X86ISelLowering.cpp revision 4bb3f34b2296f0ec70751f332cf7ef96d2d30a48
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VariadicFunction.h"
47#include "llvm/Support/CallSite.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetOptions.h"
55using namespace llvm;
56using namespace dwarf;
57
58STATISTIC(NumTailCalls, "Number of tail calls");
59
60static cl::opt<bool> UseRegMask("x86-use-regmask",
61                                cl::desc("Use register masks for x86 calls"));
62
63// Forward declarations.
64static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
65                       SDValue V2);
66
67/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
68/// sets things up to match to an AVX VEXTRACTF128 instruction or a
69/// simple subregister reference.  Idx is an index in the 128 bits we
70/// want.  It need not be aligned to a 128-bit bounday.  That makes
71/// lowering EXTRACT_VECTOR_ELT operations easier.
72static SDValue Extract128BitVector(SDValue Vec,
73                                   SDValue Idx,
74                                   SelectionDAG &DAG,
75                                   DebugLoc dl) {
76  EVT VT = Vec.getValueType();
77  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
78  EVT ElVT = VT.getVectorElementType();
79  int Factor = VT.getSizeInBits()/128;
80  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
81                                  VT.getVectorNumElements()/Factor);
82
83  // Extract from UNDEF is UNDEF.
84  if (Vec.getOpcode() == ISD::UNDEF)
85    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
86
87  if (isa<ConstantSDNode>(Idx)) {
88    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
89
90    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
91    // we can match to VEXTRACTF128.
92    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
93
94    // This is the index of the first element of the 128-bit chunk
95    // we want.
96    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
97                                 * ElemsPerChunk);
98
99    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
100    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
101                                 VecIdx);
102
103    return Result;
104  }
105
106  return SDValue();
107}
108
109/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
110/// sets things up to match to an AVX VINSERTF128 instruction or a
111/// simple superregister reference.  Idx is an index in the 128 bits
112/// we want.  It need not be aligned to a 128-bit bounday.  That makes
113/// lowering INSERT_VECTOR_ELT operations easier.
114static SDValue Insert128BitVector(SDValue Result,
115                                  SDValue Vec,
116                                  SDValue Idx,
117                                  SelectionDAG &DAG,
118                                  DebugLoc dl) {
119  if (isa<ConstantSDNode>(Idx)) {
120    EVT VT = Vec.getValueType();
121    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
122
123    EVT ElVT = VT.getVectorElementType();
124    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
125    EVT ResultVT = Result.getValueType();
126
127    // Insert the relevant 128 bits.
128    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
129
130    // This is the index of the first element of the 128-bit chunk
131    // we want.
132    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
133                                 * ElemsPerChunk);
134
135    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
136    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
137                         VecIdx);
138    return Result;
139  }
140
141  return SDValue();
142}
143
144static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
145  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
146  bool is64Bit = Subtarget->is64Bit();
147
148  if (Subtarget->isTargetEnvMacho()) {
149    if (is64Bit)
150      return new X8664_MachoTargetObjectFile();
151    return new TargetLoweringObjectFileMachO();
152  }
153
154  if (Subtarget->isTargetELF())
155    return new TargetLoweringObjectFileELF();
156  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
157    return new TargetLoweringObjectFileCOFF();
158  llvm_unreachable("unknown subtarget type");
159}
160
161X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
162  : TargetLowering(TM, createTLOF(TM)) {
163  Subtarget = &TM.getSubtarget<X86Subtarget>();
164  X86ScalarSSEf64 = Subtarget->hasSSE2();
165  X86ScalarSSEf32 = Subtarget->hasSSE1();
166  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
167
168  RegInfo = TM.getRegisterInfo();
169  TD = getTargetData();
170
171  // Set up the TargetLowering object.
172  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
173
174  // X86 is weird, it always uses i8 for shift amounts and setcc results.
175  setBooleanContents(ZeroOrOneBooleanContent);
176  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
177  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
178
179  // For 64-bit since we have so many registers use the ILP scheduler, for
180  // 32-bit code use the register pressure specific scheduling.
181  if (Subtarget->is64Bit())
182    setSchedulingPreference(Sched::ILP);
183  else
184    setSchedulingPreference(Sched::RegPressure);
185  setStackPointerRegisterToSaveRestore(X86StackPtr);
186
187  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
188    // Setup Windows compiler runtime calls.
189    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
190    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
191    setLibcallName(RTLIB::SREM_I64, "_allrem");
192    setLibcallName(RTLIB::UREM_I64, "_aullrem");
193    setLibcallName(RTLIB::MUL_I64, "_allmul");
194    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
195    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
196    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
197    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
198    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
199    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
200    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
201    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
202    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
203  }
204
205  if (Subtarget->isTargetDarwin()) {
206    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
207    setUseUnderscoreSetJmp(false);
208    setUseUnderscoreLongJmp(false);
209  } else if (Subtarget->isTargetMingw()) {
210    // MS runtime is weird: it exports _setjmp, but longjmp!
211    setUseUnderscoreSetJmp(true);
212    setUseUnderscoreLongJmp(false);
213  } else {
214    setUseUnderscoreSetJmp(true);
215    setUseUnderscoreLongJmp(true);
216  }
217
218  // Set up the register classes.
219  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
220  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
221  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
222  if (Subtarget->is64Bit())
223    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
224
225  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
226
227  // We don't accept any truncstore of integer registers.
228  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
229  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
230  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
231  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
232  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
233  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
234
235  // SETOEQ and SETUNE require checking two conditions.
236  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
237  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
238  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
239  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
240  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
241  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
242
243  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
244  // operation.
245  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
246  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
247  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
248
249  if (Subtarget->is64Bit()) {
250    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
251    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
252  } else if (!TM.Options.UseSoftFloat) {
253    // We have an algorithm for SSE2->double, and we turn this into a
254    // 64-bit FILD followed by conditional FADD for other targets.
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
256    // We have an algorithm for SSE2, and we turn this into a 64-bit
257    // FILD for other targets.
258    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
259  }
260
261  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
262  // this operation.
263  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
264  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
265
266  if (!TM.Options.UseSoftFloat) {
267    // SSE has no i16 to fp conversion, only i32
268    if (X86ScalarSSEf32) {
269      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
270      // f32 and f64 cases are Legal, f80 case is not
271      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
272    } else {
273      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
275    }
276  } else {
277    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
278    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
279  }
280
281  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
282  // are Legal, f80 is custom lowered.
283  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
284  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
285
286  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
287  // this operation.
288  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
289  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
290
291  if (X86ScalarSSEf32) {
292    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
293    // f32 and f64 cases are Legal, f80 case is not
294    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
295  } else {
296    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
298  }
299
300  // Handle FP_TO_UINT by promoting the destination to a larger signed
301  // conversion.
302  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
303  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
304  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
305
306  if (Subtarget->is64Bit()) {
307    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
308    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
309  } else if (!TM.Options.UseSoftFloat) {
310    // Since AVX is a superset of SSE3, only check for SSE here.
311    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
312      // Expand FP_TO_UINT into a select.
313      // FIXME: We would like to use a Custom expander here eventually to do
314      // the optimal thing for SSE vs. the default expansion in the legalizer.
315      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
316    else
317      // With SSE3 we can use fisttpll to convert to a signed i64; without
318      // SSE, we're stuck with a fistpll.
319      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
320  }
321
322  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
323  if (!X86ScalarSSEf64) {
324    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
325    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
326    if (Subtarget->is64Bit()) {
327      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
328      // Without SSE, i64->f64 goes through memory.
329      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
330    }
331  }
332
333  // Scalar integer divide and remainder are lowered to use operations that
334  // produce two results, to match the available instructions. This exposes
335  // the two-result form to trivial CSE, which is able to combine x/y and x%y
336  // into a single instruction.
337  //
338  // Scalar integer multiply-high is also lowered to use two-result
339  // operations, to match the available instructions. However, plain multiply
340  // (low) operations are left as Legal, as there are single-result
341  // instructions for this in x86. Using the two-result multiply instructions
342  // when both high and low results are needed must be arranged by dagcombine.
343  for (unsigned i = 0, e = 4; i != e; ++i) {
344    MVT VT = IntVTs[i];
345    setOperationAction(ISD::MULHS, VT, Expand);
346    setOperationAction(ISD::MULHU, VT, Expand);
347    setOperationAction(ISD::SDIV, VT, Expand);
348    setOperationAction(ISD::UDIV, VT, Expand);
349    setOperationAction(ISD::SREM, VT, Expand);
350    setOperationAction(ISD::UREM, VT, Expand);
351
352    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
353    setOperationAction(ISD::ADDC, VT, Custom);
354    setOperationAction(ISD::ADDE, VT, Custom);
355    setOperationAction(ISD::SUBC, VT, Custom);
356    setOperationAction(ISD::SUBE, VT, Custom);
357  }
358
359  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
360  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
361  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
362  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
363  if (Subtarget->is64Bit())
364    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
365  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
366  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
367  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
368  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
369  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
370  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
371  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
372  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
373
374  // Promote the i8 variants and force them on up to i32 which has a shorter
375  // encoding.
376  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
377  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
378  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
379  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
380  if (Subtarget->hasBMI()) {
381    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
382    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
383    if (Subtarget->is64Bit())
384      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
385  } else {
386    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
387    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
388    if (Subtarget->is64Bit())
389      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
390  }
391
392  if (Subtarget->hasLZCNT()) {
393    // When promoting the i8 variants, force them to i32 for a shorter
394    // encoding.
395    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
396    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
397    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
398    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
399    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
400    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
401    if (Subtarget->is64Bit())
402      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
403  } else {
404    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
405    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
406    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
407    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
408    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
409    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
410    if (Subtarget->is64Bit()) {
411      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
412      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
413    }
414  }
415
416  if (Subtarget->hasPOPCNT()) {
417    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
418  } else {
419    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
420    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
421    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
422    if (Subtarget->is64Bit())
423      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
424  }
425
426  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
427  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
428
429  // These should be promoted to a larger select which is supported.
430  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
431  // X86 wants to expand cmov itself.
432  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
433  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
434  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
435  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
436  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
437  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
438  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
439  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
440  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
441  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
442  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
443  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
444  if (Subtarget->is64Bit()) {
445    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
446    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
447  }
448  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
449
450  // Darwin ABI issue.
451  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
452  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
453  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
454  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
455  if (Subtarget->is64Bit())
456    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
457  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
458  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
459  if (Subtarget->is64Bit()) {
460    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
461    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
462    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
463    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
464    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
465  }
466  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
467  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
468  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
469  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
470  if (Subtarget->is64Bit()) {
471    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
472    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
473    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
474  }
475
476  if (Subtarget->hasSSE1())
477    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
478
479  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
480  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
481
482  // On X86 and X86-64, atomic operations are lowered to locked instructions.
483  // Locked instructions, in turn, have implicit fence semantics (all memory
484  // operations are flushed before issuing the locked instruction, and they
485  // are not buffered), so we can fold away the common pattern of
486  // fence-atomic-fence.
487  setShouldFoldAtomicFences(true);
488
489  // Expand certain atomics
490  for (unsigned i = 0, e = 4; i != e; ++i) {
491    MVT VT = IntVTs[i];
492    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
493    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
494    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
495  }
496
497  if (!Subtarget->is64Bit()) {
498    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
499    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
500    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
501    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
502    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
503    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
506  }
507
508  if (Subtarget->hasCmpxchg16b()) {
509    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
510  }
511
512  // FIXME - use subtarget debug flags
513  if (!Subtarget->isTargetDarwin() &&
514      !Subtarget->isTargetELF() &&
515      !Subtarget->isTargetCygMing()) {
516    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
517  }
518
519  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
520  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
521  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
522  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
523  if (Subtarget->is64Bit()) {
524    setExceptionPointerRegister(X86::RAX);
525    setExceptionSelectorRegister(X86::RDX);
526  } else {
527    setExceptionPointerRegister(X86::EAX);
528    setExceptionSelectorRegister(X86::EDX);
529  }
530  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
531  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
532
533  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
534  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
535
536  setOperationAction(ISD::TRAP, MVT::Other, Legal);
537
538  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
539  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
540  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
541  if (Subtarget->is64Bit()) {
542    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
543    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
544  } else {
545    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
546    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
547  }
548
549  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
550  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
551
552  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
553    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
554                       MVT::i64 : MVT::i32, Custom);
555  else if (TM.Options.EnableSegmentedStacks)
556    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
557                       MVT::i64 : MVT::i32, Custom);
558  else
559    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
560                       MVT::i64 : MVT::i32, Expand);
561
562  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
563    // f32 and f64 use SSE.
564    // Set up the FP register classes.
565    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
566    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
567
568    // Use ANDPD to simulate FABS.
569    setOperationAction(ISD::FABS , MVT::f64, Custom);
570    setOperationAction(ISD::FABS , MVT::f32, Custom);
571
572    // Use XORP to simulate FNEG.
573    setOperationAction(ISD::FNEG , MVT::f64, Custom);
574    setOperationAction(ISD::FNEG , MVT::f32, Custom);
575
576    // Use ANDPD and ORPD to simulate FCOPYSIGN.
577    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
578    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
579
580    // Lower this to FGETSIGNx86 plus an AND.
581    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
582    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
583
584    // We don't support sin/cos/fmod
585    setOperationAction(ISD::FSIN , MVT::f64, Expand);
586    setOperationAction(ISD::FCOS , MVT::f64, Expand);
587    setOperationAction(ISD::FSIN , MVT::f32, Expand);
588    setOperationAction(ISD::FCOS , MVT::f32, Expand);
589
590    // Expand FP immediates into loads from the stack, except for the special
591    // cases we handle.
592    addLegalFPImmediate(APFloat(+0.0)); // xorpd
593    addLegalFPImmediate(APFloat(+0.0f)); // xorps
594  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
595    // Use SSE for f32, x87 for f64.
596    // Set up the FP register classes.
597    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
598    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
599
600    // Use ANDPS to simulate FABS.
601    setOperationAction(ISD::FABS , MVT::f32, Custom);
602
603    // Use XORP to simulate FNEG.
604    setOperationAction(ISD::FNEG , MVT::f32, Custom);
605
606    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
607
608    // Use ANDPS and ORPS to simulate FCOPYSIGN.
609    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
610    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
611
612    // We don't support sin/cos/fmod
613    setOperationAction(ISD::FSIN , MVT::f32, Expand);
614    setOperationAction(ISD::FCOS , MVT::f32, Expand);
615
616    // Special cases we handle for FP constants.
617    addLegalFPImmediate(APFloat(+0.0f)); // xorps
618    addLegalFPImmediate(APFloat(+0.0)); // FLD0
619    addLegalFPImmediate(APFloat(+1.0)); // FLD1
620    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
621    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
622
623    if (!TM.Options.UnsafeFPMath) {
624      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
625      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
626    }
627  } else if (!TM.Options.UseSoftFloat) {
628    // f32 and f64 in x87.
629    // Set up the FP register classes.
630    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
631    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
632
633    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
634    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
635    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
636    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
637
638    if (!TM.Options.UnsafeFPMath) {
639      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
640      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
641    }
642    addLegalFPImmediate(APFloat(+0.0)); // FLD0
643    addLegalFPImmediate(APFloat(+1.0)); // FLD1
644    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
645    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
646    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
647    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
648    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
649    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
650  }
651
652  // We don't support FMA.
653  setOperationAction(ISD::FMA, MVT::f64, Expand);
654  setOperationAction(ISD::FMA, MVT::f32, Expand);
655
656  // Long double always uses X87.
657  if (!TM.Options.UseSoftFloat) {
658    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
659    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
660    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
661    {
662      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
663      addLegalFPImmediate(TmpFlt);  // FLD0
664      TmpFlt.changeSign();
665      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
666
667      bool ignored;
668      APFloat TmpFlt2(+1.0);
669      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
670                      &ignored);
671      addLegalFPImmediate(TmpFlt2);  // FLD1
672      TmpFlt2.changeSign();
673      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
674    }
675
676    if (!TM.Options.UnsafeFPMath) {
677      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
678      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
679    }
680
681    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
682    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
683    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
684    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
685    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
686    setOperationAction(ISD::FMA, MVT::f80, Expand);
687  }
688
689  // Always use a library call for pow.
690  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
691  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
692  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
693
694  setOperationAction(ISD::FLOG, MVT::f80, Expand);
695  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
696  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
697  setOperationAction(ISD::FEXP, MVT::f80, Expand);
698  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
699
700  // First set operation action for all vector types to either promote
701  // (for widening) or expand (for scalarization). Then we will selectively
702  // turn on ones that can be effectively codegen'd.
703  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
704       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
705    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
720    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
722    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
723    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
757    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
762    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
763         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
764      setTruncStoreAction((MVT::SimpleValueType)VT,
765                          (MVT::SimpleValueType)InnerVT, Expand);
766    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
767    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
768    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
769  }
770
771  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
772  // with -msoft-float, disable use of MMX as well.
773  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
774    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
775    // No operations on x86mmx supported, everything uses intrinsics.
776  }
777
778  // MMX-sized vectors (other than x86mmx) are expected to be expanded
779  // into smaller operations.
780  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
781  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
782  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
783  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
784  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
785  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
786  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
787  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
788  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
789  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
790  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
791  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
792  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
793  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
794  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
795  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
796  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
797  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
798  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
799  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
800  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
801  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
802  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
803  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
804  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
805  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
806  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
807  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
808  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
809
810  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
811    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
812
813    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
814    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
815    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
816    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
817    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
818    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
819    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
820    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
821    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
822    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
823    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
824    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
825  }
826
827  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
828    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
829
830    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
831    // registers cannot be used even for integer operations.
832    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
833    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
834    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
835    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
836
837    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
838    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
839    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
840    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
841    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
842    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
843    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
844    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
845    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
846    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
847    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
848    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
849    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
850    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
851    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
852    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
853
854    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
855    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
856    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
857    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
858
859    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
860    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
861    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
862    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
863    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
864
865    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
866    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
867    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
868    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
869    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
870
871    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
872    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
873      EVT VT = (MVT::SimpleValueType)i;
874      // Do not attempt to custom lower non-power-of-2 vectors
875      if (!isPowerOf2_32(VT.getVectorNumElements()))
876        continue;
877      // Do not attempt to custom lower non-128-bit vectors
878      if (!VT.is128BitVector())
879        continue;
880      setOperationAction(ISD::BUILD_VECTOR,
881                         VT.getSimpleVT().SimpleTy, Custom);
882      setOperationAction(ISD::VECTOR_SHUFFLE,
883                         VT.getSimpleVT().SimpleTy, Custom);
884      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
885                         VT.getSimpleVT().SimpleTy, Custom);
886    }
887
888    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
889    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
890    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
891    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
892    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
893    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
894
895    if (Subtarget->is64Bit()) {
896      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
897      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
898    }
899
900    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
901    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
902      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
903      EVT VT = SVT;
904
905      // Do not attempt to promote non-128-bit vectors
906      if (!VT.is128BitVector())
907        continue;
908
909      setOperationAction(ISD::AND,    SVT, Promote);
910      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
911      setOperationAction(ISD::OR,     SVT, Promote);
912      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
913      setOperationAction(ISD::XOR,    SVT, Promote);
914      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
915      setOperationAction(ISD::LOAD,   SVT, Promote);
916      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
917      setOperationAction(ISD::SELECT, SVT, Promote);
918      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
919    }
920
921    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
922
923    // Custom lower v2i64 and v2f64 selects.
924    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
925    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
926    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
927    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
928
929    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
930    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
931  }
932
933  if (Subtarget->hasSSE41()) {
934    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
935    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
936    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
937    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
938    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
939    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
940    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
941    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
942    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
943    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
944
945    // FIXME: Do we need to handle scalar-to-vector here?
946    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
947
948    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
949    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
950    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
951    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
952    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
953
954    // i8 and i16 vectors are custom , because the source register and source
955    // source memory operand types are not the same width.  f32 vectors are
956    // custom since the immediate controlling the insert encodes additional
957    // information.
958    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
959    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
960    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
961    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
962
963    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
964    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
965    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
966    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
967
968    // FIXME: these should be Legal but thats only for the case where
969    // the index is constant.  For now custom expand to deal with that.
970    if (Subtarget->is64Bit()) {
971      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
972      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
973    }
974  }
975
976  if (Subtarget->hasSSE2()) {
977    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
978    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
979
980    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
981    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
982
983    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
984    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
985
986    if (Subtarget->hasAVX2()) {
987      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
988      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
989
990      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
991      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
992
993      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
994    } else {
995      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
996      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
997
998      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
999      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1000
1001      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1002    }
1003  }
1004
1005  if (Subtarget->hasSSE42())
1006    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1007
1008  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1009    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
1010    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1011    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
1012    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
1013    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
1014    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
1015
1016    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1017    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1018    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1019
1020    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1021    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1022    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1023    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1024    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1025    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1026
1027    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1028    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1029    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1030    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1031    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1032    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1033
1034    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1035    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1036    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1037
1038    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1039    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1040    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1041    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1042    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1043    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1044
1045    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1046    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1047
1048    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1049    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1050
1051    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1052    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1053
1054    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1055    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1056    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1057    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1058
1059    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1060    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1061    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1062
1063    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1064    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1065    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1066    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1067
1068    if (Subtarget->hasAVX2()) {
1069      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1070      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1071      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1072      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1073
1074      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1075      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1076      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1077      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1078
1079      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1080      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1081      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1082      // Don't lower v32i8 because there is no 128-bit byte mul
1083
1084      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1085
1086      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1087      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1088
1089      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1090      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1091
1092      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1093    } else {
1094      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1095      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1096      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1097      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1098
1099      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1100      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1101      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1102      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1103
1104      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1105      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1106      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1107      // Don't lower v32i8 because there is no 128-bit byte mul
1108
1109      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1110      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1111
1112      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1113      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1114
1115      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1116    }
1117
1118    // Custom lower several nodes for 256-bit types.
1119    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1120                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1121      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1122      EVT VT = SVT;
1123
1124      // Extract subvector is special because the value type
1125      // (result) is 128-bit but the source is 256-bit wide.
1126      if (VT.is128BitVector())
1127        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1128
1129      // Do not attempt to custom lower other non-256-bit vectors
1130      if (!VT.is256BitVector())
1131        continue;
1132
1133      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1134      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1135      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1136      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1137      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1138      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1139    }
1140
1141    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1142    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1143      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1144      EVT VT = SVT;
1145
1146      // Do not attempt to promote non-256-bit vectors
1147      if (!VT.is256BitVector())
1148        continue;
1149
1150      setOperationAction(ISD::AND,    SVT, Promote);
1151      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1152      setOperationAction(ISD::OR,     SVT, Promote);
1153      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1154      setOperationAction(ISD::XOR,    SVT, Promote);
1155      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1156      setOperationAction(ISD::LOAD,   SVT, Promote);
1157      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1158      setOperationAction(ISD::SELECT, SVT, Promote);
1159      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1160    }
1161  }
1162
1163  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1164  // of this type with custom code.
1165  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1166         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1167    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1168                       Custom);
1169  }
1170
1171  // We want to custom lower some of our intrinsics.
1172  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1173
1174
1175  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1176  // handle type legalization for these operations here.
1177  //
1178  // FIXME: We really should do custom legalization for addition and
1179  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1180  // than generic legalization for 64-bit multiplication-with-overflow, though.
1181  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1182    // Add/Sub/Mul with overflow operations are custom lowered.
1183    MVT VT = IntVTs[i];
1184    setOperationAction(ISD::SADDO, VT, Custom);
1185    setOperationAction(ISD::UADDO, VT, Custom);
1186    setOperationAction(ISD::SSUBO, VT, Custom);
1187    setOperationAction(ISD::USUBO, VT, Custom);
1188    setOperationAction(ISD::SMULO, VT, Custom);
1189    setOperationAction(ISD::UMULO, VT, Custom);
1190  }
1191
1192  // There are no 8-bit 3-address imul/mul instructions
1193  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1194  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1195
1196  if (!Subtarget->is64Bit()) {
1197    // These libcalls are not available in 32-bit.
1198    setLibcallName(RTLIB::SHL_I128, 0);
1199    setLibcallName(RTLIB::SRL_I128, 0);
1200    setLibcallName(RTLIB::SRA_I128, 0);
1201  }
1202
1203  // We have target-specific dag combine patterns for the following nodes:
1204  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1205  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1206  setTargetDAGCombine(ISD::VSELECT);
1207  setTargetDAGCombine(ISD::SELECT);
1208  setTargetDAGCombine(ISD::SHL);
1209  setTargetDAGCombine(ISD::SRA);
1210  setTargetDAGCombine(ISD::SRL);
1211  setTargetDAGCombine(ISD::OR);
1212  setTargetDAGCombine(ISD::AND);
1213  setTargetDAGCombine(ISD::ADD);
1214  setTargetDAGCombine(ISD::FADD);
1215  setTargetDAGCombine(ISD::FSUB);
1216  setTargetDAGCombine(ISD::SUB);
1217  setTargetDAGCombine(ISD::LOAD);
1218  setTargetDAGCombine(ISD::STORE);
1219  setTargetDAGCombine(ISD::ZERO_EXTEND);
1220  setTargetDAGCombine(ISD::SINT_TO_FP);
1221  if (Subtarget->is64Bit())
1222    setTargetDAGCombine(ISD::MUL);
1223  if (Subtarget->hasBMI())
1224    setTargetDAGCombine(ISD::XOR);
1225
1226  computeRegisterProperties();
1227
1228  // On Darwin, -Os means optimize for size without hurting performance,
1229  // do not reduce the limit.
1230  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1231  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1232  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1233  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1234  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1235  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1236  setPrefLoopAlignment(4); // 2^4 bytes.
1237  benefitFromCodePlacementOpt = true;
1238
1239  setPrefFunctionAlignment(4); // 2^4 bytes.
1240}
1241
1242
1243EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1244  if (!VT.isVector()) return MVT::i8;
1245  return VT.changeVectorElementTypeToInteger();
1246}
1247
1248
1249/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1250/// the desired ByVal argument alignment.
1251static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1252  if (MaxAlign == 16)
1253    return;
1254  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1255    if (VTy->getBitWidth() == 128)
1256      MaxAlign = 16;
1257  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1258    unsigned EltAlign = 0;
1259    getMaxByValAlign(ATy->getElementType(), EltAlign);
1260    if (EltAlign > MaxAlign)
1261      MaxAlign = EltAlign;
1262  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1263    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1264      unsigned EltAlign = 0;
1265      getMaxByValAlign(STy->getElementType(i), EltAlign);
1266      if (EltAlign > MaxAlign)
1267        MaxAlign = EltAlign;
1268      if (MaxAlign == 16)
1269        break;
1270    }
1271  }
1272  return;
1273}
1274
1275/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1276/// function arguments in the caller parameter area. For X86, aggregates
1277/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1278/// are at 4-byte boundaries.
1279unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1280  if (Subtarget->is64Bit()) {
1281    // Max of 8 and alignment of type.
1282    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1283    if (TyAlign > 8)
1284      return TyAlign;
1285    return 8;
1286  }
1287
1288  unsigned Align = 4;
1289  if (Subtarget->hasSSE1())
1290    getMaxByValAlign(Ty, Align);
1291  return Align;
1292}
1293
1294/// getOptimalMemOpType - Returns the target specific optimal type for load
1295/// and store operations as a result of memset, memcpy, and memmove
1296/// lowering. If DstAlign is zero that means it's safe to destination
1297/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1298/// means there isn't a need to check it against alignment requirement,
1299/// probably because the source does not need to be loaded. If
1300/// 'IsZeroVal' is true, that means it's safe to return a
1301/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1302/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1303/// constant so it does not need to be loaded.
1304/// It returns EVT::Other if the type should be determined using generic
1305/// target-independent logic.
1306EVT
1307X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1308                                       unsigned DstAlign, unsigned SrcAlign,
1309                                       bool IsZeroVal,
1310                                       bool MemcpyStrSrc,
1311                                       MachineFunction &MF) const {
1312  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1313  // linux.  This is because the stack realignment code can't handle certain
1314  // cases like PR2962.  This should be removed when PR2962 is fixed.
1315  const Function *F = MF.getFunction();
1316  if (IsZeroVal &&
1317      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1318    if (Size >= 16 &&
1319        (Subtarget->isUnalignedMemAccessFast() ||
1320         ((DstAlign == 0 || DstAlign >= 16) &&
1321          (SrcAlign == 0 || SrcAlign >= 16))) &&
1322        Subtarget->getStackAlignment() >= 16) {
1323      if (Subtarget->getStackAlignment() >= 32) {
1324        if (Subtarget->hasAVX2())
1325          return MVT::v8i32;
1326        if (Subtarget->hasAVX())
1327          return MVT::v8f32;
1328      }
1329      if (Subtarget->hasSSE2())
1330        return MVT::v4i32;
1331      if (Subtarget->hasSSE1())
1332        return MVT::v4f32;
1333    } else if (!MemcpyStrSrc && Size >= 8 &&
1334               !Subtarget->is64Bit() &&
1335               Subtarget->getStackAlignment() >= 8 &&
1336               Subtarget->hasSSE2()) {
1337      // Do not use f64 to lower memcpy if source is string constant. It's
1338      // better to use i32 to avoid the loads.
1339      return MVT::f64;
1340    }
1341  }
1342  if (Subtarget->is64Bit() && Size >= 8)
1343    return MVT::i64;
1344  return MVT::i32;
1345}
1346
1347/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1348/// current function.  The returned value is a member of the
1349/// MachineJumpTableInfo::JTEntryKind enum.
1350unsigned X86TargetLowering::getJumpTableEncoding() const {
1351  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1352  // symbol.
1353  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1354      Subtarget->isPICStyleGOT())
1355    return MachineJumpTableInfo::EK_Custom32;
1356
1357  // Otherwise, use the normal jump table encoding heuristics.
1358  return TargetLowering::getJumpTableEncoding();
1359}
1360
1361const MCExpr *
1362X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1363                                             const MachineBasicBlock *MBB,
1364                                             unsigned uid,MCContext &Ctx) const{
1365  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1366         Subtarget->isPICStyleGOT());
1367  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1368  // entries.
1369  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1370                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1371}
1372
1373/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1374/// jumptable.
1375SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1376                                                    SelectionDAG &DAG) const {
1377  if (!Subtarget->is64Bit())
1378    // This doesn't have DebugLoc associated with it, but is not really the
1379    // same as a Register.
1380    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1381  return Table;
1382}
1383
1384/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1385/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1386/// MCExpr.
1387const MCExpr *X86TargetLowering::
1388getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1389                             MCContext &Ctx) const {
1390  // X86-64 uses RIP relative addressing based on the jump table label.
1391  if (Subtarget->isPICStyleRIPRel())
1392    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1393
1394  // Otherwise, the reference is relative to the PIC base.
1395  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1396}
1397
1398// FIXME: Why this routine is here? Move to RegInfo!
1399std::pair<const TargetRegisterClass*, uint8_t>
1400X86TargetLowering::findRepresentativeClass(EVT VT) const{
1401  const TargetRegisterClass *RRC = 0;
1402  uint8_t Cost = 1;
1403  switch (VT.getSimpleVT().SimpleTy) {
1404  default:
1405    return TargetLowering::findRepresentativeClass(VT);
1406  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1407    RRC = (Subtarget->is64Bit()
1408           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1409    break;
1410  case MVT::x86mmx:
1411    RRC = X86::VR64RegisterClass;
1412    break;
1413  case MVT::f32: case MVT::f64:
1414  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1415  case MVT::v4f32: case MVT::v2f64:
1416  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1417  case MVT::v4f64:
1418    RRC = X86::VR128RegisterClass;
1419    break;
1420  }
1421  return std::make_pair(RRC, Cost);
1422}
1423
1424bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1425                                               unsigned &Offset) const {
1426  if (!Subtarget->isTargetLinux())
1427    return false;
1428
1429  if (Subtarget->is64Bit()) {
1430    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1431    Offset = 0x28;
1432    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1433      AddressSpace = 256;
1434    else
1435      AddressSpace = 257;
1436  } else {
1437    // %gs:0x14 on i386
1438    Offset = 0x14;
1439    AddressSpace = 256;
1440  }
1441  return true;
1442}
1443
1444
1445//===----------------------------------------------------------------------===//
1446//               Return Value Calling Convention Implementation
1447//===----------------------------------------------------------------------===//
1448
1449#include "X86GenCallingConv.inc"
1450
1451bool
1452X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1453				  MachineFunction &MF, bool isVarArg,
1454                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1455                        LLVMContext &Context) const {
1456  SmallVector<CCValAssign, 16> RVLocs;
1457  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1458                 RVLocs, Context);
1459  return CCInfo.CheckReturn(Outs, RetCC_X86);
1460}
1461
1462SDValue
1463X86TargetLowering::LowerReturn(SDValue Chain,
1464                               CallingConv::ID CallConv, bool isVarArg,
1465                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1466                               const SmallVectorImpl<SDValue> &OutVals,
1467                               DebugLoc dl, SelectionDAG &DAG) const {
1468  MachineFunction &MF = DAG.getMachineFunction();
1469  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1470
1471  SmallVector<CCValAssign, 16> RVLocs;
1472  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1473                 RVLocs, *DAG.getContext());
1474  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1475
1476  // Add the regs to the liveout set for the function.
1477  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1478  for (unsigned i = 0; i != RVLocs.size(); ++i)
1479    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1480      MRI.addLiveOut(RVLocs[i].getLocReg());
1481
1482  SDValue Flag;
1483
1484  SmallVector<SDValue, 6> RetOps;
1485  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1486  // Operand #1 = Bytes To Pop
1487  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1488                   MVT::i16));
1489
1490  // Copy the result values into the output registers.
1491  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1492    CCValAssign &VA = RVLocs[i];
1493    assert(VA.isRegLoc() && "Can only return in registers!");
1494    SDValue ValToCopy = OutVals[i];
1495    EVT ValVT = ValToCopy.getValueType();
1496
1497    // If this is x86-64, and we disabled SSE, we can't return FP values,
1498    // or SSE or MMX vectors.
1499    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1500         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1501          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1502      report_fatal_error("SSE register return with SSE disabled");
1503    }
1504    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1505    // llvm-gcc has never done it right and no one has noticed, so this
1506    // should be OK for now.
1507    if (ValVT == MVT::f64 &&
1508        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1509      report_fatal_error("SSE2 register return with SSE2 disabled");
1510
1511    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1512    // the RET instruction and handled by the FP Stackifier.
1513    if (VA.getLocReg() == X86::ST0 ||
1514        VA.getLocReg() == X86::ST1) {
1515      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1516      // change the value to the FP stack register class.
1517      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1518        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1519      RetOps.push_back(ValToCopy);
1520      // Don't emit a copytoreg.
1521      continue;
1522    }
1523
1524    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1525    // which is returned in RAX / RDX.
1526    if (Subtarget->is64Bit()) {
1527      if (ValVT == MVT::x86mmx) {
1528        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1529          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1530          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1531                                  ValToCopy);
1532          // If we don't have SSE2 available, convert to v4f32 so the generated
1533          // register is legal.
1534          if (!Subtarget->hasSSE2())
1535            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1536        }
1537      }
1538    }
1539
1540    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1541    Flag = Chain.getValue(1);
1542  }
1543
1544  // The x86-64 ABI for returning structs by value requires that we copy
1545  // the sret argument into %rax for the return. We saved the argument into
1546  // a virtual register in the entry block, so now we copy the value out
1547  // and into %rax.
1548  if (Subtarget->is64Bit() &&
1549      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1550    MachineFunction &MF = DAG.getMachineFunction();
1551    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1552    unsigned Reg = FuncInfo->getSRetReturnReg();
1553    assert(Reg &&
1554           "SRetReturnReg should have been set in LowerFormalArguments().");
1555    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1556
1557    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1558    Flag = Chain.getValue(1);
1559
1560    // RAX now acts like a return value.
1561    MRI.addLiveOut(X86::RAX);
1562  }
1563
1564  RetOps[0] = Chain;  // Update chain.
1565
1566  // Add the flag if we have it.
1567  if (Flag.getNode())
1568    RetOps.push_back(Flag);
1569
1570  return DAG.getNode(X86ISD::RET_FLAG, dl,
1571                     MVT::Other, &RetOps[0], RetOps.size());
1572}
1573
1574bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1575  if (N->getNumValues() != 1)
1576    return false;
1577  if (!N->hasNUsesOfValue(1, 0))
1578    return false;
1579
1580  SDNode *Copy = *N->use_begin();
1581  if (Copy->getOpcode() != ISD::CopyToReg &&
1582      Copy->getOpcode() != ISD::FP_EXTEND)
1583    return false;
1584
1585  bool HasRet = false;
1586  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1587       UI != UE; ++UI) {
1588    if (UI->getOpcode() != X86ISD::RET_FLAG)
1589      return false;
1590    HasRet = true;
1591  }
1592
1593  return HasRet;
1594}
1595
1596EVT
1597X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1598                                            ISD::NodeType ExtendKind) const {
1599  MVT ReturnMVT;
1600  // TODO: Is this also valid on 32-bit?
1601  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1602    ReturnMVT = MVT::i8;
1603  else
1604    ReturnMVT = MVT::i32;
1605
1606  EVT MinVT = getRegisterType(Context, ReturnMVT);
1607  return VT.bitsLT(MinVT) ? MinVT : VT;
1608}
1609
1610/// LowerCallResult - Lower the result values of a call into the
1611/// appropriate copies out of appropriate physical registers.
1612///
1613SDValue
1614X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1615                                   CallingConv::ID CallConv, bool isVarArg,
1616                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1617                                   DebugLoc dl, SelectionDAG &DAG,
1618                                   SmallVectorImpl<SDValue> &InVals) const {
1619
1620  // Assign locations to each value returned by this call.
1621  SmallVector<CCValAssign, 16> RVLocs;
1622  bool Is64Bit = Subtarget->is64Bit();
1623  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1624		 getTargetMachine(), RVLocs, *DAG.getContext());
1625  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1626
1627  // Copy all of the result registers out of their specified physreg.
1628  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1629    CCValAssign &VA = RVLocs[i];
1630    EVT CopyVT = VA.getValVT();
1631
1632    // If this is x86-64, and we disabled SSE, we can't return FP values
1633    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1634        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1635      report_fatal_error("SSE register return with SSE disabled");
1636    }
1637
1638    SDValue Val;
1639
1640    // If this is a call to a function that returns an fp value on the floating
1641    // point stack, we must guarantee the the value is popped from the stack, so
1642    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1643    // if the return value is not used. We use the FpPOP_RETVAL instruction
1644    // instead.
1645    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1646      // If we prefer to use the value in xmm registers, copy it out as f80 and
1647      // use a truncate to move it from fp stack reg to xmm reg.
1648      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1649      SDValue Ops[] = { Chain, InFlag };
1650      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1651                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1652      Val = Chain.getValue(0);
1653
1654      // Round the f80 to the right size, which also moves it to the appropriate
1655      // xmm register.
1656      if (CopyVT != VA.getValVT())
1657        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1658                          // This truncation won't change the value.
1659                          DAG.getIntPtrConstant(1));
1660    } else {
1661      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1662                                 CopyVT, InFlag).getValue(1);
1663      Val = Chain.getValue(0);
1664    }
1665    InFlag = Chain.getValue(2);
1666    InVals.push_back(Val);
1667  }
1668
1669  return Chain;
1670}
1671
1672
1673//===----------------------------------------------------------------------===//
1674//                C & StdCall & Fast Calling Convention implementation
1675//===----------------------------------------------------------------------===//
1676//  StdCall calling convention seems to be standard for many Windows' API
1677//  routines and around. It differs from C calling convention just a little:
1678//  callee should clean up the stack, not caller. Symbols should be also
1679//  decorated in some fancy way :) It doesn't support any vector arguments.
1680//  For info on fast calling convention see Fast Calling Convention (tail call)
1681//  implementation LowerX86_32FastCCCallTo.
1682
1683/// CallIsStructReturn - Determines whether a call uses struct return
1684/// semantics.
1685static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1686  if (Outs.empty())
1687    return false;
1688
1689  return Outs[0].Flags.isSRet();
1690}
1691
1692/// ArgsAreStructReturn - Determines whether a function uses struct
1693/// return semantics.
1694static bool
1695ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1696  if (Ins.empty())
1697    return false;
1698
1699  return Ins[0].Flags.isSRet();
1700}
1701
1702/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1703/// by "Src" to address "Dst" with size and alignment information specified by
1704/// the specific parameter attribute. The copy will be passed as a byval
1705/// function parameter.
1706static SDValue
1707CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1708                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1709                          DebugLoc dl) {
1710  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1711
1712  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1713                       /*isVolatile*/false, /*AlwaysInline=*/true,
1714                       MachinePointerInfo(), MachinePointerInfo());
1715}
1716
1717/// IsTailCallConvention - Return true if the calling convention is one that
1718/// supports tail call optimization.
1719static bool IsTailCallConvention(CallingConv::ID CC) {
1720  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1721}
1722
1723bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1724  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1725    return false;
1726
1727  CallSite CS(CI);
1728  CallingConv::ID CalleeCC = CS.getCallingConv();
1729  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1730    return false;
1731
1732  return true;
1733}
1734
1735/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1736/// a tailcall target by changing its ABI.
1737static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1738                                   bool GuaranteedTailCallOpt) {
1739  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1740}
1741
1742SDValue
1743X86TargetLowering::LowerMemArgument(SDValue Chain,
1744                                    CallingConv::ID CallConv,
1745                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1746                                    DebugLoc dl, SelectionDAG &DAG,
1747                                    const CCValAssign &VA,
1748                                    MachineFrameInfo *MFI,
1749                                    unsigned i) const {
1750  // Create the nodes corresponding to a load from this parameter slot.
1751  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1752  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1753                              getTargetMachine().Options.GuaranteedTailCallOpt);
1754  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1755  EVT ValVT;
1756
1757  // If value is passed by pointer we have address passed instead of the value
1758  // itself.
1759  if (VA.getLocInfo() == CCValAssign::Indirect)
1760    ValVT = VA.getLocVT();
1761  else
1762    ValVT = VA.getValVT();
1763
1764  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1765  // changed with more analysis.
1766  // In case of tail call optimization mark all arguments mutable. Since they
1767  // could be overwritten by lowering of arguments in case of a tail call.
1768  if (Flags.isByVal()) {
1769    unsigned Bytes = Flags.getByValSize();
1770    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1771    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1772    return DAG.getFrameIndex(FI, getPointerTy());
1773  } else {
1774    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1775                                    VA.getLocMemOffset(), isImmutable);
1776    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1777    return DAG.getLoad(ValVT, dl, Chain, FIN,
1778                       MachinePointerInfo::getFixedStack(FI),
1779                       false, false, false, 0);
1780  }
1781}
1782
1783SDValue
1784X86TargetLowering::LowerFormalArguments(SDValue Chain,
1785                                        CallingConv::ID CallConv,
1786                                        bool isVarArg,
1787                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1788                                        DebugLoc dl,
1789                                        SelectionDAG &DAG,
1790                                        SmallVectorImpl<SDValue> &InVals)
1791                                          const {
1792  MachineFunction &MF = DAG.getMachineFunction();
1793  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1794
1795  const Function* Fn = MF.getFunction();
1796  if (Fn->hasExternalLinkage() &&
1797      Subtarget->isTargetCygMing() &&
1798      Fn->getName() == "main")
1799    FuncInfo->setForceFramePointer(true);
1800
1801  MachineFrameInfo *MFI = MF.getFrameInfo();
1802  bool Is64Bit = Subtarget->is64Bit();
1803  bool IsWindows = Subtarget->isTargetWindows();
1804  bool IsWin64 = Subtarget->isTargetWin64();
1805
1806  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1807         "Var args not supported with calling convention fastcc or ghc");
1808
1809  // Assign locations to all of the incoming arguments.
1810  SmallVector<CCValAssign, 16> ArgLocs;
1811  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1812                 ArgLocs, *DAG.getContext());
1813
1814  // Allocate shadow area for Win64
1815  if (IsWin64) {
1816    CCInfo.AllocateStack(32, 8);
1817  }
1818
1819  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1820
1821  unsigned LastVal = ~0U;
1822  SDValue ArgValue;
1823  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1824    CCValAssign &VA = ArgLocs[i];
1825    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1826    // places.
1827    assert(VA.getValNo() != LastVal &&
1828           "Don't support value assigned to multiple locs yet");
1829    (void)LastVal;
1830    LastVal = VA.getValNo();
1831
1832    if (VA.isRegLoc()) {
1833      EVT RegVT = VA.getLocVT();
1834      TargetRegisterClass *RC = NULL;
1835      if (RegVT == MVT::i32)
1836        RC = X86::GR32RegisterClass;
1837      else if (Is64Bit && RegVT == MVT::i64)
1838        RC = X86::GR64RegisterClass;
1839      else if (RegVT == MVT::f32)
1840        RC = X86::FR32RegisterClass;
1841      else if (RegVT == MVT::f64)
1842        RC = X86::FR64RegisterClass;
1843      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1844        RC = X86::VR256RegisterClass;
1845      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1846        RC = X86::VR128RegisterClass;
1847      else if (RegVT == MVT::x86mmx)
1848        RC = X86::VR64RegisterClass;
1849      else
1850        llvm_unreachable("Unknown argument type!");
1851
1852      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1853      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1854
1855      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1856      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1857      // right size.
1858      if (VA.getLocInfo() == CCValAssign::SExt)
1859        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1860                               DAG.getValueType(VA.getValVT()));
1861      else if (VA.getLocInfo() == CCValAssign::ZExt)
1862        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1863                               DAG.getValueType(VA.getValVT()));
1864      else if (VA.getLocInfo() == CCValAssign::BCvt)
1865        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1866
1867      if (VA.isExtInLoc()) {
1868        // Handle MMX values passed in XMM regs.
1869        if (RegVT.isVector()) {
1870          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1871                                 ArgValue);
1872        } else
1873          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1874      }
1875    } else {
1876      assert(VA.isMemLoc());
1877      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1878    }
1879
1880    // If value is passed via pointer - do a load.
1881    if (VA.getLocInfo() == CCValAssign::Indirect)
1882      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1883                             MachinePointerInfo(), false, false, false, 0);
1884
1885    InVals.push_back(ArgValue);
1886  }
1887
1888  // The x86-64 ABI for returning structs by value requires that we copy
1889  // the sret argument into %rax for the return. Save the argument into
1890  // a virtual register so that we can access it from the return points.
1891  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1892    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1893    unsigned Reg = FuncInfo->getSRetReturnReg();
1894    if (!Reg) {
1895      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1896      FuncInfo->setSRetReturnReg(Reg);
1897    }
1898    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1899    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1900  }
1901
1902  unsigned StackSize = CCInfo.getNextStackOffset();
1903  // Align stack specially for tail calls.
1904  if (FuncIsMadeTailCallSafe(CallConv,
1905                             MF.getTarget().Options.GuaranteedTailCallOpt))
1906    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1907
1908  // If the function takes variable number of arguments, make a frame index for
1909  // the start of the first vararg value... for expansion of llvm.va_start.
1910  if (isVarArg) {
1911    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1912                    CallConv != CallingConv::X86_ThisCall)) {
1913      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1914    }
1915    if (Is64Bit) {
1916      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1917
1918      // FIXME: We should really autogenerate these arrays
1919      static const unsigned GPR64ArgRegsWin64[] = {
1920        X86::RCX, X86::RDX, X86::R8,  X86::R9
1921      };
1922      static const unsigned GPR64ArgRegs64Bit[] = {
1923        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1924      };
1925      static const unsigned XMMArgRegs64Bit[] = {
1926        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1927        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1928      };
1929      const unsigned *GPR64ArgRegs;
1930      unsigned NumXMMRegs = 0;
1931
1932      if (IsWin64) {
1933        // The XMM registers which might contain var arg parameters are shadowed
1934        // in their paired GPR.  So we only need to save the GPR to their home
1935        // slots.
1936        TotalNumIntRegs = 4;
1937        GPR64ArgRegs = GPR64ArgRegsWin64;
1938      } else {
1939        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1940        GPR64ArgRegs = GPR64ArgRegs64Bit;
1941
1942        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1943                                                TotalNumXMMRegs);
1944      }
1945      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1946                                                       TotalNumIntRegs);
1947
1948      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1949      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1950             "SSE register cannot be used when SSE is disabled!");
1951      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1952               NoImplicitFloatOps) &&
1953             "SSE register cannot be used when SSE is disabled!");
1954      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1955          !Subtarget->hasSSE1())
1956        // Kernel mode asks for SSE to be disabled, so don't push them
1957        // on the stack.
1958        TotalNumXMMRegs = 0;
1959
1960      if (IsWin64) {
1961        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1962        // Get to the caller-allocated home save location.  Add 8 to account
1963        // for the return address.
1964        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1965        FuncInfo->setRegSaveFrameIndex(
1966          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1967        // Fixup to set vararg frame on shadow area (4 x i64).
1968        if (NumIntRegs < 4)
1969          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1970      } else {
1971        // For X86-64, if there are vararg parameters that are passed via
1972        // registers, then we must store them to their spots on the stack so
1973        // they may be loaded by deferencing the result of va_next.
1974        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1975        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1976        FuncInfo->setRegSaveFrameIndex(
1977          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1978                               false));
1979      }
1980
1981      // Store the integer parameter registers.
1982      SmallVector<SDValue, 8> MemOps;
1983      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1984                                        getPointerTy());
1985      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1986      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1987        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1988                                  DAG.getIntPtrConstant(Offset));
1989        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1990                                     X86::GR64RegisterClass);
1991        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1992        SDValue Store =
1993          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1994                       MachinePointerInfo::getFixedStack(
1995                         FuncInfo->getRegSaveFrameIndex(), Offset),
1996                       false, false, 0);
1997        MemOps.push_back(Store);
1998        Offset += 8;
1999      }
2000
2001      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2002        // Now store the XMM (fp + vector) parameter registers.
2003        SmallVector<SDValue, 11> SaveXMMOps;
2004        SaveXMMOps.push_back(Chain);
2005
2006        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2007        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2008        SaveXMMOps.push_back(ALVal);
2009
2010        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2011                               FuncInfo->getRegSaveFrameIndex()));
2012        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2013                               FuncInfo->getVarArgsFPOffset()));
2014
2015        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2016          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2017                                       X86::VR128RegisterClass);
2018          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2019          SaveXMMOps.push_back(Val);
2020        }
2021        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2022                                     MVT::Other,
2023                                     &SaveXMMOps[0], SaveXMMOps.size()));
2024      }
2025
2026      if (!MemOps.empty())
2027        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2028                            &MemOps[0], MemOps.size());
2029    }
2030  }
2031
2032  // Some CCs need callee pop.
2033  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2034                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2035    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2036  } else {
2037    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2038    // If this is an sret function, the return should pop the hidden pointer.
2039    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2040        ArgsAreStructReturn(Ins))
2041      FuncInfo->setBytesToPopOnReturn(4);
2042  }
2043
2044  if (!Is64Bit) {
2045    // RegSaveFrameIndex is X86-64 only.
2046    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2047    if (CallConv == CallingConv::X86_FastCall ||
2048        CallConv == CallingConv::X86_ThisCall)
2049      // fastcc functions can't have varargs.
2050      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2051  }
2052
2053  FuncInfo->setArgumentStackSize(StackSize);
2054
2055  return Chain;
2056}
2057
2058SDValue
2059X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2060                                    SDValue StackPtr, SDValue Arg,
2061                                    DebugLoc dl, SelectionDAG &DAG,
2062                                    const CCValAssign &VA,
2063                                    ISD::ArgFlagsTy Flags) const {
2064  unsigned LocMemOffset = VA.getLocMemOffset();
2065  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2066  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2067  if (Flags.isByVal())
2068    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2069
2070  return DAG.getStore(Chain, dl, Arg, PtrOff,
2071                      MachinePointerInfo::getStack(LocMemOffset),
2072                      false, false, 0);
2073}
2074
2075/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2076/// optimization is performed and it is required.
2077SDValue
2078X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2079                                           SDValue &OutRetAddr, SDValue Chain,
2080                                           bool IsTailCall, bool Is64Bit,
2081                                           int FPDiff, DebugLoc dl) const {
2082  // Adjust the Return address stack slot.
2083  EVT VT = getPointerTy();
2084  OutRetAddr = getReturnAddressFrameIndex(DAG);
2085
2086  // Load the "old" Return address.
2087  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2088                           false, false, false, 0);
2089  return SDValue(OutRetAddr.getNode(), 1);
2090}
2091
2092/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2093/// optimization is performed and it is required (FPDiff!=0).
2094static SDValue
2095EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2096                         SDValue Chain, SDValue RetAddrFrIdx,
2097                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2098  // Store the return address to the appropriate stack slot.
2099  if (!FPDiff) return Chain;
2100  // Calculate the new stack slot for the return address.
2101  int SlotSize = Is64Bit ? 8 : 4;
2102  int NewReturnAddrFI =
2103    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2104  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2105  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2106  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2107                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2108                       false, false, 0);
2109  return Chain;
2110}
2111
2112SDValue
2113X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2114                             CallingConv::ID CallConv, bool isVarArg,
2115                             bool &isTailCall,
2116                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2117                             const SmallVectorImpl<SDValue> &OutVals,
2118                             const SmallVectorImpl<ISD::InputArg> &Ins,
2119                             DebugLoc dl, SelectionDAG &DAG,
2120                             SmallVectorImpl<SDValue> &InVals) const {
2121  MachineFunction &MF = DAG.getMachineFunction();
2122  bool Is64Bit        = Subtarget->is64Bit();
2123  bool IsWin64        = Subtarget->isTargetWin64();
2124  bool IsWindows      = Subtarget->isTargetWindows();
2125  bool IsStructRet    = CallIsStructReturn(Outs);
2126  bool IsSibcall      = false;
2127
2128  if (MF.getTarget().Options.DisableTailCalls)
2129    isTailCall = false;
2130
2131  if (isTailCall) {
2132    // Check if it's really possible to do a tail call.
2133    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2134                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2135                                                   Outs, OutVals, Ins, DAG);
2136
2137    // Sibcalls are automatically detected tailcalls which do not require
2138    // ABI changes.
2139    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2140      IsSibcall = true;
2141
2142    if (isTailCall)
2143      ++NumTailCalls;
2144  }
2145
2146  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2147         "Var args not supported with calling convention fastcc or ghc");
2148
2149  // Analyze operands of the call, assigning locations to each operand.
2150  SmallVector<CCValAssign, 16> ArgLocs;
2151  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2152                 ArgLocs, *DAG.getContext());
2153
2154  // Allocate shadow area for Win64
2155  if (IsWin64) {
2156    CCInfo.AllocateStack(32, 8);
2157  }
2158
2159  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2160
2161  // Get a count of how many bytes are to be pushed on the stack.
2162  unsigned NumBytes = CCInfo.getNextStackOffset();
2163  if (IsSibcall)
2164    // This is a sibcall. The memory operands are available in caller's
2165    // own caller's stack.
2166    NumBytes = 0;
2167  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2168           IsTailCallConvention(CallConv))
2169    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2170
2171  int FPDiff = 0;
2172  if (isTailCall && !IsSibcall) {
2173    // Lower arguments at fp - stackoffset + fpdiff.
2174    unsigned NumBytesCallerPushed =
2175      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2176    FPDiff = NumBytesCallerPushed - NumBytes;
2177
2178    // Set the delta of movement of the returnaddr stackslot.
2179    // But only set if delta is greater than previous delta.
2180    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2181      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2182  }
2183
2184  if (!IsSibcall)
2185    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2186
2187  SDValue RetAddrFrIdx;
2188  // Load return address for tail calls.
2189  if (isTailCall && FPDiff)
2190    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2191                                    Is64Bit, FPDiff, dl);
2192
2193  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2194  SmallVector<SDValue, 8> MemOpChains;
2195  SDValue StackPtr;
2196
2197  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2198  // of tail call optimization arguments are handle later.
2199  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2200    CCValAssign &VA = ArgLocs[i];
2201    EVT RegVT = VA.getLocVT();
2202    SDValue Arg = OutVals[i];
2203    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2204    bool isByVal = Flags.isByVal();
2205
2206    // Promote the value if needed.
2207    switch (VA.getLocInfo()) {
2208    default: llvm_unreachable("Unknown loc info!");
2209    case CCValAssign::Full: break;
2210    case CCValAssign::SExt:
2211      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2212      break;
2213    case CCValAssign::ZExt:
2214      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2215      break;
2216    case CCValAssign::AExt:
2217      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2218        // Special case: passing MMX values in XMM registers.
2219        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2220        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2221        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2222      } else
2223        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2224      break;
2225    case CCValAssign::BCvt:
2226      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2227      break;
2228    case CCValAssign::Indirect: {
2229      // Store the argument.
2230      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2231      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2232      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2233                           MachinePointerInfo::getFixedStack(FI),
2234                           false, false, 0);
2235      Arg = SpillSlot;
2236      break;
2237    }
2238    }
2239
2240    if (VA.isRegLoc()) {
2241      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2242      if (isVarArg && IsWin64) {
2243        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2244        // shadow reg if callee is a varargs function.
2245        unsigned ShadowReg = 0;
2246        switch (VA.getLocReg()) {
2247        case X86::XMM0: ShadowReg = X86::RCX; break;
2248        case X86::XMM1: ShadowReg = X86::RDX; break;
2249        case X86::XMM2: ShadowReg = X86::R8; break;
2250        case X86::XMM3: ShadowReg = X86::R9; break;
2251        }
2252        if (ShadowReg)
2253          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2254      }
2255    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2256      assert(VA.isMemLoc());
2257      if (StackPtr.getNode() == 0)
2258        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2259      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2260                                             dl, DAG, VA, Flags));
2261    }
2262  }
2263
2264  if (!MemOpChains.empty())
2265    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2266                        &MemOpChains[0], MemOpChains.size());
2267
2268  // Build a sequence of copy-to-reg nodes chained together with token chain
2269  // and flag operands which copy the outgoing args into registers.
2270  SDValue InFlag;
2271  // Tail call byval lowering might overwrite argument registers so in case of
2272  // tail call optimization the copies to registers are lowered later.
2273  if (!isTailCall)
2274    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2275      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2276                               RegsToPass[i].second, InFlag);
2277      InFlag = Chain.getValue(1);
2278    }
2279
2280  if (Subtarget->isPICStyleGOT()) {
2281    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2282    // GOT pointer.
2283    if (!isTailCall) {
2284      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2285                               DAG.getNode(X86ISD::GlobalBaseReg,
2286                                           DebugLoc(), getPointerTy()),
2287                               InFlag);
2288      InFlag = Chain.getValue(1);
2289    } else {
2290      // If we are tail calling and generating PIC/GOT style code load the
2291      // address of the callee into ECX. The value in ecx is used as target of
2292      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2293      // for tail calls on PIC/GOT architectures. Normally we would just put the
2294      // address of GOT into ebx and then call target@PLT. But for tail calls
2295      // ebx would be restored (since ebx is callee saved) before jumping to the
2296      // target@PLT.
2297
2298      // Note: The actual moving to ECX is done further down.
2299      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2300      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2301          !G->getGlobal()->hasProtectedVisibility())
2302        Callee = LowerGlobalAddress(Callee, DAG);
2303      else if (isa<ExternalSymbolSDNode>(Callee))
2304        Callee = LowerExternalSymbol(Callee, DAG);
2305    }
2306  }
2307
2308  if (Is64Bit && isVarArg && !IsWin64) {
2309    // From AMD64 ABI document:
2310    // For calls that may call functions that use varargs or stdargs
2311    // (prototype-less calls or calls to functions containing ellipsis (...) in
2312    // the declaration) %al is used as hidden argument to specify the number
2313    // of SSE registers used. The contents of %al do not need to match exactly
2314    // the number of registers, but must be an ubound on the number of SSE
2315    // registers used and is in the range 0 - 8 inclusive.
2316
2317    // Count the number of XMM registers allocated.
2318    static const unsigned XMMArgRegs[] = {
2319      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2320      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2321    };
2322    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2323    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2324           && "SSE registers cannot be used when SSE is disabled");
2325
2326    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2327                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2328    InFlag = Chain.getValue(1);
2329  }
2330
2331
2332  // For tail calls lower the arguments to the 'real' stack slot.
2333  if (isTailCall) {
2334    // Force all the incoming stack arguments to be loaded from the stack
2335    // before any new outgoing arguments are stored to the stack, because the
2336    // outgoing stack slots may alias the incoming argument stack slots, and
2337    // the alias isn't otherwise explicit. This is slightly more conservative
2338    // than necessary, because it means that each store effectively depends
2339    // on every argument instead of just those arguments it would clobber.
2340    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2341
2342    SmallVector<SDValue, 8> MemOpChains2;
2343    SDValue FIN;
2344    int FI = 0;
2345    // Do not flag preceding copytoreg stuff together with the following stuff.
2346    InFlag = SDValue();
2347    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2348      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2349        CCValAssign &VA = ArgLocs[i];
2350        if (VA.isRegLoc())
2351          continue;
2352        assert(VA.isMemLoc());
2353        SDValue Arg = OutVals[i];
2354        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2355        // Create frame index.
2356        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2357        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2358        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2359        FIN = DAG.getFrameIndex(FI, getPointerTy());
2360
2361        if (Flags.isByVal()) {
2362          // Copy relative to framepointer.
2363          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2364          if (StackPtr.getNode() == 0)
2365            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2366                                          getPointerTy());
2367          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2368
2369          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2370                                                           ArgChain,
2371                                                           Flags, DAG, dl));
2372        } else {
2373          // Store relative to framepointer.
2374          MemOpChains2.push_back(
2375            DAG.getStore(ArgChain, dl, Arg, FIN,
2376                         MachinePointerInfo::getFixedStack(FI),
2377                         false, false, 0));
2378        }
2379      }
2380    }
2381
2382    if (!MemOpChains2.empty())
2383      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2384                          &MemOpChains2[0], MemOpChains2.size());
2385
2386    // Copy arguments to their registers.
2387    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2388      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2389                               RegsToPass[i].second, InFlag);
2390      InFlag = Chain.getValue(1);
2391    }
2392    InFlag =SDValue();
2393
2394    // Store the return address to the appropriate stack slot.
2395    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2396                                     FPDiff, dl);
2397  }
2398
2399  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2400    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2401    // In the 64-bit large code model, we have to make all calls
2402    // through a register, since the call instruction's 32-bit
2403    // pc-relative offset may not be large enough to hold the whole
2404    // address.
2405  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2406    // If the callee is a GlobalAddress node (quite common, every direct call
2407    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2408    // it.
2409
2410    // We should use extra load for direct calls to dllimported functions in
2411    // non-JIT mode.
2412    const GlobalValue *GV = G->getGlobal();
2413    if (!GV->hasDLLImportLinkage()) {
2414      unsigned char OpFlags = 0;
2415      bool ExtraLoad = false;
2416      unsigned WrapperKind = ISD::DELETED_NODE;
2417
2418      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2419      // external symbols most go through the PLT in PIC mode.  If the symbol
2420      // has hidden or protected visibility, or if it is static or local, then
2421      // we don't need to use the PLT - we can directly call it.
2422      if (Subtarget->isTargetELF() &&
2423          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2424          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2425        OpFlags = X86II::MO_PLT;
2426      } else if (Subtarget->isPICStyleStubAny() &&
2427                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2428                 (!Subtarget->getTargetTriple().isMacOSX() ||
2429                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2430        // PC-relative references to external symbols should go through $stub,
2431        // unless we're building with the leopard linker or later, which
2432        // automatically synthesizes these stubs.
2433        OpFlags = X86II::MO_DARWIN_STUB;
2434      } else if (Subtarget->isPICStyleRIPRel() &&
2435                 isa<Function>(GV) &&
2436                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2437        // If the function is marked as non-lazy, generate an indirect call
2438        // which loads from the GOT directly. This avoids runtime overhead
2439        // at the cost of eager binding (and one extra byte of encoding).
2440        OpFlags = X86II::MO_GOTPCREL;
2441        WrapperKind = X86ISD::WrapperRIP;
2442        ExtraLoad = true;
2443      }
2444
2445      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2446                                          G->getOffset(), OpFlags);
2447
2448      // Add a wrapper if needed.
2449      if (WrapperKind != ISD::DELETED_NODE)
2450        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2451      // Add extra indirection if needed.
2452      if (ExtraLoad)
2453        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2454                             MachinePointerInfo::getGOT(),
2455                             false, false, false, 0);
2456    }
2457  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2458    unsigned char OpFlags = 0;
2459
2460    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2461    // external symbols should go through the PLT.
2462    if (Subtarget->isTargetELF() &&
2463        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2464      OpFlags = X86II::MO_PLT;
2465    } else if (Subtarget->isPICStyleStubAny() &&
2466               (!Subtarget->getTargetTriple().isMacOSX() ||
2467                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2468      // PC-relative references to external symbols should go through $stub,
2469      // unless we're building with the leopard linker or later, which
2470      // automatically synthesizes these stubs.
2471      OpFlags = X86II::MO_DARWIN_STUB;
2472    }
2473
2474    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2475                                         OpFlags);
2476  }
2477
2478  // Returns a chain & a flag for retval copy to use.
2479  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2480  SmallVector<SDValue, 8> Ops;
2481
2482  if (!IsSibcall && isTailCall) {
2483    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2484                           DAG.getIntPtrConstant(0, true), InFlag);
2485    InFlag = Chain.getValue(1);
2486  }
2487
2488  Ops.push_back(Chain);
2489  Ops.push_back(Callee);
2490
2491  if (isTailCall)
2492    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2493
2494  // Add argument registers to the end of the list so that they are known live
2495  // into the call.
2496  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2497    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2498                                  RegsToPass[i].second.getValueType()));
2499
2500  // Add an implicit use GOT pointer in EBX.
2501  if (!isTailCall && Subtarget->isPICStyleGOT())
2502    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2503
2504  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2505  if (Is64Bit && isVarArg && !IsWin64)
2506    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2507
2508  // Experimental: Add a register mask operand representing the call-preserved
2509  // registers.
2510  if (UseRegMask) {
2511    const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2512    const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2513    Ops.push_back(DAG.getRegisterMask(Mask));
2514  }
2515
2516  if (InFlag.getNode())
2517    Ops.push_back(InFlag);
2518
2519  if (isTailCall) {
2520    // We used to do:
2521    //// If this is the first return lowered for this function, add the regs
2522    //// to the liveout set for the function.
2523    // This isn't right, although it's probably harmless on x86; liveouts
2524    // should be computed from returns not tail calls.  Consider a void
2525    // function making a tail call to a function returning int.
2526    return DAG.getNode(X86ISD::TC_RETURN, dl,
2527                       NodeTys, &Ops[0], Ops.size());
2528  }
2529
2530  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2531  InFlag = Chain.getValue(1);
2532
2533  // Create the CALLSEQ_END node.
2534  unsigned NumBytesForCalleeToPush;
2535  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2536                       getTargetMachine().Options.GuaranteedTailCallOpt))
2537    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2538  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2539           IsStructRet)
2540    // If this is a call to a struct-return function, the callee
2541    // pops the hidden struct pointer, so we have to push it back.
2542    // This is common for Darwin/X86, Linux & Mingw32 targets.
2543    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2544    NumBytesForCalleeToPush = 4;
2545  else
2546    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2547
2548  // Returns a flag for retval copy to use.
2549  if (!IsSibcall) {
2550    Chain = DAG.getCALLSEQ_END(Chain,
2551                               DAG.getIntPtrConstant(NumBytes, true),
2552                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2553                                                     true),
2554                               InFlag);
2555    InFlag = Chain.getValue(1);
2556  }
2557
2558  // Handle result values, copying them out of physregs into vregs that we
2559  // return.
2560  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2561                         Ins, dl, DAG, InVals);
2562}
2563
2564
2565//===----------------------------------------------------------------------===//
2566//                Fast Calling Convention (tail call) implementation
2567//===----------------------------------------------------------------------===//
2568
2569//  Like std call, callee cleans arguments, convention except that ECX is
2570//  reserved for storing the tail called function address. Only 2 registers are
2571//  free for argument passing (inreg). Tail call optimization is performed
2572//  provided:
2573//                * tailcallopt is enabled
2574//                * caller/callee are fastcc
2575//  On X86_64 architecture with GOT-style position independent code only local
2576//  (within module) calls are supported at the moment.
2577//  To keep the stack aligned according to platform abi the function
2578//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2579//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2580//  If a tail called function callee has more arguments than the caller the
2581//  caller needs to make sure that there is room to move the RETADDR to. This is
2582//  achieved by reserving an area the size of the argument delta right after the
2583//  original REtADDR, but before the saved framepointer or the spilled registers
2584//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2585//  stack layout:
2586//    arg1
2587//    arg2
2588//    RETADDR
2589//    [ new RETADDR
2590//      move area ]
2591//    (possible EBP)
2592//    ESI
2593//    EDI
2594//    local1 ..
2595
2596/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2597/// for a 16 byte align requirement.
2598unsigned
2599X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2600                                               SelectionDAG& DAG) const {
2601  MachineFunction &MF = DAG.getMachineFunction();
2602  const TargetMachine &TM = MF.getTarget();
2603  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2604  unsigned StackAlignment = TFI.getStackAlignment();
2605  uint64_t AlignMask = StackAlignment - 1;
2606  int64_t Offset = StackSize;
2607  uint64_t SlotSize = TD->getPointerSize();
2608  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2609    // Number smaller than 12 so just add the difference.
2610    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2611  } else {
2612    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2613    Offset = ((~AlignMask) & Offset) + StackAlignment +
2614      (StackAlignment-SlotSize);
2615  }
2616  return Offset;
2617}
2618
2619/// MatchingStackOffset - Return true if the given stack call argument is
2620/// already available in the same position (relatively) of the caller's
2621/// incoming argument stack.
2622static
2623bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2624                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2625                         const X86InstrInfo *TII) {
2626  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2627  int FI = INT_MAX;
2628  if (Arg.getOpcode() == ISD::CopyFromReg) {
2629    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2630    if (!TargetRegisterInfo::isVirtualRegister(VR))
2631      return false;
2632    MachineInstr *Def = MRI->getVRegDef(VR);
2633    if (!Def)
2634      return false;
2635    if (!Flags.isByVal()) {
2636      if (!TII->isLoadFromStackSlot(Def, FI))
2637        return false;
2638    } else {
2639      unsigned Opcode = Def->getOpcode();
2640      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2641          Def->getOperand(1).isFI()) {
2642        FI = Def->getOperand(1).getIndex();
2643        Bytes = Flags.getByValSize();
2644      } else
2645        return false;
2646    }
2647  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2648    if (Flags.isByVal())
2649      // ByVal argument is passed in as a pointer but it's now being
2650      // dereferenced. e.g.
2651      // define @foo(%struct.X* %A) {
2652      //   tail call @bar(%struct.X* byval %A)
2653      // }
2654      return false;
2655    SDValue Ptr = Ld->getBasePtr();
2656    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2657    if (!FINode)
2658      return false;
2659    FI = FINode->getIndex();
2660  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2661    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2662    FI = FINode->getIndex();
2663    Bytes = Flags.getByValSize();
2664  } else
2665    return false;
2666
2667  assert(FI != INT_MAX);
2668  if (!MFI->isFixedObjectIndex(FI))
2669    return false;
2670  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2671}
2672
2673/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2674/// for tail call optimization. Targets which want to do tail call
2675/// optimization should implement this function.
2676bool
2677X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2678                                                     CallingConv::ID CalleeCC,
2679                                                     bool isVarArg,
2680                                                     bool isCalleeStructRet,
2681                                                     bool isCallerStructRet,
2682                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2683                                    const SmallVectorImpl<SDValue> &OutVals,
2684                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2685                                                     SelectionDAG& DAG) const {
2686  if (!IsTailCallConvention(CalleeCC) &&
2687      CalleeCC != CallingConv::C)
2688    return false;
2689
2690  // If -tailcallopt is specified, make fastcc functions tail-callable.
2691  const MachineFunction &MF = DAG.getMachineFunction();
2692  const Function *CallerF = DAG.getMachineFunction().getFunction();
2693  CallingConv::ID CallerCC = CallerF->getCallingConv();
2694  bool CCMatch = CallerCC == CalleeCC;
2695
2696  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2697    if (IsTailCallConvention(CalleeCC) && CCMatch)
2698      return true;
2699    return false;
2700  }
2701
2702  // Look for obvious safe cases to perform tail call optimization that do not
2703  // require ABI changes. This is what gcc calls sibcall.
2704
2705  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2706  // emit a special epilogue.
2707  if (RegInfo->needsStackRealignment(MF))
2708    return false;
2709
2710  // Also avoid sibcall optimization if either caller or callee uses struct
2711  // return semantics.
2712  if (isCalleeStructRet || isCallerStructRet)
2713    return false;
2714
2715  // An stdcall caller is expected to clean up its arguments; the callee
2716  // isn't going to do that.
2717  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2718    return false;
2719
2720  // Do not sibcall optimize vararg calls unless all arguments are passed via
2721  // registers.
2722  if (isVarArg && !Outs.empty()) {
2723
2724    // Optimizing for varargs on Win64 is unlikely to be safe without
2725    // additional testing.
2726    if (Subtarget->isTargetWin64())
2727      return false;
2728
2729    SmallVector<CCValAssign, 16> ArgLocs;
2730    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2731		   getTargetMachine(), ArgLocs, *DAG.getContext());
2732
2733    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2734    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2735      if (!ArgLocs[i].isRegLoc())
2736        return false;
2737  }
2738
2739  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2740  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2741  // this into a sibcall.
2742  bool Unused = false;
2743  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2744    if (!Ins[i].Used) {
2745      Unused = true;
2746      break;
2747    }
2748  }
2749  if (Unused) {
2750    SmallVector<CCValAssign, 16> RVLocs;
2751    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2752		   getTargetMachine(), RVLocs, *DAG.getContext());
2753    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2754    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2755      CCValAssign &VA = RVLocs[i];
2756      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2757        return false;
2758    }
2759  }
2760
2761  // If the calling conventions do not match, then we'd better make sure the
2762  // results are returned in the same way as what the caller expects.
2763  if (!CCMatch) {
2764    SmallVector<CCValAssign, 16> RVLocs1;
2765    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2766		    getTargetMachine(), RVLocs1, *DAG.getContext());
2767    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2768
2769    SmallVector<CCValAssign, 16> RVLocs2;
2770    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2771		    getTargetMachine(), RVLocs2, *DAG.getContext());
2772    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2773
2774    if (RVLocs1.size() != RVLocs2.size())
2775      return false;
2776    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2777      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2778        return false;
2779      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2780        return false;
2781      if (RVLocs1[i].isRegLoc()) {
2782        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2783          return false;
2784      } else {
2785        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2786          return false;
2787      }
2788    }
2789  }
2790
2791  // If the callee takes no arguments then go on to check the results of the
2792  // call.
2793  if (!Outs.empty()) {
2794    // Check if stack adjustment is needed. For now, do not do this if any
2795    // argument is passed on the stack.
2796    SmallVector<CCValAssign, 16> ArgLocs;
2797    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2798		   getTargetMachine(), ArgLocs, *DAG.getContext());
2799
2800    // Allocate shadow area for Win64
2801    if (Subtarget->isTargetWin64()) {
2802      CCInfo.AllocateStack(32, 8);
2803    }
2804
2805    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2806    if (CCInfo.getNextStackOffset()) {
2807      MachineFunction &MF = DAG.getMachineFunction();
2808      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2809        return false;
2810
2811      // Check if the arguments are already laid out in the right way as
2812      // the caller's fixed stack objects.
2813      MachineFrameInfo *MFI = MF.getFrameInfo();
2814      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2815      const X86InstrInfo *TII =
2816        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2817      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2818        CCValAssign &VA = ArgLocs[i];
2819        SDValue Arg = OutVals[i];
2820        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2821        if (VA.getLocInfo() == CCValAssign::Indirect)
2822          return false;
2823        if (!VA.isRegLoc()) {
2824          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2825                                   MFI, MRI, TII))
2826            return false;
2827        }
2828      }
2829    }
2830
2831    // If the tailcall address may be in a register, then make sure it's
2832    // possible to register allocate for it. In 32-bit, the call address can
2833    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2834    // callee-saved registers are restored. These happen to be the same
2835    // registers used to pass 'inreg' arguments so watch out for those.
2836    if (!Subtarget->is64Bit() &&
2837        !isa<GlobalAddressSDNode>(Callee) &&
2838        !isa<ExternalSymbolSDNode>(Callee)) {
2839      unsigned NumInRegs = 0;
2840      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2841        CCValAssign &VA = ArgLocs[i];
2842        if (!VA.isRegLoc())
2843          continue;
2844        unsigned Reg = VA.getLocReg();
2845        switch (Reg) {
2846        default: break;
2847        case X86::EAX: case X86::EDX: case X86::ECX:
2848          if (++NumInRegs == 3)
2849            return false;
2850          break;
2851        }
2852      }
2853    }
2854  }
2855
2856  return true;
2857}
2858
2859FastISel *
2860X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2861  return X86::createFastISel(funcInfo);
2862}
2863
2864
2865//===----------------------------------------------------------------------===//
2866//                           Other Lowering Hooks
2867//===----------------------------------------------------------------------===//
2868
2869static bool MayFoldLoad(SDValue Op) {
2870  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2871}
2872
2873static bool MayFoldIntoStore(SDValue Op) {
2874  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2875}
2876
2877static bool isTargetShuffle(unsigned Opcode) {
2878  switch(Opcode) {
2879  default: return false;
2880  case X86ISD::PSHUFD:
2881  case X86ISD::PSHUFHW:
2882  case X86ISD::PSHUFLW:
2883  case X86ISD::SHUFP:
2884  case X86ISD::PALIGN:
2885  case X86ISD::MOVLHPS:
2886  case X86ISD::MOVLHPD:
2887  case X86ISD::MOVHLPS:
2888  case X86ISD::MOVLPS:
2889  case X86ISD::MOVLPD:
2890  case X86ISD::MOVSHDUP:
2891  case X86ISD::MOVSLDUP:
2892  case X86ISD::MOVDDUP:
2893  case X86ISD::MOVSS:
2894  case X86ISD::MOVSD:
2895  case X86ISD::UNPCKL:
2896  case X86ISD::UNPCKH:
2897  case X86ISD::VPERMILP:
2898  case X86ISD::VPERM2X128:
2899    return true;
2900  }
2901}
2902
2903static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2904                                               SDValue V1, SelectionDAG &DAG) {
2905  switch(Opc) {
2906  default: llvm_unreachable("Unknown x86 shuffle node");
2907  case X86ISD::MOVSHDUP:
2908  case X86ISD::MOVSLDUP:
2909  case X86ISD::MOVDDUP:
2910    return DAG.getNode(Opc, dl, VT, V1);
2911  }
2912}
2913
2914static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2915                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2916  switch(Opc) {
2917  default: llvm_unreachable("Unknown x86 shuffle node");
2918  case X86ISD::PSHUFD:
2919  case X86ISD::PSHUFHW:
2920  case X86ISD::PSHUFLW:
2921  case X86ISD::VPERMILP:
2922    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2923  }
2924}
2925
2926static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2927               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2928  switch(Opc) {
2929  default: llvm_unreachable("Unknown x86 shuffle node");
2930  case X86ISD::PALIGN:
2931  case X86ISD::SHUFP:
2932  case X86ISD::VPERM2X128:
2933    return DAG.getNode(Opc, dl, VT, V1, V2,
2934                       DAG.getConstant(TargetMask, MVT::i8));
2935  }
2936}
2937
2938static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2939                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2940  switch(Opc) {
2941  default: llvm_unreachable("Unknown x86 shuffle node");
2942  case X86ISD::MOVLHPS:
2943  case X86ISD::MOVLHPD:
2944  case X86ISD::MOVHLPS:
2945  case X86ISD::MOVLPS:
2946  case X86ISD::MOVLPD:
2947  case X86ISD::MOVSS:
2948  case X86ISD::MOVSD:
2949  case X86ISD::UNPCKL:
2950  case X86ISD::UNPCKH:
2951    return DAG.getNode(Opc, dl, VT, V1, V2);
2952  }
2953}
2954
2955SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2956  MachineFunction &MF = DAG.getMachineFunction();
2957  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2958  int ReturnAddrIndex = FuncInfo->getRAIndex();
2959
2960  if (ReturnAddrIndex == 0) {
2961    // Set up a frame object for the return address.
2962    uint64_t SlotSize = TD->getPointerSize();
2963    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2964                                                           false);
2965    FuncInfo->setRAIndex(ReturnAddrIndex);
2966  }
2967
2968  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2969}
2970
2971
2972bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2973                                       bool hasSymbolicDisplacement) {
2974  // Offset should fit into 32 bit immediate field.
2975  if (!isInt<32>(Offset))
2976    return false;
2977
2978  // If we don't have a symbolic displacement - we don't have any extra
2979  // restrictions.
2980  if (!hasSymbolicDisplacement)
2981    return true;
2982
2983  // FIXME: Some tweaks might be needed for medium code model.
2984  if (M != CodeModel::Small && M != CodeModel::Kernel)
2985    return false;
2986
2987  // For small code model we assume that latest object is 16MB before end of 31
2988  // bits boundary. We may also accept pretty large negative constants knowing
2989  // that all objects are in the positive half of address space.
2990  if (M == CodeModel::Small && Offset < 16*1024*1024)
2991    return true;
2992
2993  // For kernel code model we know that all object resist in the negative half
2994  // of 32bits address space. We may not accept negative offsets, since they may
2995  // be just off and we may accept pretty large positive ones.
2996  if (M == CodeModel::Kernel && Offset > 0)
2997    return true;
2998
2999  return false;
3000}
3001
3002/// isCalleePop - Determines whether the callee is required to pop its
3003/// own arguments. Callee pop is necessary to support tail calls.
3004bool X86::isCalleePop(CallingConv::ID CallingConv,
3005                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3006  if (IsVarArg)
3007    return false;
3008
3009  switch (CallingConv) {
3010  default:
3011    return false;
3012  case CallingConv::X86_StdCall:
3013    return !is64Bit;
3014  case CallingConv::X86_FastCall:
3015    return !is64Bit;
3016  case CallingConv::X86_ThisCall:
3017    return !is64Bit;
3018  case CallingConv::Fast:
3019    return TailCallOpt;
3020  case CallingConv::GHC:
3021    return TailCallOpt;
3022  }
3023}
3024
3025/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3026/// specific condition code, returning the condition code and the LHS/RHS of the
3027/// comparison to make.
3028static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3029                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3030  if (!isFP) {
3031    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3032      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3033        // X > -1   -> X == 0, jump !sign.
3034        RHS = DAG.getConstant(0, RHS.getValueType());
3035        return X86::COND_NS;
3036      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3037        // X < 0   -> X == 0, jump on sign.
3038        return X86::COND_S;
3039      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3040        // X < 1   -> X <= 0
3041        RHS = DAG.getConstant(0, RHS.getValueType());
3042        return X86::COND_LE;
3043      }
3044    }
3045
3046    switch (SetCCOpcode) {
3047    default: llvm_unreachable("Invalid integer condition!");
3048    case ISD::SETEQ:  return X86::COND_E;
3049    case ISD::SETGT:  return X86::COND_G;
3050    case ISD::SETGE:  return X86::COND_GE;
3051    case ISD::SETLT:  return X86::COND_L;
3052    case ISD::SETLE:  return X86::COND_LE;
3053    case ISD::SETNE:  return X86::COND_NE;
3054    case ISD::SETULT: return X86::COND_B;
3055    case ISD::SETUGT: return X86::COND_A;
3056    case ISD::SETULE: return X86::COND_BE;
3057    case ISD::SETUGE: return X86::COND_AE;
3058    }
3059  }
3060
3061  // First determine if it is required or is profitable to flip the operands.
3062
3063  // If LHS is a foldable load, but RHS is not, flip the condition.
3064  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3065      !ISD::isNON_EXTLoad(RHS.getNode())) {
3066    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3067    std::swap(LHS, RHS);
3068  }
3069
3070  switch (SetCCOpcode) {
3071  default: break;
3072  case ISD::SETOLT:
3073  case ISD::SETOLE:
3074  case ISD::SETUGT:
3075  case ISD::SETUGE:
3076    std::swap(LHS, RHS);
3077    break;
3078  }
3079
3080  // On a floating point condition, the flags are set as follows:
3081  // ZF  PF  CF   op
3082  //  0 | 0 | 0 | X > Y
3083  //  0 | 0 | 1 | X < Y
3084  //  1 | 0 | 0 | X == Y
3085  //  1 | 1 | 1 | unordered
3086  switch (SetCCOpcode) {
3087  default: llvm_unreachable("Condcode should be pre-legalized away");
3088  case ISD::SETUEQ:
3089  case ISD::SETEQ:   return X86::COND_E;
3090  case ISD::SETOLT:              // flipped
3091  case ISD::SETOGT:
3092  case ISD::SETGT:   return X86::COND_A;
3093  case ISD::SETOLE:              // flipped
3094  case ISD::SETOGE:
3095  case ISD::SETGE:   return X86::COND_AE;
3096  case ISD::SETUGT:              // flipped
3097  case ISD::SETULT:
3098  case ISD::SETLT:   return X86::COND_B;
3099  case ISD::SETUGE:              // flipped
3100  case ISD::SETULE:
3101  case ISD::SETLE:   return X86::COND_BE;
3102  case ISD::SETONE:
3103  case ISD::SETNE:   return X86::COND_NE;
3104  case ISD::SETUO:   return X86::COND_P;
3105  case ISD::SETO:    return X86::COND_NP;
3106  case ISD::SETOEQ:
3107  case ISD::SETUNE:  return X86::COND_INVALID;
3108  }
3109}
3110
3111/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3112/// code. Current x86 isa includes the following FP cmov instructions:
3113/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3114static bool hasFPCMov(unsigned X86CC) {
3115  switch (X86CC) {
3116  default:
3117    return false;
3118  case X86::COND_B:
3119  case X86::COND_BE:
3120  case X86::COND_E:
3121  case X86::COND_P:
3122  case X86::COND_A:
3123  case X86::COND_AE:
3124  case X86::COND_NE:
3125  case X86::COND_NP:
3126    return true;
3127  }
3128}
3129
3130/// isFPImmLegal - Returns true if the target can instruction select the
3131/// specified FP immediate natively. If false, the legalizer will
3132/// materialize the FP immediate as a load from a constant pool.
3133bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3134  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3135    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3136      return true;
3137  }
3138  return false;
3139}
3140
3141/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3142/// the specified range (L, H].
3143static bool isUndefOrInRange(int Val, int Low, int Hi) {
3144  return (Val < 0) || (Val >= Low && Val < Hi);
3145}
3146
3147/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3148/// specified value.
3149static bool isUndefOrEqual(int Val, int CmpVal) {
3150  if (Val < 0 || Val == CmpVal)
3151    return true;
3152  return false;
3153}
3154
3155/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3156/// from position Pos and ending in Pos+Size, falls within the specified
3157/// sequential range (L, L+Pos]. or is undef.
3158static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3159                                       int Pos, int Size, int Low) {
3160  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3161    if (!isUndefOrEqual(Mask[i], Low))
3162      return false;
3163  return true;
3164}
3165
3166/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3167/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3168/// the second operand.
3169static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3170  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3171    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3172  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3173    return (Mask[0] < 2 && Mask[1] < 2);
3174  return false;
3175}
3176
3177bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3178  return ::isPSHUFDMask(N->getMask(), N->getValueType(0));
3179}
3180
3181/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3182/// is suitable for input to PSHUFHW.
3183static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
3184  if (VT != MVT::v8i16)
3185    return false;
3186
3187  // Lower quadword copied in order or undef.
3188  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3189    return false;
3190
3191  // Upper quadword shuffled.
3192  for (unsigned i = 4; i != 8; ++i)
3193    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3194      return false;
3195
3196  return true;
3197}
3198
3199bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3200  return ::isPSHUFHWMask(N->getMask(), N->getValueType(0));
3201}
3202
3203/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3204/// is suitable for input to PSHUFLW.
3205static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
3206  if (VT != MVT::v8i16)
3207    return false;
3208
3209  // Upper quadword copied in order.
3210  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3211    return false;
3212
3213  // Lower quadword shuffled.
3214  for (unsigned i = 0; i != 4; ++i)
3215    if (Mask[i] >= 4)
3216      return false;
3217
3218  return true;
3219}
3220
3221bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3222  return ::isPSHUFLWMask(N->getMask(), N->getValueType(0));
3223}
3224
3225/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3226/// is suitable for input to PALIGNR.
3227static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3228                          const X86Subtarget *Subtarget) {
3229  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3230      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3231    return false;
3232
3233  unsigned NumElts = VT.getVectorNumElements();
3234  unsigned NumLanes = VT.getSizeInBits()/128;
3235  unsigned NumLaneElts = NumElts/NumLanes;
3236
3237  // Do not handle 64-bit element shuffles with palignr.
3238  if (NumLaneElts == 2)
3239    return false;
3240
3241  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3242    unsigned i;
3243    for (i = 0; i != NumLaneElts; ++i) {
3244      if (Mask[i+l] >= 0)
3245        break;
3246    }
3247
3248    // Lane is all undef, go to next lane
3249    if (i == NumLaneElts)
3250      continue;
3251
3252    int Start = Mask[i+l];
3253
3254    // Make sure its in this lane in one of the sources
3255    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3256        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3257      return false;
3258
3259    // If not lane 0, then we must match lane 0
3260    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3261      return false;
3262
3263    // Correct second source to be contiguous with first source
3264    if (Start >= (int)NumElts)
3265      Start -= NumElts - NumLaneElts;
3266
3267    // Make sure we're shifting in the right direction.
3268    if (Start <= (int)(i+l))
3269      return false;
3270
3271    Start -= i;
3272
3273    // Check the rest of the elements to see if they are consecutive.
3274    for (++i; i != NumLaneElts; ++i) {
3275      int Idx = Mask[i+l];
3276
3277      // Make sure its in this lane
3278      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3279          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3280        return false;
3281
3282      // If not lane 0, then we must match lane 0
3283      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3284        return false;
3285
3286      if (Idx >= (int)NumElts)
3287        Idx -= NumElts - NumLaneElts;
3288
3289      if (!isUndefOrEqual(Idx, Start+i))
3290        return false;
3291
3292    }
3293  }
3294
3295  return true;
3296}
3297
3298/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3299/// the two vector operands have swapped position.
3300static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3301                                     unsigned NumElems) {
3302  for (unsigned i = 0; i != NumElems; ++i) {
3303    int idx = Mask[i];
3304    if (idx < 0)
3305      continue;
3306    else if (idx < (int)NumElems)
3307      Mask[i] = idx + NumElems;
3308    else
3309      Mask[i] = idx - NumElems;
3310  }
3311}
3312
3313/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3314/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3315/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3316/// reverse of what x86 shuffles want.
3317static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3318                        bool Commuted = false) {
3319  if (!HasAVX && VT.getSizeInBits() == 256)
3320    return false;
3321
3322  unsigned NumElems = VT.getVectorNumElements();
3323  unsigned NumLanes = VT.getSizeInBits()/128;
3324  unsigned NumLaneElems = NumElems/NumLanes;
3325
3326  if (NumLaneElems != 2 && NumLaneElems != 4)
3327    return false;
3328
3329  // VSHUFPSY divides the resulting vector into 4 chunks.
3330  // The sources are also splitted into 4 chunks, and each destination
3331  // chunk must come from a different source chunk.
3332  //
3333  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3334  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3335  //
3336  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3337  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3338  //
3339  // VSHUFPDY divides the resulting vector into 4 chunks.
3340  // The sources are also splitted into 4 chunks, and each destination
3341  // chunk must come from a different source chunk.
3342  //
3343  //  SRC1 =>      X3       X2       X1       X0
3344  //  SRC2 =>      Y3       Y2       Y1       Y0
3345  //
3346  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3347  //
3348  unsigned HalfLaneElems = NumLaneElems/2;
3349  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3350    for (unsigned i = 0; i != NumLaneElems; ++i) {
3351      int Idx = Mask[i+l];
3352      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3353      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3354        return false;
3355      // For VSHUFPSY, the mask of the second half must be the same as the
3356      // first but with the appropriate offsets. This works in the same way as
3357      // VPERMILPS works with masks.
3358      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3359        continue;
3360      if (!isUndefOrEqual(Idx, Mask[i]+l))
3361        return false;
3362    }
3363  }
3364
3365  return true;
3366}
3367
3368bool X86::isSHUFPMask(ShuffleVectorSDNode *N, bool HasAVX) {
3369  return ::isSHUFPMask(N->getMask(), N->getValueType(0), HasAVX);
3370}
3371
3372/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3373/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3374bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3375  EVT VT = N->getValueType(0);
3376  unsigned NumElems = VT.getVectorNumElements();
3377
3378  if (VT.getSizeInBits() != 128)
3379    return false;
3380
3381  if (NumElems != 4)
3382    return false;
3383
3384  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3385  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3386         isUndefOrEqual(N->getMaskElt(1), 7) &&
3387         isUndefOrEqual(N->getMaskElt(2), 2) &&
3388         isUndefOrEqual(N->getMaskElt(3), 3);
3389}
3390
3391/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3392/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3393/// <2, 3, 2, 3>
3394bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3395  EVT VT = N->getValueType(0);
3396  unsigned NumElems = VT.getVectorNumElements();
3397
3398  if (VT.getSizeInBits() != 128)
3399    return false;
3400
3401  if (NumElems != 4)
3402    return false;
3403
3404  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3405         isUndefOrEqual(N->getMaskElt(1), 3) &&
3406         isUndefOrEqual(N->getMaskElt(2), 2) &&
3407         isUndefOrEqual(N->getMaskElt(3), 3);
3408}
3409
3410/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3411/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3412bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3413  EVT VT = N->getValueType(0);
3414
3415  if (VT.getSizeInBits() != 128)
3416    return false;
3417
3418  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3419
3420  if (NumElems != 2 && NumElems != 4)
3421    return false;
3422
3423  for (unsigned i = 0; i < NumElems/2; ++i)
3424    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3425      return false;
3426
3427  for (unsigned i = NumElems/2; i < NumElems; ++i)
3428    if (!isUndefOrEqual(N->getMaskElt(i), i))
3429      return false;
3430
3431  return true;
3432}
3433
3434/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3435/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3436bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3437  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3438
3439  if ((NumElems != 2 && NumElems != 4)
3440      || N->getValueType(0).getSizeInBits() > 128)
3441    return false;
3442
3443  for (unsigned i = 0; i < NumElems/2; ++i)
3444    if (!isUndefOrEqual(N->getMaskElt(i), i))
3445      return false;
3446
3447  for (unsigned i = 0; i < NumElems/2; ++i)
3448    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3449      return false;
3450
3451  return true;
3452}
3453
3454/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3455/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3456static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3457                         bool HasAVX2, bool V2IsSplat = false) {
3458  unsigned NumElts = VT.getVectorNumElements();
3459
3460  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3461         "Unsupported vector type for unpckh");
3462
3463  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3464      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3465    return false;
3466
3467  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3468  // independently on 128-bit lanes.
3469  unsigned NumLanes = VT.getSizeInBits()/128;
3470  unsigned NumLaneElts = NumElts/NumLanes;
3471
3472  for (unsigned l = 0; l != NumLanes; ++l) {
3473    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3474         i != (l+1)*NumLaneElts;
3475         i += 2, ++j) {
3476      int BitI  = Mask[i];
3477      int BitI1 = Mask[i+1];
3478      if (!isUndefOrEqual(BitI, j))
3479        return false;
3480      if (V2IsSplat) {
3481        if (!isUndefOrEqual(BitI1, NumElts))
3482          return false;
3483      } else {
3484        if (!isUndefOrEqual(BitI1, j + NumElts))
3485          return false;
3486      }
3487    }
3488  }
3489
3490  return true;
3491}
3492
3493bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3494  return ::isUNPCKLMask(N->getMask(), N->getValueType(0), HasAVX2, V2IsSplat);
3495}
3496
3497/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3498/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3499static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3500                         bool HasAVX2, bool V2IsSplat = false) {
3501  unsigned NumElts = VT.getVectorNumElements();
3502
3503  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3504         "Unsupported vector type for unpckh");
3505
3506  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3507      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3508    return false;
3509
3510  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3511  // independently on 128-bit lanes.
3512  unsigned NumLanes = VT.getSizeInBits()/128;
3513  unsigned NumLaneElts = NumElts/NumLanes;
3514
3515  for (unsigned l = 0; l != NumLanes; ++l) {
3516    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3517         i != (l+1)*NumLaneElts; i += 2, ++j) {
3518      int BitI  = Mask[i];
3519      int BitI1 = Mask[i+1];
3520      if (!isUndefOrEqual(BitI, j))
3521        return false;
3522      if (V2IsSplat) {
3523        if (isUndefOrEqual(BitI1, NumElts))
3524          return false;
3525      } else {
3526        if (!isUndefOrEqual(BitI1, j+NumElts))
3527          return false;
3528      }
3529    }
3530  }
3531  return true;
3532}
3533
3534bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3535  return ::isUNPCKHMask(N->getMask(), N->getValueType(0), HasAVX2, V2IsSplat);
3536}
3537
3538/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3539/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3540/// <0, 0, 1, 1>
3541static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3542                                  bool HasAVX2) {
3543  unsigned NumElts = VT.getVectorNumElements();
3544
3545  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3546         "Unsupported vector type for unpckh");
3547
3548  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3549      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3550    return false;
3551
3552  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3553  // FIXME: Need a better way to get rid of this, there's no latency difference
3554  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3555  // the former later. We should also remove the "_undef" special mask.
3556  if (NumElts == 4 && VT.getSizeInBits() == 256)
3557    return false;
3558
3559  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3560  // independently on 128-bit lanes.
3561  unsigned NumLanes = VT.getSizeInBits()/128;
3562  unsigned NumLaneElts = NumElts/NumLanes;
3563
3564  for (unsigned l = 0; l != NumLanes; ++l) {
3565    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3566         i != (l+1)*NumLaneElts;
3567         i += 2, ++j) {
3568      int BitI  = Mask[i];
3569      int BitI1 = Mask[i+1];
3570
3571      if (!isUndefOrEqual(BitI, j))
3572        return false;
3573      if (!isUndefOrEqual(BitI1, j))
3574        return false;
3575    }
3576  }
3577
3578  return true;
3579}
3580
3581bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3582  return ::isUNPCKL_v_undef_Mask(N->getMask(), N->getValueType(0), HasAVX2);
3583}
3584
3585/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3586/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3587/// <2, 2, 3, 3>
3588static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3589  unsigned NumElts = VT.getVectorNumElements();
3590
3591  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3592         "Unsupported vector type for unpckh");
3593
3594  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3595      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3596    return false;
3597
3598  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3599  // independently on 128-bit lanes.
3600  unsigned NumLanes = VT.getSizeInBits()/128;
3601  unsigned NumLaneElts = NumElts/NumLanes;
3602
3603  for (unsigned l = 0; l != NumLanes; ++l) {
3604    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3605         i != (l+1)*NumLaneElts; i += 2, ++j) {
3606      int BitI  = Mask[i];
3607      int BitI1 = Mask[i+1];
3608      if (!isUndefOrEqual(BitI, j))
3609        return false;
3610      if (!isUndefOrEqual(BitI1, j))
3611        return false;
3612    }
3613  }
3614  return true;
3615}
3616
3617bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3618  return ::isUNPCKH_v_undef_Mask(N->getMask(), N->getValueType(0), HasAVX2);
3619}
3620
3621/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3622/// specifies a shuffle of elements that is suitable for input to MOVSS,
3623/// MOVSD, and MOVD, i.e. setting the lowest element.
3624static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3625  if (VT.getVectorElementType().getSizeInBits() < 32)
3626    return false;
3627  if (VT.getSizeInBits() == 256)
3628    return false;
3629
3630  unsigned NumElts = VT.getVectorNumElements();
3631
3632  if (!isUndefOrEqual(Mask[0], NumElts))
3633    return false;
3634
3635  for (unsigned i = 1; i != NumElts; ++i)
3636    if (!isUndefOrEqual(Mask[i], i))
3637      return false;
3638
3639  return true;
3640}
3641
3642bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3643  return ::isMOVLMask(N->getMask(), N->getValueType(0));
3644}
3645
3646/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3647/// as permutations between 128-bit chunks or halves. As an example: this
3648/// shuffle bellow:
3649///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3650/// The first half comes from the second half of V1 and the second half from the
3651/// the second half of V2.
3652static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3653  if (!HasAVX || VT.getSizeInBits() != 256)
3654    return false;
3655
3656  // The shuffle result is divided into half A and half B. In total the two
3657  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3658  // B must come from C, D, E or F.
3659  unsigned HalfSize = VT.getVectorNumElements()/2;
3660  bool MatchA = false, MatchB = false;
3661
3662  // Check if A comes from one of C, D, E, F.
3663  for (unsigned Half = 0; Half != 4; ++Half) {
3664    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3665      MatchA = true;
3666      break;
3667    }
3668  }
3669
3670  // Check if B comes from one of C, D, E, F.
3671  for (unsigned Half = 0; Half != 4; ++Half) {
3672    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3673      MatchB = true;
3674      break;
3675    }
3676  }
3677
3678  return MatchA && MatchB;
3679}
3680
3681/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3682/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3683static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3684  EVT VT = SVOp->getValueType(0);
3685
3686  unsigned HalfSize = VT.getVectorNumElements()/2;
3687
3688  unsigned FstHalf = 0, SndHalf = 0;
3689  for (unsigned i = 0; i < HalfSize; ++i) {
3690    if (SVOp->getMaskElt(i) > 0) {
3691      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3692      break;
3693    }
3694  }
3695  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3696    if (SVOp->getMaskElt(i) > 0) {
3697      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3698      break;
3699    }
3700  }
3701
3702  return (FstHalf | (SndHalf << 4));
3703}
3704
3705/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3706/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3707/// Note that VPERMIL mask matching is different depending whether theunderlying
3708/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3709/// to the same elements of the low, but to the higher half of the source.
3710/// In VPERMILPD the two lanes could be shuffled independently of each other
3711/// with the same restriction that lanes can't be crossed.
3712static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3713  if (!HasAVX)
3714    return false;
3715
3716  unsigned NumElts = VT.getVectorNumElements();
3717  // Only match 256-bit with 32/64-bit types
3718  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3719    return false;
3720
3721  unsigned NumLanes = VT.getSizeInBits()/128;
3722  unsigned LaneSize = NumElts/NumLanes;
3723  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3724    for (unsigned i = 0; i != LaneSize; ++i) {
3725      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3726        return false;
3727      if (NumElts != 8 || l == 0)
3728        continue;
3729      // VPERMILPS handling
3730      if (Mask[i] < 0)
3731        continue;
3732      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3733        return false;
3734    }
3735  }
3736
3737  return true;
3738}
3739
3740/// getShuffleVPERMILPImmediate - Return the appropriate immediate to shuffle
3741/// the specified VECTOR_MASK mask with VPERMILPS/D* instructions.
3742static unsigned getShuffleVPERMILPImmediate(ShuffleVectorSDNode *SVOp) {
3743  EVT VT = SVOp->getValueType(0);
3744
3745  unsigned NumElts = VT.getVectorNumElements();
3746  unsigned NumLanes = VT.getSizeInBits()/128;
3747  unsigned LaneSize = NumElts/NumLanes;
3748
3749  // Although the mask is equal for both lanes do it twice to get the cases
3750  // where a mask will match because the same mask element is undef on the
3751  // first half but valid on the second. This would get pathological cases
3752  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3753  unsigned Shift = (LaneSize == 4) ? 2 : 1;
3754  unsigned Mask = 0;
3755  for (unsigned i = 0; i != NumElts; ++i) {
3756    int MaskElt = SVOp->getMaskElt(i);
3757    if (MaskElt < 0)
3758      continue;
3759    MaskElt %= LaneSize;
3760    unsigned Shamt = i;
3761    // VPERMILPSY, the mask of the first half must be equal to the second one
3762    if (NumElts == 8) Shamt %= LaneSize;
3763    Mask |= MaskElt << (Shamt*Shift);
3764  }
3765
3766  return Mask;
3767}
3768
3769/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3770/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3771/// element of vector 2 and the other elements to come from vector 1 in order.
3772static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3773                               bool V2IsSplat = false, bool V2IsUndef = false) {
3774  unsigned NumOps = VT.getVectorNumElements();
3775  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3776    return false;
3777
3778  if (!isUndefOrEqual(Mask[0], 0))
3779    return false;
3780
3781  for (unsigned i = 1; i != NumOps; ++i)
3782    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3783          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3784          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3785      return false;
3786
3787  return true;
3788}
3789
3790static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3791                           bool V2IsUndef = false) {
3792  return isCommutedMOVLMask(N->getMask(), N->getValueType(0),
3793                            V2IsSplat, V2IsUndef);
3794}
3795
3796/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3797/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3798/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3799bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3800                         const X86Subtarget *Subtarget) {
3801  if (!Subtarget->hasSSE3())
3802    return false;
3803
3804  // The second vector must be undef
3805  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3806    return false;
3807
3808  EVT VT = N->getValueType(0);
3809  unsigned NumElems = VT.getVectorNumElements();
3810
3811  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3812      (VT.getSizeInBits() == 256 && NumElems != 8))
3813    return false;
3814
3815  // "i+1" is the value the indexed mask element must have
3816  for (unsigned i = 0; i < NumElems; i += 2)
3817    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3818        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3819      return false;
3820
3821  return true;
3822}
3823
3824/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3825/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3826/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3827bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3828                         const X86Subtarget *Subtarget) {
3829  if (!Subtarget->hasSSE3())
3830    return false;
3831
3832  // The second vector must be undef
3833  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3834    return false;
3835
3836  EVT VT = N->getValueType(0);
3837  unsigned NumElems = VT.getVectorNumElements();
3838
3839  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3840      (VT.getSizeInBits() == 256 && NumElems != 8))
3841    return false;
3842
3843  // "i" is the value the indexed mask element must have
3844  for (unsigned i = 0; i != NumElems; i += 2)
3845    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3846        !isUndefOrEqual(N->getMaskElt(i+1), i))
3847      return false;
3848
3849  return true;
3850}
3851
3852/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3853/// specifies a shuffle of elements that is suitable for input to 256-bit
3854/// version of MOVDDUP.
3855static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3856  unsigned NumElts = VT.getVectorNumElements();
3857
3858  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3859    return false;
3860
3861  for (unsigned i = 0; i != NumElts/2; ++i)
3862    if (!isUndefOrEqual(Mask[i], 0))
3863      return false;
3864  for (unsigned i = NumElts/2; i != NumElts; ++i)
3865    if (!isUndefOrEqual(Mask[i], NumElts/2))
3866      return false;
3867  return true;
3868}
3869
3870/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3871/// specifies a shuffle of elements that is suitable for input to 128-bit
3872/// version of MOVDDUP.
3873bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3874  EVT VT = N->getValueType(0);
3875
3876  if (VT.getSizeInBits() != 128)
3877    return false;
3878
3879  unsigned e = VT.getVectorNumElements() / 2;
3880  for (unsigned i = 0; i != e; ++i)
3881    if (!isUndefOrEqual(N->getMaskElt(i), i))
3882      return false;
3883  for (unsigned i = 0; i != e; ++i)
3884    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3885      return false;
3886  return true;
3887}
3888
3889/// isVEXTRACTF128Index - Return true if the specified
3890/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3891/// suitable for input to VEXTRACTF128.
3892bool X86::isVEXTRACTF128Index(SDNode *N) {
3893  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3894    return false;
3895
3896  // The index should be aligned on a 128-bit boundary.
3897  uint64_t Index =
3898    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3899
3900  unsigned VL = N->getValueType(0).getVectorNumElements();
3901  unsigned VBits = N->getValueType(0).getSizeInBits();
3902  unsigned ElSize = VBits / VL;
3903  bool Result = (Index * ElSize) % 128 == 0;
3904
3905  return Result;
3906}
3907
3908/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3909/// operand specifies a subvector insert that is suitable for input to
3910/// VINSERTF128.
3911bool X86::isVINSERTF128Index(SDNode *N) {
3912  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3913    return false;
3914
3915  // The index should be aligned on a 128-bit boundary.
3916  uint64_t Index =
3917    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3918
3919  unsigned VL = N->getValueType(0).getVectorNumElements();
3920  unsigned VBits = N->getValueType(0).getSizeInBits();
3921  unsigned ElSize = VBits / VL;
3922  bool Result = (Index * ElSize) % 128 == 0;
3923
3924  return Result;
3925}
3926
3927/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3928/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3929/// Handles 128-bit and 256-bit.
3930unsigned X86::getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3931  EVT VT = N->getValueType(0);
3932
3933  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3934         "Unsupported vector type for PSHUF/SHUFP");
3935
3936  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3937  // independently on 128-bit lanes.
3938  unsigned NumElts = VT.getVectorNumElements();
3939  unsigned NumLanes = VT.getSizeInBits()/128;
3940  unsigned NumLaneElts = NumElts/NumLanes;
3941
3942  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3943         "Only supports 2 or 4 elements per lane");
3944
3945  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3946  unsigned Mask = 0;
3947  for (unsigned i = 0; i != NumElts; ++i) {
3948    int Elt = N->getMaskElt(i);
3949    if (Elt < 0) continue;
3950    Elt %= NumLaneElts;
3951    unsigned ShAmt = i << Shift;
3952    if (ShAmt >= 8) ShAmt -= 8;
3953    Mask |= Elt << ShAmt;
3954  }
3955
3956  return Mask;
3957}
3958
3959/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3960/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3961unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3962  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3963  unsigned Mask = 0;
3964  // 8 nodes, but we only care about the last 4.
3965  for (unsigned i = 7; i >= 4; --i) {
3966    int Val = SVOp->getMaskElt(i);
3967    if (Val >= 0)
3968      Mask |= (Val - 4);
3969    if (i != 4)
3970      Mask <<= 2;
3971  }
3972  return Mask;
3973}
3974
3975/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3976/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3977unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3978  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3979  unsigned Mask = 0;
3980  // 8 nodes, but we only care about the first 4.
3981  for (int i = 3; i >= 0; --i) {
3982    int Val = SVOp->getMaskElt(i);
3983    if (Val >= 0)
3984      Mask |= Val;
3985    if (i != 0)
3986      Mask <<= 2;
3987  }
3988  return Mask;
3989}
3990
3991/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3992/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3993static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
3994  EVT VT = SVOp->getValueType(0);
3995  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
3996
3997  unsigned NumElts = VT.getVectorNumElements();
3998  unsigned NumLanes = VT.getSizeInBits()/128;
3999  unsigned NumLaneElts = NumElts/NumLanes;
4000
4001  int Val = 0;
4002  unsigned i;
4003  for (i = 0; i != NumElts; ++i) {
4004    Val = SVOp->getMaskElt(i);
4005    if (Val >= 0)
4006      break;
4007  }
4008  if (Val >= (int)NumElts)
4009    Val -= NumElts - NumLaneElts;
4010
4011  assert(Val - i > 0 && "PALIGNR imm should be positive");
4012  return (Val - i) * EltSize;
4013}
4014
4015/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4016/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4017/// instructions.
4018unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4019  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4020    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4021
4022  uint64_t Index =
4023    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4024
4025  EVT VecVT = N->getOperand(0).getValueType();
4026  EVT ElVT = VecVT.getVectorElementType();
4027
4028  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4029  return Index / NumElemsPerChunk;
4030}
4031
4032/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4033/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4034/// instructions.
4035unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4036  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4037    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4038
4039  uint64_t Index =
4040    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4041
4042  EVT VecVT = N->getValueType(0);
4043  EVT ElVT = VecVT.getVectorElementType();
4044
4045  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4046  return Index / NumElemsPerChunk;
4047}
4048
4049/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4050/// constant +0.0.
4051bool X86::isZeroNode(SDValue Elt) {
4052  return ((isa<ConstantSDNode>(Elt) &&
4053           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4054          (isa<ConstantFPSDNode>(Elt) &&
4055           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4056}
4057
4058/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4059/// their permute mask.
4060static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4061                                    SelectionDAG &DAG) {
4062  EVT VT = SVOp->getValueType(0);
4063  unsigned NumElems = VT.getVectorNumElements();
4064  SmallVector<int, 8> MaskVec;
4065
4066  for (unsigned i = 0; i != NumElems; ++i) {
4067    int idx = SVOp->getMaskElt(i);
4068    if (idx < 0)
4069      MaskVec.push_back(idx);
4070    else if (idx < (int)NumElems)
4071      MaskVec.push_back(idx + NumElems);
4072    else
4073      MaskVec.push_back(idx - NumElems);
4074  }
4075  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4076                              SVOp->getOperand(0), &MaskVec[0]);
4077}
4078
4079/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4080/// match movhlps. The lower half elements should come from upper half of
4081/// V1 (and in order), and the upper half elements should come from the upper
4082/// half of V2 (and in order).
4083static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4084  EVT VT = Op->getValueType(0);
4085  if (VT.getSizeInBits() != 128)
4086    return false;
4087  if (VT.getVectorNumElements() != 4)
4088    return false;
4089  for (unsigned i = 0, e = 2; i != e; ++i)
4090    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4091      return false;
4092  for (unsigned i = 2; i != 4; ++i)
4093    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4094      return false;
4095  return true;
4096}
4097
4098/// isScalarLoadToVector - Returns true if the node is a scalar load that
4099/// is promoted to a vector. It also returns the LoadSDNode by reference if
4100/// required.
4101static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4102  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4103    return false;
4104  N = N->getOperand(0).getNode();
4105  if (!ISD::isNON_EXTLoad(N))
4106    return false;
4107  if (LD)
4108    *LD = cast<LoadSDNode>(N);
4109  return true;
4110}
4111
4112// Test whether the given value is a vector value which will be legalized
4113// into a load.
4114static bool WillBeConstantPoolLoad(SDNode *N) {
4115  if (N->getOpcode() != ISD::BUILD_VECTOR)
4116    return false;
4117
4118  // Check for any non-constant elements.
4119  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4120    switch (N->getOperand(i).getNode()->getOpcode()) {
4121    case ISD::UNDEF:
4122    case ISD::ConstantFP:
4123    case ISD::Constant:
4124      break;
4125    default:
4126      return false;
4127    }
4128
4129  // Vectors of all-zeros and all-ones are materialized with special
4130  // instructions rather than being loaded.
4131  return !ISD::isBuildVectorAllZeros(N) &&
4132         !ISD::isBuildVectorAllOnes(N);
4133}
4134
4135/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4136/// match movlp{s|d}. The lower half elements should come from lower half of
4137/// V1 (and in order), and the upper half elements should come from the upper
4138/// half of V2 (and in order). And since V1 will become the source of the
4139/// MOVLP, it must be either a vector load or a scalar load to vector.
4140static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4141                               ShuffleVectorSDNode *Op) {
4142  EVT VT = Op->getValueType(0);
4143  if (VT.getSizeInBits() != 128)
4144    return false;
4145
4146  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4147    return false;
4148  // Is V2 is a vector load, don't do this transformation. We will try to use
4149  // load folding shufps op.
4150  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4151    return false;
4152
4153  unsigned NumElems = VT.getVectorNumElements();
4154
4155  if (NumElems != 2 && NumElems != 4)
4156    return false;
4157  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4158    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4159      return false;
4160  for (unsigned i = NumElems/2; i != NumElems; ++i)
4161    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4162      return false;
4163  return true;
4164}
4165
4166/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4167/// all the same.
4168static bool isSplatVector(SDNode *N) {
4169  if (N->getOpcode() != ISD::BUILD_VECTOR)
4170    return false;
4171
4172  SDValue SplatValue = N->getOperand(0);
4173  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4174    if (N->getOperand(i) != SplatValue)
4175      return false;
4176  return true;
4177}
4178
4179/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4180/// to an zero vector.
4181/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4182static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4183  SDValue V1 = N->getOperand(0);
4184  SDValue V2 = N->getOperand(1);
4185  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4186  for (unsigned i = 0; i != NumElems; ++i) {
4187    int Idx = N->getMaskElt(i);
4188    if (Idx >= (int)NumElems) {
4189      unsigned Opc = V2.getOpcode();
4190      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4191        continue;
4192      if (Opc != ISD::BUILD_VECTOR ||
4193          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4194        return false;
4195    } else if (Idx >= 0) {
4196      unsigned Opc = V1.getOpcode();
4197      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4198        continue;
4199      if (Opc != ISD::BUILD_VECTOR ||
4200          !X86::isZeroNode(V1.getOperand(Idx)))
4201        return false;
4202    }
4203  }
4204  return true;
4205}
4206
4207/// getZeroVector - Returns a vector of specified type with all zero elements.
4208///
4209static SDValue getZeroVector(EVT VT, bool HasSSE2, bool HasAVX2,
4210                             SelectionDAG &DAG, DebugLoc dl) {
4211  assert(VT.isVector() && "Expected a vector type");
4212
4213  // Always build SSE zero vectors as <4 x i32> bitcasted
4214  // to their dest type. This ensures they get CSE'd.
4215  SDValue Vec;
4216  if (VT.getSizeInBits() == 128) {  // SSE
4217    if (HasSSE2) {  // SSE2
4218      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4219      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4220    } else { // SSE1
4221      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4222      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4223    }
4224  } else if (VT.getSizeInBits() == 256) { // AVX
4225    if (HasAVX2) { // AVX2
4226      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4227      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4228      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4229    } else {
4230      // 256-bit logic and arithmetic instructions in AVX are all
4231      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4232      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4233      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4234      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4235    }
4236  }
4237  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4238}
4239
4240/// getOnesVector - Returns a vector of specified type with all bits set.
4241/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4242/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4243/// Then bitcast to their original type, ensuring they get CSE'd.
4244static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4245                             DebugLoc dl) {
4246  assert(VT.isVector() && "Expected a vector type");
4247  assert((VT.is128BitVector() || VT.is256BitVector())
4248         && "Expected a 128-bit or 256-bit vector type");
4249
4250  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4251  SDValue Vec;
4252  if (VT.getSizeInBits() == 256) {
4253    if (HasAVX2) { // AVX2
4254      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4255      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4256    } else { // AVX
4257      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4258      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4259                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4260      Vec = Insert128BitVector(InsV, Vec,
4261                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4262    }
4263  } else {
4264    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4265  }
4266
4267  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4268}
4269
4270/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4271/// that point to V2 points to its first element.
4272static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4273  EVT VT = SVOp->getValueType(0);
4274  unsigned NumElems = VT.getVectorNumElements();
4275
4276  bool Changed = false;
4277  SmallVector<int, 8> MaskVec(SVOp->getMask().begin(), SVOp->getMask().end());
4278
4279  for (unsigned i = 0; i != NumElems; ++i) {
4280    if (MaskVec[i] > (int)NumElems) {
4281      MaskVec[i] = NumElems;
4282      Changed = true;
4283    }
4284  }
4285  if (Changed)
4286    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4287                                SVOp->getOperand(1), &MaskVec[0]);
4288  return SDValue(SVOp, 0);
4289}
4290
4291/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4292/// operation of specified width.
4293static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4294                       SDValue V2) {
4295  unsigned NumElems = VT.getVectorNumElements();
4296  SmallVector<int, 8> Mask;
4297  Mask.push_back(NumElems);
4298  for (unsigned i = 1; i != NumElems; ++i)
4299    Mask.push_back(i);
4300  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4301}
4302
4303/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4304static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4305                          SDValue V2) {
4306  unsigned NumElems = VT.getVectorNumElements();
4307  SmallVector<int, 8> Mask;
4308  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4309    Mask.push_back(i);
4310    Mask.push_back(i + NumElems);
4311  }
4312  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4313}
4314
4315/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4316static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4317                          SDValue V2) {
4318  unsigned NumElems = VT.getVectorNumElements();
4319  unsigned Half = NumElems/2;
4320  SmallVector<int, 8> Mask;
4321  for (unsigned i = 0; i != Half; ++i) {
4322    Mask.push_back(i + Half);
4323    Mask.push_back(i + NumElems + Half);
4324  }
4325  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4326}
4327
4328// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4329// a generic shuffle instruction because the target has no such instructions.
4330// Generate shuffles which repeat i16 and i8 several times until they can be
4331// represented by v4f32 and then be manipulated by target suported shuffles.
4332static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4333  EVT VT = V.getValueType();
4334  int NumElems = VT.getVectorNumElements();
4335  DebugLoc dl = V.getDebugLoc();
4336
4337  while (NumElems > 4) {
4338    if (EltNo < NumElems/2) {
4339      V = getUnpackl(DAG, dl, VT, V, V);
4340    } else {
4341      V = getUnpackh(DAG, dl, VT, V, V);
4342      EltNo -= NumElems/2;
4343    }
4344    NumElems >>= 1;
4345  }
4346  return V;
4347}
4348
4349/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4350static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4351  EVT VT = V.getValueType();
4352  DebugLoc dl = V.getDebugLoc();
4353  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4354         && "Vector size not supported");
4355
4356  if (VT.getSizeInBits() == 128) {
4357    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4358    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4359    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4360                             &SplatMask[0]);
4361  } else {
4362    // To use VPERMILPS to splat scalars, the second half of indicies must
4363    // refer to the higher part, which is a duplication of the lower one,
4364    // because VPERMILPS can only handle in-lane permutations.
4365    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4366                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4367
4368    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4369    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4370                             &SplatMask[0]);
4371  }
4372
4373  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4374}
4375
4376/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4377static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4378  EVT SrcVT = SV->getValueType(0);
4379  SDValue V1 = SV->getOperand(0);
4380  DebugLoc dl = SV->getDebugLoc();
4381
4382  int EltNo = SV->getSplatIndex();
4383  int NumElems = SrcVT.getVectorNumElements();
4384  unsigned Size = SrcVT.getSizeInBits();
4385
4386  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4387          "Unknown how to promote splat for type");
4388
4389  // Extract the 128-bit part containing the splat element and update
4390  // the splat element index when it refers to the higher register.
4391  if (Size == 256) {
4392    unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4393    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4394    if (Idx > 0)
4395      EltNo -= NumElems/2;
4396  }
4397
4398  // All i16 and i8 vector types can't be used directly by a generic shuffle
4399  // instruction because the target has no such instruction. Generate shuffles
4400  // which repeat i16 and i8 several times until they fit in i32, and then can
4401  // be manipulated by target suported shuffles.
4402  EVT EltVT = SrcVT.getVectorElementType();
4403  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4404    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4405
4406  // Recreate the 256-bit vector and place the same 128-bit vector
4407  // into the low and high part. This is necessary because we want
4408  // to use VPERM* to shuffle the vectors
4409  if (Size == 256) {
4410    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4411                         DAG.getConstant(0, MVT::i32), DAG, dl);
4412    V1 = Insert128BitVector(InsV, V1,
4413               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4414  }
4415
4416  return getLegalSplat(DAG, V1, EltNo);
4417}
4418
4419/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4420/// vector of zero or undef vector.  This produces a shuffle where the low
4421/// element of V2 is swizzled into the zero/undef vector, landing at element
4422/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4423static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4424                                           bool IsZero,
4425                                           const X86Subtarget *Subtarget,
4426                                           SelectionDAG &DAG) {
4427  EVT VT = V2.getValueType();
4428  SDValue V1 = IsZero
4429    ? getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(), DAG,
4430                    V2.getDebugLoc()) : DAG.getUNDEF(VT);
4431  unsigned NumElems = VT.getVectorNumElements();
4432  SmallVector<int, 16> MaskVec;
4433  for (unsigned i = 0; i != NumElems; ++i)
4434    // If this is the insertion idx, put the low elt of V2 here.
4435    MaskVec.push_back(i == Idx ? NumElems : i);
4436  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4437}
4438
4439/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4440/// element of the result of the vector shuffle.
4441static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4442                                   unsigned Depth) {
4443  if (Depth == 6)
4444    return SDValue();  // Limit search depth.
4445
4446  SDValue V = SDValue(N, 0);
4447  EVT VT = V.getValueType();
4448  unsigned Opcode = V.getOpcode();
4449
4450  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4451  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4452    Index = SV->getMaskElt(Index);
4453
4454    if (Index < 0)
4455      return DAG.getUNDEF(VT.getVectorElementType());
4456
4457    int NumElems = VT.getVectorNumElements();
4458    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4459    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4460  }
4461
4462  // Recurse into target specific vector shuffles to find scalars.
4463  if (isTargetShuffle(Opcode)) {
4464    int NumElems = VT.getVectorNumElements();
4465    SmallVector<unsigned, 16> ShuffleMask;
4466    SDValue ImmN;
4467
4468    switch(Opcode) {
4469    case X86ISD::SHUFP:
4470      ImmN = N->getOperand(N->getNumOperands()-1);
4471      DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4472                      ShuffleMask);
4473      break;
4474    case X86ISD::UNPCKH:
4475      DecodeUNPCKHMask(VT, ShuffleMask);
4476      break;
4477    case X86ISD::UNPCKL:
4478      DecodeUNPCKLMask(VT, ShuffleMask);
4479      break;
4480    case X86ISD::MOVHLPS:
4481      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4482      break;
4483    case X86ISD::MOVLHPS:
4484      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4485      break;
4486    case X86ISD::PSHUFD:
4487      ImmN = N->getOperand(N->getNumOperands()-1);
4488      DecodePSHUFMask(NumElems,
4489                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4490                      ShuffleMask);
4491      break;
4492    case X86ISD::PSHUFHW:
4493      ImmN = N->getOperand(N->getNumOperands()-1);
4494      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4495                        ShuffleMask);
4496      break;
4497    case X86ISD::PSHUFLW:
4498      ImmN = N->getOperand(N->getNumOperands()-1);
4499      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4500                        ShuffleMask);
4501      break;
4502    case X86ISD::MOVSS:
4503    case X86ISD::MOVSD: {
4504      // The index 0 always comes from the first element of the second source,
4505      // this is why MOVSS and MOVSD are used in the first place. The other
4506      // elements come from the other positions of the first source vector.
4507      unsigned OpNum = (Index == 0) ? 1 : 0;
4508      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4509                                 Depth+1);
4510    }
4511    case X86ISD::VPERMILP:
4512      ImmN = N->getOperand(N->getNumOperands()-1);
4513      DecodeVPERMILPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4514                        ShuffleMask);
4515      break;
4516    case X86ISD::VPERM2X128:
4517      ImmN = N->getOperand(N->getNumOperands()-1);
4518      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4519                           ShuffleMask);
4520      break;
4521    case X86ISD::MOVDDUP:
4522    case X86ISD::MOVLHPD:
4523    case X86ISD::MOVLPD:
4524    case X86ISD::MOVLPS:
4525    case X86ISD::MOVSHDUP:
4526    case X86ISD::MOVSLDUP:
4527    case X86ISD::PALIGN:
4528      return SDValue(); // Not yet implemented.
4529    default:
4530      assert(0 && "unknown target shuffle node");
4531      return SDValue();
4532    }
4533
4534    Index = ShuffleMask[Index];
4535    if (Index < 0)
4536      return DAG.getUNDEF(VT.getVectorElementType());
4537
4538    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4539    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4540                               Depth+1);
4541  }
4542
4543  // Actual nodes that may contain scalar elements
4544  if (Opcode == ISD::BITCAST) {
4545    V = V.getOperand(0);
4546    EVT SrcVT = V.getValueType();
4547    unsigned NumElems = VT.getVectorNumElements();
4548
4549    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4550      return SDValue();
4551  }
4552
4553  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4554    return (Index == 0) ? V.getOperand(0)
4555                          : DAG.getUNDEF(VT.getVectorElementType());
4556
4557  if (V.getOpcode() == ISD::BUILD_VECTOR)
4558    return V.getOperand(Index);
4559
4560  return SDValue();
4561}
4562
4563/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4564/// shuffle operation which come from a consecutively from a zero. The
4565/// search can start in two different directions, from left or right.
4566static
4567unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4568                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4569  int i = 0;
4570
4571  while (i < NumElems) {
4572    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4573    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4574    if (!(Elt.getNode() &&
4575         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4576      break;
4577    ++i;
4578  }
4579
4580  return i;
4581}
4582
4583/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4584/// MaskE correspond consecutively to elements from one of the vector operands,
4585/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4586static
4587bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4588                              int OpIdx, int NumElems, unsigned &OpNum) {
4589  bool SeenV1 = false;
4590  bool SeenV2 = false;
4591
4592  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4593    int Idx = SVOp->getMaskElt(i);
4594    // Ignore undef indicies
4595    if (Idx < 0)
4596      continue;
4597
4598    if (Idx < NumElems)
4599      SeenV1 = true;
4600    else
4601      SeenV2 = true;
4602
4603    // Only accept consecutive elements from the same vector
4604    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4605      return false;
4606  }
4607
4608  OpNum = SeenV1 ? 0 : 1;
4609  return true;
4610}
4611
4612/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4613/// logical left shift of a vector.
4614static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4615                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4616  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4617  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4618              false /* check zeros from right */, DAG);
4619  unsigned OpSrc;
4620
4621  if (!NumZeros)
4622    return false;
4623
4624  // Considering the elements in the mask that are not consecutive zeros,
4625  // check if they consecutively come from only one of the source vectors.
4626  //
4627  //               V1 = {X, A, B, C}     0
4628  //                         \  \  \    /
4629  //   vector_shuffle V1, V2 <1, 2, 3, X>
4630  //
4631  if (!isShuffleMaskConsecutive(SVOp,
4632            0,                   // Mask Start Index
4633            NumElems-NumZeros-1, // Mask End Index
4634            NumZeros,            // Where to start looking in the src vector
4635            NumElems,            // Number of elements in vector
4636            OpSrc))              // Which source operand ?
4637    return false;
4638
4639  isLeft = false;
4640  ShAmt = NumZeros;
4641  ShVal = SVOp->getOperand(OpSrc);
4642  return true;
4643}
4644
4645/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4646/// logical left shift of a vector.
4647static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4648                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4649  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4650  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4651              true /* check zeros from left */, DAG);
4652  unsigned OpSrc;
4653
4654  if (!NumZeros)
4655    return false;
4656
4657  // Considering the elements in the mask that are not consecutive zeros,
4658  // check if they consecutively come from only one of the source vectors.
4659  //
4660  //                           0    { A, B, X, X } = V2
4661  //                          / \    /  /
4662  //   vector_shuffle V1, V2 <X, X, 4, 5>
4663  //
4664  if (!isShuffleMaskConsecutive(SVOp,
4665            NumZeros,     // Mask Start Index
4666            NumElems-1,   // Mask End Index
4667            0,            // Where to start looking in the src vector
4668            NumElems,     // Number of elements in vector
4669            OpSrc))       // Which source operand ?
4670    return false;
4671
4672  isLeft = true;
4673  ShAmt = NumZeros;
4674  ShVal = SVOp->getOperand(OpSrc);
4675  return true;
4676}
4677
4678/// isVectorShift - Returns true if the shuffle can be implemented as a
4679/// logical left or right shift of a vector.
4680static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4681                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4682  // Although the logic below support any bitwidth size, there are no
4683  // shift instructions which handle more than 128-bit vectors.
4684  if (SVOp->getValueType(0).getSizeInBits() > 128)
4685    return false;
4686
4687  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4688      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4689    return true;
4690
4691  return false;
4692}
4693
4694/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4695///
4696static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4697                                       unsigned NumNonZero, unsigned NumZero,
4698                                       SelectionDAG &DAG,
4699                                       const TargetLowering &TLI) {
4700  if (NumNonZero > 8)
4701    return SDValue();
4702
4703  DebugLoc dl = Op.getDebugLoc();
4704  SDValue V(0, 0);
4705  bool First = true;
4706  for (unsigned i = 0; i < 16; ++i) {
4707    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4708    if (ThisIsNonZero && First) {
4709      if (NumZero)
4710        V = getZeroVector(MVT::v8i16, /*HasSSE2*/ true, /*HasAVX2*/ false,
4711                          DAG, dl);
4712      else
4713        V = DAG.getUNDEF(MVT::v8i16);
4714      First = false;
4715    }
4716
4717    if ((i & 1) != 0) {
4718      SDValue ThisElt(0, 0), LastElt(0, 0);
4719      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4720      if (LastIsNonZero) {
4721        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4722                              MVT::i16, Op.getOperand(i-1));
4723      }
4724      if (ThisIsNonZero) {
4725        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4726        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4727                              ThisElt, DAG.getConstant(8, MVT::i8));
4728        if (LastIsNonZero)
4729          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4730      } else
4731        ThisElt = LastElt;
4732
4733      if (ThisElt.getNode())
4734        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4735                        DAG.getIntPtrConstant(i/2));
4736    }
4737  }
4738
4739  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4740}
4741
4742/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4743///
4744static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4745                                     unsigned NumNonZero, unsigned NumZero,
4746                                     SelectionDAG &DAG,
4747                                     const TargetLowering &TLI) {
4748  if (NumNonZero > 4)
4749    return SDValue();
4750
4751  DebugLoc dl = Op.getDebugLoc();
4752  SDValue V(0, 0);
4753  bool First = true;
4754  for (unsigned i = 0; i < 8; ++i) {
4755    bool isNonZero = (NonZeros & (1 << i)) != 0;
4756    if (isNonZero) {
4757      if (First) {
4758        if (NumZero)
4759          V = getZeroVector(MVT::v8i16, /*HasSSE2*/ true, /*HasAVX2*/ false,
4760                            DAG, dl);
4761        else
4762          V = DAG.getUNDEF(MVT::v8i16);
4763        First = false;
4764      }
4765      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4766                      MVT::v8i16, V, Op.getOperand(i),
4767                      DAG.getIntPtrConstant(i));
4768    }
4769  }
4770
4771  return V;
4772}
4773
4774/// getVShift - Return a vector logical shift node.
4775///
4776static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4777                         unsigned NumBits, SelectionDAG &DAG,
4778                         const TargetLowering &TLI, DebugLoc dl) {
4779  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4780  EVT ShVT = MVT::v2i64;
4781  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4782  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4783  return DAG.getNode(ISD::BITCAST, dl, VT,
4784                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4785                             DAG.getConstant(NumBits,
4786                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4787}
4788
4789SDValue
4790X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4791                                          SelectionDAG &DAG) const {
4792
4793  // Check if the scalar load can be widened into a vector load. And if
4794  // the address is "base + cst" see if the cst can be "absorbed" into
4795  // the shuffle mask.
4796  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4797    SDValue Ptr = LD->getBasePtr();
4798    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4799      return SDValue();
4800    EVT PVT = LD->getValueType(0);
4801    if (PVT != MVT::i32 && PVT != MVT::f32)
4802      return SDValue();
4803
4804    int FI = -1;
4805    int64_t Offset = 0;
4806    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4807      FI = FINode->getIndex();
4808      Offset = 0;
4809    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4810               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4811      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4812      Offset = Ptr.getConstantOperandVal(1);
4813      Ptr = Ptr.getOperand(0);
4814    } else {
4815      return SDValue();
4816    }
4817
4818    // FIXME: 256-bit vector instructions don't require a strict alignment,
4819    // improve this code to support it better.
4820    unsigned RequiredAlign = VT.getSizeInBits()/8;
4821    SDValue Chain = LD->getChain();
4822    // Make sure the stack object alignment is at least 16 or 32.
4823    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4824    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4825      if (MFI->isFixedObjectIndex(FI)) {
4826        // Can't change the alignment. FIXME: It's possible to compute
4827        // the exact stack offset and reference FI + adjust offset instead.
4828        // If someone *really* cares about this. That's the way to implement it.
4829        return SDValue();
4830      } else {
4831        MFI->setObjectAlignment(FI, RequiredAlign);
4832      }
4833    }
4834
4835    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4836    // Ptr + (Offset & ~15).
4837    if (Offset < 0)
4838      return SDValue();
4839    if ((Offset % RequiredAlign) & 3)
4840      return SDValue();
4841    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4842    if (StartOffset)
4843      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4844                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4845
4846    int EltNo = (Offset - StartOffset) >> 2;
4847    int NumElems = VT.getVectorNumElements();
4848
4849    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4850    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4851    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4852                             LD->getPointerInfo().getWithOffset(StartOffset),
4853                             false, false, false, 0);
4854
4855    // Canonicalize it to a v4i32 or v8i32 shuffle.
4856    SmallVector<int, 8> Mask;
4857    for (int i = 0; i < NumElems; ++i)
4858      Mask.push_back(EltNo);
4859
4860    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4861    return DAG.getNode(ISD::BITCAST, dl, NVT,
4862                       DAG.getVectorShuffle(CanonVT, dl, V1,
4863                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4864  }
4865
4866  return SDValue();
4867}
4868
4869/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4870/// vector of type 'VT', see if the elements can be replaced by a single large
4871/// load which has the same value as a build_vector whose operands are 'elts'.
4872///
4873/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4874///
4875/// FIXME: we'd also like to handle the case where the last elements are zero
4876/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4877/// There's even a handy isZeroNode for that purpose.
4878static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4879                                        DebugLoc &DL, SelectionDAG &DAG) {
4880  EVT EltVT = VT.getVectorElementType();
4881  unsigned NumElems = Elts.size();
4882
4883  LoadSDNode *LDBase = NULL;
4884  unsigned LastLoadedElt = -1U;
4885
4886  // For each element in the initializer, see if we've found a load or an undef.
4887  // If we don't find an initial load element, or later load elements are
4888  // non-consecutive, bail out.
4889  for (unsigned i = 0; i < NumElems; ++i) {
4890    SDValue Elt = Elts[i];
4891
4892    if (!Elt.getNode() ||
4893        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4894      return SDValue();
4895    if (!LDBase) {
4896      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4897        return SDValue();
4898      LDBase = cast<LoadSDNode>(Elt.getNode());
4899      LastLoadedElt = i;
4900      continue;
4901    }
4902    if (Elt.getOpcode() == ISD::UNDEF)
4903      continue;
4904
4905    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4906    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4907      return SDValue();
4908    LastLoadedElt = i;
4909  }
4910
4911  // If we have found an entire vector of loads and undefs, then return a large
4912  // load of the entire vector width starting at the base pointer.  If we found
4913  // consecutive loads for the low half, generate a vzext_load node.
4914  if (LastLoadedElt == NumElems - 1) {
4915    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4916      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4917                         LDBase->getPointerInfo(),
4918                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4919                         LDBase->isInvariant(), 0);
4920    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4921                       LDBase->getPointerInfo(),
4922                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4923                       LDBase->isInvariant(), LDBase->getAlignment());
4924  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4925             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4926    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4927    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4928    SDValue ResNode =
4929        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4930                                LDBase->getPointerInfo(),
4931                                LDBase->getAlignment(),
4932                                false/*isVolatile*/, true/*ReadMem*/,
4933                                false/*WriteMem*/);
4934    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4935  }
4936  return SDValue();
4937}
4938
4939/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
4940/// a vbroadcast node. We support two patterns:
4941/// 1. A splat BUILD_VECTOR which uses a single scalar load.
4942/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4943/// a scalar load.
4944/// The scalar load node is returned when a pattern is found,
4945/// or SDValue() otherwise.
4946static SDValue isVectorBroadcast(SDValue &Op, const X86Subtarget *Subtarget) {
4947  if (!Subtarget->hasAVX())
4948    return SDValue();
4949
4950  EVT VT = Op.getValueType();
4951  SDValue V = Op;
4952
4953  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
4954    V = V.getOperand(0);
4955
4956  //A suspected load to be broadcasted.
4957  SDValue Ld;
4958
4959  switch (V.getOpcode()) {
4960    default:
4961      // Unknown pattern found.
4962      return SDValue();
4963
4964    case ISD::BUILD_VECTOR: {
4965      // The BUILD_VECTOR node must be a splat.
4966      if (!isSplatVector(V.getNode()))
4967        return SDValue();
4968
4969      Ld = V.getOperand(0);
4970
4971      // The suspected load node has several users. Make sure that all
4972      // of its users are from the BUILD_VECTOR node.
4973      if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4974        return SDValue();
4975      break;
4976    }
4977
4978    case ISD::VECTOR_SHUFFLE: {
4979      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4980
4981      // Shuffles must have a splat mask where the first element is
4982      // broadcasted.
4983      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4984        return SDValue();
4985
4986      SDValue Sc = Op.getOperand(0);
4987      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4988        return SDValue();
4989
4990      Ld = Sc.getOperand(0);
4991
4992      // The scalar_to_vector node and the suspected
4993      // load node must have exactly one user.
4994      if (!Sc.hasOneUse() || !Ld.hasOneUse())
4995        return SDValue();
4996      break;
4997    }
4998  }
4999
5000  // The scalar source must be a normal load.
5001  if (!ISD::isNormalLoad(Ld.getNode()))
5002    return SDValue();
5003
5004  bool Is256 = VT.getSizeInBits() == 256;
5005  bool Is128 = VT.getSizeInBits() == 128;
5006  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5007
5008  // VBroadcast to YMM
5009  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
5010    return Ld;
5011
5012  // VBroadcast to XMM
5013  if (Is128 && (ScalarSize == 32))
5014    return Ld;
5015
5016  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5017  // double since there is vbroadcastsd xmm
5018  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5019    // VBroadcast to YMM
5020    if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
5021      return Ld;
5022
5023    // VBroadcast to XMM
5024    if (Is128 && (ScalarSize ==  8 || ScalarSize == 16 || ScalarSize == 64))
5025      return Ld;
5026  }
5027
5028  // Unsupported broadcast.
5029  return SDValue();
5030}
5031
5032SDValue
5033X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5034  DebugLoc dl = Op.getDebugLoc();
5035
5036  EVT VT = Op.getValueType();
5037  EVT ExtVT = VT.getVectorElementType();
5038  unsigned NumElems = Op.getNumOperands();
5039
5040  // Vectors containing all zeros can be matched by pxor and xorps later
5041  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5042    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5043    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5044    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5045      return Op;
5046
5047    return getZeroVector(VT, Subtarget->hasSSE2(),
5048                         Subtarget->hasAVX2(), DAG, dl);
5049  }
5050
5051  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5052  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5053  // vpcmpeqd on 256-bit vectors.
5054  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5055    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5056      return Op;
5057
5058    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5059  }
5060
5061  SDValue LD = isVectorBroadcast(Op, Subtarget);
5062  if (LD.getNode())
5063    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
5064
5065  unsigned EVTBits = ExtVT.getSizeInBits();
5066
5067  unsigned NumZero  = 0;
5068  unsigned NumNonZero = 0;
5069  unsigned NonZeros = 0;
5070  bool IsAllConstants = true;
5071  SmallSet<SDValue, 8> Values;
5072  for (unsigned i = 0; i < NumElems; ++i) {
5073    SDValue Elt = Op.getOperand(i);
5074    if (Elt.getOpcode() == ISD::UNDEF)
5075      continue;
5076    Values.insert(Elt);
5077    if (Elt.getOpcode() != ISD::Constant &&
5078        Elt.getOpcode() != ISD::ConstantFP)
5079      IsAllConstants = false;
5080    if (X86::isZeroNode(Elt))
5081      NumZero++;
5082    else {
5083      NonZeros |= (1 << i);
5084      NumNonZero++;
5085    }
5086  }
5087
5088  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5089  if (NumNonZero == 0)
5090    return DAG.getUNDEF(VT);
5091
5092  // Special case for single non-zero, non-undef, element.
5093  if (NumNonZero == 1) {
5094    unsigned Idx = CountTrailingZeros_32(NonZeros);
5095    SDValue Item = Op.getOperand(Idx);
5096
5097    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5098    // the value are obviously zero, truncate the value to i32 and do the
5099    // insertion that way.  Only do this if the value is non-constant or if the
5100    // value is a constant being inserted into element 0.  It is cheaper to do
5101    // a constant pool load than it is to do a movd + shuffle.
5102    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5103        (!IsAllConstants || Idx == 0)) {
5104      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5105        // Handle SSE only.
5106        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5107        EVT VecVT = MVT::v4i32;
5108        unsigned VecElts = 4;
5109
5110        // Truncate the value (which may itself be a constant) to i32, and
5111        // convert it to a vector with movd (S2V+shuffle to zero extend).
5112        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5113        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5114        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5115
5116        // Now we have our 32-bit value zero extended in the low element of
5117        // a vector.  If Idx != 0, swizzle it into place.
5118        if (Idx != 0) {
5119          SmallVector<int, 4> Mask;
5120          Mask.push_back(Idx);
5121          for (unsigned i = 1; i != VecElts; ++i)
5122            Mask.push_back(i);
5123          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5124                                      DAG.getUNDEF(Item.getValueType()),
5125                                      &Mask[0]);
5126        }
5127        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5128      }
5129    }
5130
5131    // If we have a constant or non-constant insertion into the low element of
5132    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5133    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5134    // depending on what the source datatype is.
5135    if (Idx == 0) {
5136      if (NumZero == 0)
5137        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5138
5139      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5140          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5141        if (VT.getSizeInBits() == 256) {
5142          SDValue ZeroVec = getZeroVector(VT, Subtarget->hasSSE2(),
5143                                          Subtarget->hasAVX2(), DAG, dl);
5144          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5145                             Item, DAG.getIntPtrConstant(0));
5146        }
5147        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5148        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5149        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5150        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5151      }
5152
5153      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5154        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5155        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5156        if (VT.getSizeInBits() == 256) {
5157          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget->hasSSE2(),
5158                                          Subtarget->hasAVX2(), DAG, dl);
5159          Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5160                                    DAG, dl);
5161        } else {
5162          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5163          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5164        }
5165        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5166      }
5167    }
5168
5169    // Is it a vector logical left shift?
5170    if (NumElems == 2 && Idx == 1 &&
5171        X86::isZeroNode(Op.getOperand(0)) &&
5172        !X86::isZeroNode(Op.getOperand(1))) {
5173      unsigned NumBits = VT.getSizeInBits();
5174      return getVShift(true, VT,
5175                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5176                                   VT, Op.getOperand(1)),
5177                       NumBits/2, DAG, *this, dl);
5178    }
5179
5180    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5181      return SDValue();
5182
5183    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5184    // is a non-constant being inserted into an element other than the low one,
5185    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5186    // movd/movss) to move this into the low element, then shuffle it into
5187    // place.
5188    if (EVTBits == 32) {
5189      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5190
5191      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5192      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5193      SmallVector<int, 8> MaskVec;
5194      for (unsigned i = 0; i < NumElems; i++)
5195        MaskVec.push_back(i == Idx ? 0 : 1);
5196      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5197    }
5198  }
5199
5200  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5201  if (Values.size() == 1) {
5202    if (EVTBits == 32) {
5203      // Instead of a shuffle like this:
5204      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5205      // Check if it's possible to issue this instead.
5206      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5207      unsigned Idx = CountTrailingZeros_32(NonZeros);
5208      SDValue Item = Op.getOperand(Idx);
5209      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5210        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5211    }
5212    return SDValue();
5213  }
5214
5215  // A vector full of immediates; various special cases are already
5216  // handled, so this is best done with a single constant-pool load.
5217  if (IsAllConstants)
5218    return SDValue();
5219
5220  // For AVX-length vectors, build the individual 128-bit pieces and use
5221  // shuffles to put them in place.
5222  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5223    SmallVector<SDValue, 32> V;
5224    for (unsigned i = 0; i < NumElems; ++i)
5225      V.push_back(Op.getOperand(i));
5226
5227    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5228
5229    // Build both the lower and upper subvector.
5230    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5231    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5232                                NumElems/2);
5233
5234    // Recreate the wider vector with the lower and upper part.
5235    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5236                                DAG.getConstant(0, MVT::i32), DAG, dl);
5237    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5238                              DAG, dl);
5239  }
5240
5241  // Let legalizer expand 2-wide build_vectors.
5242  if (EVTBits == 64) {
5243    if (NumNonZero == 1) {
5244      // One half is zero or undef.
5245      unsigned Idx = CountTrailingZeros_32(NonZeros);
5246      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5247                                 Op.getOperand(Idx));
5248      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5249    }
5250    return SDValue();
5251  }
5252
5253  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5254  if (EVTBits == 8 && NumElems == 16) {
5255    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5256                                        *this);
5257    if (V.getNode()) return V;
5258  }
5259
5260  if (EVTBits == 16 && NumElems == 8) {
5261    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5262                                      *this);
5263    if (V.getNode()) return V;
5264  }
5265
5266  // If element VT is == 32 bits, turn it into a number of shuffles.
5267  SmallVector<SDValue, 8> V;
5268  V.resize(NumElems);
5269  if (NumElems == 4 && NumZero > 0) {
5270    for (unsigned i = 0; i < 4; ++i) {
5271      bool isZero = !(NonZeros & (1 << i));
5272      if (isZero)
5273        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(),
5274                             DAG, dl);
5275      else
5276        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5277    }
5278
5279    for (unsigned i = 0; i < 2; ++i) {
5280      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5281        default: break;
5282        case 0:
5283          V[i] = V[i*2];  // Must be a zero vector.
5284          break;
5285        case 1:
5286          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5287          break;
5288        case 2:
5289          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5290          break;
5291        case 3:
5292          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5293          break;
5294      }
5295    }
5296
5297    SmallVector<int, 8> MaskVec;
5298    bool Reverse = (NonZeros & 0x3) == 2;
5299    for (unsigned i = 0; i < 2; ++i)
5300      MaskVec.push_back(Reverse ? 1-i : i);
5301    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5302    for (unsigned i = 0; i < 2; ++i)
5303      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5304    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5305  }
5306
5307  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5308    // Check for a build vector of consecutive loads.
5309    for (unsigned i = 0; i < NumElems; ++i)
5310      V[i] = Op.getOperand(i);
5311
5312    // Check for elements which are consecutive loads.
5313    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5314    if (LD.getNode())
5315      return LD;
5316
5317    // For SSE 4.1, use insertps to put the high elements into the low element.
5318    if (getSubtarget()->hasSSE41()) {
5319      SDValue Result;
5320      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5321        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5322      else
5323        Result = DAG.getUNDEF(VT);
5324
5325      for (unsigned i = 1; i < NumElems; ++i) {
5326        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5327        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5328                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5329      }
5330      return Result;
5331    }
5332
5333    // Otherwise, expand into a number of unpckl*, start by extending each of
5334    // our (non-undef) elements to the full vector width with the element in the
5335    // bottom slot of the vector (which generates no code for SSE).
5336    for (unsigned i = 0; i < NumElems; ++i) {
5337      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5338        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5339      else
5340        V[i] = DAG.getUNDEF(VT);
5341    }
5342
5343    // Next, we iteratively mix elements, e.g. for v4f32:
5344    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5345    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5346    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5347    unsigned EltStride = NumElems >> 1;
5348    while (EltStride != 0) {
5349      for (unsigned i = 0; i < EltStride; ++i) {
5350        // If V[i+EltStride] is undef and this is the first round of mixing,
5351        // then it is safe to just drop this shuffle: V[i] is already in the
5352        // right place, the one element (since it's the first round) being
5353        // inserted as undef can be dropped.  This isn't safe for successive
5354        // rounds because they will permute elements within both vectors.
5355        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5356            EltStride == NumElems/2)
5357          continue;
5358
5359        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5360      }
5361      EltStride >>= 1;
5362    }
5363    return V[0];
5364  }
5365  return SDValue();
5366}
5367
5368// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5369// them in a MMX register.  This is better than doing a stack convert.
5370static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5371  DebugLoc dl = Op.getDebugLoc();
5372  EVT ResVT = Op.getValueType();
5373
5374  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5375         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5376  int Mask[2];
5377  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5378  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5379  InVec = Op.getOperand(1);
5380  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5381    unsigned NumElts = ResVT.getVectorNumElements();
5382    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5383    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5384                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5385  } else {
5386    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5387    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5388    Mask[0] = 0; Mask[1] = 2;
5389    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5390  }
5391  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5392}
5393
5394// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5395// to create 256-bit vectors from two other 128-bit ones.
5396static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5397  DebugLoc dl = Op.getDebugLoc();
5398  EVT ResVT = Op.getValueType();
5399
5400  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5401
5402  SDValue V1 = Op.getOperand(0);
5403  SDValue V2 = Op.getOperand(1);
5404  unsigned NumElems = ResVT.getVectorNumElements();
5405
5406  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5407                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5408  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5409                            DAG, dl);
5410}
5411
5412SDValue
5413X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5414  EVT ResVT = Op.getValueType();
5415
5416  assert(Op.getNumOperands() == 2);
5417  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5418         "Unsupported CONCAT_VECTORS for value type");
5419
5420  // We support concatenate two MMX registers and place them in a MMX register.
5421  // This is better than doing a stack convert.
5422  if (ResVT.is128BitVector())
5423    return LowerMMXCONCAT_VECTORS(Op, DAG);
5424
5425  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5426  // from two other 128-bit ones.
5427  return LowerAVXCONCAT_VECTORS(Op, DAG);
5428}
5429
5430// v8i16 shuffles - Prefer shuffles in the following order:
5431// 1. [all]   pshuflw, pshufhw, optional move
5432// 2. [ssse3] 1 x pshufb
5433// 3. [ssse3] 2 x pshufb + 1 x por
5434// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5435SDValue
5436X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5437                                            SelectionDAG &DAG) const {
5438  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5439  SDValue V1 = SVOp->getOperand(0);
5440  SDValue V2 = SVOp->getOperand(1);
5441  DebugLoc dl = SVOp->getDebugLoc();
5442  SmallVector<int, 8> MaskVals;
5443
5444  // Determine if more than 1 of the words in each of the low and high quadwords
5445  // of the result come from the same quadword of one of the two inputs.  Undef
5446  // mask values count as coming from any quadword, for better codegen.
5447  unsigned LoQuad[] = { 0, 0, 0, 0 };
5448  unsigned HiQuad[] = { 0, 0, 0, 0 };
5449  BitVector InputQuads(4);
5450  for (unsigned i = 0; i < 8; ++i) {
5451    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5452    int EltIdx = SVOp->getMaskElt(i);
5453    MaskVals.push_back(EltIdx);
5454    if (EltIdx < 0) {
5455      ++Quad[0];
5456      ++Quad[1];
5457      ++Quad[2];
5458      ++Quad[3];
5459      continue;
5460    }
5461    ++Quad[EltIdx / 4];
5462    InputQuads.set(EltIdx / 4);
5463  }
5464
5465  int BestLoQuad = -1;
5466  unsigned MaxQuad = 1;
5467  for (unsigned i = 0; i < 4; ++i) {
5468    if (LoQuad[i] > MaxQuad) {
5469      BestLoQuad = i;
5470      MaxQuad = LoQuad[i];
5471    }
5472  }
5473
5474  int BestHiQuad = -1;
5475  MaxQuad = 1;
5476  for (unsigned i = 0; i < 4; ++i) {
5477    if (HiQuad[i] > MaxQuad) {
5478      BestHiQuad = i;
5479      MaxQuad = HiQuad[i];
5480    }
5481  }
5482
5483  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5484  // of the two input vectors, shuffle them into one input vector so only a
5485  // single pshufb instruction is necessary. If There are more than 2 input
5486  // quads, disable the next transformation since it does not help SSSE3.
5487  bool V1Used = InputQuads[0] || InputQuads[1];
5488  bool V2Used = InputQuads[2] || InputQuads[3];
5489  if (Subtarget->hasSSSE3()) {
5490    if (InputQuads.count() == 2 && V1Used && V2Used) {
5491      BestLoQuad = InputQuads.find_first();
5492      BestHiQuad = InputQuads.find_next(BestLoQuad);
5493    }
5494    if (InputQuads.count() > 2) {
5495      BestLoQuad = -1;
5496      BestHiQuad = -1;
5497    }
5498  }
5499
5500  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5501  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5502  // words from all 4 input quadwords.
5503  SDValue NewV;
5504  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5505    SmallVector<int, 8> MaskV;
5506    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5507    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5508    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5509                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5510                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5511    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5512
5513    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5514    // source words for the shuffle, to aid later transformations.
5515    bool AllWordsInNewV = true;
5516    bool InOrder[2] = { true, true };
5517    for (unsigned i = 0; i != 8; ++i) {
5518      int idx = MaskVals[i];
5519      if (idx != (int)i)
5520        InOrder[i/4] = false;
5521      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5522        continue;
5523      AllWordsInNewV = false;
5524      break;
5525    }
5526
5527    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5528    if (AllWordsInNewV) {
5529      for (int i = 0; i != 8; ++i) {
5530        int idx = MaskVals[i];
5531        if (idx < 0)
5532          continue;
5533        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5534        if ((idx != i) && idx < 4)
5535          pshufhw = false;
5536        if ((idx != i) && idx > 3)
5537          pshuflw = false;
5538      }
5539      V1 = NewV;
5540      V2Used = false;
5541      BestLoQuad = 0;
5542      BestHiQuad = 1;
5543    }
5544
5545    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5546    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5547    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5548      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5549      unsigned TargetMask = 0;
5550      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5551                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5552      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5553                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5554      V1 = NewV.getOperand(0);
5555      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5556    }
5557  }
5558
5559  // If we have SSSE3, and all words of the result are from 1 input vector,
5560  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5561  // is present, fall back to case 4.
5562  if (Subtarget->hasSSSE3()) {
5563    SmallVector<SDValue,16> pshufbMask;
5564
5565    // If we have elements from both input vectors, set the high bit of the
5566    // shuffle mask element to zero out elements that come from V2 in the V1
5567    // mask, and elements that come from V1 in the V2 mask, so that the two
5568    // results can be OR'd together.
5569    bool TwoInputs = V1Used && V2Used;
5570    for (unsigned i = 0; i != 8; ++i) {
5571      int EltIdx = MaskVals[i] * 2;
5572      if (TwoInputs && (EltIdx >= 16)) {
5573        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5574        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5575        continue;
5576      }
5577      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5578      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5579    }
5580    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5581    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5582                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5583                                 MVT::v16i8, &pshufbMask[0], 16));
5584    if (!TwoInputs)
5585      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5586
5587    // Calculate the shuffle mask for the second input, shuffle it, and
5588    // OR it with the first shuffled input.
5589    pshufbMask.clear();
5590    for (unsigned i = 0; i != 8; ++i) {
5591      int EltIdx = MaskVals[i] * 2;
5592      if (EltIdx < 16) {
5593        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5594        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5595        continue;
5596      }
5597      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5598      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5599    }
5600    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5601    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5602                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5603                                 MVT::v16i8, &pshufbMask[0], 16));
5604    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5605    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5606  }
5607
5608  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5609  // and update MaskVals with new element order.
5610  BitVector InOrder(8);
5611  if (BestLoQuad >= 0) {
5612    SmallVector<int, 8> MaskV;
5613    for (int i = 0; i != 4; ++i) {
5614      int idx = MaskVals[i];
5615      if (idx < 0) {
5616        MaskV.push_back(-1);
5617        InOrder.set(i);
5618      } else if ((idx / 4) == BestLoQuad) {
5619        MaskV.push_back(idx & 3);
5620        InOrder.set(i);
5621      } else {
5622        MaskV.push_back(-1);
5623      }
5624    }
5625    for (unsigned i = 4; i != 8; ++i)
5626      MaskV.push_back(i);
5627    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5628                                &MaskV[0]);
5629
5630    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5631      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5632                               NewV.getOperand(0),
5633                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5634                               DAG);
5635  }
5636
5637  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5638  // and update MaskVals with the new element order.
5639  if (BestHiQuad >= 0) {
5640    SmallVector<int, 8> MaskV;
5641    for (unsigned i = 0; i != 4; ++i)
5642      MaskV.push_back(i);
5643    for (unsigned i = 4; i != 8; ++i) {
5644      int idx = MaskVals[i];
5645      if (idx < 0) {
5646        MaskV.push_back(-1);
5647        InOrder.set(i);
5648      } else if ((idx / 4) == BestHiQuad) {
5649        MaskV.push_back((idx & 3) + 4);
5650        InOrder.set(i);
5651      } else {
5652        MaskV.push_back(-1);
5653      }
5654    }
5655    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5656                                &MaskV[0]);
5657
5658    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5659      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5660                              NewV.getOperand(0),
5661                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5662                              DAG);
5663  }
5664
5665  // In case BestHi & BestLo were both -1, which means each quadword has a word
5666  // from each of the four input quadwords, calculate the InOrder bitvector now
5667  // before falling through to the insert/extract cleanup.
5668  if (BestLoQuad == -1 && BestHiQuad == -1) {
5669    NewV = V1;
5670    for (int i = 0; i != 8; ++i)
5671      if (MaskVals[i] < 0 || MaskVals[i] == i)
5672        InOrder.set(i);
5673  }
5674
5675  // The other elements are put in the right place using pextrw and pinsrw.
5676  for (unsigned i = 0; i != 8; ++i) {
5677    if (InOrder[i])
5678      continue;
5679    int EltIdx = MaskVals[i];
5680    if (EltIdx < 0)
5681      continue;
5682    SDValue ExtOp = (EltIdx < 8)
5683    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5684                  DAG.getIntPtrConstant(EltIdx))
5685    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5686                  DAG.getIntPtrConstant(EltIdx - 8));
5687    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5688                       DAG.getIntPtrConstant(i));
5689  }
5690  return NewV;
5691}
5692
5693// v16i8 shuffles - Prefer shuffles in the following order:
5694// 1. [ssse3] 1 x pshufb
5695// 2. [ssse3] 2 x pshufb + 1 x por
5696// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5697static
5698SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5699                                 SelectionDAG &DAG,
5700                                 const X86TargetLowering &TLI) {
5701  SDValue V1 = SVOp->getOperand(0);
5702  SDValue V2 = SVOp->getOperand(1);
5703  DebugLoc dl = SVOp->getDebugLoc();
5704  ArrayRef<int> MaskVals = SVOp->getMask();
5705
5706  // If we have SSSE3, case 1 is generated when all result bytes come from
5707  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5708  // present, fall back to case 3.
5709  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5710  bool V1Only = true;
5711  bool V2Only = true;
5712  for (unsigned i = 0; i < 16; ++i) {
5713    int EltIdx = MaskVals[i];
5714    if (EltIdx < 0)
5715      continue;
5716    if (EltIdx < 16)
5717      V2Only = false;
5718    else
5719      V1Only = false;
5720  }
5721
5722  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5723  if (TLI.getSubtarget()->hasSSSE3()) {
5724    SmallVector<SDValue,16> pshufbMask;
5725
5726    // If all result elements are from one input vector, then only translate
5727    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5728    //
5729    // Otherwise, we have elements from both input vectors, and must zero out
5730    // elements that come from V2 in the first mask, and V1 in the second mask
5731    // so that we can OR them together.
5732    bool TwoInputs = !(V1Only || V2Only);
5733    for (unsigned i = 0; i != 16; ++i) {
5734      int EltIdx = MaskVals[i];
5735      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5736        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5737        continue;
5738      }
5739      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5740    }
5741    // If all the elements are from V2, assign it to V1 and return after
5742    // building the first pshufb.
5743    if (V2Only)
5744      V1 = V2;
5745    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5746                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5747                                 MVT::v16i8, &pshufbMask[0], 16));
5748    if (!TwoInputs)
5749      return V1;
5750
5751    // Calculate the shuffle mask for the second input, shuffle it, and
5752    // OR it with the first shuffled input.
5753    pshufbMask.clear();
5754    for (unsigned i = 0; i != 16; ++i) {
5755      int EltIdx = MaskVals[i];
5756      if (EltIdx < 16) {
5757        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5758        continue;
5759      }
5760      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5761    }
5762    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5763                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5764                                 MVT::v16i8, &pshufbMask[0], 16));
5765    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5766  }
5767
5768  // No SSSE3 - Calculate in place words and then fix all out of place words
5769  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5770  // the 16 different words that comprise the two doublequadword input vectors.
5771  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5772  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5773  SDValue NewV = V2Only ? V2 : V1;
5774  for (int i = 0; i != 8; ++i) {
5775    int Elt0 = MaskVals[i*2];
5776    int Elt1 = MaskVals[i*2+1];
5777
5778    // This word of the result is all undef, skip it.
5779    if (Elt0 < 0 && Elt1 < 0)
5780      continue;
5781
5782    // This word of the result is already in the correct place, skip it.
5783    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5784      continue;
5785    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5786      continue;
5787
5788    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5789    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5790    SDValue InsElt;
5791
5792    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5793    // using a single extract together, load it and store it.
5794    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5795      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5796                           DAG.getIntPtrConstant(Elt1 / 2));
5797      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5798                        DAG.getIntPtrConstant(i));
5799      continue;
5800    }
5801
5802    // If Elt1 is defined, extract it from the appropriate source.  If the
5803    // source byte is not also odd, shift the extracted word left 8 bits
5804    // otherwise clear the bottom 8 bits if we need to do an or.
5805    if (Elt1 >= 0) {
5806      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5807                           DAG.getIntPtrConstant(Elt1 / 2));
5808      if ((Elt1 & 1) == 0)
5809        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5810                             DAG.getConstant(8,
5811                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5812      else if (Elt0 >= 0)
5813        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5814                             DAG.getConstant(0xFF00, MVT::i16));
5815    }
5816    // If Elt0 is defined, extract it from the appropriate source.  If the
5817    // source byte is not also even, shift the extracted word right 8 bits. If
5818    // Elt1 was also defined, OR the extracted values together before
5819    // inserting them in the result.
5820    if (Elt0 >= 0) {
5821      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5822                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5823      if ((Elt0 & 1) != 0)
5824        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5825                              DAG.getConstant(8,
5826                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5827      else if (Elt1 >= 0)
5828        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5829                             DAG.getConstant(0x00FF, MVT::i16));
5830      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5831                         : InsElt0;
5832    }
5833    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5834                       DAG.getIntPtrConstant(i));
5835  }
5836  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5837}
5838
5839/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5840/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5841/// done when every pair / quad of shuffle mask elements point to elements in
5842/// the right sequence. e.g.
5843/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5844static
5845SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5846                                 SelectionDAG &DAG, DebugLoc dl) {
5847  EVT VT = SVOp->getValueType(0);
5848  SDValue V1 = SVOp->getOperand(0);
5849  SDValue V2 = SVOp->getOperand(1);
5850  unsigned NumElems = VT.getVectorNumElements();
5851  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5852  EVT NewVT;
5853  switch (VT.getSimpleVT().SimpleTy) {
5854  default: assert(false && "Unexpected!");
5855  case MVT::v4f32: NewVT = MVT::v2f64; break;
5856  case MVT::v4i32: NewVT = MVT::v2i64; break;
5857  case MVT::v8i16: NewVT = MVT::v4i32; break;
5858  case MVT::v16i8: NewVT = MVT::v4i32; break;
5859  }
5860
5861  int Scale = NumElems / NewWidth;
5862  SmallVector<int, 8> MaskVec;
5863  for (unsigned i = 0; i < NumElems; i += Scale) {
5864    int StartIdx = -1;
5865    for (int j = 0; j < Scale; ++j) {
5866      int EltIdx = SVOp->getMaskElt(i+j);
5867      if (EltIdx < 0)
5868        continue;
5869      if (StartIdx == -1)
5870        StartIdx = EltIdx - (EltIdx % Scale);
5871      if (EltIdx != StartIdx + j)
5872        return SDValue();
5873    }
5874    if (StartIdx == -1)
5875      MaskVec.push_back(-1);
5876    else
5877      MaskVec.push_back(StartIdx / Scale);
5878  }
5879
5880  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5881  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5882  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5883}
5884
5885/// getVZextMovL - Return a zero-extending vector move low node.
5886///
5887static SDValue getVZextMovL(EVT VT, EVT OpVT,
5888                            SDValue SrcOp, SelectionDAG &DAG,
5889                            const X86Subtarget *Subtarget, DebugLoc dl) {
5890  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5891    LoadSDNode *LD = NULL;
5892    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5893      LD = dyn_cast<LoadSDNode>(SrcOp);
5894    if (!LD) {
5895      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5896      // instead.
5897      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5898      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5899          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5900          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5901          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5902        // PR2108
5903        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5904        return DAG.getNode(ISD::BITCAST, dl, VT,
5905                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5906                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5907                                                   OpVT,
5908                                                   SrcOp.getOperand(0)
5909                                                          .getOperand(0))));
5910      }
5911    }
5912  }
5913
5914  return DAG.getNode(ISD::BITCAST, dl, VT,
5915                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5916                                 DAG.getNode(ISD::BITCAST, dl,
5917                                             OpVT, SrcOp)));
5918}
5919
5920/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5921/// which could not be matched by any known target speficic shuffle
5922static SDValue
5923LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5924  EVT VT = SVOp->getValueType(0);
5925
5926  unsigned NumElems = VT.getVectorNumElements();
5927  unsigned NumLaneElems = NumElems / 2;
5928
5929  int MinRange[2][2] = { { static_cast<int>(NumElems),
5930                           static_cast<int>(NumElems) },
5931                         { static_cast<int>(NumElems),
5932                           static_cast<int>(NumElems) } };
5933  int MaxRange[2][2] = { { -1, -1 }, { -1, -1 } };
5934
5935  // Collect used ranges for each source in each lane
5936  for (unsigned l = 0; l < 2; ++l) {
5937    unsigned LaneStart = l*NumLaneElems;
5938    for (unsigned i = 0; i != NumLaneElems; ++i) {
5939      int Idx = SVOp->getMaskElt(i+LaneStart);
5940      if (Idx < 0)
5941        continue;
5942
5943      int Input = 0;
5944      if (Idx >= (int)NumElems) {
5945        Idx -= NumElems;
5946        Input = 1;
5947      }
5948
5949      if (Idx > MaxRange[l][Input])
5950        MaxRange[l][Input] = Idx;
5951      if (Idx < MinRange[l][Input])
5952        MinRange[l][Input] = Idx;
5953    }
5954  }
5955
5956  // Make sure each range is 128-bits
5957  int ExtractIdx[2][2] = { { -1, -1 }, { -1, -1 } };
5958  for (unsigned l = 0; l < 2; ++l) {
5959    for (unsigned Input = 0; Input < 2; ++Input) {
5960      if (MinRange[l][Input] == (int)NumElems && MaxRange[l][Input] < 0)
5961        continue;
5962
5963      if (MinRange[l][Input] >= 0 && MaxRange[l][Input] < (int)NumLaneElems)
5964        ExtractIdx[l][Input] = 0;
5965      else if (MinRange[l][Input] >= (int)NumLaneElems &&
5966               MaxRange[l][Input] < (int)NumElems)
5967        ExtractIdx[l][Input] = NumLaneElems;
5968      else
5969        return SDValue();
5970    }
5971  }
5972
5973  DebugLoc dl = SVOp->getDebugLoc();
5974  MVT EltVT = VT.getVectorElementType().getSimpleVT();
5975  EVT NVT = MVT::getVectorVT(EltVT, NumElems/2);
5976
5977  SDValue Ops[2][2];
5978  for (unsigned l = 0; l < 2; ++l) {
5979    for (unsigned Input = 0; Input < 2; ++Input) {
5980      if (ExtractIdx[l][Input] >= 0)
5981        Ops[l][Input] = Extract128BitVector(SVOp->getOperand(Input),
5982                                DAG.getConstant(ExtractIdx[l][Input], MVT::i32),
5983                                                DAG, dl);
5984      else
5985        Ops[l][Input] = DAG.getUNDEF(NVT);
5986    }
5987  }
5988
5989  // Generate 128-bit shuffles
5990  SmallVector<int, 16> Mask1, Mask2;
5991  for (unsigned i = 0; i != NumLaneElems; ++i) {
5992    int Elt = SVOp->getMaskElt(i);
5993    if (Elt >= (int)NumElems) {
5994      Elt %= NumLaneElems;
5995      Elt += NumLaneElems;
5996    } else if (Elt >= 0) {
5997      Elt %= NumLaneElems;
5998    }
5999    Mask1.push_back(Elt);
6000  }
6001  for (unsigned i = NumLaneElems; i != NumElems; ++i) {
6002    int Elt = SVOp->getMaskElt(i);
6003    if (Elt >= (int)NumElems) {
6004      Elt %= NumLaneElems;
6005      Elt += NumLaneElems;
6006    } else if (Elt >= 0) {
6007      Elt %= NumLaneElems;
6008    }
6009    Mask2.push_back(Elt);
6010  }
6011
6012  SDValue Shuf1 = DAG.getVectorShuffle(NVT, dl, Ops[0][0], Ops[0][1], &Mask1[0]);
6013  SDValue Shuf2 = DAG.getVectorShuffle(NVT, dl, Ops[1][0], Ops[1][1], &Mask2[0]);
6014
6015  // Concatenate the result back
6016  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Shuf1,
6017                                 DAG.getConstant(0, MVT::i32), DAG, dl);
6018  return Insert128BitVector(V, Shuf2, DAG.getConstant(NumElems/2, MVT::i32),
6019                            DAG, dl);
6020}
6021
6022/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6023/// 4 elements, and match them with several different shuffle types.
6024static SDValue
6025LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6026  SDValue V1 = SVOp->getOperand(0);
6027  SDValue V2 = SVOp->getOperand(1);
6028  DebugLoc dl = SVOp->getDebugLoc();
6029  EVT VT = SVOp->getValueType(0);
6030
6031  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6032
6033  SmallVector<std::pair<int, int>, 8> Locs;
6034  Locs.resize(4);
6035  SmallVector<int, 8> Mask1(4U, -1);
6036  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6037
6038  unsigned NumHi = 0;
6039  unsigned NumLo = 0;
6040  for (unsigned i = 0; i != 4; ++i) {
6041    int Idx = PermMask[i];
6042    if (Idx < 0) {
6043      Locs[i] = std::make_pair(-1, -1);
6044    } else {
6045      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6046      if (Idx < 4) {
6047        Locs[i] = std::make_pair(0, NumLo);
6048        Mask1[NumLo] = Idx;
6049        NumLo++;
6050      } else {
6051        Locs[i] = std::make_pair(1, NumHi);
6052        if (2+NumHi < 4)
6053          Mask1[2+NumHi] = Idx;
6054        NumHi++;
6055      }
6056    }
6057  }
6058
6059  if (NumLo <= 2 && NumHi <= 2) {
6060    // If no more than two elements come from either vector. This can be
6061    // implemented with two shuffles. First shuffle gather the elements.
6062    // The second shuffle, which takes the first shuffle as both of its
6063    // vector operands, put the elements into the right order.
6064    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6065
6066    SmallVector<int, 8> Mask2(4U, -1);
6067
6068    for (unsigned i = 0; i != 4; ++i) {
6069      if (Locs[i].first == -1)
6070        continue;
6071      else {
6072        unsigned Idx = (i < 2) ? 0 : 4;
6073        Idx += Locs[i].first * 2 + Locs[i].second;
6074        Mask2[i] = Idx;
6075      }
6076    }
6077
6078    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6079  } else if (NumLo == 3 || NumHi == 3) {
6080    // Otherwise, we must have three elements from one vector, call it X, and
6081    // one element from the other, call it Y.  First, use a shufps to build an
6082    // intermediate vector with the one element from Y and the element from X
6083    // that will be in the same half in the final destination (the indexes don't
6084    // matter). Then, use a shufps to build the final vector, taking the half
6085    // containing the element from Y from the intermediate, and the other half
6086    // from X.
6087    if (NumHi == 3) {
6088      // Normalize it so the 3 elements come from V1.
6089      CommuteVectorShuffleMask(PermMask, 4);
6090      std::swap(V1, V2);
6091    }
6092
6093    // Find the element from V2.
6094    unsigned HiIndex;
6095    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6096      int Val = PermMask[HiIndex];
6097      if (Val < 0)
6098        continue;
6099      if (Val >= 4)
6100        break;
6101    }
6102
6103    Mask1[0] = PermMask[HiIndex];
6104    Mask1[1] = -1;
6105    Mask1[2] = PermMask[HiIndex^1];
6106    Mask1[3] = -1;
6107    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6108
6109    if (HiIndex >= 2) {
6110      Mask1[0] = PermMask[0];
6111      Mask1[1] = PermMask[1];
6112      Mask1[2] = HiIndex & 1 ? 6 : 4;
6113      Mask1[3] = HiIndex & 1 ? 4 : 6;
6114      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6115    } else {
6116      Mask1[0] = HiIndex & 1 ? 2 : 0;
6117      Mask1[1] = HiIndex & 1 ? 0 : 2;
6118      Mask1[2] = PermMask[2];
6119      Mask1[3] = PermMask[3];
6120      if (Mask1[2] >= 0)
6121        Mask1[2] += 4;
6122      if (Mask1[3] >= 0)
6123        Mask1[3] += 4;
6124      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6125    }
6126  }
6127
6128  // Break it into (shuffle shuffle_hi, shuffle_lo).
6129  Locs.clear();
6130  Locs.resize(4);
6131  SmallVector<int,8> LoMask(4U, -1);
6132  SmallVector<int,8> HiMask(4U, -1);
6133
6134  SmallVector<int,8> *MaskPtr = &LoMask;
6135  unsigned MaskIdx = 0;
6136  unsigned LoIdx = 0;
6137  unsigned HiIdx = 2;
6138  for (unsigned i = 0; i != 4; ++i) {
6139    if (i == 2) {
6140      MaskPtr = &HiMask;
6141      MaskIdx = 1;
6142      LoIdx = 0;
6143      HiIdx = 2;
6144    }
6145    int Idx = PermMask[i];
6146    if (Idx < 0) {
6147      Locs[i] = std::make_pair(-1, -1);
6148    } else if (Idx < 4) {
6149      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6150      (*MaskPtr)[LoIdx] = Idx;
6151      LoIdx++;
6152    } else {
6153      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6154      (*MaskPtr)[HiIdx] = Idx;
6155      HiIdx++;
6156    }
6157  }
6158
6159  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6160  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6161  SmallVector<int, 8> MaskOps;
6162  for (unsigned i = 0; i != 4; ++i) {
6163    if (Locs[i].first == -1) {
6164      MaskOps.push_back(-1);
6165    } else {
6166      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6167      MaskOps.push_back(Idx);
6168    }
6169  }
6170  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6171}
6172
6173static bool MayFoldVectorLoad(SDValue V) {
6174  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6175    V = V.getOperand(0);
6176  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6177    V = V.getOperand(0);
6178  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6179      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6180    // BUILD_VECTOR (load), undef
6181    V = V.getOperand(0);
6182  if (MayFoldLoad(V))
6183    return true;
6184  return false;
6185}
6186
6187// FIXME: the version above should always be used. Since there's
6188// a bug where several vector shuffles can't be folded because the
6189// DAG is not updated during lowering and a node claims to have two
6190// uses while it only has one, use this version, and let isel match
6191// another instruction if the load really happens to have more than
6192// one use. Remove this version after this bug get fixed.
6193// rdar://8434668, PR8156
6194static bool RelaxedMayFoldVectorLoad(SDValue V) {
6195  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6196    V = V.getOperand(0);
6197  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6198    V = V.getOperand(0);
6199  if (ISD::isNormalLoad(V.getNode()))
6200    return true;
6201  return false;
6202}
6203
6204/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6205/// a vector extract, and if both can be later optimized into a single load.
6206/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6207/// here because otherwise a target specific shuffle node is going to be
6208/// emitted for this shuffle, and the optimization not done.
6209/// FIXME: This is probably not the best approach, but fix the problem
6210/// until the right path is decided.
6211static
6212bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6213                                         const TargetLowering &TLI) {
6214  EVT VT = V.getValueType();
6215  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6216
6217  // Be sure that the vector shuffle is present in a pattern like this:
6218  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6219  if (!V.hasOneUse())
6220    return false;
6221
6222  SDNode *N = *V.getNode()->use_begin();
6223  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6224    return false;
6225
6226  SDValue EltNo = N->getOperand(1);
6227  if (!isa<ConstantSDNode>(EltNo))
6228    return false;
6229
6230  // If the bit convert changed the number of elements, it is unsafe
6231  // to examine the mask.
6232  bool HasShuffleIntoBitcast = false;
6233  if (V.getOpcode() == ISD::BITCAST) {
6234    EVT SrcVT = V.getOperand(0).getValueType();
6235    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6236      return false;
6237    V = V.getOperand(0);
6238    HasShuffleIntoBitcast = true;
6239  }
6240
6241  // Select the input vector, guarding against out of range extract vector.
6242  unsigned NumElems = VT.getVectorNumElements();
6243  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6244  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6245  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6246
6247  // If we are accessing the upper part of a YMM register
6248  // then the EXTRACT_VECTOR_ELT is likely to be legalized to a sequence of
6249  // EXTRACT_SUBVECTOR + EXTRACT_VECTOR_ELT, which are not detected at this point
6250  // because the legalization of N did not happen yet.
6251  if (Idx >= (int)NumElems/2 && VT.getSizeInBits() == 256)
6252    return false;
6253
6254  // Skip one more bit_convert if necessary
6255  if (V.getOpcode() == ISD::BITCAST)
6256    V = V.getOperand(0);
6257
6258  if (!ISD::isNormalLoad(V.getNode()))
6259    return false;
6260
6261  // Is the original load suitable?
6262  LoadSDNode *LN0 = cast<LoadSDNode>(V);
6263
6264  if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
6265    return false;
6266
6267  if (!HasShuffleIntoBitcast)
6268    return true;
6269
6270  // If there's a bitcast before the shuffle, check if the load type and
6271  // alignment is valid.
6272  unsigned Align = LN0->getAlignment();
6273  unsigned NewAlign =
6274    TLI.getTargetData()->getABITypeAlignment(
6275                                  VT.getTypeForEVT(*DAG.getContext()));
6276
6277  if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6278    return false;
6279
6280  return true;
6281}
6282
6283static
6284SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6285  EVT VT = Op.getValueType();
6286
6287  // Canonizalize to v2f64.
6288  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6289  return DAG.getNode(ISD::BITCAST, dl, VT,
6290                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6291                                          V1, DAG));
6292}
6293
6294static
6295SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6296                        bool HasSSE2) {
6297  SDValue V1 = Op.getOperand(0);
6298  SDValue V2 = Op.getOperand(1);
6299  EVT VT = Op.getValueType();
6300
6301  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6302
6303  if (HasSSE2 && VT == MVT::v2f64)
6304    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6305
6306  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6307  return DAG.getNode(ISD::BITCAST, dl, VT,
6308                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6309                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6310                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6311}
6312
6313static
6314SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6315  SDValue V1 = Op.getOperand(0);
6316  SDValue V2 = Op.getOperand(1);
6317  EVT VT = Op.getValueType();
6318
6319  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6320         "unsupported shuffle type");
6321
6322  if (V2.getOpcode() == ISD::UNDEF)
6323    V2 = V1;
6324
6325  // v4i32 or v4f32
6326  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6327}
6328
6329static
6330SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6331  SDValue V1 = Op.getOperand(0);
6332  SDValue V2 = Op.getOperand(1);
6333  EVT VT = Op.getValueType();
6334  unsigned NumElems = VT.getVectorNumElements();
6335
6336  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6337  // operand of these instructions is only memory, so check if there's a
6338  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6339  // same masks.
6340  bool CanFoldLoad = false;
6341
6342  // Trivial case, when V2 comes from a load.
6343  if (MayFoldVectorLoad(V2))
6344    CanFoldLoad = true;
6345
6346  // When V1 is a load, it can be folded later into a store in isel, example:
6347  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6348  //    turns into:
6349  //  (MOVLPSmr addr:$src1, VR128:$src2)
6350  // So, recognize this potential and also use MOVLPS or MOVLPD
6351  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6352    CanFoldLoad = true;
6353
6354  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6355  if (CanFoldLoad) {
6356    if (HasSSE2 && NumElems == 2)
6357      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6358
6359    if (NumElems == 4)
6360      // If we don't care about the second element, procede to use movss.
6361      if (SVOp->getMaskElt(1) != -1)
6362        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6363  }
6364
6365  // movl and movlp will both match v2i64, but v2i64 is never matched by
6366  // movl earlier because we make it strict to avoid messing with the movlp load
6367  // folding logic (see the code above getMOVLP call). Match it here then,
6368  // this is horrible, but will stay like this until we move all shuffle
6369  // matching to x86 specific nodes. Note that for the 1st condition all
6370  // types are matched with movsd.
6371  if (HasSSE2) {
6372    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6373    // as to remove this logic from here, as much as possible
6374    if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6375      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6376    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6377  }
6378
6379  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6380
6381  // Invert the operand order and use SHUFPS to match it.
6382  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6383                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6384}
6385
6386static
6387SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6388                               const TargetLowering &TLI,
6389                               const X86Subtarget *Subtarget) {
6390  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6391  EVT VT = Op.getValueType();
6392  DebugLoc dl = Op.getDebugLoc();
6393  SDValue V1 = Op.getOperand(0);
6394  SDValue V2 = Op.getOperand(1);
6395
6396  if (isZeroShuffle(SVOp))
6397    return getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(),
6398                         DAG, dl);
6399
6400  // Handle splat operations
6401  if (SVOp->isSplat()) {
6402    unsigned NumElem = VT.getVectorNumElements();
6403    int Size = VT.getSizeInBits();
6404    // Special case, this is the only place now where it's allowed to return
6405    // a vector_shuffle operation without using a target specific node, because
6406    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6407    // this be moved to DAGCombine instead?
6408    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6409      return Op;
6410
6411    // Use vbroadcast whenever the splat comes from a foldable load
6412    SDValue LD = isVectorBroadcast(Op, Subtarget);
6413    if (LD.getNode())
6414      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6415
6416    // Handle splats by matching through known shuffle masks
6417    if ((Size == 128 && NumElem <= 4) ||
6418        (Size == 256 && NumElem < 8))
6419      return SDValue();
6420
6421    // All remaning splats are promoted to target supported vector shuffles.
6422    return PromoteSplat(SVOp, DAG);
6423  }
6424
6425  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6426  // do it!
6427  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6428    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6429    if (NewOp.getNode())
6430      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6431  } else if ((VT == MVT::v4i32 ||
6432             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6433    // FIXME: Figure out a cleaner way to do this.
6434    // Try to make use of movq to zero out the top part.
6435    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6436      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6437      if (NewOp.getNode()) {
6438        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6439          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6440                              DAG, Subtarget, dl);
6441      }
6442    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6443      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6444      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6445        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6446                            DAG, Subtarget, dl);
6447    }
6448  }
6449  return SDValue();
6450}
6451
6452SDValue
6453X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6454  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6455  SDValue V1 = Op.getOperand(0);
6456  SDValue V2 = Op.getOperand(1);
6457  EVT VT = Op.getValueType();
6458  DebugLoc dl = Op.getDebugLoc();
6459  unsigned NumElems = VT.getVectorNumElements();
6460  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6461  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6462  bool V1IsSplat = false;
6463  bool V2IsSplat = false;
6464  bool HasSSE2 = Subtarget->hasSSE2();
6465  bool HasAVX    = Subtarget->hasAVX();
6466  bool HasAVX2   = Subtarget->hasAVX2();
6467  MachineFunction &MF = DAG.getMachineFunction();
6468  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6469
6470  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6471
6472  if (V1IsUndef && V2IsUndef)
6473    return DAG.getUNDEF(VT);
6474
6475  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6476
6477  // Vector shuffle lowering takes 3 steps:
6478  //
6479  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6480  //    narrowing and commutation of operands should be handled.
6481  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6482  //    shuffle nodes.
6483  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6484  //    so the shuffle can be broken into other shuffles and the legalizer can
6485  //    try the lowering again.
6486  //
6487  // The general idea is that no vector_shuffle operation should be left to
6488  // be matched during isel, all of them must be converted to a target specific
6489  // node here.
6490
6491  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6492  // narrowing and commutation of operands should be handled. The actual code
6493  // doesn't include all of those, work in progress...
6494  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6495  if (NewOp.getNode())
6496    return NewOp;
6497
6498  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6499  // unpckh_undef). Only use pshufd if speed is more important than size.
6500  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp, HasAVX2))
6501    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6502  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp, HasAVX2))
6503    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6504
6505  if (X86::isMOVDDUPMask(SVOp) && Subtarget->hasSSE3() &&
6506      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6507    return getMOVDDup(Op, dl, V1, DAG);
6508
6509  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6510    return getMOVHighToLow(Op, dl, DAG);
6511
6512  // Use to match splats
6513  if (HasSSE2 && X86::isUNPCKHMask(SVOp, HasAVX2) && V2IsUndef &&
6514      (VT == MVT::v2f64 || VT == MVT::v2i64))
6515    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6516
6517  if (X86::isPSHUFDMask(SVOp)) {
6518    // The actual implementation will match the mask in the if above and then
6519    // during isel it can match several different instructions, not only pshufd
6520    // as its name says, sad but true, emulate the behavior for now...
6521    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6522        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6523
6524    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6525
6526    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6527      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6528
6529    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6530                                TargetMask, DAG);
6531  }
6532
6533  // Check if this can be converted into a logical shift.
6534  bool isLeft = false;
6535  unsigned ShAmt = 0;
6536  SDValue ShVal;
6537  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6538  if (isShift && ShVal.hasOneUse()) {
6539    // If the shifted value has multiple uses, it may be cheaper to use
6540    // v_set0 + movlhps or movhlps, etc.
6541    EVT EltVT = VT.getVectorElementType();
6542    ShAmt *= EltVT.getSizeInBits();
6543    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6544  }
6545
6546  if (X86::isMOVLMask(SVOp)) {
6547    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6548      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6549    if (!X86::isMOVLPMask(SVOp)) {
6550      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6551        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6552
6553      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6554        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6555    }
6556  }
6557
6558  // FIXME: fold these into legal mask.
6559  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp, HasAVX2))
6560    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6561
6562  if (X86::isMOVHLPSMask(SVOp))
6563    return getMOVHighToLow(Op, dl, DAG);
6564
6565  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6566    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6567
6568  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6569    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6570
6571  if (X86::isMOVLPMask(SVOp))
6572    return getMOVLP(Op, dl, DAG, HasSSE2);
6573
6574  if (ShouldXformToMOVHLPS(SVOp) ||
6575      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6576    return CommuteVectorShuffle(SVOp, DAG);
6577
6578  if (isShift) {
6579    // No better options. Use a vshldq / vsrldq.
6580    EVT EltVT = VT.getVectorElementType();
6581    ShAmt *= EltVT.getSizeInBits();
6582    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6583  }
6584
6585  bool Commuted = false;
6586  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6587  // 1,1,1,1 -> v8i16 though.
6588  V1IsSplat = isSplatVector(V1.getNode());
6589  V2IsSplat = isSplatVector(V2.getNode());
6590
6591  // Canonicalize the splat or undef, if present, to be on the RHS.
6592  if (V1IsSplat && !V2IsSplat) {
6593    Op = CommuteVectorShuffle(SVOp, DAG);
6594    SVOp = cast<ShuffleVectorSDNode>(Op);
6595    V1 = SVOp->getOperand(0);
6596    V2 = SVOp->getOperand(1);
6597    std::swap(V1IsSplat, V2IsSplat);
6598    Commuted = true;
6599  }
6600
6601  ArrayRef<int> M = SVOp->getMask();
6602
6603  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6604    // Shuffling low element of v1 into undef, just return v1.
6605    if (V2IsUndef)
6606      return V1;
6607    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6608    // the instruction selector will not match, so get a canonical MOVL with
6609    // swapped operands to undo the commute.
6610    return getMOVL(DAG, dl, VT, V2, V1);
6611  }
6612
6613  if (isUNPCKLMask(M, VT, HasAVX2))
6614    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6615
6616  if (isUNPCKHMask(M, VT, HasAVX2))
6617    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6618
6619  if (V2IsSplat) {
6620    // Normalize mask so all entries that point to V2 points to its first
6621    // element then try to match unpck{h|l} again. If match, return a
6622    // new vector_shuffle with the corrected mask.
6623    SDValue NewMask = NormalizeMask(SVOp, DAG);
6624    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6625    if (NSVOp != SVOp) {
6626      if (X86::isUNPCKLMask(NSVOp, HasAVX2, true)) {
6627        return NewMask;
6628      } else if (X86::isUNPCKHMask(NSVOp, HasAVX2, true)) {
6629        return NewMask;
6630      }
6631    }
6632  }
6633
6634  if (Commuted) {
6635    // Commute is back and try unpck* again.
6636    // FIXME: this seems wrong.
6637    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6638    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6639
6640    if (X86::isUNPCKLMask(NewSVOp, HasAVX2))
6641      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V2, V1, DAG);
6642
6643    if (X86::isUNPCKHMask(NewSVOp, HasAVX2))
6644      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V2, V1, DAG);
6645  }
6646
6647  // Normalize the node to match x86 shuffle ops if needed
6648  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6649    return CommuteVectorShuffle(SVOp, DAG);
6650
6651  // The checks below are all present in isShuffleMaskLegal, but they are
6652  // inlined here right now to enable us to directly emit target specific
6653  // nodes, and remove one by one until they don't return Op anymore.
6654
6655  if (isPALIGNRMask(M, VT, Subtarget))
6656    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6657                                getShufflePALIGNRImmediate(SVOp),
6658                                DAG);
6659
6660  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6661      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6662    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6663      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6664  }
6665
6666  if (isPSHUFHWMask(M, VT))
6667    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6668                                X86::getShufflePSHUFHWImmediate(SVOp),
6669                                DAG);
6670
6671  if (isPSHUFLWMask(M, VT))
6672    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6673                                X86::getShufflePSHUFLWImmediate(SVOp),
6674                                DAG);
6675
6676  if (isSHUFPMask(M, VT, HasAVX))
6677    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6678                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6679
6680  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6681    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6682  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6683    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6684
6685  //===--------------------------------------------------------------------===//
6686  // Generate target specific nodes for 128 or 256-bit shuffles only
6687  // supported in the AVX instruction set.
6688  //
6689
6690  // Handle VMOVDDUPY permutations
6691  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6692    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6693
6694  // Handle VPERMILPS/D* permutations
6695  if (isVPERMILPMask(M, VT, HasAVX))
6696    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6697                                getShuffleVPERMILPImmediate(SVOp), DAG);
6698
6699  // Handle VPERM2F128/VPERM2I128 permutations
6700  if (isVPERM2X128Mask(M, VT, HasAVX))
6701    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6702                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6703
6704  //===--------------------------------------------------------------------===//
6705  // Since no target specific shuffle was selected for this generic one,
6706  // lower it into other known shuffles. FIXME: this isn't true yet, but
6707  // this is the plan.
6708  //
6709
6710  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6711  if (VT == MVT::v8i16) {
6712    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6713    if (NewOp.getNode())
6714      return NewOp;
6715  }
6716
6717  if (VT == MVT::v16i8) {
6718    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6719    if (NewOp.getNode())
6720      return NewOp;
6721  }
6722
6723  // Handle all 128-bit wide vectors with 4 elements, and match them with
6724  // several different shuffle types.
6725  if (NumElems == 4 && VT.getSizeInBits() == 128)
6726    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6727
6728  // Handle general 256-bit shuffles
6729  if (VT.is256BitVector())
6730    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6731
6732  return SDValue();
6733}
6734
6735SDValue
6736X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6737                                                SelectionDAG &DAG) const {
6738  EVT VT = Op.getValueType();
6739  DebugLoc dl = Op.getDebugLoc();
6740
6741  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6742    return SDValue();
6743
6744  if (VT.getSizeInBits() == 8) {
6745    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6746                                    Op.getOperand(0), Op.getOperand(1));
6747    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6748                                    DAG.getValueType(VT));
6749    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6750  } else if (VT.getSizeInBits() == 16) {
6751    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6752    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6753    if (Idx == 0)
6754      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6755                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6756                                     DAG.getNode(ISD::BITCAST, dl,
6757                                                 MVT::v4i32,
6758                                                 Op.getOperand(0)),
6759                                     Op.getOperand(1)));
6760    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6761                                    Op.getOperand(0), Op.getOperand(1));
6762    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6763                                    DAG.getValueType(VT));
6764    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6765  } else if (VT == MVT::f32) {
6766    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6767    // the result back to FR32 register. It's only worth matching if the
6768    // result has a single use which is a store or a bitcast to i32.  And in
6769    // the case of a store, it's not worth it if the index is a constant 0,
6770    // because a MOVSSmr can be used instead, which is smaller and faster.
6771    if (!Op.hasOneUse())
6772      return SDValue();
6773    SDNode *User = *Op.getNode()->use_begin();
6774    if ((User->getOpcode() != ISD::STORE ||
6775         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6776          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6777        (User->getOpcode() != ISD::BITCAST ||
6778         User->getValueType(0) != MVT::i32))
6779      return SDValue();
6780    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6781                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6782                                              Op.getOperand(0)),
6783                                              Op.getOperand(1));
6784    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6785  } else if (VT == MVT::i32 || VT == MVT::i64) {
6786    // ExtractPS/pextrq works with constant index.
6787    if (isa<ConstantSDNode>(Op.getOperand(1)))
6788      return Op;
6789  }
6790  return SDValue();
6791}
6792
6793
6794SDValue
6795X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6796                                           SelectionDAG &DAG) const {
6797  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6798    return SDValue();
6799
6800  SDValue Vec = Op.getOperand(0);
6801  EVT VecVT = Vec.getValueType();
6802
6803  // If this is a 256-bit vector result, first extract the 128-bit vector and
6804  // then extract the element from the 128-bit vector.
6805  if (VecVT.getSizeInBits() == 256) {
6806    DebugLoc dl = Op.getNode()->getDebugLoc();
6807    unsigned NumElems = VecVT.getVectorNumElements();
6808    SDValue Idx = Op.getOperand(1);
6809    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6810
6811    // Get the 128-bit vector.
6812    bool Upper = IdxVal >= NumElems/2;
6813    Vec = Extract128BitVector(Vec,
6814                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6815
6816    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6817                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6818  }
6819
6820  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6821
6822  if (Subtarget->hasSSE41()) {
6823    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6824    if (Res.getNode())
6825      return Res;
6826  }
6827
6828  EVT VT = Op.getValueType();
6829  DebugLoc dl = Op.getDebugLoc();
6830  // TODO: handle v16i8.
6831  if (VT.getSizeInBits() == 16) {
6832    SDValue Vec = Op.getOperand(0);
6833    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6834    if (Idx == 0)
6835      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6836                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6837                                     DAG.getNode(ISD::BITCAST, dl,
6838                                                 MVT::v4i32, Vec),
6839                                     Op.getOperand(1)));
6840    // Transform it so it match pextrw which produces a 32-bit result.
6841    EVT EltVT = MVT::i32;
6842    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6843                                    Op.getOperand(0), Op.getOperand(1));
6844    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6845                                    DAG.getValueType(VT));
6846    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6847  } else if (VT.getSizeInBits() == 32) {
6848    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6849    if (Idx == 0)
6850      return Op;
6851
6852    // SHUFPS the element to the lowest double word, then movss.
6853    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6854    EVT VVT = Op.getOperand(0).getValueType();
6855    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6856                                       DAG.getUNDEF(VVT), Mask);
6857    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6858                       DAG.getIntPtrConstant(0));
6859  } else if (VT.getSizeInBits() == 64) {
6860    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6861    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6862    //        to match extract_elt for f64.
6863    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6864    if (Idx == 0)
6865      return Op;
6866
6867    // UNPCKHPD the element to the lowest double word, then movsd.
6868    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6869    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6870    int Mask[2] = { 1, -1 };
6871    EVT VVT = Op.getOperand(0).getValueType();
6872    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6873                                       DAG.getUNDEF(VVT), Mask);
6874    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6875                       DAG.getIntPtrConstant(0));
6876  }
6877
6878  return SDValue();
6879}
6880
6881SDValue
6882X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6883                                               SelectionDAG &DAG) const {
6884  EVT VT = Op.getValueType();
6885  EVT EltVT = VT.getVectorElementType();
6886  DebugLoc dl = Op.getDebugLoc();
6887
6888  SDValue N0 = Op.getOperand(0);
6889  SDValue N1 = Op.getOperand(1);
6890  SDValue N2 = Op.getOperand(2);
6891
6892  if (VT.getSizeInBits() == 256)
6893    return SDValue();
6894
6895  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6896      isa<ConstantSDNode>(N2)) {
6897    unsigned Opc;
6898    if (VT == MVT::v8i16)
6899      Opc = X86ISD::PINSRW;
6900    else if (VT == MVT::v16i8)
6901      Opc = X86ISD::PINSRB;
6902    else
6903      Opc = X86ISD::PINSRB;
6904
6905    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6906    // argument.
6907    if (N1.getValueType() != MVT::i32)
6908      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6909    if (N2.getValueType() != MVT::i32)
6910      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6911    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6912  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6913    // Bits [7:6] of the constant are the source select.  This will always be
6914    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6915    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6916    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6917    // Bits [5:4] of the constant are the destination select.  This is the
6918    //  value of the incoming immediate.
6919    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6920    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6921    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6922    // Create this as a scalar to vector..
6923    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6924    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6925  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6926             isa<ConstantSDNode>(N2)) {
6927    // PINSR* works with constant index.
6928    return Op;
6929  }
6930  return SDValue();
6931}
6932
6933SDValue
6934X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6935  EVT VT = Op.getValueType();
6936  EVT EltVT = VT.getVectorElementType();
6937
6938  DebugLoc dl = Op.getDebugLoc();
6939  SDValue N0 = Op.getOperand(0);
6940  SDValue N1 = Op.getOperand(1);
6941  SDValue N2 = Op.getOperand(2);
6942
6943  // If this is a 256-bit vector result, first extract the 128-bit vector,
6944  // insert the element into the extracted half and then place it back.
6945  if (VT.getSizeInBits() == 256) {
6946    if (!isa<ConstantSDNode>(N2))
6947      return SDValue();
6948
6949    // Get the desired 128-bit vector half.
6950    unsigned NumElems = VT.getVectorNumElements();
6951    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6952    bool Upper = IdxVal >= NumElems/2;
6953    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6954    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6955
6956    // Insert the element into the desired half.
6957    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6958                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6959
6960    // Insert the changed part back to the 256-bit vector
6961    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6962  }
6963
6964  if (Subtarget->hasSSE41())
6965    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6966
6967  if (EltVT == MVT::i8)
6968    return SDValue();
6969
6970  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6971    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6972    // as its second argument.
6973    if (N1.getValueType() != MVT::i32)
6974      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6975    if (N2.getValueType() != MVT::i32)
6976      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6977    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6978  }
6979  return SDValue();
6980}
6981
6982SDValue
6983X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6984  LLVMContext *Context = DAG.getContext();
6985  DebugLoc dl = Op.getDebugLoc();
6986  EVT OpVT = Op.getValueType();
6987
6988  // If this is a 256-bit vector result, first insert into a 128-bit
6989  // vector and then insert into the 256-bit vector.
6990  if (OpVT.getSizeInBits() > 128) {
6991    // Insert into a 128-bit vector.
6992    EVT VT128 = EVT::getVectorVT(*Context,
6993                                 OpVT.getVectorElementType(),
6994                                 OpVT.getVectorNumElements() / 2);
6995
6996    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6997
6998    // Insert the 128-bit vector.
6999    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7000                              DAG.getConstant(0, MVT::i32),
7001                              DAG, dl);
7002  }
7003
7004  if (Op.getValueType() == MVT::v1i64 &&
7005      Op.getOperand(0).getValueType() == MVT::i64)
7006    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7007
7008  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7009  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7010         "Expected an SSE type!");
7011  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7012                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7013}
7014
7015// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7016// a simple subregister reference or explicit instructions to grab
7017// upper bits of a vector.
7018SDValue
7019X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7020  if (Subtarget->hasAVX()) {
7021    DebugLoc dl = Op.getNode()->getDebugLoc();
7022    SDValue Vec = Op.getNode()->getOperand(0);
7023    SDValue Idx = Op.getNode()->getOperand(1);
7024
7025    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7026        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7027        return Extract128BitVector(Vec, Idx, DAG, dl);
7028    }
7029  }
7030  return SDValue();
7031}
7032
7033// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7034// simple superregister reference or explicit instructions to insert
7035// the upper bits of a vector.
7036SDValue
7037X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7038  if (Subtarget->hasAVX()) {
7039    DebugLoc dl = Op.getNode()->getDebugLoc();
7040    SDValue Vec = Op.getNode()->getOperand(0);
7041    SDValue SubVec = Op.getNode()->getOperand(1);
7042    SDValue Idx = Op.getNode()->getOperand(2);
7043
7044    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7045        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7046      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7047    }
7048  }
7049  return SDValue();
7050}
7051
7052// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7053// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7054// one of the above mentioned nodes. It has to be wrapped because otherwise
7055// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7056// be used to form addressing mode. These wrapped nodes will be selected
7057// into MOV32ri.
7058SDValue
7059X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7060  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7061
7062  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7063  // global base reg.
7064  unsigned char OpFlag = 0;
7065  unsigned WrapperKind = X86ISD::Wrapper;
7066  CodeModel::Model M = getTargetMachine().getCodeModel();
7067
7068  if (Subtarget->isPICStyleRIPRel() &&
7069      (M == CodeModel::Small || M == CodeModel::Kernel))
7070    WrapperKind = X86ISD::WrapperRIP;
7071  else if (Subtarget->isPICStyleGOT())
7072    OpFlag = X86II::MO_GOTOFF;
7073  else if (Subtarget->isPICStyleStubPIC())
7074    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7075
7076  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7077                                             CP->getAlignment(),
7078                                             CP->getOffset(), OpFlag);
7079  DebugLoc DL = CP->getDebugLoc();
7080  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7081  // With PIC, the address is actually $g + Offset.
7082  if (OpFlag) {
7083    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7084                         DAG.getNode(X86ISD::GlobalBaseReg,
7085                                     DebugLoc(), getPointerTy()),
7086                         Result);
7087  }
7088
7089  return Result;
7090}
7091
7092SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7093  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7094
7095  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7096  // global base reg.
7097  unsigned char OpFlag = 0;
7098  unsigned WrapperKind = X86ISD::Wrapper;
7099  CodeModel::Model M = getTargetMachine().getCodeModel();
7100
7101  if (Subtarget->isPICStyleRIPRel() &&
7102      (M == CodeModel::Small || M == CodeModel::Kernel))
7103    WrapperKind = X86ISD::WrapperRIP;
7104  else if (Subtarget->isPICStyleGOT())
7105    OpFlag = X86II::MO_GOTOFF;
7106  else if (Subtarget->isPICStyleStubPIC())
7107    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7108
7109  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7110                                          OpFlag);
7111  DebugLoc DL = JT->getDebugLoc();
7112  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7113
7114  // With PIC, the address is actually $g + Offset.
7115  if (OpFlag)
7116    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7117                         DAG.getNode(X86ISD::GlobalBaseReg,
7118                                     DebugLoc(), getPointerTy()),
7119                         Result);
7120
7121  return Result;
7122}
7123
7124SDValue
7125X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7126  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7127
7128  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7129  // global base reg.
7130  unsigned char OpFlag = 0;
7131  unsigned WrapperKind = X86ISD::Wrapper;
7132  CodeModel::Model M = getTargetMachine().getCodeModel();
7133
7134  if (Subtarget->isPICStyleRIPRel() &&
7135      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7136    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7137      OpFlag = X86II::MO_GOTPCREL;
7138    WrapperKind = X86ISD::WrapperRIP;
7139  } else if (Subtarget->isPICStyleGOT()) {
7140    OpFlag = X86II::MO_GOT;
7141  } else if (Subtarget->isPICStyleStubPIC()) {
7142    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7143  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7144    OpFlag = X86II::MO_DARWIN_NONLAZY;
7145  }
7146
7147  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7148
7149  DebugLoc DL = Op.getDebugLoc();
7150  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7151
7152
7153  // With PIC, the address is actually $g + Offset.
7154  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7155      !Subtarget->is64Bit()) {
7156    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7157                         DAG.getNode(X86ISD::GlobalBaseReg,
7158                                     DebugLoc(), getPointerTy()),
7159                         Result);
7160  }
7161
7162  // For symbols that require a load from a stub to get the address, emit the
7163  // load.
7164  if (isGlobalStubReference(OpFlag))
7165    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7166                         MachinePointerInfo::getGOT(), false, false, false, 0);
7167
7168  return Result;
7169}
7170
7171SDValue
7172X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7173  // Create the TargetBlockAddressAddress node.
7174  unsigned char OpFlags =
7175    Subtarget->ClassifyBlockAddressReference();
7176  CodeModel::Model M = getTargetMachine().getCodeModel();
7177  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7178  DebugLoc dl = Op.getDebugLoc();
7179  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7180                                       /*isTarget=*/true, OpFlags);
7181
7182  if (Subtarget->isPICStyleRIPRel() &&
7183      (M == CodeModel::Small || M == CodeModel::Kernel))
7184    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7185  else
7186    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7187
7188  // With PIC, the address is actually $g + Offset.
7189  if (isGlobalRelativeToPICBase(OpFlags)) {
7190    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7191                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7192                         Result);
7193  }
7194
7195  return Result;
7196}
7197
7198SDValue
7199X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7200                                      int64_t Offset,
7201                                      SelectionDAG &DAG) const {
7202  // Create the TargetGlobalAddress node, folding in the constant
7203  // offset if it is legal.
7204  unsigned char OpFlags =
7205    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7206  CodeModel::Model M = getTargetMachine().getCodeModel();
7207  SDValue Result;
7208  if (OpFlags == X86II::MO_NO_FLAG &&
7209      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7210    // A direct static reference to a global.
7211    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7212    Offset = 0;
7213  } else {
7214    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7215  }
7216
7217  if (Subtarget->isPICStyleRIPRel() &&
7218      (M == CodeModel::Small || M == CodeModel::Kernel))
7219    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7220  else
7221    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7222
7223  // With PIC, the address is actually $g + Offset.
7224  if (isGlobalRelativeToPICBase(OpFlags)) {
7225    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7226                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7227                         Result);
7228  }
7229
7230  // For globals that require a load from a stub to get the address, emit the
7231  // load.
7232  if (isGlobalStubReference(OpFlags))
7233    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7234                         MachinePointerInfo::getGOT(), false, false, false, 0);
7235
7236  // If there was a non-zero offset that we didn't fold, create an explicit
7237  // addition for it.
7238  if (Offset != 0)
7239    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7240                         DAG.getConstant(Offset, getPointerTy()));
7241
7242  return Result;
7243}
7244
7245SDValue
7246X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7247  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7248  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7249  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7250}
7251
7252static SDValue
7253GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7254           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7255           unsigned char OperandFlags) {
7256  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7257  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7258  DebugLoc dl = GA->getDebugLoc();
7259  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7260                                           GA->getValueType(0),
7261                                           GA->getOffset(),
7262                                           OperandFlags);
7263  if (InFlag) {
7264    SDValue Ops[] = { Chain,  TGA, *InFlag };
7265    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7266  } else {
7267    SDValue Ops[]  = { Chain, TGA };
7268    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7269  }
7270
7271  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7272  MFI->setAdjustsStack(true);
7273
7274  SDValue Flag = Chain.getValue(1);
7275  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7276}
7277
7278// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7279static SDValue
7280LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7281                                const EVT PtrVT) {
7282  SDValue InFlag;
7283  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7284  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7285                                     DAG.getNode(X86ISD::GlobalBaseReg,
7286                                                 DebugLoc(), PtrVT), InFlag);
7287  InFlag = Chain.getValue(1);
7288
7289  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7290}
7291
7292// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7293static SDValue
7294LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7295                                const EVT PtrVT) {
7296  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7297                    X86::RAX, X86II::MO_TLSGD);
7298}
7299
7300// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7301// "local exec" model.
7302static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7303                                   const EVT PtrVT, TLSModel::Model model,
7304                                   bool is64Bit) {
7305  DebugLoc dl = GA->getDebugLoc();
7306
7307  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7308  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7309                                                         is64Bit ? 257 : 256));
7310
7311  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7312                                      DAG.getIntPtrConstant(0),
7313                                      MachinePointerInfo(Ptr),
7314                                      false, false, false, 0);
7315
7316  unsigned char OperandFlags = 0;
7317  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7318  // initialexec.
7319  unsigned WrapperKind = X86ISD::Wrapper;
7320  if (model == TLSModel::LocalExec) {
7321    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7322  } else if (is64Bit) {
7323    assert(model == TLSModel::InitialExec);
7324    OperandFlags = X86II::MO_GOTTPOFF;
7325    WrapperKind = X86ISD::WrapperRIP;
7326  } else {
7327    assert(model == TLSModel::InitialExec);
7328    OperandFlags = X86II::MO_INDNTPOFF;
7329  }
7330
7331  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7332  // exec)
7333  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7334                                           GA->getValueType(0),
7335                                           GA->getOffset(), OperandFlags);
7336  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7337
7338  if (model == TLSModel::InitialExec)
7339    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7340                         MachinePointerInfo::getGOT(), false, false, false, 0);
7341
7342  // The address of the thread local variable is the add of the thread
7343  // pointer with the offset of the variable.
7344  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7345}
7346
7347SDValue
7348X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7349
7350  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7351  const GlobalValue *GV = GA->getGlobal();
7352
7353  if (Subtarget->isTargetELF()) {
7354    // TODO: implement the "local dynamic" model
7355    // TODO: implement the "initial exec"model for pic executables
7356
7357    // If GV is an alias then use the aliasee for determining
7358    // thread-localness.
7359    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7360      GV = GA->resolveAliasedGlobal(false);
7361
7362    TLSModel::Model model
7363      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7364
7365    switch (model) {
7366      case TLSModel::GeneralDynamic:
7367      case TLSModel::LocalDynamic: // not implemented
7368        if (Subtarget->is64Bit())
7369          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7370        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7371
7372      case TLSModel::InitialExec:
7373      case TLSModel::LocalExec:
7374        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7375                                   Subtarget->is64Bit());
7376    }
7377  } else if (Subtarget->isTargetDarwin()) {
7378    // Darwin only has one model of TLS.  Lower to that.
7379    unsigned char OpFlag = 0;
7380    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7381                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7382
7383    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7384    // global base reg.
7385    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7386                  !Subtarget->is64Bit();
7387    if (PIC32)
7388      OpFlag = X86II::MO_TLVP_PIC_BASE;
7389    else
7390      OpFlag = X86II::MO_TLVP;
7391    DebugLoc DL = Op.getDebugLoc();
7392    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7393                                                GA->getValueType(0),
7394                                                GA->getOffset(), OpFlag);
7395    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7396
7397    // With PIC32, the address is actually $g + Offset.
7398    if (PIC32)
7399      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7400                           DAG.getNode(X86ISD::GlobalBaseReg,
7401                                       DebugLoc(), getPointerTy()),
7402                           Offset);
7403
7404    // Lowering the machine isd will make sure everything is in the right
7405    // location.
7406    SDValue Chain = DAG.getEntryNode();
7407    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7408    SDValue Args[] = { Chain, Offset };
7409    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7410
7411    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7412    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7413    MFI->setAdjustsStack(true);
7414
7415    // And our return value (tls address) is in the standard call return value
7416    // location.
7417    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7418    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7419                              Chain.getValue(1));
7420  }
7421
7422  llvm_unreachable("TLS not implemented for this target.");
7423}
7424
7425
7426/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7427/// and take a 2 x i32 value to shift plus a shift amount.
7428SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7429  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7430  EVT VT = Op.getValueType();
7431  unsigned VTBits = VT.getSizeInBits();
7432  DebugLoc dl = Op.getDebugLoc();
7433  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7434  SDValue ShOpLo = Op.getOperand(0);
7435  SDValue ShOpHi = Op.getOperand(1);
7436  SDValue ShAmt  = Op.getOperand(2);
7437  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7438                                     DAG.getConstant(VTBits - 1, MVT::i8))
7439                       : DAG.getConstant(0, VT);
7440
7441  SDValue Tmp2, Tmp3;
7442  if (Op.getOpcode() == ISD::SHL_PARTS) {
7443    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7444    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7445  } else {
7446    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7447    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7448  }
7449
7450  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7451                                DAG.getConstant(VTBits, MVT::i8));
7452  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7453                             AndNode, DAG.getConstant(0, MVT::i8));
7454
7455  SDValue Hi, Lo;
7456  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7457  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7458  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7459
7460  if (Op.getOpcode() == ISD::SHL_PARTS) {
7461    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7462    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7463  } else {
7464    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7465    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7466  }
7467
7468  SDValue Ops[2] = { Lo, Hi };
7469  return DAG.getMergeValues(Ops, 2, dl);
7470}
7471
7472SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7473                                           SelectionDAG &DAG) const {
7474  EVT SrcVT = Op.getOperand(0).getValueType();
7475
7476  if (SrcVT.isVector())
7477    return SDValue();
7478
7479  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7480         "Unknown SINT_TO_FP to lower!");
7481
7482  // These are really Legal; return the operand so the caller accepts it as
7483  // Legal.
7484  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7485    return Op;
7486  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7487      Subtarget->is64Bit()) {
7488    return Op;
7489  }
7490
7491  DebugLoc dl = Op.getDebugLoc();
7492  unsigned Size = SrcVT.getSizeInBits()/8;
7493  MachineFunction &MF = DAG.getMachineFunction();
7494  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7495  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7496  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7497                               StackSlot,
7498                               MachinePointerInfo::getFixedStack(SSFI),
7499                               false, false, 0);
7500  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7501}
7502
7503SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7504                                     SDValue StackSlot,
7505                                     SelectionDAG &DAG) const {
7506  // Build the FILD
7507  DebugLoc DL = Op.getDebugLoc();
7508  SDVTList Tys;
7509  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7510  if (useSSE)
7511    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7512  else
7513    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7514
7515  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7516
7517  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7518  MachineMemOperand *MMO;
7519  if (FI) {
7520    int SSFI = FI->getIndex();
7521    MMO =
7522      DAG.getMachineFunction()
7523      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7524                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7525  } else {
7526    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7527    StackSlot = StackSlot.getOperand(1);
7528  }
7529  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7530  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7531                                           X86ISD::FILD, DL,
7532                                           Tys, Ops, array_lengthof(Ops),
7533                                           SrcVT, MMO);
7534
7535  if (useSSE) {
7536    Chain = Result.getValue(1);
7537    SDValue InFlag = Result.getValue(2);
7538
7539    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7540    // shouldn't be necessary except that RFP cannot be live across
7541    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7542    MachineFunction &MF = DAG.getMachineFunction();
7543    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7544    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7545    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7546    Tys = DAG.getVTList(MVT::Other);
7547    SDValue Ops[] = {
7548      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7549    };
7550    MachineMemOperand *MMO =
7551      DAG.getMachineFunction()
7552      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7553                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7554
7555    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7556                                    Ops, array_lengthof(Ops),
7557                                    Op.getValueType(), MMO);
7558    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7559                         MachinePointerInfo::getFixedStack(SSFI),
7560                         false, false, false, 0);
7561  }
7562
7563  return Result;
7564}
7565
7566// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7567SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7568                                               SelectionDAG &DAG) const {
7569  // This algorithm is not obvious. Here it is what we're trying to output:
7570  /*
7571     movq       %rax,  %xmm0
7572     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7573     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7574     #ifdef __SSE3__
7575       haddpd   %xmm0, %xmm0
7576     #else
7577       pshufd   $0x4e, %xmm0, %xmm1
7578       addpd    %xmm1, %xmm0
7579     #endif
7580  */
7581
7582  DebugLoc dl = Op.getDebugLoc();
7583  LLVMContext *Context = DAG.getContext();
7584
7585  // Build some magic constants.
7586  SmallVector<Constant*,4> CV0;
7587  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7588  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7589  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7590  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7591  Constant *C0 = ConstantVector::get(CV0);
7592  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7593
7594  SmallVector<Constant*,2> CV1;
7595  CV1.push_back(
7596    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7597  CV1.push_back(
7598    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7599  Constant *C1 = ConstantVector::get(CV1);
7600  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7601
7602  // Load the 64-bit value into an XMM register.
7603  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7604                            Op.getOperand(0));
7605  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7606                              MachinePointerInfo::getConstantPool(),
7607                              false, false, false, 16);
7608  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7609                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7610                              CLod0);
7611
7612  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7613                              MachinePointerInfo::getConstantPool(),
7614                              false, false, false, 16);
7615  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7616  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7617  SDValue Result;
7618
7619  if (Subtarget->hasSSE3()) {
7620    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7621    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7622  } else {
7623    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7624    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7625                                           S2F, 0x4E, DAG);
7626    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7627                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7628                         Sub);
7629  }
7630
7631  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7632                     DAG.getIntPtrConstant(0));
7633}
7634
7635// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7636SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7637                                               SelectionDAG &DAG) const {
7638  DebugLoc dl = Op.getDebugLoc();
7639  // FP constant to bias correct the final result.
7640  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7641                                   MVT::f64);
7642
7643  // Load the 32-bit value into an XMM register.
7644  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7645                             Op.getOperand(0));
7646
7647  // Zero out the upper parts of the register.
7648  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7649
7650  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7651                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7652                     DAG.getIntPtrConstant(0));
7653
7654  // Or the load with the bias.
7655  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7656                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7657                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7658                                                   MVT::v2f64, Load)),
7659                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7660                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7661                                                   MVT::v2f64, Bias)));
7662  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7663                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7664                   DAG.getIntPtrConstant(0));
7665
7666  // Subtract the bias.
7667  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7668
7669  // Handle final rounding.
7670  EVT DestVT = Op.getValueType();
7671
7672  if (DestVT.bitsLT(MVT::f64)) {
7673    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7674                       DAG.getIntPtrConstant(0));
7675  } else if (DestVT.bitsGT(MVT::f64)) {
7676    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7677  }
7678
7679  // Handle final rounding.
7680  return Sub;
7681}
7682
7683SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7684                                           SelectionDAG &DAG) const {
7685  SDValue N0 = Op.getOperand(0);
7686  DebugLoc dl = Op.getDebugLoc();
7687
7688  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7689  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7690  // the optimization here.
7691  if (DAG.SignBitIsZero(N0))
7692    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7693
7694  EVT SrcVT = N0.getValueType();
7695  EVT DstVT = Op.getValueType();
7696  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7697    return LowerUINT_TO_FP_i64(Op, DAG);
7698  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7699    return LowerUINT_TO_FP_i32(Op, DAG);
7700  else if (Subtarget->is64Bit() &&
7701           SrcVT == MVT::i64 && DstVT == MVT::f32)
7702    return SDValue();
7703
7704  // Make a 64-bit buffer, and use it to build an FILD.
7705  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7706  if (SrcVT == MVT::i32) {
7707    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7708    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7709                                     getPointerTy(), StackSlot, WordOff);
7710    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7711                                  StackSlot, MachinePointerInfo(),
7712                                  false, false, 0);
7713    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7714                                  OffsetSlot, MachinePointerInfo(),
7715                                  false, false, 0);
7716    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7717    return Fild;
7718  }
7719
7720  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7721  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7722                               StackSlot, MachinePointerInfo(),
7723                               false, false, 0);
7724  // For i64 source, we need to add the appropriate power of 2 if the input
7725  // was negative.  This is the same as the optimization in
7726  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7727  // we must be careful to do the computation in x87 extended precision, not
7728  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7729  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7730  MachineMemOperand *MMO =
7731    DAG.getMachineFunction()
7732    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7733                          MachineMemOperand::MOLoad, 8, 8);
7734
7735  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7736  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7737  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7738                                         MVT::i64, MMO);
7739
7740  APInt FF(32, 0x5F800000ULL);
7741
7742  // Check whether the sign bit is set.
7743  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7744                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7745                                 ISD::SETLT);
7746
7747  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7748  SDValue FudgePtr = DAG.getConstantPool(
7749                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7750                                         getPointerTy());
7751
7752  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7753  SDValue Zero = DAG.getIntPtrConstant(0);
7754  SDValue Four = DAG.getIntPtrConstant(4);
7755  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7756                               Zero, Four);
7757  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7758
7759  // Load the value out, extending it from f32 to f80.
7760  // FIXME: Avoid the extend by constructing the right constant pool?
7761  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7762                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7763                                 MVT::f32, false, false, 4);
7764  // Extend everything to 80 bits to force it to be done on x87.
7765  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7766  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7767}
7768
7769std::pair<SDValue,SDValue> X86TargetLowering::
7770FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7771  DebugLoc DL = Op.getDebugLoc();
7772
7773  EVT DstTy = Op.getValueType();
7774
7775  if (!IsSigned) {
7776    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7777    DstTy = MVT::i64;
7778  }
7779
7780  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7781         DstTy.getSimpleVT() >= MVT::i16 &&
7782         "Unknown FP_TO_SINT to lower!");
7783
7784  // These are really Legal.
7785  if (DstTy == MVT::i32 &&
7786      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7787    return std::make_pair(SDValue(), SDValue());
7788  if (Subtarget->is64Bit() &&
7789      DstTy == MVT::i64 &&
7790      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7791    return std::make_pair(SDValue(), SDValue());
7792
7793  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7794  // stack slot.
7795  MachineFunction &MF = DAG.getMachineFunction();
7796  unsigned MemSize = DstTy.getSizeInBits()/8;
7797  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7798  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7799
7800
7801
7802  unsigned Opc;
7803  switch (DstTy.getSimpleVT().SimpleTy) {
7804  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7805  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7806  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7807  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7808  }
7809
7810  SDValue Chain = DAG.getEntryNode();
7811  SDValue Value = Op.getOperand(0);
7812  EVT TheVT = Op.getOperand(0).getValueType();
7813  if (isScalarFPTypeInSSEReg(TheVT)) {
7814    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7815    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7816                         MachinePointerInfo::getFixedStack(SSFI),
7817                         false, false, 0);
7818    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7819    SDValue Ops[] = {
7820      Chain, StackSlot, DAG.getValueType(TheVT)
7821    };
7822
7823    MachineMemOperand *MMO =
7824      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7825                              MachineMemOperand::MOLoad, MemSize, MemSize);
7826    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7827                                    DstTy, MMO);
7828    Chain = Value.getValue(1);
7829    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7830    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7831  }
7832
7833  MachineMemOperand *MMO =
7834    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7835                            MachineMemOperand::MOStore, MemSize, MemSize);
7836
7837  // Build the FP_TO_INT*_IN_MEM
7838  SDValue Ops[] = { Chain, Value, StackSlot };
7839  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7840                                         Ops, 3, DstTy, MMO);
7841
7842  return std::make_pair(FIST, StackSlot);
7843}
7844
7845SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7846                                           SelectionDAG &DAG) const {
7847  if (Op.getValueType().isVector())
7848    return SDValue();
7849
7850  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7851  SDValue FIST = Vals.first, StackSlot = Vals.second;
7852  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7853  if (FIST.getNode() == 0) return Op;
7854
7855  // Load the result.
7856  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7857                     FIST, StackSlot, MachinePointerInfo(),
7858                     false, false, false, 0);
7859}
7860
7861SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7862                                           SelectionDAG &DAG) const {
7863  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7864  SDValue FIST = Vals.first, StackSlot = Vals.second;
7865  assert(FIST.getNode() && "Unexpected failure");
7866
7867  // Load the result.
7868  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7869                     FIST, StackSlot, MachinePointerInfo(),
7870                     false, false, false, 0);
7871}
7872
7873SDValue X86TargetLowering::LowerFABS(SDValue Op,
7874                                     SelectionDAG &DAG) const {
7875  LLVMContext *Context = DAG.getContext();
7876  DebugLoc dl = Op.getDebugLoc();
7877  EVT VT = Op.getValueType();
7878  EVT EltVT = VT;
7879  if (VT.isVector())
7880    EltVT = VT.getVectorElementType();
7881  SmallVector<Constant*,4> CV;
7882  if (EltVT == MVT::f64) {
7883    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7884    CV.assign(2, C);
7885  } else {
7886    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7887    CV.assign(4, C);
7888  }
7889  Constant *C = ConstantVector::get(CV);
7890  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7891  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7892                             MachinePointerInfo::getConstantPool(),
7893                             false, false, false, 16);
7894  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7895}
7896
7897SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7898  LLVMContext *Context = DAG.getContext();
7899  DebugLoc dl = Op.getDebugLoc();
7900  EVT VT = Op.getValueType();
7901  EVT EltVT = VT;
7902  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7903  if (VT.isVector()) {
7904    EltVT = VT.getVectorElementType();
7905    NumElts = VT.getVectorNumElements();
7906  }
7907  SmallVector<Constant*,8> CV;
7908  if (EltVT == MVT::f64) {
7909    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7910    CV.assign(NumElts, C);
7911  } else {
7912    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7913    CV.assign(NumElts, C);
7914  }
7915  Constant *C = ConstantVector::get(CV);
7916  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7917  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7918                             MachinePointerInfo::getConstantPool(),
7919                             false, false, false, 16);
7920  if (VT.isVector()) {
7921    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7922    return DAG.getNode(ISD::BITCAST, dl, VT,
7923                       DAG.getNode(ISD::XOR, dl, XORVT,
7924                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7925                                Op.getOperand(0)),
7926                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7927  } else {
7928    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7929  }
7930}
7931
7932SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7933  LLVMContext *Context = DAG.getContext();
7934  SDValue Op0 = Op.getOperand(0);
7935  SDValue Op1 = Op.getOperand(1);
7936  DebugLoc dl = Op.getDebugLoc();
7937  EVT VT = Op.getValueType();
7938  EVT SrcVT = Op1.getValueType();
7939
7940  // If second operand is smaller, extend it first.
7941  if (SrcVT.bitsLT(VT)) {
7942    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7943    SrcVT = VT;
7944  }
7945  // And if it is bigger, shrink it first.
7946  if (SrcVT.bitsGT(VT)) {
7947    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7948    SrcVT = VT;
7949  }
7950
7951  // At this point the operands and the result should have the same
7952  // type, and that won't be f80 since that is not custom lowered.
7953
7954  // First get the sign bit of second operand.
7955  SmallVector<Constant*,4> CV;
7956  if (SrcVT == MVT::f64) {
7957    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7958    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7959  } else {
7960    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7961    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7962    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7963    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7964  }
7965  Constant *C = ConstantVector::get(CV);
7966  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7967  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7968                              MachinePointerInfo::getConstantPool(),
7969                              false, false, false, 16);
7970  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7971
7972  // Shift sign bit right or left if the two operands have different types.
7973  if (SrcVT.bitsGT(VT)) {
7974    // Op0 is MVT::f32, Op1 is MVT::f64.
7975    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7976    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7977                          DAG.getConstant(32, MVT::i32));
7978    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7979    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7980                          DAG.getIntPtrConstant(0));
7981  }
7982
7983  // Clear first operand sign bit.
7984  CV.clear();
7985  if (VT == MVT::f64) {
7986    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7987    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7988  } else {
7989    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7990    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7991    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7992    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7993  }
7994  C = ConstantVector::get(CV);
7995  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7996  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7997                              MachinePointerInfo::getConstantPool(),
7998                              false, false, false, 16);
7999  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8000
8001  // Or the value with the sign bit.
8002  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8003}
8004
8005SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8006  SDValue N0 = Op.getOperand(0);
8007  DebugLoc dl = Op.getDebugLoc();
8008  EVT VT = Op.getValueType();
8009
8010  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8011  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8012                                  DAG.getConstant(1, VT));
8013  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8014}
8015
8016/// Emit nodes that will be selected as "test Op0,Op0", or something
8017/// equivalent.
8018SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8019                                    SelectionDAG &DAG) const {
8020  DebugLoc dl = Op.getDebugLoc();
8021
8022  // CF and OF aren't always set the way we want. Determine which
8023  // of these we need.
8024  bool NeedCF = false;
8025  bool NeedOF = false;
8026  switch (X86CC) {
8027  default: break;
8028  case X86::COND_A: case X86::COND_AE:
8029  case X86::COND_B: case X86::COND_BE:
8030    NeedCF = true;
8031    break;
8032  case X86::COND_G: case X86::COND_GE:
8033  case X86::COND_L: case X86::COND_LE:
8034  case X86::COND_O: case X86::COND_NO:
8035    NeedOF = true;
8036    break;
8037  }
8038
8039  // See if we can use the EFLAGS value from the operand instead of
8040  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8041  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8042  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8043    // Emit a CMP with 0, which is the TEST pattern.
8044    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8045                       DAG.getConstant(0, Op.getValueType()));
8046
8047  unsigned Opcode = 0;
8048  unsigned NumOperands = 0;
8049  switch (Op.getNode()->getOpcode()) {
8050  case ISD::ADD:
8051    // Due to an isel shortcoming, be conservative if this add is likely to be
8052    // selected as part of a load-modify-store instruction. When the root node
8053    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8054    // uses of other nodes in the match, such as the ADD in this case. This
8055    // leads to the ADD being left around and reselected, with the result being
8056    // two adds in the output.  Alas, even if none our users are stores, that
8057    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8058    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8059    // climbing the DAG back to the root, and it doesn't seem to be worth the
8060    // effort.
8061    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8062         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8063      if (UI->getOpcode() != ISD::CopyToReg &&
8064          UI->getOpcode() != ISD::SETCC &&
8065          UI->getOpcode() != ISD::STORE)
8066        goto default_case;
8067
8068    if (ConstantSDNode *C =
8069        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8070      // An add of one will be selected as an INC.
8071      if (C->getAPIntValue() == 1) {
8072        Opcode = X86ISD::INC;
8073        NumOperands = 1;
8074        break;
8075      }
8076
8077      // An add of negative one (subtract of one) will be selected as a DEC.
8078      if (C->getAPIntValue().isAllOnesValue()) {
8079        Opcode = X86ISD::DEC;
8080        NumOperands = 1;
8081        break;
8082      }
8083    }
8084
8085    // Otherwise use a regular EFLAGS-setting add.
8086    Opcode = X86ISD::ADD;
8087    NumOperands = 2;
8088    break;
8089  case ISD::AND: {
8090    // If the primary and result isn't used, don't bother using X86ISD::AND,
8091    // because a TEST instruction will be better.
8092    bool NonFlagUse = false;
8093    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8094           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8095      SDNode *User = *UI;
8096      unsigned UOpNo = UI.getOperandNo();
8097      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8098        // Look pass truncate.
8099        UOpNo = User->use_begin().getOperandNo();
8100        User = *User->use_begin();
8101      }
8102
8103      if (User->getOpcode() != ISD::BRCOND &&
8104          User->getOpcode() != ISD::SETCC &&
8105          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8106        NonFlagUse = true;
8107        break;
8108      }
8109    }
8110
8111    if (!NonFlagUse)
8112      break;
8113  }
8114    // FALL THROUGH
8115  case ISD::SUB:
8116  case ISD::OR:
8117  case ISD::XOR:
8118    // Due to the ISEL shortcoming noted above, be conservative if this op is
8119    // likely to be selected as part of a load-modify-store instruction.
8120    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8121           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8122      if (UI->getOpcode() == ISD::STORE)
8123        goto default_case;
8124
8125    // Otherwise use a regular EFLAGS-setting instruction.
8126    switch (Op.getNode()->getOpcode()) {
8127    default: llvm_unreachable("unexpected operator!");
8128    case ISD::SUB: Opcode = X86ISD::SUB; break;
8129    case ISD::OR:  Opcode = X86ISD::OR;  break;
8130    case ISD::XOR: Opcode = X86ISD::XOR; break;
8131    case ISD::AND: Opcode = X86ISD::AND; break;
8132    }
8133
8134    NumOperands = 2;
8135    break;
8136  case X86ISD::ADD:
8137  case X86ISD::SUB:
8138  case X86ISD::INC:
8139  case X86ISD::DEC:
8140  case X86ISD::OR:
8141  case X86ISD::XOR:
8142  case X86ISD::AND:
8143    return SDValue(Op.getNode(), 1);
8144  default:
8145  default_case:
8146    break;
8147  }
8148
8149  if (Opcode == 0)
8150    // Emit a CMP with 0, which is the TEST pattern.
8151    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8152                       DAG.getConstant(0, Op.getValueType()));
8153
8154  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8155  SmallVector<SDValue, 4> Ops;
8156  for (unsigned i = 0; i != NumOperands; ++i)
8157    Ops.push_back(Op.getOperand(i));
8158
8159  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8160  DAG.ReplaceAllUsesWith(Op, New);
8161  return SDValue(New.getNode(), 1);
8162}
8163
8164/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8165/// equivalent.
8166SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8167                                   SelectionDAG &DAG) const {
8168  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8169    if (C->getAPIntValue() == 0)
8170      return EmitTest(Op0, X86CC, DAG);
8171
8172  DebugLoc dl = Op0.getDebugLoc();
8173  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8174}
8175
8176/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8177/// if it's possible.
8178SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8179                                     DebugLoc dl, SelectionDAG &DAG) const {
8180  SDValue Op0 = And.getOperand(0);
8181  SDValue Op1 = And.getOperand(1);
8182  if (Op0.getOpcode() == ISD::TRUNCATE)
8183    Op0 = Op0.getOperand(0);
8184  if (Op1.getOpcode() == ISD::TRUNCATE)
8185    Op1 = Op1.getOperand(0);
8186
8187  SDValue LHS, RHS;
8188  if (Op1.getOpcode() == ISD::SHL)
8189    std::swap(Op0, Op1);
8190  if (Op0.getOpcode() == ISD::SHL) {
8191    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8192      if (And00C->getZExtValue() == 1) {
8193        // If we looked past a truncate, check that it's only truncating away
8194        // known zeros.
8195        unsigned BitWidth = Op0.getValueSizeInBits();
8196        unsigned AndBitWidth = And.getValueSizeInBits();
8197        if (BitWidth > AndBitWidth) {
8198          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8199          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8200          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8201            return SDValue();
8202        }
8203        LHS = Op1;
8204        RHS = Op0.getOperand(1);
8205      }
8206  } else if (Op1.getOpcode() == ISD::Constant) {
8207    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8208    uint64_t AndRHSVal = AndRHS->getZExtValue();
8209    SDValue AndLHS = Op0;
8210
8211    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8212      LHS = AndLHS.getOperand(0);
8213      RHS = AndLHS.getOperand(1);
8214    }
8215
8216    // Use BT if the immediate can't be encoded in a TEST instruction.
8217    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8218      LHS = AndLHS;
8219      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8220    }
8221  }
8222
8223  if (LHS.getNode()) {
8224    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8225    // instruction.  Since the shift amount is in-range-or-undefined, we know
8226    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8227    // the encoding for the i16 version is larger than the i32 version.
8228    // Also promote i16 to i32 for performance / code size reason.
8229    if (LHS.getValueType() == MVT::i8 ||
8230        LHS.getValueType() == MVT::i16)
8231      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8232
8233    // If the operand types disagree, extend the shift amount to match.  Since
8234    // BT ignores high bits (like shifts) we can use anyextend.
8235    if (LHS.getValueType() != RHS.getValueType())
8236      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8237
8238    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8239    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8240    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8241                       DAG.getConstant(Cond, MVT::i8), BT);
8242  }
8243
8244  return SDValue();
8245}
8246
8247SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8248
8249  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8250
8251  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8252  SDValue Op0 = Op.getOperand(0);
8253  SDValue Op1 = Op.getOperand(1);
8254  DebugLoc dl = Op.getDebugLoc();
8255  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8256
8257  // Optimize to BT if possible.
8258  // Lower (X & (1 << N)) == 0 to BT(X, N).
8259  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8260  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8261  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8262      Op1.getOpcode() == ISD::Constant &&
8263      cast<ConstantSDNode>(Op1)->isNullValue() &&
8264      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8265    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8266    if (NewSetCC.getNode())
8267      return NewSetCC;
8268  }
8269
8270  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8271  // these.
8272  if (Op1.getOpcode() == ISD::Constant &&
8273      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8274       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8275      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8276
8277    // If the input is a setcc, then reuse the input setcc or use a new one with
8278    // the inverted condition.
8279    if (Op0.getOpcode() == X86ISD::SETCC) {
8280      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8281      bool Invert = (CC == ISD::SETNE) ^
8282        cast<ConstantSDNode>(Op1)->isNullValue();
8283      if (!Invert) return Op0;
8284
8285      CCode = X86::GetOppositeBranchCondition(CCode);
8286      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8287                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8288    }
8289  }
8290
8291  bool isFP = Op1.getValueType().isFloatingPoint();
8292  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8293  if (X86CC == X86::COND_INVALID)
8294    return SDValue();
8295
8296  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8297  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8298                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8299}
8300
8301// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8302// ones, and then concatenate the result back.
8303static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8304  EVT VT = Op.getValueType();
8305
8306  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8307         "Unsupported value type for operation");
8308
8309  int NumElems = VT.getVectorNumElements();
8310  DebugLoc dl = Op.getDebugLoc();
8311  SDValue CC = Op.getOperand(2);
8312  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8313  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8314
8315  // Extract the LHS vectors
8316  SDValue LHS = Op.getOperand(0);
8317  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8318  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8319
8320  // Extract the RHS vectors
8321  SDValue RHS = Op.getOperand(1);
8322  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8323  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8324
8325  // Issue the operation on the smaller types and concatenate the result back
8326  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8327  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8328  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8329                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8330                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8331}
8332
8333
8334SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8335  SDValue Cond;
8336  SDValue Op0 = Op.getOperand(0);
8337  SDValue Op1 = Op.getOperand(1);
8338  SDValue CC = Op.getOperand(2);
8339  EVT VT = Op.getValueType();
8340  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8341  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8342  DebugLoc dl = Op.getDebugLoc();
8343
8344  if (isFP) {
8345    unsigned SSECC = 8;
8346    EVT EltVT = Op0.getValueType().getVectorElementType();
8347    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8348
8349    bool Swap = false;
8350
8351    // SSE Condition code mapping:
8352    //  0 - EQ
8353    //  1 - LT
8354    //  2 - LE
8355    //  3 - UNORD
8356    //  4 - NEQ
8357    //  5 - NLT
8358    //  6 - NLE
8359    //  7 - ORD
8360    switch (SetCCOpcode) {
8361    default: break;
8362    case ISD::SETOEQ:
8363    case ISD::SETEQ:  SSECC = 0; break;
8364    case ISD::SETOGT:
8365    case ISD::SETGT: Swap = true; // Fallthrough
8366    case ISD::SETLT:
8367    case ISD::SETOLT: SSECC = 1; break;
8368    case ISD::SETOGE:
8369    case ISD::SETGE: Swap = true; // Fallthrough
8370    case ISD::SETLE:
8371    case ISD::SETOLE: SSECC = 2; break;
8372    case ISD::SETUO:  SSECC = 3; break;
8373    case ISD::SETUNE:
8374    case ISD::SETNE:  SSECC = 4; break;
8375    case ISD::SETULE: Swap = true;
8376    case ISD::SETUGE: SSECC = 5; break;
8377    case ISD::SETULT: Swap = true;
8378    case ISD::SETUGT: SSECC = 6; break;
8379    case ISD::SETO:   SSECC = 7; break;
8380    }
8381    if (Swap)
8382      std::swap(Op0, Op1);
8383
8384    // In the two special cases we can't handle, emit two comparisons.
8385    if (SSECC == 8) {
8386      if (SetCCOpcode == ISD::SETUEQ) {
8387        SDValue UNORD, EQ;
8388        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8389                            DAG.getConstant(3, MVT::i8));
8390        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8391                         DAG.getConstant(0, MVT::i8));
8392        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8393      } else if (SetCCOpcode == ISD::SETONE) {
8394        SDValue ORD, NEQ;
8395        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8396                          DAG.getConstant(7, MVT::i8));
8397        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8398                          DAG.getConstant(4, MVT::i8));
8399        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8400      }
8401      llvm_unreachable("Illegal FP comparison");
8402    }
8403    // Handle all other FP comparisons here.
8404    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8405                       DAG.getConstant(SSECC, MVT::i8));
8406  }
8407
8408  // Break 256-bit integer vector compare into smaller ones.
8409  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8410    return Lower256IntVSETCC(Op, DAG);
8411
8412  // We are handling one of the integer comparisons here.  Since SSE only has
8413  // GT and EQ comparisons for integer, swapping operands and multiple
8414  // operations may be required for some comparisons.
8415  unsigned Opc = 0;
8416  bool Swap = false, Invert = false, FlipSigns = false;
8417
8418  switch (SetCCOpcode) {
8419  default: break;
8420  case ISD::SETNE:  Invert = true;
8421  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8422  case ISD::SETLT:  Swap = true;
8423  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8424  case ISD::SETGE:  Swap = true;
8425  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8426  case ISD::SETULT: Swap = true;
8427  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8428  case ISD::SETUGE: Swap = true;
8429  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8430  }
8431  if (Swap)
8432    std::swap(Op0, Op1);
8433
8434  // Check that the operation in question is available (most are plain SSE2,
8435  // but PCMPGTQ and PCMPEQQ have different requirements).
8436  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8437    return SDValue();
8438  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8439    return SDValue();
8440
8441  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8442  // bits of the inputs before performing those operations.
8443  if (FlipSigns) {
8444    EVT EltVT = VT.getVectorElementType();
8445    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8446                                      EltVT);
8447    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8448    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8449                                    SignBits.size());
8450    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8451    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8452  }
8453
8454  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8455
8456  // If the logical-not of the result is required, perform that now.
8457  if (Invert)
8458    Result = DAG.getNOT(dl, Result, VT);
8459
8460  return Result;
8461}
8462
8463// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8464static bool isX86LogicalCmp(SDValue Op) {
8465  unsigned Opc = Op.getNode()->getOpcode();
8466  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8467    return true;
8468  if (Op.getResNo() == 1 &&
8469      (Opc == X86ISD::ADD ||
8470       Opc == X86ISD::SUB ||
8471       Opc == X86ISD::ADC ||
8472       Opc == X86ISD::SBB ||
8473       Opc == X86ISD::SMUL ||
8474       Opc == X86ISD::UMUL ||
8475       Opc == X86ISD::INC ||
8476       Opc == X86ISD::DEC ||
8477       Opc == X86ISD::OR ||
8478       Opc == X86ISD::XOR ||
8479       Opc == X86ISD::AND))
8480    return true;
8481
8482  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8483    return true;
8484
8485  return false;
8486}
8487
8488static bool isZero(SDValue V) {
8489  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8490  return C && C->isNullValue();
8491}
8492
8493static bool isAllOnes(SDValue V) {
8494  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8495  return C && C->isAllOnesValue();
8496}
8497
8498SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8499  bool addTest = true;
8500  SDValue Cond  = Op.getOperand(0);
8501  SDValue Op1 = Op.getOperand(1);
8502  SDValue Op2 = Op.getOperand(2);
8503  DebugLoc DL = Op.getDebugLoc();
8504  SDValue CC;
8505
8506  if (Cond.getOpcode() == ISD::SETCC) {
8507    SDValue NewCond = LowerSETCC(Cond, DAG);
8508    if (NewCond.getNode())
8509      Cond = NewCond;
8510  }
8511
8512  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8513  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8514  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8515  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8516  if (Cond.getOpcode() == X86ISD::SETCC &&
8517      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8518      isZero(Cond.getOperand(1).getOperand(1))) {
8519    SDValue Cmp = Cond.getOperand(1);
8520
8521    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8522
8523    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8524        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8525      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8526
8527      SDValue CmpOp0 = Cmp.getOperand(0);
8528      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8529                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8530
8531      SDValue Res =   // Res = 0 or -1.
8532        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8533                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8534
8535      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8536        Res = DAG.getNOT(DL, Res, Res.getValueType());
8537
8538      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8539      if (N2C == 0 || !N2C->isNullValue())
8540        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8541      return Res;
8542    }
8543  }
8544
8545  // Look past (and (setcc_carry (cmp ...)), 1).
8546  if (Cond.getOpcode() == ISD::AND &&
8547      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8548    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8549    if (C && C->getAPIntValue() == 1)
8550      Cond = Cond.getOperand(0);
8551  }
8552
8553  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8554  // setting operand in place of the X86ISD::SETCC.
8555  unsigned CondOpcode = Cond.getOpcode();
8556  if (CondOpcode == X86ISD::SETCC ||
8557      CondOpcode == X86ISD::SETCC_CARRY) {
8558    CC = Cond.getOperand(0);
8559
8560    SDValue Cmp = Cond.getOperand(1);
8561    unsigned Opc = Cmp.getOpcode();
8562    EVT VT = Op.getValueType();
8563
8564    bool IllegalFPCMov = false;
8565    if (VT.isFloatingPoint() && !VT.isVector() &&
8566        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8567      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8568
8569    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8570        Opc == X86ISD::BT) { // FIXME
8571      Cond = Cmp;
8572      addTest = false;
8573    }
8574  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8575             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8576             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8577              Cond.getOperand(0).getValueType() != MVT::i8)) {
8578    SDValue LHS = Cond.getOperand(0);
8579    SDValue RHS = Cond.getOperand(1);
8580    unsigned X86Opcode;
8581    unsigned X86Cond;
8582    SDVTList VTs;
8583    switch (CondOpcode) {
8584    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8585    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8586    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8587    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8588    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8589    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8590    default: llvm_unreachable("unexpected overflowing operator");
8591    }
8592    if (CondOpcode == ISD::UMULO)
8593      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8594                          MVT::i32);
8595    else
8596      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8597
8598    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8599
8600    if (CondOpcode == ISD::UMULO)
8601      Cond = X86Op.getValue(2);
8602    else
8603      Cond = X86Op.getValue(1);
8604
8605    CC = DAG.getConstant(X86Cond, MVT::i8);
8606    addTest = false;
8607  }
8608
8609  if (addTest) {
8610    // Look pass the truncate.
8611    if (Cond.getOpcode() == ISD::TRUNCATE)
8612      Cond = Cond.getOperand(0);
8613
8614    // We know the result of AND is compared against zero. Try to match
8615    // it to BT.
8616    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8617      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8618      if (NewSetCC.getNode()) {
8619        CC = NewSetCC.getOperand(0);
8620        Cond = NewSetCC.getOperand(1);
8621        addTest = false;
8622      }
8623    }
8624  }
8625
8626  if (addTest) {
8627    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8628    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8629  }
8630
8631  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8632  // a <  b ?  0 : -1 -> RES = setcc_carry
8633  // a >= b ? -1 :  0 -> RES = setcc_carry
8634  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8635  if (Cond.getOpcode() == X86ISD::CMP) {
8636    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8637
8638    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8639        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8640      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8641                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8642      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8643        return DAG.getNOT(DL, Res, Res.getValueType());
8644      return Res;
8645    }
8646  }
8647
8648  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8649  // condition is true.
8650  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8651  SDValue Ops[] = { Op2, Op1, CC, Cond };
8652  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8653}
8654
8655// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8656// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8657// from the AND / OR.
8658static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8659  Opc = Op.getOpcode();
8660  if (Opc != ISD::OR && Opc != ISD::AND)
8661    return false;
8662  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8663          Op.getOperand(0).hasOneUse() &&
8664          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8665          Op.getOperand(1).hasOneUse());
8666}
8667
8668// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8669// 1 and that the SETCC node has a single use.
8670static bool isXor1OfSetCC(SDValue Op) {
8671  if (Op.getOpcode() != ISD::XOR)
8672    return false;
8673  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8674  if (N1C && N1C->getAPIntValue() == 1) {
8675    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8676      Op.getOperand(0).hasOneUse();
8677  }
8678  return false;
8679}
8680
8681SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8682  bool addTest = true;
8683  SDValue Chain = Op.getOperand(0);
8684  SDValue Cond  = Op.getOperand(1);
8685  SDValue Dest  = Op.getOperand(2);
8686  DebugLoc dl = Op.getDebugLoc();
8687  SDValue CC;
8688  bool Inverted = false;
8689
8690  if (Cond.getOpcode() == ISD::SETCC) {
8691    // Check for setcc([su]{add,sub,mul}o == 0).
8692    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8693        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8694        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8695        Cond.getOperand(0).getResNo() == 1 &&
8696        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8697         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8698         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8699         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8700         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8701         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8702      Inverted = true;
8703      Cond = Cond.getOperand(0);
8704    } else {
8705      SDValue NewCond = LowerSETCC(Cond, DAG);
8706      if (NewCond.getNode())
8707        Cond = NewCond;
8708    }
8709  }
8710#if 0
8711  // FIXME: LowerXALUO doesn't handle these!!
8712  else if (Cond.getOpcode() == X86ISD::ADD  ||
8713           Cond.getOpcode() == X86ISD::SUB  ||
8714           Cond.getOpcode() == X86ISD::SMUL ||
8715           Cond.getOpcode() == X86ISD::UMUL)
8716    Cond = LowerXALUO(Cond, DAG);
8717#endif
8718
8719  // Look pass (and (setcc_carry (cmp ...)), 1).
8720  if (Cond.getOpcode() == ISD::AND &&
8721      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8722    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8723    if (C && C->getAPIntValue() == 1)
8724      Cond = Cond.getOperand(0);
8725  }
8726
8727  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8728  // setting operand in place of the X86ISD::SETCC.
8729  unsigned CondOpcode = Cond.getOpcode();
8730  if (CondOpcode == X86ISD::SETCC ||
8731      CondOpcode == X86ISD::SETCC_CARRY) {
8732    CC = Cond.getOperand(0);
8733
8734    SDValue Cmp = Cond.getOperand(1);
8735    unsigned Opc = Cmp.getOpcode();
8736    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8737    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8738      Cond = Cmp;
8739      addTest = false;
8740    } else {
8741      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8742      default: break;
8743      case X86::COND_O:
8744      case X86::COND_B:
8745        // These can only come from an arithmetic instruction with overflow,
8746        // e.g. SADDO, UADDO.
8747        Cond = Cond.getNode()->getOperand(1);
8748        addTest = false;
8749        break;
8750      }
8751    }
8752  }
8753  CondOpcode = Cond.getOpcode();
8754  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8755      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8756      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8757       Cond.getOperand(0).getValueType() != MVT::i8)) {
8758    SDValue LHS = Cond.getOperand(0);
8759    SDValue RHS = Cond.getOperand(1);
8760    unsigned X86Opcode;
8761    unsigned X86Cond;
8762    SDVTList VTs;
8763    switch (CondOpcode) {
8764    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8765    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8766    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8767    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8768    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8769    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8770    default: llvm_unreachable("unexpected overflowing operator");
8771    }
8772    if (Inverted)
8773      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8774    if (CondOpcode == ISD::UMULO)
8775      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8776                          MVT::i32);
8777    else
8778      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8779
8780    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8781
8782    if (CondOpcode == ISD::UMULO)
8783      Cond = X86Op.getValue(2);
8784    else
8785      Cond = X86Op.getValue(1);
8786
8787    CC = DAG.getConstant(X86Cond, MVT::i8);
8788    addTest = false;
8789  } else {
8790    unsigned CondOpc;
8791    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8792      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8793      if (CondOpc == ISD::OR) {
8794        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8795        // two branches instead of an explicit OR instruction with a
8796        // separate test.
8797        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8798            isX86LogicalCmp(Cmp)) {
8799          CC = Cond.getOperand(0).getOperand(0);
8800          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8801                              Chain, Dest, CC, Cmp);
8802          CC = Cond.getOperand(1).getOperand(0);
8803          Cond = Cmp;
8804          addTest = false;
8805        }
8806      } else { // ISD::AND
8807        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8808        // two branches instead of an explicit AND instruction with a
8809        // separate test. However, we only do this if this block doesn't
8810        // have a fall-through edge, because this requires an explicit
8811        // jmp when the condition is false.
8812        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8813            isX86LogicalCmp(Cmp) &&
8814            Op.getNode()->hasOneUse()) {
8815          X86::CondCode CCode =
8816            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8817          CCode = X86::GetOppositeBranchCondition(CCode);
8818          CC = DAG.getConstant(CCode, MVT::i8);
8819          SDNode *User = *Op.getNode()->use_begin();
8820          // Look for an unconditional branch following this conditional branch.
8821          // We need this because we need to reverse the successors in order
8822          // to implement FCMP_OEQ.
8823          if (User->getOpcode() == ISD::BR) {
8824            SDValue FalseBB = User->getOperand(1);
8825            SDNode *NewBR =
8826              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8827            assert(NewBR == User);
8828            (void)NewBR;
8829            Dest = FalseBB;
8830
8831            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8832                                Chain, Dest, CC, Cmp);
8833            X86::CondCode CCode =
8834              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8835            CCode = X86::GetOppositeBranchCondition(CCode);
8836            CC = DAG.getConstant(CCode, MVT::i8);
8837            Cond = Cmp;
8838            addTest = false;
8839          }
8840        }
8841      }
8842    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8843      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8844      // It should be transformed during dag combiner except when the condition
8845      // is set by a arithmetics with overflow node.
8846      X86::CondCode CCode =
8847        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8848      CCode = X86::GetOppositeBranchCondition(CCode);
8849      CC = DAG.getConstant(CCode, MVT::i8);
8850      Cond = Cond.getOperand(0).getOperand(1);
8851      addTest = false;
8852    } else if (Cond.getOpcode() == ISD::SETCC &&
8853               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8854      // For FCMP_OEQ, we can emit
8855      // two branches instead of an explicit AND instruction with a
8856      // separate test. However, we only do this if this block doesn't
8857      // have a fall-through edge, because this requires an explicit
8858      // jmp when the condition is false.
8859      if (Op.getNode()->hasOneUse()) {
8860        SDNode *User = *Op.getNode()->use_begin();
8861        // Look for an unconditional branch following this conditional branch.
8862        // We need this because we need to reverse the successors in order
8863        // to implement FCMP_OEQ.
8864        if (User->getOpcode() == ISD::BR) {
8865          SDValue FalseBB = User->getOperand(1);
8866          SDNode *NewBR =
8867            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8868          assert(NewBR == User);
8869          (void)NewBR;
8870          Dest = FalseBB;
8871
8872          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8873                                    Cond.getOperand(0), Cond.getOperand(1));
8874          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8875          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8876                              Chain, Dest, CC, Cmp);
8877          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8878          Cond = Cmp;
8879          addTest = false;
8880        }
8881      }
8882    } else if (Cond.getOpcode() == ISD::SETCC &&
8883               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8884      // For FCMP_UNE, we can emit
8885      // two branches instead of an explicit AND instruction with a
8886      // separate test. However, we only do this if this block doesn't
8887      // have a fall-through edge, because this requires an explicit
8888      // jmp when the condition is false.
8889      if (Op.getNode()->hasOneUse()) {
8890        SDNode *User = *Op.getNode()->use_begin();
8891        // Look for an unconditional branch following this conditional branch.
8892        // We need this because we need to reverse the successors in order
8893        // to implement FCMP_UNE.
8894        if (User->getOpcode() == ISD::BR) {
8895          SDValue FalseBB = User->getOperand(1);
8896          SDNode *NewBR =
8897            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8898          assert(NewBR == User);
8899          (void)NewBR;
8900
8901          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8902                                    Cond.getOperand(0), Cond.getOperand(1));
8903          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8904          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8905                              Chain, Dest, CC, Cmp);
8906          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8907          Cond = Cmp;
8908          addTest = false;
8909          Dest = FalseBB;
8910        }
8911      }
8912    }
8913  }
8914
8915  if (addTest) {
8916    // Look pass the truncate.
8917    if (Cond.getOpcode() == ISD::TRUNCATE)
8918      Cond = Cond.getOperand(0);
8919
8920    // We know the result of AND is compared against zero. Try to match
8921    // it to BT.
8922    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8923      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8924      if (NewSetCC.getNode()) {
8925        CC = NewSetCC.getOperand(0);
8926        Cond = NewSetCC.getOperand(1);
8927        addTest = false;
8928      }
8929    }
8930  }
8931
8932  if (addTest) {
8933    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8934    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8935  }
8936  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8937                     Chain, Dest, CC, Cond);
8938}
8939
8940
8941// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8942// Calls to _alloca is needed to probe the stack when allocating more than 4k
8943// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8944// that the guard pages used by the OS virtual memory manager are allocated in
8945// correct sequence.
8946SDValue
8947X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8948                                           SelectionDAG &DAG) const {
8949  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8950          getTargetMachine().Options.EnableSegmentedStacks) &&
8951         "This should be used only on Windows targets or when segmented stacks "
8952         "are being used");
8953  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8954  DebugLoc dl = Op.getDebugLoc();
8955
8956  // Get the inputs.
8957  SDValue Chain = Op.getOperand(0);
8958  SDValue Size  = Op.getOperand(1);
8959  // FIXME: Ensure alignment here
8960
8961  bool Is64Bit = Subtarget->is64Bit();
8962  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8963
8964  if (getTargetMachine().Options.EnableSegmentedStacks) {
8965    MachineFunction &MF = DAG.getMachineFunction();
8966    MachineRegisterInfo &MRI = MF.getRegInfo();
8967
8968    if (Is64Bit) {
8969      // The 64 bit implementation of segmented stacks needs to clobber both r10
8970      // r11. This makes it impossible to use it along with nested parameters.
8971      const Function *F = MF.getFunction();
8972
8973      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8974           I != E; I++)
8975        if (I->hasNestAttr())
8976          report_fatal_error("Cannot use segmented stacks with functions that "
8977                             "have nested arguments.");
8978    }
8979
8980    const TargetRegisterClass *AddrRegClass =
8981      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8982    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8983    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8984    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8985                                DAG.getRegister(Vreg, SPTy));
8986    SDValue Ops1[2] = { Value, Chain };
8987    return DAG.getMergeValues(Ops1, 2, dl);
8988  } else {
8989    SDValue Flag;
8990    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8991
8992    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8993    Flag = Chain.getValue(1);
8994    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8995
8996    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8997    Flag = Chain.getValue(1);
8998
8999    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9000
9001    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9002    return DAG.getMergeValues(Ops1, 2, dl);
9003  }
9004}
9005
9006SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9007  MachineFunction &MF = DAG.getMachineFunction();
9008  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9009
9010  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9011  DebugLoc DL = Op.getDebugLoc();
9012
9013  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9014    // vastart just stores the address of the VarArgsFrameIndex slot into the
9015    // memory location argument.
9016    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9017                                   getPointerTy());
9018    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9019                        MachinePointerInfo(SV), false, false, 0);
9020  }
9021
9022  // __va_list_tag:
9023  //   gp_offset         (0 - 6 * 8)
9024  //   fp_offset         (48 - 48 + 8 * 16)
9025  //   overflow_arg_area (point to parameters coming in memory).
9026  //   reg_save_area
9027  SmallVector<SDValue, 8> MemOps;
9028  SDValue FIN = Op.getOperand(1);
9029  // Store gp_offset
9030  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9031                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9032                                               MVT::i32),
9033                               FIN, MachinePointerInfo(SV), false, false, 0);
9034  MemOps.push_back(Store);
9035
9036  // Store fp_offset
9037  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9038                    FIN, DAG.getIntPtrConstant(4));
9039  Store = DAG.getStore(Op.getOperand(0), DL,
9040                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9041                                       MVT::i32),
9042                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9043  MemOps.push_back(Store);
9044
9045  // Store ptr to overflow_arg_area
9046  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9047                    FIN, DAG.getIntPtrConstant(4));
9048  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9049                                    getPointerTy());
9050  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9051                       MachinePointerInfo(SV, 8),
9052                       false, false, 0);
9053  MemOps.push_back(Store);
9054
9055  // Store ptr to reg_save_area.
9056  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9057                    FIN, DAG.getIntPtrConstant(8));
9058  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9059                                    getPointerTy());
9060  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9061                       MachinePointerInfo(SV, 16), false, false, 0);
9062  MemOps.push_back(Store);
9063  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9064                     &MemOps[0], MemOps.size());
9065}
9066
9067SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9068  assert(Subtarget->is64Bit() &&
9069         "LowerVAARG only handles 64-bit va_arg!");
9070  assert((Subtarget->isTargetLinux() ||
9071          Subtarget->isTargetDarwin()) &&
9072          "Unhandled target in LowerVAARG");
9073  assert(Op.getNode()->getNumOperands() == 4);
9074  SDValue Chain = Op.getOperand(0);
9075  SDValue SrcPtr = Op.getOperand(1);
9076  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9077  unsigned Align = Op.getConstantOperandVal(3);
9078  DebugLoc dl = Op.getDebugLoc();
9079
9080  EVT ArgVT = Op.getNode()->getValueType(0);
9081  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9082  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9083  uint8_t ArgMode;
9084
9085  // Decide which area this value should be read from.
9086  // TODO: Implement the AMD64 ABI in its entirety. This simple
9087  // selection mechanism works only for the basic types.
9088  if (ArgVT == MVT::f80) {
9089    llvm_unreachable("va_arg for f80 not yet implemented");
9090  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9091    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9092  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9093    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9094  } else {
9095    llvm_unreachable("Unhandled argument type in LowerVAARG");
9096  }
9097
9098  if (ArgMode == 2) {
9099    // Sanity Check: Make sure using fp_offset makes sense.
9100    assert(!getTargetMachine().Options.UseSoftFloat &&
9101           !(DAG.getMachineFunction()
9102                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9103           Subtarget->hasSSE1());
9104  }
9105
9106  // Insert VAARG_64 node into the DAG
9107  // VAARG_64 returns two values: Variable Argument Address, Chain
9108  SmallVector<SDValue, 11> InstOps;
9109  InstOps.push_back(Chain);
9110  InstOps.push_back(SrcPtr);
9111  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9112  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9113  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9114  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9115  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9116                                          VTs, &InstOps[0], InstOps.size(),
9117                                          MVT::i64,
9118                                          MachinePointerInfo(SV),
9119                                          /*Align=*/0,
9120                                          /*Volatile=*/false,
9121                                          /*ReadMem=*/true,
9122                                          /*WriteMem=*/true);
9123  Chain = VAARG.getValue(1);
9124
9125  // Load the next argument and return it
9126  return DAG.getLoad(ArgVT, dl,
9127                     Chain,
9128                     VAARG,
9129                     MachinePointerInfo(),
9130                     false, false, false, 0);
9131}
9132
9133SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9134  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9135  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9136  SDValue Chain = Op.getOperand(0);
9137  SDValue DstPtr = Op.getOperand(1);
9138  SDValue SrcPtr = Op.getOperand(2);
9139  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9140  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9141  DebugLoc DL = Op.getDebugLoc();
9142
9143  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9144                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9145                       false,
9146                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9147}
9148
9149// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9150// may or may not be a constant. Takes immediate version of shift as input.
9151static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9152                                   SDValue SrcOp, SDValue ShAmt,
9153                                   SelectionDAG &DAG) {
9154  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9155
9156  if (isa<ConstantSDNode>(ShAmt)) {
9157    switch (Opc) {
9158      default: llvm_unreachable("Unknown target vector shift node");
9159      case X86ISD::VSHLI:
9160      case X86ISD::VSRLI:
9161      case X86ISD::VSRAI:
9162        return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9163    }
9164  }
9165
9166  // Change opcode to non-immediate version
9167  switch (Opc) {
9168    default: llvm_unreachable("Unknown target vector shift node");
9169    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9170    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9171    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9172  }
9173
9174  // Need to build a vector containing shift amount
9175  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9176  SDValue ShOps[4];
9177  ShOps[0] = ShAmt;
9178  ShOps[1] = DAG.getConstant(0, MVT::i32);
9179  ShOps[2] = DAG.getUNDEF(MVT::i32);
9180  ShOps[3] = DAG.getUNDEF(MVT::i32);
9181  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9182  ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9183  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9184}
9185
9186SDValue
9187X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9188  DebugLoc dl = Op.getDebugLoc();
9189  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9190  switch (IntNo) {
9191  default: return SDValue();    // Don't custom lower most intrinsics.
9192  // Comparison intrinsics.
9193  case Intrinsic::x86_sse_comieq_ss:
9194  case Intrinsic::x86_sse_comilt_ss:
9195  case Intrinsic::x86_sse_comile_ss:
9196  case Intrinsic::x86_sse_comigt_ss:
9197  case Intrinsic::x86_sse_comige_ss:
9198  case Intrinsic::x86_sse_comineq_ss:
9199  case Intrinsic::x86_sse_ucomieq_ss:
9200  case Intrinsic::x86_sse_ucomilt_ss:
9201  case Intrinsic::x86_sse_ucomile_ss:
9202  case Intrinsic::x86_sse_ucomigt_ss:
9203  case Intrinsic::x86_sse_ucomige_ss:
9204  case Intrinsic::x86_sse_ucomineq_ss:
9205  case Intrinsic::x86_sse2_comieq_sd:
9206  case Intrinsic::x86_sse2_comilt_sd:
9207  case Intrinsic::x86_sse2_comile_sd:
9208  case Intrinsic::x86_sse2_comigt_sd:
9209  case Intrinsic::x86_sse2_comige_sd:
9210  case Intrinsic::x86_sse2_comineq_sd:
9211  case Intrinsic::x86_sse2_ucomieq_sd:
9212  case Intrinsic::x86_sse2_ucomilt_sd:
9213  case Intrinsic::x86_sse2_ucomile_sd:
9214  case Intrinsic::x86_sse2_ucomigt_sd:
9215  case Intrinsic::x86_sse2_ucomige_sd:
9216  case Intrinsic::x86_sse2_ucomineq_sd: {
9217    unsigned Opc = 0;
9218    ISD::CondCode CC = ISD::SETCC_INVALID;
9219    switch (IntNo) {
9220    default: break;
9221    case Intrinsic::x86_sse_comieq_ss:
9222    case Intrinsic::x86_sse2_comieq_sd:
9223      Opc = X86ISD::COMI;
9224      CC = ISD::SETEQ;
9225      break;
9226    case Intrinsic::x86_sse_comilt_ss:
9227    case Intrinsic::x86_sse2_comilt_sd:
9228      Opc = X86ISD::COMI;
9229      CC = ISD::SETLT;
9230      break;
9231    case Intrinsic::x86_sse_comile_ss:
9232    case Intrinsic::x86_sse2_comile_sd:
9233      Opc = X86ISD::COMI;
9234      CC = ISD::SETLE;
9235      break;
9236    case Intrinsic::x86_sse_comigt_ss:
9237    case Intrinsic::x86_sse2_comigt_sd:
9238      Opc = X86ISD::COMI;
9239      CC = ISD::SETGT;
9240      break;
9241    case Intrinsic::x86_sse_comige_ss:
9242    case Intrinsic::x86_sse2_comige_sd:
9243      Opc = X86ISD::COMI;
9244      CC = ISD::SETGE;
9245      break;
9246    case Intrinsic::x86_sse_comineq_ss:
9247    case Intrinsic::x86_sse2_comineq_sd:
9248      Opc = X86ISD::COMI;
9249      CC = ISD::SETNE;
9250      break;
9251    case Intrinsic::x86_sse_ucomieq_ss:
9252    case Intrinsic::x86_sse2_ucomieq_sd:
9253      Opc = X86ISD::UCOMI;
9254      CC = ISD::SETEQ;
9255      break;
9256    case Intrinsic::x86_sse_ucomilt_ss:
9257    case Intrinsic::x86_sse2_ucomilt_sd:
9258      Opc = X86ISD::UCOMI;
9259      CC = ISD::SETLT;
9260      break;
9261    case Intrinsic::x86_sse_ucomile_ss:
9262    case Intrinsic::x86_sse2_ucomile_sd:
9263      Opc = X86ISD::UCOMI;
9264      CC = ISD::SETLE;
9265      break;
9266    case Intrinsic::x86_sse_ucomigt_ss:
9267    case Intrinsic::x86_sse2_ucomigt_sd:
9268      Opc = X86ISD::UCOMI;
9269      CC = ISD::SETGT;
9270      break;
9271    case Intrinsic::x86_sse_ucomige_ss:
9272    case Intrinsic::x86_sse2_ucomige_sd:
9273      Opc = X86ISD::UCOMI;
9274      CC = ISD::SETGE;
9275      break;
9276    case Intrinsic::x86_sse_ucomineq_ss:
9277    case Intrinsic::x86_sse2_ucomineq_sd:
9278      Opc = X86ISD::UCOMI;
9279      CC = ISD::SETNE;
9280      break;
9281    }
9282
9283    SDValue LHS = Op.getOperand(1);
9284    SDValue RHS = Op.getOperand(2);
9285    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9286    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9287    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9288    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9289                                DAG.getConstant(X86CC, MVT::i8), Cond);
9290    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9291  }
9292  // Arithmetic intrinsics.
9293  case Intrinsic::x86_sse3_hadd_ps:
9294  case Intrinsic::x86_sse3_hadd_pd:
9295  case Intrinsic::x86_avx_hadd_ps_256:
9296  case Intrinsic::x86_avx_hadd_pd_256:
9297    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9298                       Op.getOperand(1), Op.getOperand(2));
9299  case Intrinsic::x86_sse3_hsub_ps:
9300  case Intrinsic::x86_sse3_hsub_pd:
9301  case Intrinsic::x86_avx_hsub_ps_256:
9302  case Intrinsic::x86_avx_hsub_pd_256:
9303    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9304                       Op.getOperand(1), Op.getOperand(2));
9305  case Intrinsic::x86_ssse3_phadd_w_128:
9306  case Intrinsic::x86_ssse3_phadd_d_128:
9307  case Intrinsic::x86_avx2_phadd_w:
9308  case Intrinsic::x86_avx2_phadd_d:
9309    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9310                       Op.getOperand(1), Op.getOperand(2));
9311  case Intrinsic::x86_ssse3_phsub_w_128:
9312  case Intrinsic::x86_ssse3_phsub_d_128:
9313  case Intrinsic::x86_avx2_phsub_w:
9314  case Intrinsic::x86_avx2_phsub_d:
9315    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9316                       Op.getOperand(1), Op.getOperand(2));
9317  case Intrinsic::x86_avx2_psllv_d:
9318  case Intrinsic::x86_avx2_psllv_q:
9319  case Intrinsic::x86_avx2_psllv_d_256:
9320  case Intrinsic::x86_avx2_psllv_q_256:
9321    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9322                      Op.getOperand(1), Op.getOperand(2));
9323  case Intrinsic::x86_avx2_psrlv_d:
9324  case Intrinsic::x86_avx2_psrlv_q:
9325  case Intrinsic::x86_avx2_psrlv_d_256:
9326  case Intrinsic::x86_avx2_psrlv_q_256:
9327    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9328                      Op.getOperand(1), Op.getOperand(2));
9329  case Intrinsic::x86_avx2_psrav_d:
9330  case Intrinsic::x86_avx2_psrav_d_256:
9331    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9332                      Op.getOperand(1), Op.getOperand(2));
9333  case Intrinsic::x86_sse2_pcmpeq_b:
9334  case Intrinsic::x86_sse2_pcmpeq_w:
9335  case Intrinsic::x86_sse2_pcmpeq_d:
9336  case Intrinsic::x86_sse41_pcmpeqq:
9337  case Intrinsic::x86_avx2_pcmpeq_b:
9338  case Intrinsic::x86_avx2_pcmpeq_w:
9339  case Intrinsic::x86_avx2_pcmpeq_d:
9340  case Intrinsic::x86_avx2_pcmpeq_q:
9341    return DAG.getNode(X86ISD::PCMPEQ, dl, Op.getValueType(),
9342                       Op.getOperand(1), Op.getOperand(2));
9343  case Intrinsic::x86_sse2_pcmpgt_b:
9344  case Intrinsic::x86_sse2_pcmpgt_w:
9345  case Intrinsic::x86_sse2_pcmpgt_d:
9346  case Intrinsic::x86_sse42_pcmpgtq:
9347  case Intrinsic::x86_avx2_pcmpgt_b:
9348  case Intrinsic::x86_avx2_pcmpgt_w:
9349  case Intrinsic::x86_avx2_pcmpgt_d:
9350  case Intrinsic::x86_avx2_pcmpgt_q:
9351    return DAG.getNode(X86ISD::PCMPGT, dl, Op.getValueType(),
9352                       Op.getOperand(1), Op.getOperand(2));
9353
9354  // ptest and testp intrinsics. The intrinsic these come from are designed to
9355  // return an integer value, not just an instruction so lower it to the ptest
9356  // or testp pattern and a setcc for the result.
9357  case Intrinsic::x86_sse41_ptestz:
9358  case Intrinsic::x86_sse41_ptestc:
9359  case Intrinsic::x86_sse41_ptestnzc:
9360  case Intrinsic::x86_avx_ptestz_256:
9361  case Intrinsic::x86_avx_ptestc_256:
9362  case Intrinsic::x86_avx_ptestnzc_256:
9363  case Intrinsic::x86_avx_vtestz_ps:
9364  case Intrinsic::x86_avx_vtestc_ps:
9365  case Intrinsic::x86_avx_vtestnzc_ps:
9366  case Intrinsic::x86_avx_vtestz_pd:
9367  case Intrinsic::x86_avx_vtestc_pd:
9368  case Intrinsic::x86_avx_vtestnzc_pd:
9369  case Intrinsic::x86_avx_vtestz_ps_256:
9370  case Intrinsic::x86_avx_vtestc_ps_256:
9371  case Intrinsic::x86_avx_vtestnzc_ps_256:
9372  case Intrinsic::x86_avx_vtestz_pd_256:
9373  case Intrinsic::x86_avx_vtestc_pd_256:
9374  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9375    bool IsTestPacked = false;
9376    unsigned X86CC = 0;
9377    switch (IntNo) {
9378    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9379    case Intrinsic::x86_avx_vtestz_ps:
9380    case Intrinsic::x86_avx_vtestz_pd:
9381    case Intrinsic::x86_avx_vtestz_ps_256:
9382    case Intrinsic::x86_avx_vtestz_pd_256:
9383      IsTestPacked = true; // Fallthrough
9384    case Intrinsic::x86_sse41_ptestz:
9385    case Intrinsic::x86_avx_ptestz_256:
9386      // ZF = 1
9387      X86CC = X86::COND_E;
9388      break;
9389    case Intrinsic::x86_avx_vtestc_ps:
9390    case Intrinsic::x86_avx_vtestc_pd:
9391    case Intrinsic::x86_avx_vtestc_ps_256:
9392    case Intrinsic::x86_avx_vtestc_pd_256:
9393      IsTestPacked = true; // Fallthrough
9394    case Intrinsic::x86_sse41_ptestc:
9395    case Intrinsic::x86_avx_ptestc_256:
9396      // CF = 1
9397      X86CC = X86::COND_B;
9398      break;
9399    case Intrinsic::x86_avx_vtestnzc_ps:
9400    case Intrinsic::x86_avx_vtestnzc_pd:
9401    case Intrinsic::x86_avx_vtestnzc_ps_256:
9402    case Intrinsic::x86_avx_vtestnzc_pd_256:
9403      IsTestPacked = true; // Fallthrough
9404    case Intrinsic::x86_sse41_ptestnzc:
9405    case Intrinsic::x86_avx_ptestnzc_256:
9406      // ZF and CF = 0
9407      X86CC = X86::COND_A;
9408      break;
9409    }
9410
9411    SDValue LHS = Op.getOperand(1);
9412    SDValue RHS = Op.getOperand(2);
9413    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9414    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9415    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9416    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9417    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9418  }
9419
9420  // SSE/AVX shift intrinsics
9421  case Intrinsic::x86_sse2_psll_w:
9422  case Intrinsic::x86_sse2_psll_d:
9423  case Intrinsic::x86_sse2_psll_q:
9424  case Intrinsic::x86_avx2_psll_w:
9425  case Intrinsic::x86_avx2_psll_d:
9426  case Intrinsic::x86_avx2_psll_q:
9427    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9428                       Op.getOperand(1), Op.getOperand(2));
9429  case Intrinsic::x86_sse2_psrl_w:
9430  case Intrinsic::x86_sse2_psrl_d:
9431  case Intrinsic::x86_sse2_psrl_q:
9432  case Intrinsic::x86_avx2_psrl_w:
9433  case Intrinsic::x86_avx2_psrl_d:
9434  case Intrinsic::x86_avx2_psrl_q:
9435    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9436                       Op.getOperand(1), Op.getOperand(2));
9437  case Intrinsic::x86_sse2_psra_w:
9438  case Intrinsic::x86_sse2_psra_d:
9439  case Intrinsic::x86_avx2_psra_w:
9440  case Intrinsic::x86_avx2_psra_d:
9441    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9442                       Op.getOperand(1), Op.getOperand(2));
9443  case Intrinsic::x86_sse2_pslli_w:
9444  case Intrinsic::x86_sse2_pslli_d:
9445  case Intrinsic::x86_sse2_pslli_q:
9446  case Intrinsic::x86_avx2_pslli_w:
9447  case Intrinsic::x86_avx2_pslli_d:
9448  case Intrinsic::x86_avx2_pslli_q:
9449    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9450                               Op.getOperand(1), Op.getOperand(2), DAG);
9451  case Intrinsic::x86_sse2_psrli_w:
9452  case Intrinsic::x86_sse2_psrli_d:
9453  case Intrinsic::x86_sse2_psrli_q:
9454  case Intrinsic::x86_avx2_psrli_w:
9455  case Intrinsic::x86_avx2_psrli_d:
9456  case Intrinsic::x86_avx2_psrli_q:
9457    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9458                               Op.getOperand(1), Op.getOperand(2), DAG);
9459  case Intrinsic::x86_sse2_psrai_w:
9460  case Intrinsic::x86_sse2_psrai_d:
9461  case Intrinsic::x86_avx2_psrai_w:
9462  case Intrinsic::x86_avx2_psrai_d:
9463    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9464                               Op.getOperand(1), Op.getOperand(2), DAG);
9465  // Fix vector shift instructions where the last operand is a non-immediate
9466  // i32 value.
9467  case Intrinsic::x86_mmx_pslli_w:
9468  case Intrinsic::x86_mmx_pslli_d:
9469  case Intrinsic::x86_mmx_pslli_q:
9470  case Intrinsic::x86_mmx_psrli_w:
9471  case Intrinsic::x86_mmx_psrli_d:
9472  case Intrinsic::x86_mmx_psrli_q:
9473  case Intrinsic::x86_mmx_psrai_w:
9474  case Intrinsic::x86_mmx_psrai_d: {
9475    SDValue ShAmt = Op.getOperand(2);
9476    if (isa<ConstantSDNode>(ShAmt))
9477      return SDValue();
9478
9479    unsigned NewIntNo = 0;
9480    switch (IntNo) {
9481    case Intrinsic::x86_mmx_pslli_w:
9482      NewIntNo = Intrinsic::x86_mmx_psll_w;
9483      break;
9484    case Intrinsic::x86_mmx_pslli_d:
9485      NewIntNo = Intrinsic::x86_mmx_psll_d;
9486      break;
9487    case Intrinsic::x86_mmx_pslli_q:
9488      NewIntNo = Intrinsic::x86_mmx_psll_q;
9489      break;
9490    case Intrinsic::x86_mmx_psrli_w:
9491      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9492      break;
9493    case Intrinsic::x86_mmx_psrli_d:
9494      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9495      break;
9496    case Intrinsic::x86_mmx_psrli_q:
9497      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9498      break;
9499    case Intrinsic::x86_mmx_psrai_w:
9500      NewIntNo = Intrinsic::x86_mmx_psra_w;
9501      break;
9502    case Intrinsic::x86_mmx_psrai_d:
9503      NewIntNo = Intrinsic::x86_mmx_psra_d;
9504      break;
9505    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9506    }
9507
9508    // The vector shift intrinsics with scalars uses 32b shift amounts but
9509    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9510    // to be zero.
9511    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9512                         DAG.getConstant(0, MVT::i32));
9513// FIXME this must be lowered to get rid of the invalid type.
9514
9515    EVT VT = Op.getValueType();
9516    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9517    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9518                       DAG.getConstant(NewIntNo, MVT::i32),
9519                       Op.getOperand(1), ShAmt);
9520  }
9521  }
9522}
9523
9524SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9525                                           SelectionDAG &DAG) const {
9526  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9527  MFI->setReturnAddressIsTaken(true);
9528
9529  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9530  DebugLoc dl = Op.getDebugLoc();
9531
9532  if (Depth > 0) {
9533    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9534    SDValue Offset =
9535      DAG.getConstant(TD->getPointerSize(),
9536                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9537    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9538                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9539                                   FrameAddr, Offset),
9540                       MachinePointerInfo(), false, false, false, 0);
9541  }
9542
9543  // Just load the return address.
9544  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9545  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9546                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9547}
9548
9549SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9550  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9551  MFI->setFrameAddressIsTaken(true);
9552
9553  EVT VT = Op.getValueType();
9554  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9555  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9556  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9557  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9558  while (Depth--)
9559    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9560                            MachinePointerInfo(),
9561                            false, false, false, 0);
9562  return FrameAddr;
9563}
9564
9565SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9566                                                     SelectionDAG &DAG) const {
9567  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9568}
9569
9570SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9571  MachineFunction &MF = DAG.getMachineFunction();
9572  SDValue Chain     = Op.getOperand(0);
9573  SDValue Offset    = Op.getOperand(1);
9574  SDValue Handler   = Op.getOperand(2);
9575  DebugLoc dl       = Op.getDebugLoc();
9576
9577  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9578                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9579                                     getPointerTy());
9580  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9581
9582  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9583                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9584  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9585  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9586                       false, false, 0);
9587  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9588  MF.getRegInfo().addLiveOut(StoreAddrReg);
9589
9590  return DAG.getNode(X86ISD::EH_RETURN, dl,
9591                     MVT::Other,
9592                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9593}
9594
9595SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9596                                                  SelectionDAG &DAG) const {
9597  return Op.getOperand(0);
9598}
9599
9600SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9601                                                SelectionDAG &DAG) const {
9602  SDValue Root = Op.getOperand(0);
9603  SDValue Trmp = Op.getOperand(1); // trampoline
9604  SDValue FPtr = Op.getOperand(2); // nested function
9605  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9606  DebugLoc dl  = Op.getDebugLoc();
9607
9608  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9609
9610  if (Subtarget->is64Bit()) {
9611    SDValue OutChains[6];
9612
9613    // Large code-model.
9614    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9615    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9616
9617    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9618    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9619
9620    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9621
9622    // Load the pointer to the nested function into R11.
9623    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9624    SDValue Addr = Trmp;
9625    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9626                                Addr, MachinePointerInfo(TrmpAddr),
9627                                false, false, 0);
9628
9629    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9630                       DAG.getConstant(2, MVT::i64));
9631    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9632                                MachinePointerInfo(TrmpAddr, 2),
9633                                false, false, 2);
9634
9635    // Load the 'nest' parameter value into R10.
9636    // R10 is specified in X86CallingConv.td
9637    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9638    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9639                       DAG.getConstant(10, MVT::i64));
9640    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9641                                Addr, MachinePointerInfo(TrmpAddr, 10),
9642                                false, false, 0);
9643
9644    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9645                       DAG.getConstant(12, MVT::i64));
9646    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9647                                MachinePointerInfo(TrmpAddr, 12),
9648                                false, false, 2);
9649
9650    // Jump to the nested function.
9651    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9652    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9653                       DAG.getConstant(20, MVT::i64));
9654    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9655                                Addr, MachinePointerInfo(TrmpAddr, 20),
9656                                false, false, 0);
9657
9658    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9659    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9660                       DAG.getConstant(22, MVT::i64));
9661    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9662                                MachinePointerInfo(TrmpAddr, 22),
9663                                false, false, 0);
9664
9665    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9666  } else {
9667    const Function *Func =
9668      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9669    CallingConv::ID CC = Func->getCallingConv();
9670    unsigned NestReg;
9671
9672    switch (CC) {
9673    default:
9674      llvm_unreachable("Unsupported calling convention");
9675    case CallingConv::C:
9676    case CallingConv::X86_StdCall: {
9677      // Pass 'nest' parameter in ECX.
9678      // Must be kept in sync with X86CallingConv.td
9679      NestReg = X86::ECX;
9680
9681      // Check that ECX wasn't needed by an 'inreg' parameter.
9682      FunctionType *FTy = Func->getFunctionType();
9683      const AttrListPtr &Attrs = Func->getAttributes();
9684
9685      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9686        unsigned InRegCount = 0;
9687        unsigned Idx = 1;
9688
9689        for (FunctionType::param_iterator I = FTy->param_begin(),
9690             E = FTy->param_end(); I != E; ++I, ++Idx)
9691          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9692            // FIXME: should only count parameters that are lowered to integers.
9693            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9694
9695        if (InRegCount > 2) {
9696          report_fatal_error("Nest register in use - reduce number of inreg"
9697                             " parameters!");
9698        }
9699      }
9700      break;
9701    }
9702    case CallingConv::X86_FastCall:
9703    case CallingConv::X86_ThisCall:
9704    case CallingConv::Fast:
9705      // Pass 'nest' parameter in EAX.
9706      // Must be kept in sync with X86CallingConv.td
9707      NestReg = X86::EAX;
9708      break;
9709    }
9710
9711    SDValue OutChains[4];
9712    SDValue Addr, Disp;
9713
9714    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9715                       DAG.getConstant(10, MVT::i32));
9716    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9717
9718    // This is storing the opcode for MOV32ri.
9719    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9720    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9721    OutChains[0] = DAG.getStore(Root, dl,
9722                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9723                                Trmp, MachinePointerInfo(TrmpAddr),
9724                                false, false, 0);
9725
9726    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9727                       DAG.getConstant(1, MVT::i32));
9728    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9729                                MachinePointerInfo(TrmpAddr, 1),
9730                                false, false, 1);
9731
9732    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9733    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9734                       DAG.getConstant(5, MVT::i32));
9735    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9736                                MachinePointerInfo(TrmpAddr, 5),
9737                                false, false, 1);
9738
9739    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9740                       DAG.getConstant(6, MVT::i32));
9741    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9742                                MachinePointerInfo(TrmpAddr, 6),
9743                                false, false, 1);
9744
9745    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9746  }
9747}
9748
9749SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9750                                            SelectionDAG &DAG) const {
9751  /*
9752   The rounding mode is in bits 11:10 of FPSR, and has the following
9753   settings:
9754     00 Round to nearest
9755     01 Round to -inf
9756     10 Round to +inf
9757     11 Round to 0
9758
9759  FLT_ROUNDS, on the other hand, expects the following:
9760    -1 Undefined
9761     0 Round to 0
9762     1 Round to nearest
9763     2 Round to +inf
9764     3 Round to -inf
9765
9766  To perform the conversion, we do:
9767    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9768  */
9769
9770  MachineFunction &MF = DAG.getMachineFunction();
9771  const TargetMachine &TM = MF.getTarget();
9772  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9773  unsigned StackAlignment = TFI.getStackAlignment();
9774  EVT VT = Op.getValueType();
9775  DebugLoc DL = Op.getDebugLoc();
9776
9777  // Save FP Control Word to stack slot
9778  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9779  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9780
9781
9782  MachineMemOperand *MMO =
9783   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9784                           MachineMemOperand::MOStore, 2, 2);
9785
9786  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9787  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9788                                          DAG.getVTList(MVT::Other),
9789                                          Ops, 2, MVT::i16, MMO);
9790
9791  // Load FP Control Word from stack slot
9792  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9793                            MachinePointerInfo(), false, false, false, 0);
9794
9795  // Transform as necessary
9796  SDValue CWD1 =
9797    DAG.getNode(ISD::SRL, DL, MVT::i16,
9798                DAG.getNode(ISD::AND, DL, MVT::i16,
9799                            CWD, DAG.getConstant(0x800, MVT::i16)),
9800                DAG.getConstant(11, MVT::i8));
9801  SDValue CWD2 =
9802    DAG.getNode(ISD::SRL, DL, MVT::i16,
9803                DAG.getNode(ISD::AND, DL, MVT::i16,
9804                            CWD, DAG.getConstant(0x400, MVT::i16)),
9805                DAG.getConstant(9, MVT::i8));
9806
9807  SDValue RetVal =
9808    DAG.getNode(ISD::AND, DL, MVT::i16,
9809                DAG.getNode(ISD::ADD, DL, MVT::i16,
9810                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9811                            DAG.getConstant(1, MVT::i16)),
9812                DAG.getConstant(3, MVT::i16));
9813
9814
9815  return DAG.getNode((VT.getSizeInBits() < 16 ?
9816                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9817}
9818
9819SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9820  EVT VT = Op.getValueType();
9821  EVT OpVT = VT;
9822  unsigned NumBits = VT.getSizeInBits();
9823  DebugLoc dl = Op.getDebugLoc();
9824
9825  Op = Op.getOperand(0);
9826  if (VT == MVT::i8) {
9827    // Zero extend to i32 since there is not an i8 bsr.
9828    OpVT = MVT::i32;
9829    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9830  }
9831
9832  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9833  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9834  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9835
9836  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9837  SDValue Ops[] = {
9838    Op,
9839    DAG.getConstant(NumBits+NumBits-1, OpVT),
9840    DAG.getConstant(X86::COND_E, MVT::i8),
9841    Op.getValue(1)
9842  };
9843  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9844
9845  // Finally xor with NumBits-1.
9846  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9847
9848  if (VT == MVT::i8)
9849    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9850  return Op;
9851}
9852
9853SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
9854                                                SelectionDAG &DAG) const {
9855  EVT VT = Op.getValueType();
9856  EVT OpVT = VT;
9857  unsigned NumBits = VT.getSizeInBits();
9858  DebugLoc dl = Op.getDebugLoc();
9859
9860  Op = Op.getOperand(0);
9861  if (VT == MVT::i8) {
9862    // Zero extend to i32 since there is not an i8 bsr.
9863    OpVT = MVT::i32;
9864    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9865  }
9866
9867  // Issue a bsr (scan bits in reverse).
9868  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9869  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9870
9871  // And xor with NumBits-1.
9872  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9873
9874  if (VT == MVT::i8)
9875    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9876  return Op;
9877}
9878
9879SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9880  EVT VT = Op.getValueType();
9881  unsigned NumBits = VT.getSizeInBits();
9882  DebugLoc dl = Op.getDebugLoc();
9883  Op = Op.getOperand(0);
9884
9885  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9886  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9887  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9888
9889  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9890  SDValue Ops[] = {
9891    Op,
9892    DAG.getConstant(NumBits, VT),
9893    DAG.getConstant(X86::COND_E, MVT::i8),
9894    Op.getValue(1)
9895  };
9896  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
9897}
9898
9899// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9900// ones, and then concatenate the result back.
9901static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9902  EVT VT = Op.getValueType();
9903
9904  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9905         "Unsupported value type for operation");
9906
9907  int NumElems = VT.getVectorNumElements();
9908  DebugLoc dl = Op.getDebugLoc();
9909  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9910  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9911
9912  // Extract the LHS vectors
9913  SDValue LHS = Op.getOperand(0);
9914  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9915  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9916
9917  // Extract the RHS vectors
9918  SDValue RHS = Op.getOperand(1);
9919  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9920  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9921
9922  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9923  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9924
9925  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9926                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9927                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9928}
9929
9930SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9931  assert(Op.getValueType().getSizeInBits() == 256 &&
9932         Op.getValueType().isInteger() &&
9933         "Only handle AVX 256-bit vector integer operation");
9934  return Lower256IntArith(Op, DAG);
9935}
9936
9937SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9938  assert(Op.getValueType().getSizeInBits() == 256 &&
9939         Op.getValueType().isInteger() &&
9940         "Only handle AVX 256-bit vector integer operation");
9941  return Lower256IntArith(Op, DAG);
9942}
9943
9944SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9945  EVT VT = Op.getValueType();
9946
9947  // Decompose 256-bit ops into smaller 128-bit ops.
9948  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
9949    return Lower256IntArith(Op, DAG);
9950
9951  DebugLoc dl = Op.getDebugLoc();
9952
9953  SDValue A = Op.getOperand(0);
9954  SDValue B = Op.getOperand(1);
9955
9956  if (VT == MVT::v4i64) {
9957    assert(Subtarget->hasAVX2() && "Lowering v4i64 multiply requires AVX2");
9958
9959    //  ulong2 Ahi = __builtin_ia32_psrlqi256( a, 32);
9960    //  ulong2 Bhi = __builtin_ia32_psrlqi256( b, 32);
9961    //  ulong2 AloBlo = __builtin_ia32_pmuludq256( a, b );
9962    //  ulong2 AloBhi = __builtin_ia32_pmuludq256( a, Bhi );
9963    //  ulong2 AhiBlo = __builtin_ia32_pmuludq256( Ahi, b );
9964    //
9965    //  AloBhi = __builtin_ia32_psllqi256( AloBhi, 32 );
9966    //  AhiBlo = __builtin_ia32_psllqi256( AhiBlo, 32 );
9967    //  return AloBlo + AloBhi + AhiBlo;
9968
9969    SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A,
9970                              DAG.getConstant(32, MVT::i32));
9971    SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B,
9972                              DAG.getConstant(32, MVT::i32));
9973    SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9974                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9975                         A, B);
9976    SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9977                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9978                         A, Bhi);
9979    SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9980                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9981                         Ahi, B);
9982    AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi,
9983                         DAG.getConstant(32, MVT::i32));
9984    AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo,
9985                         DAG.getConstant(32, MVT::i32));
9986    SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9987    Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9988    return Res;
9989  }
9990
9991  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9992
9993  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9994  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9995  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9996  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9997  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9998  //
9999  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
10000  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
10001  //  return AloBlo + AloBhi + AhiBlo;
10002
10003  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A,
10004                            DAG.getConstant(32, MVT::i32));
10005  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B,
10006                            DAG.getConstant(32, MVT::i32));
10007  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10008                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10009                       A, B);
10010  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10011                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10012                       A, Bhi);
10013  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10014                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10015                       Ahi, B);
10016  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi,
10017                       DAG.getConstant(32, MVT::i32));
10018  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo,
10019                       DAG.getConstant(32, MVT::i32));
10020  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10021  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10022  return Res;
10023}
10024
10025SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10026
10027  EVT VT = Op.getValueType();
10028  DebugLoc dl = Op.getDebugLoc();
10029  SDValue R = Op.getOperand(0);
10030  SDValue Amt = Op.getOperand(1);
10031  LLVMContext *Context = DAG.getContext();
10032
10033  if (!Subtarget->hasSSE2())
10034    return SDValue();
10035
10036  // Optimize shl/srl/sra with constant shift amount.
10037  if (isSplatVector(Amt.getNode())) {
10038    SDValue SclrAmt = Amt->getOperand(0);
10039    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10040      uint64_t ShiftAmt = C->getZExtValue();
10041
10042      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10043          (Subtarget->hasAVX2() &&
10044           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10045        if (Op.getOpcode() == ISD::SHL)
10046          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10047                             DAG.getConstant(ShiftAmt, MVT::i32));
10048        if (Op.getOpcode() == ISD::SRL)
10049          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10050                             DAG.getConstant(ShiftAmt, MVT::i32));
10051        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10052          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10053                             DAG.getConstant(ShiftAmt, MVT::i32));
10054      }
10055
10056      if (VT == MVT::v16i8) {
10057        if (Op.getOpcode() == ISD::SHL) {
10058          // Make a large shift.
10059          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10060                                    DAG.getConstant(ShiftAmt, MVT::i32));
10061          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10062          // Zero out the rightmost bits.
10063          SmallVector<SDValue, 16> V(16,
10064                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10065                                                     MVT::i8));
10066          return DAG.getNode(ISD::AND, dl, VT, SHL,
10067                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10068        }
10069        if (Op.getOpcode() == ISD::SRL) {
10070          // Make a large shift.
10071          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10072                                    DAG.getConstant(ShiftAmt, MVT::i32));
10073          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10074          // Zero out the leftmost bits.
10075          SmallVector<SDValue, 16> V(16,
10076                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10077                                                     MVT::i8));
10078          return DAG.getNode(ISD::AND, dl, VT, SRL,
10079                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10080        }
10081        if (Op.getOpcode() == ISD::SRA) {
10082          if (ShiftAmt == 7) {
10083            // R s>> 7  ===  R s< 0
10084            SDValue Zeros = getZeroVector(VT, /* HasSSE2 */true,
10085                                          /* HasAVX2 */false, DAG, dl);
10086            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10087          }
10088
10089          // R s>> a === ((R u>> a) ^ m) - m
10090          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10091          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10092                                                         MVT::i8));
10093          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10094          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10095          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10096          return Res;
10097        }
10098      }
10099
10100      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10101        if (Op.getOpcode() == ISD::SHL) {
10102          // Make a large shift.
10103          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10104                                    DAG.getConstant(ShiftAmt, MVT::i32));
10105          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10106          // Zero out the rightmost bits.
10107          SmallVector<SDValue, 32> V(32,
10108                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10109                                                     MVT::i8));
10110          return DAG.getNode(ISD::AND, dl, VT, SHL,
10111                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10112        }
10113        if (Op.getOpcode() == ISD::SRL) {
10114          // Make a large shift.
10115          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10116                                    DAG.getConstant(ShiftAmt, MVT::i32));
10117          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10118          // Zero out the leftmost bits.
10119          SmallVector<SDValue, 32> V(32,
10120                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10121                                                     MVT::i8));
10122          return DAG.getNode(ISD::AND, dl, VT, SRL,
10123                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10124        }
10125        if (Op.getOpcode() == ISD::SRA) {
10126          if (ShiftAmt == 7) {
10127            // R s>> 7  ===  R s< 0
10128            SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */,
10129                                          true /* HasAVX2 */, DAG, dl);
10130            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10131          }
10132
10133          // R s>> a === ((R u>> a) ^ m) - m
10134          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10135          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10136                                                         MVT::i8));
10137          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10138          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10139          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10140          return Res;
10141        }
10142      }
10143    }
10144  }
10145
10146  // Lower SHL with variable shift amount.
10147  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10148    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10149                     DAG.getConstant(23, MVT::i32));
10150
10151    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
10152
10153    std::vector<Constant*> CV(4, CI);
10154    Constant *C = ConstantVector::get(CV);
10155    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10156    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10157                                 MachinePointerInfo::getConstantPool(),
10158                                 false, false, false, 16);
10159
10160    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10161    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10162    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10163    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10164  }
10165  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10166    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10167
10168    // a = a << 5;
10169    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10170                     DAG.getConstant(5, MVT::i32));
10171    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10172
10173    // Turn 'a' into a mask suitable for VSELECT
10174    SDValue VSelM = DAG.getConstant(0x80, VT);
10175    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10176    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10177
10178    SDValue CM1 = DAG.getConstant(0x0f, VT);
10179    SDValue CM2 = DAG.getConstant(0x3f, VT);
10180
10181    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10182    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10183    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10184                            DAG.getConstant(4, MVT::i32), DAG);
10185    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10186    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10187
10188    // a += a
10189    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10190    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10191    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10192
10193    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10194    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10195    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10196                            DAG.getConstant(2, MVT::i32), DAG);
10197    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10198    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10199
10200    // a += a
10201    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10202    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10203    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10204
10205    // return VSELECT(r, r+r, a);
10206    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10207                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10208    return R;
10209  }
10210
10211  // Decompose 256-bit shifts into smaller 128-bit shifts.
10212  if (VT.getSizeInBits() == 256) {
10213    unsigned NumElems = VT.getVectorNumElements();
10214    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10215    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10216
10217    // Extract the two vectors
10218    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10219    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10220                                     DAG, dl);
10221
10222    // Recreate the shift amount vectors
10223    SDValue Amt1, Amt2;
10224    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10225      // Constant shift amount
10226      SmallVector<SDValue, 4> Amt1Csts;
10227      SmallVector<SDValue, 4> Amt2Csts;
10228      for (unsigned i = 0; i != NumElems/2; ++i)
10229        Amt1Csts.push_back(Amt->getOperand(i));
10230      for (unsigned i = NumElems/2; i != NumElems; ++i)
10231        Amt2Csts.push_back(Amt->getOperand(i));
10232
10233      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10234                                 &Amt1Csts[0], NumElems/2);
10235      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10236                                 &Amt2Csts[0], NumElems/2);
10237    } else {
10238      // Variable shift amount
10239      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10240      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10241                                 DAG, dl);
10242    }
10243
10244    // Issue new vector shifts for the smaller types
10245    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10246    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10247
10248    // Concatenate the result back
10249    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10250  }
10251
10252  return SDValue();
10253}
10254
10255SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10256  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10257  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10258  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10259  // has only one use.
10260  SDNode *N = Op.getNode();
10261  SDValue LHS = N->getOperand(0);
10262  SDValue RHS = N->getOperand(1);
10263  unsigned BaseOp = 0;
10264  unsigned Cond = 0;
10265  DebugLoc DL = Op.getDebugLoc();
10266  switch (Op.getOpcode()) {
10267  default: llvm_unreachable("Unknown ovf instruction!");
10268  case ISD::SADDO:
10269    // A subtract of one will be selected as a INC. Note that INC doesn't
10270    // set CF, so we can't do this for UADDO.
10271    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10272      if (C->isOne()) {
10273        BaseOp = X86ISD::INC;
10274        Cond = X86::COND_O;
10275        break;
10276      }
10277    BaseOp = X86ISD::ADD;
10278    Cond = X86::COND_O;
10279    break;
10280  case ISD::UADDO:
10281    BaseOp = X86ISD::ADD;
10282    Cond = X86::COND_B;
10283    break;
10284  case ISD::SSUBO:
10285    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10286    // set CF, so we can't do this for USUBO.
10287    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10288      if (C->isOne()) {
10289        BaseOp = X86ISD::DEC;
10290        Cond = X86::COND_O;
10291        break;
10292      }
10293    BaseOp = X86ISD::SUB;
10294    Cond = X86::COND_O;
10295    break;
10296  case ISD::USUBO:
10297    BaseOp = X86ISD::SUB;
10298    Cond = X86::COND_B;
10299    break;
10300  case ISD::SMULO:
10301    BaseOp = X86ISD::SMUL;
10302    Cond = X86::COND_O;
10303    break;
10304  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10305    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10306                                 MVT::i32);
10307    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10308
10309    SDValue SetCC =
10310      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10311                  DAG.getConstant(X86::COND_O, MVT::i32),
10312                  SDValue(Sum.getNode(), 2));
10313
10314    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10315  }
10316  }
10317
10318  // Also sets EFLAGS.
10319  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10320  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10321
10322  SDValue SetCC =
10323    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10324                DAG.getConstant(Cond, MVT::i32),
10325                SDValue(Sum.getNode(), 1));
10326
10327  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10328}
10329
10330SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10331                                                  SelectionDAG &DAG) const {
10332  DebugLoc dl = Op.getDebugLoc();
10333  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10334  EVT VT = Op.getValueType();
10335
10336  if (!Subtarget->hasSSE2() || !VT.isVector())
10337    return SDValue();
10338
10339  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10340                      ExtraVT.getScalarType().getSizeInBits();
10341  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10342
10343  switch (VT.getSimpleVT().SimpleTy) {
10344    default: return SDValue();
10345    case MVT::v8i32:
10346    case MVT::v16i16:
10347      if (!Subtarget->hasAVX())
10348        return SDValue();
10349      if (!Subtarget->hasAVX2()) {
10350        // needs to be split
10351        int NumElems = VT.getVectorNumElements();
10352        SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10353        SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10354
10355        // Extract the LHS vectors
10356        SDValue LHS = Op.getOperand(0);
10357        SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10358        SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10359
10360        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10361        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10362
10363        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10364        int ExtraNumElems = ExtraVT.getVectorNumElements();
10365        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10366                                   ExtraNumElems/2);
10367        SDValue Extra = DAG.getValueType(ExtraVT);
10368
10369        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10370        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10371
10372        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10373      }
10374      // fall through
10375    case MVT::v4i32:
10376    case MVT::v8i16: {
10377      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10378                                         Op.getOperand(0), ShAmt, DAG);
10379      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10380    }
10381  }
10382}
10383
10384
10385SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10386  DebugLoc dl = Op.getDebugLoc();
10387
10388  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10389  // There isn't any reason to disable it if the target processor supports it.
10390  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10391    SDValue Chain = Op.getOperand(0);
10392    SDValue Zero = DAG.getConstant(0, MVT::i32);
10393    SDValue Ops[] = {
10394      DAG.getRegister(X86::ESP, MVT::i32), // Base
10395      DAG.getTargetConstant(1, MVT::i8),   // Scale
10396      DAG.getRegister(0, MVT::i32),        // Index
10397      DAG.getTargetConstant(0, MVT::i32),  // Disp
10398      DAG.getRegister(0, MVT::i32),        // Segment.
10399      Zero,
10400      Chain
10401    };
10402    SDNode *Res =
10403      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10404                          array_lengthof(Ops));
10405    return SDValue(Res, 0);
10406  }
10407
10408  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10409  if (!isDev)
10410    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10411
10412  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10413  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10414  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10415  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10416
10417  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10418  if (!Op1 && !Op2 && !Op3 && Op4)
10419    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10420
10421  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10422  if (Op1 && !Op2 && !Op3 && !Op4)
10423    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10424
10425  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10426  //           (MFENCE)>;
10427  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10428}
10429
10430SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10431                                             SelectionDAG &DAG) const {
10432  DebugLoc dl = Op.getDebugLoc();
10433  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10434    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10435  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10436    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10437
10438  // The only fence that needs an instruction is a sequentially-consistent
10439  // cross-thread fence.
10440  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10441    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10442    // no-sse2). There isn't any reason to disable it if the target processor
10443    // supports it.
10444    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10445      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10446
10447    SDValue Chain = Op.getOperand(0);
10448    SDValue Zero = DAG.getConstant(0, MVT::i32);
10449    SDValue Ops[] = {
10450      DAG.getRegister(X86::ESP, MVT::i32), // Base
10451      DAG.getTargetConstant(1, MVT::i8),   // Scale
10452      DAG.getRegister(0, MVT::i32),        // Index
10453      DAG.getTargetConstant(0, MVT::i32),  // Disp
10454      DAG.getRegister(0, MVT::i32),        // Segment.
10455      Zero,
10456      Chain
10457    };
10458    SDNode *Res =
10459      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10460                         array_lengthof(Ops));
10461    return SDValue(Res, 0);
10462  }
10463
10464  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10465  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10466}
10467
10468
10469SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10470  EVT T = Op.getValueType();
10471  DebugLoc DL = Op.getDebugLoc();
10472  unsigned Reg = 0;
10473  unsigned size = 0;
10474  switch(T.getSimpleVT().SimpleTy) {
10475  default:
10476    assert(false && "Invalid value type!");
10477  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10478  case MVT::i16: Reg = X86::AX;  size = 2; break;
10479  case MVT::i32: Reg = X86::EAX; size = 4; break;
10480  case MVT::i64:
10481    assert(Subtarget->is64Bit() && "Node not type legal!");
10482    Reg = X86::RAX; size = 8;
10483    break;
10484  }
10485  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10486                                    Op.getOperand(2), SDValue());
10487  SDValue Ops[] = { cpIn.getValue(0),
10488                    Op.getOperand(1),
10489                    Op.getOperand(3),
10490                    DAG.getTargetConstant(size, MVT::i8),
10491                    cpIn.getValue(1) };
10492  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10493  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10494  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10495                                           Ops, 5, T, MMO);
10496  SDValue cpOut =
10497    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10498  return cpOut;
10499}
10500
10501SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10502                                                 SelectionDAG &DAG) const {
10503  assert(Subtarget->is64Bit() && "Result not type legalized?");
10504  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10505  SDValue TheChain = Op.getOperand(0);
10506  DebugLoc dl = Op.getDebugLoc();
10507  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10508  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10509  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10510                                   rax.getValue(2));
10511  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10512                            DAG.getConstant(32, MVT::i8));
10513  SDValue Ops[] = {
10514    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10515    rdx.getValue(1)
10516  };
10517  return DAG.getMergeValues(Ops, 2, dl);
10518}
10519
10520SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10521                                            SelectionDAG &DAG) const {
10522  EVT SrcVT = Op.getOperand(0).getValueType();
10523  EVT DstVT = Op.getValueType();
10524  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10525         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10526  assert((DstVT == MVT::i64 ||
10527          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10528         "Unexpected custom BITCAST");
10529  // i64 <=> MMX conversions are Legal.
10530  if (SrcVT==MVT::i64 && DstVT.isVector())
10531    return Op;
10532  if (DstVT==MVT::i64 && SrcVT.isVector())
10533    return Op;
10534  // MMX <=> MMX conversions are Legal.
10535  if (SrcVT.isVector() && DstVT.isVector())
10536    return Op;
10537  // All other conversions need to be expanded.
10538  return SDValue();
10539}
10540
10541SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10542  SDNode *Node = Op.getNode();
10543  DebugLoc dl = Node->getDebugLoc();
10544  EVT T = Node->getValueType(0);
10545  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10546                              DAG.getConstant(0, T), Node->getOperand(2));
10547  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10548                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10549                       Node->getOperand(0),
10550                       Node->getOperand(1), negOp,
10551                       cast<AtomicSDNode>(Node)->getSrcValue(),
10552                       cast<AtomicSDNode>(Node)->getAlignment(),
10553                       cast<AtomicSDNode>(Node)->getOrdering(),
10554                       cast<AtomicSDNode>(Node)->getSynchScope());
10555}
10556
10557static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10558  SDNode *Node = Op.getNode();
10559  DebugLoc dl = Node->getDebugLoc();
10560  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10561
10562  // Convert seq_cst store -> xchg
10563  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10564  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10565  //        (The only way to get a 16-byte store is cmpxchg16b)
10566  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10567  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10568      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10569    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10570                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10571                                 Node->getOperand(0),
10572                                 Node->getOperand(1), Node->getOperand(2),
10573                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10574                                 cast<AtomicSDNode>(Node)->getOrdering(),
10575                                 cast<AtomicSDNode>(Node)->getSynchScope());
10576    return Swap.getValue(1);
10577  }
10578  // Other atomic stores have a simple pattern.
10579  return Op;
10580}
10581
10582static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10583  EVT VT = Op.getNode()->getValueType(0);
10584
10585  // Let legalize expand this if it isn't a legal type yet.
10586  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10587    return SDValue();
10588
10589  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10590
10591  unsigned Opc;
10592  bool ExtraOp = false;
10593  switch (Op.getOpcode()) {
10594  default: assert(0 && "Invalid code");
10595  case ISD::ADDC: Opc = X86ISD::ADD; break;
10596  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10597  case ISD::SUBC: Opc = X86ISD::SUB; break;
10598  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10599  }
10600
10601  if (!ExtraOp)
10602    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10603                       Op.getOperand(1));
10604  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10605                     Op.getOperand(1), Op.getOperand(2));
10606}
10607
10608/// LowerOperation - Provide custom lowering hooks for some operations.
10609///
10610SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10611  switch (Op.getOpcode()) {
10612  default: llvm_unreachable("Should not custom lower this!");
10613  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10614  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10615  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10616  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10617  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10618  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10619  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10620  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10621  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10622  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10623  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10624  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10625  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10626  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10627  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10628  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10629  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10630  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10631  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10632  case ISD::SHL_PARTS:
10633  case ISD::SRA_PARTS:
10634  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10635  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10636  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10637  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10638  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10639  case ISD::FABS:               return LowerFABS(Op, DAG);
10640  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10641  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10642  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10643  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10644  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10645  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10646  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10647  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10648  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10649  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10650  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10651  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10652  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10653  case ISD::FRAME_TO_ARGS_OFFSET:
10654                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10655  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10656  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10657  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10658  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10659  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10660  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10661  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10662  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10663  case ISD::MUL:                return LowerMUL(Op, DAG);
10664  case ISD::SRA:
10665  case ISD::SRL:
10666  case ISD::SHL:                return LowerShift(Op, DAG);
10667  case ISD::SADDO:
10668  case ISD::UADDO:
10669  case ISD::SSUBO:
10670  case ISD::USUBO:
10671  case ISD::SMULO:
10672  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10673  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10674  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10675  case ISD::ADDC:
10676  case ISD::ADDE:
10677  case ISD::SUBC:
10678  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10679  case ISD::ADD:                return LowerADD(Op, DAG);
10680  case ISD::SUB:                return LowerSUB(Op, DAG);
10681  }
10682}
10683
10684static void ReplaceATOMIC_LOAD(SDNode *Node,
10685                                  SmallVectorImpl<SDValue> &Results,
10686                                  SelectionDAG &DAG) {
10687  DebugLoc dl = Node->getDebugLoc();
10688  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10689
10690  // Convert wide load -> cmpxchg8b/cmpxchg16b
10691  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10692  //        (The only way to get a 16-byte load is cmpxchg16b)
10693  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10694  SDValue Zero = DAG.getConstant(0, VT);
10695  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10696                               Node->getOperand(0),
10697                               Node->getOperand(1), Zero, Zero,
10698                               cast<AtomicSDNode>(Node)->getMemOperand(),
10699                               cast<AtomicSDNode>(Node)->getOrdering(),
10700                               cast<AtomicSDNode>(Node)->getSynchScope());
10701  Results.push_back(Swap.getValue(0));
10702  Results.push_back(Swap.getValue(1));
10703}
10704
10705void X86TargetLowering::
10706ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10707                        SelectionDAG &DAG, unsigned NewOp) const {
10708  DebugLoc dl = Node->getDebugLoc();
10709  assert (Node->getValueType(0) == MVT::i64 &&
10710          "Only know how to expand i64 atomics");
10711
10712  SDValue Chain = Node->getOperand(0);
10713  SDValue In1 = Node->getOperand(1);
10714  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10715                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10716  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10717                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10718  SDValue Ops[] = { Chain, In1, In2L, In2H };
10719  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10720  SDValue Result =
10721    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10722                            cast<MemSDNode>(Node)->getMemOperand());
10723  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10724  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10725  Results.push_back(Result.getValue(2));
10726}
10727
10728/// ReplaceNodeResults - Replace a node with an illegal result type
10729/// with a new node built out of custom code.
10730void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10731                                           SmallVectorImpl<SDValue>&Results,
10732                                           SelectionDAG &DAG) const {
10733  DebugLoc dl = N->getDebugLoc();
10734  switch (N->getOpcode()) {
10735  default:
10736    assert(false && "Do not know how to custom type legalize this operation!");
10737    return;
10738  case ISD::SIGN_EXTEND_INREG:
10739  case ISD::ADDC:
10740  case ISD::ADDE:
10741  case ISD::SUBC:
10742  case ISD::SUBE:
10743    // We don't want to expand or promote these.
10744    return;
10745  case ISD::FP_TO_SINT: {
10746    std::pair<SDValue,SDValue> Vals =
10747        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10748    SDValue FIST = Vals.first, StackSlot = Vals.second;
10749    if (FIST.getNode() != 0) {
10750      EVT VT = N->getValueType(0);
10751      // Return a load from the stack slot.
10752      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10753                                    MachinePointerInfo(),
10754                                    false, false, false, 0));
10755    }
10756    return;
10757  }
10758  case ISD::READCYCLECOUNTER: {
10759    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10760    SDValue TheChain = N->getOperand(0);
10761    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10762    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10763                                     rd.getValue(1));
10764    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10765                                     eax.getValue(2));
10766    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10767    SDValue Ops[] = { eax, edx };
10768    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10769    Results.push_back(edx.getValue(1));
10770    return;
10771  }
10772  case ISD::ATOMIC_CMP_SWAP: {
10773    EVT T = N->getValueType(0);
10774    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10775    bool Regs64bit = T == MVT::i128;
10776    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10777    SDValue cpInL, cpInH;
10778    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10779                        DAG.getConstant(0, HalfT));
10780    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10781                        DAG.getConstant(1, HalfT));
10782    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10783                             Regs64bit ? X86::RAX : X86::EAX,
10784                             cpInL, SDValue());
10785    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10786                             Regs64bit ? X86::RDX : X86::EDX,
10787                             cpInH, cpInL.getValue(1));
10788    SDValue swapInL, swapInH;
10789    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10790                          DAG.getConstant(0, HalfT));
10791    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10792                          DAG.getConstant(1, HalfT));
10793    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10794                               Regs64bit ? X86::RBX : X86::EBX,
10795                               swapInL, cpInH.getValue(1));
10796    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10797                               Regs64bit ? X86::RCX : X86::ECX,
10798                               swapInH, swapInL.getValue(1));
10799    SDValue Ops[] = { swapInH.getValue(0),
10800                      N->getOperand(1),
10801                      swapInH.getValue(1) };
10802    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10803    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10804    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10805                                  X86ISD::LCMPXCHG8_DAG;
10806    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10807                                             Ops, 3, T, MMO);
10808    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10809                                        Regs64bit ? X86::RAX : X86::EAX,
10810                                        HalfT, Result.getValue(1));
10811    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10812                                        Regs64bit ? X86::RDX : X86::EDX,
10813                                        HalfT, cpOutL.getValue(2));
10814    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10815    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10816    Results.push_back(cpOutH.getValue(1));
10817    return;
10818  }
10819  case ISD::ATOMIC_LOAD_ADD:
10820    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10821    return;
10822  case ISD::ATOMIC_LOAD_AND:
10823    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10824    return;
10825  case ISD::ATOMIC_LOAD_NAND:
10826    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10827    return;
10828  case ISD::ATOMIC_LOAD_OR:
10829    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10830    return;
10831  case ISD::ATOMIC_LOAD_SUB:
10832    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10833    return;
10834  case ISD::ATOMIC_LOAD_XOR:
10835    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10836    return;
10837  case ISD::ATOMIC_SWAP:
10838    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10839    return;
10840  case ISD::ATOMIC_LOAD:
10841    ReplaceATOMIC_LOAD(N, Results, DAG);
10842  }
10843}
10844
10845const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10846  switch (Opcode) {
10847  default: return NULL;
10848  case X86ISD::BSF:                return "X86ISD::BSF";
10849  case X86ISD::BSR:                return "X86ISD::BSR";
10850  case X86ISD::SHLD:               return "X86ISD::SHLD";
10851  case X86ISD::SHRD:               return "X86ISD::SHRD";
10852  case X86ISD::FAND:               return "X86ISD::FAND";
10853  case X86ISD::FOR:                return "X86ISD::FOR";
10854  case X86ISD::FXOR:               return "X86ISD::FXOR";
10855  case X86ISD::FSRL:               return "X86ISD::FSRL";
10856  case X86ISD::FILD:               return "X86ISD::FILD";
10857  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10858  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10859  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10860  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10861  case X86ISD::FLD:                return "X86ISD::FLD";
10862  case X86ISD::FST:                return "X86ISD::FST";
10863  case X86ISD::CALL:               return "X86ISD::CALL";
10864  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10865  case X86ISD::BT:                 return "X86ISD::BT";
10866  case X86ISD::CMP:                return "X86ISD::CMP";
10867  case X86ISD::COMI:               return "X86ISD::COMI";
10868  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10869  case X86ISD::SETCC:              return "X86ISD::SETCC";
10870  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10871  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10872  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10873  case X86ISD::CMOV:               return "X86ISD::CMOV";
10874  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10875  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10876  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10877  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10878  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10879  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10880  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10881  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10882  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10883  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10884  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10885  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10886  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10887  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10888  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
10889  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
10890  case X86ISD::HADD:               return "X86ISD::HADD";
10891  case X86ISD::HSUB:               return "X86ISD::HSUB";
10892  case X86ISD::FHADD:              return "X86ISD::FHADD";
10893  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
10894  case X86ISD::FMAX:               return "X86ISD::FMAX";
10895  case X86ISD::FMIN:               return "X86ISD::FMIN";
10896  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10897  case X86ISD::FRCP:               return "X86ISD::FRCP";
10898  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
10899  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
10900  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
10901  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
10902  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
10903  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
10904  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
10905  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
10906  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
10907  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
10908  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
10909  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
10910  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
10911  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
10912  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
10913  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
10914  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
10915  case X86ISD::VSHL:               return "X86ISD::VSHL";
10916  case X86ISD::VSRL:               return "X86ISD::VSRL";
10917  case X86ISD::VSRA:               return "X86ISD::VSRA";
10918  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
10919  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
10920  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
10921  case X86ISD::CMPP:               return "X86ISD::CMPP";
10922  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
10923  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
10924  case X86ISD::ADD:                return "X86ISD::ADD";
10925  case X86ISD::SUB:                return "X86ISD::SUB";
10926  case X86ISD::ADC:                return "X86ISD::ADC";
10927  case X86ISD::SBB:                return "X86ISD::SBB";
10928  case X86ISD::SMUL:               return "X86ISD::SMUL";
10929  case X86ISD::UMUL:               return "X86ISD::UMUL";
10930  case X86ISD::INC:                return "X86ISD::INC";
10931  case X86ISD::DEC:                return "X86ISD::DEC";
10932  case X86ISD::OR:                 return "X86ISD::OR";
10933  case X86ISD::XOR:                return "X86ISD::XOR";
10934  case X86ISD::AND:                return "X86ISD::AND";
10935  case X86ISD::ANDN:               return "X86ISD::ANDN";
10936  case X86ISD::BLSI:               return "X86ISD::BLSI";
10937  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
10938  case X86ISD::BLSR:               return "X86ISD::BLSR";
10939  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
10940  case X86ISD::PTEST:              return "X86ISD::PTEST";
10941  case X86ISD::TESTP:              return "X86ISD::TESTP";
10942  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
10943  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
10944  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
10945  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10946  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
10947  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10948  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10949  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10950  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
10951  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
10952  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
10953  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
10954  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
10955  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
10956  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
10957  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
10958  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
10959  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
10960  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
10961  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
10962  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
10963  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
10964  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
10965  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
10966  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
10967  }
10968}
10969
10970// isLegalAddressingMode - Return true if the addressing mode represented
10971// by AM is legal for this target, for a load/store of the specified type.
10972bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
10973                                              Type *Ty) const {
10974  // X86 supports extremely general addressing modes.
10975  CodeModel::Model M = getTargetMachine().getCodeModel();
10976  Reloc::Model R = getTargetMachine().getRelocationModel();
10977
10978  // X86 allows a sign-extended 32-bit immediate field as a displacement.
10979  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
10980    return false;
10981
10982  if (AM.BaseGV) {
10983    unsigned GVFlags =
10984      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
10985
10986    // If a reference to this global requires an extra load, we can't fold it.
10987    if (isGlobalStubReference(GVFlags))
10988      return false;
10989
10990    // If BaseGV requires a register for the PIC base, we cannot also have a
10991    // BaseReg specified.
10992    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
10993      return false;
10994
10995    // If lower 4G is not available, then we must use rip-relative addressing.
10996    if ((M != CodeModel::Small || R != Reloc::Static) &&
10997        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
10998      return false;
10999  }
11000
11001  switch (AM.Scale) {
11002  case 0:
11003  case 1:
11004  case 2:
11005  case 4:
11006  case 8:
11007    // These scales always work.
11008    break;
11009  case 3:
11010  case 5:
11011  case 9:
11012    // These scales are formed with basereg+scalereg.  Only accept if there is
11013    // no basereg yet.
11014    if (AM.HasBaseReg)
11015      return false;
11016    break;
11017  default:  // Other stuff never works.
11018    return false;
11019  }
11020
11021  return true;
11022}
11023
11024
11025bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11026  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11027    return false;
11028  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11029  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11030  if (NumBits1 <= NumBits2)
11031    return false;
11032  return true;
11033}
11034
11035bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11036  if (!VT1.isInteger() || !VT2.isInteger())
11037    return false;
11038  unsigned NumBits1 = VT1.getSizeInBits();
11039  unsigned NumBits2 = VT2.getSizeInBits();
11040  if (NumBits1 <= NumBits2)
11041    return false;
11042  return true;
11043}
11044
11045bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11046  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11047  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11048}
11049
11050bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11051  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11052  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11053}
11054
11055bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11056  // i16 instructions are longer (0x66 prefix) and potentially slower.
11057  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11058}
11059
11060/// isShuffleMaskLegal - Targets can use this to indicate that they only
11061/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11062/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11063/// are assumed to be legal.
11064bool
11065X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11066                                      EVT VT) const {
11067  // Very little shuffling can be done for 64-bit vectors right now.
11068  if (VT.getSizeInBits() == 64)
11069    return false;
11070
11071  // FIXME: pshufb, blends, shifts.
11072  return (VT.getVectorNumElements() == 2 ||
11073          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11074          isMOVLMask(M, VT) ||
11075          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11076          isPSHUFDMask(M, VT) ||
11077          isPSHUFHWMask(M, VT) ||
11078          isPSHUFLWMask(M, VT) ||
11079          isPALIGNRMask(M, VT, Subtarget) ||
11080          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11081          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11082          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11083          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11084}
11085
11086bool
11087X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11088                                          EVT VT) const {
11089  unsigned NumElts = VT.getVectorNumElements();
11090  // FIXME: This collection of masks seems suspect.
11091  if (NumElts == 2)
11092    return true;
11093  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11094    return (isMOVLMask(Mask, VT)  ||
11095            isCommutedMOVLMask(Mask, VT, true) ||
11096            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11097            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11098  }
11099  return false;
11100}
11101
11102//===----------------------------------------------------------------------===//
11103//                           X86 Scheduler Hooks
11104//===----------------------------------------------------------------------===//
11105
11106// private utility function
11107MachineBasicBlock *
11108X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11109                                                       MachineBasicBlock *MBB,
11110                                                       unsigned regOpc,
11111                                                       unsigned immOpc,
11112                                                       unsigned LoadOpc,
11113                                                       unsigned CXchgOpc,
11114                                                       unsigned notOpc,
11115                                                       unsigned EAXreg,
11116                                                       TargetRegisterClass *RC,
11117                                                       bool invSrc) const {
11118  // For the atomic bitwise operator, we generate
11119  //   thisMBB:
11120  //   newMBB:
11121  //     ld  t1 = [bitinstr.addr]
11122  //     op  t2 = t1, [bitinstr.val]
11123  //     mov EAX = t1
11124  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11125  //     bz  newMBB
11126  //     fallthrough -->nextMBB
11127  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11128  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11129  MachineFunction::iterator MBBIter = MBB;
11130  ++MBBIter;
11131
11132  /// First build the CFG
11133  MachineFunction *F = MBB->getParent();
11134  MachineBasicBlock *thisMBB = MBB;
11135  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11136  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11137  F->insert(MBBIter, newMBB);
11138  F->insert(MBBIter, nextMBB);
11139
11140  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11141  nextMBB->splice(nextMBB->begin(), thisMBB,
11142                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11143                  thisMBB->end());
11144  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11145
11146  // Update thisMBB to fall through to newMBB
11147  thisMBB->addSuccessor(newMBB);
11148
11149  // newMBB jumps to itself and fall through to nextMBB
11150  newMBB->addSuccessor(nextMBB);
11151  newMBB->addSuccessor(newMBB);
11152
11153  // Insert instructions into newMBB based on incoming instruction
11154  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11155         "unexpected number of operands");
11156  DebugLoc dl = bInstr->getDebugLoc();
11157  MachineOperand& destOper = bInstr->getOperand(0);
11158  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11159  int numArgs = bInstr->getNumOperands() - 1;
11160  for (int i=0; i < numArgs; ++i)
11161    argOpers[i] = &bInstr->getOperand(i+1);
11162
11163  // x86 address has 4 operands: base, index, scale, and displacement
11164  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11165  int valArgIndx = lastAddrIndx + 1;
11166
11167  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11168  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11169  for (int i=0; i <= lastAddrIndx; ++i)
11170    (*MIB).addOperand(*argOpers[i]);
11171
11172  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11173  if (invSrc) {
11174    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11175  }
11176  else
11177    tt = t1;
11178
11179  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11180  assert((argOpers[valArgIndx]->isReg() ||
11181          argOpers[valArgIndx]->isImm()) &&
11182         "invalid operand");
11183  if (argOpers[valArgIndx]->isReg())
11184    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11185  else
11186    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11187  MIB.addReg(tt);
11188  (*MIB).addOperand(*argOpers[valArgIndx]);
11189
11190  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11191  MIB.addReg(t1);
11192
11193  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11194  for (int i=0; i <= lastAddrIndx; ++i)
11195    (*MIB).addOperand(*argOpers[i]);
11196  MIB.addReg(t2);
11197  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11198  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11199                    bInstr->memoperands_end());
11200
11201  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11202  MIB.addReg(EAXreg);
11203
11204  // insert branch
11205  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11206
11207  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11208  return nextMBB;
11209}
11210
11211// private utility function:  64 bit atomics on 32 bit host.
11212MachineBasicBlock *
11213X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11214                                                       MachineBasicBlock *MBB,
11215                                                       unsigned regOpcL,
11216                                                       unsigned regOpcH,
11217                                                       unsigned immOpcL,
11218                                                       unsigned immOpcH,
11219                                                       bool invSrc) const {
11220  // For the atomic bitwise operator, we generate
11221  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11222  //     ld t1,t2 = [bitinstr.addr]
11223  //   newMBB:
11224  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11225  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11226  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11227  //     mov ECX, EBX <- t5, t6
11228  //     mov EAX, EDX <- t1, t2
11229  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11230  //     mov t3, t4 <- EAX, EDX
11231  //     bz  newMBB
11232  //     result in out1, out2
11233  //     fallthrough -->nextMBB
11234
11235  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11236  const unsigned LoadOpc = X86::MOV32rm;
11237  const unsigned NotOpc = X86::NOT32r;
11238  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11239  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11240  MachineFunction::iterator MBBIter = MBB;
11241  ++MBBIter;
11242
11243  /// First build the CFG
11244  MachineFunction *F = MBB->getParent();
11245  MachineBasicBlock *thisMBB = MBB;
11246  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11247  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11248  F->insert(MBBIter, newMBB);
11249  F->insert(MBBIter, nextMBB);
11250
11251  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11252  nextMBB->splice(nextMBB->begin(), thisMBB,
11253                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11254                  thisMBB->end());
11255  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11256
11257  // Update thisMBB to fall through to newMBB
11258  thisMBB->addSuccessor(newMBB);
11259
11260  // newMBB jumps to itself and fall through to nextMBB
11261  newMBB->addSuccessor(nextMBB);
11262  newMBB->addSuccessor(newMBB);
11263
11264  DebugLoc dl = bInstr->getDebugLoc();
11265  // Insert instructions into newMBB based on incoming instruction
11266  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11267  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11268         "unexpected number of operands");
11269  MachineOperand& dest1Oper = bInstr->getOperand(0);
11270  MachineOperand& dest2Oper = bInstr->getOperand(1);
11271  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11272  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11273    argOpers[i] = &bInstr->getOperand(i+2);
11274
11275    // We use some of the operands multiple times, so conservatively just
11276    // clear any kill flags that might be present.
11277    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11278      argOpers[i]->setIsKill(false);
11279  }
11280
11281  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11282  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11283
11284  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11285  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11286  for (int i=0; i <= lastAddrIndx; ++i)
11287    (*MIB).addOperand(*argOpers[i]);
11288  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11289  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11290  // add 4 to displacement.
11291  for (int i=0; i <= lastAddrIndx-2; ++i)
11292    (*MIB).addOperand(*argOpers[i]);
11293  MachineOperand newOp3 = *(argOpers[3]);
11294  if (newOp3.isImm())
11295    newOp3.setImm(newOp3.getImm()+4);
11296  else
11297    newOp3.setOffset(newOp3.getOffset()+4);
11298  (*MIB).addOperand(newOp3);
11299  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11300
11301  // t3/4 are defined later, at the bottom of the loop
11302  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11303  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11304  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11305    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11306  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11307    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11308
11309  // The subsequent operations should be using the destination registers of
11310  //the PHI instructions.
11311  if (invSrc) {
11312    t1 = F->getRegInfo().createVirtualRegister(RC);
11313    t2 = F->getRegInfo().createVirtualRegister(RC);
11314    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11315    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11316  } else {
11317    t1 = dest1Oper.getReg();
11318    t2 = dest2Oper.getReg();
11319  }
11320
11321  int valArgIndx = lastAddrIndx + 1;
11322  assert((argOpers[valArgIndx]->isReg() ||
11323          argOpers[valArgIndx]->isImm()) &&
11324         "invalid operand");
11325  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11326  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11327  if (argOpers[valArgIndx]->isReg())
11328    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11329  else
11330    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11331  if (regOpcL != X86::MOV32rr)
11332    MIB.addReg(t1);
11333  (*MIB).addOperand(*argOpers[valArgIndx]);
11334  assert(argOpers[valArgIndx + 1]->isReg() ==
11335         argOpers[valArgIndx]->isReg());
11336  assert(argOpers[valArgIndx + 1]->isImm() ==
11337         argOpers[valArgIndx]->isImm());
11338  if (argOpers[valArgIndx + 1]->isReg())
11339    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11340  else
11341    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11342  if (regOpcH != X86::MOV32rr)
11343    MIB.addReg(t2);
11344  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11345
11346  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11347  MIB.addReg(t1);
11348  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11349  MIB.addReg(t2);
11350
11351  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11352  MIB.addReg(t5);
11353  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11354  MIB.addReg(t6);
11355
11356  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11357  for (int i=0; i <= lastAddrIndx; ++i)
11358    (*MIB).addOperand(*argOpers[i]);
11359
11360  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11361  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11362                    bInstr->memoperands_end());
11363
11364  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11365  MIB.addReg(X86::EAX);
11366  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11367  MIB.addReg(X86::EDX);
11368
11369  // insert branch
11370  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11371
11372  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11373  return nextMBB;
11374}
11375
11376// private utility function
11377MachineBasicBlock *
11378X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11379                                                      MachineBasicBlock *MBB,
11380                                                      unsigned cmovOpc) const {
11381  // For the atomic min/max operator, we generate
11382  //   thisMBB:
11383  //   newMBB:
11384  //     ld t1 = [min/max.addr]
11385  //     mov t2 = [min/max.val]
11386  //     cmp  t1, t2
11387  //     cmov[cond] t2 = t1
11388  //     mov EAX = t1
11389  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11390  //     bz   newMBB
11391  //     fallthrough -->nextMBB
11392  //
11393  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11394  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11395  MachineFunction::iterator MBBIter = MBB;
11396  ++MBBIter;
11397
11398  /// First build the CFG
11399  MachineFunction *F = MBB->getParent();
11400  MachineBasicBlock *thisMBB = MBB;
11401  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11402  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11403  F->insert(MBBIter, newMBB);
11404  F->insert(MBBIter, nextMBB);
11405
11406  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11407  nextMBB->splice(nextMBB->begin(), thisMBB,
11408                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11409                  thisMBB->end());
11410  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11411
11412  // Update thisMBB to fall through to newMBB
11413  thisMBB->addSuccessor(newMBB);
11414
11415  // newMBB jumps to newMBB and fall through to nextMBB
11416  newMBB->addSuccessor(nextMBB);
11417  newMBB->addSuccessor(newMBB);
11418
11419  DebugLoc dl = mInstr->getDebugLoc();
11420  // Insert instructions into newMBB based on incoming instruction
11421  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11422         "unexpected number of operands");
11423  MachineOperand& destOper = mInstr->getOperand(0);
11424  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11425  int numArgs = mInstr->getNumOperands() - 1;
11426  for (int i=0; i < numArgs; ++i)
11427    argOpers[i] = &mInstr->getOperand(i+1);
11428
11429  // x86 address has 4 operands: base, index, scale, and displacement
11430  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11431  int valArgIndx = lastAddrIndx + 1;
11432
11433  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11434  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11435  for (int i=0; i <= lastAddrIndx; ++i)
11436    (*MIB).addOperand(*argOpers[i]);
11437
11438  // We only support register and immediate values
11439  assert((argOpers[valArgIndx]->isReg() ||
11440          argOpers[valArgIndx]->isImm()) &&
11441         "invalid operand");
11442
11443  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11444  if (argOpers[valArgIndx]->isReg())
11445    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11446  else
11447    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11448  (*MIB).addOperand(*argOpers[valArgIndx]);
11449
11450  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11451  MIB.addReg(t1);
11452
11453  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11454  MIB.addReg(t1);
11455  MIB.addReg(t2);
11456
11457  // Generate movc
11458  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11459  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11460  MIB.addReg(t2);
11461  MIB.addReg(t1);
11462
11463  // Cmp and exchange if none has modified the memory location
11464  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11465  for (int i=0; i <= lastAddrIndx; ++i)
11466    (*MIB).addOperand(*argOpers[i]);
11467  MIB.addReg(t3);
11468  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11469  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11470                    mInstr->memoperands_end());
11471
11472  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11473  MIB.addReg(X86::EAX);
11474
11475  // insert branch
11476  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11477
11478  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11479  return nextMBB;
11480}
11481
11482// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11483// or XMM0_V32I8 in AVX all of this code can be replaced with that
11484// in the .td file.
11485MachineBasicBlock *
11486X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11487                            unsigned numArgs, bool memArg) const {
11488  assert(Subtarget->hasSSE42() &&
11489         "Target must have SSE4.2 or AVX features enabled");
11490
11491  DebugLoc dl = MI->getDebugLoc();
11492  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11493  unsigned Opc;
11494  if (!Subtarget->hasAVX()) {
11495    if (memArg)
11496      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11497    else
11498      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11499  } else {
11500    if (memArg)
11501      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11502    else
11503      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11504  }
11505
11506  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11507  for (unsigned i = 0; i < numArgs; ++i) {
11508    MachineOperand &Op = MI->getOperand(i+1);
11509    if (!(Op.isReg() && Op.isImplicit()))
11510      MIB.addOperand(Op);
11511  }
11512  BuildMI(*BB, MI, dl,
11513    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11514             MI->getOperand(0).getReg())
11515    .addReg(X86::XMM0);
11516
11517  MI->eraseFromParent();
11518  return BB;
11519}
11520
11521MachineBasicBlock *
11522X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11523  DebugLoc dl = MI->getDebugLoc();
11524  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11525
11526  // Address into RAX/EAX, other two args into ECX, EDX.
11527  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11528  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11529  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11530  for (int i = 0; i < X86::AddrNumOperands; ++i)
11531    MIB.addOperand(MI->getOperand(i));
11532
11533  unsigned ValOps = X86::AddrNumOperands;
11534  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11535    .addReg(MI->getOperand(ValOps).getReg());
11536  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11537    .addReg(MI->getOperand(ValOps+1).getReg());
11538
11539  // The instruction doesn't actually take any operands though.
11540  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11541
11542  MI->eraseFromParent(); // The pseudo is gone now.
11543  return BB;
11544}
11545
11546MachineBasicBlock *
11547X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11548  DebugLoc dl = MI->getDebugLoc();
11549  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11550
11551  // First arg in ECX, the second in EAX.
11552  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11553    .addReg(MI->getOperand(0).getReg());
11554  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11555    .addReg(MI->getOperand(1).getReg());
11556
11557  // The instruction doesn't actually take any operands though.
11558  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11559
11560  MI->eraseFromParent(); // The pseudo is gone now.
11561  return BB;
11562}
11563
11564MachineBasicBlock *
11565X86TargetLowering::EmitVAARG64WithCustomInserter(
11566                   MachineInstr *MI,
11567                   MachineBasicBlock *MBB) const {
11568  // Emit va_arg instruction on X86-64.
11569
11570  // Operands to this pseudo-instruction:
11571  // 0  ) Output        : destination address (reg)
11572  // 1-5) Input         : va_list address (addr, i64mem)
11573  // 6  ) ArgSize       : Size (in bytes) of vararg type
11574  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11575  // 8  ) Align         : Alignment of type
11576  // 9  ) EFLAGS (implicit-def)
11577
11578  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11579  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11580
11581  unsigned DestReg = MI->getOperand(0).getReg();
11582  MachineOperand &Base = MI->getOperand(1);
11583  MachineOperand &Scale = MI->getOperand(2);
11584  MachineOperand &Index = MI->getOperand(3);
11585  MachineOperand &Disp = MI->getOperand(4);
11586  MachineOperand &Segment = MI->getOperand(5);
11587  unsigned ArgSize = MI->getOperand(6).getImm();
11588  unsigned ArgMode = MI->getOperand(7).getImm();
11589  unsigned Align = MI->getOperand(8).getImm();
11590
11591  // Memory Reference
11592  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11593  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11594  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11595
11596  // Machine Information
11597  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11598  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11599  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11600  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11601  DebugLoc DL = MI->getDebugLoc();
11602
11603  // struct va_list {
11604  //   i32   gp_offset
11605  //   i32   fp_offset
11606  //   i64   overflow_area (address)
11607  //   i64   reg_save_area (address)
11608  // }
11609  // sizeof(va_list) = 24
11610  // alignment(va_list) = 8
11611
11612  unsigned TotalNumIntRegs = 6;
11613  unsigned TotalNumXMMRegs = 8;
11614  bool UseGPOffset = (ArgMode == 1);
11615  bool UseFPOffset = (ArgMode == 2);
11616  unsigned MaxOffset = TotalNumIntRegs * 8 +
11617                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11618
11619  /* Align ArgSize to a multiple of 8 */
11620  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11621  bool NeedsAlign = (Align > 8);
11622
11623  MachineBasicBlock *thisMBB = MBB;
11624  MachineBasicBlock *overflowMBB;
11625  MachineBasicBlock *offsetMBB;
11626  MachineBasicBlock *endMBB;
11627
11628  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11629  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11630  unsigned OffsetReg = 0;
11631
11632  if (!UseGPOffset && !UseFPOffset) {
11633    // If we only pull from the overflow region, we don't create a branch.
11634    // We don't need to alter control flow.
11635    OffsetDestReg = 0; // unused
11636    OverflowDestReg = DestReg;
11637
11638    offsetMBB = NULL;
11639    overflowMBB = thisMBB;
11640    endMBB = thisMBB;
11641  } else {
11642    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11643    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11644    // If not, pull from overflow_area. (branch to overflowMBB)
11645    //
11646    //       thisMBB
11647    //         |     .
11648    //         |        .
11649    //     offsetMBB   overflowMBB
11650    //         |        .
11651    //         |     .
11652    //        endMBB
11653
11654    // Registers for the PHI in endMBB
11655    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11656    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11657
11658    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11659    MachineFunction *MF = MBB->getParent();
11660    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11661    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11662    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11663
11664    MachineFunction::iterator MBBIter = MBB;
11665    ++MBBIter;
11666
11667    // Insert the new basic blocks
11668    MF->insert(MBBIter, offsetMBB);
11669    MF->insert(MBBIter, overflowMBB);
11670    MF->insert(MBBIter, endMBB);
11671
11672    // Transfer the remainder of MBB and its successor edges to endMBB.
11673    endMBB->splice(endMBB->begin(), thisMBB,
11674                    llvm::next(MachineBasicBlock::iterator(MI)),
11675                    thisMBB->end());
11676    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11677
11678    // Make offsetMBB and overflowMBB successors of thisMBB
11679    thisMBB->addSuccessor(offsetMBB);
11680    thisMBB->addSuccessor(overflowMBB);
11681
11682    // endMBB is a successor of both offsetMBB and overflowMBB
11683    offsetMBB->addSuccessor(endMBB);
11684    overflowMBB->addSuccessor(endMBB);
11685
11686    // Load the offset value into a register
11687    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11688    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11689      .addOperand(Base)
11690      .addOperand(Scale)
11691      .addOperand(Index)
11692      .addDisp(Disp, UseFPOffset ? 4 : 0)
11693      .addOperand(Segment)
11694      .setMemRefs(MMOBegin, MMOEnd);
11695
11696    // Check if there is enough room left to pull this argument.
11697    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11698      .addReg(OffsetReg)
11699      .addImm(MaxOffset + 8 - ArgSizeA8);
11700
11701    // Branch to "overflowMBB" if offset >= max
11702    // Fall through to "offsetMBB" otherwise
11703    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11704      .addMBB(overflowMBB);
11705  }
11706
11707  // In offsetMBB, emit code to use the reg_save_area.
11708  if (offsetMBB) {
11709    assert(OffsetReg != 0);
11710
11711    // Read the reg_save_area address.
11712    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11713    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11714      .addOperand(Base)
11715      .addOperand(Scale)
11716      .addOperand(Index)
11717      .addDisp(Disp, 16)
11718      .addOperand(Segment)
11719      .setMemRefs(MMOBegin, MMOEnd);
11720
11721    // Zero-extend the offset
11722    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11723      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11724        .addImm(0)
11725        .addReg(OffsetReg)
11726        .addImm(X86::sub_32bit);
11727
11728    // Add the offset to the reg_save_area to get the final address.
11729    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11730      .addReg(OffsetReg64)
11731      .addReg(RegSaveReg);
11732
11733    // Compute the offset for the next argument
11734    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11735    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11736      .addReg(OffsetReg)
11737      .addImm(UseFPOffset ? 16 : 8);
11738
11739    // Store it back into the va_list.
11740    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11741      .addOperand(Base)
11742      .addOperand(Scale)
11743      .addOperand(Index)
11744      .addDisp(Disp, UseFPOffset ? 4 : 0)
11745      .addOperand(Segment)
11746      .addReg(NextOffsetReg)
11747      .setMemRefs(MMOBegin, MMOEnd);
11748
11749    // Jump to endMBB
11750    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11751      .addMBB(endMBB);
11752  }
11753
11754  //
11755  // Emit code to use overflow area
11756  //
11757
11758  // Load the overflow_area address into a register.
11759  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11760  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11761    .addOperand(Base)
11762    .addOperand(Scale)
11763    .addOperand(Index)
11764    .addDisp(Disp, 8)
11765    .addOperand(Segment)
11766    .setMemRefs(MMOBegin, MMOEnd);
11767
11768  // If we need to align it, do so. Otherwise, just copy the address
11769  // to OverflowDestReg.
11770  if (NeedsAlign) {
11771    // Align the overflow address
11772    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11773    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11774
11775    // aligned_addr = (addr + (align-1)) & ~(align-1)
11776    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11777      .addReg(OverflowAddrReg)
11778      .addImm(Align-1);
11779
11780    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11781      .addReg(TmpReg)
11782      .addImm(~(uint64_t)(Align-1));
11783  } else {
11784    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11785      .addReg(OverflowAddrReg);
11786  }
11787
11788  // Compute the next overflow address after this argument.
11789  // (the overflow address should be kept 8-byte aligned)
11790  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11791  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11792    .addReg(OverflowDestReg)
11793    .addImm(ArgSizeA8);
11794
11795  // Store the new overflow address.
11796  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11797    .addOperand(Base)
11798    .addOperand(Scale)
11799    .addOperand(Index)
11800    .addDisp(Disp, 8)
11801    .addOperand(Segment)
11802    .addReg(NextAddrReg)
11803    .setMemRefs(MMOBegin, MMOEnd);
11804
11805  // If we branched, emit the PHI to the front of endMBB.
11806  if (offsetMBB) {
11807    BuildMI(*endMBB, endMBB->begin(), DL,
11808            TII->get(X86::PHI), DestReg)
11809      .addReg(OffsetDestReg).addMBB(offsetMBB)
11810      .addReg(OverflowDestReg).addMBB(overflowMBB);
11811  }
11812
11813  // Erase the pseudo instruction
11814  MI->eraseFromParent();
11815
11816  return endMBB;
11817}
11818
11819MachineBasicBlock *
11820X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11821                                                 MachineInstr *MI,
11822                                                 MachineBasicBlock *MBB) const {
11823  // Emit code to save XMM registers to the stack. The ABI says that the
11824  // number of registers to save is given in %al, so it's theoretically
11825  // possible to do an indirect jump trick to avoid saving all of them,
11826  // however this code takes a simpler approach and just executes all
11827  // of the stores if %al is non-zero. It's less code, and it's probably
11828  // easier on the hardware branch predictor, and stores aren't all that
11829  // expensive anyway.
11830
11831  // Create the new basic blocks. One block contains all the XMM stores,
11832  // and one block is the final destination regardless of whether any
11833  // stores were performed.
11834  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11835  MachineFunction *F = MBB->getParent();
11836  MachineFunction::iterator MBBIter = MBB;
11837  ++MBBIter;
11838  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11839  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11840  F->insert(MBBIter, XMMSaveMBB);
11841  F->insert(MBBIter, EndMBB);
11842
11843  // Transfer the remainder of MBB and its successor edges to EndMBB.
11844  EndMBB->splice(EndMBB->begin(), MBB,
11845                 llvm::next(MachineBasicBlock::iterator(MI)),
11846                 MBB->end());
11847  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11848
11849  // The original block will now fall through to the XMM save block.
11850  MBB->addSuccessor(XMMSaveMBB);
11851  // The XMMSaveMBB will fall through to the end block.
11852  XMMSaveMBB->addSuccessor(EndMBB);
11853
11854  // Now add the instructions.
11855  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11856  DebugLoc DL = MI->getDebugLoc();
11857
11858  unsigned CountReg = MI->getOperand(0).getReg();
11859  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11860  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11861
11862  if (!Subtarget->isTargetWin64()) {
11863    // If %al is 0, branch around the XMM save block.
11864    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11865    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11866    MBB->addSuccessor(EndMBB);
11867  }
11868
11869  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11870  // In the XMM save block, save all the XMM argument registers.
11871  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11872    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11873    MachineMemOperand *MMO =
11874      F->getMachineMemOperand(
11875          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11876        MachineMemOperand::MOStore,
11877        /*Size=*/16, /*Align=*/16);
11878    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11879      .addFrameIndex(RegSaveFrameIndex)
11880      .addImm(/*Scale=*/1)
11881      .addReg(/*IndexReg=*/0)
11882      .addImm(/*Disp=*/Offset)
11883      .addReg(/*Segment=*/0)
11884      .addReg(MI->getOperand(i).getReg())
11885      .addMemOperand(MMO);
11886  }
11887
11888  MI->eraseFromParent();   // The pseudo instruction is gone now.
11889
11890  return EndMBB;
11891}
11892
11893MachineBasicBlock *
11894X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11895                                     MachineBasicBlock *BB) const {
11896  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11897  DebugLoc DL = MI->getDebugLoc();
11898
11899  // To "insert" a SELECT_CC instruction, we actually have to insert the
11900  // diamond control-flow pattern.  The incoming instruction knows the
11901  // destination vreg to set, the condition code register to branch on, the
11902  // true/false values to select between, and a branch opcode to use.
11903  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11904  MachineFunction::iterator It = BB;
11905  ++It;
11906
11907  //  thisMBB:
11908  //  ...
11909  //   TrueVal = ...
11910  //   cmpTY ccX, r1, r2
11911  //   bCC copy1MBB
11912  //   fallthrough --> copy0MBB
11913  MachineBasicBlock *thisMBB = BB;
11914  MachineFunction *F = BB->getParent();
11915  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11916  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11917  F->insert(It, copy0MBB);
11918  F->insert(It, sinkMBB);
11919
11920  // If the EFLAGS register isn't dead in the terminator, then claim that it's
11921  // live into the sink and copy blocks.
11922  if (!MI->killsRegister(X86::EFLAGS)) {
11923    copy0MBB->addLiveIn(X86::EFLAGS);
11924    sinkMBB->addLiveIn(X86::EFLAGS);
11925  }
11926
11927  // Transfer the remainder of BB and its successor edges to sinkMBB.
11928  sinkMBB->splice(sinkMBB->begin(), BB,
11929                  llvm::next(MachineBasicBlock::iterator(MI)),
11930                  BB->end());
11931  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11932
11933  // Add the true and fallthrough blocks as its successors.
11934  BB->addSuccessor(copy0MBB);
11935  BB->addSuccessor(sinkMBB);
11936
11937  // Create the conditional branch instruction.
11938  unsigned Opc =
11939    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11940  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11941
11942  //  copy0MBB:
11943  //   %FalseValue = ...
11944  //   # fallthrough to sinkMBB
11945  copy0MBB->addSuccessor(sinkMBB);
11946
11947  //  sinkMBB:
11948  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11949  //  ...
11950  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11951          TII->get(X86::PHI), MI->getOperand(0).getReg())
11952    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11953    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11954
11955  MI->eraseFromParent();   // The pseudo instruction is gone now.
11956  return sinkMBB;
11957}
11958
11959MachineBasicBlock *
11960X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
11961                                        bool Is64Bit) const {
11962  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11963  DebugLoc DL = MI->getDebugLoc();
11964  MachineFunction *MF = BB->getParent();
11965  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11966
11967  assert(getTargetMachine().Options.EnableSegmentedStacks);
11968
11969  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
11970  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
11971
11972  // BB:
11973  //  ... [Till the alloca]
11974  // If stacklet is not large enough, jump to mallocMBB
11975  //
11976  // bumpMBB:
11977  //  Allocate by subtracting from RSP
11978  //  Jump to continueMBB
11979  //
11980  // mallocMBB:
11981  //  Allocate by call to runtime
11982  //
11983  // continueMBB:
11984  //  ...
11985  //  [rest of original BB]
11986  //
11987
11988  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11989  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11990  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11991
11992  MachineRegisterInfo &MRI = MF->getRegInfo();
11993  const TargetRegisterClass *AddrRegClass =
11994    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
11995
11996  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
11997    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
11998    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
11999    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12000    sizeVReg = MI->getOperand(1).getReg(),
12001    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12002
12003  MachineFunction::iterator MBBIter = BB;
12004  ++MBBIter;
12005
12006  MF->insert(MBBIter, bumpMBB);
12007  MF->insert(MBBIter, mallocMBB);
12008  MF->insert(MBBIter, continueMBB);
12009
12010  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12011                      (MachineBasicBlock::iterator(MI)), BB->end());
12012  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12013
12014  // Add code to the main basic block to check if the stack limit has been hit,
12015  // and if so, jump to mallocMBB otherwise to bumpMBB.
12016  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12017  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12018    .addReg(tmpSPVReg).addReg(sizeVReg);
12019  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12020    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12021    .addReg(SPLimitVReg);
12022  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12023
12024  // bumpMBB simply decreases the stack pointer, since we know the current
12025  // stacklet has enough space.
12026  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12027    .addReg(SPLimitVReg);
12028  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12029    .addReg(SPLimitVReg);
12030  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12031
12032  // Calls into a routine in libgcc to allocate more space from the heap.
12033  if (Is64Bit) {
12034    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12035      .addReg(sizeVReg);
12036    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12037    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
12038  } else {
12039    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12040      .addImm(12);
12041    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12042    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12043      .addExternalSymbol("__morestack_allocate_stack_space");
12044  }
12045
12046  if (!Is64Bit)
12047    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12048      .addImm(16);
12049
12050  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12051    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12052  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12053
12054  // Set up the CFG correctly.
12055  BB->addSuccessor(bumpMBB);
12056  BB->addSuccessor(mallocMBB);
12057  mallocMBB->addSuccessor(continueMBB);
12058  bumpMBB->addSuccessor(continueMBB);
12059
12060  // Take care of the PHI nodes.
12061  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12062          MI->getOperand(0).getReg())
12063    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12064    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12065
12066  // Delete the original pseudo instruction.
12067  MI->eraseFromParent();
12068
12069  // And we're done.
12070  return continueMBB;
12071}
12072
12073MachineBasicBlock *
12074X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12075                                          MachineBasicBlock *BB) const {
12076  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12077  DebugLoc DL = MI->getDebugLoc();
12078
12079  assert(!Subtarget->isTargetEnvMacho());
12080
12081  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12082  // non-trivial part is impdef of ESP.
12083
12084  if (Subtarget->isTargetWin64()) {
12085    if (Subtarget->isTargetCygMing()) {
12086      // ___chkstk(Mingw64):
12087      // Clobbers R10, R11, RAX and EFLAGS.
12088      // Updates RSP.
12089      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12090        .addExternalSymbol("___chkstk")
12091        .addReg(X86::RAX, RegState::Implicit)
12092        .addReg(X86::RSP, RegState::Implicit)
12093        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12094        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12095        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12096    } else {
12097      // __chkstk(MSVCRT): does not update stack pointer.
12098      // Clobbers R10, R11 and EFLAGS.
12099      // FIXME: RAX(allocated size) might be reused and not killed.
12100      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12101        .addExternalSymbol("__chkstk")
12102        .addReg(X86::RAX, RegState::Implicit)
12103        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12104      // RAX has the offset to subtracted from RSP.
12105      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12106        .addReg(X86::RSP)
12107        .addReg(X86::RAX);
12108    }
12109  } else {
12110    const char *StackProbeSymbol =
12111      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12112
12113    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12114      .addExternalSymbol(StackProbeSymbol)
12115      .addReg(X86::EAX, RegState::Implicit)
12116      .addReg(X86::ESP, RegState::Implicit)
12117      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12118      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12119      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12120  }
12121
12122  MI->eraseFromParent();   // The pseudo instruction is gone now.
12123  return BB;
12124}
12125
12126MachineBasicBlock *
12127X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12128                                      MachineBasicBlock *BB) const {
12129  // This is pretty easy.  We're taking the value that we received from
12130  // our load from the relocation, sticking it in either RDI (x86-64)
12131  // or EAX and doing an indirect call.  The return value will then
12132  // be in the normal return register.
12133  const X86InstrInfo *TII
12134    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12135  DebugLoc DL = MI->getDebugLoc();
12136  MachineFunction *F = BB->getParent();
12137
12138  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12139  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12140
12141  if (Subtarget->is64Bit()) {
12142    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12143                                      TII->get(X86::MOV64rm), X86::RDI)
12144    .addReg(X86::RIP)
12145    .addImm(0).addReg(0)
12146    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12147                      MI->getOperand(3).getTargetFlags())
12148    .addReg(0);
12149    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12150    addDirectMem(MIB, X86::RDI);
12151  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12152    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12153                                      TII->get(X86::MOV32rm), X86::EAX)
12154    .addReg(0)
12155    .addImm(0).addReg(0)
12156    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12157                      MI->getOperand(3).getTargetFlags())
12158    .addReg(0);
12159    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12160    addDirectMem(MIB, X86::EAX);
12161  } else {
12162    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12163                                      TII->get(X86::MOV32rm), X86::EAX)
12164    .addReg(TII->getGlobalBaseReg(F))
12165    .addImm(0).addReg(0)
12166    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12167                      MI->getOperand(3).getTargetFlags())
12168    .addReg(0);
12169    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12170    addDirectMem(MIB, X86::EAX);
12171  }
12172
12173  MI->eraseFromParent(); // The pseudo instruction is gone now.
12174  return BB;
12175}
12176
12177MachineBasicBlock *
12178X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12179                                               MachineBasicBlock *BB) const {
12180  switch (MI->getOpcode()) {
12181  default: assert(0 && "Unexpected instr type to insert");
12182  case X86::TAILJMPd64:
12183  case X86::TAILJMPr64:
12184  case X86::TAILJMPm64:
12185    assert(0 && "TAILJMP64 would not be touched here.");
12186  case X86::TCRETURNdi64:
12187  case X86::TCRETURNri64:
12188  case X86::TCRETURNmi64:
12189    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
12190    // On AMD64, additional defs should be added before register allocation.
12191    if (!Subtarget->isTargetWin64()) {
12192      MI->addRegisterDefined(X86::RSI);
12193      MI->addRegisterDefined(X86::RDI);
12194      MI->addRegisterDefined(X86::XMM6);
12195      MI->addRegisterDefined(X86::XMM7);
12196      MI->addRegisterDefined(X86::XMM8);
12197      MI->addRegisterDefined(X86::XMM9);
12198      MI->addRegisterDefined(X86::XMM10);
12199      MI->addRegisterDefined(X86::XMM11);
12200      MI->addRegisterDefined(X86::XMM12);
12201      MI->addRegisterDefined(X86::XMM13);
12202      MI->addRegisterDefined(X86::XMM14);
12203      MI->addRegisterDefined(X86::XMM15);
12204    }
12205    return BB;
12206  case X86::WIN_ALLOCA:
12207    return EmitLoweredWinAlloca(MI, BB);
12208  case X86::SEG_ALLOCA_32:
12209    return EmitLoweredSegAlloca(MI, BB, false);
12210  case X86::SEG_ALLOCA_64:
12211    return EmitLoweredSegAlloca(MI, BB, true);
12212  case X86::TLSCall_32:
12213  case X86::TLSCall_64:
12214    return EmitLoweredTLSCall(MI, BB);
12215  case X86::CMOV_GR8:
12216  case X86::CMOV_FR32:
12217  case X86::CMOV_FR64:
12218  case X86::CMOV_V4F32:
12219  case X86::CMOV_V2F64:
12220  case X86::CMOV_V2I64:
12221  case X86::CMOV_V8F32:
12222  case X86::CMOV_V4F64:
12223  case X86::CMOV_V4I64:
12224  case X86::CMOV_GR16:
12225  case X86::CMOV_GR32:
12226  case X86::CMOV_RFP32:
12227  case X86::CMOV_RFP64:
12228  case X86::CMOV_RFP80:
12229    return EmitLoweredSelect(MI, BB);
12230
12231  case X86::FP32_TO_INT16_IN_MEM:
12232  case X86::FP32_TO_INT32_IN_MEM:
12233  case X86::FP32_TO_INT64_IN_MEM:
12234  case X86::FP64_TO_INT16_IN_MEM:
12235  case X86::FP64_TO_INT32_IN_MEM:
12236  case X86::FP64_TO_INT64_IN_MEM:
12237  case X86::FP80_TO_INT16_IN_MEM:
12238  case X86::FP80_TO_INT32_IN_MEM:
12239  case X86::FP80_TO_INT64_IN_MEM: {
12240    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12241    DebugLoc DL = MI->getDebugLoc();
12242
12243    // Change the floating point control register to use "round towards zero"
12244    // mode when truncating to an integer value.
12245    MachineFunction *F = BB->getParent();
12246    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12247    addFrameReference(BuildMI(*BB, MI, DL,
12248                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12249
12250    // Load the old value of the high byte of the control word...
12251    unsigned OldCW =
12252      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12253    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12254                      CWFrameIdx);
12255
12256    // Set the high part to be round to zero...
12257    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12258      .addImm(0xC7F);
12259
12260    // Reload the modified control word now...
12261    addFrameReference(BuildMI(*BB, MI, DL,
12262                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12263
12264    // Restore the memory image of control word to original value
12265    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12266      .addReg(OldCW);
12267
12268    // Get the X86 opcode to use.
12269    unsigned Opc;
12270    switch (MI->getOpcode()) {
12271    default: llvm_unreachable("illegal opcode!");
12272    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12273    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12274    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12275    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12276    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12277    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12278    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12279    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12280    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12281    }
12282
12283    X86AddressMode AM;
12284    MachineOperand &Op = MI->getOperand(0);
12285    if (Op.isReg()) {
12286      AM.BaseType = X86AddressMode::RegBase;
12287      AM.Base.Reg = Op.getReg();
12288    } else {
12289      AM.BaseType = X86AddressMode::FrameIndexBase;
12290      AM.Base.FrameIndex = Op.getIndex();
12291    }
12292    Op = MI->getOperand(1);
12293    if (Op.isImm())
12294      AM.Scale = Op.getImm();
12295    Op = MI->getOperand(2);
12296    if (Op.isImm())
12297      AM.IndexReg = Op.getImm();
12298    Op = MI->getOperand(3);
12299    if (Op.isGlobal()) {
12300      AM.GV = Op.getGlobal();
12301    } else {
12302      AM.Disp = Op.getImm();
12303    }
12304    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12305                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12306
12307    // Reload the original control word now.
12308    addFrameReference(BuildMI(*BB, MI, DL,
12309                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12310
12311    MI->eraseFromParent();   // The pseudo instruction is gone now.
12312    return BB;
12313  }
12314    // String/text processing lowering.
12315  case X86::PCMPISTRM128REG:
12316  case X86::VPCMPISTRM128REG:
12317    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12318  case X86::PCMPISTRM128MEM:
12319  case X86::VPCMPISTRM128MEM:
12320    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12321  case X86::PCMPESTRM128REG:
12322  case X86::VPCMPESTRM128REG:
12323    return EmitPCMP(MI, BB, 5, false /* in mem */);
12324  case X86::PCMPESTRM128MEM:
12325  case X86::VPCMPESTRM128MEM:
12326    return EmitPCMP(MI, BB, 5, true /* in mem */);
12327
12328    // Thread synchronization.
12329  case X86::MONITOR:
12330    return EmitMonitor(MI, BB);
12331  case X86::MWAIT:
12332    return EmitMwait(MI, BB);
12333
12334    // Atomic Lowering.
12335  case X86::ATOMAND32:
12336    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12337                                               X86::AND32ri, X86::MOV32rm,
12338                                               X86::LCMPXCHG32,
12339                                               X86::NOT32r, X86::EAX,
12340                                               X86::GR32RegisterClass);
12341  case X86::ATOMOR32:
12342    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12343                                               X86::OR32ri, X86::MOV32rm,
12344                                               X86::LCMPXCHG32,
12345                                               X86::NOT32r, X86::EAX,
12346                                               X86::GR32RegisterClass);
12347  case X86::ATOMXOR32:
12348    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12349                                               X86::XOR32ri, X86::MOV32rm,
12350                                               X86::LCMPXCHG32,
12351                                               X86::NOT32r, X86::EAX,
12352                                               X86::GR32RegisterClass);
12353  case X86::ATOMNAND32:
12354    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12355                                               X86::AND32ri, X86::MOV32rm,
12356                                               X86::LCMPXCHG32,
12357                                               X86::NOT32r, X86::EAX,
12358                                               X86::GR32RegisterClass, true);
12359  case X86::ATOMMIN32:
12360    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12361  case X86::ATOMMAX32:
12362    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12363  case X86::ATOMUMIN32:
12364    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12365  case X86::ATOMUMAX32:
12366    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12367
12368  case X86::ATOMAND16:
12369    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12370                                               X86::AND16ri, X86::MOV16rm,
12371                                               X86::LCMPXCHG16,
12372                                               X86::NOT16r, X86::AX,
12373                                               X86::GR16RegisterClass);
12374  case X86::ATOMOR16:
12375    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12376                                               X86::OR16ri, X86::MOV16rm,
12377                                               X86::LCMPXCHG16,
12378                                               X86::NOT16r, X86::AX,
12379                                               X86::GR16RegisterClass);
12380  case X86::ATOMXOR16:
12381    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12382                                               X86::XOR16ri, X86::MOV16rm,
12383                                               X86::LCMPXCHG16,
12384                                               X86::NOT16r, X86::AX,
12385                                               X86::GR16RegisterClass);
12386  case X86::ATOMNAND16:
12387    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12388                                               X86::AND16ri, X86::MOV16rm,
12389                                               X86::LCMPXCHG16,
12390                                               X86::NOT16r, X86::AX,
12391                                               X86::GR16RegisterClass, true);
12392  case X86::ATOMMIN16:
12393    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12394  case X86::ATOMMAX16:
12395    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12396  case X86::ATOMUMIN16:
12397    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12398  case X86::ATOMUMAX16:
12399    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12400
12401  case X86::ATOMAND8:
12402    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12403                                               X86::AND8ri, X86::MOV8rm,
12404                                               X86::LCMPXCHG8,
12405                                               X86::NOT8r, X86::AL,
12406                                               X86::GR8RegisterClass);
12407  case X86::ATOMOR8:
12408    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12409                                               X86::OR8ri, X86::MOV8rm,
12410                                               X86::LCMPXCHG8,
12411                                               X86::NOT8r, X86::AL,
12412                                               X86::GR8RegisterClass);
12413  case X86::ATOMXOR8:
12414    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12415                                               X86::XOR8ri, X86::MOV8rm,
12416                                               X86::LCMPXCHG8,
12417                                               X86::NOT8r, X86::AL,
12418                                               X86::GR8RegisterClass);
12419  case X86::ATOMNAND8:
12420    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12421                                               X86::AND8ri, X86::MOV8rm,
12422                                               X86::LCMPXCHG8,
12423                                               X86::NOT8r, X86::AL,
12424                                               X86::GR8RegisterClass, true);
12425  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12426  // This group is for 64-bit host.
12427  case X86::ATOMAND64:
12428    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12429                                               X86::AND64ri32, X86::MOV64rm,
12430                                               X86::LCMPXCHG64,
12431                                               X86::NOT64r, X86::RAX,
12432                                               X86::GR64RegisterClass);
12433  case X86::ATOMOR64:
12434    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12435                                               X86::OR64ri32, X86::MOV64rm,
12436                                               X86::LCMPXCHG64,
12437                                               X86::NOT64r, X86::RAX,
12438                                               X86::GR64RegisterClass);
12439  case X86::ATOMXOR64:
12440    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12441                                               X86::XOR64ri32, X86::MOV64rm,
12442                                               X86::LCMPXCHG64,
12443                                               X86::NOT64r, X86::RAX,
12444                                               X86::GR64RegisterClass);
12445  case X86::ATOMNAND64:
12446    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12447                                               X86::AND64ri32, X86::MOV64rm,
12448                                               X86::LCMPXCHG64,
12449                                               X86::NOT64r, X86::RAX,
12450                                               X86::GR64RegisterClass, true);
12451  case X86::ATOMMIN64:
12452    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12453  case X86::ATOMMAX64:
12454    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12455  case X86::ATOMUMIN64:
12456    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12457  case X86::ATOMUMAX64:
12458    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12459
12460  // This group does 64-bit operations on a 32-bit host.
12461  case X86::ATOMAND6432:
12462    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12463                                               X86::AND32rr, X86::AND32rr,
12464                                               X86::AND32ri, X86::AND32ri,
12465                                               false);
12466  case X86::ATOMOR6432:
12467    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12468                                               X86::OR32rr, X86::OR32rr,
12469                                               X86::OR32ri, X86::OR32ri,
12470                                               false);
12471  case X86::ATOMXOR6432:
12472    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12473                                               X86::XOR32rr, X86::XOR32rr,
12474                                               X86::XOR32ri, X86::XOR32ri,
12475                                               false);
12476  case X86::ATOMNAND6432:
12477    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12478                                               X86::AND32rr, X86::AND32rr,
12479                                               X86::AND32ri, X86::AND32ri,
12480                                               true);
12481  case X86::ATOMADD6432:
12482    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12483                                               X86::ADD32rr, X86::ADC32rr,
12484                                               X86::ADD32ri, X86::ADC32ri,
12485                                               false);
12486  case X86::ATOMSUB6432:
12487    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12488                                               X86::SUB32rr, X86::SBB32rr,
12489                                               X86::SUB32ri, X86::SBB32ri,
12490                                               false);
12491  case X86::ATOMSWAP6432:
12492    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12493                                               X86::MOV32rr, X86::MOV32rr,
12494                                               X86::MOV32ri, X86::MOV32ri,
12495                                               false);
12496  case X86::VASTART_SAVE_XMM_REGS:
12497    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12498
12499  case X86::VAARG_64:
12500    return EmitVAARG64WithCustomInserter(MI, BB);
12501  }
12502}
12503
12504//===----------------------------------------------------------------------===//
12505//                           X86 Optimization Hooks
12506//===----------------------------------------------------------------------===//
12507
12508void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12509                                                       const APInt &Mask,
12510                                                       APInt &KnownZero,
12511                                                       APInt &KnownOne,
12512                                                       const SelectionDAG &DAG,
12513                                                       unsigned Depth) const {
12514  unsigned Opc = Op.getOpcode();
12515  assert((Opc >= ISD::BUILTIN_OP_END ||
12516          Opc == ISD::INTRINSIC_WO_CHAIN ||
12517          Opc == ISD::INTRINSIC_W_CHAIN ||
12518          Opc == ISD::INTRINSIC_VOID) &&
12519         "Should use MaskedValueIsZero if you don't know whether Op"
12520         " is a target node!");
12521
12522  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12523  switch (Opc) {
12524  default: break;
12525  case X86ISD::ADD:
12526  case X86ISD::SUB:
12527  case X86ISD::ADC:
12528  case X86ISD::SBB:
12529  case X86ISD::SMUL:
12530  case X86ISD::UMUL:
12531  case X86ISD::INC:
12532  case X86ISD::DEC:
12533  case X86ISD::OR:
12534  case X86ISD::XOR:
12535  case X86ISD::AND:
12536    // These nodes' second result is a boolean.
12537    if (Op.getResNo() == 0)
12538      break;
12539    // Fallthrough
12540  case X86ISD::SETCC:
12541    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12542                                       Mask.getBitWidth() - 1);
12543    break;
12544  case ISD::INTRINSIC_WO_CHAIN: {
12545    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12546    unsigned NumLoBits = 0;
12547    switch (IntId) {
12548    default: break;
12549    case Intrinsic::x86_sse_movmsk_ps:
12550    case Intrinsic::x86_avx_movmsk_ps_256:
12551    case Intrinsic::x86_sse2_movmsk_pd:
12552    case Intrinsic::x86_avx_movmsk_pd_256:
12553    case Intrinsic::x86_mmx_pmovmskb:
12554    case Intrinsic::x86_sse2_pmovmskb_128:
12555    case Intrinsic::x86_avx2_pmovmskb: {
12556      // High bits of movmskp{s|d}, pmovmskb are known zero.
12557      switch (IntId) {
12558        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12559        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12560        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12561        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12562        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12563        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12564        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12565      }
12566      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12567                                        Mask.getBitWidth() - NumLoBits);
12568      break;
12569    }
12570    }
12571    break;
12572  }
12573  }
12574}
12575
12576unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12577                                                         unsigned Depth) const {
12578  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12579  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12580    return Op.getValueType().getScalarType().getSizeInBits();
12581
12582  // Fallback case.
12583  return 1;
12584}
12585
12586/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12587/// node is a GlobalAddress + offset.
12588bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12589                                       const GlobalValue* &GA,
12590                                       int64_t &Offset) const {
12591  if (N->getOpcode() == X86ISD::Wrapper) {
12592    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12593      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12594      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12595      return true;
12596    }
12597  }
12598  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12599}
12600
12601/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12602/// same as extracting the high 128-bit part of 256-bit vector and then
12603/// inserting the result into the low part of a new 256-bit vector
12604static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12605  EVT VT = SVOp->getValueType(0);
12606  int NumElems = VT.getVectorNumElements();
12607
12608  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12609  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12610    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12611        SVOp->getMaskElt(j) >= 0)
12612      return false;
12613
12614  return true;
12615}
12616
12617/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12618/// same as extracting the low 128-bit part of 256-bit vector and then
12619/// inserting the result into the high part of a new 256-bit vector
12620static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12621  EVT VT = SVOp->getValueType(0);
12622  int NumElems = VT.getVectorNumElements();
12623
12624  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12625  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12626    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12627        SVOp->getMaskElt(j) >= 0)
12628      return false;
12629
12630  return true;
12631}
12632
12633/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12634static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12635                                        TargetLowering::DAGCombinerInfo &DCI,
12636                                        bool HasAVX2) {
12637  DebugLoc dl = N->getDebugLoc();
12638  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12639  SDValue V1 = SVOp->getOperand(0);
12640  SDValue V2 = SVOp->getOperand(1);
12641  EVT VT = SVOp->getValueType(0);
12642  int NumElems = VT.getVectorNumElements();
12643
12644  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12645      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12646    //
12647    //                   0,0,0,...
12648    //                      |
12649    //    V      UNDEF    BUILD_VECTOR    UNDEF
12650    //     \      /           \           /
12651    //  CONCAT_VECTOR         CONCAT_VECTOR
12652    //         \                  /
12653    //          \                /
12654    //          RESULT: V + zero extended
12655    //
12656    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12657        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12658        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12659      return SDValue();
12660
12661    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12662      return SDValue();
12663
12664    // To match the shuffle mask, the first half of the mask should
12665    // be exactly the first vector, and all the rest a splat with the
12666    // first element of the second one.
12667    for (int i = 0; i < NumElems/2; ++i)
12668      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12669          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12670        return SDValue();
12671
12672    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12673    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12674      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12675      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12676      SDValue ResNode =
12677        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12678                                Ld->getMemoryVT(),
12679                                Ld->getPointerInfo(),
12680                                Ld->getAlignment(),
12681                                false/*isVolatile*/, true/*ReadMem*/,
12682                                false/*WriteMem*/);
12683      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12684    }
12685
12686    // Emit a zeroed vector and insert the desired subvector on its
12687    // first half.
12688    SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, HasAVX2, DAG, dl);
12689    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12690                         DAG.getConstant(0, MVT::i32), DAG, dl);
12691    return DCI.CombineTo(N, InsV);
12692  }
12693
12694  //===--------------------------------------------------------------------===//
12695  // Combine some shuffles into subvector extracts and inserts:
12696  //
12697
12698  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12699  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12700    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12701                                    DAG, dl);
12702    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12703                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12704    return DCI.CombineTo(N, InsV);
12705  }
12706
12707  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12708  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12709    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12710    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12711                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12712    return DCI.CombineTo(N, InsV);
12713  }
12714
12715  return SDValue();
12716}
12717
12718/// PerformShuffleCombine - Performs several different shuffle combines.
12719static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12720                                     TargetLowering::DAGCombinerInfo &DCI,
12721                                     const X86Subtarget *Subtarget) {
12722  DebugLoc dl = N->getDebugLoc();
12723  EVT VT = N->getValueType(0);
12724
12725  // Don't create instructions with illegal types after legalize types has run.
12726  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12727  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12728    return SDValue();
12729
12730  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12731  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12732      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12733    return PerformShuffleCombine256(N, DAG, DCI, Subtarget->hasAVX2());
12734
12735  // Only handle 128 wide vector from here on.
12736  if (VT.getSizeInBits() != 128)
12737    return SDValue();
12738
12739  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12740  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12741  // consecutive, non-overlapping, and in the right order.
12742  SmallVector<SDValue, 16> Elts;
12743  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12744    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12745
12746  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12747}
12748
12749/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12750/// generation and convert it from being a bunch of shuffles and extracts
12751/// to a simple store and scalar loads to extract the elements.
12752static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12753                                                const TargetLowering &TLI) {
12754  SDValue InputVector = N->getOperand(0);
12755
12756  // Only operate on vectors of 4 elements, where the alternative shuffling
12757  // gets to be more expensive.
12758  if (InputVector.getValueType() != MVT::v4i32)
12759    return SDValue();
12760
12761  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12762  // single use which is a sign-extend or zero-extend, and all elements are
12763  // used.
12764  SmallVector<SDNode *, 4> Uses;
12765  unsigned ExtractedElements = 0;
12766  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12767       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12768    if (UI.getUse().getResNo() != InputVector.getResNo())
12769      return SDValue();
12770
12771    SDNode *Extract = *UI;
12772    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12773      return SDValue();
12774
12775    if (Extract->getValueType(0) != MVT::i32)
12776      return SDValue();
12777    if (!Extract->hasOneUse())
12778      return SDValue();
12779    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12780        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12781      return SDValue();
12782    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12783      return SDValue();
12784
12785    // Record which element was extracted.
12786    ExtractedElements |=
12787      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12788
12789    Uses.push_back(Extract);
12790  }
12791
12792  // If not all the elements were used, this may not be worthwhile.
12793  if (ExtractedElements != 15)
12794    return SDValue();
12795
12796  // Ok, we've now decided to do the transformation.
12797  DebugLoc dl = InputVector.getDebugLoc();
12798
12799  // Store the value to a temporary stack slot.
12800  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12801  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12802                            MachinePointerInfo(), false, false, 0);
12803
12804  // Replace each use (extract) with a load of the appropriate element.
12805  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12806       UE = Uses.end(); UI != UE; ++UI) {
12807    SDNode *Extract = *UI;
12808
12809    // cOMpute the element's address.
12810    SDValue Idx = Extract->getOperand(1);
12811    unsigned EltSize =
12812        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12813    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12814    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12815
12816    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12817                                     StackPtr, OffsetVal);
12818
12819    // Load the scalar.
12820    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12821                                     ScalarAddr, MachinePointerInfo(),
12822                                     false, false, false, 0);
12823
12824    // Replace the exact with the load.
12825    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12826  }
12827
12828  // The replacement was made in place; don't return anything.
12829  return SDValue();
12830}
12831
12832/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
12833/// nodes.
12834static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12835                                    TargetLowering::DAGCombinerInfo &DCI,
12836                                    const X86Subtarget *Subtarget) {
12837  DebugLoc DL = N->getDebugLoc();
12838  SDValue Cond = N->getOperand(0);
12839  // Get the LHS/RHS of the select.
12840  SDValue LHS = N->getOperand(1);
12841  SDValue RHS = N->getOperand(2);
12842  EVT VT = LHS.getValueType();
12843
12844  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12845  // instructions match the semantics of the common C idiom x<y?x:y but not
12846  // x<=y?x:y, because of how they handle negative zero (which can be
12847  // ignored in unsafe-math mode).
12848  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
12849      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
12850      (Subtarget->hasSSE2() ||
12851       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
12852    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12853
12854    unsigned Opcode = 0;
12855    // Check for x CC y ? x : y.
12856    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12857        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12858      switch (CC) {
12859      default: break;
12860      case ISD::SETULT:
12861        // Converting this to a min would handle NaNs incorrectly, and swapping
12862        // the operands would cause it to handle comparisons between positive
12863        // and negative zero incorrectly.
12864        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12865          if (!DAG.getTarget().Options.UnsafeFPMath &&
12866              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12867            break;
12868          std::swap(LHS, RHS);
12869        }
12870        Opcode = X86ISD::FMIN;
12871        break;
12872      case ISD::SETOLE:
12873        // Converting this to a min would handle comparisons between positive
12874        // and negative zero incorrectly.
12875        if (!DAG.getTarget().Options.UnsafeFPMath &&
12876            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12877          break;
12878        Opcode = X86ISD::FMIN;
12879        break;
12880      case ISD::SETULE:
12881        // Converting this to a min would handle both negative zeros and NaNs
12882        // incorrectly, but we can swap the operands to fix both.
12883        std::swap(LHS, RHS);
12884      case ISD::SETOLT:
12885      case ISD::SETLT:
12886      case ISD::SETLE:
12887        Opcode = X86ISD::FMIN;
12888        break;
12889
12890      case ISD::SETOGE:
12891        // Converting this to a max would handle comparisons between positive
12892        // and negative zero incorrectly.
12893        if (!DAG.getTarget().Options.UnsafeFPMath &&
12894            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12895          break;
12896        Opcode = X86ISD::FMAX;
12897        break;
12898      case ISD::SETUGT:
12899        // Converting this to a max would handle NaNs incorrectly, and swapping
12900        // the operands would cause it to handle comparisons between positive
12901        // and negative zero incorrectly.
12902        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12903          if (!DAG.getTarget().Options.UnsafeFPMath &&
12904              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12905            break;
12906          std::swap(LHS, RHS);
12907        }
12908        Opcode = X86ISD::FMAX;
12909        break;
12910      case ISD::SETUGE:
12911        // Converting this to a max would handle both negative zeros and NaNs
12912        // incorrectly, but we can swap the operands to fix both.
12913        std::swap(LHS, RHS);
12914      case ISD::SETOGT:
12915      case ISD::SETGT:
12916      case ISD::SETGE:
12917        Opcode = X86ISD::FMAX;
12918        break;
12919      }
12920    // Check for x CC y ? y : x -- a min/max with reversed arms.
12921    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12922               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12923      switch (CC) {
12924      default: break;
12925      case ISD::SETOGE:
12926        // Converting this to a min would handle comparisons between positive
12927        // and negative zero incorrectly, and swapping the operands would
12928        // cause it to handle NaNs incorrectly.
12929        if (!DAG.getTarget().Options.UnsafeFPMath &&
12930            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12931          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12932            break;
12933          std::swap(LHS, RHS);
12934        }
12935        Opcode = X86ISD::FMIN;
12936        break;
12937      case ISD::SETUGT:
12938        // Converting this to a min would handle NaNs incorrectly.
12939        if (!DAG.getTarget().Options.UnsafeFPMath &&
12940            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12941          break;
12942        Opcode = X86ISD::FMIN;
12943        break;
12944      case ISD::SETUGE:
12945        // Converting this to a min would handle both negative zeros and NaNs
12946        // incorrectly, but we can swap the operands to fix both.
12947        std::swap(LHS, RHS);
12948      case ISD::SETOGT:
12949      case ISD::SETGT:
12950      case ISD::SETGE:
12951        Opcode = X86ISD::FMIN;
12952        break;
12953
12954      case ISD::SETULT:
12955        // Converting this to a max would handle NaNs incorrectly.
12956        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12957          break;
12958        Opcode = X86ISD::FMAX;
12959        break;
12960      case ISD::SETOLE:
12961        // Converting this to a max would handle comparisons between positive
12962        // and negative zero incorrectly, and swapping the operands would
12963        // cause it to handle NaNs incorrectly.
12964        if (!DAG.getTarget().Options.UnsafeFPMath &&
12965            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
12966          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12967            break;
12968          std::swap(LHS, RHS);
12969        }
12970        Opcode = X86ISD::FMAX;
12971        break;
12972      case ISD::SETULE:
12973        // Converting this to a max would handle both negative zeros and NaNs
12974        // incorrectly, but we can swap the operands to fix both.
12975        std::swap(LHS, RHS);
12976      case ISD::SETOLT:
12977      case ISD::SETLT:
12978      case ISD::SETLE:
12979        Opcode = X86ISD::FMAX;
12980        break;
12981      }
12982    }
12983
12984    if (Opcode)
12985      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
12986  }
12987
12988  // If this is a select between two integer constants, try to do some
12989  // optimizations.
12990  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
12991    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
12992      // Don't do this for crazy integer types.
12993      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
12994        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
12995        // so that TrueC (the true value) is larger than FalseC.
12996        bool NeedsCondInvert = false;
12997
12998        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
12999            // Efficiently invertible.
13000            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13001             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13002              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13003          NeedsCondInvert = true;
13004          std::swap(TrueC, FalseC);
13005        }
13006
13007        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13008        if (FalseC->getAPIntValue() == 0 &&
13009            TrueC->getAPIntValue().isPowerOf2()) {
13010          if (NeedsCondInvert) // Invert the condition if needed.
13011            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13012                               DAG.getConstant(1, Cond.getValueType()));
13013
13014          // Zero extend the condition if needed.
13015          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13016
13017          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13018          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13019                             DAG.getConstant(ShAmt, MVT::i8));
13020        }
13021
13022        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13023        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13024          if (NeedsCondInvert) // Invert the condition if needed.
13025            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13026                               DAG.getConstant(1, Cond.getValueType()));
13027
13028          // Zero extend the condition if needed.
13029          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13030                             FalseC->getValueType(0), Cond);
13031          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13032                             SDValue(FalseC, 0));
13033        }
13034
13035        // Optimize cases that will turn into an LEA instruction.  This requires
13036        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13037        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13038          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13039          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13040
13041          bool isFastMultiplier = false;
13042          if (Diff < 10) {
13043            switch ((unsigned char)Diff) {
13044              default: break;
13045              case 1:  // result = add base, cond
13046              case 2:  // result = lea base(    , cond*2)
13047              case 3:  // result = lea base(cond, cond*2)
13048              case 4:  // result = lea base(    , cond*4)
13049              case 5:  // result = lea base(cond, cond*4)
13050              case 8:  // result = lea base(    , cond*8)
13051              case 9:  // result = lea base(cond, cond*8)
13052                isFastMultiplier = true;
13053                break;
13054            }
13055          }
13056
13057          if (isFastMultiplier) {
13058            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13059            if (NeedsCondInvert) // Invert the condition if needed.
13060              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13061                                 DAG.getConstant(1, Cond.getValueType()));
13062
13063            // Zero extend the condition if needed.
13064            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13065                               Cond);
13066            // Scale the condition by the difference.
13067            if (Diff != 1)
13068              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13069                                 DAG.getConstant(Diff, Cond.getValueType()));
13070
13071            // Add the base if non-zero.
13072            if (FalseC->getAPIntValue() != 0)
13073              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13074                                 SDValue(FalseC, 0));
13075            return Cond;
13076          }
13077        }
13078      }
13079  }
13080
13081  // Canonicalize max and min:
13082  // (x > y) ? x : y -> (x >= y) ? x : y
13083  // (x < y) ? x : y -> (x <= y) ? x : y
13084  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13085  // the need for an extra compare
13086  // against zero. e.g.
13087  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13088  // subl   %esi, %edi
13089  // testl  %edi, %edi
13090  // movl   $0, %eax
13091  // cmovgl %edi, %eax
13092  // =>
13093  // xorl   %eax, %eax
13094  // subl   %esi, $edi
13095  // cmovsl %eax, %edi
13096  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13097      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13098      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13099    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13100    switch (CC) {
13101    default: break;
13102    case ISD::SETLT:
13103    case ISD::SETGT: {
13104      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13105      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13106                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13107      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13108    }
13109    }
13110  }
13111
13112  // If we know that this node is legal then we know that it is going to be
13113  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13114  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13115  // to simplify previous instructions.
13116  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13117  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13118      !DCI.isBeforeLegalize() &&
13119      TLI.isOperationLegal(ISD::VSELECT, VT)) {
13120    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13121    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13122    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13123
13124    APInt KnownZero, KnownOne;
13125    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13126                                          DCI.isBeforeLegalizeOps());
13127    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13128        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13129      DCI.CommitTargetLoweringOpt(TLO);
13130  }
13131
13132  return SDValue();
13133}
13134
13135/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13136static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13137                                  TargetLowering::DAGCombinerInfo &DCI) {
13138  DebugLoc DL = N->getDebugLoc();
13139
13140  // If the flag operand isn't dead, don't touch this CMOV.
13141  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13142    return SDValue();
13143
13144  SDValue FalseOp = N->getOperand(0);
13145  SDValue TrueOp = N->getOperand(1);
13146  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13147  SDValue Cond = N->getOperand(3);
13148  if (CC == X86::COND_E || CC == X86::COND_NE) {
13149    switch (Cond.getOpcode()) {
13150    default: break;
13151    case X86ISD::BSR:
13152    case X86ISD::BSF:
13153      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13154      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13155        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13156    }
13157  }
13158
13159  // If this is a select between two integer constants, try to do some
13160  // optimizations.  Note that the operands are ordered the opposite of SELECT
13161  // operands.
13162  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13163    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13164      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13165      // larger than FalseC (the false value).
13166      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13167        CC = X86::GetOppositeBranchCondition(CC);
13168        std::swap(TrueC, FalseC);
13169      }
13170
13171      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13172      // This is efficient for any integer data type (including i8/i16) and
13173      // shift amount.
13174      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13175        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13176                           DAG.getConstant(CC, MVT::i8), Cond);
13177
13178        // Zero extend the condition if needed.
13179        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13180
13181        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13182        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13183                           DAG.getConstant(ShAmt, MVT::i8));
13184        if (N->getNumValues() == 2)  // Dead flag value?
13185          return DCI.CombineTo(N, Cond, SDValue());
13186        return Cond;
13187      }
13188
13189      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13190      // for any integer data type, including i8/i16.
13191      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13192        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13193                           DAG.getConstant(CC, MVT::i8), Cond);
13194
13195        // Zero extend the condition if needed.
13196        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13197                           FalseC->getValueType(0), Cond);
13198        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13199                           SDValue(FalseC, 0));
13200
13201        if (N->getNumValues() == 2)  // Dead flag value?
13202          return DCI.CombineTo(N, Cond, SDValue());
13203        return Cond;
13204      }
13205
13206      // Optimize cases that will turn into an LEA instruction.  This requires
13207      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13208      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13209        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13210        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13211
13212        bool isFastMultiplier = false;
13213        if (Diff < 10) {
13214          switch ((unsigned char)Diff) {
13215          default: break;
13216          case 1:  // result = add base, cond
13217          case 2:  // result = lea base(    , cond*2)
13218          case 3:  // result = lea base(cond, cond*2)
13219          case 4:  // result = lea base(    , cond*4)
13220          case 5:  // result = lea base(cond, cond*4)
13221          case 8:  // result = lea base(    , cond*8)
13222          case 9:  // result = lea base(cond, cond*8)
13223            isFastMultiplier = true;
13224            break;
13225          }
13226        }
13227
13228        if (isFastMultiplier) {
13229          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13230          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13231                             DAG.getConstant(CC, MVT::i8), Cond);
13232          // Zero extend the condition if needed.
13233          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13234                             Cond);
13235          // Scale the condition by the difference.
13236          if (Diff != 1)
13237            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13238                               DAG.getConstant(Diff, Cond.getValueType()));
13239
13240          // Add the base if non-zero.
13241          if (FalseC->getAPIntValue() != 0)
13242            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13243                               SDValue(FalseC, 0));
13244          if (N->getNumValues() == 2)  // Dead flag value?
13245            return DCI.CombineTo(N, Cond, SDValue());
13246          return Cond;
13247        }
13248      }
13249    }
13250  }
13251  return SDValue();
13252}
13253
13254
13255/// PerformMulCombine - Optimize a single multiply with constant into two
13256/// in order to implement it with two cheaper instructions, e.g.
13257/// LEA + SHL, LEA + LEA.
13258static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13259                                 TargetLowering::DAGCombinerInfo &DCI) {
13260  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13261    return SDValue();
13262
13263  EVT VT = N->getValueType(0);
13264  if (VT != MVT::i64)
13265    return SDValue();
13266
13267  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13268  if (!C)
13269    return SDValue();
13270  uint64_t MulAmt = C->getZExtValue();
13271  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13272    return SDValue();
13273
13274  uint64_t MulAmt1 = 0;
13275  uint64_t MulAmt2 = 0;
13276  if ((MulAmt % 9) == 0) {
13277    MulAmt1 = 9;
13278    MulAmt2 = MulAmt / 9;
13279  } else if ((MulAmt % 5) == 0) {
13280    MulAmt1 = 5;
13281    MulAmt2 = MulAmt / 5;
13282  } else if ((MulAmt % 3) == 0) {
13283    MulAmt1 = 3;
13284    MulAmt2 = MulAmt / 3;
13285  }
13286  if (MulAmt2 &&
13287      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13288    DebugLoc DL = N->getDebugLoc();
13289
13290    if (isPowerOf2_64(MulAmt2) &&
13291        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13292      // If second multiplifer is pow2, issue it first. We want the multiply by
13293      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13294      // is an add.
13295      std::swap(MulAmt1, MulAmt2);
13296
13297    SDValue NewMul;
13298    if (isPowerOf2_64(MulAmt1))
13299      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13300                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13301    else
13302      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13303                           DAG.getConstant(MulAmt1, VT));
13304
13305    if (isPowerOf2_64(MulAmt2))
13306      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13307                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13308    else
13309      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13310                           DAG.getConstant(MulAmt2, VT));
13311
13312    // Do not add new nodes to DAG combiner worklist.
13313    DCI.CombineTo(N, NewMul, false);
13314  }
13315  return SDValue();
13316}
13317
13318static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13319  SDValue N0 = N->getOperand(0);
13320  SDValue N1 = N->getOperand(1);
13321  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13322  EVT VT = N0.getValueType();
13323
13324  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13325  // since the result of setcc_c is all zero's or all ones.
13326  if (VT.isInteger() && !VT.isVector() &&
13327      N1C && N0.getOpcode() == ISD::AND &&
13328      N0.getOperand(1).getOpcode() == ISD::Constant) {
13329    SDValue N00 = N0.getOperand(0);
13330    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13331        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13332          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13333         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13334      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13335      APInt ShAmt = N1C->getAPIntValue();
13336      Mask = Mask.shl(ShAmt);
13337      if (Mask != 0)
13338        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13339                           N00, DAG.getConstant(Mask, VT));
13340    }
13341  }
13342
13343
13344  // Hardware support for vector shifts is sparse which makes us scalarize the
13345  // vector operations in many cases. Also, on sandybridge ADD is faster than
13346  // shl.
13347  // (shl V, 1) -> add V,V
13348  if (isSplatVector(N1.getNode())) {
13349    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13350    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13351    // We shift all of the values by one. In many cases we do not have
13352    // hardware support for this operation. This is better expressed as an ADD
13353    // of two values.
13354    if (N1C && (1 == N1C->getZExtValue())) {
13355      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13356    }
13357  }
13358
13359  return SDValue();
13360}
13361
13362/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13363///                       when possible.
13364static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13365                                   const X86Subtarget *Subtarget) {
13366  EVT VT = N->getValueType(0);
13367  if (N->getOpcode() == ISD::SHL) {
13368    SDValue V = PerformSHLCombine(N, DAG);
13369    if (V.getNode()) return V;
13370  }
13371
13372  // On X86 with SSE2 support, we can transform this to a vector shift if
13373  // all elements are shifted by the same amount.  We can't do this in legalize
13374  // because the a constant vector is typically transformed to a constant pool
13375  // so we have no knowledge of the shift amount.
13376  if (!Subtarget->hasSSE2())
13377    return SDValue();
13378
13379  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13380      (!Subtarget->hasAVX2() ||
13381       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13382    return SDValue();
13383
13384  SDValue ShAmtOp = N->getOperand(1);
13385  EVT EltVT = VT.getVectorElementType();
13386  DebugLoc DL = N->getDebugLoc();
13387  SDValue BaseShAmt = SDValue();
13388  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13389    unsigned NumElts = VT.getVectorNumElements();
13390    unsigned i = 0;
13391    for (; i != NumElts; ++i) {
13392      SDValue Arg = ShAmtOp.getOperand(i);
13393      if (Arg.getOpcode() == ISD::UNDEF) continue;
13394      BaseShAmt = Arg;
13395      break;
13396    }
13397    // Handle the case where the build_vector is all undef
13398    // FIXME: Should DAG allow this?
13399    if (i == NumElts)
13400      return SDValue();
13401
13402    for (; i != NumElts; ++i) {
13403      SDValue Arg = ShAmtOp.getOperand(i);
13404      if (Arg.getOpcode() == ISD::UNDEF) continue;
13405      if (Arg != BaseShAmt) {
13406        return SDValue();
13407      }
13408    }
13409  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13410             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13411    SDValue InVec = ShAmtOp.getOperand(0);
13412    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13413      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13414      unsigned i = 0;
13415      for (; i != NumElts; ++i) {
13416        SDValue Arg = InVec.getOperand(i);
13417        if (Arg.getOpcode() == ISD::UNDEF) continue;
13418        BaseShAmt = Arg;
13419        break;
13420      }
13421    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13422       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13423         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13424         if (C->getZExtValue() == SplatIdx)
13425           BaseShAmt = InVec.getOperand(1);
13426       }
13427    }
13428    if (BaseShAmt.getNode() == 0)
13429      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13430                              DAG.getIntPtrConstant(0));
13431  } else
13432    return SDValue();
13433
13434  // The shift amount is an i32.
13435  if (EltVT.bitsGT(MVT::i32))
13436    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13437  else if (EltVT.bitsLT(MVT::i32))
13438    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13439
13440  // The shift amount is identical so we can do a vector shift.
13441  SDValue  ValOp = N->getOperand(0);
13442  switch (N->getOpcode()) {
13443  default:
13444    llvm_unreachable("Unknown shift opcode!");
13445  case ISD::SHL:
13446    switch (VT.getSimpleVT().SimpleTy) {
13447    default: return SDValue();
13448    case MVT::v2i64:
13449    case MVT::v4i32:
13450    case MVT::v8i16:
13451    case MVT::v4i64:
13452    case MVT::v8i32:
13453    case MVT::v16i16:
13454      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
13455    }
13456  case ISD::SRA:
13457    switch (VT.getSimpleVT().SimpleTy) {
13458    default: return SDValue();
13459    case MVT::v4i32:
13460    case MVT::v8i16:
13461    case MVT::v8i32:
13462    case MVT::v16i16:
13463      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
13464    }
13465  case ISD::SRL:
13466    switch (VT.getSimpleVT().SimpleTy) {
13467    default: return SDValue();
13468    case MVT::v2i64:
13469    case MVT::v4i32:
13470    case MVT::v8i16:
13471    case MVT::v4i64:
13472    case MVT::v8i32:
13473    case MVT::v16i16:
13474      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
13475    }
13476  }
13477}
13478
13479
13480// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13481// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13482// and friends.  Likewise for OR -> CMPNEQSS.
13483static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13484                            TargetLowering::DAGCombinerInfo &DCI,
13485                            const X86Subtarget *Subtarget) {
13486  unsigned opcode;
13487
13488  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13489  // we're requiring SSE2 for both.
13490  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13491    SDValue N0 = N->getOperand(0);
13492    SDValue N1 = N->getOperand(1);
13493    SDValue CMP0 = N0->getOperand(1);
13494    SDValue CMP1 = N1->getOperand(1);
13495    DebugLoc DL = N->getDebugLoc();
13496
13497    // The SETCCs should both refer to the same CMP.
13498    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13499      return SDValue();
13500
13501    SDValue CMP00 = CMP0->getOperand(0);
13502    SDValue CMP01 = CMP0->getOperand(1);
13503    EVT     VT    = CMP00.getValueType();
13504
13505    if (VT == MVT::f32 || VT == MVT::f64) {
13506      bool ExpectingFlags = false;
13507      // Check for any users that want flags:
13508      for (SDNode::use_iterator UI = N->use_begin(),
13509             UE = N->use_end();
13510           !ExpectingFlags && UI != UE; ++UI)
13511        switch (UI->getOpcode()) {
13512        default:
13513        case ISD::BR_CC:
13514        case ISD::BRCOND:
13515        case ISD::SELECT:
13516          ExpectingFlags = true;
13517          break;
13518        case ISD::CopyToReg:
13519        case ISD::SIGN_EXTEND:
13520        case ISD::ZERO_EXTEND:
13521        case ISD::ANY_EXTEND:
13522          break;
13523        }
13524
13525      if (!ExpectingFlags) {
13526        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13527        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13528
13529        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13530          X86::CondCode tmp = cc0;
13531          cc0 = cc1;
13532          cc1 = tmp;
13533        }
13534
13535        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13536            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13537          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13538          X86ISD::NodeType NTOperator = is64BitFP ?
13539            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13540          // FIXME: need symbolic constants for these magic numbers.
13541          // See X86ATTInstPrinter.cpp:printSSECC().
13542          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13543          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13544                                              DAG.getConstant(x86cc, MVT::i8));
13545          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13546                                              OnesOrZeroesF);
13547          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13548                                      DAG.getConstant(1, MVT::i32));
13549          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13550          return OneBitOfTruth;
13551        }
13552      }
13553    }
13554  }
13555  return SDValue();
13556}
13557
13558/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13559/// so it can be folded inside ANDNP.
13560static bool CanFoldXORWithAllOnes(const SDNode *N) {
13561  EVT VT = N->getValueType(0);
13562
13563  // Match direct AllOnes for 128 and 256-bit vectors
13564  if (ISD::isBuildVectorAllOnes(N))
13565    return true;
13566
13567  // Look through a bit convert.
13568  if (N->getOpcode() == ISD::BITCAST)
13569    N = N->getOperand(0).getNode();
13570
13571  // Sometimes the operand may come from a insert_subvector building a 256-bit
13572  // allones vector
13573  if (VT.getSizeInBits() == 256 &&
13574      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13575    SDValue V1 = N->getOperand(0);
13576    SDValue V2 = N->getOperand(1);
13577
13578    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13579        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13580        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13581        ISD::isBuildVectorAllOnes(V2.getNode()))
13582      return true;
13583  }
13584
13585  return false;
13586}
13587
13588static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13589                                 TargetLowering::DAGCombinerInfo &DCI,
13590                                 const X86Subtarget *Subtarget) {
13591  if (DCI.isBeforeLegalizeOps())
13592    return SDValue();
13593
13594  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13595  if (R.getNode())
13596    return R;
13597
13598  EVT VT = N->getValueType(0);
13599
13600  // Create ANDN, BLSI, and BLSR instructions
13601  // BLSI is X & (-X)
13602  // BLSR is X & (X-1)
13603  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13604    SDValue N0 = N->getOperand(0);
13605    SDValue N1 = N->getOperand(1);
13606    DebugLoc DL = N->getDebugLoc();
13607
13608    // Check LHS for not
13609    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13610      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13611    // Check RHS for not
13612    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13613      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13614
13615    // Check LHS for neg
13616    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13617        isZero(N0.getOperand(0)))
13618      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13619
13620    // Check RHS for neg
13621    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13622        isZero(N1.getOperand(0)))
13623      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13624
13625    // Check LHS for X-1
13626    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13627        isAllOnes(N0.getOperand(1)))
13628      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13629
13630    // Check RHS for X-1
13631    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13632        isAllOnes(N1.getOperand(1)))
13633      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13634
13635    return SDValue();
13636  }
13637
13638  // Want to form ANDNP nodes:
13639  // 1) In the hopes of then easily combining them with OR and AND nodes
13640  //    to form PBLEND/PSIGN.
13641  // 2) To match ANDN packed intrinsics
13642  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13643    return SDValue();
13644
13645  SDValue N0 = N->getOperand(0);
13646  SDValue N1 = N->getOperand(1);
13647  DebugLoc DL = N->getDebugLoc();
13648
13649  // Check LHS for vnot
13650  if (N0.getOpcode() == ISD::XOR &&
13651      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13652      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13653    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13654
13655  // Check RHS for vnot
13656  if (N1.getOpcode() == ISD::XOR &&
13657      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13658      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13659    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13660
13661  return SDValue();
13662}
13663
13664static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13665                                TargetLowering::DAGCombinerInfo &DCI,
13666                                const X86Subtarget *Subtarget) {
13667  if (DCI.isBeforeLegalizeOps())
13668    return SDValue();
13669
13670  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13671  if (R.getNode())
13672    return R;
13673
13674  EVT VT = N->getValueType(0);
13675
13676  SDValue N0 = N->getOperand(0);
13677  SDValue N1 = N->getOperand(1);
13678
13679  // look for psign/blend
13680  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
13681    if (!Subtarget->hasSSSE3() ||
13682        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
13683      return SDValue();
13684
13685    // Canonicalize pandn to RHS
13686    if (N0.getOpcode() == X86ISD::ANDNP)
13687      std::swap(N0, N1);
13688    // or (and (m, y), (pandn m, x))
13689    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13690      SDValue Mask = N1.getOperand(0);
13691      SDValue X    = N1.getOperand(1);
13692      SDValue Y;
13693      if (N0.getOperand(0) == Mask)
13694        Y = N0.getOperand(1);
13695      if (N0.getOperand(1) == Mask)
13696        Y = N0.getOperand(0);
13697
13698      // Check to see if the mask appeared in both the AND and ANDNP and
13699      if (!Y.getNode())
13700        return SDValue();
13701
13702      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13703      if (Mask.getOpcode() != ISD::BITCAST ||
13704          X.getOpcode() != ISD::BITCAST ||
13705          Y.getOpcode() != ISD::BITCAST)
13706        return SDValue();
13707
13708      // Look through mask bitcast.
13709      Mask = Mask.getOperand(0);
13710      EVT MaskVT = Mask.getValueType();
13711
13712      // Validate that the Mask operand is a vector sra node.
13713      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13714      // there is no psrai.b
13715      if (Mask.getOpcode() != X86ISD::VSRAI)
13716        return SDValue();
13717
13718      // Check that the SRA is all signbits.
13719      SDValue SraC = Mask.getOperand(1);
13720      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13721      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13722      if ((SraAmt + 1) != EltBits)
13723        return SDValue();
13724
13725      DebugLoc DL = N->getDebugLoc();
13726
13727      // Now we know we at least have a plendvb with the mask val.  See if
13728      // we can form a psignb/w/d.
13729      // psign = x.type == y.type == mask.type && y = sub(0, x);
13730      X = X.getOperand(0);
13731      Y = Y.getOperand(0);
13732      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13733          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13734          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
13735        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
13736               "Unsupported VT for PSIGN");
13737        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
13738        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13739      }
13740      // PBLENDVB only available on SSE 4.1
13741      if (!Subtarget->hasSSE41())
13742        return SDValue();
13743
13744      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
13745
13746      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
13747      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
13748      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
13749      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
13750      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13751    }
13752  }
13753
13754  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
13755    return SDValue();
13756
13757  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13758  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13759    std::swap(N0, N1);
13760  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13761    return SDValue();
13762  if (!N0.hasOneUse() || !N1.hasOneUse())
13763    return SDValue();
13764
13765  SDValue ShAmt0 = N0.getOperand(1);
13766  if (ShAmt0.getValueType() != MVT::i8)
13767    return SDValue();
13768  SDValue ShAmt1 = N1.getOperand(1);
13769  if (ShAmt1.getValueType() != MVT::i8)
13770    return SDValue();
13771  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13772    ShAmt0 = ShAmt0.getOperand(0);
13773  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13774    ShAmt1 = ShAmt1.getOperand(0);
13775
13776  DebugLoc DL = N->getDebugLoc();
13777  unsigned Opc = X86ISD::SHLD;
13778  SDValue Op0 = N0.getOperand(0);
13779  SDValue Op1 = N1.getOperand(0);
13780  if (ShAmt0.getOpcode() == ISD::SUB) {
13781    Opc = X86ISD::SHRD;
13782    std::swap(Op0, Op1);
13783    std::swap(ShAmt0, ShAmt1);
13784  }
13785
13786  unsigned Bits = VT.getSizeInBits();
13787  if (ShAmt1.getOpcode() == ISD::SUB) {
13788    SDValue Sum = ShAmt1.getOperand(0);
13789    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13790      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13791      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13792        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13793      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13794        return DAG.getNode(Opc, DL, VT,
13795                           Op0, Op1,
13796                           DAG.getNode(ISD::TRUNCATE, DL,
13797                                       MVT::i8, ShAmt0));
13798    }
13799  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13800    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13801    if (ShAmt0C &&
13802        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13803      return DAG.getNode(Opc, DL, VT,
13804                         N0.getOperand(0), N1.getOperand(0),
13805                         DAG.getNode(ISD::TRUNCATE, DL,
13806                                       MVT::i8, ShAmt0));
13807  }
13808
13809  return SDValue();
13810}
13811
13812// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
13813static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
13814                                 TargetLowering::DAGCombinerInfo &DCI,
13815                                 const X86Subtarget *Subtarget) {
13816  if (DCI.isBeforeLegalizeOps())
13817    return SDValue();
13818
13819  EVT VT = N->getValueType(0);
13820
13821  if (VT != MVT::i32 && VT != MVT::i64)
13822    return SDValue();
13823
13824  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
13825
13826  // Create BLSMSK instructions by finding X ^ (X-1)
13827  SDValue N0 = N->getOperand(0);
13828  SDValue N1 = N->getOperand(1);
13829  DebugLoc DL = N->getDebugLoc();
13830
13831  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13832      isAllOnes(N0.getOperand(1)))
13833    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
13834
13835  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13836      isAllOnes(N1.getOperand(1)))
13837    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
13838
13839  return SDValue();
13840}
13841
13842/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
13843static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
13844                                   const X86Subtarget *Subtarget) {
13845  LoadSDNode *Ld = cast<LoadSDNode>(N);
13846  EVT RegVT = Ld->getValueType(0);
13847  EVT MemVT = Ld->getMemoryVT();
13848  DebugLoc dl = Ld->getDebugLoc();
13849  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13850
13851  ISD::LoadExtType Ext = Ld->getExtensionType();
13852
13853  // If this is a vector EXT Load then attempt to optimize it using a
13854  // shuffle. We need SSE4 for the shuffles.
13855  // TODO: It is possible to support ZExt by zeroing the undef values
13856  // during the shuffle phase or after the shuffle.
13857  if (RegVT.isVector() && RegVT.isInteger() &&
13858      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
13859    assert(MemVT != RegVT && "Cannot extend to the same type");
13860    assert(MemVT.isVector() && "Must load a vector from memory");
13861
13862    unsigned NumElems = RegVT.getVectorNumElements();
13863    unsigned RegSz = RegVT.getSizeInBits();
13864    unsigned MemSz = MemVT.getSizeInBits();
13865    assert(RegSz > MemSz && "Register size must be greater than the mem size");
13866    // All sizes must be a power of two
13867    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
13868
13869    // Attempt to load the original value using a single load op.
13870    // Find a scalar type which is equal to the loaded word size.
13871    MVT SclrLoadTy = MVT::i8;
13872    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13873         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13874      MVT Tp = (MVT::SimpleValueType)tp;
13875      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
13876        SclrLoadTy = Tp;
13877        break;
13878      }
13879    }
13880
13881    // Proceed if a load word is found.
13882    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
13883
13884    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
13885      RegSz/SclrLoadTy.getSizeInBits());
13886
13887    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
13888                                  RegSz/MemVT.getScalarType().getSizeInBits());
13889    // Can't shuffle using an illegal type.
13890    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13891
13892    // Perform a single load.
13893    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
13894                                  Ld->getBasePtr(),
13895                                  Ld->getPointerInfo(), Ld->isVolatile(),
13896                                  Ld->isNonTemporal(), Ld->isInvariant(),
13897                                  Ld->getAlignment());
13898
13899    // Insert the word loaded into a vector.
13900    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
13901      LoadUnitVecVT, ScalarLoad);
13902
13903    // Bitcast the loaded value to a vector of the original element type, in
13904    // the size of the target vector type.
13905    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
13906                                    ScalarInVector);
13907    unsigned SizeRatio = RegSz/MemSz;
13908
13909    // Redistribute the loaded elements into the different locations.
13910    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13911    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
13912
13913    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
13914                                DAG.getUNDEF(SlicedVec.getValueType()),
13915                                ShuffleVec.data());
13916
13917    // Bitcast to the requested type.
13918    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
13919    // Replace the original load with the new sequence
13920    // and return the new chain.
13921    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
13922    return SDValue(ScalarLoad.getNode(), 1);
13923  }
13924
13925  return SDValue();
13926}
13927
13928/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
13929static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
13930                                   const X86Subtarget *Subtarget) {
13931  StoreSDNode *St = cast<StoreSDNode>(N);
13932  EVT VT = St->getValue().getValueType();
13933  EVT StVT = St->getMemoryVT();
13934  DebugLoc dl = St->getDebugLoc();
13935  SDValue StoredVal = St->getOperand(1);
13936  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13937
13938  // If we are saving a concatenation of two XMM registers, perform two stores.
13939  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
13940  // 128-bit ones. If in the future the cost becomes only one memory access the
13941  // first version would be better.
13942  if (VT.getSizeInBits() == 256 &&
13943    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
13944    StoredVal.getNumOperands() == 2) {
13945
13946    SDValue Value0 = StoredVal.getOperand(0);
13947    SDValue Value1 = StoredVal.getOperand(1);
13948
13949    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
13950    SDValue Ptr0 = St->getBasePtr();
13951    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
13952
13953    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
13954                                St->getPointerInfo(), St->isVolatile(),
13955                                St->isNonTemporal(), St->getAlignment());
13956    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
13957                                St->getPointerInfo(), St->isVolatile(),
13958                                St->isNonTemporal(), St->getAlignment());
13959    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
13960  }
13961
13962  // Optimize trunc store (of multiple scalars) to shuffle and store.
13963  // First, pack all of the elements in one place. Next, store to memory
13964  // in fewer chunks.
13965  if (St->isTruncatingStore() && VT.isVector()) {
13966    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13967    unsigned NumElems = VT.getVectorNumElements();
13968    assert(StVT != VT && "Cannot truncate to the same type");
13969    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
13970    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
13971
13972    // From, To sizes and ElemCount must be pow of two
13973    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
13974    // We are going to use the original vector elt for storing.
13975    // Accumulated smaller vector elements must be a multiple of the store size.
13976    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
13977
13978    unsigned SizeRatio  = FromSz / ToSz;
13979
13980    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
13981
13982    // Create a type on which we perform the shuffle
13983    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
13984            StVT.getScalarType(), NumElems*SizeRatio);
13985
13986    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
13987
13988    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
13989    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13990    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
13991
13992    // Can't shuffle using an illegal type
13993    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13994
13995    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
13996                                DAG.getUNDEF(WideVec.getValueType()),
13997                                ShuffleVec.data());
13998    // At this point all of the data is stored at the bottom of the
13999    // register. We now need to save it to mem.
14000
14001    // Find the largest store unit
14002    MVT StoreType = MVT::i8;
14003    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14004         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14005      MVT Tp = (MVT::SimpleValueType)tp;
14006      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14007        StoreType = Tp;
14008    }
14009
14010    // Bitcast the original vector into a vector of store-size units
14011    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14012            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14013    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14014    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14015    SmallVector<SDValue, 8> Chains;
14016    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14017                                        TLI.getPointerTy());
14018    SDValue Ptr = St->getBasePtr();
14019
14020    // Perform one or more big stores into memory.
14021    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14022      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14023                                   StoreType, ShuffWide,
14024                                   DAG.getIntPtrConstant(i));
14025      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14026                                St->getPointerInfo(), St->isVolatile(),
14027                                St->isNonTemporal(), St->getAlignment());
14028      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14029      Chains.push_back(Ch);
14030    }
14031
14032    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14033                               Chains.size());
14034  }
14035
14036
14037  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14038  // the FP state in cases where an emms may be missing.
14039  // A preferable solution to the general problem is to figure out the right
14040  // places to insert EMMS.  This qualifies as a quick hack.
14041
14042  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14043  if (VT.getSizeInBits() != 64)
14044    return SDValue();
14045
14046  const Function *F = DAG.getMachineFunction().getFunction();
14047  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14048  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14049                     && Subtarget->hasSSE2();
14050  if ((VT.isVector() ||
14051       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14052      isa<LoadSDNode>(St->getValue()) &&
14053      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14054      St->getChain().hasOneUse() && !St->isVolatile()) {
14055    SDNode* LdVal = St->getValue().getNode();
14056    LoadSDNode *Ld = 0;
14057    int TokenFactorIndex = -1;
14058    SmallVector<SDValue, 8> Ops;
14059    SDNode* ChainVal = St->getChain().getNode();
14060    // Must be a store of a load.  We currently handle two cases:  the load
14061    // is a direct child, and it's under an intervening TokenFactor.  It is
14062    // possible to dig deeper under nested TokenFactors.
14063    if (ChainVal == LdVal)
14064      Ld = cast<LoadSDNode>(St->getChain());
14065    else if (St->getValue().hasOneUse() &&
14066             ChainVal->getOpcode() == ISD::TokenFactor) {
14067      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
14068        if (ChainVal->getOperand(i).getNode() == LdVal) {
14069          TokenFactorIndex = i;
14070          Ld = cast<LoadSDNode>(St->getValue());
14071        } else
14072          Ops.push_back(ChainVal->getOperand(i));
14073      }
14074    }
14075
14076    if (!Ld || !ISD::isNormalLoad(Ld))
14077      return SDValue();
14078
14079    // If this is not the MMX case, i.e. we are just turning i64 load/store
14080    // into f64 load/store, avoid the transformation if there are multiple
14081    // uses of the loaded value.
14082    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14083      return SDValue();
14084
14085    DebugLoc LdDL = Ld->getDebugLoc();
14086    DebugLoc StDL = N->getDebugLoc();
14087    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14088    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14089    // pair instead.
14090    if (Subtarget->is64Bit() || F64IsLegal) {
14091      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14092      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14093                                  Ld->getPointerInfo(), Ld->isVolatile(),
14094                                  Ld->isNonTemporal(), Ld->isInvariant(),
14095                                  Ld->getAlignment());
14096      SDValue NewChain = NewLd.getValue(1);
14097      if (TokenFactorIndex != -1) {
14098        Ops.push_back(NewChain);
14099        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14100                               Ops.size());
14101      }
14102      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14103                          St->getPointerInfo(),
14104                          St->isVolatile(), St->isNonTemporal(),
14105                          St->getAlignment());
14106    }
14107
14108    // Otherwise, lower to two pairs of 32-bit loads / stores.
14109    SDValue LoAddr = Ld->getBasePtr();
14110    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14111                                 DAG.getConstant(4, MVT::i32));
14112
14113    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14114                               Ld->getPointerInfo(),
14115                               Ld->isVolatile(), Ld->isNonTemporal(),
14116                               Ld->isInvariant(), Ld->getAlignment());
14117    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14118                               Ld->getPointerInfo().getWithOffset(4),
14119                               Ld->isVolatile(), Ld->isNonTemporal(),
14120                               Ld->isInvariant(),
14121                               MinAlign(Ld->getAlignment(), 4));
14122
14123    SDValue NewChain = LoLd.getValue(1);
14124    if (TokenFactorIndex != -1) {
14125      Ops.push_back(LoLd);
14126      Ops.push_back(HiLd);
14127      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14128                             Ops.size());
14129    }
14130
14131    LoAddr = St->getBasePtr();
14132    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14133                         DAG.getConstant(4, MVT::i32));
14134
14135    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14136                                St->getPointerInfo(),
14137                                St->isVolatile(), St->isNonTemporal(),
14138                                St->getAlignment());
14139    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14140                                St->getPointerInfo().getWithOffset(4),
14141                                St->isVolatile(),
14142                                St->isNonTemporal(),
14143                                MinAlign(St->getAlignment(), 4));
14144    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14145  }
14146  return SDValue();
14147}
14148
14149/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14150/// and return the operands for the horizontal operation in LHS and RHS.  A
14151/// horizontal operation performs the binary operation on successive elements
14152/// of its first operand, then on successive elements of its second operand,
14153/// returning the resulting values in a vector.  For example, if
14154///   A = < float a0, float a1, float a2, float a3 >
14155/// and
14156///   B = < float b0, float b1, float b2, float b3 >
14157/// then the result of doing a horizontal operation on A and B is
14158///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14159/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14160/// A horizontal-op B, for some already available A and B, and if so then LHS is
14161/// set to A, RHS to B, and the routine returns 'true'.
14162/// Note that the binary operation should have the property that if one of the
14163/// operands is UNDEF then the result is UNDEF.
14164static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14165  // Look for the following pattern: if
14166  //   A = < float a0, float a1, float a2, float a3 >
14167  //   B = < float b0, float b1, float b2, float b3 >
14168  // and
14169  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14170  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14171  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14172  // which is A horizontal-op B.
14173
14174  // At least one of the operands should be a vector shuffle.
14175  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14176      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14177    return false;
14178
14179  EVT VT = LHS.getValueType();
14180
14181  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14182         "Unsupported vector type for horizontal add/sub");
14183
14184  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14185  // operate independently on 128-bit lanes.
14186  unsigned NumElts = VT.getVectorNumElements();
14187  unsigned NumLanes = VT.getSizeInBits()/128;
14188  unsigned NumLaneElts = NumElts / NumLanes;
14189  assert((NumLaneElts % 2 == 0) &&
14190         "Vector type should have an even number of elements in each lane");
14191  unsigned HalfLaneElts = NumLaneElts/2;
14192
14193  // View LHS in the form
14194  //   LHS = VECTOR_SHUFFLE A, B, LMask
14195  // If LHS is not a shuffle then pretend it is the shuffle
14196  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14197  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14198  // type VT.
14199  SDValue A, B;
14200  SmallVector<int, 16> LMask(NumElts);
14201  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14202    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14203      A = LHS.getOperand(0);
14204    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14205      B = LHS.getOperand(1);
14206    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14207    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14208  } else {
14209    if (LHS.getOpcode() != ISD::UNDEF)
14210      A = LHS;
14211    for (unsigned i = 0; i != NumElts; ++i)
14212      LMask[i] = i;
14213  }
14214
14215  // Likewise, view RHS in the form
14216  //   RHS = VECTOR_SHUFFLE C, D, RMask
14217  SDValue C, D;
14218  SmallVector<int, 16> RMask(NumElts);
14219  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14220    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14221      C = RHS.getOperand(0);
14222    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14223      D = RHS.getOperand(1);
14224    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14225    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14226  } else {
14227    if (RHS.getOpcode() != ISD::UNDEF)
14228      C = RHS;
14229    for (unsigned i = 0; i != NumElts; ++i)
14230      RMask[i] = i;
14231  }
14232
14233  // Check that the shuffles are both shuffling the same vectors.
14234  if (!(A == C && B == D) && !(A == D && B == C))
14235    return false;
14236
14237  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14238  if (!A.getNode() && !B.getNode())
14239    return false;
14240
14241  // If A and B occur in reverse order in RHS, then "swap" them (which means
14242  // rewriting the mask).
14243  if (A != C)
14244    CommuteVectorShuffleMask(RMask, NumElts);
14245
14246  // At this point LHS and RHS are equivalent to
14247  //   LHS = VECTOR_SHUFFLE A, B, LMask
14248  //   RHS = VECTOR_SHUFFLE A, B, RMask
14249  // Check that the masks correspond to performing a horizontal operation.
14250  for (unsigned i = 0; i != NumElts; ++i) {
14251    int LIdx = LMask[i], RIdx = RMask[i];
14252
14253    // Ignore any UNDEF components.
14254    if (LIdx < 0 || RIdx < 0 ||
14255        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14256        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14257      continue;
14258
14259    // Check that successive elements are being operated on.  If not, this is
14260    // not a horizontal operation.
14261    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14262    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14263    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14264    if (!(LIdx == Index && RIdx == Index + 1) &&
14265        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14266      return false;
14267  }
14268
14269  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14270  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14271  return true;
14272}
14273
14274/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14275static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14276                                  const X86Subtarget *Subtarget) {
14277  EVT VT = N->getValueType(0);
14278  SDValue LHS = N->getOperand(0);
14279  SDValue RHS = N->getOperand(1);
14280
14281  // Try to synthesize horizontal adds from adds of shuffles.
14282  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14283       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14284      isHorizontalBinOp(LHS, RHS, true))
14285    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14286  return SDValue();
14287}
14288
14289/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14290static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14291                                  const X86Subtarget *Subtarget) {
14292  EVT VT = N->getValueType(0);
14293  SDValue LHS = N->getOperand(0);
14294  SDValue RHS = N->getOperand(1);
14295
14296  // Try to synthesize horizontal subs from subs of shuffles.
14297  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14298       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14299      isHorizontalBinOp(LHS, RHS, false))
14300    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14301  return SDValue();
14302}
14303
14304/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14305/// X86ISD::FXOR nodes.
14306static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14307  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14308  // F[X]OR(0.0, x) -> x
14309  // F[X]OR(x, 0.0) -> x
14310  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14311    if (C->getValueAPF().isPosZero())
14312      return N->getOperand(1);
14313  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14314    if (C->getValueAPF().isPosZero())
14315      return N->getOperand(0);
14316  return SDValue();
14317}
14318
14319/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14320static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14321  // FAND(0.0, x) -> 0.0
14322  // FAND(x, 0.0) -> 0.0
14323  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14324    if (C->getValueAPF().isPosZero())
14325      return N->getOperand(0);
14326  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14327    if (C->getValueAPF().isPosZero())
14328      return N->getOperand(1);
14329  return SDValue();
14330}
14331
14332static SDValue PerformBTCombine(SDNode *N,
14333                                SelectionDAG &DAG,
14334                                TargetLowering::DAGCombinerInfo &DCI) {
14335  // BT ignores high bits in the bit index operand.
14336  SDValue Op1 = N->getOperand(1);
14337  if (Op1.hasOneUse()) {
14338    unsigned BitWidth = Op1.getValueSizeInBits();
14339    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14340    APInt KnownZero, KnownOne;
14341    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14342                                          !DCI.isBeforeLegalizeOps());
14343    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14344    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14345        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14346      DCI.CommitTargetLoweringOpt(TLO);
14347  }
14348  return SDValue();
14349}
14350
14351static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14352  SDValue Op = N->getOperand(0);
14353  if (Op.getOpcode() == ISD::BITCAST)
14354    Op = Op.getOperand(0);
14355  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14356  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14357      VT.getVectorElementType().getSizeInBits() ==
14358      OpVT.getVectorElementType().getSizeInBits()) {
14359    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14360  }
14361  return SDValue();
14362}
14363
14364static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
14365                                  const X86Subtarget *Subtarget) {
14366  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14367  //           (and (i32 x86isd::setcc_carry), 1)
14368  // This eliminates the zext. This transformation is necessary because
14369  // ISD::SETCC is always legalized to i8.
14370  DebugLoc dl = N->getDebugLoc();
14371  SDValue N0 = N->getOperand(0);
14372  EVT VT = N->getValueType(0);
14373  EVT OpVT = N0.getValueType();
14374
14375  if (N0.getOpcode() == ISD::AND &&
14376      N0.hasOneUse() &&
14377      N0.getOperand(0).hasOneUse()) {
14378    SDValue N00 = N0.getOperand(0);
14379    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14380      return SDValue();
14381    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14382    if (!C || C->getZExtValue() != 1)
14383      return SDValue();
14384    return DAG.getNode(ISD::AND, dl, VT,
14385                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14386                                   N00.getOperand(0), N00.getOperand(1)),
14387                       DAG.getConstant(1, VT));
14388  }
14389  // Optimize vectors in AVX mode:
14390  //
14391  //   v8i16 -> v8i32
14392  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
14393  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
14394  //   Concat upper and lower parts.
14395  //
14396  //   v4i32 -> v4i64
14397  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
14398  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
14399  //   Concat upper and lower parts.
14400  //
14401  if (Subtarget->hasAVX()) {
14402
14403    if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16))  ||
14404      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
14405
14406      SDValue ZeroVec = getZeroVector(OpVT, Subtarget->hasSSE2(), Subtarget->hasAVX2(),
14407        DAG, dl);
14408      SDValue OpLo = getTargetShuffleNode(X86ISD::UNPCKL, dl, OpVT, N0, ZeroVec, DAG);
14409      SDValue OpHi = getTargetShuffleNode(X86ISD::UNPCKH, dl, OpVT, N0, ZeroVec, DAG);
14410
14411      EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
14412        VT.getVectorNumElements()/2);
14413
14414      OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
14415      OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
14416
14417      return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14418    }
14419  }
14420
14421
14422  return SDValue();
14423}
14424
14425// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14426static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14427  unsigned X86CC = N->getConstantOperandVal(0);
14428  SDValue EFLAG = N->getOperand(1);
14429  DebugLoc DL = N->getDebugLoc();
14430
14431  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14432  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14433  // cases.
14434  if (X86CC == X86::COND_B)
14435    return DAG.getNode(ISD::AND, DL, MVT::i8,
14436                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14437                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14438                       DAG.getConstant(1, MVT::i8));
14439
14440  return SDValue();
14441}
14442
14443static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14444                                        const X86TargetLowering *XTLI) {
14445  SDValue Op0 = N->getOperand(0);
14446  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14447  // a 32-bit target where SSE doesn't support i64->FP operations.
14448  if (Op0.getOpcode() == ISD::LOAD) {
14449    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14450    EVT VT = Ld->getValueType(0);
14451    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14452        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14453        !XTLI->getSubtarget()->is64Bit() &&
14454        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14455      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14456                                          Ld->getChain(), Op0, DAG);
14457      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14458      return FILDChain;
14459    }
14460  }
14461  return SDValue();
14462}
14463
14464// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14465static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14466                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14467  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14468  // the result is either zero or one (depending on the input carry bit).
14469  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14470  if (X86::isZeroNode(N->getOperand(0)) &&
14471      X86::isZeroNode(N->getOperand(1)) &&
14472      // We don't have a good way to replace an EFLAGS use, so only do this when
14473      // dead right now.
14474      SDValue(N, 1).use_empty()) {
14475    DebugLoc DL = N->getDebugLoc();
14476    EVT VT = N->getValueType(0);
14477    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14478    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14479                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14480                                           DAG.getConstant(X86::COND_B,MVT::i8),
14481                                           N->getOperand(2)),
14482                               DAG.getConstant(1, VT));
14483    return DCI.CombineTo(N, Res1, CarryOut);
14484  }
14485
14486  return SDValue();
14487}
14488
14489// fold (add Y, (sete  X, 0)) -> adc  0, Y
14490//      (add Y, (setne X, 0)) -> sbb -1, Y
14491//      (sub (sete  X, 0), Y) -> sbb  0, Y
14492//      (sub (setne X, 0), Y) -> adc -1, Y
14493static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14494  DebugLoc DL = N->getDebugLoc();
14495
14496  // Look through ZExts.
14497  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14498  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14499    return SDValue();
14500
14501  SDValue SetCC = Ext.getOperand(0);
14502  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14503    return SDValue();
14504
14505  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14506  if (CC != X86::COND_E && CC != X86::COND_NE)
14507    return SDValue();
14508
14509  SDValue Cmp = SetCC.getOperand(1);
14510  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14511      !X86::isZeroNode(Cmp.getOperand(1)) ||
14512      !Cmp.getOperand(0).getValueType().isInteger())
14513    return SDValue();
14514
14515  SDValue CmpOp0 = Cmp.getOperand(0);
14516  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14517                               DAG.getConstant(1, CmpOp0.getValueType()));
14518
14519  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14520  if (CC == X86::COND_NE)
14521    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14522                       DL, OtherVal.getValueType(), OtherVal,
14523                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14524  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14525                     DL, OtherVal.getValueType(), OtherVal,
14526                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14527}
14528
14529/// PerformADDCombine - Do target-specific dag combines on integer adds.
14530static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14531                                 const X86Subtarget *Subtarget) {
14532  EVT VT = N->getValueType(0);
14533  SDValue Op0 = N->getOperand(0);
14534  SDValue Op1 = N->getOperand(1);
14535
14536  // Try to synthesize horizontal adds from adds of shuffles.
14537  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14538       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14539      isHorizontalBinOp(Op0, Op1, true))
14540    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14541
14542  return OptimizeConditionalInDecrement(N, DAG);
14543}
14544
14545static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14546                                 const X86Subtarget *Subtarget) {
14547  SDValue Op0 = N->getOperand(0);
14548  SDValue Op1 = N->getOperand(1);
14549
14550  // X86 can't encode an immediate LHS of a sub. See if we can push the
14551  // negation into a preceding instruction.
14552  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14553    // If the RHS of the sub is a XOR with one use and a constant, invert the
14554    // immediate. Then add one to the LHS of the sub so we can turn
14555    // X-Y -> X+~Y+1, saving one register.
14556    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14557        isa<ConstantSDNode>(Op1.getOperand(1))) {
14558      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14559      EVT VT = Op0.getValueType();
14560      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14561                                   Op1.getOperand(0),
14562                                   DAG.getConstant(~XorC, VT));
14563      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14564                         DAG.getConstant(C->getAPIntValue()+1, VT));
14565    }
14566  }
14567
14568  // Try to synthesize horizontal adds from adds of shuffles.
14569  EVT VT = N->getValueType(0);
14570  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14571       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14572      isHorizontalBinOp(Op0, Op1, true))
14573    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14574
14575  return OptimizeConditionalInDecrement(N, DAG);
14576}
14577
14578SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14579                                             DAGCombinerInfo &DCI) const {
14580  SelectionDAG &DAG = DCI.DAG;
14581  switch (N->getOpcode()) {
14582  default: break;
14583  case ISD::EXTRACT_VECTOR_ELT:
14584    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14585  case ISD::VSELECT:
14586  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
14587  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14588  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
14589  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
14590  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14591  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14592  case ISD::SHL:
14593  case ISD::SRA:
14594  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
14595  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14596  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14597  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
14598  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14599  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14600  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14601  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14602  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14603  case X86ISD::FXOR:
14604  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14605  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14606  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14607  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14608  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, Subtarget);
14609  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14610  case X86ISD::SHUFP:       // Handle all target specific shuffles
14611  case X86ISD::PALIGN:
14612  case X86ISD::UNPCKH:
14613  case X86ISD::UNPCKL:
14614  case X86ISD::MOVHLPS:
14615  case X86ISD::MOVLHPS:
14616  case X86ISD::PSHUFD:
14617  case X86ISD::PSHUFHW:
14618  case X86ISD::PSHUFLW:
14619  case X86ISD::MOVSS:
14620  case X86ISD::MOVSD:
14621  case X86ISD::VPERMILP:
14622  case X86ISD::VPERM2X128:
14623  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14624  }
14625
14626  return SDValue();
14627}
14628
14629/// isTypeDesirableForOp - Return true if the target has native support for
14630/// the specified value type and it is 'desirable' to use the type for the
14631/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14632/// instruction encodings are longer and some i16 instructions are slow.
14633bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14634  if (!isTypeLegal(VT))
14635    return false;
14636  if (VT != MVT::i16)
14637    return true;
14638
14639  switch (Opc) {
14640  default:
14641    return true;
14642  case ISD::LOAD:
14643  case ISD::SIGN_EXTEND:
14644  case ISD::ZERO_EXTEND:
14645  case ISD::ANY_EXTEND:
14646  case ISD::SHL:
14647  case ISD::SRL:
14648  case ISD::SUB:
14649  case ISD::ADD:
14650  case ISD::MUL:
14651  case ISD::AND:
14652  case ISD::OR:
14653  case ISD::XOR:
14654    return false;
14655  }
14656}
14657
14658/// IsDesirableToPromoteOp - This method query the target whether it is
14659/// beneficial for dag combiner to promote the specified node. If true, it
14660/// should return the desired promotion type by reference.
14661bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14662  EVT VT = Op.getValueType();
14663  if (VT != MVT::i16)
14664    return false;
14665
14666  bool Promote = false;
14667  bool Commute = false;
14668  switch (Op.getOpcode()) {
14669  default: break;
14670  case ISD::LOAD: {
14671    LoadSDNode *LD = cast<LoadSDNode>(Op);
14672    // If the non-extending load has a single use and it's not live out, then it
14673    // might be folded.
14674    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14675                                                     Op.hasOneUse()*/) {
14676      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14677             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14678        // The only case where we'd want to promote LOAD (rather then it being
14679        // promoted as an operand is when it's only use is liveout.
14680        if (UI->getOpcode() != ISD::CopyToReg)
14681          return false;
14682      }
14683    }
14684    Promote = true;
14685    break;
14686  }
14687  case ISD::SIGN_EXTEND:
14688  case ISD::ZERO_EXTEND:
14689  case ISD::ANY_EXTEND:
14690    Promote = true;
14691    break;
14692  case ISD::SHL:
14693  case ISD::SRL: {
14694    SDValue N0 = Op.getOperand(0);
14695    // Look out for (store (shl (load), x)).
14696    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14697      return false;
14698    Promote = true;
14699    break;
14700  }
14701  case ISD::ADD:
14702  case ISD::MUL:
14703  case ISD::AND:
14704  case ISD::OR:
14705  case ISD::XOR:
14706    Commute = true;
14707    // fallthrough
14708  case ISD::SUB: {
14709    SDValue N0 = Op.getOperand(0);
14710    SDValue N1 = Op.getOperand(1);
14711    if (!Commute && MayFoldLoad(N1))
14712      return false;
14713    // Avoid disabling potential load folding opportunities.
14714    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14715      return false;
14716    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14717      return false;
14718    Promote = true;
14719  }
14720  }
14721
14722  PVT = MVT::i32;
14723  return Promote;
14724}
14725
14726//===----------------------------------------------------------------------===//
14727//                           X86 Inline Assembly Support
14728//===----------------------------------------------------------------------===//
14729
14730namespace {
14731  // Helper to match a string separated by whitespace.
14732  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
14733    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
14734
14735    for (unsigned i = 0, e = args.size(); i != e; ++i) {
14736      StringRef piece(*args[i]);
14737      if (!s.startswith(piece)) // Check if the piece matches.
14738        return false;
14739
14740      s = s.substr(piece.size());
14741      StringRef::size_type pos = s.find_first_not_of(" \t");
14742      if (pos == 0) // We matched a prefix.
14743        return false;
14744
14745      s = s.substr(pos);
14746    }
14747
14748    return s.empty();
14749  }
14750  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
14751}
14752
14753bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14754  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14755
14756  std::string AsmStr = IA->getAsmString();
14757
14758  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14759  if (!Ty || Ty->getBitWidth() % 16 != 0)
14760    return false;
14761
14762  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14763  SmallVector<StringRef, 4> AsmPieces;
14764  SplitString(AsmStr, AsmPieces, ";\n");
14765
14766  switch (AsmPieces.size()) {
14767  default: return false;
14768  case 1:
14769    // FIXME: this should verify that we are targeting a 486 or better.  If not,
14770    // we will turn this bswap into something that will be lowered to logical
14771    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
14772    // lower so don't worry about this.
14773    // bswap $0
14774    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
14775        matchAsm(AsmPieces[0], "bswapl", "$0") ||
14776        matchAsm(AsmPieces[0], "bswapq", "$0") ||
14777        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
14778        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
14779        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
14780      // No need to check constraints, nothing other than the equivalent of
14781      // "=r,0" would be valid here.
14782      return IntrinsicLowering::LowerToByteSwap(CI);
14783    }
14784
14785    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
14786    if (CI->getType()->isIntegerTy(16) &&
14787        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14788        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
14789         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
14790      AsmPieces.clear();
14791      const std::string &ConstraintsStr = IA->getConstraintString();
14792      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14793      std::sort(AsmPieces.begin(), AsmPieces.end());
14794      if (AsmPieces.size() == 4 &&
14795          AsmPieces[0] == "~{cc}" &&
14796          AsmPieces[1] == "~{dirflag}" &&
14797          AsmPieces[2] == "~{flags}" &&
14798          AsmPieces[3] == "~{fpsr}")
14799      return IntrinsicLowering::LowerToByteSwap(CI);
14800    }
14801    break;
14802  case 3:
14803    if (CI->getType()->isIntegerTy(32) &&
14804        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14805        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
14806        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
14807        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
14808      AsmPieces.clear();
14809      const std::string &ConstraintsStr = IA->getConstraintString();
14810      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14811      std::sort(AsmPieces.begin(), AsmPieces.end());
14812      if (AsmPieces.size() == 4 &&
14813          AsmPieces[0] == "~{cc}" &&
14814          AsmPieces[1] == "~{dirflag}" &&
14815          AsmPieces[2] == "~{flags}" &&
14816          AsmPieces[3] == "~{fpsr}")
14817        return IntrinsicLowering::LowerToByteSwap(CI);
14818    }
14819
14820    if (CI->getType()->isIntegerTy(64)) {
14821      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14822      if (Constraints.size() >= 2 &&
14823          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14824          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14825        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
14826        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
14827            matchAsm(AsmPieces[1], "bswap", "%edx") &&
14828            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
14829          return IntrinsicLowering::LowerToByteSwap(CI);
14830      }
14831    }
14832    break;
14833  }
14834  return false;
14835}
14836
14837
14838
14839/// getConstraintType - Given a constraint letter, return the type of
14840/// constraint it is for this target.
14841X86TargetLowering::ConstraintType
14842X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14843  if (Constraint.size() == 1) {
14844    switch (Constraint[0]) {
14845    case 'R':
14846    case 'q':
14847    case 'Q':
14848    case 'f':
14849    case 't':
14850    case 'u':
14851    case 'y':
14852    case 'x':
14853    case 'Y':
14854    case 'l':
14855      return C_RegisterClass;
14856    case 'a':
14857    case 'b':
14858    case 'c':
14859    case 'd':
14860    case 'S':
14861    case 'D':
14862    case 'A':
14863      return C_Register;
14864    case 'I':
14865    case 'J':
14866    case 'K':
14867    case 'L':
14868    case 'M':
14869    case 'N':
14870    case 'G':
14871    case 'C':
14872    case 'e':
14873    case 'Z':
14874      return C_Other;
14875    default:
14876      break;
14877    }
14878  }
14879  return TargetLowering::getConstraintType(Constraint);
14880}
14881
14882/// Examine constraint type and operand type and determine a weight value.
14883/// This object must already have been set up with the operand type
14884/// and the current alternative constraint selected.
14885TargetLowering::ConstraintWeight
14886  X86TargetLowering::getSingleConstraintMatchWeight(
14887    AsmOperandInfo &info, const char *constraint) const {
14888  ConstraintWeight weight = CW_Invalid;
14889  Value *CallOperandVal = info.CallOperandVal;
14890    // If we don't have a value, we can't do a match,
14891    // but allow it at the lowest weight.
14892  if (CallOperandVal == NULL)
14893    return CW_Default;
14894  Type *type = CallOperandVal->getType();
14895  // Look at the constraint type.
14896  switch (*constraint) {
14897  default:
14898    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14899  case 'R':
14900  case 'q':
14901  case 'Q':
14902  case 'a':
14903  case 'b':
14904  case 'c':
14905  case 'd':
14906  case 'S':
14907  case 'D':
14908  case 'A':
14909    if (CallOperandVal->getType()->isIntegerTy())
14910      weight = CW_SpecificReg;
14911    break;
14912  case 'f':
14913  case 't':
14914  case 'u':
14915      if (type->isFloatingPointTy())
14916        weight = CW_SpecificReg;
14917      break;
14918  case 'y':
14919      if (type->isX86_MMXTy() && Subtarget->hasMMX())
14920        weight = CW_SpecificReg;
14921      break;
14922  case 'x':
14923  case 'Y':
14924    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
14925        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
14926      weight = CW_Register;
14927    break;
14928  case 'I':
14929    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14930      if (C->getZExtValue() <= 31)
14931        weight = CW_Constant;
14932    }
14933    break;
14934  case 'J':
14935    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14936      if (C->getZExtValue() <= 63)
14937        weight = CW_Constant;
14938    }
14939    break;
14940  case 'K':
14941    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14942      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
14943        weight = CW_Constant;
14944    }
14945    break;
14946  case 'L':
14947    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14948      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
14949        weight = CW_Constant;
14950    }
14951    break;
14952  case 'M':
14953    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14954      if (C->getZExtValue() <= 3)
14955        weight = CW_Constant;
14956    }
14957    break;
14958  case 'N':
14959    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14960      if (C->getZExtValue() <= 0xff)
14961        weight = CW_Constant;
14962    }
14963    break;
14964  case 'G':
14965  case 'C':
14966    if (dyn_cast<ConstantFP>(CallOperandVal)) {
14967      weight = CW_Constant;
14968    }
14969    break;
14970  case 'e':
14971    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14972      if ((C->getSExtValue() >= -0x80000000LL) &&
14973          (C->getSExtValue() <= 0x7fffffffLL))
14974        weight = CW_Constant;
14975    }
14976    break;
14977  case 'Z':
14978    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14979      if (C->getZExtValue() <= 0xffffffff)
14980        weight = CW_Constant;
14981    }
14982    break;
14983  }
14984  return weight;
14985}
14986
14987/// LowerXConstraint - try to replace an X constraint, which matches anything,
14988/// with another that has more specific requirements based on the type of the
14989/// corresponding operand.
14990const char *X86TargetLowering::
14991LowerXConstraint(EVT ConstraintVT) const {
14992  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
14993  // 'f' like normal targets.
14994  if (ConstraintVT.isFloatingPoint()) {
14995    if (Subtarget->hasSSE2())
14996      return "Y";
14997    if (Subtarget->hasSSE1())
14998      return "x";
14999  }
15000
15001  return TargetLowering::LowerXConstraint(ConstraintVT);
15002}
15003
15004/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15005/// vector.  If it is invalid, don't add anything to Ops.
15006void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15007                                                     std::string &Constraint,
15008                                                     std::vector<SDValue>&Ops,
15009                                                     SelectionDAG &DAG) const {
15010  SDValue Result(0, 0);
15011
15012  // Only support length 1 constraints for now.
15013  if (Constraint.length() > 1) return;
15014
15015  char ConstraintLetter = Constraint[0];
15016  switch (ConstraintLetter) {
15017  default: break;
15018  case 'I':
15019    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15020      if (C->getZExtValue() <= 31) {
15021        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15022        break;
15023      }
15024    }
15025    return;
15026  case 'J':
15027    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15028      if (C->getZExtValue() <= 63) {
15029        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15030        break;
15031      }
15032    }
15033    return;
15034  case 'K':
15035    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15036      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15037        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15038        break;
15039      }
15040    }
15041    return;
15042  case 'N':
15043    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15044      if (C->getZExtValue() <= 255) {
15045        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15046        break;
15047      }
15048    }
15049    return;
15050  case 'e': {
15051    // 32-bit signed value
15052    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15053      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15054                                           C->getSExtValue())) {
15055        // Widen to 64 bits here to get it sign extended.
15056        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15057        break;
15058      }
15059    // FIXME gcc accepts some relocatable values here too, but only in certain
15060    // memory models; it's complicated.
15061    }
15062    return;
15063  }
15064  case 'Z': {
15065    // 32-bit unsigned value
15066    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15067      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15068                                           C->getZExtValue())) {
15069        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15070        break;
15071      }
15072    }
15073    // FIXME gcc accepts some relocatable values here too, but only in certain
15074    // memory models; it's complicated.
15075    return;
15076  }
15077  case 'i': {
15078    // Literal immediates are always ok.
15079    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15080      // Widen to 64 bits here to get it sign extended.
15081      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15082      break;
15083    }
15084
15085    // In any sort of PIC mode addresses need to be computed at runtime by
15086    // adding in a register or some sort of table lookup.  These can't
15087    // be used as immediates.
15088    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15089      return;
15090
15091    // If we are in non-pic codegen mode, we allow the address of a global (with
15092    // an optional displacement) to be used with 'i'.
15093    GlobalAddressSDNode *GA = 0;
15094    int64_t Offset = 0;
15095
15096    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15097    while (1) {
15098      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15099        Offset += GA->getOffset();
15100        break;
15101      } else if (Op.getOpcode() == ISD::ADD) {
15102        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15103          Offset += C->getZExtValue();
15104          Op = Op.getOperand(0);
15105          continue;
15106        }
15107      } else if (Op.getOpcode() == ISD::SUB) {
15108        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15109          Offset += -C->getZExtValue();
15110          Op = Op.getOperand(0);
15111          continue;
15112        }
15113      }
15114
15115      // Otherwise, this isn't something we can handle, reject it.
15116      return;
15117    }
15118
15119    const GlobalValue *GV = GA->getGlobal();
15120    // If we require an extra load to get this address, as in PIC mode, we
15121    // can't accept it.
15122    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15123                                                        getTargetMachine())))
15124      return;
15125
15126    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15127                                        GA->getValueType(0), Offset);
15128    break;
15129  }
15130  }
15131
15132  if (Result.getNode()) {
15133    Ops.push_back(Result);
15134    return;
15135  }
15136  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15137}
15138
15139std::pair<unsigned, const TargetRegisterClass*>
15140X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15141                                                EVT VT) const {
15142  // First, see if this is a constraint that directly corresponds to an LLVM
15143  // register class.
15144  if (Constraint.size() == 1) {
15145    // GCC Constraint Letters
15146    switch (Constraint[0]) {
15147    default: break;
15148      // TODO: Slight differences here in allocation order and leaving
15149      // RIP in the class. Do they matter any more here than they do
15150      // in the normal allocation?
15151    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15152      if (Subtarget->is64Bit()) {
15153	if (VT == MVT::i32 || VT == MVT::f32)
15154	  return std::make_pair(0U, X86::GR32RegisterClass);
15155	else if (VT == MVT::i16)
15156	  return std::make_pair(0U, X86::GR16RegisterClass);
15157	else if (VT == MVT::i8 || VT == MVT::i1)
15158	  return std::make_pair(0U, X86::GR8RegisterClass);
15159	else if (VT == MVT::i64 || VT == MVT::f64)
15160	  return std::make_pair(0U, X86::GR64RegisterClass);
15161	break;
15162      }
15163      // 32-bit fallthrough
15164    case 'Q':   // Q_REGS
15165      if (VT == MVT::i32 || VT == MVT::f32)
15166	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15167      else if (VT == MVT::i16)
15168	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15169      else if (VT == MVT::i8 || VT == MVT::i1)
15170	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15171      else if (VT == MVT::i64)
15172	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15173      break;
15174    case 'r':   // GENERAL_REGS
15175    case 'l':   // INDEX_REGS
15176      if (VT == MVT::i8 || VT == MVT::i1)
15177        return std::make_pair(0U, X86::GR8RegisterClass);
15178      if (VT == MVT::i16)
15179        return std::make_pair(0U, X86::GR16RegisterClass);
15180      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15181        return std::make_pair(0U, X86::GR32RegisterClass);
15182      return std::make_pair(0U, X86::GR64RegisterClass);
15183    case 'R':   // LEGACY_REGS
15184      if (VT == MVT::i8 || VT == MVT::i1)
15185        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15186      if (VT == MVT::i16)
15187        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15188      if (VT == MVT::i32 || !Subtarget->is64Bit())
15189        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15190      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15191    case 'f':  // FP Stack registers.
15192      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15193      // value to the correct fpstack register class.
15194      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15195        return std::make_pair(0U, X86::RFP32RegisterClass);
15196      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15197        return std::make_pair(0U, X86::RFP64RegisterClass);
15198      return std::make_pair(0U, X86::RFP80RegisterClass);
15199    case 'y':   // MMX_REGS if MMX allowed.
15200      if (!Subtarget->hasMMX()) break;
15201      return std::make_pair(0U, X86::VR64RegisterClass);
15202    case 'Y':   // SSE_REGS if SSE2 allowed
15203      if (!Subtarget->hasSSE2()) break;
15204      // FALL THROUGH.
15205    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15206      if (!Subtarget->hasSSE1()) break;
15207
15208      switch (VT.getSimpleVT().SimpleTy) {
15209      default: break;
15210      // Scalar SSE types.
15211      case MVT::f32:
15212      case MVT::i32:
15213        return std::make_pair(0U, X86::FR32RegisterClass);
15214      case MVT::f64:
15215      case MVT::i64:
15216        return std::make_pair(0U, X86::FR64RegisterClass);
15217      // Vector types.
15218      case MVT::v16i8:
15219      case MVT::v8i16:
15220      case MVT::v4i32:
15221      case MVT::v2i64:
15222      case MVT::v4f32:
15223      case MVT::v2f64:
15224        return std::make_pair(0U, X86::VR128RegisterClass);
15225      // AVX types.
15226      case MVT::v32i8:
15227      case MVT::v16i16:
15228      case MVT::v8i32:
15229      case MVT::v4i64:
15230      case MVT::v8f32:
15231      case MVT::v4f64:
15232        return std::make_pair(0U, X86::VR256RegisterClass);
15233
15234      }
15235      break;
15236    }
15237  }
15238
15239  // Use the default implementation in TargetLowering to convert the register
15240  // constraint into a member of a register class.
15241  std::pair<unsigned, const TargetRegisterClass*> Res;
15242  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15243
15244  // Not found as a standard register?
15245  if (Res.second == 0) {
15246    // Map st(0) -> st(7) -> ST0
15247    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15248        tolower(Constraint[1]) == 's' &&
15249        tolower(Constraint[2]) == 't' &&
15250        Constraint[3] == '(' &&
15251        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15252        Constraint[5] == ')' &&
15253        Constraint[6] == '}') {
15254
15255      Res.first = X86::ST0+Constraint[4]-'0';
15256      Res.second = X86::RFP80RegisterClass;
15257      return Res;
15258    }
15259
15260    // GCC allows "st(0)" to be called just plain "st".
15261    if (StringRef("{st}").equals_lower(Constraint)) {
15262      Res.first = X86::ST0;
15263      Res.second = X86::RFP80RegisterClass;
15264      return Res;
15265    }
15266
15267    // flags -> EFLAGS
15268    if (StringRef("{flags}").equals_lower(Constraint)) {
15269      Res.first = X86::EFLAGS;
15270      Res.second = X86::CCRRegisterClass;
15271      return Res;
15272    }
15273
15274    // 'A' means EAX + EDX.
15275    if (Constraint == "A") {
15276      Res.first = X86::EAX;
15277      Res.second = X86::GR32_ADRegisterClass;
15278      return Res;
15279    }
15280    return Res;
15281  }
15282
15283  // Otherwise, check to see if this is a register class of the wrong value
15284  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15285  // turn into {ax},{dx}.
15286  if (Res.second->hasType(VT))
15287    return Res;   // Correct type already, nothing to do.
15288
15289  // All of the single-register GCC register classes map their values onto
15290  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15291  // really want an 8-bit or 32-bit register, map to the appropriate register
15292  // class and return the appropriate register.
15293  if (Res.second == X86::GR16RegisterClass) {
15294    if (VT == MVT::i8) {
15295      unsigned DestReg = 0;
15296      switch (Res.first) {
15297      default: break;
15298      case X86::AX: DestReg = X86::AL; break;
15299      case X86::DX: DestReg = X86::DL; break;
15300      case X86::CX: DestReg = X86::CL; break;
15301      case X86::BX: DestReg = X86::BL; break;
15302      }
15303      if (DestReg) {
15304        Res.first = DestReg;
15305        Res.second = X86::GR8RegisterClass;
15306      }
15307    } else if (VT == MVT::i32) {
15308      unsigned DestReg = 0;
15309      switch (Res.first) {
15310      default: break;
15311      case X86::AX: DestReg = X86::EAX; break;
15312      case X86::DX: DestReg = X86::EDX; break;
15313      case X86::CX: DestReg = X86::ECX; break;
15314      case X86::BX: DestReg = X86::EBX; break;
15315      case X86::SI: DestReg = X86::ESI; break;
15316      case X86::DI: DestReg = X86::EDI; break;
15317      case X86::BP: DestReg = X86::EBP; break;
15318      case X86::SP: DestReg = X86::ESP; break;
15319      }
15320      if (DestReg) {
15321        Res.first = DestReg;
15322        Res.second = X86::GR32RegisterClass;
15323      }
15324    } else if (VT == MVT::i64) {
15325      unsigned DestReg = 0;
15326      switch (Res.first) {
15327      default: break;
15328      case X86::AX: DestReg = X86::RAX; break;
15329      case X86::DX: DestReg = X86::RDX; break;
15330      case X86::CX: DestReg = X86::RCX; break;
15331      case X86::BX: DestReg = X86::RBX; break;
15332      case X86::SI: DestReg = X86::RSI; break;
15333      case X86::DI: DestReg = X86::RDI; break;
15334      case X86::BP: DestReg = X86::RBP; break;
15335      case X86::SP: DestReg = X86::RSP; break;
15336      }
15337      if (DestReg) {
15338        Res.first = DestReg;
15339        Res.second = X86::GR64RegisterClass;
15340      }
15341    }
15342  } else if (Res.second == X86::FR32RegisterClass ||
15343             Res.second == X86::FR64RegisterClass ||
15344             Res.second == X86::VR128RegisterClass) {
15345    // Handle references to XMM physical registers that got mapped into the
15346    // wrong class.  This can happen with constraints like {xmm0} where the
15347    // target independent register mapper will just pick the first match it can
15348    // find, ignoring the required type.
15349    if (VT == MVT::f32)
15350      Res.second = X86::FR32RegisterClass;
15351    else if (VT == MVT::f64)
15352      Res.second = X86::FR64RegisterClass;
15353    else if (X86::VR128RegisterClass->hasType(VT))
15354      Res.second = X86::VR128RegisterClass;
15355  }
15356
15357  return Res;
15358}
15359