT VT = V2.getValueType();
3042  SDValue V1 = isZero
3043    ? getZeroVector(VT, HasSSE2, DAG) : DAG.getNode(ISD::UNDEF, VT);
3044  unsigned NumElems = V2.getValueType().getVectorNumElements();
3045  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3046  MVT EVT = MaskVT.getVectorElementType();
3047  SmallVector<SDValue, 16> MaskVec;
3048  for (unsigned i = 0; i != NumElems; ++i)
3049    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
3050      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
3051    else
3052      MaskVec.push_back(DAG.getConstant(i, EVT));
3053  SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3054                               &MaskVec[0], MaskVec.size());
3055  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3056}
3057
3058/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3059/// a shuffle that is zero.
3060static
3061unsigned getNumOfConsecutiveZeros(SDValue Op, SDValue Mask,
3062                                  unsigned NumElems, bool Low,
3063                                  SelectionDAG &DAG) {
3064  unsigned NumZeros = 0;
3065  for (unsigned i = 0; i < NumElems; ++i) {
3066    unsigned Index = Low ? i : NumElems-i-1;
3067    SDValue Idx = Mask.getOperand(Index);
3068    if (Idx.getOpcode() == ISD::UNDEF) {
3069      ++NumZeros;
3070      continue;
3071    }
3072    SDValue Elt = DAG.getShuffleScalarElt(Op.getNode(), Index);
3073    if (Elt.getNode() && isZeroNode(Elt))
3074      ++NumZeros;
3075    else
3076      break;
3077  }
3078  return NumZeros;
3079}
3080
3081/// isVectorShift - Returns true if the shuffle can be implemented as a
3082/// logical left or right shift of a vector.
3083static bool isVectorShift(SDValue Op, SDValue Mask, SelectionDAG &DAG,
3084                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3085  unsigned NumElems = Mask.getNumOperands();
3086
3087  isLeft = true;
3088  unsigned NumZeros= getNumOfConsecutiveZeros(Op, Mask, NumElems, true, DAG);
3089  if (!NumZeros) {
3090    isLeft = false;
3091    NumZeros = getNumOfConsecutiveZeros(Op, Mask, NumElems, false, DAG);
3092    if (!NumZeros)
3093      return false;
3094  }
3095
3096  bool SeenV1 = false;
3097  bool SeenV2 = false;
3098  for (unsigned i = NumZeros; i < NumElems; ++i) {
3099    unsigned Val = isLeft ? (i - NumZeros) : i;
3100    SDValue Idx = Mask.getOperand(isLeft ? i : (i - NumZeros));
3101    if (Idx.getOpcode() == ISD::UNDEF)
3102      continue;
3103    unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
3104    if (Index < NumElems)
3105      SeenV1 = true;
3106    else {
3107      Index -= NumElems;
3108      SeenV2 = true;
3109    }
3110    if (Index != Val)
3111      return false;
3112  }
3113  if (SeenV1 && SeenV2)
3114    return false;
3115
3116  ShVal = SeenV1 ? Op.getOperand(0) : Op.getOperand(1);
3117  ShAmt = NumZeros;
3118  return true;
3119}
3120
3121
3122/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3123///
3124static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3125                                       unsigned NumNonZero, unsigned NumZero,
3126                                       SelectionDAG &DAG, TargetLowering &TLI) {
3127  if (NumNonZero > 8)
3128    return SDValue();
3129
3130  SDValue V(0, 0);
3131  bool First = true;
3132  for (unsigned i = 0; i < 16; ++i) {
3133    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3134    if (ThisIsNonZero && First) {
3135      if (NumZero)
3136        V = getZeroVector(MVT::v8i16, true, DAG);
3137      else
3138        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3139      First = false;
3140    }
3141
3142    if ((i & 1) != 0) {
3143      SDValue ThisElt(0, 0), LastElt(0, 0);
3144      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3145      if (LastIsNonZero) {
3146        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3147      }
3148      if (ThisIsNonZero) {
3149        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3150        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3151                              ThisElt, DAG.getConstant(8, MVT::i8));
3152        if (LastIsNonZero)
3153          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3154      } else
3155        ThisElt = LastElt;
3156
3157      if (ThisElt.getNode())
3158        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3159                        DAG.getIntPtrConstant(i/2));
3160    }
3161  }
3162
3163  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3164}
3165
3166/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3167///
3168static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3169                                       unsigned NumNonZero, unsigned NumZero,
3170                                       SelectionDAG &DAG, TargetLowering &TLI) {
3171  if (NumNonZero > 4)
3172    return SDValue();
3173
3174  SDValue V(0, 0);
3175  bool First = true;
3176  for (unsigned i = 0; i < 8; ++i) {
3177    bool isNonZero = (NonZeros & (1 << i)) != 0;
3178    if (isNonZero) {
3179      if (First) {
3180        if (NumZero)
3181          V = getZeroVector(MVT::v8i16, true, DAG);
3182        else
3183          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3184        First = false;
3185      }
3186      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3187                      DAG.getIntPtrConstant(i));
3188    }
3189  }
3190
3191  return V;
3192}
3193
3194/// getVShift - Return a vector logical shift node.
3195///
3196static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
3197                           unsigned NumBits, SelectionDAG &DAG,
3198                           const TargetLowering &TLI) {
3199  bool isMMX = VT.getSizeInBits() == 64;
3200  MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3201  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3202  SrcOp = DAG.getNode(ISD::BIT_CONVERT, ShVT, SrcOp);
3203  return DAG.getNode(ISD::BIT_CONVERT, VT,
3204                     DAG.getNode(Opc, ShVT, SrcOp,
3205                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3206}
3207
3208SDValue
3209X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3210  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3211  if (ISD::isBuildVectorAllZeros(Op.getNode())
3212      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3213    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3214    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3215    // eliminated on x86-32 hosts.
3216    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3217      return Op;
3218
3219    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3220      return getOnesVector(Op.getValueType(), DAG);
3221    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG);
3222  }
3223
3224  MVT VT = Op.getValueType();
3225  MVT EVT = VT.getVectorElementType();
3226  unsigned EVTBits = EVT.getSizeInBits();
3227
3228  unsigned NumElems = Op.getNumOperands();
3229  unsigned NumZero  = 0;
3230  unsigned NumNonZero = 0;
3231  unsigned NonZeros = 0;
3232  bool IsAllConstants = true;
3233  SmallSet<SDValue, 8> Values;
3234  for (unsigned i = 0; i < NumElems; ++i) {
3235    SDValue Elt = Op.getOperand(i);
3236    if (Elt.getOpcode() == ISD::UNDEF)
3237      continue;
3238    Values.insert(Elt);
3239    if (Elt.getOpcode() != ISD::Constant &&
3240        Elt.getOpcode() != ISD::ConstantFP)
3241      IsAllConstants = false;
3242    if (isZeroNode(Elt))
3243      NumZero++;
3244    else {
3245      NonZeros |= (1 << i);
3246      NumNonZero++;
3247    }
3248  }
3249
3250  if (NumNonZero == 0) {
3251    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3252    return DAG.getNode(ISD::UNDEF, VT);
3253  }
3254
3255  // Special case for single non-zero, non-undef, element.
3256  if (NumNonZero == 1 && NumElems <= 4) {
3257    unsigned Idx = CountTrailingZeros_32(NonZeros);
3258    SDValue Item = Op.getOperand(Idx);
3259
3260    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3261    // the value are obviously zero, truncate the value to i32 and do the
3262    // insertion that way.  Only do this if the value is non-constant or if the
3263    // value is a constant being inserted into element 0.  It is cheaper to do
3264    // a constant pool load than it is to do a movd + shuffle.
3265    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3266        (!IsAllConstants || Idx == 0)) {
3267      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3268        // Handle MMX and SSE both.
3269        MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3270        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3271
3272        // Truncate the value (which may itself be a constant) to i32, and
3273        // convert it to a vector with movd (S2V+shuffle to zero extend).
3274        Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item);
3275        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item);
3276        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3277                                           Subtarget->hasSSE2(), DAG);
3278
3279        // Now we have our 32-bit value zero extended in the low element of
3280        // a vector.  If Idx != 0, swizzle it into place.
3281        if (Idx != 0) {
3282          SDValue Ops[] = {
3283            Item, DAG.getNode(ISD::UNDEF, Item.getValueType()),
3284            getSwapEltZeroMask(VecElts, Idx, DAG)
3285          };
3286          Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3);
3287        }
3288        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item);
3289      }
3290    }
3291
3292    // If we have a constant or non-constant insertion into the low element of
3293    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3294    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3295    // depending on what the source datatype is.  Because we can only get here
3296    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3297    if (Idx == 0 &&
3298        // Don't do this for i64 values on x86-32.
3299        (EVT != MVT::i64 || Subtarget->is64Bit())) {
3300      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3301      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3302      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3303                                         Subtarget->hasSSE2(), DAG);
3304    }
3305
3306    // Is it a vector logical left shift?
3307    if (NumElems == 2 && Idx == 1 &&
3308        isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
3309      unsigned NumBits = VT.getSizeInBits();
3310      return getVShift(true, VT,
3311                       DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(1)),
3312                       NumBits/2, DAG, *this);
3313    }
3314
3315    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3316      return SDValue();
3317
3318    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3319    // is a non-constant being inserted into an element other than the low one,
3320    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3321    // movd/movss) to move this into the low element, then shuffle it into
3322    // place.
3323    if (EVTBits == 32) {
3324      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3325
3326      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3327      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3328                                         Subtarget->hasSSE2(), DAG);
3329      MVT MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3330      MVT MaskEVT = MaskVT.getVectorElementType();
3331      SmallVector<SDValue, 8> MaskVec;
3332      for (unsigned i = 0; i < NumElems; i++)
3333        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3334      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3335                                   &MaskVec[0], MaskVec.size());
3336      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3337                         DAG.getNode(ISD::UNDEF, VT), Mask);
3338    }
3339  }
3340
3341  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3342  if (Values.size() == 1)
3343    return SDValue();
3344
3345  // A vector full of immediates; various special cases are already
3346  // handled, so this is best done with a single constant-pool load.
3347  if (IsAllConstants)
3348    return SDValue();
3349
3350  // Let legalizer expand 2-wide build_vectors.
3351  if (EVTBits == 64) {
3352    if (NumNonZero == 1) {
3353      // One half is zero or undef.
3354      unsigned Idx = CountTrailingZeros_32(NonZeros);
3355      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT,
3356                                 Op.getOperand(Idx));
3357      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3358                                         Subtarget->hasSSE2(), DAG);
3359    }
3360    return SDValue();
3361  }
3362
3363  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3364  if (EVTBits == 8 && NumElems == 16) {
3365    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3366                                        *this);
3367    if (V.getNode()) return V;
3368  }
3369
3370  if (EVTBits == 16 && NumElems == 8) {
3371    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3372                                        *this);
3373    if (V.getNode()) return V;
3374  }
3375
3376  // If element VT is == 32 bits, turn it into a number of shuffles.
3377  SmallVector<SDValue, 8> V;
3378  V.resize(NumElems);
3379  if (NumElems == 4 && NumZero > 0) {
3380    for (unsigned i = 0; i < 4; ++i) {
3381      bool isZero = !(NonZeros & (1 << i));
3382      if (isZero)
3383        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG);
3384      else
3385        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3386    }
3387
3388    for (unsigned i = 0; i < 2; ++i) {
3389      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3390        default: break;
3391        case 0:
3392          V[i] = V[i*2];  // Must be a zero vector.
3393          break;
3394        case 1:
3395          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3396                             getMOVLMask(NumElems, DAG));
3397          break;
3398        case 2:
3399          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3400                             getMOVLMask(NumElems, DAG));
3401          break;
3402        case 3:
3403          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3404                             getUnpacklMask(NumElems, DAG));
3405          break;
3406      }
3407    }
3408
3409    MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3410    MVT EVT = MaskVT.getVectorElementType();
3411    SmallVector<SDValue, 8> MaskVec;
3412    bool Reverse = (NonZeros & 0x3) == 2;
3413    for (unsigned i = 0; i < 2; ++i)
3414      if (Reverse)
3415        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3416      else
3417        MaskVec.push_back(DAG.getConstant(i, EVT));
3418    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3419    for (unsigned i = 0; i < 2; ++i)
3420      if (Reverse)
3421        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3422      else
3423        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3424    SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3425                                     &MaskVec[0], MaskVec.size());
3426    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3427  }
3428
3429  if (Values.size() > 2) {
3430    // Expand into a number of unpckl*.
3431    // e.g. for v4f32
3432    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3433    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3434    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3435    SDValue UnpckMask = getUnpacklMask(NumElems, DAG);
3436    for (unsigned i = 0; i < NumElems; ++i)
3437      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3438    NumElems >>= 1;
3439    while (NumElems != 0) {
3440      for (unsigned i = 0; i < NumElems; ++i)
3441        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3442                           UnpckMask);
3443      NumElems >>= 1;
3444    }
3445    return V[0];
3446  }
3447
3448  return SDValue();
3449}
3450
3451static
3452SDValue LowerVECTOR_SHUFFLEv8i16(SDValue V1, SDValue V2,
3453                                 SDValue PermMask, SelectionDAG &DAG,
3454                                 TargetLowering &TLI) {
3455  SDValue NewV;
3456  MVT MaskVT = MVT::getIntVectorWithNumElements(8);
3457  MVT MaskEVT = MaskVT.getVectorElementType();
3458  MVT PtrVT = TLI.getPointerTy();
3459  SmallVector<SDValue, 8> MaskElts(PermMask.getNode()->op_begin(),
3460                                   PermMask.getNode()->op_end());
3461
3462  // First record which half of which vector the low elements come from.
3463  SmallVector<unsigned, 4> LowQuad(4);
3464  for (unsigned i = 0; i < 4; ++i) {
3465    SDValue Elt = MaskElts[i];
3466    if (Elt.getOpcode() == ISD::UNDEF)
3467      continue;
3468    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3469    int QuadIdx = EltIdx / 4;
3470    ++LowQuad[QuadIdx];
3471  }
3472
3473  int BestLowQuad = -1;
3474  unsigned MaxQuad = 1;
3475  for (unsigned i = 0; i < 4; ++i) {
3476    if (LowQuad[i] > MaxQuad) {
3477      BestLowQuad = i;
3478      MaxQuad = LowQuad[i];
3479    }
3480  }
3481
3482  // Record which half of which vector the high elements come from.
3483  SmallVector<unsigned, 4> HighQuad(4);
3484  for (unsigned i = 4; i < 8; ++i) {
3485    SDValue Elt = MaskElts[i];
3486    if (Elt.getOpcode() == ISD::UNDEF)
3487      continue;
3488    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3489    int QuadIdx = EltIdx / 4;
3490    ++HighQuad[QuadIdx];
3491  }
3492
3493  int BestHighQuad = -1;
3494  MaxQuad = 1;
3495  for (unsigned i = 0; i < 4; ++i) {
3496    if (HighQuad[i] > MaxQuad) {
3497      BestHighQuad = i;
3498      MaxQuad = HighQuad[i];
3499    }
3500  }
3501
3502  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3503  if (BestLowQuad != -1 || BestHighQuad != -1) {
3504    // First sort the 4 chunks in order using shufpd.
3505    SmallVector<SDValue, 8> MaskVec;
3506
3507    if (BestLowQuad != -1)
3508      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3509    else
3510      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3511
3512    if (BestHighQuad != -1)
3513      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3514    else
3515      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3516
3517    SDValue Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3518    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3519                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3520                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3521    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3522
3523    // Now sort high and low parts separately.
3524    BitVector InOrder(8);
3525    if (BestLowQuad != -1) {
3526      // Sort lower half in order using PSHUFLW.
3527      MaskVec.clear();
3528      bool AnyOutOrder = false;
3529
3530      for (unsigned i = 0; i != 4; ++i) {
3531        SDValue Elt = MaskElts[i];
3532        if (Elt.getOpcode() == ISD::UNDEF) {
3533          MaskVec.push_back(Elt);
3534          InOrder.set(i);
3535        } else {
3536          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3537          if (EltIdx != i)
3538            AnyOutOrder = true;
3539
3540          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3541
3542          // If this element is in the right place after this shuffle, then
3543          // remember it.
3544          if ((int)(EltIdx / 4) == BestLowQuad)
3545            InOrder.set(i);
3546        }
3547      }
3548      if (AnyOutOrder) {
3549        for (unsigned i = 4; i != 8; ++i)
3550          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3551        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3552        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3553      }
3554    }
3555
3556    if (BestHighQuad != -1) {
3557      // Sort high half in order using PSHUFHW if possible.
3558      MaskVec.clear();
3559
3560      for (unsigned i = 0; i != 4; ++i)
3561        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3562
3563      bool AnyOutOrder = false;
3564      for (unsigned i = 4; i != 8; ++i) {
3565        SDValue Elt = MaskElts[i];
3566        if (Elt.getOpcode() == ISD::UNDEF) {
3567          MaskVec.push_back(Elt);
3568          InOrder.set(i);
3569        } else {
3570          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3571          if (EltIdx != i)
3572            AnyOutOrder = true;
3573
3574          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3575
3576          // If this element is in the right place after this shuffle, then
3577          // remember it.
3578          if ((int)(EltIdx / 4) == BestHighQuad)
3579            InOrder.set(i);
3580        }
3581      }
3582
3583      if (AnyOutOrder) {
3584        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3585        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3586      }
3587    }
3588
3589    // The other elements are put in the right place using pextrw and pinsrw.
3590    for (unsigned i = 0; i != 8; ++i) {
3591      if (InOrder[i])
3592        continue;
3593      SDValue Elt = MaskElts[i];
3594      if (Elt.getOpcode() == ISD::UNDEF)
3595        continue;
3596      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3597      SDValue ExtOp = (EltIdx < 8)
3598        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3599                      DAG.getConstant(EltIdx, PtrVT))
3600        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3601                      DAG.getConstant(EltIdx - 8, PtrVT));
3602      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3603                         DAG.getConstant(i, PtrVT));
3604    }
3605
3606    return NewV;
3607  }
3608
3609  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use as
3610  // few as possible. First, let's find out how many elements are already in the
3611  // right order.
3612  unsigned V1InOrder = 0;
3613  unsigned V1FromV1 = 0;
3614  unsigned V2InOrder = 0;
3615  unsigned V2FromV2 = 0;
3616  SmallVector<SDValue, 8> V1Elts;
3617  SmallVector<SDValue, 8> V2Elts;
3618  for (unsigned i = 0; i < 8; ++i) {
3619    SDValue Elt = MaskElts[i];
3620    if (Elt.getOpcode() == ISD::UNDEF) {
3621      V1Elts.push_back(Elt);
3622      V2Elts.push_back(Elt);
3623      ++V1InOrder;
3624      ++V2InOrder;
3625      continue;
3626    }
3627    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3628    if (EltIdx == i) {
3629      V1Elts.push_back(Elt);
3630      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3631      ++V1InOrder;
3632    } else if (EltIdx == i+8) {
3633      V1Elts.push_back(Elt);
3634      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3635      ++V2InOrder;
3636    } else if (EltIdx < 8) {
3637      V1Elts.push_back(Elt);
3638      ++V1FromV1;
3639    } else {
3640      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3641      ++V2FromV2;
3642    }
3643  }
3644
3645  if (V2InOrder > V1InOrder) {
3646    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3647    std::swap(V1, V2);
3648    std::swap(V1Elts, V2Elts);
3649    std::swap(V1FromV1, V2FromV2);
3650  }
3651
3652  if ((V1FromV1 + V1InOrder) != 8) {
3653    // Some elements are from V2.
3654    if (V1FromV1) {
3655      // If there are elements that are from V1 but out of place,
3656      // then first sort them in place
3657      SmallVector<SDValue, 8> MaskVec;
3658      for (unsigned i = 0; i < 8; ++i) {
3659        SDValue Elt = V1Elts[i];
3660        if (Elt.getOpcode() == ISD::UNDEF) {
3661          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3662          continue;
3663        }
3664        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3665        if (EltIdx >= 8)
3666          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3667        else
3668          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3669      }
3670      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3671      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
3672    }
3673
3674    NewV = V1;
3675    for (unsigned i = 0; i < 8; ++i) {
3676      SDValue Elt = V1Elts[i];
3677      if (Elt.getOpcode() == ISD::UNDEF)
3678        continue;
3679      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3680      if (EltIdx < 8)
3681        continue;
3682      SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3683                                    DAG.getConstant(EltIdx - 8, PtrVT));
3684      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3685                         DAG.getConstant(i, PtrVT));
3686    }
3687    return NewV;
3688  } else {
3689    // All elements are from V1.
3690    NewV = V1;
3691    for (unsigned i = 0; i < 8; ++i) {
3692      SDValue Elt = V1Elts[i];
3693      if (Elt.getOpcode() == ISD::UNDEF)
3694        continue;
3695      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3696      SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3697                                    DAG.getConstant(EltIdx, PtrVT));
3698      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3699                         DAG.getConstant(i, PtrVT));
3700    }
3701    return NewV;
3702  }
3703}
3704
3705/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3706/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3707/// done when every pair / quad of shuffle mask elements point to elements in
3708/// the right sequence. e.g.
3709/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3710static
3711SDValue RewriteAsNarrowerShuffle(SDValue V1, SDValue V2,
3712                                MVT VT,
3713                                SDValue PermMask, SelectionDAG &DAG,
3714                                TargetLowering &TLI) {
3715  unsigned NumElems = PermMask.getNumOperands();
3716  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3717  MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3718  MVT MaskEltVT = MaskVT.getVectorElementType();
3719  MVT NewVT = MaskVT;
3720  switch (VT.getSimpleVT()) {
3721  default: assert(false && "Unexpected!");
3722  case MVT::v4f32: NewVT = MVT::v2f64; break;
3723  case MVT::v4i32: NewVT = MVT::v2i64; break;
3724  case MVT::v8i16: NewVT = MVT::v4i32; break;
3725  case MVT::v16i8: NewVT = MVT::v4i32; break;
3726  }
3727
3728  if (NewWidth == 2) {
3729    if (VT.isInteger())
3730      NewVT = MVT::v2i64;
3731    else
3732      NewVT = MVT::v2f64;
3733  }
3734  unsigned Scale = NumElems / NewWidth;
3735  SmallVector<SDValue, 8> MaskVec;
3736  for (unsigned i = 0; i < NumElems; i += Scale) {
3737    unsigned StartIdx = ~0U;
3738    for (unsigned j = 0; j < Scale; ++j) {
3739      SDValue Elt = PermMask.getOperand(i+j);
3740      if (Elt.getOpcode() == ISD::UNDEF)
3741        continue;
3742      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3743      if (StartIdx == ~0U)
3744        StartIdx = EltIdx - (EltIdx % Scale);
3745      if (EltIdx != StartIdx + j)
3746        return SDValue();
3747    }
3748    if (StartIdx == ~0U)
3749      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEltVT));
3750    else
3751      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MaskEltVT));
3752  }
3753
3754  V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3755  V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3756  return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3757                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3758                                 &MaskVec[0], MaskVec.size()));
3759}
3760
3761/// getVZextMovL - Return a zero-extending vector move low node.
3762///
3763static SDValue getVZextMovL(MVT VT, MVT OpVT,
3764                              SDValue SrcOp, SelectionDAG &DAG,
3765                              const X86Subtarget *Subtarget) {
3766  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3767    LoadSDNode *LD = NULL;
3768    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
3769      LD = dyn_cast<LoadSDNode>(SrcOp);
3770    if (!LD) {
3771      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3772      // instead.
3773      MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3774      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3775          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3776          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3777          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
3778        // PR2108
3779        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3780        return DAG.getNode(ISD::BIT_CONVERT, VT,
3781                           DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3782                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, OpVT,
3783                                                   SrcOp.getOperand(0)
3784                                                          .getOperand(0))));
3785      }
3786    }
3787  }
3788
3789  return DAG.getNode(ISD::BIT_CONVERT, VT,
3790                     DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3791                                 DAG.getNode(ISD::BIT_CONVERT, OpVT, SrcOp)));
3792}
3793
3794/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3795/// shuffles.
3796static SDValue
3797LowerVECTOR_SHUFFLE_4wide(SDValue V1, SDValue V2,
3798                          SDValue PermMask, MVT VT, SelectionDAG &DAG) {
3799  MVT MaskVT = PermMask.getValueType();
3800  MVT MaskEVT = MaskVT.getVectorElementType();
3801  SmallVector<std::pair<int, int>, 8> Locs;
3802  Locs.resize(4);
3803  SmallVector<SDValue, 8> Mask1(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3804  unsigned NumHi = 0;
3805  unsigned NumLo = 0;
3806  for (unsigned i = 0; i != 4; ++i) {
3807    SDValue Elt = PermMask.getOperand(i);
3808    if (Elt.getOpcode() == ISD::UNDEF) {
3809      Locs[i] = std::make_pair(-1, -1);
3810    } else {
3811      unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
3812      assert(Val < 8 && "Invalid VECTOR_SHUFFLE index!");
3813      if (Val < 4) {
3814        Locs[i] = std::make_pair(0, NumLo);
3815        Mask1[NumLo] = Elt;
3816        NumLo++;
3817      } else {
3818        Locs[i] = std::make_pair(1, NumHi);
3819        if (2+NumHi < 4)
3820          Mask1[2+NumHi] = Elt;
3821        NumHi++;
3822      }
3823    }
3824  }
3825
3826  if (NumLo <= 2 && NumHi <= 2) {
3827    // If no more than two elements come from either vector. This can be
3828    // implemented with two shuffles. First shuffle gather the elements.
3829    // The second shuffle, which takes the first shuffle as both of its
3830    // vector operands, put the elements into the right order.
3831    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3832                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3833                                 &Mask1[0], Mask1.size()));
3834
3835    SmallVector<SDValue, 8> Mask2(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3836    for (unsigned i = 0; i != 4; ++i) {
3837      if (Locs[i].first == -1)
3838        continue;
3839      else {
3840        unsigned Idx = (i < 2) ? 0 : 4;
3841        Idx += Locs[i].first * 2 + Locs[i].second;
3842        Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3843      }
3844    }
3845
3846    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3847                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3848                                   &Mask2[0], Mask2.size()));
3849  } else if (NumLo == 3 || NumHi == 3) {
3850    // Otherwise, we must have three elements from one vector, call it X, and
3851    // one element from the other, call it Y.  First, use a shufps to build an
3852    // intermediate vector with the one element from Y and the element from X
3853    // that will be in the same half in the final destination (the indexes don't
3854    // matter). Then, use a shufps to build the final vector, taking the half
3855    // containing the element from Y from the intermediate, and the other half
3856    // from X.
3857    if (NumHi == 3) {
3858      // Normalize it so the 3 elements come from V1.
3859      PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3860      std::swap(V1, V2);
3861    }
3862
3863    // Find the element from V2.
3864    unsigned HiIndex;
3865    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
3866      SDValue Elt = PermMask.getOperand(HiIndex);
3867      if (Elt.getOpcode() == ISD::UNDEF)
3868        continue;
3869      unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
3870      if (Val >= 4)
3871        break;
3872    }
3873
3874    Mask1[0] = PermMask.getOperand(HiIndex);
3875    Mask1[1] = DAG.getNode(ISD::UNDEF, MaskEVT);
3876    Mask1[2] = PermMask.getOperand(HiIndex^1);
3877    Mask1[3] = DAG.getNode(ISD::UNDEF, MaskEVT);
3878    V2 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3879                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3880
3881    if (HiIndex >= 2) {
3882      Mask1[0] = PermMask.getOperand(0);
3883      Mask1[1] = PermMask.getOperand(1);
3884      Mask1[2] = DAG.getConstant(HiIndex & 1 ? 6 : 4, MaskEVT);
3885      Mask1[3] = DAG.getConstant(HiIndex & 1 ? 4 : 6, MaskEVT);
3886      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3887                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3888    } else {
3889      Mask1[0] = DAG.getConstant(HiIndex & 1 ? 2 : 0, MaskEVT);
3890      Mask1[1] = DAG.getConstant(HiIndex & 1 ? 0 : 2, MaskEVT);
3891      Mask1[2] = PermMask.getOperand(2);
3892      Mask1[3] = PermMask.getOperand(3);
3893      if (Mask1[2].getOpcode() != ISD::UNDEF)
3894        Mask1[2] =
3895          DAG.getConstant(cast<ConstantSDNode>(Mask1[2])->getZExtValue()+4,
3896                          MaskEVT);
3897      if (Mask1[3].getOpcode() != ISD::UNDEF)
3898        Mask1[3] =
3899          DAG.getConstant(cast<ConstantSDNode>(Mask1[3])->getZExtValue()+4,
3900                          MaskEVT);
3901      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V2, V1,
3902                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3903    }
3904  }
3905
3906  // Break it into (shuffle shuffle_hi, shuffle_lo).
3907  Locs.clear();
3908  SmallVector<SDValue,8> LoMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3909  SmallVector<SDValue,8> HiMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3910  SmallVector<SDValue,8> *MaskPtr = &LoMask;
3911  unsigned MaskIdx = 0;
3912  unsigned LoIdx = 0;
3913  unsigned HiIdx = 2;
3914  for (unsigned i = 0; i != 4; ++i) {
3915    if (i == 2) {
3916      MaskPtr = &HiMask;
3917      MaskIdx = 1;
3918      LoIdx = 0;
3919      HiIdx = 2;
3920    }
3921    SDValue Elt = PermMask.getOperand(i);
3922    if (Elt.getOpcode() == ISD::UNDEF) {
3923      Locs[i] = std::make_pair(-1, -1);
3924    } else if (cast<ConstantSDNode>(Elt)->getZExtValue() < 4) {
3925      Locs[i] = std::make_pair(MaskIdx, LoIdx);
3926      (*MaskPtr)[LoIdx] = Elt;
3927      LoIdx++;
3928    } else {
3929      Locs[i] = std::make_pair(MaskIdx, HiIdx);
3930      (*MaskPtr)[HiIdx] = Elt;
3931      HiIdx++;
3932    }
3933  }
3934
3935  SDValue LoShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3936                                    DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3937                                                &LoMask[0], LoMask.size()));
3938  SDValue HiShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3939                                    DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3940                                                &HiMask[0], HiMask.size()));
3941  SmallVector<SDValue, 8> MaskOps;
3942  for (unsigned i = 0; i != 4; ++i) {
3943    if (Locs[i].first == -1) {
3944      MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3945    } else {
3946      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
3947      MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3948    }
3949  }
3950  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3951                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3952                                 &MaskOps[0], MaskOps.size()));
3953}
3954
3955SDValue
3956X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3957  SDValue V1 = Op.getOperand(0);
3958  SDValue V2 = Op.getOperand(1);
3959  SDValue PermMask = Op.getOperand(2);
3960  MVT VT = Op.getValueType();
3961  unsigned NumElems = PermMask.getNumOperands();
3962  bool isMMX = VT.getSizeInBits() == 64;
3963  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3964  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3965  bool V1IsSplat = false;
3966  bool V2IsSplat = false;
3967
3968  if (isUndefShuffle(Op.getNode()))
3969    return DAG.getNode(ISD::UNDEF, VT);
3970
3971  if (isZeroShuffle(Op.getNode()))
3972    return getZeroVector(VT, Subtarget->hasSSE2(), DAG);
3973
3974  if (isIdentityMask(PermMask.getNode()))
3975    return V1;
3976  else if (isIdentityMask(PermMask.getNode(), true))
3977    return V2;
3978
3979  // Canonicalize movddup shuffles.
3980  if (V2IsUndef && Subtarget->hasSSE2() &&
3981      VT.getSizeInBits() == 128 &&
3982      X86::isMOVDDUPMask(PermMask.getNode()))
3983    return CanonicalizeMovddup(Op, V1, PermMask, DAG, Subtarget->hasSSE3());
3984
3985  if (isSplatMask(PermMask.getNode())) {
3986    if (isMMX || NumElems < 4) return Op;
3987    // Promote it to a v4{if}32 splat.
3988    return PromoteSplat(Op, DAG, Subtarget->hasSSE2());
3989  }
3990
3991  // If the shuffle can be profitably rewritten as a narrower shuffle, then
3992  // do it!
3993  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3994    SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3995    if (NewOp.getNode())
3996      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3997  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
3998    // FIXME: Figure out a cleaner way to do this.
3999    // Try to make use of movq to zero out the top part.
4000    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4001      SDValue NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
4002                                                 DAG, *this);
4003      if (NewOp.getNode()) {
4004        SDValue NewV1 = NewOp.getOperand(0);
4005        SDValue NewV2 = NewOp.getOperand(1);
4006        SDValue NewMask = NewOp.getOperand(2);
4007        if (isCommutedMOVL(NewMask.getNode(), true, false)) {
4008          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
4009          return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget);
4010        }
4011      }
4012    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4013      SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
4014                                                DAG, *this);
4015      if (NewOp.getNode() && X86::isMOVLMask(NewOp.getOperand(2).getNode()))
4016        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4017                             DAG, Subtarget);
4018    }
4019  }
4020
4021  // Check if this can be converted into a logical shift.
4022  bool isLeft = false;
4023  unsigned ShAmt = 0;
4024  SDValue ShVal;
4025  bool isShift = isVectorShift(Op, PermMask, DAG, isLeft, ShVal, ShAmt);
4026  if (isShift && ShVal.hasOneUse()) {
4027    // If the shifted value has multiple uses, it may be cheaper to use
4028    // v_set0 + movlhps or movhlps, etc.
4029    MVT EVT = VT.getVectorElementType();
4030    ShAmt *= EVT.getSizeInBits();
4031    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
4032  }
4033
4034  if (X86::isMOVLMask(PermMask.getNode())) {
4035    if (V1IsUndef)
4036      return V2;
4037    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4038      return getVZextMovL(VT, VT, V2, DAG, Subtarget);
4039    if (!isMMX)
4040      return Op;
4041  }
4042
4043  if (!isMMX && (X86::isMOVSHDUPMask(PermMask.getNode()) ||
4044                 X86::isMOVSLDUPMask(PermMask.getNode()) ||
4045                 X86::isMOVHLPSMask(PermMask.getNode()) ||
4046                 X86::isMOVHPMask(PermMask.getNode()) ||
4047                 X86::isMOVLPMask(PermMask.getNode())))
4048    return Op;
4049
4050  if (ShouldXformToMOVHLPS(PermMask.getNode()) ||
4051      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), PermMask.getNode()))
4052    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4053
4054  if (isShift) {
4055    // No better options. Use a vshl / vsrl.
4056    MVT EVT = VT.getVectorElementType();
4057    ShAmt *= EVT.getSizeInBits();
4058    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
4059  }
4060
4061  bool Commuted = false;
4062  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4063  // 1,1,1,1 -> v8i16 though.
4064  V1IsSplat = isSplatVector(V1.getNode());
4065  V2IsSplat = isSplatVector(V2.getNode());
4066
4067  // Canonicalize the splat or undef, if present, to be on the RHS.
4068  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4069    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4070    std::swap(V1IsSplat, V2IsSplat);
4071    std::swap(V1IsUndef, V2IsUndef);
4072    Commuted = true;
4073  }
4074
4075  // FIXME: Figure out a cleaner way to do this.
4076  if (isCommutedMOVL(PermMask.getNode(), V2IsSplat, V2IsUndef)) {
4077    if (V2IsUndef) return V1;
4078    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4079    if (V2IsSplat) {
4080      // V2 is a splat, so the mask may be malformed. That is, it may point
4081      // to any V2 element. The instruction selectior won't like this. Get
4082      // a corrected mask and commute to form a proper MOVS{S|D}.
4083      SDValue NewMask = getMOVLMask(NumElems, DAG);
4084      if (NewMask.getNode() != PermMask.getNode())
4085        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4086    }
4087    return Op;
4088  }
4089
4090  if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
4091      X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
4092      X86::isUNPCKLMask(PermMask.getNode()) ||
4093      X86::isUNPCKHMask(PermMask.getNode()))
4094    return Op;
4095
4096  if (V2IsSplat) {
4097    // Normalize mask so all entries that point to V2 points to its first
4098    // element then try to match unpck{h|l} again. If match, return a
4099    // new vector_shuffle with the corrected mask.
4100    SDValue NewMask = NormalizeMask(PermMask, DAG);
4101    if (NewMask.getNode() != PermMask.getNode()) {
4102      if (X86::isUNPCKLMask(PermMask.getNode(), true)) {
4103        SDValue NewMask = getUnpacklMask(NumElems, DAG);
4104        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4105      } else if (X86::isUNPCKHMask(PermMask.getNode(), true)) {
4106        SDValue NewMask = getUnpackhMask(NumElems, DAG);
4107        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4108      }
4109    }
4110  }
4111
4112  // Normalize the node to match x86 shuffle ops if needed
4113  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.getNode()))
4114      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4115
4116  if (Commuted) {
4117    // Commute is back and try unpck* again.
4118    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4119    if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
4120        X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
4121        X86::isUNPCKLMask(PermMask.getNode()) ||
4122        X86::isUNPCKHMask(PermMask.getNode()))
4123      return Op;
4124  }
4125
4126  // Try PSHUF* first, then SHUFP*.
4127  // MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically
4128  // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
4129  if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.getNode())) {
4130    if (V2.getOpcode() != ISD::UNDEF)
4131      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
4132                         DAG.getNode(ISD::UNDEF, VT), PermMask);
4133    return Op;
4134  }
4135
4136  if (!isMMX) {
4137    if (Subtarget->hasSSE2() &&
4138        (X86::isPSHUFDMask(PermMask.getNode()) ||
4139         X86::isPSHUFHWMask(PermMask.getNode()) ||
4140         X86::isPSHUFLWMask(PermMask.getNode()))) {
4141      MVT RVT = VT;
4142      if (VT == MVT::v4f32) {
4143        RVT = MVT::v4i32;
4144        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT,
4145                         DAG.getNode(ISD::BIT_CONVERT, RVT, V1),
4146                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
4147      } else if (V2.getOpcode() != ISD::UNDEF)
4148        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, V1,
4149                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
4150      if (RVT != VT)
4151        Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op);
4152      return Op;
4153    }
4154
4155    // Binary or unary shufps.
4156    if (X86::isSHUFPMask(PermMask.getNode()) ||
4157        (V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.getNode())))
4158      return Op;
4159  }
4160
4161  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4162  if (VT == MVT::v8i16) {
4163    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
4164    if (NewOp.getNode())
4165      return NewOp;
4166  }
4167
4168  // Handle all 4 wide cases with a number of shuffles except for MMX.
4169  if (NumElems == 4 && !isMMX)
4170    return LowerVECTOR_SHUFFLE_4wide(V1, V2, PermMask, VT, DAG);
4171
4172  return SDValue();
4173}
4174
4175SDValue
4176X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4177                                                SelectionDAG &DAG) {
4178  MVT VT = Op.getValueType();
4179  if (VT.getSizeInBits() == 8) {
4180    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32,
4181                                    Op.getOperand(0), Op.getOperand(1));
4182    SDValue Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
4183                                    DAG.getValueType(VT));
4184    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4185  } else if (VT.getSizeInBits() == 16) {
4186    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32,
4187                                    Op.getOperand(0), Op.getOperand(1));
4188    SDValue Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
4189                                    DAG.getValueType(VT));
4190    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4191  } else if (VT == MVT::f32) {
4192    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4193    // the result back to FR32 register. It's only worth matching if the
4194    // result has a single use which is a store or a bitcast to i32.
4195    if (!Op.hasOneUse())
4196      return SDValue();
4197    SDNode *User = *Op.getNode()->use_begin();
4198    if (User->getOpcode() != ISD::STORE &&
4199        (User->getOpcode() != ISD::BIT_CONVERT ||
4200         User->getValueType(0) != MVT::i32))
4201      return SDValue();
4202    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4203                    DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Op.getOperand(0)),
4204                                    Op.getOperand(1));
4205    return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Extract);
4206  }
4207  return SDValue();
4208}
4209
4210
4211SDValue
4212X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4213  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4214    return SDValue();
4215
4216  if (Subtarget->hasSSE41()) {
4217    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4218    if (Res.getNode())
4219      return Res;
4220  }
4221
4222  MVT VT = Op.getValueType();
4223  // TODO: handle v16i8.
4224  if (VT.getSizeInBits() == 16) {
4225    SDValue Vec = Op.getOperand(0);
4226    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4227    if (Idx == 0)
4228      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
4229                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4230                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
4231                                     Op.getOperand(1)));
4232    // Transform it so it match pextrw which produces a 32-bit result.
4233    MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4234    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
4235                                    Op.getOperand(0), Op.getOperand(1));
4236    SDValue Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
4237                                    DAG.getValueType(VT));
4238    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4239  } else if (VT.getSizeInBits() == 32) {
4240    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4241    if (Idx == 0)
4242      return Op;
4243    // SHUFPS the element to the lowest double word, then movss.
4244    MVT MaskVT = MVT::getIntVectorWithNumElements(4);
4245    SmallVector<SDValue, 8> IdxVec;
4246    IdxVec.
4247      push_back(DAG.getConstant(Idx, MaskVT.getVectorElementType()));
4248    IdxVec.
4249      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4250    IdxVec.
4251      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4252    IdxVec.
4253      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4254    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4255                                 &IdxVec[0], IdxVec.size());
4256    SDValue Vec = Op.getOperand(0);
4257    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4258                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4259    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4260                       DAG.getIntPtrConstant(0));
4261  } else if (VT.getSizeInBits() == 64) {
4262    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4263    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4264    //        to match extract_elt for f64.
4265    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4266    if (Idx == 0)
4267      return Op;
4268
4269    // UNPCKHPD the element to the lowest double word, then movsd.
4270    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4271    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4272    MVT MaskVT = MVT::getIntVectorWithNumElements(2);
4273    SmallVector<SDValue, 8> IdxVec;
4274    IdxVec.push_back(DAG.getConstant(1, MaskVT.getVectorElementType()));
4275    IdxVec.
4276      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4277    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4278                                 &IdxVec[0], IdxVec.size());
4279    SDValue Vec = Op.getOperand(0);
4280    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4281                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4282    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4283                       DAG.getIntPtrConstant(0));
4284  }
4285
4286  return SDValue();
4287}
4288
4289SDValue
4290X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4291  MVT VT = Op.getValueType();
4292  MVT EVT = VT.getVectorElementType();
4293
4294  SDValue N0 = Op.getOperand(0);
4295  SDValue N1 = Op.getOperand(1);
4296  SDValue N2 = Op.getOperand(2);
4297
4298  if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4299      isa<ConstantSDNode>(N2)) {
4300    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4301                                                  : X86ISD::PINSRW;
4302    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4303    // argument.
4304    if (N1.getValueType() != MVT::i32)
4305      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4306    if (N2.getValueType() != MVT::i32)
4307      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4308    return DAG.getNode(Opc, VT, N0, N1, N2);
4309  } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4310    // Bits [7:6] of the constant are the source select.  This will always be
4311    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4312    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4313    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4314    // Bits [5:4] of the constant are the destination select.  This is the
4315    //  value of the incoming immediate.
4316    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4317    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4318    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4319    return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2);
4320  }
4321  return SDValue();
4322}
4323
4324SDValue
4325X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4326  MVT VT = Op.getValueType();
4327  MVT EVT = VT.getVectorElementType();
4328
4329  if (Subtarget->hasSSE41())
4330    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4331
4332  if (EVT == MVT::i8)
4333    return SDValue();
4334
4335  SDValue N0 = Op.getOperand(0);
4336  SDValue N1 = Op.getOperand(1);
4337  SDValue N2 = Op.getOperand(2);
4338
4339  if (EVT.getSizeInBits() == 16) {
4340    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4341    // as its second argument.
4342    if (N1.getValueType() != MVT::i32)
4343      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4344    if (N2.getValueType() != MVT::i32)
4345      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4346    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
4347  }
4348  return SDValue();
4349}
4350
4351SDValue
4352X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4353  if (Op.getValueType() == MVT::v2f32)
4354    return DAG.getNode(ISD::BIT_CONVERT, MVT::v2f32,
4355                       DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i32,
4356                                   DAG.getNode(ISD::BIT_CONVERT, MVT::i32,
4357                                               Op.getOperand(0))));
4358
4359  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
4360  MVT VT = MVT::v2i32;
4361  switch (Op.getValueType().getSimpleVT()) {
4362  default: break;
4363  case MVT::v16i8:
4364  case MVT::v8i16:
4365    VT = MVT::v4i32;
4366    break;
4367  }
4368  return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(),
4369                     DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt));
4370}
4371
4372// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4373// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4374// one of the above mentioned nodes. It has to be wrapped because otherwise
4375// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4376// be used to form addressing mode. These wrapped nodes will be selected
4377// into MOV32ri.
4378SDValue
4379X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4380  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4381  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(),
4382                                               getPointerTy(),
4383                                               CP->getAlignment());
4384  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4385  // With PIC, the address is actually $g + Offset.
4386  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4387      !Subtarget->isPICStyleRIPRel()) {
4388    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4389                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4390                         Result);
4391  }
4392
4393  return Result;
4394}
4395
4396SDValue
4397X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV,
4398                                      int64_t Offset,
4399                                      SelectionDAG &DAG) const {
4400  bool IsPic = getTargetMachine().getRelocationModel() == Reloc::PIC_;
4401  bool ExtraLoadRequired =
4402    Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false);
4403
4404  // Create the TargetGlobalAddress node, folding in the constant
4405  // offset if it is legal.
4406  SDValue Result;
4407  if (!IsPic && !ExtraLoadRequired && isInt32(Offset)) {
4408    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4409    Offset = 0;
4410  } else
4411    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0);
4412  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4413
4414  // With PIC, the address is actually $g + Offset.
4415  if (IsPic && !Subtarget->isPICStyleRIPRel()) {
4416    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4417                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4418                         Result);
4419  }
4420
4421  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4422  // load the value at address GV, not the value of GV itself. This means that
4423  // the GlobalAddress must be in the base or index register of the address, not
4424  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4425  // The same applies for external symbols during PIC codegen
4426  if (ExtraLoadRequired)
4427    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result,
4428                         PseudoSourceValue::getGOT(), 0);
4429
4430  // If there was a non-zero offset that we didn't fold, create an explicit
4431  // addition for it.
4432  if (Offset != 0)
4433    Result = DAG.getNode(ISD::ADD, getPointerTy(), Result,
4434                         DAG.getConstant(Offset, getPointerTy()));
4435
4436  return Result;
4437}
4438
4439SDValue
4440X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4441  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4442  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4443  return LowerGlobalAddress(GV, Offset, DAG);
4444}
4445
4446// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4447static SDValue
4448LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4449                                const MVT PtrVT) {
4450  SDValue InFlag;
4451  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
4452                                     DAG.getNode(X86ISD::GlobalBaseReg,
4453                                                 PtrVT), InFlag);
4454  InFlag = Chain.getValue(1);
4455
4456  // emit leal symbol@TLSGD(,%ebx,1), %eax
4457  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4458  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4459                                             GA->getValueType(0),
4460                                             GA->getOffset());
4461  SDValue Ops[] = { Chain,  TGA, InFlag };
4462  SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
4463  InFlag = Result.getValue(2);
4464  Chain = Result.getValue(1);
4465
4466  // call ___tls_get_addr. This function receives its argument in
4467  // the register EAX.
4468  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
4469  InFlag = Chain.getValue(1);
4470
4471  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4472  SDValue Ops1[] = { Chain,
4473                      DAG.getTargetExternalSymbol("___tls_get_addr",
4474                                                  PtrVT),
4475                      DAG.getRegister(X86::EAX, PtrVT),
4476                      DAG.getRegister(X86::EBX, PtrVT),
4477                      InFlag };
4478  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
4479  InFlag = Chain.getValue(1);
4480
4481  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
4482}
4483
4484// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4485static SDValue
4486LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4487                                const MVT PtrVT) {
4488  SDValue InFlag, Chain;
4489
4490  // emit leaq symbol@TLSGD(%rip), %rdi
4491  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4492  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4493                                             GA->getValueType(0),
4494                                             GA->getOffset());
4495  SDValue Ops[]  = { DAG.getEntryNode(), TGA};
4496  SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 2);
4497  Chain  = Result.getValue(1);
4498  InFlag = Result.getValue(2);
4499
4500  // call __tls_get_addr. This function receives its argument in
4501  // the register RDI.
4502  Chain = DAG.getCopyToReg(Chain, X86::RDI, Result, InFlag);
4503  InFlag = Chain.getValue(1);
4504
4505  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4506  SDValue Ops1[] = { Chain,
4507                      DAG.getTargetExternalSymbol("__tls_get_addr",
4508                                                  PtrVT),
4509                      DAG.getRegister(X86::RDI, PtrVT),
4510                      InFlag };
4511  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 4);
4512  InFlag = Chain.getValue(1);
4513
4514  return DAG.getCopyFromReg(Chain, X86::RAX, PtrVT, InFlag);
4515}
4516
4517// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4518// "local exec" model.
4519static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4520                                     const MVT PtrVT) {
4521  // Get the Thread Pointer
4522  SDValue ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
4523  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4524  // exec)
4525  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4526                                             GA->getValueType(0),
4527                                             GA->getOffset());
4528  SDValue Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
4529
4530  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
4531    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset,
4532                         PseudoSourceValue::getGOT(), 0);
4533
4534  // The address of the thread local variable is the add of the thread
4535  // pointer with the offset of the variable.
4536  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
4537}
4538
4539SDValue
4540X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4541  // TODO: implement the "local dynamic" model
4542  // TODO: implement the "initial exec"model for pic executables
4543  assert(Subtarget->isTargetELF() &&
4544         "TLS not implemented for non-ELF targets");
4545  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4546  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
4547  // otherwise use the "Local Exec"TLS Model
4548  if (Subtarget->is64Bit()) {
4549    return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4550  } else {
4551    if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4552      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4553    else
4554      return LowerToTLSExecModel(GA, DAG, getPointerTy());
4555  }
4556}
4557
4558SDValue
4559X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4560  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4561  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4562  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4563  // With PIC, the address is actually $g + Offset.
4564  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4565      !Subtarget->isPICStyleRIPRel()) {
4566    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4567                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4568                         Result);
4569  }
4570
4571  return Result;
4572}
4573
4574SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4575  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4576  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4577  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4578  // With PIC, the address is actually $g + Offset.
4579  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4580      !Subtarget->isPICStyleRIPRel()) {
4581    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4582                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4583                         Result);
4584  }
4585
4586  return Result;
4587}
4588
4589/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4590/// take a 2 x i32 value to shift plus a shift amount.
4591SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4592  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4593  MVT VT = Op.getValueType();
4594  unsigned VTBits = VT.getSizeInBits();
4595  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4596  SDValue ShOpLo = Op.getOperand(0);
4597  SDValue ShOpHi = Op.getOperand(1);
4598  SDValue ShAmt  = Op.getOperand(2);
4599  SDValue Tmp1 = isSRA ?
4600    DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) :
4601    DAG.getConstant(0, VT);
4602
4603  SDValue Tmp2, Tmp3;
4604  if (Op.getOpcode() == ISD::SHL_PARTS) {
4605    Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt);
4606    Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt);
4607  } else {
4608    Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt);
4609    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt);
4610  }
4611
4612  SDValue AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
4613                                  DAG.getConstant(VTBits, MVT::i8));
4614  SDValue Cond = DAG.getNode(X86ISD::CMP, VT,
4615                               AndNode, DAG.getConstant(0, MVT::i8));
4616
4617  SDValue Hi, Lo;
4618  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4619  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4620  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4621
4622  if (Op.getOpcode() == ISD::SHL_PARTS) {
4623    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4624    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4625  } else {
4626    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4627    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4628  }
4629
4630  SDValue Ops[2] = { Lo, Hi };
4631  return DAG.getMergeValues(Ops, 2);
4632}
4633
4634SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4635  MVT SrcVT = Op.getOperand(0).getValueType();
4636  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4637         "Unknown SINT_TO_FP to lower!");
4638
4639  // These are really Legal; caller falls through into that case.
4640  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4641    return SDValue();
4642  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4643      Subtarget->is64Bit())
4644    return SDValue();
4645
4646  unsigned Size = SrcVT.getSizeInBits()/8;
4647  MachineFunction &MF = DAG.getMachineFunction();
4648  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4649  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4650  SDValue Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
4651                                 StackSlot,
4652                                 PseudoSourceValue::getFixedStack(SSFI), 0);
4653
4654  // Build the FILD
4655  SDVTList Tys;
4656  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4657  if (useSSE)
4658    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4659  else
4660    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4661  SmallVector<SDValue, 8> Ops;
4662  Ops.push_back(Chain);
4663  Ops.push_back(StackSlot);
4664  Ops.push_back(DAG.getValueType(SrcVT));
4665  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD,
4666                                 Tys, &Ops[0], Ops.size());
4667
4668  if (useSSE) {
4669    Chain = Result.getValue(1);
4670    SDValue InFlag = Result.getValue(2);
4671
4672    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4673    // shouldn't be necessary except that RFP cannot be live across
4674    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4675    MachineFunction &MF = DAG.getMachineFunction();
4676    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4677    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4678    Tys = DAG.getVTList(MVT::Other);
4679    SmallVector<SDValue, 8> Ops;
4680    Ops.push_back(Chain);
4681    Ops.push_back(Result);
4682    Ops.push_back(StackSlot);
4683    Ops.push_back(DAG.getValueType(Op.getValueType()));
4684    Ops.push_back(InFlag);
4685    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4686    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
4687                         PseudoSourceValue::getFixedStack(SSFI), 0);
4688  }
4689
4690  return Result;
4691}
4692
4693SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4694  MVT SrcVT = Op.getOperand(0).getValueType();
4695  assert(SrcVT.getSimpleVT() == MVT::i64 && "Unknown UINT_TO_FP to lower!");
4696
4697  // We only handle SSE2 f64 target here; caller can handle the rest.
4698  if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
4699    return SDValue();
4700
4701  // This algorithm is not obvious.  Here it is in C code, more or less:
4702/*
4703 double uint64_to_double( uint32_t hi, uint32_t lo )
4704  {
4705    static const __m128i exp = { 0x4330000045300000ULL, 0 };
4706    static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4707
4708    // copy ints to xmm registers
4709    __m128i xh = _mm_cvtsi32_si128( hi );
4710    __m128i xl = _mm_cvtsi32_si128( lo );
4711
4712    // combine into low half of a single xmm register
4713    __m128i x = _mm_unpacklo_epi32( xh, xl );
4714    __m128d d;
4715    double sd;
4716
4717    // merge in appropriate exponents to give the integer bits the
4718    // right magnitude
4719    x = _mm_unpacklo_epi32( x, exp );
4720
4721    // subtract away the biases to deal with the IEEE-754 double precision
4722    // implicit 1
4723    d = _mm_sub_pd( (__m128d) x, bias );
4724
4725    // All conversions up to here are exact. The correctly rounded result is
4726    // calculated using the
4727    // current rounding mode using the following horizontal add.
4728    d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4729    _mm_store_sd( &sd, d );   //since we are returning doubles in XMM, this
4730    // store doesn't really need to be here (except maybe to zero the other
4731    // double)
4732    return sd;
4733  }
4734*/
4735
4736  // Build some magic constants.
4737  std::vector<Constant*>CV0;
4738  CV0.push_back(ConstantInt::get(APInt(32, 0x45300000)));
4739  CV0.push_back(ConstantInt::get(APInt(32, 0x43300000)));
4740  CV0.push_back(ConstantInt::get(APInt(32, 0)));
4741  CV0.push_back(ConstantInt::get(APInt(32, 0)));
4742  Constant *C0 = ConstantVector::get(CV0);
4743  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 4);
4744
4745  std::vector<Constant*>CV1;
4746  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4530000000000000ULL))));
4747  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4330000000000000ULL))));
4748  Constant *C1 = ConstantVector::get(CV1);
4749  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 4);
4750
4751  SmallVector<SDValue, 4> MaskVec;
4752  MaskVec.push_back(DAG.getConstant(0, MVT::i32));
4753  MaskVec.push_back(DAG.getConstant(4, MVT::i32));
4754  MaskVec.push_back(DAG.getConstant(1, MVT::i32));
4755  MaskVec.push_back(DAG.getConstant(5, MVT::i32));
4756  SDValue UnpcklMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, &MaskVec[0],
4757                                   MaskVec.size());
4758  SmallVector<SDValue, 4> MaskVec2;
4759  MaskVec2.push_back(DAG.getConstant(1, MVT::i32));
4760  MaskVec2.push_back(DAG.getConstant(0, MVT::i32));
4761  SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec2[0],
4762                                 MaskVec2.size());
4763
4764  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4i32,
4765                            DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
4766                                        Op.getOperand(0),
4767                                        DAG.getIntPtrConstant(1)));
4768  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4i32,
4769                            DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
4770                                        Op.getOperand(0),
4771                                        DAG.getIntPtrConstant(0)));
4772  SDValue Unpck1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32,
4773                                XR1, XR2, UnpcklMask);
4774  SDValue CLod0 = DAG.getLoad(MVT::v4i32, DAG.getEntryNode(), CPIdx0,
4775                         PseudoSourceValue::getConstantPool(), 0, false, 16);
4776  SDValue Unpck2 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32,
4777                                Unpck1, CLod0, UnpcklMask);
4778  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, MVT::v2f64, Unpck2);
4779  SDValue CLod1 = DAG.getLoad(MVT::v2f64, CLod0.getValue(1), CPIdx1,
4780                         PseudoSourceValue::getConstantPool(), 0, false, 16);
4781  SDValue Sub = DAG.getNode(ISD::FSUB, MVT::v2f64, XR2F, CLod1);
4782  // Add the halves; easiest way is to swap them into another reg first.
4783  SDValue Shuf = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2f64,
4784                             Sub, Sub, ShufMask);
4785  SDValue Add = DAG.getNode(ISD::FADD, MVT::v2f64, Shuf, Sub);
4786  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f64, Add,
4787                     DAG.getIntPtrConstant(0));
4788}
4789
4790std::pair<SDValue,SDValue> X86TargetLowering::
4791FP_TO_SINTHelper(SDValue Op, SelectionDAG &DAG) {
4792  assert(Op.getValueType().getSimpleVT() <= MVT::i64 &&
4793         Op.getValueType().getSimpleVT() >= MVT::i16 &&
4794         "Unknown FP_TO_SINT to lower!");
4795
4796  // These are really Legal.
4797  if (Op.getValueType() == MVT::i32 &&
4798      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4799    return std::make_pair(SDValue(), SDValue());
4800  if (Subtarget->is64Bit() &&
4801      Op.getValueType() == MVT::i64 &&
4802      Op.getOperand(0).getValueType() != MVT::f80)
4803    return std::make_pair(SDValue(), SDValue());
4804
4805  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4806  // stack slot.
4807  MachineFunction &MF = DAG.getMachineFunction();
4808  unsigned MemSize = Op.getValueType().getSizeInBits()/8;
4809  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4810  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4811  unsigned Opc;
4812  switch (Op.getValueType().getSimpleVT()) {
4813  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4814  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4815  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4816  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4817  }
4818
4819  SDValue Chain = DAG.getEntryNode();
4820  SDValue Value = Op.getOperand(0);
4821  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4822    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4823    Chain = DAG.getStore(Chain, Value, StackSlot,
4824                         PseudoSourceValue::getFixedStack(SSFI), 0);
4825    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4826    SDValue Ops[] = {
4827      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4828    };
4829    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4830    Chain = Value.getValue(1);
4831    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4832    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4833  }
4834
4835  // Build the FP_TO_INT*_IN_MEM
4836  SDValue Ops[] = { Chain, Value, StackSlot };
4837  SDValue FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4838
4839  return std::make_pair(FIST, StackSlot);
4840}
4841
4842SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
4843  std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(Op, DAG);
4844  SDValue FIST = Vals.first, StackSlot = Vals.second;
4845  if (FIST.getNode() == 0) return SDValue();
4846
4847  // Load the result.
4848  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4849}
4850
4851SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
4852  std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(SDValue(N, 0), DAG);
4853  SDValue FIST = Vals.first, StackSlot = Vals.second;
4854  if (FIST.getNode() == 0) return 0;
4855
4856  MVT VT = N->getValueType(0);
4857
4858  // Return a load from the stack slot.
4859  SDValue Res = DAG.getLoad(VT, FIST, StackSlot, NULL, 0);
4860
4861  // Use MERGE_VALUES to drop the chain result value and get a node with one
4862  // result.  This requires turning off getMergeValues simplification, since
4863  // otherwise it will give us Res back.
4864  return DAG.getMergeValues(&Res, 1, false).getNode();
4865}
4866
4867SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
4868  MVT VT = Op.getValueType();
4869  MVT EltVT = VT;
4870  if (VT.isVector())
4871    EltVT = VT.getVectorElementType();
4872  std::vector<Constant*> CV;
4873  if (EltVT == MVT::f64) {
4874    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
4875    CV.push_back(C);
4876    CV.push_back(C);
4877  } else {
4878    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
4879    CV.push_back(C);
4880    CV.push_back(C);
4881    CV.push_back(C);
4882    CV.push_back(C);
4883  }
4884  Constant *C = ConstantVector::get(CV);
4885  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4886  SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4887                               PseudoSourceValue::getConstantPool(), 0,
4888                               false, 16);
4889  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4890}
4891
4892SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
4893  MVT VT = Op.getValueType();
4894  MVT EltVT = VT;
4895  unsigned EltNum = 1;
4896  if (VT.isVector()) {
4897    EltVT = VT.getVectorElementType();
4898    EltNum = VT.getVectorNumElements();
4899  }
4900  std::vector<Constant*> CV;
4901  if (EltVT == MVT::f64) {
4902    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
4903    CV.push_back(C);
4904    CV.push_back(C);
4905  } else {
4906    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
4907    CV.push_back(C);
4908    CV.push_back(C);
4909    CV.push_back(C);
4910    CV.push_back(C);
4911  }
4912  Constant *C = ConstantVector::get(CV);
4913  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4914  SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4915                               PseudoSourceValue::getConstantPool(), 0,
4916                               false, 16);
4917  if (VT.isVector()) {
4918    return DAG.getNode(ISD::BIT_CONVERT, VT,
4919                       DAG.getNode(ISD::XOR, MVT::v2i64,
4920                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4921                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4922  } else {
4923    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4924  }
4925}
4926
4927SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
4928  SDValue Op0 = Op.getOperand(0);
4929  SDValue Op1 = Op.getOperand(1);
4930  MVT VT = Op.getValueType();
4931  MVT SrcVT = Op1.getValueType();
4932
4933  // If second operand is smaller, extend it first.
4934  if (SrcVT.bitsLT(VT)) {
4935    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4936    SrcVT = VT;
4937  }
4938  // And if it is bigger, shrink it first.
4939  if (SrcVT.bitsGT(VT)) {
4940    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1));
4941    SrcVT = VT;
4942  }
4943
4944  // At this point the operands and the result should have the same
4945  // type, and that won't be f80 since that is not custom lowered.
4946
4947  // First get the sign bit of second operand.
4948  std::vector<Constant*> CV;
4949  if (SrcVT == MVT::f64) {
4950    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
4951    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4952  } else {
4953    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
4954    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4955    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4956    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4957  }
4958  Constant *C = ConstantVector::get(CV);
4959  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4960  SDValue Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx,
4961                                PseudoSourceValue::getConstantPool(), 0,
4962                                false, 16);
4963  SDValue SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4964
4965  // Shift sign bit right or left if the two operands have different types.
4966  if (SrcVT.bitsGT(VT)) {
4967    // Op0 is MVT::f32, Op1 is MVT::f64.
4968    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4969    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4970                          DAG.getConstant(32, MVT::i32));
4971    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4972    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4973                          DAG.getIntPtrConstant(0));
4974  }
4975
4976  // Clear first operand sign bit.
4977  CV.clear();
4978  if (VT == MVT::f64) {
4979    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
4980    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4981  } else {
4982    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
4983    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4984    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4985    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4986  }
4987  C = ConstantVector::get(CV);
4988  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4989  SDValue Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4990                                PseudoSourceValue::getConstantPool(), 0,
4991                                false, 16);
4992  SDValue Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4993
4994  // Or the value with the sign bit.
4995  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4996}
4997
4998SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
4999  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5000  SDValue Cond;
5001  SDValue Op0 = Op.getOperand(0);
5002  SDValue Op1 = Op.getOperand(1);
5003  SDValue CC = Op.getOperand(2);
5004  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5005  unsigned X86CC;
5006
5007  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
5008                     Op0, Op1, DAG)) {
5009    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
5010    return DAG.getNode(X86ISD::SETCC, MVT::i8,
5011                       DAG.getConstant(X86CC, MVT::i8), Cond);
5012  }
5013
5014  assert(0 && "Illegal SetCC!");
5015  return SDValue();
5016}
5017
5018SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5019  SDValue Cond;
5020  SDValue Op0 = Op.getOperand(0);
5021  SDValue Op1 = Op.getOperand(1);
5022  SDValue CC = Op.getOperand(2);
5023  MVT VT = Op.getValueType();
5024  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5025  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5026
5027  if (isFP) {
5028    unsigned SSECC = 8;
5029    MVT VT0 = Op0.getValueType();
5030    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5031    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5032    bool Swap = false;
5033
5034    switch (SetCCOpcode) {
5035    default: break;
5036    case ISD::SETOEQ:
5037    case ISD::SETEQ:  SSECC = 0; break;
5038    case ISD::SETOGT:
5039    case ISD::SETGT: Swap = true; // Fallthrough
5040    case ISD::SETLT:
5041    case ISD::SETOLT: SSECC = 1; break;
5042    case ISD::SETOGE:
5043    case ISD::SETGE: Swap = true; // Fallthrough
5044    case ISD::SETLE:
5045    case ISD::SETOLE: SSECC = 2; break;
5046    case ISD::SETUO:  SSECC = 3; break;
5047    case ISD::SETUNE:
5048    case ISD::SETNE:  SSECC = 4; break;
5049    case ISD::SETULE: Swap = true;
5050    case ISD::SETUGE: SSECC = 5; break;
5051    case ISD::SETULT: Swap = true;
5052    case ISD::SETUGT: SSECC = 6; break;
5053    case ISD::SETO:   SSECC = 7; break;
5054    }
5055    if (Swap)
5056      std::swap(Op0, Op1);
5057
5058    // In the two special cases we can't handle, emit two comparisons.
5059    if (SSECC == 8) {
5060      if (SetCCOpcode == ISD::SETUEQ) {
5061        SDValue UNORD, EQ;
5062        UNORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5063        EQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5064        return DAG.getNode(ISD::OR, VT, UNORD, EQ);
5065      }
5066      else if (SetCCOpcode == ISD::SETONE) {
5067        SDValue ORD, NEQ;
5068        ORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5069        NEQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5070        return DAG.getNode(ISD::AND, VT, ORD, NEQ);
5071      }
5072      assert(0 && "Illegal FP comparison");
5073    }
5074    // Handle all other FP comparisons here.
5075    return DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5076  }
5077
5078  // We are handling one of the integer comparisons here.  Since SSE only has
5079  // GT and EQ comparisons for integer, swapping operands and multiple
5080  // operations may be required for some comparisons.
5081  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5082  bool Swap = false, Invert = false, FlipSigns = false;
5083
5084  switch (VT.getSimpleVT()) {
5085  default: break;
5086  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5087  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5088  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5089  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5090  }
5091
5092  switch (SetCCOpcode) {
5093  default: break;
5094  case ISD::SETNE:  Invert = true;
5095  case ISD::SETEQ:  Opc = EQOpc; break;
5096  case ISD::SETLT:  Swap = true;
5097  case ISD::SETGT:  Opc = GTOpc; break;
5098  case ISD::SETGE:  Swap = true;
5099  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5100  case ISD::SETULT: Swap = true;
5101  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5102  case ISD::SETUGE: Swap = true;
5103  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5104  }
5105  if (Swap)
5106    std::swap(Op0, Op1);
5107
5108  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5109  // bits of the inputs before performing those operations.
5110  if (FlipSigns) {
5111    MVT EltVT = VT.getVectorElementType();
5112    SDValue SignBit = DAG.getConstant(EltVT.getIntegerVTSignBit(), EltVT);
5113    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5114    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, VT, &SignBits[0],
5115                                    SignBits.size());
5116    Op0 = DAG.getNode(ISD::XOR, VT, Op0, SignVec);
5117    Op1 = DAG.getNode(ISD::XOR, VT, Op1, SignVec);
5118  }
5119
5120  SDValue Result = DAG.getNode(Opc, VT, Op0, Op1);
5121
5122  // If the logical-not of the result is required, perform that now.
5123  if (Invert) {
5124    MVT EltVT = VT.getVectorElementType();
5125    SDValue NegOne = DAG.getConstant(EltVT.getIntegerVTBitMask(), EltVT);
5126    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOne);
5127    SDValue NegOneV = DAG.getNode(ISD::BUILD_VECTOR, VT, &NegOnes[0],
5128                                    NegOnes.size());
5129    Result = DAG.getNode(ISD::XOR, VT, Result, NegOneV);
5130  }
5131  return Result;
5132}
5133
5134SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5135  bool addTest = true;
5136  SDValue Cond  = Op.getOperand(0);
5137  SDValue CC;
5138
5139  if (Cond.getOpcode() == ISD::SETCC)
5140    Cond = LowerSETCC(Cond, DAG);
5141
5142  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5143  // setting operand in place of the X86ISD::SETCC.
5144  if (Cond.getOpcode() == X86ISD::SETCC) {
5145    CC = Cond.getOperand(0);
5146
5147    SDValue Cmp = Cond.getOperand(1);
5148    unsigned Opc = Cmp.getOpcode();
5149    MVT VT = Op.getValueType();
5150
5151    bool IllegalFPCMov = false;
5152    if (VT.isFloatingPoint() && !VT.isVector() &&
5153        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5154      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5155
5156    if ((Opc == X86ISD::CMP ||
5157         Opc == X86ISD::COMI ||
5158         Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
5159      Cond = Cmp;
5160      addTest = false;
5161    }
5162  }
5163
5164  if (addTest) {
5165    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5166    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
5167  }
5168
5169  const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(),
5170                                                    MVT::Flag);
5171  SmallVector<SDValue, 4> Ops;
5172  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5173  // condition is true.
5174  Ops.push_back(Op.getOperand(2));
5175  Ops.push_back(Op.getOperand(1));
5176  Ops.push_back(CC);
5177  Ops.push_back(Cond);
5178  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
5179}
5180
5181SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5182  bool addTest = true;
5183  SDValue Chain = Op.getOperand(0);
5184  SDValue Cond  = Op.getOperand(1);
5185  SDValue Dest  = Op.getOperand(2);
5186  SDValue CC;
5187
5188  if (Cond.getOpcode() == ISD::SETCC)
5189    Cond = LowerSETCC(Cond, DAG);
5190
5191  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5192  // setting operand in place of the X86ISD::SETCC.
5193  if (Cond.getOpcode() == X86ISD::SETCC) {
5194    CC = Cond.getOperand(0);
5195
5196    SDValue Cmp = Cond.getOperand(1);
5197    unsigned Opc = Cmp.getOpcode();
5198    if (Opc == X86ISD::CMP ||
5199        Opc == X86ISD::COMI ||
5200        Opc == X86ISD::UCOMI) {
5201      Cond = Cmp;
5202      addTest = false;
5203    }
5204  // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5205  // two branches instead of an explicit OR instruction with a
5206  // separate test.
5207  } else if (Cond.getOpcode() == ISD::OR &&
5208             Cond.hasOneUse() &&
5209             Cond.getOperand(0).getOpcode() == X86ISD::SETCC &&
5210             Cond.getOperand(0).hasOneUse() &&
5211             Cond.getOperand(1).getOpcode() == X86ISD::SETCC &&
5212             Cond.getOperand(1).hasOneUse()) {
5213    SDValue Cmp = Cond.getOperand(0).getOperand(1);
5214    unsigned Opc = Cmp.getOpcode();
5215    if (Cmp == Cond.getOperand(1).getOperand(1) &&
5216        (Opc == X86ISD::CMP ||
5217         Opc == X86ISD::COMI ||
5218         Opc == X86ISD::UCOMI)) {
5219      CC = Cond.getOperand(0).getOperand(0);
5220      Chain = DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
5221                          Chain, Dest, CC, Cmp);
5222      CC = Cond.getOperand(1).getOperand(0);
5223      Cond = Cmp;
5224      addTest = false;
5225    }
5226  // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5227  // two branches instead of an explicit AND instruction with a
5228  // separate test. However, we only do this if this block doesn't
5229  // have a fall-through edge, because this requires an explicit
5230  // jmp when the condition is false.
5231  } else if (Cond.getOpcode() == ISD::AND &&
5232             Cond.hasOneUse() &&
5233             Cond.getOperand(0).getOpcode() == X86ISD::SETCC &&
5234             Cond.getOperand(0).hasOneUse() &&
5235             Cond.getOperand(1).getOpcode() == X86ISD::SETCC &&
5236             Cond.getOperand(1).hasOneUse()) {
5237    SDValue Cmp = Cond.getOperand(0).getOperand(1);
5238    unsigned Opc = Cmp.getOpcode();
5239    if (Cmp == Cond.getOperand(1).getOperand(1) &&
5240        (Opc == X86ISD::CMP ||
5241         Opc == X86ISD::COMI ||
5242         Opc == X86ISD::UCOMI) &&
5243        Op.getNode()->hasOneUse()) {
5244      X86::CondCode CCode =
5245        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5246      CCode = X86::GetOppositeBranchCondition(CCode);
5247      CC = DAG.getConstant(CCode, MVT::i8);
5248      SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5249      // Look for an unconditional branch following this conditional branch.
5250      // We need this because we need to reverse the successors in order
5251      // to implement FCMP_OEQ.
5252      if (User.getOpcode() == ISD::BR) {
5253        SDValue FalseBB = User.getOperand(1);
5254        SDValue NewBR =
5255          DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5256        assert(NewBR == User);
5257        Dest = FalseBB;
5258
5259        Chain = DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
5260                            Chain, Dest, CC, Cmp);
5261        X86::CondCode CCode =
5262          (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5263        CCode = X86::GetOppositeBranchCondition(CCode);
5264        CC = DAG.getConstant(CCode, MVT::i8);
5265        Cond = Cmp;
5266        addTest = false;
5267      }
5268    }
5269  }
5270
5271  if (addTest) {
5272    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5273    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
5274  }
5275  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
5276                     Chain, Dest, CC, Cond);
5277}
5278
5279
5280// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5281// Calls to _alloca is needed to probe the stack when allocating more than 4k
5282// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5283// that the guard pages used by the OS virtual memory manager are allocated in
5284// correct sequence.
5285SDValue
5286X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5287                                           SelectionDAG &DAG) {
5288  assert(Subtarget->isTargetCygMing() &&
5289         "This should be used only on Cygwin/Mingw targets");
5290
5291  // Get the inputs.
5292  SDValue Chain = Op.getOperand(0);
5293  SDValue Size  = Op.getOperand(1);
5294  // FIXME: Ensure alignment here
5295
5296  SDValue Flag;
5297
5298  MVT IntPtr = getPointerTy();
5299  MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5300
5301  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5302
5303  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
5304  Flag = Chain.getValue(1);
5305
5306  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5307  SDValue Ops[] = { Chain,
5308                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5309                      DAG.getRegister(X86::EAX, IntPtr),
5310                      DAG.getRegister(X86StackPtr, SPTy),
5311                      Flag };
5312  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 5);
5313  Flag = Chain.getValue(1);
5314
5315  Chain = DAG.getCALLSEQ_END(Chain,
5316                             DAG.getIntPtrConstant(0, true),
5317                             DAG.getIntPtrConstant(0, true),
5318                             Flag);
5319
5320  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
5321
5322  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5323  return DAG.getMergeValues(Ops1, 2);
5324}
5325
5326SDValue
5327X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG,
5328                                           SDValue Chain,
5329                                           SDValue Dst, SDValue Src,
5330                                           SDValue Size, unsigned Align,
5331                                           const Value *DstSV,
5332                                           uint64_t DstSVOff) {
5333  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5334
5335  // If not DWORD aligned or size is more than the threshold, call the library.
5336  // The libc version is likely to be faster for these cases. It can use the
5337  // address value and run time information about the CPU.
5338  if ((Align & 3) != 0 ||
5339      !ConstantSize ||
5340      ConstantSize->getZExtValue() >
5341        getSubtarget()->getMaxInlineSizeThreshold()) {
5342    SDValue InFlag(0, 0);
5343
5344    // Check to see if there is a specialized entry-point for memory zeroing.
5345    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5346
5347    if (const char *bzeroEntry =  V &&
5348        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5349      MVT IntPtr = getPointerTy();
5350      const Type *IntPtrTy = TD->getIntPtrType();
5351      TargetLowering::ArgListTy Args;
5352      TargetLowering::ArgListEntry Entry;
5353      Entry.Node = Dst;
5354      Entry.Ty = IntPtrTy;
5355      Args.push_back(Entry);
5356      Entry.Node = Size;
5357      Args.push_back(Entry);
5358      std::pair<SDValue,SDValue> CallResult =
5359        LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
5360                    CallingConv::C, false,
5361                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG);
5362      return CallResult.second;
5363    }
5364
5365    // Otherwise have the target-independent code call memset.
5366    return SDValue();
5367  }
5368
5369  uint64_t SizeVal = ConstantSize->getZExtValue();
5370  SDValue InFlag(0, 0);
5371  MVT AVT;
5372  SDValue Count;
5373  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5374  unsigned BytesLeft = 0;
5375  bool TwoRepStos = false;
5376  if (ValC) {
5377    unsigned ValReg;
5378    uint64_t Val = ValC->getZExtValue() & 255;
5379
5380    // If the value is a constant, then we can potentially use larger sets.
5381    switch (Align & 3) {
5382    case 2:   // WORD aligned
5383      AVT = MVT::i16;
5384      ValReg = X86::AX;
5385      Val = (Val << 8) | Val;
5386      break;
5387    case 0:  // DWORD aligned
5388      AVT = MVT::i32;
5389      ValReg = X86::EAX;
5390      Val = (Val << 8)  | Val;
5391      Val = (Val << 16) | Val;
5392      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
5393        AVT = MVT::i64;
5394        ValReg = X86::RAX;
5395        Val = (Val << 32) | Val;
5396      }
5397      break;
5398    default:  // Byte aligned
5399      AVT = MVT::i8;
5400      ValReg = X86::AL;
5401      Count = DAG.getIntPtrConstant(SizeVal);
5402      break;
5403    }
5404
5405    if (AVT.bitsGT(MVT::i8)) {
5406      unsigned UBytes = AVT.getSizeInBits() / 8;
5407      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5408      BytesLeft = SizeVal % UBytes;
5409    }
5410
5411    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
5412                              InFlag);
5413    InFlag = Chain.getValue(1);
5414  } else {
5415    AVT = MVT::i8;
5416    Count  = DAG.getIntPtrConstant(SizeVal);
5417    Chain  = DAG.getCopyToReg(Chain, X86::AL, Src, InFlag);
5418    InFlag = Chain.getValue(1);
5419  }
5420
5421  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
5422                            Count, InFlag);
5423  InFlag = Chain.getValue(1);
5424  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
5425                            Dst, InFlag);
5426  InFlag = Chain.getValue(1);
5427
5428  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5429  SmallVector<SDValue, 8> Ops;
5430  Ops.push_back(Chain);
5431  Ops.push_back(DAG.getValueType(AVT));
5432  Ops.push_back(InFlag);
5433  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
5434
5435  if (TwoRepStos) {
5436    InFlag = Chain.getValue(1);
5437    Count  = Size;
5438    MVT CVT = Count.getValueType();
5439    SDValue Left = DAG.getNode(ISD::AND, CVT, Count,
5440                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5441    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
5442                              Left, InFlag);
5443    InFlag = Chain.getValue(1);
5444    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5445    Ops.clear();
5446    Ops.push_back(Chain);
5447    Ops.push_back(DAG.getValueType(MVT::i8));
5448    Ops.push_back(InFlag);
5449    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
5450  } else if (BytesLeft) {
5451    // Handle the last 1 - 7 bytes.
5452    unsigned Offset = SizeVal - BytesLeft;
5453    MVT AddrVT = Dst.getValueType();
5454    MVT SizeVT = Size.getValueType();
5455
5456    Chain = DAG.getMemset(Chain,
5457                          DAG.getNode(ISD::ADD, AddrVT, Dst,
5458                                      DAG.getConstant(Offset, AddrVT)),
5459                          Src,
5460                          DAG.getConstant(BytesLeft, SizeVT),
5461                          Align, DstSV, DstSVOff + Offset);
5462  }
5463
5464  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5465  return Chain;
5466}
5467
5468SDValue
5469X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG,
5470                                      SDValue Chain, SDValue Dst, SDValue Src,
5471                                      SDValue Size, unsigned Align,
5472                                      bool AlwaysInline,
5473                                      const Value *DstSV, uint64_t DstSVOff,
5474                                      const Value *SrcSV, uint64_t SrcSVOff) {
5475  // This requires the copy size to be a constant, preferrably
5476  // within a subtarget-specific limit.
5477  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5478  if (!ConstantSize)
5479    return SDValue();
5480  uint64_t SizeVal = ConstantSize->getZExtValue();
5481  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
5482    return SDValue();
5483
5484  /// If not DWORD aligned, call the library.
5485  if ((Align & 3) != 0)
5486    return SDValue();
5487
5488  // DWORD aligned
5489  MVT AVT = MVT::i32;
5490  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
5491    AVT = MVT::i64;
5492
5493  unsigned UBytes = AVT.getSizeInBits() / 8;
5494  unsigned CountVal = SizeVal / UBytes;
5495  SDValue Count = DAG.getIntPtrConstant(CountVal);
5496  unsigned BytesLeft = SizeVal % UBytes;
5497
5498  SDValue InFlag(0, 0);
5499  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
5500                            Count, InFlag);
5501  InFlag = Chain.getValue(1);
5502  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
5503                            Dst, InFlag);
5504  InFlag = Chain.getValue(1);
5505  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
5506                            Src, InFlag);
5507  InFlag = Chain.getValue(1);
5508
5509  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5510  SmallVector<SDValue, 8> Ops;
5511  Ops.push_back(Chain);
5512  Ops.push_back(DAG.getValueType(AVT));
5513  Ops.push_back(InFlag);
5514  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
5515
5516  SmallVector<SDValue, 4> Results;
5517  Results.push_back(RepMovs);
5518  if (BytesLeft) {
5519    // Handle the last 1 - 7 bytes.
5520    unsigned Offset = SizeVal - BytesLeft;
5521    MVT DstVT = Dst.getValueType();
5522    MVT SrcVT = Src.getValueType();
5523    MVT SizeVT = Size.getValueType();
5524    Results.push_back(DAG.getMemcpy(Chain,
5525                                    DAG.getNode(ISD::ADD, DstVT, Dst,
5526                                                DAG.getConstant(Offset, DstVT)),
5527                                    DAG.getNode(ISD::ADD, SrcVT, Src,
5528                                                DAG.getConstant(Offset, SrcVT)),
5529                                    DAG.getConstant(BytesLeft, SizeVT),
5530                                    Align, AlwaysInline,
5531                                    DstSV, DstSVOff + Offset,
5532                                    SrcSV, SrcSVOff + Offset));
5533  }
5534
5535  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Results[0], Results.size());
5536}
5537
5538/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
5539SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
5540  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5541  SDValue TheChain = N->getOperand(0);
5542  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
5543  if (Subtarget->is64Bit()) {
5544    SDValue rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
5545    SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
5546                                       MVT::i64, rax.getValue(2));
5547    SDValue Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
5548                                DAG.getConstant(32, MVT::i8));
5549    SDValue Ops[] = {
5550      DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
5551    };
5552
5553    return DAG.getMergeValues(Ops, 2).getNode();
5554  }
5555
5556  SDValue eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
5557  SDValue edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
5558                                       MVT::i32, eax.getValue(2));
5559  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
5560  SDValue Ops[] = { eax, edx };
5561  Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);
5562
5563  // Use a MERGE_VALUES to return the value and chain.
5564  Ops[1] = edx.getValue(1);
5565  return DAG.getMergeValues(Ops, 2).getNode();
5566}
5567
5568SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
5569  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5570
5571  if (!Subtarget->is64Bit()) {
5572    // vastart just stores the address of the VarArgsFrameIndex slot into the
5573    // memory location argument.
5574    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5575    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0);
5576  }
5577
5578  // __va_list_tag:
5579  //   gp_offset         (0 - 6 * 8)
5580  //   fp_offset         (48 - 48 + 8 * 16)
5581  //   overflow_arg_area (point to parameters coming in memory).
5582  //   reg_save_area
5583  SmallVector<SDValue, 8> MemOps;
5584  SDValue FIN = Op.getOperand(1);
5585  // Store gp_offset
5586  SDValue Store = DAG.getStore(Op.getOperand(0),
5587                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
5588                                 FIN, SV, 0);
5589  MemOps.push_back(Store);
5590
5591  // Store fp_offset
5592  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5593  Store = DAG.getStore(Op.getOperand(0),
5594                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
5595                       FIN, SV, 0);
5596  MemOps.push_back(Store);
5597
5598  // Store ptr to overflow_arg_area
5599  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5600  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5601  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0);
5602  MemOps.push_back(Store);
5603
5604  // Store ptr to reg_save_area.
5605  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
5606  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
5607  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0);
5608  MemOps.push_back(Store);
5609  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
5610}
5611
5612SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
5613  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5614  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
5615  SDValue Chain = Op.getOperand(0);
5616  SDValue SrcPtr = Op.getOperand(1);
5617  SDValue SrcSV = Op.getOperand(2);
5618
5619  assert(0 && "VAArgInst is not yet implemented for x86-64!");
5620  abort();
5621  return SDValue();
5622}
5623
5624SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
5625  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5626  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
5627  SDValue Chain = Op.getOperand(0);
5628  SDValue DstPtr = Op.getOperand(1);
5629  SDValue SrcPtr = Op.getOperand(2);
5630  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5631  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5632
5633  return DAG.getMemcpy(Chain, DstPtr, SrcPtr,
5634                       DAG.getIntPtrConstant(24), 8, false,
5635                       DstSV, 0, SrcSV, 0);
5636}
5637
5638SDValue
5639X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
5640  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5641  switch (IntNo) {
5642  default: return SDValue();    // Don't custom lower most intrinsics.
5643  // Comparison intrinsics.
5644  case Intrinsic::x86_sse_comieq_ss:
5645  case Intrinsic::x86_sse_comilt_ss:
5646  case Intrinsic::x86_sse_comile_ss:
5647  case Intrinsic::x86_sse_comigt_ss:
5648  case Intrinsic::x86_sse_comige_ss:
5649  case Intrinsic::x86_sse_comineq_ss:
5650  case Intrinsic::x86_sse_ucomieq_ss:
5651  case Intrinsic::x86_sse_ucomilt_ss:
5652  case Intrinsic::x86_sse_ucomile_ss:
5653  case Intrinsic::x86_sse_ucomigt_ss:
5654  case Intrinsic::x86_sse_ucomige_ss:
5655  case Intrinsic::x86_sse_ucomineq_ss:
5656  case Intrinsic::x86_sse2_comieq_sd:
5657  case Intrinsic::x86_sse2_comilt_sd:
5658  case Intrinsic::x86_sse2_comile_sd:
5659  case Intrinsic::x86_sse2_comigt_sd:
5660  case Intrinsic::x86_sse2_comige_sd:
5661  case Intrinsic::x86_sse2_comineq_sd:
5662  case Intrinsic::x86_sse2_ucomieq_sd:
5663  case Intrinsic::x86_sse2_ucomilt_sd:
5664  case Intrinsic::x86_sse2_ucomile_sd:
5665  case Intrinsic::x86_sse2_ucomigt_sd:
5666  case Intrinsic::x86_sse2_ucomige_sd:
5667  case Intrinsic::x86_sse2_ucomineq_sd: {
5668    unsigned Opc = 0;
5669    ISD::CondCode CC = ISD::SETCC_INVALID;
5670    switch (IntNo) {
5671    default: break;
5672    case Intrinsic::x86_sse_comieq_ss:
5673    case Intrinsic::x86_sse2_comieq_sd:
5674      Opc = X86ISD::COMI;
5675      CC = ISD::SETEQ;
5676      break;
5677    case Intrinsic::x86_sse_comilt_ss:
5678    case Intrinsic::x86_sse2_comilt_sd:
5679      Opc = X86ISD::COMI;
5680      CC = ISD::SETLT;
5681      break;
5682    case Intrinsic::x86_sse_comile_ss:
5683    case Intrinsic::x86_sse2_comile_sd:
5684      Opc = X86ISD::COMI;
5685      CC = ISD::SETLE;
5686      break;
5687    case Intrinsic::x86_sse_comigt_ss:
5688    case Intrinsic::x86_sse2_comigt_sd:
5689      Opc = X86ISD::COMI;
5690      CC = ISD::SETGT;
5691      break;
5692    case Intrinsic::x86_sse_comige_ss:
5693    case Intrinsic::x86_sse2_comige_sd:
5694      Opc = X86ISD::COMI;
5695      CC = ISD::SETGE;
5696      break;
5697    case Intrinsic::x86_sse_comineq_ss:
5698    case Intrinsic::x86_sse2_comineq_sd:
5699      Opc = X86ISD::COMI;
5700      CC = ISD::SETNE;
5701      break;
5702    case Intrinsic::x86_sse_ucomieq_ss:
5703    case Intrinsic::x86_sse2_ucomieq_sd:
5704      Opc = X86ISD::UCOMI;
5705      CC = ISD::SETEQ;
5706      break;
5707    case Intrinsic::x86_sse_ucomilt_ss:
5708    case Intrinsic::x86_sse2_ucomilt_sd:
5709      Opc = X86ISD::UCOMI;
5710      CC = ISD::SETLT;
5711      break;
5712    case Intrinsic::x86_sse_ucomile_ss:
5713    case Intrinsic::x86_sse2_ucomile_sd:
5714      Opc = X86ISD::UCOMI;
5715      CC = ISD::SETLE;
5716      break;
5717    case Intrinsic::x86_sse_ucomigt_ss:
5718    case Intrinsic::x86_sse2_ucomigt_sd:
5719      Opc = X86ISD::UCOMI;
5720      CC = ISD::SETGT;
5721      break;
5722    case Intrinsic::x86_sse_ucomige_ss:
5723    case Intrinsic::x86_sse2_ucomige_sd:
5724      Opc = X86ISD::UCOMI;
5725      CC = ISD::SETGE;
5726      break;
5727    case Intrinsic::x86_sse_ucomineq_ss:
5728    case Intrinsic::x86_sse2_ucomineq_sd:
5729      Opc = X86ISD::UCOMI;
5730      CC = ISD::SETNE;
5731      break;
5732    }
5733
5734    unsigned X86CC;
5735    SDValue LHS = Op.getOperand(1);
5736    SDValue RHS = Op.getOperand(2);
5737    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
5738
5739    SDValue Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
5740    SDValue SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
5741                                DAG.getConstant(X86CC, MVT::i8), Cond);
5742    return DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, SetCC);
5743  }
5744
5745  // Fix vector shift instructions where the last operand is a non-immediate
5746  // i32 value.
5747  case Intrinsic::x86_sse2_pslli_w:
5748  case Intrinsic::x86_sse2_pslli_d:
5749  case Intrinsic::x86_sse2_pslli_q:
5750  case Intrinsic::x86_sse2_psrli_w:
5751  case Intrinsic::x86_sse2_psrli_d:
5752  case Intrinsic::x86_sse2_psrli_q:
5753  case Intrinsic::x86_sse2_psrai_w:
5754  case Intrinsic::x86_sse2_psrai_d:
5755  case Intrinsic::x86_mmx_pslli_w:
5756  case Intrinsic::x86_mmx_pslli_d:
5757  case Intrinsic::x86_mmx_pslli_q:
5758  case Intrinsic::x86_mmx_psrli_w:
5759  case Intrinsic::x86_mmx_psrli_d:
5760  case Intrinsic::x86_mmx_psrli_q:
5761  case Intrinsic::x86_mmx_psrai_w:
5762  case Intrinsic::x86_mmx_psrai_d: {
5763    SDValue ShAmt = Op.getOperand(2);
5764    if (isa<ConstantSDNode>(ShAmt))
5765      return SDValue();
5766
5767    unsigned NewIntNo = 0;
5768    MVT ShAmtVT = MVT::v4i32;
5769    switch (IntNo) {
5770    case Intrinsic::x86_sse2_pslli_w:
5771      NewIntNo = Intrinsic::x86_sse2_psll_w;
5772      break;
5773    case Intrinsic::x86_sse2_pslli_d:
5774      NewIntNo = Intrinsic::x86_sse2_psll_d;
5775      break;
5776    case Intrinsic::x86_sse2_pslli_q:
5777      NewIntNo = Intrinsic::x86_sse2_psll_q;
5778      break;
5779    case Intrinsic::x86_sse2_psrli_w:
5780      NewIntNo = Intrinsic::x86_sse2_psrl_w;
5781      break;
5782    case Intrinsic::x86_sse2_psrli_d:
5783      NewIntNo = Intrinsic::x86_sse2_psrl_d;
5784      break;
5785    case Intrinsic::x86_sse2_psrli_q:
5786      NewIntNo = Intrinsic::x86_sse2_psrl_q;
5787      break;
5788    case Intrinsic::x86_sse2_psrai_w:
5789      NewIntNo = Intrinsic::x86_sse2_psra_w;
5790      break;
5791    case Intrinsic::x86_sse2_psrai_d:
5792      NewIntNo = Intrinsic::x86_sse2_psra_d;
5793      break;
5794    default: {
5795      ShAmtVT = MVT::v2i32;
5796      switch (IntNo) {
5797      case Intrinsic::x86_mmx_pslli_w:
5798        NewIntNo = Intrinsic::x86_mmx_psll_w;
5799        break;
5800      case Intrinsic::x86_mmx_pslli_d:
5801        NewIntNo = Intrinsic::x86_mmx_psll_d;
5802        break;
5803      case Intrinsic::x86_mmx_pslli_q:
5804        NewIntNo = Intrinsic::x86_mmx_psll_q;
5805        break;
5806      case Intrinsic::x86_mmx_psrli_w:
5807        NewIntNo = Intrinsic::x86_mmx_psrl_w;
5808        break;
5809      case Intrinsic::x86_mmx_psrli_d:
5810        NewIntNo = Intrinsic::x86_mmx_psrl_d;
5811        break;
5812      case Intrinsic::x86_mmx_psrli_q:
5813        NewIntNo = Intrinsic::x86_mmx_psrl_q;
5814        break;
5815      case Intrinsic::x86_mmx_psrai_w:
5816        NewIntNo = Intrinsic::x86_mmx_psra_w;
5817        break;
5818      case Intrinsic::x86_mmx_psrai_d:
5819        NewIntNo = Intrinsic::x86_mmx_psra_d;
5820        break;
5821      default: abort();  // Can't reach here.
5822      }
5823      break;
5824    }
5825    }
5826    MVT VT = Op.getValueType();
5827    ShAmt = DAG.getNode(ISD::BIT_CONVERT, VT,
5828                        DAG.getNode(ISD::SCALAR_TO_VECTOR, ShAmtVT, ShAmt));
5829    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
5830                       DAG.getConstant(NewIntNo, MVT::i32),
5831                       Op.getOperand(1), ShAmt);
5832  }
5833  }
5834}
5835
5836SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
5837  // Depths > 0 not supported yet!
5838  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5839    return SDValue();
5840
5841  // Just load the return address
5842  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
5843  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
5844}
5845
5846SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
5847  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5848  MFI->setFrameAddressIsTaken(true);
5849  MVT VT = Op.getValueType();
5850  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5851  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
5852  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), FrameReg, VT);
5853  while (Depth--)
5854    FrameAddr = DAG.getLoad(VT, DAG.getEntryNode(), FrameAddr, NULL, 0);
5855  return FrameAddr;
5856}
5857
5858SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
5859                                                     SelectionDAG &DAG) {
5860  return DAG.getIntPtrConstant(2*TD->getPointerSize());
5861}
5862
5863SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
5864{
5865  MachineFunction &MF = DAG.getMachineFunction();
5866  SDValue Chain     = Op.getOperand(0);
5867  SDValue Offset    = Op.getOperand(1);
5868  SDValue Handler   = Op.getOperand(2);
5869
5870  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
5871                                  getPointerTy());
5872  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
5873
5874  SDValue StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
5875                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
5876  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
5877  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
5878  Chain = DAG.getCopyToReg(Chain, StoreAddrReg, StoreAddr);
5879  MF.getRegInfo().addLiveOut(StoreAddrReg);
5880
5881  return DAG.getNode(X86ISD::EH_RETURN,
5882                     MVT::Other,
5883                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
5884}
5885
5886SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
5887                                             SelectionDAG &DAG) {
5888  SDValue Root = Op.getOperand(0);
5889  SDValue Trmp = Op.getOperand(1); // trampoline
5890  SDValue FPtr = Op.getOperand(2); // nested function
5891  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
5892
5893  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5894
5895  const X86InstrInfo *TII =
5896    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
5897
5898  if (Subtarget->is64Bit()) {
5899    SDValue OutChains[6];
5900
5901    // Large code-model.
5902
5903    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
5904    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
5905
5906    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
5907    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
5908
5909    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
5910
5911    // Load the pointer to the nested function into R11.
5912    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
5913    SDValue Addr = Trmp;
5914    OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5915                                TrmpAddr, 0);
5916
5917    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64));
5918    OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2);
5919
5920    // Load the 'nest' parameter value into R10.
5921    // R10 is specified in X86CallingConv.td
5922    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
5923    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64));
5924    OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5925                                TrmpAddr, 10);
5926
5927    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64));
5928    OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2);
5929
5930    // Jump to the nested function.
5931    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
5932    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64));
5933    OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5934                                TrmpAddr, 20);
5935
5936    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
5937    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64));
5938    OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr,
5939                                TrmpAddr, 22);
5940
5941    SDValue Ops[] =
5942      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) };
5943    return DAG.getMergeValues(Ops, 2);
5944  } else {
5945    const Function *Func =
5946      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
5947    unsigned CC = Func->getCallingConv();
5948    unsigned NestReg;
5949
5950    switch (CC) {
5951    default:
5952      assert(0 && "Unsupported calling convention");
5953    case CallingConv::C:
5954    case CallingConv::X86_StdCall: {
5955      // Pass 'nest' parameter in ECX.
5956      // Must be kept in sync with X86CallingConv.td
5957      NestReg = X86::ECX;
5958
5959      // Check that ECX wasn't needed by an 'inreg' parameter.
5960      const FunctionType *FTy = Func->getFunctionType();
5961      const AttrListPtr &Attrs = Func->getAttributes();
5962
5963      if (!Attrs.isEmpty() && !Func->isVarArg()) {
5964        unsigned InRegCount = 0;
5965        unsigned Idx = 1;
5966
5967        for (FunctionType::param_iterator I = FTy->param_begin(),
5968             E = FTy->param_end(); I != E; ++I, ++Idx)
5969          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
5970            // FIXME: should only count parameters that are lowered to integers.
5971            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
5972
5973        if (InRegCount > 2) {
5974          cerr << "Nest register in use - reduce number of inreg parameters!\n";
5975          abort();
5976        }
5977      }
5978      break;
5979    }
5980    case CallingConv::X86_FastCall:
5981    case CallingConv::Fast:
5982      // Pass 'nest' parameter in EAX.
5983      // Must be kept in sync with X86CallingConv.td
5984      NestReg = X86::EAX;
5985      break;
5986    }
5987
5988    SDValue OutChains[4];
5989    SDValue Addr, Disp;
5990
5991    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
5992    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
5993
5994    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
5995    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
5996    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
5997                                Trmp, TrmpAddr, 0);
5998
5999    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
6000    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1);
6001
6002    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6003    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
6004    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
6005                                TrmpAddr, 5, false, 1);
6006
6007    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
6008    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1);
6009
6010    SDValue Ops[] =
6011      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
6012    return DAG.getMergeValues(Ops, 2);
6013  }
6014}
6015
6016SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6017  /*
6018   The rounding mode is in bits 11:10 of FPSR, and has the following
6019   settings:
6020     00 Round to nearest
6021     01 Round to -inf
6022     10 Round to +inf
6023     11 Round to 0
6024
6025  FLT_ROUNDS, on the other hand, expects the following:
6026    -1 Undefined
6027     0 Round to 0
6028     1 Round to nearest
6029     2 Round to +inf
6030     3 Round to -inf
6031
6032  To perform the conversion, we do:
6033    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6034  */
6035
6036  MachineFunction &MF = DAG.getMachineFunction();
6037  const TargetMachine &TM = MF.getTarget();
6038  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6039  unsigned StackAlignment = TFI.getStackAlignment();
6040  MVT VT = Op.getValueType();
6041
6042  // Save FP Control Word to stack slot
6043  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6044  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6045
6046  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
6047                              DAG.getEntryNode(), StackSlot);
6048
6049  // Load FP Control Word from stack slot
6050  SDValue CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
6051
6052  // Transform as necessary
6053  SDValue CWD1 =
6054    DAG.getNode(ISD::SRL, MVT::i16,
6055                DAG.getNode(ISD::AND, MVT::i16,
6056                            CWD, DAG.getConstant(0x800, MVT::i16)),
6057                DAG.getConstant(11, MVT::i8));
6058  SDValue CWD2 =
6059    DAG.getNode(ISD::SRL, MVT::i16,
6060                DAG.getNode(ISD::AND, MVT::i16,
6061                            CWD, DAG.getConstant(0x400, MVT::i16)),
6062                DAG.getConstant(9, MVT::i8));
6063
6064  SDValue RetVal =
6065    DAG.getNode(ISD::AND, MVT::i16,
6066                DAG.getNode(ISD::ADD, MVT::i16,
6067                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
6068                            DAG.getConstant(1, MVT::i16)),
6069                DAG.getConstant(3, MVT::i16));
6070
6071
6072  return DAG.getNode((VT.getSizeInBits() < 16 ?
6073                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
6074}
6075
6076SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6077  MVT VT = Op.getValueType();
6078  MVT OpVT = VT;
6079  unsigned NumBits = VT.getSizeInBits();
6080
6081  Op = Op.getOperand(0);
6082  if (VT == MVT::i8) {
6083    // Zero extend to i32 since there is not an i8 bsr.
6084    OpVT = MVT::i32;
6085    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
6086  }
6087
6088  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6089  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6090  Op = DAG.getNode(X86ISD::BSR, VTs, Op);
6091
6092  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6093  SmallVector<SDValue, 4> Ops;
6094  Ops.push_back(Op);
6095  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6096  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6097  Ops.push_back(Op.getValue(1));
6098  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
6099
6100  // Finally xor with NumBits-1.
6101  Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6102
6103  if (VT == MVT::i8)
6104    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
6105  return Op;
6106}
6107
6108SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6109  MVT VT = Op.getValueType();
6110  MVT OpVT = VT;
6111  unsigned NumBits = VT.getSizeInBits();
6112
6113  Op = Op.getOperand(0);
6114  if (VT == MVT::i8) {
6115    OpVT = MVT::i32;
6116    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
6117  }
6118
6119  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6120  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6121  Op = DAG.getNode(X86ISD::BSF, VTs, Op);
6122
6123  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6124  SmallVector<SDValue, 4> Ops;
6125  Ops.push_back(Op);
6126  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6127  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6128  Ops.push_back(Op.getValue(1));
6129  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
6130
6131  if (VT == MVT::i8)
6132    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
6133  return Op;
6134}
6135
6136SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6137  MVT T = Op.getValueType();
6138  unsigned Reg = 0;
6139  unsigned size = 0;
6140  switch(T.getSimpleVT()) {
6141  default:
6142    assert(false && "Invalid value type!");
6143  case MVT::i8:  Reg = X86::AL;  size = 1; break;
6144  case MVT::i16: Reg = X86::AX;  size = 2; break;
6145  case MVT::i32: Reg = X86::EAX; size = 4; break;
6146  case MVT::i64:
6147    if (Subtarget->is64Bit()) {
6148      Reg = X86::RAX; size = 8;
6149    } else //Should go away when LegalizeType stuff lands
6150      return SDValue(ExpandATOMIC_CMP_SWAP(Op.getNode(), DAG), 0);
6151    break;
6152  };
6153  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg,
6154                                    Op.getOperand(2), SDValue());
6155  SDValue Ops[] = { cpIn.getValue(0),
6156                    Op.getOperand(1),
6157                    Op.getOperand(3),
6158                    DAG.getTargetConstant(size, MVT::i8),
6159                    cpIn.getValue(1) };
6160  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6161  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5);
6162  SDValue cpOut =
6163    DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1));
6164  return cpOut;
6165}
6166
6167SDNode* X86TargetLowering::ExpandATOMIC_CMP_SWAP(SDNode* Op,
6168                                                 SelectionDAG &DAG) {
6169  MVT T = Op->getValueType(0);
6170  assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
6171  SDValue cpInL, cpInH;
6172  cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
6173                      DAG.getConstant(0, MVT::i32));
6174  cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
6175                      DAG.getConstant(1, MVT::i32));
6176  cpInL = DAG.getCopyToReg(Op->getOperand(0), X86::EAX,
6177                           cpInL, SDValue());
6178  cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX,
6179                           cpInH, cpInL.getValue(1));
6180  SDValue swapInL, swapInH;
6181  swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
6182                        DAG.getConstant(0, MVT::i32));
6183  swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
6184                        DAG.getConstant(1, MVT::i32));
6185  swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX,
6186                             swapInL, cpInH.getValue(1));
6187  swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX,
6188                             swapInH, swapInL.getValue(1));
6189  SDValue Ops[] = { swapInH.getValue(0),
6190                    Op->getOperand(1),
6191                    swapInH.getValue(1) };
6192  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6193  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3);
6194  SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32,
6195                                        Result.getValue(1));
6196  SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32,
6197                                        cpOutL.getValue(2));
6198  SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
6199  SDValue ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2);
6200  SDValue Vals[2] = { ResultVal, cpOutH.getValue(1) };
6201  return DAG.getMergeValues(Vals, 2).getNode();
6202}
6203
6204SDValue X86TargetLowering::LowerATOMIC_BINARY_64(SDValue Op,
6205                                                 SelectionDAG &DAG,
6206                                                 unsigned NewOp) {
6207  SDNode *Node = Op.getNode();
6208  MVT T = Node->getValueType(0);
6209  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
6210
6211  SDValue Chain = Node->getOperand(0);
6212  SDValue In1 = Node->getOperand(1);
6213  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
6214                             Node->getOperand(2), DAG.getIntPtrConstant(0));
6215  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
6216                             Node->getOperand(2), DAG.getIntPtrConstant(1));
6217  // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6218  // have a MemOperand.  Pass the info through as a normal operand.
6219  SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
6220  SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
6221  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6222  SDValue Result = DAG.getNode(NewOp, Tys, Ops, 5);
6223  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
6224  SDValue ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2);
6225  SDValue Vals[2] = { ResultVal, Result.getValue(2) };
6226  return SDValue(DAG.getMergeValues(Vals, 2).getNode(), 0);
6227}
6228
6229SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6230  SDNode *Node = Op.getNode();
6231  MVT T = Node->getValueType(0);
6232  SDValue negOp = DAG.getNode(ISD::SUB, T,
6233                                DAG.getConstant(0, T), Node->getOperand(2));
6234  return DAG.getAtomic((Op.getOpcode()==ISD::ATOMIC_LOAD_SUB_8 ?
6235                                        ISD::ATOMIC_LOAD_ADD_8 :
6236                        Op.getOpcode()==ISD::ATOMIC_LOAD_SUB_16 ?
6237                                        ISD::ATOMIC_LOAD_ADD_16 :
6238                        Op.getOpcode()==ISD::ATOMIC_LOAD_SUB_32 ?
6239                                        ISD::ATOMIC_LOAD_ADD_32 :
6240                                        ISD::ATOMIC_LOAD_ADD_64),
6241                       Node->getOperand(0),
6242                       Node->getOperand(1), negOp,
6243                       cast<AtomicSDNode>(Node)->getSrcValue(),
6244                       cast<AtomicSDNode>(Node)->getAlignment());
6245}
6246
6247/// LowerOperation - Provide custom lowering hooks for some operations.
6248///
6249SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6250  switch (Op.getOpcode()) {
6251  default: assert(0 && "Should not custom lower this!");
6252  case ISD::ATOMIC_CMP_SWAP_8:
6253  case ISD::ATOMIC_CMP_SWAP_16:
6254  case ISD::ATOMIC_CMP_SWAP_32:
6255  case ISD::ATOMIC_CMP_SWAP_64: return LowerCMP_SWAP(Op,DAG);
6256  case ISD::ATOMIC_LOAD_SUB_8:
6257  case ISD::ATOMIC_LOAD_SUB_16:
6258  case ISD::ATOMIC_LOAD_SUB_32: return LowerLOAD_SUB(Op,DAG);
6259  case ISD::ATOMIC_LOAD_SUB_64: return (Subtarget->is64Bit()) ?
6260                                        LowerLOAD_SUB(Op,DAG) :
6261                                        LowerATOMIC_BINARY_64(Op,DAG,
6262                                        X86ISD::ATOMSUB64_DAG);
6263  case ISD::ATOMIC_LOAD_AND_64: return LowerATOMIC_BINARY_64(Op,DAG,
6264                                        X86ISD::ATOMAND64_DAG);
6265  case ISD::ATOMIC_LOAD_OR_64:  return LowerATOMIC_BINARY_64(Op, DAG,
6266                                        X86ISD::ATOMOR64_DAG);
6267  case ISD::ATOMIC_LOAD_XOR_64: return LowerATOMIC_BINARY_64(Op,DAG,
6268                                        X86ISD::ATOMXOR64_DAG);
6269  case ISD::ATOMIC_LOAD_NAND_64:return LowerATOMIC_BINARY_64(Op,DAG,
6270                                        X86ISD::ATOMNAND64_DAG);
6271  case ISD::ATOMIC_LOAD_ADD_64: return LowerATOMIC_BINARY_64(Op,DAG,
6272                                        X86ISD::ATOMADD64_DAG);
6273  case ISD::ATOMIC_SWAP_64:     return LowerATOMIC_BINARY_64(Op,DAG,
6274                                        X86ISD::ATOMSWAP64_DAG);
6275  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
6276  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
6277  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6278  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
6279  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
6280  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
6281  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
6282  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
6283  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
6284  case ISD::SHL_PARTS:
6285  case ISD::SRA_PARTS:
6286  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
6287  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
6288  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
6289  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
6290  case ISD::FABS:               return LowerFABS(Op, DAG);
6291  case ISD::FNEG:               return LowerFNEG(Op, DAG);
6292  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
6293  case ISD::SETCC:              return LowerSETCC(Op, DAG);
6294  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
6295  case ISD::SELECT:             return LowerSELECT(Op, DAG);
6296  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
6297  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
6298  case ISD::CALL:               return LowerCALL(Op, DAG);
6299  case ISD::RET:                return LowerRET(Op, DAG);
6300  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
6301  case ISD::VASTART:            return LowerVASTART(Op, DAG);
6302  case ISD::VAARG:              return LowerVAARG(Op, DAG);
6303  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
6304  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6305  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
6306  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
6307  case ISD::FRAME_TO_ARGS_OFFSET:
6308                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6309  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6310  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
6311  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
6312  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
6313  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
6314  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
6315
6316  // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
6317  case ISD::READCYCLECOUNTER:
6318    return SDValue(ExpandREADCYCLECOUNTER(Op.getNode(), DAG), 0);
6319  }
6320}
6321
6322/// ReplaceNodeResults - Replace a node with an illegal result type
6323/// with a new node built out of custom code.
6324SDNode *X86TargetLowering::ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) {
6325  switch (N->getOpcode()) {
6326  default:
6327    return X86TargetLowering::LowerOperation(SDValue (N, 0), DAG).getNode();
6328  case ISD::FP_TO_SINT:         return ExpandFP_TO_SINT(N, DAG);
6329  case ISD::READCYCLECOUNTER:   return ExpandREADCYCLECOUNTER(N, DAG);
6330  case ISD::ATOMIC_CMP_SWAP_64: return ExpandATOMIC_CMP_SWAP(N, DAG);
6331  }
6332}
6333
6334const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
6335  switch (Opcode) {
6336  default: return NULL;
6337  case X86ISD::BSF:                return "X86ISD::BSF";
6338  case X86ISD::BSR:                return "X86ISD::BSR";
6339  case X86ISD::SHLD:               return "X86ISD::SHLD";
6340  case X86ISD::SHRD:               return "X86ISD::SHRD";
6341  case X86ISD::FAND:               return "X86ISD::FAND";
6342  case X86ISD::FOR:                return "X86ISD::FOR";
6343  case X86ISD::FXOR:               return "X86ISD::FXOR";
6344  case X86ISD::FSRL:               return "X86ISD::FSRL";
6345  case X86ISD::FILD:               return "X86ISD::FILD";
6346  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
6347  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
6348  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
6349  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
6350  case X86ISD::FLD:                return "X86ISD::FLD";
6351  case X86ISD::FST:                return "X86ISD::FST";
6352  case X86ISD::CALL:               return "X86ISD::CALL";
6353  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
6354  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
6355  case X86ISD::CMP:                return "X86ISD::CMP";
6356  case X86ISD::COMI:               return "X86ISD::COMI";
6357  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
6358  case X86ISD::SETCC:              return "X86ISD::SETCC";
6359  case X86ISD::CMOV:               return "X86ISD::CMOV";
6360  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
6361  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
6362  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
6363  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
6364  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
6365  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
6366  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
6367  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
6368  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
6369  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
6370  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
6371  case X86ISD::FMAX:               return "X86ISD::FMAX";
6372  case X86ISD::FMIN:               return "X86ISD::FMIN";
6373  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
6374  case X86ISD::FRCP:               return "X86ISD::FRCP";
6375  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
6376  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
6377  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
6378  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
6379  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
6380  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
6381  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
6382  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
6383  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
6384  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
6385  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
6386  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
6387  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
6388  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
6389  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
6390  case X86ISD::VSHL:               return "X86ISD::VSHL";
6391  case X86ISD::VSRL:               return "X86ISD::VSRL";
6392  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
6393  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
6394  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
6395  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
6396  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
6397  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
6398  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
6399  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
6400  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
6401  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
6402  }
6403}
6404
6405// isLegalAddressingMode - Return true if the addressing mode represented
6406// by AM is legal for this target, for a load/store of the specified type.
6407bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6408                                              const Type *Ty) const {
6409  // X86 supports extremely general addressing modes.
6410
6411  // X86 allows a sign-extended 32-bit immediate field as a displacement.
6412  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
6413    return false;
6414
6415  if (AM.BaseGV) {
6416    // We can only fold this if we don't need an extra load.
6417    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
6418      return false;
6419
6420    // X86-64 only supports addr of globals in small code model.
6421    if (Subtarget->is64Bit()) {
6422      if (getTargetMachine().getCodeModel() != CodeModel::Small)
6423        return false;
6424      // If lower 4G is not available, then we must use rip-relative addressing.
6425      if (AM.BaseOffs || AM.Scale > 1)
6426        return false;
6427    }
6428  }
6429
6430  switch (AM.Scale) {
6431  case 0:
6432  case 1:
6433  case 2:
6434  case 4:
6435  case 8:
6436    // These scales always work.
6437    break;
6438  case 3:
6439  case 5:
6440  case 9:
6441    // These scales are formed with basereg+scalereg.  Only accept if there is
6442    // no basereg yet.
6443    if (AM.HasBaseReg)
6444      return false;
6445    break;
6446  default:  // Other stuff never works.
6447    return false;
6448  }
6449
6450  return true;
6451}
6452
6453
6454bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
6455  if (!Ty1->isInteger() || !Ty2->isInteger())
6456    return false;
6457  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6458  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6459  if (NumBits1 <= NumBits2)
6460    return false;
6461  return Subtarget->is64Bit() || NumBits1 < 64;
6462}
6463
6464bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
6465  if (!VT1.isInteger() || !VT2.isInteger())
6466    return false;
6467  unsigned NumBits1 = VT1.getSizeInBits();
6468  unsigned NumBits2 = VT2.getSizeInBits();
6469  if (NumBits1 <= NumBits2)
6470    return false;
6471  return Subtarget->is64Bit() || NumBits1 < 64;
6472}
6473
6474/// isShuffleMaskLegal - Targets can use this to indicate that they only
6475/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6476/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6477/// are assumed to be legal.
6478bool
6479X86TargetLowering::isShuffleMaskLegal(SDValue Mask, MVT VT) const {
6480  // Only do shuffles on 128-bit vector types for now.
6481  if (VT.getSizeInBits() == 64) return false;
6482  return (Mask.getNode()->getNumOperands() <= 4 ||
6483          isIdentityMask(Mask.getNode()) ||
6484          isIdentityMask(Mask.getNode(), true) ||
6485          isSplatMask(Mask.getNode())  ||
6486          isPSHUFHW_PSHUFLWMask(Mask.getNode()) ||
6487          X86::isUNPCKLMask(Mask.getNode()) ||
6488          X86::isUNPCKHMask(Mask.getNode()) ||
6489          X86::isUNPCKL_v_undef_Mask(Mask.getNode()) ||
6490          X86::isUNPCKH_v_undef_Mask(Mask.getNode()));
6491}
6492
6493bool
6494X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDValue> &BVOps,
6495                                          MVT EVT, SelectionDAG &DAG) const {
6496  unsigned NumElts = BVOps.size();
6497  // Only do shuffles on 128-bit vector types for now.
6498  if (EVT.getSizeInBits() * NumElts == 64) return false;
6499  if (NumElts == 2) return true;
6500  if (NumElts == 4) {
6501    return (isMOVLMask(&BVOps[0], 4)  ||
6502            isCommutedMOVL(&BVOps[0], 4, true) ||
6503            isSHUFPMask(&BVOps[0], 4) ||
6504            isCommutedSHUFP(&BVOps[0], 4));
6505  }
6506  return false;
6507}
6508
6509//===----------------------------------------------------------------------===//
6510//                           X86 Scheduler Hooks
6511//===----------------------------------------------------------------------===//
6512
6513// private utility function
6514MachineBasicBlock *
6515X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
6516                                                       MachineBasicBlock *MBB,
6517                                                       unsigned regOpc,
6518                                                       unsigned immOpc,
6519                                                       unsigned LoadOpc,
6520                                                       unsigned CXchgOpc,
6521                                                       unsigned copyOpc,
6522                                                       unsigned notOpc,
6523                                                       unsigned EAXreg,
6524                                                       TargetRegisterClass *RC,
6525                                                       bool invSrc) {
6526  // For the atomic bitwise operator, we generate
6527  //   thisMBB:
6528  //   newMBB:
6529  //     ld  t1 = [bitinstr.addr]
6530  //     op  t2 = t1, [bitinstr.val]
6531  //     mov EAX = t1
6532  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6533  //     bz  newMBB
6534  //     fallthrough -->nextMBB
6535  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6536  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6537  MachineFunction::iterator MBBIter = MBB;
6538  ++MBBIter;
6539
6540  /// First build the CFG
6541  MachineFunction *F = MBB->getParent();
6542  MachineBasicBlock *thisMBB = MBB;
6543  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6544  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6545  F->insert(MBBIter, newMBB);
6546  F->insert(MBBIter, nextMBB);
6547
6548  // Move all successors to thisMBB to nextMBB
6549  nextMBB->transferSuccessors(thisMBB);
6550
6551  // Update thisMBB to fall through to newMBB
6552  thisMBB->addSuccessor(newMBB);
6553
6554  // newMBB jumps to itself and fall through to nextMBB
6555  newMBB->addSuccessor(nextMBB);
6556  newMBB->addSuccessor(newMBB);
6557
6558  // Insert instructions into newMBB based on incoming instruction
6559  assert(bInstr->getNumOperands() < 8 && "unexpected number of operands");
6560  MachineOperand& destOper = bInstr->getOperand(0);
6561  MachineOperand* argOpers[6];
6562  int numArgs = bInstr->getNumOperands() - 1;
6563  for (int i=0; i < numArgs; ++i)
6564    argOpers[i] = &bInstr->getOperand(i+1);
6565
6566  // x86 address has 4 operands: base, index, scale, and displacement
6567  int lastAddrIndx = 3; // [0,3]
6568  int valArgIndx = 4;
6569
6570  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
6571  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(LoadOpc), t1);
6572  for (int i=0; i <= lastAddrIndx; ++i)
6573    (*MIB).addOperand(*argOpers[i]);
6574
6575  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
6576  if (invSrc) {
6577    MIB = BuildMI(newMBB, TII->get(notOpc), tt).addReg(t1);
6578  }
6579  else
6580    tt = t1;
6581
6582  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
6583  assert((argOpers[valArgIndx]->isReg() ||
6584          argOpers[valArgIndx]->isImm()) &&
6585         "invalid operand");
6586  if (argOpers[valArgIndx]->isReg())
6587    MIB = BuildMI(newMBB, TII->get(regOpc), t2);
6588  else
6589    MIB = BuildMI(newMBB, TII->get(immOpc), t2);
6590  MIB.addReg(tt);
6591  (*MIB).addOperand(*argOpers[valArgIndx]);
6592
6593  MIB = BuildMI(newMBB, TII->get(copyOpc), EAXreg);
6594  MIB.addReg(t1);
6595
6596  MIB = BuildMI(newMBB, TII->get(CXchgOpc));
6597  for (int i=0; i <= lastAddrIndx; ++i)
6598    (*MIB).addOperand(*argOpers[i]);
6599  MIB.addReg(t2);
6600  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6601  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
6602
6603  MIB = BuildMI(newMBB, TII->get(copyOpc), destOper.getReg());
6604  MIB.addReg(EAXreg);
6605
6606  // insert branch
6607  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6608
6609  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
6610  return nextMBB;
6611}
6612
6613// private utility function:  64 bit atomics on 32 bit host.
6614MachineBasicBlock *
6615X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
6616                                                       MachineBasicBlock *MBB,
6617                                                       unsigned regOpcL,
6618                                                       unsigned regOpcH,
6619                                                       unsigned immOpcL,
6620                                                       unsigned immOpcH,
6621                                                       bool invSrc) {
6622  // For the atomic bitwise operator, we generate
6623  //   thisMBB (instructions are in pairs, except cmpxchg8b)
6624  //     ld t1,t2 = [bitinstr.addr]
6625  //   newMBB:
6626  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
6627  //     op  t5, t6 <- out1, out2, [bitinstr.val]
6628  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
6629  //     mov ECX, EBX <- t5, t6
6630  //     mov EAX, EDX <- t1, t2
6631  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
6632  //     mov t3, t4 <- EAX, EDX
6633  //     bz  newMBB
6634  //     result in out1, out2
6635  //     fallthrough -->nextMBB
6636
6637  const TargetRegisterClass *RC = X86::GR32RegisterClass;
6638  const unsigned LoadOpc = X86::MOV32rm;
6639  const unsigned copyOpc = X86::MOV32rr;
6640  const unsigned NotOpc = X86::NOT32r;
6641  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6642  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6643  MachineFunction::iterator MBBIter = MBB;
6644  ++MBBIter;
6645
6646  /// First build the CFG
6647  MachineFunction *F = MBB->getParent();
6648  MachineBasicBlock *thisMBB = MBB;
6649  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6650  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6651  F->insert(MBBIter, newMBB);
6652  F->insert(MBBIter, nextMBB);
6653
6654  // Move all successors to thisMBB to nextMBB
6655  nextMBB->transferSuccessors(thisMBB);
6656
6657  // Update thisMBB to fall through to newMBB
6658  thisMBB->addSuccessor(newMBB);
6659
6660  // newMBB jumps to itself and fall through to nextMBB
6661  newMBB->addSuccessor(nextMBB);
6662  newMBB->addSuccessor(newMBB);
6663
6664  // Insert instructions into newMBB based on incoming instruction
6665  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
6666  assert(bInstr->getNumOperands() < 18 && "unexpected number of operands");
6667  MachineOperand& dest1Oper = bInstr->getOperand(0);
6668  MachineOperand& dest2Oper = bInstr->getOperand(1);
6669  MachineOperand* argOpers[6];
6670  for (int i=0; i < 6; ++i)
6671    argOpers[i] = &bInstr->getOperand(i+2);
6672
6673  // x86 address has 4 operands: base, index, scale, and displacement
6674  int lastAddrIndx = 3; // [0,3]
6675
6676  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
6677  MachineInstrBuilder MIB = BuildMI(thisMBB, TII->get(LoadOpc), t1);
6678  for (int i=0; i <= lastAddrIndx; ++i)
6679    (*MIB).addOperand(*argOpers[i]);
6680  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
6681  MIB = BuildMI(thisMBB, TII->get(LoadOpc), t2);
6682  // add 4 to displacement.
6683  for (int i=0; i <= lastAddrIndx-1; ++i)
6684    (*MIB).addOperand(*argOpers[i]);
6685  MachineOperand newOp3 = *(argOpers[3]);
6686  if (newOp3.isImm())
6687    newOp3.setImm(newOp3.getImm()+4);
6688  else
6689    newOp3.setOffset(newOp3.getOffset()+4);
6690  (*MIB).addOperand(newOp3);
6691
6692  // t3/4 are defined later, at the bottom of the loop
6693  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
6694  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
6695  BuildMI(newMBB, TII->get(X86::PHI), dest1Oper.getReg())
6696    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
6697  BuildMI(newMBB, TII->get(X86::PHI), dest2Oper.getReg())
6698    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
6699
6700  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
6701  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
6702  if (invSrc) {
6703    MIB = BuildMI(newMBB, TII->get(NotOpc), tt1).addReg(t1);
6704    MIB = BuildMI(newMBB, TII->get(NotOpc), tt2).addReg(t2);
6705  } else {
6706    tt1 = t1;
6707    tt2 = t2;
6708  }
6709
6710  assert((argOpers[4]->isReg() || argOpers[4]->isImm()) &&
6711         "invalid operand");
6712  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
6713  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
6714  if (argOpers[4]->isReg())
6715    MIB = BuildMI(newMBB, TII->get(regOpcL), t5);
6716  else
6717    MIB = BuildMI(newMBB, TII->get(immOpcL), t5);
6718  if (regOpcL != X86::MOV32rr)
6719    MIB.addReg(tt1);
6720  (*MIB).addOperand(*argOpers[4]);
6721  assert(argOpers[5]->isReg() == argOpers[4]->isReg());
6722  assert(argOpers[5]->isImm() == argOpers[4]->isImm());
6723  if (argOpers[5]->isReg())
6724    MIB = BuildMI(newMBB, TII->get(regOpcH), t6);
6725  else
6726    MIB = BuildMI(newMBB, TII->get(immOpcH), t6);
6727  if (regOpcH != X86::MOV32rr)
6728    MIB.addReg(tt2);
6729  (*MIB).addOperand(*argOpers[5]);
6730
6731  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::EAX);
6732  MIB.addReg(t1);
6733  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::EDX);
6734  MIB.addReg(t2);
6735
6736  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::EBX);
6737  MIB.addReg(t5);
6738  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::ECX);
6739  MIB.addReg(t6);
6740
6741  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG8B));
6742  for (int i=0; i <= lastAddrIndx; ++i)
6743    (*MIB).addOperand(*argOpers[i]);
6744
6745  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6746  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
6747
6748  MIB = BuildMI(newMBB, TII->get(copyOpc), t3);
6749  MIB.addReg(X86::EAX);
6750  MIB = BuildMI(newMBB, TII->get(copyOpc), t4);
6751  MIB.addReg(X86::EDX);
6752
6753  // insert branch
6754  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6755
6756  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
6757  return nextMBB;
6758}
6759
6760// private utility function
6761MachineBasicBlock *
6762X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
6763                                                      MachineBasicBlock *MBB,
6764                                                      unsigned cmovOpc) {
6765  // For the atomic min/max operator, we generate
6766  //   thisMBB:
6767  //   newMBB:
6768  //     ld t1 = [min/max.addr]
6769  //     mov t2 = [min/max.val]
6770  //     cmp  t1, t2
6771  //     cmov[cond] t2 = t1
6772  //     mov EAX = t1
6773  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6774  //     bz   newMBB
6775  //     fallthrough -->nextMBB
6776  //
6777  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6778  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6779  MachineFunction::iterator MBBIter = MBB;
6780  ++MBBIter;
6781
6782  /// First build the CFG
6783  MachineFunction *F = MBB->getParent();
6784  MachineBasicBlock *thisMBB = MBB;
6785  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6786  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6787  F->insert(MBBIter, newMBB);
6788  F->insert(MBBIter, nextMBB);
6789
6790  // Move all successors to thisMBB to nextMBB
6791  nextMBB->transferSuccessors(thisMBB);
6792
6793  // Update thisMBB to fall through to newMBB
6794  thisMBB->addSuccessor(newMBB);
6795
6796  // newMBB jumps to newMBB and fall through to nextMBB
6797  newMBB->addSuccessor(nextMBB);
6798  newMBB->addSuccessor(newMBB);
6799
6800  // Insert instructions into newMBB based on incoming instruction
6801  assert(mInstr->getNumOperands() < 8 && "unexpected number of operands");
6802  MachineOperand& destOper = mInstr->getOperand(0);
6803  MachineOperand* argOpers[6];
6804  int numArgs = mInstr->getNumOperands() - 1;
6805  for (int i=0; i < numArgs; ++i)
6806    argOpers[i] = &mInstr->getOperand(i+1);
6807
6808  // x86 address has 4 operands: base, index, scale, and displacement
6809  int lastAddrIndx = 3; // [0,3]
6810  int valArgIndx = 4;
6811
6812  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6813  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1);
6814  for (int i=0; i <= lastAddrIndx; ++i)
6815    (*MIB).addOperand(*argOpers[i]);
6816
6817  // We only support register and immediate values
6818  assert((argOpers[valArgIndx]->isReg() ||
6819          argOpers[valArgIndx]->isImm()) &&
6820         "invalid operand");
6821
6822  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6823  if (argOpers[valArgIndx]->isReg())
6824    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
6825  else
6826    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
6827  (*MIB).addOperand(*argOpers[valArgIndx]);
6828
6829  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX);
6830  MIB.addReg(t1);
6831
6832  MIB = BuildMI(newMBB, TII->get(X86::CMP32rr));
6833  MIB.addReg(t1);
6834  MIB.addReg(t2);
6835
6836  // Generate movc
6837  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6838  MIB = BuildMI(newMBB, TII->get(cmovOpc),t3);
6839  MIB.addReg(t2);
6840  MIB.addReg(t1);
6841
6842  // Cmp and exchange if none has modified the memory location
6843  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32));
6844  for (int i=0; i <= lastAddrIndx; ++i)
6845    (*MIB).addOperand(*argOpers[i]);
6846  MIB.addReg(t3);
6847  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6848  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
6849
6850  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg());
6851  MIB.addReg(X86::EAX);
6852
6853  // insert branch
6854  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6855
6856  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
6857  return nextMBB;
6858}
6859
6860
6861MachineBasicBlock *
6862X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6863                                               MachineBasicBlock *BB) {
6864  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6865  switch (MI->getOpcode()) {
6866  default: assert(false && "Unexpected instr type to insert");
6867  case X86::CMOV_FR32:
6868  case X86::CMOV_FR64:
6869  case X86::CMOV_V4F32:
6870  case X86::CMOV_V2F64:
6871  case X86::CMOV_V2I64: {
6872    // To "insert" a SELECT_CC instruction, we actually have to insert the
6873    // diamond control-flow pattern.  The incoming instruction knows the
6874    // destination vreg to set, the condition code register to branch on, the
6875    // true/false values to select between, and a branch opcode to use.
6876    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6877    MachineFunction::iterator It = BB;
6878    ++It;
6879
6880    //  thisMBB:
6881    //  ...
6882    //   TrueVal = ...
6883    //   cmpTY ccX, r1, r2
6884    //   bCC copy1MBB
6885    //   fallthrough --> copy0MBB
6886    MachineBasicBlock *thisMBB = BB;
6887    MachineFunction *F = BB->getParent();
6888    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6889    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
6890    unsigned Opc =
6891      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
6892    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
6893    F->insert(It, copy0MBB);
6894    F->insert(It, sinkMBB);
6895    // Update machine-CFG edges by transferring all successors of the current
6896    // block to the new block which will contain the Phi node for the select.
6897    sinkMBB->transferSuccessors(BB);
6898
6899    // Add the true and fallthrough blocks as its successors.
6900    BB->addSuccessor(copy0MBB);
6901    BB->addSuccessor(sinkMBB);
6902
6903    //  copy0MBB:
6904    //   %FalseValue = ...
6905    //   # fallthrough to sinkMBB
6906    BB = copy0MBB;
6907
6908    // Update machine-CFG edges
6909    BB->addSuccessor(sinkMBB);
6910
6911    //  sinkMBB:
6912    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6913    //  ...
6914    BB = sinkMBB;
6915    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
6916      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6917      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6918
6919    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
6920    return BB;
6921  }
6922
6923  case X86::FP32_TO_INT16_IN_MEM:
6924  case X86::FP32_TO_INT32_IN_MEM:
6925  case X86::FP32_TO_INT64_IN_MEM:
6926  case X86::FP64_TO_INT16_IN_MEM:
6927  case X86::FP64_TO_INT32_IN_MEM:
6928  case X86::FP64_TO_INT64_IN_MEM:
6929  case X86::FP80_TO_INT16_IN_MEM:
6930  case X86::FP80_TO_INT32_IN_MEM:
6931  case X86::FP80_TO_INT64_IN_MEM: {
6932    // Change the floating point control register to use "round towards zero"
6933    // mode when truncating to an integer value.
6934    MachineFunction *F = BB->getParent();
6935    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
6936    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
6937
6938    // Load the old value of the high byte of the control word...
6939    unsigned OldCW =
6940      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
6941    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
6942
6943    // Set the high part to be round to zero...
6944    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
6945      .addImm(0xC7F);
6946
6947    // Reload the modified control word now...
6948    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
6949
6950    // Restore the memory image of control word to original value
6951    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
6952      .addReg(OldCW);
6953
6954    // Get the X86 opcode to use.
6955    unsigned Opc;
6956    switch (MI->getOpcode()) {
6957    default: assert(0 && "illegal opcode!");
6958    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
6959    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
6960    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
6961    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
6962    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
6963    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
6964    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
6965    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
6966    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
6967    }
6968
6969    X86AddressMode AM;
6970    MachineOperand &Op = MI->getOperand(0);
6971    if (Op.isReg()) {
6972      AM.BaseType = X86AddressMode::RegBase;
6973      AM.Base.Reg = Op.getReg();
6974    } else {
6975      AM.BaseType = X86AddressMode::FrameIndexBase;
6976      AM.Base.FrameIndex = Op.getIndex();
6977    }
6978    Op = MI->getOperand(1);
6979    if (Op.isImm())
6980      AM.Scale = Op.getImm();
6981    Op = MI->getOperand(2);
6982    if (Op.isImm())
6983      AM.IndexReg = Op.getImm();
6984    Op = MI->getOperand(3);
6985    if (Op.isGlobal()) {
6986      AM.GV = Op.getGlobal();
6987    } else {
6988      AM.Disp = Op.getImm();
6989    }
6990    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
6991                      .addReg(MI->getOperand(4).getReg());
6992
6993    // Reload the original control word now.
6994    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
6995
6996    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
6997    return BB;
6998  }
6999  case X86::ATOMAND32:
7000    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7001                                               X86::AND32ri, X86::MOV32rm,
7002                                               X86::LCMPXCHG32, X86::MOV32rr,
7003                                               X86::NOT32r, X86::EAX,
7004                                               X86::GR32RegisterClass);
7005  case X86::ATOMOR32:
7006    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7007                                               X86::OR32ri, X86::MOV32rm,
7008                                               X86::LCMPXCHG32, X86::MOV32rr,
7009                                               X86::NOT32r, X86::EAX,
7010                                               X86::GR32RegisterClass);
7011  case X86::ATOMXOR32:
7012    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7013                                               X86::XOR32ri, X86::MOV32rm,
7014                                               X86::LCMPXCHG32, X86::MOV32rr,
7015                                               X86::NOT32r, X86::EAX,
7016                                               X86::GR32RegisterClass);
7017  case X86::ATOMNAND32:
7018    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7019                                               X86::AND32ri, X86::MOV32rm,
7020                                               X86::LCMPXCHG32, X86::MOV32rr,
7021                                               X86::NOT32r, X86::EAX,
7022                                               X86::GR32RegisterClass, true);
7023  case X86::ATOMMIN32:
7024    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7025  case X86::ATOMMAX32:
7026    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7027  case X86::ATOMUMIN32:
7028    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7029  case X86::ATOMUMAX32:
7030    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7031
7032  case X86::ATOMAND16:
7033    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7034                                               X86::AND16ri, X86::MOV16rm,
7035                                               X86::LCMPXCHG16, X86::MOV16rr,
7036                                               X86::NOT16r, X86::AX,
7037                                               X86::GR16RegisterClass);
7038  case X86::ATOMOR16:
7039    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7040                                               X86::OR16ri, X86::MOV16rm,
7041                                               X86::LCMPXCHG16, X86::MOV16rr,
7042                                               X86::NOT16r, X86::AX,
7043                                               X86::GR16RegisterClass);
7044  case X86::ATOMXOR16:
7045    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7046                                               X86::XOR16ri, X86::MOV16rm,
7047                                               X86::LCMPXCHG16, X86::MOV16rr,
7048                                               X86::NOT16r, X86::AX,
7049                                               X86::GR16RegisterClass);
7050  case X86::ATOMNAND16:
7051    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7052                                               X86::AND16ri, X86::MOV16rm,
7053                                               X86::LCMPXCHG16, X86::MOV16rr,
7054                                               X86::NOT16r, X86::AX,
7055                                               X86::GR16RegisterClass, true);
7056  case X86::ATOMMIN16:
7057    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
7058  case X86::ATOMMAX16:
7059    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
7060  case X86::ATOMUMIN16:
7061    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
7062  case X86::ATOMUMAX16:
7063    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
7064
7065  case X86::ATOMAND8:
7066    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7067                                               X86::AND8ri, X86::MOV8rm,
7068                                               X86::LCMPXCHG8, X86::MOV8rr,
7069                                               X86::NOT8r, X86::AL,
7070                                               X86::GR8RegisterClass);
7071  case X86::ATOMOR8:
7072    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
7073                                               X86::OR8ri, X86::MOV8rm,
7074                                               X86::LCMPXCHG8, X86::MOV8rr,
7075                                               X86::NOT8r, X86::AL,
7076                                               X86::GR8RegisterClass);
7077  case X86::ATOMXOR8:
7078    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
7079                                               X86::XOR8ri, X86::MOV8rm,
7080                                               X86::LCMPXCHG8, X86::MOV8rr,
7081                                               X86::NOT8r, X86::AL,
7082                                               X86::GR8RegisterClass);
7083  case X86::ATOMNAND8:
7084    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7085                                               X86::AND8ri, X86::MOV8rm,
7086                                               X86::LCMPXCHG8, X86::MOV8rr,
7087                                               X86::NOT8r, X86::AL,
7088                                               X86::GR8RegisterClass, true);
7089  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7090  // This group is for 64-bit host.
7091  case X86::ATOMAND64:
7092    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7093                                               X86::AND64ri32, X86::MOV64rm,
7094                                               X86::LCMPXCHG64, X86::MOV64rr,
7095                                               X86::NOT64r, X86::RAX,
7096                                               X86::GR64RegisterClass);
7097  case X86::ATOMOR64:
7098    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
7099                                               X86::OR64ri32, X86::MOV64rm,
7100                                               X86::LCMPXCHG64, X86::MOV64rr,
7101                                               X86::NOT64r, X86::RAX,
7102                                               X86::GR64RegisterClass);
7103  case X86::ATOMXOR64:
7104    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
7105                                               X86::XOR64ri32, X86::MOV64rm,
7106                                               X86::LCMPXCHG64, X86::MOV64rr,
7107                                               X86::NOT64r, X86::RAX,
7108                                               X86::GR64RegisterClass);
7109  case X86::ATOMNAND64:
7110    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7111                                               X86::AND64ri32, X86::MOV64rm,
7112                                               X86::LCMPXCHG64, X86::MOV64rr,
7113                                               X86::NOT64r, X86::RAX,
7114                                               X86::GR64RegisterClass, true);
7115  case X86::ATOMMIN64:
7116    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
7117  case X86::ATOMMAX64:
7118    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
7119  case X86::ATOMUMIN64:
7120    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
7121  case X86::ATOMUMAX64:
7122    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
7123
7124  // This group does 64-bit operations on a 32-bit host.
7125  case X86::ATOMAND6432:
7126    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7127                                               X86::AND32rr, X86::AND32rr,
7128                                               X86::AND32ri, X86::AND32ri,
7129                                               false);
7130  case X86::ATOMOR6432:
7131    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7132                                               X86::OR32rr, X86::OR32rr,
7133                                               X86::OR32ri, X86::OR32ri,
7134                                               false);
7135  case X86::ATOMXOR6432:
7136    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7137                                               X86::XOR32rr, X86::XOR32rr,
7138                                               X86::XOR32ri, X86::XOR32ri,
7139                                               false);
7140  case X86::ATOMNAND6432:
7141    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7142                                               X86::AND32rr, X86::AND32rr,
7143                                               X86::AND32ri, X86::AND32ri,
7144                                               true);
7145  case X86::ATOMADD6432:
7146    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7147                                               X86::ADD32rr, X86::ADC32rr,
7148                                               X86::ADD32ri, X86::ADC32ri,
7149                                               false);
7150  case X86::ATOMSUB6432:
7151    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7152                                               X86::SUB32rr, X86::SBB32rr,
7153                                               X86::SUB32ri, X86::SBB32ri,
7154                                               false);
7155  case X86::ATOMSWAP6432:
7156    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7157                                               X86::MOV32rr, X86::MOV32rr,
7158                                               X86::MOV32ri, X86::MOV32ri,
7159                                               false);
7160  }
7161}
7162
7163//===----------------------------------------------------------------------===//
7164//                           X86 Optimization Hooks
7165//===----------------------------------------------------------------------===//
7166
7167void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7168                                                       const APInt &Mask,
7169                                                       APInt &KnownZero,
7170                                                       APInt &KnownOne,
7171                                                       const SelectionDAG &DAG,
7172                                                       unsigned Depth) const {
7173  unsigned Opc = Op.getOpcode();
7174  assert((Opc >= ISD::BUILTIN_OP_END ||
7175          Opc == ISD::INTRINSIC_WO_CHAIN ||
7176          Opc == ISD::INTRINSIC_W_CHAIN ||
7177          Opc == ISD::INTRINSIC_VOID) &&
7178         "Should use MaskedValueIsZero if you don't know whether Op"
7179         " is a target node!");
7180
7181  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
7182  switch (Opc) {
7183  default: break;
7184  case X86ISD::SETCC:
7185    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
7186                                       Mask.getBitWidth() - 1);
7187    break;
7188  }
7189}
7190
7191/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
7192/// node is a GlobalAddress + offset.
7193bool X86TargetLowering::isGAPlusOffset(SDNode *N,
7194                                       GlobalValue* &GA, int64_t &Offset) const{
7195  if (N->getOpcode() == X86ISD::Wrapper) {
7196    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
7197      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
7198      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
7199      return true;
7200    }
7201  }
7202  return TargetLowering::isGAPlusOffset(N, GA, Offset);
7203}
7204
7205static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
7206                               const TargetLowering &TLI) {
7207  GlobalValue *GV;
7208  int64_t Offset = 0;
7209  if (TLI.isGAPlusOffset(Base, GV, Offset))
7210    return (GV->getAlignment() >= N && (Offset % N) == 0);
7211  // DAG combine handles the stack object case.
7212  return false;
7213}
7214
7215static bool EltsFromConsecutiveLoads(SDNode *N, SDValue PermMask,
7216                                     unsigned NumElems, MVT EVT,
7217                                     SDNode *&Base,
7218                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
7219                                     const TargetLowering &TLI) {
7220  Base = NULL;
7221  for (unsigned i = 0; i < NumElems; ++i) {
7222    SDValue Idx = PermMask.getOperand(i);
7223    if (Idx.getOpcode() == ISD::UNDEF) {
7224      if (!Base)
7225        return false;
7226      continue;
7227    }
7228
7229    SDValue Elt = DAG.getShuffleScalarElt(N, i);
7230    if (!Elt.getNode() ||
7231        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
7232      return false;
7233    if (!Base) {
7234      Base = Elt.getNode();
7235      if (Base->getOpcode() == ISD::UNDEF)
7236        return false;
7237      continue;
7238    }
7239    if (Elt.getOpcode() == ISD::UNDEF)
7240      continue;
7241
7242    if (!TLI.isConsecutiveLoad(Elt.getNode(), Base,
7243                               EVT.getSizeInBits()/8, i, MFI))
7244      return false;
7245  }
7246  return true;
7247}
7248
7249/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
7250/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
7251/// if the load addresses are consecutive, non-overlapping, and in the right
7252/// order.
7253static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
7254                                       const TargetLowering &TLI) {
7255  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7256  MVT VT = N->getValueType(0);
7257  MVT EVT = VT.getVectorElementType();
7258  SDValue PermMask = N->getOperand(2);
7259  unsigned NumElems = PermMask.getNumOperands();
7260  SDNode *Base = NULL;
7261  if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base,
7262                                DAG, MFI, TLI))
7263    return SDValue();
7264
7265  LoadSDNode *LD = cast<LoadSDNode>(Base);
7266  if (isBaseAlignmentOfN(16, Base->getOperand(1).getNode(), TLI))
7267    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
7268                       LD->getSrcValueOffset(), LD->isVolatile());
7269  return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
7270                     LD->getSrcValueOffset(), LD->isVolatile(),
7271                     LD->getAlignment());
7272}
7273
7274/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
7275static SDValue PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
7276                                         const X86Subtarget *Subtarget,
7277                                         const TargetLowering &TLI) {
7278  unsigned NumOps = N->getNumOperands();
7279
7280  // Ignore single operand BUILD_VECTOR.
7281  if (NumOps == 1)
7282    return SDValue();
7283
7284  MVT VT = N->getValueType(0);
7285  MVT EVT = VT.getVectorElementType();
7286  if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
7287    // We are looking for load i64 and zero extend. We want to transform
7288    // it before legalizer has a chance to expand it. Also look for i64
7289    // BUILD_PAIR bit casted to f64.
7290    return SDValue();
7291  // This must be an insertion into a zero vector.
7292  SDValue HighElt = N->getOperand(1);
7293  if (!isZeroNode(HighElt))
7294    return SDValue();
7295
7296  // Value must be a load.
7297  SDNode *Base = N->getOperand(0).getNode();
7298  if (!isa<LoadSDNode>(Base)) {
7299    if (Base->getOpcode() != ISD::BIT_CONVERT)
7300      return SDValue();
7301    Base = Base->getOperand(0).getNode();
7302    if (!isa<LoadSDNode>(Base))
7303      return SDValue();
7304  }
7305
7306  // Transform it into VZEXT_LOAD addr.
7307  LoadSDNode *LD = cast<LoadSDNode>(Base);
7308
7309  // Load must not be an extload.
7310  if (LD->getExtensionType() != ISD::NON_EXTLOAD)
7311    return SDValue();
7312
7313  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
7314  SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
7315  SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, Tys, Ops, 2);
7316  DAG.ReplaceAllUsesOfValueWith(SDValue(Base, 1), ResNode.getValue(1));
7317  return ResNode;
7318}
7319
7320/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
7321static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
7322                                      const X86Subtarget *Subtarget) {
7323  SDValue Cond = N->getOperand(0);
7324
7325  // If we have SSE[12] support, try to form min/max nodes.
7326  if (Subtarget->hasSSE2() &&
7327      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
7328    if (Cond.getOpcode() == ISD::SETCC) {
7329      // Get the LHS/RHS of the select.
7330      SDValue LHS = N->getOperand(1);
7331      SDValue RHS = N->getOperand(2);
7332      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
7333
7334      unsigned Opcode = 0;
7335      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
7336        switch (CC) {
7337        default: break;
7338        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
7339        case ISD::SETULE:
7340        case ISD::SETLE:
7341          if (!UnsafeFPMath) break;
7342          // FALL THROUGH.
7343        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
7344        case ISD::SETLT:
7345          Opcode = X86ISD::FMIN;
7346          break;
7347
7348        case ISD::SETOGT: // (X > Y) ? X : Y -> max
7349        case ISD::SETUGT:
7350        case ISD::SETGT:
7351          if (!UnsafeFPMath) break;
7352          // FALL THROUGH.
7353        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
7354        case ISD::SETGE:
7355          Opcode = X86ISD::FMAX;
7356          break;
7357        }
7358      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
7359        switch (CC) {
7360        default: break;
7361        case ISD::SETOGT: // (X > Y) ? Y : X -> min
7362        case ISD::SETUGT:
7363        case ISD::SETGT:
7364          if (!UnsafeFPMath) break;
7365          // FALL THROUGH.
7366        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
7367        case ISD::SETGE:
7368          Opcode = X86ISD::FMIN;
7369          break;
7370
7371        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
7372        case ISD::SETULE:
7373        case ISD::SETLE:
7374          if (!UnsafeFPMath) break;
7375          // FALL THROUGH.
7376        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
7377        case ISD::SETLT:
7378          Opcode = X86ISD::FMAX;
7379          break;
7380        }
7381      }
7382
7383      if (Opcode)
7384        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
7385    }
7386
7387  }
7388
7389  return SDValue();
7390}
7391
7392/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
7393static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
7394                                     const X86Subtarget *Subtarget) {
7395  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
7396  // the FP state in cases where an emms may be missing.
7397  // A preferable solution to the general problem is to figure out the right
7398  // places to insert EMMS.  This qualifies as a quick hack.
7399  StoreSDNode *St = cast<StoreSDNode>(N);
7400  if (St->getValue().getValueType().isVector() &&
7401      St->getValue().getValueType().getSizeInBits() == 64 &&
7402      isa<LoadSDNode>(St->getValue()) &&
7403      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
7404      St->getChain().hasOneUse() && !St->isVolatile()) {
7405    SDNode* LdVal = St->getValue().getNode();
7406    LoadSDNode *Ld = 0;
7407    int TokenFactorIndex = -1;
7408    SmallVector<SDValue, 8> Ops;
7409    SDNode* ChainVal = St->getChain().getNode();
7410    // Must be a store of a load.  We currently handle two cases:  the load
7411    // is a direct child, and it's under an intervening TokenFactor.  It is
7412    // possible to dig deeper under nested TokenFactors.
7413    if (ChainVal == LdVal)
7414      Ld = cast<LoadSDNode>(St->getChain());
7415    else if (St->getValue().hasOneUse() &&
7416             ChainVal->getOpcode() == ISD::TokenFactor) {
7417      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
7418        if (ChainVal->getOperand(i).getNode() == LdVal) {
7419          TokenFactorIndex = i;
7420          Ld = cast<LoadSDNode>(St->getValue());
7421        } else
7422          Ops.push_back(ChainVal->getOperand(i));
7423      }
7424    }
7425    if (Ld) {
7426      // If we are a 64-bit capable x86, lower to a single movq load/store pair.
7427      if (Subtarget->is64Bit()) {
7428        SDValue NewLd = DAG.getLoad(MVT::i64, Ld->getChain(),
7429                                      Ld->getBasePtr(), Ld->getSrcValue(),
7430                                      Ld->getSrcValueOffset(), Ld->isVolatile(),
7431                                      Ld->getAlignment());
7432        SDValue NewChain = NewLd.getValue(1);
7433        if (TokenFactorIndex != -1) {
7434          Ops.push_back(NewChain);
7435          NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
7436                                 Ops.size());
7437        }
7438        return DAG.getStore(NewChain, NewLd, St->getBasePtr(),
7439                            St->getSrcValue(), St->getSrcValueOffset(),
7440                            St->isVolatile(), St->getAlignment());
7441      }
7442
7443      // Otherwise, lower to two 32-bit copies.
7444      SDValue LoAddr = Ld->getBasePtr();
7445      SDValue HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
7446                                     DAG.getConstant(4, MVT::i32));
7447
7448      SDValue LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr,
7449                                   Ld->getSrcValue(), Ld->getSrcValueOffset(),
7450                                   Ld->isVolatile(), Ld->getAlignment());
7451      SDValue HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr,
7452                                   Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
7453                                   Ld->isVolatile(),
7454                                   MinAlign(Ld->getAlignment(), 4));
7455
7456      SDValue NewChain = LoLd.getValue(1);
7457      if (TokenFactorIndex != -1) {
7458        Ops.push_back(LoLd);
7459        Ops.push_back(HiLd);
7460        NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
7461                               Ops.size());
7462      }
7463
7464      LoAddr = St->getBasePtr();
7465      HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
7466                           DAG.getConstant(4, MVT::i32));
7467
7468      SDValue LoSt = DAG.getStore(NewChain, LoLd, LoAddr,
7469                          St->getSrcValue(), St->getSrcValueOffset(),
7470                          St->isVolatile(), St->getAlignment());
7471      SDValue HiSt = DAG.getStore(NewChain, HiLd, HiAddr,
7472                                    St->getSrcValue(),
7473                                    St->getSrcValueOffset() + 4,
7474                                    St->isVolatile(),
7475                                    MinAlign(St->getAlignment(), 4));
7476      return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt);
7477    }
7478  }
7479  return SDValue();
7480}
7481
7482/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
7483/// X86ISD::FXOR nodes.
7484static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
7485  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
7486  // F[X]OR(0.0, x) -> x
7487  // F[X]OR(x, 0.0) -> x
7488  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
7489    if (C->getValueAPF().isPosZero())
7490      return N->getOperand(1);
7491  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
7492    if (C->getValueAPF().isPosZero())
7493      return N->getOperand(0);
7494  return SDValue();
7495}
7496
7497/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
7498static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
7499  // FAND(0.0, x) -> 0.0
7500  // FAND(x, 0.0) -> 0.0
7501  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
7502    if (C->getValueAPF().isPosZero())
7503      return N->getOperand(0);
7504  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
7505    if (C->getValueAPF().isPosZero())
7506      return N->getOperand(1);
7507  return SDValue();
7508}
7509
7510
7511SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
7512                                               DAGCombinerInfo &DCI) const {
7513  SelectionDAG &DAG = DCI.DAG;
7514  switch (N->getOpcode()) {
7515  default: break;
7516  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
7517  case ISD::BUILD_VECTOR:
7518    return PerformBuildVectorCombine(N, DAG, Subtarget, *this);
7519  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
7520  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
7521  case X86ISD::FXOR:
7522  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
7523  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
7524  }
7525
7526  return SDValue();
7527}
7528
7529//===----------------------------------------------------------------------===//
7530//                           X86 Inline Assembly Support
7531//===----------------------------------------------------------------------===//
7532
7533/// getConstraintType - Given a constraint letter, return the type of
7534/// constraint it is for this target.
7535X86TargetLowering::ConstraintType
7536X86TargetLowering::getConstraintType(const std::string &Constraint) const {
7537  if (Constraint.size() == 1) {
7538    switch (Constraint[0]) {
7539    case 'A':
7540    case 'f':
7541    case 'r':
7542    case 'R':
7543    case 'l':
7544    case 'q':
7545    case 'Q':
7546    case 'x':
7547    case 'y':
7548    case 'Y':
7549      return C_RegisterClass;
7550    default:
7551      break;
7552    }
7553  }
7554  return TargetLowering::getConstraintType(Constraint);
7555}
7556
7557/// LowerXConstraint - try to replace an X constraint, which matches anything,
7558/// with another that has more specific requirements based on the type of the
7559/// corresponding operand.
7560const char *X86TargetLowering::
7561LowerXConstraint(MVT ConstraintVT) const {
7562  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
7563  // 'f' like normal targets.
7564  if (ConstraintVT.isFloatingPoint()) {
7565    if (Subtarget->hasSSE2())
7566      return "Y";
7567    if (Subtarget->hasSSE1())
7568      return "x";
7569  }
7570
7571  return TargetLowering::LowerXConstraint(ConstraintVT);
7572}
7573
7574/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
7575/// vector.  If it is invalid, don't add anything to Ops.
7576void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
7577                                                     char Constraint,
7578                                                     bool hasMemory,
7579                                                     std::vector<SDValue>&Ops,
7580                                                     SelectionDAG &DAG) const {
7581  SDValue Result(0, 0);
7582
7583  switch (Constraint) {
7584  default: break;
7585  case 'I':
7586    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7587      if (C->getZExtValue() <= 31) {
7588        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
7589        break;
7590      }
7591    }
7592    return;
7593  case 'J':
7594    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7595      if (C->getZExtValue() <= 63) {
7596        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
7597        break;
7598      }
7599    }
7600    return;
7601  case 'N':
7602    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7603      if (C->getZExtValue() <= 255) {
7604        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
7605        break;
7606      }
7607    }
7608    return;
7609  case 'i': {
7610    // Literal immediates are always ok.
7611    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
7612      Result = DAG.getTargetConstant(CST->getZExtValue(), Op.getValueType());
7613      break;
7614    }
7615
7616    // If we are in non-pic codegen mode, we allow the address of a global (with
7617    // an optional displacement) to be used with 'i'.
7618    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
7619    int64_t Offset = 0;
7620
7621    // Match either (GA) or (GA+C)
7622    if (GA) {
7623      Offset = GA->getOffset();
7624    } else if (Op.getOpcode() == ISD::ADD) {
7625      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7626      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
7627      if (C && GA) {
7628        Offset = GA->getOffset()+C->getZExtValue();
7629      } else {
7630        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7631        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
7632        if (C && GA)
7633          Offset = GA->getOffset()+C->getZExtValue();
7634        else
7635          C = 0, GA = 0;
7636      }
7637    }
7638
7639    if (GA) {
7640      if (hasMemory)
7641        Op = LowerGlobalAddress(GA->getGlobal(), Offset, DAG);
7642      else
7643        Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
7644                                        Offset);
7645      Result = Op;
7646      break;
7647    }
7648
7649    // Otherwise, not valid for this mode.
7650    return;
7651  }
7652  }
7653
7654  if (Result.getNode()) {
7655    Ops.push_back(Result);
7656    return;
7657  }
7658  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
7659                                                      Ops, DAG);
7660}
7661
7662std::vector<unsigned> X86TargetLowering::
7663getRegClassForInlineAsmConstraint(const std::string &Constraint,
7664                                  MVT VT) const {
7665  if (Constraint.size() == 1) {
7666    // FIXME: not handling fp-stack yet!
7667    switch (Constraint[0]) {      // GCC X86 Constraint Letters
7668    default: break;  // Unknown constraint letter
7669    case 'A':   // EAX/EDX
7670      if (VT == MVT::i32 || VT == MVT::i64)
7671        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
7672      break;
7673    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
7674    case 'Q':   // Q_REGS
7675      if (VT == MVT::i32)
7676        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
7677      else if (VT == MVT::i16)
7678        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
7679      else if (VT == MVT::i8)
7680        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
7681      else if (VT == MVT::i64)
7682        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
7683      break;
7684    }
7685  }
7686
7687  return std::vector<unsigned>();
7688}
7689
7690std::pair<unsigned, const TargetRegisterClass*>
7691X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
7692                                                MVT VT) const {
7693  // First, see if this is a constraint that directly corresponds to an LLVM
7694  // register class.
7695  if (Constraint.size() == 1) {
7696    // GCC Constraint Letters
7697    switch (Constraint[0]) {
7698    default: break;
7699    case 'r':   // GENERAL_REGS
7700    case 'R':   // LEGACY_REGS
7701    case 'l':   // INDEX_REGS
7702      if (VT == MVT::i8)
7703        return std::make_pair(0U, X86::GR8RegisterClass);
7704      if (VT == MVT::i16)
7705        return std::make_pair(0U, X86::GR16RegisterClass);
7706      if (VT == MVT::i32 || !Subtarget->is64Bit())
7707        return std::make_pair(0U, X86::GR32RegisterClass);
7708      return std::make_pair(0U, X86::GR64RegisterClass);
7709    case 'f':  // FP Stack registers.
7710      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
7711      // value to the correct fpstack register class.
7712      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
7713        return std::make_pair(0U, X86::RFP32RegisterClass);
7714      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
7715        return std::make_pair(0U, X86::RFP64RegisterClass);
7716      return std::make_pair(0U, X86::RFP80RegisterClass);
7717    case 'y':   // MMX_REGS if MMX allowed.
7718      if (!Subtarget->hasMMX()) break;
7719      return std::make_pair(0U, X86::VR64RegisterClass);
7720    case 'Y':   // SSE_REGS if SSE2 allowed
7721      if (!Subtarget->hasSSE2()) break;
7722      // FALL THROUGH.
7723    case 'x':   // SSE_REGS if SSE1 allowed
7724      if (!Subtarget->hasSSE1()) break;
7725
7726      switch (VT.getSimpleVT()) {
7727      default: break;
7728      // Scalar SSE types.
7729      case MVT::f32:
7730      case MVT::i32:
7731        return std::make_pair(0U, X86::FR32RegisterClass);
7732      case MVT::f64:
7733      case MVT::i64:
7734        return std::make_pair(0U, X86::FR64RegisterClass);
7735      // Vector types.
7736      case MVT::v16i8:
7737      case MVT::v8i16:
7738      case MVT::v4i32:
7739      case MVT::v2i64:
7740      case MVT::v4f32:
7741      case MVT::v2f64:
7742        return std::make_pair(0U, X86::VR128RegisterClass);
7743      }
7744      break;
7745    }
7746  }
7747
7748  // Use the default implementation in TargetLowering to convert the register
7749  // constraint into a member of a register class.
7750  std::pair<unsigned, const TargetRegisterClass*> Res;
7751  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
7752
7753  // Not found as a standard register?
7754  if (Res.second == 0) {
7755    // GCC calls "st(0)" just plain "st".
7756    if (StringsEqualNoCase("{st}", Constraint)) {
7757      Res.first = X86::ST0;
7758      Res.second = X86::RFP80RegisterClass;
7759    }
7760
7761    return Res;
7762  }
7763
7764  // Otherwise, check to see if this is a register class of the wrong value
7765  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
7766  // turn into {ax},{dx}.
7767  if (Res.second->hasType(VT))
7768    return Res;   // Correct type already, nothing to do.
7769
7770  // All of the single-register GCC register classes map their values onto
7771  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
7772  // really want an 8-bit or 32-bit register, map to the appropriate register
7773  // class and return the appropriate register.
7774  if (Res.second == X86::GR16RegisterClass) {
7775    if (VT == MVT::i8) {
7776      unsigned DestReg = 0;
7777      switch (Res.first) {
7778      default: break;
7779      case X86::AX: DestReg = X86::AL; break;
7780      case X86::DX: DestReg = X86::DL; break;
7781      case X86::CX: DestReg = X86::CL; break;
7782      case X86::BX: DestReg = X86::BL; break;
7783      }
7784      if (DestReg) {
7785        Res.first = DestReg;
7786        Res.second = Res.second = X86::GR8RegisterClass;
7787      }
7788    } else if (VT == MVT::i32) {
7789      unsigned DestReg = 0;
7790      switch (Res.first) {
7791      default: break;
7792      case X86::AX: DestReg = X86::EAX; break;
7793      case X86::DX: DestReg = X86::EDX; break;
7794      case X86::CX: DestReg = X86::ECX; break;
7795      case X86::BX: DestReg = X86::EBX; break;
7796      case X86::SI: DestReg = X86::ESI; break;
7797      case X86::DI: DestReg = X86::EDI; break;
7798      case X86::BP: DestReg = X86::EBP; break;
7799      case X86::SP: DestReg = X86::ESP; break;
7800      }
7801      if (DestReg) {
7802        Res.first = DestReg;
7803        Res.second = Res.second = X86::GR32RegisterClass;
7804      }
7805    } else if (VT == MVT::i64) {
7806      unsigned DestReg = 0;
7807      switch (Res.first) {
7808      default: break;
7809      case X86::AX: DestReg = X86::RAX; break;
7810      case X86::DX: DestReg = X86::RDX; break;
7811      case X86::CX: DestReg = X86::RCX; break;
7812      case X86::BX: DestReg = X86::RBX; break;
7813      case X86::SI: DestReg = X86::RSI; break;
7814      case X86::DI: DestReg = X86::RDI; break;
7815      case X86::BP: DestReg = X86::RBP; break;
7816      case X86::SP: DestReg = X86::RSP; break;
7817      }
7818      if (DestReg) {
7819        Res.first = DestReg;
7820        Res.second = Res.second = X86::GR64RegisterClass;
7821      }
7822    }
7823  } else if (Res.second == X86::FR32RegisterClass ||
7824             Res.second == X86::FR64RegisterClass ||
7825             Res.second == X86::VR128RegisterClass) {
7826    // Handle references to XMM physical registers that got mapped into the
7827    // wrong class.  This can happen with constraints like {xmm0} where the
7828    // target independent register mapper will just pick the first match it can
7829    // find, ignoring the required type.
7830    if (VT == MVT::f32)
7831      Res.second = X86::FR32RegisterClass;
7832    else if (VT == MVT::f64)
7833      Res.second = X86::FR64RegisterClass;
7834    else if (X86::VR128RegisterClass->hasType(VT))
7835      Res.second = X86::VR128RegisterClass;
7836  }
7837
7838  return Res;
7839}
7840