X86ISelLowering.cpp revision 536e66764b93fd1368ce4d1f753cbe909c05b62d
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/PseudoSourceValue.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/StringExtras.h"
41#include "llvm/Support/CommandLine.h"
42using namespace llvm;
43
44static cl::opt<bool>
45DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
46
47// Forward declarations.
48static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG, DebugLoc dl);
49
50X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
51  : TargetLowering(TM) {
52  Subtarget = &TM.getSubtarget<X86Subtarget>();
53  X86ScalarSSEf64 = Subtarget->hasSSE2();
54  X86ScalarSSEf32 = Subtarget->hasSSE1();
55  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
56
57  bool Fast = false;
58
59  RegInfo = TM.getRegisterInfo();
60  TD = getTargetData();
61
62  // Set up the TargetLowering object.
63
64  // X86 is weird, it always uses i8 for shift amounts and setcc results.
65  setShiftAmountType(MVT::i8);
66  setBooleanContents(ZeroOrOneBooleanContent);
67  setSchedulingPreference(SchedulingForRegPressure);
68  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
69  setStackPointerRegisterToSaveRestore(X86StackPtr);
70
71  if (Subtarget->isTargetDarwin()) {
72    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
73    setUseUnderscoreSetJmp(false);
74    setUseUnderscoreLongJmp(false);
75  } else if (Subtarget->isTargetMingw()) {
76    // MS runtime is weird: it exports _setjmp, but longjmp!
77    setUseUnderscoreSetJmp(true);
78    setUseUnderscoreLongJmp(false);
79  } else {
80    setUseUnderscoreSetJmp(true);
81    setUseUnderscoreLongJmp(true);
82  }
83
84  // Set up the register classes.
85  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
86  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
87  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
88  if (Subtarget->is64Bit())
89    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
90
91  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
92
93  // We don't accept any truncstore of integer registers.
94  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
95  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
96  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
97  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
98  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
99  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
100
101  // SETOEQ and SETUNE require checking two conditions.
102  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
103  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
104  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
105  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
106  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
107  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
108
109  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
110  // operation.
111  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
112  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
113  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
114
115  if (Subtarget->is64Bit()) {
116    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
117    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
118  } else {
119    if (X86ScalarSSEf64) {
120      // We have an impenetrably clever algorithm for ui64->double only.
121      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
122
123      // We have faster algorithm for ui32->single only.
124      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
125    } else
126      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
127  }
128
129  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
130  // this operation.
131  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
132  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
133  // SSE has no i16 to fp conversion, only i32
134  if (X86ScalarSSEf32) {
135    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
136    // f32 and f64 cases are Legal, f80 case is not
137    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
138  } else {
139    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
140    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
141  }
142
143  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
144  // are Legal, f80 is custom lowered.
145  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
146  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
147
148  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
149  // this operation.
150  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
151  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
152
153  if (X86ScalarSSEf32) {
154    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
155    // f32 and f64 cases are Legal, f80 case is not
156    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
157  } else {
158    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
159    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
160  }
161
162  // Handle FP_TO_UINT by promoting the destination to a larger signed
163  // conversion.
164  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
165  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
166  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
167
168  if (Subtarget->is64Bit()) {
169    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
170    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
171  } else {
172    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
173      // Expand FP_TO_UINT into a select.
174      // FIXME: We would like to use a Custom expander here eventually to do
175      // the optimal thing for SSE vs. the default expansion in the legalizer.
176      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
177    else
178      // With SSE3 we can use fisttpll to convert to a signed i64.
179      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
180  }
181
182  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
183  if (!X86ScalarSSEf64) {
184    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
185    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
186  }
187
188  // Scalar integer divide and remainder are lowered to use operations that
189  // produce two results, to match the available instructions. This exposes
190  // the two-result form to trivial CSE, which is able to combine x/y and x%y
191  // into a single instruction.
192  //
193  // Scalar integer multiply-high is also lowered to use two-result
194  // operations, to match the available instructions. However, plain multiply
195  // (low) operations are left as Legal, as there are single-result
196  // instructions for this in x86. Using the two-result multiply instructions
197  // when both high and low results are needed must be arranged by dagcombine.
198  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
199  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
200  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
201  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
202  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
203  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
204  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
205  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
206  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
207  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
208  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
209  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
210  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
211  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
212  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
213  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
214  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
215  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
216  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
217  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
218  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
219  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
220  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
221  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
222
223  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
224  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
225  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
226  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
227  if (Subtarget->is64Bit())
228    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
229  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
230  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
231  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
232  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
233  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
234  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
235  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
236  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
237
238  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
239  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
240  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
241  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
242  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
243  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
244  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
245  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
246  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
247  if (Subtarget->is64Bit()) {
248    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
249    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
250    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
251  }
252
253  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
254  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
255
256  // These should be promoted to a larger select which is supported.
257  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
258  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
259  // X86 wants to expand cmov itself.
260  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
261  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
262  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
263  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
264  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
265  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
266  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
267  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
268  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
269  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
270  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
271  if (Subtarget->is64Bit()) {
272    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
273    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
274  }
275  // X86 ret instruction may pop stack.
276  setOperationAction(ISD::RET             , MVT::Other, Custom);
277  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
278
279  // Darwin ABI issue.
280  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
281  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
282  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
283  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
284  if (Subtarget->is64Bit())
285    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
286  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
287  if (Subtarget->is64Bit()) {
288    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
289    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
290    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
291    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
292  }
293  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
294  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
295  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
296  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
297  if (Subtarget->is64Bit()) {
298    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
299    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
300    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
301  }
302
303  if (Subtarget->hasSSE1())
304    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
305
306  if (!Subtarget->hasSSE2())
307    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
308
309  // Expand certain atomics
310  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
311  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
312  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
313  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
314
315  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
316  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
317  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
318  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
319
320  if (!Subtarget->is64Bit()) {
321    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
322    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
323    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
324    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
325    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
326    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
327    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
328  }
329
330  // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
331  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
332  // FIXME - use subtarget debug flags
333  if (!Subtarget->isTargetDarwin() &&
334      !Subtarget->isTargetELF() &&
335      !Subtarget->isTargetCygMing()) {
336    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
337    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
338  }
339
340  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
341  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
342  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
343  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
344  if (Subtarget->is64Bit()) {
345    setExceptionPointerRegister(X86::RAX);
346    setExceptionSelectorRegister(X86::RDX);
347  } else {
348    setExceptionPointerRegister(X86::EAX);
349    setExceptionSelectorRegister(X86::EDX);
350  }
351  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
352  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
353
354  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
355
356  setOperationAction(ISD::TRAP, MVT::Other, Legal);
357
358  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
359  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
360  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
361  if (Subtarget->is64Bit()) {
362    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
363    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
364  } else {
365    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
366    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
367  }
368
369  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
370  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
371  if (Subtarget->is64Bit())
372    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
373  if (Subtarget->isTargetCygMing())
374    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
375  else
376    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
377
378  if (!UseSoftFloat && X86ScalarSSEf64) {
379    // f32 and f64 use SSE.
380    // Set up the FP register classes.
381    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
382    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
383
384    // Use ANDPD to simulate FABS.
385    setOperationAction(ISD::FABS , MVT::f64, Custom);
386    setOperationAction(ISD::FABS , MVT::f32, Custom);
387
388    // Use XORP to simulate FNEG.
389    setOperationAction(ISD::FNEG , MVT::f64, Custom);
390    setOperationAction(ISD::FNEG , MVT::f32, Custom);
391
392    // Use ANDPD and ORPD to simulate FCOPYSIGN.
393    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
394    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
395
396    // We don't support sin/cos/fmod
397    setOperationAction(ISD::FSIN , MVT::f64, Expand);
398    setOperationAction(ISD::FCOS , MVT::f64, Expand);
399    setOperationAction(ISD::FSIN , MVT::f32, Expand);
400    setOperationAction(ISD::FCOS , MVT::f32, Expand);
401
402    // Expand FP immediates into loads from the stack, except for the special
403    // cases we handle.
404    addLegalFPImmediate(APFloat(+0.0)); // xorpd
405    addLegalFPImmediate(APFloat(+0.0f)); // xorps
406
407    // Floating truncations from f80 and extensions to f80 go through memory.
408    // If optimizing, we lie about this though and handle it in
409    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
410    if (Fast) {
411      setConvertAction(MVT::f32, MVT::f80, Expand);
412      setConvertAction(MVT::f64, MVT::f80, Expand);
413      setConvertAction(MVT::f80, MVT::f32, Expand);
414      setConvertAction(MVT::f80, MVT::f64, Expand);
415    }
416  } else if (!UseSoftFloat && X86ScalarSSEf32) {
417    // Use SSE for f32, x87 for f64.
418    // Set up the FP register classes.
419    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
420    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
421
422    // Use ANDPS to simulate FABS.
423    setOperationAction(ISD::FABS , MVT::f32, Custom);
424
425    // Use XORP to simulate FNEG.
426    setOperationAction(ISD::FNEG , MVT::f32, Custom);
427
428    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
429
430    // Use ANDPS and ORPS to simulate FCOPYSIGN.
431    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
432    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
433
434    // We don't support sin/cos/fmod
435    setOperationAction(ISD::FSIN , MVT::f32, Expand);
436    setOperationAction(ISD::FCOS , MVT::f32, Expand);
437
438    // Special cases we handle for FP constants.
439    addLegalFPImmediate(APFloat(+0.0f)); // xorps
440    addLegalFPImmediate(APFloat(+0.0)); // FLD0
441    addLegalFPImmediate(APFloat(+1.0)); // FLD1
442    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
443    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
444
445    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
446    // this though and handle it in InstructionSelectPreprocess so that
447    // dagcombine2 can hack on these.
448    if (Fast) {
449      setConvertAction(MVT::f32, MVT::f64, Expand);
450      setConvertAction(MVT::f32, MVT::f80, Expand);
451      setConvertAction(MVT::f80, MVT::f32, Expand);
452      setConvertAction(MVT::f64, MVT::f32, Expand);
453      // And x87->x87 truncations also.
454      setConvertAction(MVT::f80, MVT::f64, Expand);
455    }
456
457    if (!UnsafeFPMath) {
458      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
459      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
460    }
461  } else if (!UseSoftFloat) {
462    // f32 and f64 in x87.
463    // Set up the FP register classes.
464    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
465    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
466
467    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
468    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
469    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
470    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
471
472    // Floating truncations go through memory.  If optimizing, we lie about
473    // this though and handle it in InstructionSelectPreprocess so that
474    // dagcombine2 can hack on these.
475    if (Fast) {
476      setConvertAction(MVT::f80, MVT::f32, Expand);
477      setConvertAction(MVT::f64, MVT::f32, Expand);
478      setConvertAction(MVT::f80, MVT::f64, Expand);
479    }
480
481    if (!UnsafeFPMath) {
482      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
483      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
484    }
485    addLegalFPImmediate(APFloat(+0.0)); // FLD0
486    addLegalFPImmediate(APFloat(+1.0)); // FLD1
487    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
488    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
489    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
490    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
491    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
492    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
493  }
494
495  // Long double always uses X87.
496  if (!UseSoftFloat && !NoImplicitFloat) {
497    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
498    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
499    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
500    {
501      bool ignored;
502      APFloat TmpFlt(+0.0);
503      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
504                     &ignored);
505      addLegalFPImmediate(TmpFlt);  // FLD0
506      TmpFlt.changeSign();
507      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
508      APFloat TmpFlt2(+1.0);
509      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
510                      &ignored);
511      addLegalFPImmediate(TmpFlt2);  // FLD1
512      TmpFlt2.changeSign();
513      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
514    }
515
516    if (!UnsafeFPMath) {
517      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
518      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
519    }
520  }
521
522  // Always use a library call for pow.
523  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
524  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
525  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
526
527  setOperationAction(ISD::FLOG, MVT::f80, Expand);
528  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
529  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
530  setOperationAction(ISD::FEXP, MVT::f80, Expand);
531  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
532
533  // First set operation action for all vector types to either promote
534  // (for widening) or expand (for scalarization). Then we will selectively
535  // turn on ones that can be effectively codegen'd.
536  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
537       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
538    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
539    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
540    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
541    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
542    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
543    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
544    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
545    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
546    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
547    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
548    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
549    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
550    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
551    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
553    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
581  }
582
583  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
584  // with -msoft-float, disable use of MMX as well.
585  if (!UseSoftFloat && !NoImplicitFloat && !DisableMMX && Subtarget->hasMMX()) {
586    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
587    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
588    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
589    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
590    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
591
592    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
593    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
594    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
595    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
596
597    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
598    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
599    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
600    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
601
602    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
603    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
604
605    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
606    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
607    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
608    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
609    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
610    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
611    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
612
613    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
614    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
615    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
616    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
617    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
618    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
619    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
620
621    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
622    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
623    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
624    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
625    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
626    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
627    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
628
629    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
630    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
631    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
632    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
633    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
634    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
635    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
636    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
637    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
638
639    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
640    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
641    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
642    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
643    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
644
645    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
646    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
647    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
648    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
649
650    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
651    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
652    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
653    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
654
655    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
656
657    setTruncStoreAction(MVT::v8i16,             MVT::v8i8, Expand);
658    setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand);
659    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
660    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
661    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
662    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
663  }
664
665  if (!UseSoftFloat && !NoImplicitFloat && Subtarget->hasSSE1()) {
666    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
667
668    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
669    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
670    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
671    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
672    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
673    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
674    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
675    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
676    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
677    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
678    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
679    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
680  }
681
682  if (!UseSoftFloat && !NoImplicitFloat && Subtarget->hasSSE2()) {
683    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
684
685    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
686    // registers cannot be used even for integer operations.
687    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
688    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
689    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
690    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
691
692    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
693    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
694    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
695    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
696    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
697    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
698    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
699    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
700    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
701    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
702    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
703    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
704    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
705    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
706    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
707    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
708
709    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
710    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
711    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
712    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
713
714    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
715    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
716    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
717    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
718    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
719
720    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
721    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
722      MVT VT = (MVT::SimpleValueType)i;
723      // Do not attempt to custom lower non-power-of-2 vectors
724      if (!isPowerOf2_32(VT.getVectorNumElements()))
725        continue;
726      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
727      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
728      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
729    }
730
731    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
732    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
733    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
734    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
735    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
736    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
737
738    if (Subtarget->is64Bit()) {
739      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
740      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
741    }
742
743    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
744    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
745      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
746      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v2i64);
747      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
748      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v2i64);
749      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
750      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v2i64);
751      setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
752      AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v2i64);
753      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
754      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64);
755    }
756
757    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
758
759    // Custom lower v2i64 and v2f64 selects.
760    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
761    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
762    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
763    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
764
765  }
766
767  if (Subtarget->hasSSE41()) {
768    // FIXME: Do we need to handle scalar-to-vector here?
769    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
770
771    // i8 and i16 vectors are custom , because the source register and source
772    // source memory operand types are not the same width.  f32 vectors are
773    // custom since the immediate controlling the insert encodes additional
774    // information.
775    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
776    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
777    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
778    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
779
780    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
781    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
782    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
783    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
784
785    if (Subtarget->is64Bit()) {
786      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
787      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
788    }
789  }
790
791  if (Subtarget->hasSSE42()) {
792    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
793  }
794
795  // We want to custom lower some of our intrinsics.
796  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
797
798  // Add/Sub/Mul with overflow operations are custom lowered.
799  setOperationAction(ISD::SADDO, MVT::i32, Custom);
800  setOperationAction(ISD::SADDO, MVT::i64, Custom);
801  setOperationAction(ISD::UADDO, MVT::i32, Custom);
802  setOperationAction(ISD::UADDO, MVT::i64, Custom);
803  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
804  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
805  setOperationAction(ISD::USUBO, MVT::i32, Custom);
806  setOperationAction(ISD::USUBO, MVT::i64, Custom);
807  setOperationAction(ISD::SMULO, MVT::i32, Custom);
808  setOperationAction(ISD::SMULO, MVT::i64, Custom);
809  setOperationAction(ISD::UMULO, MVT::i32, Custom);
810  setOperationAction(ISD::UMULO, MVT::i64, Custom);
811
812  // We have target-specific dag combine patterns for the following nodes:
813  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
814  setTargetDAGCombine(ISD::BUILD_VECTOR);
815  setTargetDAGCombine(ISD::SELECT);
816  setTargetDAGCombine(ISD::SHL);
817  setTargetDAGCombine(ISD::SRA);
818  setTargetDAGCombine(ISD::SRL);
819  setTargetDAGCombine(ISD::STORE);
820
821  computeRegisterProperties();
822
823  // FIXME: These should be based on subtarget info. Plus, the values should
824  // be smaller when we are in optimizing for size mode.
825  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
826  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
827  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
828  allowUnalignedMemoryAccesses = true; // x86 supports it!
829  setPrefLoopAlignment(16);
830}
831
832
833MVT X86TargetLowering::getSetCCResultType(MVT VT) const {
834  return MVT::i8;
835}
836
837
838/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
839/// the desired ByVal argument alignment.
840static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
841  if (MaxAlign == 16)
842    return;
843  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
844    if (VTy->getBitWidth() == 128)
845      MaxAlign = 16;
846  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
847    unsigned EltAlign = 0;
848    getMaxByValAlign(ATy->getElementType(), EltAlign);
849    if (EltAlign > MaxAlign)
850      MaxAlign = EltAlign;
851  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
852    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
853      unsigned EltAlign = 0;
854      getMaxByValAlign(STy->getElementType(i), EltAlign);
855      if (EltAlign > MaxAlign)
856        MaxAlign = EltAlign;
857      if (MaxAlign == 16)
858        break;
859    }
860  }
861  return;
862}
863
864/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
865/// function arguments in the caller parameter area. For X86, aggregates
866/// that contain SSE vectors are placed at 16-byte boundaries while the rest
867/// are at 4-byte boundaries.
868unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
869  if (Subtarget->is64Bit()) {
870    // Max of 8 and alignment of type.
871    unsigned TyAlign = TD->getABITypeAlignment(Ty);
872    if (TyAlign > 8)
873      return TyAlign;
874    return 8;
875  }
876
877  unsigned Align = 4;
878  if (Subtarget->hasSSE1())
879    getMaxByValAlign(Ty, Align);
880  return Align;
881}
882
883/// getOptimalMemOpType - Returns the target specific optimal type for load
884/// and store operations as a result of memset, memcpy, and memmove
885/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
886/// determining it.
887MVT
888X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
889                                       bool isSrcConst, bool isSrcStr) const {
890  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
891  // linux.  This is because the stack realignment code can't handle certain
892  // cases like PR2962.  This should be removed when PR2962 is fixed.
893  if (!NoImplicitFloat && Subtarget->getStackAlignment() >= 16) {
894    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
895      return MVT::v4i32;
896    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
897      return MVT::v4f32;
898  }
899  if (Subtarget->is64Bit() && Size >= 8)
900    return MVT::i64;
901  return MVT::i32;
902}
903
904/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
905/// jumptable.
906SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
907                                                      SelectionDAG &DAG) const {
908  if (usesGlobalOffsetTable())
909    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
910  if (!Subtarget->isPICStyleRIPRel())
911    // This doesn't have DebugLoc associated with it, but is not really the
912    // same as a Register.
913    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
914                       getPointerTy());
915  return Table;
916}
917
918//===----------------------------------------------------------------------===//
919//               Return Value Calling Convention Implementation
920//===----------------------------------------------------------------------===//
921
922#include "X86GenCallingConv.inc"
923
924/// LowerRET - Lower an ISD::RET node.
925SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
926  DebugLoc dl = Op.getDebugLoc();
927  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
928
929  SmallVector<CCValAssign, 16> RVLocs;
930  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
931  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
932  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
933  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
934
935  // If this is the first return lowered for this function, add the regs to the
936  // liveout set for the function.
937  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
938    for (unsigned i = 0; i != RVLocs.size(); ++i)
939      if (RVLocs[i].isRegLoc())
940        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
941  }
942  SDValue Chain = Op.getOperand(0);
943
944  // Handle tail call return.
945  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
946  if (Chain.getOpcode() == X86ISD::TAILCALL) {
947    SDValue TailCall = Chain;
948    SDValue TargetAddress = TailCall.getOperand(1);
949    SDValue StackAdjustment = TailCall.getOperand(2);
950    assert(((TargetAddress.getOpcode() == ISD::Register &&
951               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX ||
952                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
953              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
954              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
955             "Expecting an global address, external symbol, or register");
956    assert(StackAdjustment.getOpcode() == ISD::Constant &&
957           "Expecting a const value");
958
959    SmallVector<SDValue,8> Operands;
960    Operands.push_back(Chain.getOperand(0));
961    Operands.push_back(TargetAddress);
962    Operands.push_back(StackAdjustment);
963    // Copy registers used by the call. Last operand is a flag so it is not
964    // copied.
965    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
966      Operands.push_back(Chain.getOperand(i));
967    }
968    return DAG.getNode(X86ISD::TC_RETURN, dl, MVT::Other, &Operands[0],
969                       Operands.size());
970  }
971
972  // Regular return.
973  SDValue Flag;
974
975  SmallVector<SDValue, 6> RetOps;
976  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
977  // Operand #1 = Bytes To Pop
978  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
979
980  // Copy the result values into the output registers.
981  for (unsigned i = 0; i != RVLocs.size(); ++i) {
982    CCValAssign &VA = RVLocs[i];
983    assert(VA.isRegLoc() && "Can only return in registers!");
984    SDValue ValToCopy = Op.getOperand(i*2+1);
985
986    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
987    // the RET instruction and handled by the FP Stackifier.
988    if (VA.getLocReg() == X86::ST0 ||
989        VA.getLocReg() == X86::ST1) {
990      // If this is a copy from an xmm register to ST(0), use an FPExtend to
991      // change the value to the FP stack register class.
992      if (isScalarFPTypeInSSEReg(VA.getValVT()))
993        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
994      RetOps.push_back(ValToCopy);
995      // Don't emit a copytoreg.
996      continue;
997    }
998
999    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1000    // which is returned in RAX / RDX.
1001    if (Subtarget->is64Bit()) {
1002      MVT ValVT = ValToCopy.getValueType();
1003      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1004        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1005        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1006          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1007      }
1008    }
1009
1010    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1011    Flag = Chain.getValue(1);
1012  }
1013
1014  // The x86-64 ABI for returning structs by value requires that we copy
1015  // the sret argument into %rax for the return. We saved the argument into
1016  // a virtual register in the entry block, so now we copy the value out
1017  // and into %rax.
1018  if (Subtarget->is64Bit() &&
1019      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1020    MachineFunction &MF = DAG.getMachineFunction();
1021    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1022    unsigned Reg = FuncInfo->getSRetReturnReg();
1023    if (!Reg) {
1024      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1025      FuncInfo->setSRetReturnReg(Reg);
1026    }
1027    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1028
1029    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1030    Flag = Chain.getValue(1);
1031  }
1032
1033  RetOps[0] = Chain;  // Update chain.
1034
1035  // Add the flag if we have it.
1036  if (Flag.getNode())
1037    RetOps.push_back(Flag);
1038
1039  return DAG.getNode(X86ISD::RET_FLAG, dl,
1040                     MVT::Other, &RetOps[0], RetOps.size());
1041}
1042
1043
1044/// LowerCallResult - Lower the result values of an ISD::CALL into the
1045/// appropriate copies out of appropriate physical registers.  This assumes that
1046/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
1047/// being lowered.  The returns a SDNode with the same number of values as the
1048/// ISD::CALL.
1049SDNode *X86TargetLowering::
1050LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
1051                unsigned CallingConv, SelectionDAG &DAG) {
1052
1053  DebugLoc dl = TheCall->getDebugLoc();
1054  // Assign locations to each value returned by this call.
1055  SmallVector<CCValAssign, 16> RVLocs;
1056  bool isVarArg = TheCall->isVarArg();
1057  bool Is64Bit = Subtarget->is64Bit();
1058  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
1059  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
1060
1061  SmallVector<SDValue, 8> ResultVals;
1062
1063  // Copy all of the result registers out of their specified physreg.
1064  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1065    CCValAssign &VA = RVLocs[i];
1066    MVT CopyVT = VA.getValVT();
1067
1068    // If this is x86-64, and we disabled SSE, we can't return FP values
1069    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1070        ((Is64Bit || TheCall->isInreg()) && !Subtarget->hasSSE1())) {
1071      cerr << "SSE register return with SSE disabled\n";
1072      exit(1);
1073    }
1074
1075    // If this is a call to a function that returns an fp value on the floating
1076    // point stack, but where we prefer to use the value in xmm registers, copy
1077    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1078    if ((VA.getLocReg() == X86::ST0 ||
1079         VA.getLocReg() == X86::ST1) &&
1080        isScalarFPTypeInSSEReg(VA.getValVT())) {
1081      CopyVT = MVT::f80;
1082    }
1083
1084    SDValue Val;
1085    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1086      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1087      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1088        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1089                                   MVT::v2i64, InFlag).getValue(1);
1090        Val = Chain.getValue(0);
1091        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1092                          Val, DAG.getConstant(0, MVT::i64));
1093      } else {
1094        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1095                                   MVT::i64, InFlag).getValue(1);
1096        Val = Chain.getValue(0);
1097      }
1098      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1099    } else {
1100      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1101                                 CopyVT, InFlag).getValue(1);
1102      Val = Chain.getValue(0);
1103    }
1104    InFlag = Chain.getValue(2);
1105
1106    if (CopyVT != VA.getValVT()) {
1107      // Round the F80 the right size, which also moves to the appropriate xmm
1108      // register.
1109      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1110                        // This truncation won't change the value.
1111                        DAG.getIntPtrConstant(1));
1112    }
1113
1114    ResultVals.push_back(Val);
1115  }
1116
1117  // Merge everything together with a MERGE_VALUES node.
1118  ResultVals.push_back(Chain);
1119  return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
1120                     &ResultVals[0], ResultVals.size()).getNode();
1121}
1122
1123
1124//===----------------------------------------------------------------------===//
1125//                C & StdCall & Fast Calling Convention implementation
1126//===----------------------------------------------------------------------===//
1127//  StdCall calling convention seems to be standard for many Windows' API
1128//  routines and around. It differs from C calling convention just a little:
1129//  callee should clean up the stack, not caller. Symbols should be also
1130//  decorated in some fancy way :) It doesn't support any vector arguments.
1131//  For info on fast calling convention see Fast Calling Convention (tail call)
1132//  implementation LowerX86_32FastCCCallTo.
1133
1134/// AddLiveIn - This helper function adds the specified physical register to the
1135/// MachineFunction as a live in value.  It also creates a corresponding virtual
1136/// register for it.
1137static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
1138                          const TargetRegisterClass *RC) {
1139  assert(RC->contains(PReg) && "Not the correct regclass!");
1140  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1141  MF.getRegInfo().addLiveIn(PReg, VReg);
1142  return VReg;
1143}
1144
1145/// CallIsStructReturn - Determines whether a CALL node uses struct return
1146/// semantics.
1147static bool CallIsStructReturn(CallSDNode *TheCall) {
1148  unsigned NumOps = TheCall->getNumArgs();
1149  if (!NumOps)
1150    return false;
1151
1152  return TheCall->getArgFlags(0).isSRet();
1153}
1154
1155/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1156/// return semantics.
1157static bool ArgsAreStructReturn(SDValue Op) {
1158  unsigned NumArgs = Op.getNode()->getNumValues() - 1;
1159  if (!NumArgs)
1160    return false;
1161
1162  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1163}
1164
1165/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1166/// the callee to pop its own arguments. Callee pop is necessary to support tail
1167/// calls.
1168bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
1169  if (IsVarArg)
1170    return false;
1171
1172  switch (CallingConv) {
1173  default:
1174    return false;
1175  case CallingConv::X86_StdCall:
1176    return !Subtarget->is64Bit();
1177  case CallingConv::X86_FastCall:
1178    return !Subtarget->is64Bit();
1179  case CallingConv::Fast:
1180    return PerformTailCallOpt;
1181  }
1182}
1183
1184/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1185/// given CallingConvention value.
1186CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
1187  if (Subtarget->is64Bit()) {
1188    if (Subtarget->isTargetWin64())
1189      return CC_X86_Win64_C;
1190    else if (CC == CallingConv::Fast && PerformTailCallOpt)
1191      return CC_X86_64_TailCall;
1192    else
1193      return CC_X86_64_C;
1194  }
1195
1196  if (CC == CallingConv::X86_FastCall)
1197    return CC_X86_32_FastCall;
1198  else if (CC == CallingConv::Fast)
1199    return CC_X86_32_FastCC;
1200  else
1201    return CC_X86_32_C;
1202}
1203
1204/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1205/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1206NameDecorationStyle
1207X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
1208  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1209  if (CC == CallingConv::X86_FastCall)
1210    return FastCall;
1211  else if (CC == CallingConv::X86_StdCall)
1212    return StdCall;
1213  return None;
1214}
1215
1216
1217/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1218/// in a register before calling.
1219bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1220  return !IsTailCall && !Is64Bit &&
1221    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1222    Subtarget->isPICStyleGOT();
1223}
1224
1225/// CallRequiresFnAddressInReg - Check whether the call requires the function
1226/// address to be loaded in a register.
1227bool
1228X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1229  return !Is64Bit && IsTailCall &&
1230    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1231    Subtarget->isPICStyleGOT();
1232}
1233
1234/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1235/// by "Src" to address "Dst" with size and alignment information specified by
1236/// the specific parameter attribute. The copy will be passed as a byval
1237/// function parameter.
1238static SDValue
1239CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1240                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1241                          DebugLoc dl) {
1242  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1243  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1244                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1245}
1246
1247SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
1248                                              const CCValAssign &VA,
1249                                              MachineFrameInfo *MFI,
1250                                              unsigned CC,
1251                                              SDValue Root, unsigned i) {
1252  // Create the nodes corresponding to a load from this parameter slot.
1253  ISD::ArgFlagsTy Flags =
1254    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1255  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1256  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1257
1258  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1259  // changed with more analysis.
1260  // In case of tail call optimization mark all arguments mutable. Since they
1261  // could be overwritten by lowering of arguments in case of a tail call.
1262  int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1263                                  VA.getLocMemOffset(), isImmutable);
1264  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1265  if (Flags.isByVal())
1266    return FIN;
1267  return DAG.getLoad(VA.getValVT(), Op.getDebugLoc(), Root, FIN,
1268                     PseudoSourceValue::getFixedStack(FI), 0);
1269}
1270
1271SDValue
1272X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1273  MachineFunction &MF = DAG.getMachineFunction();
1274  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1275  DebugLoc dl = Op.getDebugLoc();
1276
1277  const Function* Fn = MF.getFunction();
1278  if (Fn->hasExternalLinkage() &&
1279      Subtarget->isTargetCygMing() &&
1280      Fn->getName() == "main")
1281    FuncInfo->setForceFramePointer(true);
1282
1283  // Decorate the function name.
1284  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1285
1286  MachineFrameInfo *MFI = MF.getFrameInfo();
1287  SDValue Root = Op.getOperand(0);
1288  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1289  unsigned CC = MF.getFunction()->getCallingConv();
1290  bool Is64Bit = Subtarget->is64Bit();
1291  bool IsWin64 = Subtarget->isTargetWin64();
1292
1293  assert(!(isVarArg && CC == CallingConv::Fast) &&
1294         "Var args not supported with calling convention fastcc");
1295
1296  // Assign locations to all of the incoming arguments.
1297  SmallVector<CCValAssign, 16> ArgLocs;
1298  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1299  CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
1300
1301  SmallVector<SDValue, 8> ArgValues;
1302  unsigned LastVal = ~0U;
1303  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1304    CCValAssign &VA = ArgLocs[i];
1305    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1306    // places.
1307    assert(VA.getValNo() != LastVal &&
1308           "Don't support value assigned to multiple locs yet");
1309    LastVal = VA.getValNo();
1310
1311    if (VA.isRegLoc()) {
1312      MVT RegVT = VA.getLocVT();
1313      TargetRegisterClass *RC = NULL;
1314      if (RegVT == MVT::i32)
1315        RC = X86::GR32RegisterClass;
1316      else if (Is64Bit && RegVT == MVT::i64)
1317        RC = X86::GR64RegisterClass;
1318      else if (RegVT == MVT::f32)
1319        RC = X86::FR32RegisterClass;
1320      else if (RegVT == MVT::f64)
1321        RC = X86::FR64RegisterClass;
1322      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1323        RC = X86::VR128RegisterClass;
1324      else if (RegVT.isVector()) {
1325        assert(RegVT.getSizeInBits() == 64);
1326        if (!Is64Bit)
1327          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
1328        else {
1329          // Darwin calling convention passes MMX values in either GPRs or
1330          // XMMs in x86-64. Other targets pass them in memory.
1331          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1332            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
1333            RegVT = MVT::v2i64;
1334          } else {
1335            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
1336            RegVT = MVT::i64;
1337          }
1338        }
1339      } else {
1340        assert(0 && "Unknown argument type!");
1341      }
1342
1343      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1344      SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
1345
1346      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1347      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1348      // right size.
1349      if (VA.getLocInfo() == CCValAssign::SExt)
1350        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1351                               DAG.getValueType(VA.getValVT()));
1352      else if (VA.getLocInfo() == CCValAssign::ZExt)
1353        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1354                               DAG.getValueType(VA.getValVT()));
1355
1356      if (VA.getLocInfo() != CCValAssign::Full)
1357        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1358
1359      // Handle MMX values passed in GPRs.
1360      if (Is64Bit && RegVT != VA.getLocVT()) {
1361        if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
1362          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
1363        else if (RC == X86::VR128RegisterClass) {
1364          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1365                                 ArgValue, DAG.getConstant(0, MVT::i64));
1366          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
1367        }
1368      }
1369
1370      ArgValues.push_back(ArgValue);
1371    } else {
1372      assert(VA.isMemLoc());
1373      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1374    }
1375  }
1376
1377  // The x86-64 ABI for returning structs by value requires that we copy
1378  // the sret argument into %rax for the return. Save the argument into
1379  // a virtual register so that we can access it from the return points.
1380  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1381    MachineFunction &MF = DAG.getMachineFunction();
1382    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1383    unsigned Reg = FuncInfo->getSRetReturnReg();
1384    if (!Reg) {
1385      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1386      FuncInfo->setSRetReturnReg(Reg);
1387    }
1388    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, ArgValues[0]);
1389    Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Root);
1390  }
1391
1392  unsigned StackSize = CCInfo.getNextStackOffset();
1393  // align stack specially for tail calls
1394  if (PerformTailCallOpt && CC == CallingConv::Fast)
1395    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1396
1397  // If the function takes variable number of arguments, make a frame index for
1398  // the start of the first vararg value... for expansion of llvm.va_start.
1399  if (isVarArg) {
1400    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1401      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1402    }
1403    if (Is64Bit) {
1404      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1405
1406      // FIXME: We should really autogenerate these arrays
1407      static const unsigned GPR64ArgRegsWin64[] = {
1408        X86::RCX, X86::RDX, X86::R8,  X86::R9
1409      };
1410      static const unsigned XMMArgRegsWin64[] = {
1411        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1412      };
1413      static const unsigned GPR64ArgRegs64Bit[] = {
1414        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1415      };
1416      static const unsigned XMMArgRegs64Bit[] = {
1417        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1418        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1419      };
1420      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1421
1422      if (IsWin64) {
1423        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1424        GPR64ArgRegs = GPR64ArgRegsWin64;
1425        XMMArgRegs = XMMArgRegsWin64;
1426      } else {
1427        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1428        GPR64ArgRegs = GPR64ArgRegs64Bit;
1429        XMMArgRegs = XMMArgRegs64Bit;
1430      }
1431      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1432                                                       TotalNumIntRegs);
1433      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1434                                                       TotalNumXMMRegs);
1435
1436      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1437             "SSE register cannot be used when SSE is disabled!");
1438      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloat) &&
1439             "SSE register cannot be used when SSE is disabled!");
1440      if (UseSoftFloat || NoImplicitFloat || !Subtarget->hasSSE1())
1441        // Kernel mode asks for SSE to be disabled, so don't push them
1442        // on the stack.
1443        TotalNumXMMRegs = 0;
1444
1445      // For X86-64, if there are vararg parameters that are passed via
1446      // registers, then we must store them to their spots on the stack so they
1447      // may be loaded by deferencing the result of va_next.
1448      VarArgsGPOffset = NumIntRegs * 8;
1449      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1450      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1451                                                 TotalNumXMMRegs * 16, 16);
1452
1453      // Store the integer parameter registers.
1454      SmallVector<SDValue, 8> MemOps;
1455      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1456      SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1457                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1458      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1459        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1460                                  X86::GR64RegisterClass);
1461        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::i64);
1462        SDValue Store =
1463          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1464                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1465        MemOps.push_back(Store);
1466        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1467                          DAG.getIntPtrConstant(8));
1468      }
1469
1470      // Now store the XMM (fp + vector) parameter registers.
1471      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1472                        DAG.getIntPtrConstant(VarArgsFPOffset));
1473      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1474        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1475                                  X86::VR128RegisterClass);
1476        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::v4f32);
1477        SDValue Store =
1478          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1479                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1480        MemOps.push_back(Store);
1481        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1482                          DAG.getIntPtrConstant(16));
1483      }
1484      if (!MemOps.empty())
1485          Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1486                             &MemOps[0], MemOps.size());
1487    }
1488  }
1489
1490  ArgValues.push_back(Root);
1491
1492  // Some CCs need callee pop.
1493  if (IsCalleePop(isVarArg, CC)) {
1494    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1495    BytesCallerReserves = 0;
1496  } else {
1497    BytesToPopOnReturn  = 0; // Callee pops nothing.
1498    // If this is an sret function, the return should pop the hidden pointer.
1499    if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op))
1500      BytesToPopOnReturn = 4;
1501    BytesCallerReserves = StackSize;
1502  }
1503
1504  if (!Is64Bit) {
1505    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1506    if (CC == CallingConv::X86_FastCall)
1507      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1508  }
1509
1510  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1511
1512  // Return the new list of results.
1513  return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1514                     &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1515}
1516
1517SDValue
1518X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
1519                                    const SDValue &StackPtr,
1520                                    const CCValAssign &VA,
1521                                    SDValue Chain,
1522                                    SDValue Arg, ISD::ArgFlagsTy Flags) {
1523  DebugLoc dl = TheCall->getDebugLoc();
1524  unsigned LocMemOffset = VA.getLocMemOffset();
1525  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1526  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1527  if (Flags.isByVal()) {
1528    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1529  }
1530  return DAG.getStore(Chain, dl, Arg, PtrOff,
1531                      PseudoSourceValue::getStack(), LocMemOffset);
1532}
1533
1534/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1535/// optimization is performed and it is required.
1536SDValue
1537X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1538                                           SDValue &OutRetAddr,
1539                                           SDValue Chain,
1540                                           bool IsTailCall,
1541                                           bool Is64Bit,
1542                                           int FPDiff,
1543                                           DebugLoc dl) {
1544  if (!IsTailCall || FPDiff==0) return Chain;
1545
1546  // Adjust the Return address stack slot.
1547  MVT VT = getPointerTy();
1548  OutRetAddr = getReturnAddressFrameIndex(DAG);
1549
1550  // Load the "old" Return address.
1551  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
1552  return SDValue(OutRetAddr.getNode(), 1);
1553}
1554
1555/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1556/// optimization is performed and it is required (FPDiff!=0).
1557static SDValue
1558EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1559                         SDValue Chain, SDValue RetAddrFrIdx,
1560                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1561  // Store the return address to the appropriate stack slot.
1562  if (!FPDiff) return Chain;
1563  // Calculate the new stack slot for the return address.
1564  int SlotSize = Is64Bit ? 8 : 4;
1565  int NewReturnAddrFI =
1566    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1567  MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1568  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1569  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1570                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1571  return Chain;
1572}
1573
1574SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
1575  MachineFunction &MF = DAG.getMachineFunction();
1576  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
1577  SDValue Chain       = TheCall->getChain();
1578  unsigned CC         = TheCall->getCallingConv();
1579  bool isVarArg       = TheCall->isVarArg();
1580  bool IsTailCall     = TheCall->isTailCall() &&
1581                        CC == CallingConv::Fast && PerformTailCallOpt;
1582  SDValue Callee      = TheCall->getCallee();
1583  bool Is64Bit        = Subtarget->is64Bit();
1584  bool IsStructRet    = CallIsStructReturn(TheCall);
1585  DebugLoc dl         = TheCall->getDebugLoc();
1586
1587  assert(!(isVarArg && CC == CallingConv::Fast) &&
1588         "Var args not supported with calling convention fastcc");
1589
1590  // Analyze operands of the call, assigning locations to each operand.
1591  SmallVector<CCValAssign, 16> ArgLocs;
1592  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1593  CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
1594
1595  // Get a count of how many bytes are to be pushed on the stack.
1596  unsigned NumBytes = CCInfo.getNextStackOffset();
1597  if (PerformTailCallOpt && CC == CallingConv::Fast)
1598    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1599
1600  int FPDiff = 0;
1601  if (IsTailCall) {
1602    // Lower arguments at fp - stackoffset + fpdiff.
1603    unsigned NumBytesCallerPushed =
1604      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1605    FPDiff = NumBytesCallerPushed - NumBytes;
1606
1607    // Set the delta of movement of the returnaddr stackslot.
1608    // But only set if delta is greater than previous delta.
1609    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1610      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1611  }
1612
1613  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1614
1615  SDValue RetAddrFrIdx;
1616  // Load return adress for tail calls.
1617  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1618                                  FPDiff, dl);
1619
1620  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1621  SmallVector<SDValue, 8> MemOpChains;
1622  SDValue StackPtr;
1623
1624  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1625  // of tail call optimization arguments are handle later.
1626  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1627    CCValAssign &VA = ArgLocs[i];
1628    SDValue Arg = TheCall->getArg(i);
1629    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1630    bool isByVal = Flags.isByVal();
1631
1632    // Promote the value if needed.
1633    switch (VA.getLocInfo()) {
1634    default: assert(0 && "Unknown loc info!");
1635    case CCValAssign::Full: break;
1636    case CCValAssign::SExt:
1637      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1638      break;
1639    case CCValAssign::ZExt:
1640      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1641      break;
1642    case CCValAssign::AExt:
1643      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1644      break;
1645    }
1646
1647    if (VA.isRegLoc()) {
1648      if (Is64Bit) {
1649        MVT RegVT = VA.getLocVT();
1650        if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1651          switch (VA.getLocReg()) {
1652          default:
1653            break;
1654          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1655          case X86::R8: {
1656            // Special case: passing MMX values in GPR registers.
1657            Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1658            break;
1659          }
1660          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1661          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1662            // Special case: passing MMX values in XMM registers.
1663            Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1664            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1665            Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v2i64,
1666                              DAG.getUNDEF(MVT::v2i64), Arg,
1667                              getMOVLMask(2, DAG, dl));
1668            break;
1669          }
1670          }
1671      }
1672      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1673    } else {
1674      if (!IsTailCall || (IsTailCall && isByVal)) {
1675        assert(VA.isMemLoc());
1676        if (StackPtr.getNode() == 0)
1677          StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1678
1679        MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
1680                                               Chain, Arg, Flags));
1681      }
1682    }
1683  }
1684
1685  if (!MemOpChains.empty())
1686    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1687                        &MemOpChains[0], MemOpChains.size());
1688
1689  // Build a sequence of copy-to-reg nodes chained together with token chain
1690  // and flag operands which copy the outgoing args into registers.
1691  SDValue InFlag;
1692  // Tail call byval lowering might overwrite argument registers so in case of
1693  // tail call optimization the copies to registers are lowered later.
1694  if (!IsTailCall)
1695    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1696      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1697                               RegsToPass[i].second, InFlag);
1698      InFlag = Chain.getValue(1);
1699    }
1700
1701  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1702  // GOT pointer.
1703  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1704    Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1705                             DAG.getNode(X86ISD::GlobalBaseReg,
1706                                         DebugLoc::getUnknownLoc(),
1707                                         getPointerTy()),
1708                             InFlag);
1709    InFlag = Chain.getValue(1);
1710  }
1711  // If we are tail calling and generating PIC/GOT style code load the address
1712  // of the callee into ecx. The value in ecx is used as target of the tail
1713  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1714  // calls on PIC/GOT architectures. Normally we would just put the address of
1715  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1716  // restored (since ebx is callee saved) before jumping to the target@PLT.
1717  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1718    // Note: The actual moving to ecx is done further down.
1719    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1720    if (G && !G->getGlobal()->hasHiddenVisibility() &&
1721        !G->getGlobal()->hasProtectedVisibility())
1722      Callee =  LowerGlobalAddress(Callee, DAG);
1723    else if (isa<ExternalSymbolSDNode>(Callee))
1724      Callee = LowerExternalSymbol(Callee,DAG);
1725  }
1726
1727  if (Is64Bit && isVarArg) {
1728    // From AMD64 ABI document:
1729    // For calls that may call functions that use varargs or stdargs
1730    // (prototype-less calls or calls to functions containing ellipsis (...) in
1731    // the declaration) %al is used as hidden argument to specify the number
1732    // of SSE registers used. The contents of %al do not need to match exactly
1733    // the number of registers, but must be an ubound on the number of SSE
1734    // registers used and is in the range 0 - 8 inclusive.
1735
1736    // FIXME: Verify this on Win64
1737    // Count the number of XMM registers allocated.
1738    static const unsigned XMMArgRegs[] = {
1739      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1740      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1741    };
1742    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1743    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1744           && "SSE registers cannot be used when SSE is disabled");
1745
1746    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1747                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1748    InFlag = Chain.getValue(1);
1749  }
1750
1751
1752  // For tail calls lower the arguments to the 'real' stack slot.
1753  if (IsTailCall) {
1754    SmallVector<SDValue, 8> MemOpChains2;
1755    SDValue FIN;
1756    int FI = 0;
1757    // Do not flag preceeding copytoreg stuff together with the following stuff.
1758    InFlag = SDValue();
1759    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1760      CCValAssign &VA = ArgLocs[i];
1761      if (!VA.isRegLoc()) {
1762        assert(VA.isMemLoc());
1763        SDValue Arg = TheCall->getArg(i);
1764        ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1765        // Create frame index.
1766        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1767        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1768        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1769        FIN = DAG.getFrameIndex(FI, getPointerTy());
1770
1771        if (Flags.isByVal()) {
1772          // Copy relative to framepointer.
1773          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1774          if (StackPtr.getNode() == 0)
1775            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1776                                          getPointerTy());
1777          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1778
1779          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1780                                                           Flags, DAG, dl));
1781        } else {
1782          // Store relative to framepointer.
1783          MemOpChains2.push_back(
1784            DAG.getStore(Chain, dl, Arg, FIN,
1785                         PseudoSourceValue::getFixedStack(FI), 0));
1786        }
1787      }
1788    }
1789
1790    if (!MemOpChains2.empty())
1791      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1792                          &MemOpChains2[0], MemOpChains2.size());
1793
1794    // Copy arguments to their registers.
1795    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1796      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1797                               RegsToPass[i].second, InFlag);
1798      InFlag = Chain.getValue(1);
1799    }
1800    InFlag =SDValue();
1801
1802    // Store the return address to the appropriate stack slot.
1803    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1804                                     FPDiff, dl);
1805  }
1806
1807  // If the callee is a GlobalAddress node (quite common, every direct call is)
1808  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1809  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1810    // We should use extra load for direct calls to dllimported functions in
1811    // non-JIT mode.
1812    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1813                                        getTargetMachine(), true))
1814      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy(),
1815                                          G->getOffset());
1816  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1817    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1818  } else if (IsTailCall) {
1819    unsigned Opc = Is64Bit ? X86::R9 : X86::EAX;
1820
1821    Chain = DAG.getCopyToReg(Chain,  dl,
1822                             DAG.getRegister(Opc, getPointerTy()),
1823                             Callee,InFlag);
1824    Callee = DAG.getRegister(Opc, getPointerTy());
1825    // Add register as live out.
1826    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1827  }
1828
1829  // Returns a chain & a flag for retval copy to use.
1830  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1831  SmallVector<SDValue, 8> Ops;
1832
1833  if (IsTailCall) {
1834    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1835                           DAG.getIntPtrConstant(0, true), InFlag);
1836    InFlag = Chain.getValue(1);
1837
1838    // Returns a chain & a flag for retval copy to use.
1839    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1840    Ops.clear();
1841  }
1842
1843  Ops.push_back(Chain);
1844  Ops.push_back(Callee);
1845
1846  if (IsTailCall)
1847    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1848
1849  // Add argument registers to the end of the list so that they are known live
1850  // into the call.
1851  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1852    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1853                                  RegsToPass[i].second.getValueType()));
1854
1855  // Add an implicit use GOT pointer in EBX.
1856  if (!IsTailCall && !Is64Bit &&
1857      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1858      Subtarget->isPICStyleGOT())
1859    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1860
1861  // Add an implicit use of AL for x86 vararg functions.
1862  if (Is64Bit && isVarArg)
1863    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1864
1865  if (InFlag.getNode())
1866    Ops.push_back(InFlag);
1867
1868  if (IsTailCall) {
1869    assert(InFlag.getNode() &&
1870           "Flag must be set. Depend on flag being set in LowerRET");
1871    Chain = DAG.getNode(X86ISD::TAILCALL, dl,
1872                        TheCall->getVTList(), &Ops[0], Ops.size());
1873
1874    return SDValue(Chain.getNode(), Op.getResNo());
1875  }
1876
1877  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
1878  InFlag = Chain.getValue(1);
1879
1880  // Create the CALLSEQ_END node.
1881  unsigned NumBytesForCalleeToPush;
1882  if (IsCalleePop(isVarArg, CC))
1883    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1884  else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet)
1885    // If this is is a call to a struct-return function, the callee
1886    // pops the hidden struct pointer, so we have to push it back.
1887    // This is common for Darwin/X86, Linux & Mingw32 targets.
1888    NumBytesForCalleeToPush = 4;
1889  else
1890    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1891
1892  // Returns a flag for retval copy to use.
1893  Chain = DAG.getCALLSEQ_END(Chain,
1894                             DAG.getIntPtrConstant(NumBytes, true),
1895                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
1896                                                   true),
1897                             InFlag);
1898  InFlag = Chain.getValue(1);
1899
1900  // Handle result values, copying them out of physregs into vregs that we
1901  // return.
1902  return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
1903                 Op.getResNo());
1904}
1905
1906
1907//===----------------------------------------------------------------------===//
1908//                Fast Calling Convention (tail call) implementation
1909//===----------------------------------------------------------------------===//
1910
1911//  Like std call, callee cleans arguments, convention except that ECX is
1912//  reserved for storing the tail called function address. Only 2 registers are
1913//  free for argument passing (inreg). Tail call optimization is performed
1914//  provided:
1915//                * tailcallopt is enabled
1916//                * caller/callee are fastcc
1917//  On X86_64 architecture with GOT-style position independent code only local
1918//  (within module) calls are supported at the moment.
1919//  To keep the stack aligned according to platform abi the function
1920//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1921//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1922//  If a tail called function callee has more arguments than the caller the
1923//  caller needs to make sure that there is room to move the RETADDR to. This is
1924//  achieved by reserving an area the size of the argument delta right after the
1925//  original REtADDR, but before the saved framepointer or the spilled registers
1926//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1927//  stack layout:
1928//    arg1
1929//    arg2
1930//    RETADDR
1931//    [ new RETADDR
1932//      move area ]
1933//    (possible EBP)
1934//    ESI
1935//    EDI
1936//    local1 ..
1937
1938/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1939/// for a 16 byte align requirement.
1940unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1941                                                        SelectionDAG& DAG) {
1942  MachineFunction &MF = DAG.getMachineFunction();
1943  const TargetMachine &TM = MF.getTarget();
1944  const TargetFrameInfo &TFI = *TM.getFrameInfo();
1945  unsigned StackAlignment = TFI.getStackAlignment();
1946  uint64_t AlignMask = StackAlignment - 1;
1947  int64_t Offset = StackSize;
1948  uint64_t SlotSize = TD->getPointerSize();
1949  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1950    // Number smaller than 12 so just add the difference.
1951    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1952  } else {
1953    // Mask out lower bits, add stackalignment once plus the 12 bytes.
1954    Offset = ((~AlignMask) & Offset) + StackAlignment +
1955      (StackAlignment-SlotSize);
1956  }
1957  return Offset;
1958}
1959
1960/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1961/// following the call is a return. A function is eligible if caller/callee
1962/// calling conventions match, currently only fastcc supports tail calls, and
1963/// the function CALL is immediatly followed by a RET.
1964bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1965                                                      SDValue Ret,
1966                                                      SelectionDAG& DAG) const {
1967  if (!PerformTailCallOpt)
1968    return false;
1969
1970  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1971    MachineFunction &MF = DAG.getMachineFunction();
1972    unsigned CallerCC = MF.getFunction()->getCallingConv();
1973    unsigned CalleeCC= TheCall->getCallingConv();
1974    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1975      SDValue Callee = TheCall->getCallee();
1976      // On x86/32Bit PIC/GOT  tail calls are supported.
1977      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1978          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1979        return true;
1980
1981      // Can only do local tail calls (in same module, hidden or protected) on
1982      // x86_64 PIC/GOT at the moment.
1983      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1984        return G->getGlobal()->hasHiddenVisibility()
1985            || G->getGlobal()->hasProtectedVisibility();
1986    }
1987  }
1988
1989  return false;
1990}
1991
1992FastISel *
1993X86TargetLowering::createFastISel(MachineFunction &mf,
1994                                  MachineModuleInfo *mmo,
1995                                  DwarfWriter *dw,
1996                                  DenseMap<const Value *, unsigned> &vm,
1997                                  DenseMap<const BasicBlock *,
1998                                           MachineBasicBlock *> &bm,
1999                                  DenseMap<const AllocaInst *, int> &am
2000#ifndef NDEBUG
2001                                  , SmallSet<Instruction*, 8> &cil
2002#endif
2003                                  ) {
2004  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2005#ifndef NDEBUG
2006                             , cil
2007#endif
2008                             );
2009}
2010
2011
2012//===----------------------------------------------------------------------===//
2013//                           Other Lowering Hooks
2014//===----------------------------------------------------------------------===//
2015
2016
2017SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2018  MachineFunction &MF = DAG.getMachineFunction();
2019  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2020  int ReturnAddrIndex = FuncInfo->getRAIndex();
2021
2022  if (ReturnAddrIndex == 0) {
2023    // Set up a frame object for the return address.
2024    uint64_t SlotSize = TD->getPointerSize();
2025    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
2026    FuncInfo->setRAIndex(ReturnAddrIndex);
2027  }
2028
2029  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2030}
2031
2032
2033/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2034/// specific condition code, returning the condition code and the LHS/RHS of the
2035/// comparison to make.
2036static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2037                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2038  if (!isFP) {
2039    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2040      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2041        // X > -1   -> X == 0, jump !sign.
2042        RHS = DAG.getConstant(0, RHS.getValueType());
2043        return X86::COND_NS;
2044      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2045        // X < 0   -> X == 0, jump on sign.
2046        return X86::COND_S;
2047      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2048        // X < 1   -> X <= 0
2049        RHS = DAG.getConstant(0, RHS.getValueType());
2050        return X86::COND_LE;
2051      }
2052    }
2053
2054    switch (SetCCOpcode) {
2055    default: assert(0 && "Invalid integer condition!");
2056    case ISD::SETEQ:  return X86::COND_E;
2057    case ISD::SETGT:  return X86::COND_G;
2058    case ISD::SETGE:  return X86::COND_GE;
2059    case ISD::SETLT:  return X86::COND_L;
2060    case ISD::SETLE:  return X86::COND_LE;
2061    case ISD::SETNE:  return X86::COND_NE;
2062    case ISD::SETULT: return X86::COND_B;
2063    case ISD::SETUGT: return X86::COND_A;
2064    case ISD::SETULE: return X86::COND_BE;
2065    case ISD::SETUGE: return X86::COND_AE;
2066    }
2067  }
2068
2069  // First determine if it is required or is profitable to flip the operands.
2070
2071  // If LHS is a foldable load, but RHS is not, flip the condition.
2072  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2073      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2074    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2075    std::swap(LHS, RHS);
2076  }
2077
2078  switch (SetCCOpcode) {
2079  default: break;
2080  case ISD::SETOLT:
2081  case ISD::SETOLE:
2082  case ISD::SETUGT:
2083  case ISD::SETUGE:
2084    std::swap(LHS, RHS);
2085    break;
2086  }
2087
2088  // On a floating point condition, the flags are set as follows:
2089  // ZF  PF  CF   op
2090  //  0 | 0 | 0 | X > Y
2091  //  0 | 0 | 1 | X < Y
2092  //  1 | 0 | 0 | X == Y
2093  //  1 | 1 | 1 | unordered
2094  switch (SetCCOpcode) {
2095  default: assert(0 && "Condcode should be pre-legalized away");
2096  case ISD::SETUEQ:
2097  case ISD::SETEQ:   return X86::COND_E;
2098  case ISD::SETOLT:              // flipped
2099  case ISD::SETOGT:
2100  case ISD::SETGT:   return X86::COND_A;
2101  case ISD::SETOLE:              // flipped
2102  case ISD::SETOGE:
2103  case ISD::SETGE:   return X86::COND_AE;
2104  case ISD::SETUGT:              // flipped
2105  case ISD::SETULT:
2106  case ISD::SETLT:   return X86::COND_B;
2107  case ISD::SETUGE:              // flipped
2108  case ISD::SETULE:
2109  case ISD::SETLE:   return X86::COND_BE;
2110  case ISD::SETONE:
2111  case ISD::SETNE:   return X86::COND_NE;
2112  case ISD::SETUO:   return X86::COND_P;
2113  case ISD::SETO:    return X86::COND_NP;
2114  }
2115}
2116
2117/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2118/// code. Current x86 isa includes the following FP cmov instructions:
2119/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2120static bool hasFPCMov(unsigned X86CC) {
2121  switch (X86CC) {
2122  default:
2123    return false;
2124  case X86::COND_B:
2125  case X86::COND_BE:
2126  case X86::COND_E:
2127  case X86::COND_P:
2128  case X86::COND_A:
2129  case X86::COND_AE:
2130  case X86::COND_NE:
2131  case X86::COND_NP:
2132    return true;
2133  }
2134}
2135
2136/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2137/// true if Op is undef or if its value falls within the specified range (L, H].
2138static bool isUndefOrInRange(SDValue Op, unsigned Low, unsigned Hi) {
2139  if (Op.getOpcode() == ISD::UNDEF)
2140    return true;
2141
2142  unsigned Val = cast<ConstantSDNode>(Op)->getZExtValue();
2143  return (Val >= Low && Val < Hi);
2144}
2145
2146/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2147/// true if Op is undef or if its value equal to the specified value.
2148static bool isUndefOrEqual(SDValue Op, unsigned Val) {
2149  if (Op.getOpcode() == ISD::UNDEF)
2150    return true;
2151  return cast<ConstantSDNode>(Op)->getZExtValue() == Val;
2152}
2153
2154/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2155/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2156bool X86::isPSHUFDMask(SDNode *N) {
2157  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2158
2159  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2160    return false;
2161
2162  // Check if the value doesn't reference the second vector.
2163  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2164    SDValue Arg = N->getOperand(i);
2165    if (Arg.getOpcode() == ISD::UNDEF) continue;
2166    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2167    if (cast<ConstantSDNode>(Arg)->getZExtValue() >= e)
2168      return false;
2169  }
2170
2171  return true;
2172}
2173
2174/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2175/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2176bool X86::isPSHUFHWMask(SDNode *N) {
2177  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2178
2179  if (N->getNumOperands() != 8)
2180    return false;
2181
2182  // Lower quadword copied in order.
2183  for (unsigned i = 0; i != 4; ++i) {
2184    SDValue Arg = N->getOperand(i);
2185    if (Arg.getOpcode() == ISD::UNDEF) continue;
2186    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2187    if (cast<ConstantSDNode>(Arg)->getZExtValue() != i)
2188      return false;
2189  }
2190
2191  // Upper quadword shuffled.
2192  for (unsigned i = 4; i != 8; ++i) {
2193    SDValue Arg = N->getOperand(i);
2194    if (Arg.getOpcode() == ISD::UNDEF) continue;
2195    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2196    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2197    if (Val < 4 || Val > 7)
2198      return false;
2199  }
2200
2201  return true;
2202}
2203
2204/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2205/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2206bool X86::isPSHUFLWMask(SDNode *N) {
2207  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2208
2209  if (N->getNumOperands() != 8)
2210    return false;
2211
2212  // Upper quadword copied in order.
2213  for (unsigned i = 4; i != 8; ++i)
2214    if (!isUndefOrEqual(N->getOperand(i), i))
2215      return false;
2216
2217  // Lower quadword shuffled.
2218  for (unsigned i = 0; i != 4; ++i)
2219    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2220      return false;
2221
2222  return true;
2223}
2224
2225/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2226/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2227template<class SDOperand>
2228static bool isSHUFPMask(SDOperand *Elems, unsigned NumElems) {
2229  if (NumElems != 2 && NumElems != 4) return false;
2230
2231  unsigned Half = NumElems / 2;
2232  for (unsigned i = 0; i < Half; ++i)
2233    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2234      return false;
2235  for (unsigned i = Half; i < NumElems; ++i)
2236    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2237      return false;
2238
2239  return true;
2240}
2241
2242bool X86::isSHUFPMask(SDNode *N) {
2243  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2244  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2245}
2246
2247/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2248/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2249/// half elements to come from vector 1 (which would equal the dest.) and
2250/// the upper half to come from vector 2.
2251template<class SDOperand>
2252static bool isCommutedSHUFP(SDOperand *Ops, unsigned NumOps) {
2253  if (NumOps != 2 && NumOps != 4) return false;
2254
2255  unsigned Half = NumOps / 2;
2256  for (unsigned i = 0; i < Half; ++i)
2257    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2258      return false;
2259  for (unsigned i = Half; i < NumOps; ++i)
2260    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2261      return false;
2262  return true;
2263}
2264
2265static bool isCommutedSHUFP(SDNode *N) {
2266  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2267  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2268}
2269
2270/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2271/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2272bool X86::isMOVHLPSMask(SDNode *N) {
2273  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2274
2275  if (N->getNumOperands() != 4)
2276    return false;
2277
2278  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2279  return isUndefOrEqual(N->getOperand(0), 6) &&
2280         isUndefOrEqual(N->getOperand(1), 7) &&
2281         isUndefOrEqual(N->getOperand(2), 2) &&
2282         isUndefOrEqual(N->getOperand(3), 3);
2283}
2284
2285/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2286/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2287/// <2, 3, 2, 3>
2288bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2289  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2290
2291  if (N->getNumOperands() != 4)
2292    return false;
2293
2294  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2295  return isUndefOrEqual(N->getOperand(0), 2) &&
2296         isUndefOrEqual(N->getOperand(1), 3) &&
2297         isUndefOrEqual(N->getOperand(2), 2) &&
2298         isUndefOrEqual(N->getOperand(3), 3);
2299}
2300
2301/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2302/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2303bool X86::isMOVLPMask(SDNode *N) {
2304  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2305
2306  unsigned NumElems = N->getNumOperands();
2307  if (NumElems != 2 && NumElems != 4)
2308    return false;
2309
2310  for (unsigned i = 0; i < NumElems/2; ++i)
2311    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2312      return false;
2313
2314  for (unsigned i = NumElems/2; i < NumElems; ++i)
2315    if (!isUndefOrEqual(N->getOperand(i), i))
2316      return false;
2317
2318  return true;
2319}
2320
2321/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2322/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2323/// and MOVLHPS.
2324bool X86::isMOVHPMask(SDNode *N) {
2325  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2326
2327  unsigned NumElems = N->getNumOperands();
2328  if (NumElems != 2 && NumElems != 4)
2329    return false;
2330
2331  for (unsigned i = 0; i < NumElems/2; ++i)
2332    if (!isUndefOrEqual(N->getOperand(i), i))
2333      return false;
2334
2335  for (unsigned i = 0; i < NumElems/2; ++i) {
2336    SDValue Arg = N->getOperand(i + NumElems/2);
2337    if (!isUndefOrEqual(Arg, i + NumElems))
2338      return false;
2339  }
2340
2341  return true;
2342}
2343
2344/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2345/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2346template<class SDOperand>
2347bool static isUNPCKLMask(SDOperand *Elts, unsigned NumElts,
2348                         bool V2IsSplat = false) {
2349  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2350    return false;
2351
2352  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2353    SDValue BitI  = Elts[i];
2354    SDValue BitI1 = Elts[i+1];
2355    if (!isUndefOrEqual(BitI, j))
2356      return false;
2357    if (V2IsSplat) {
2358      if (!isUndefOrEqual(BitI1, NumElts))
2359        return false;
2360    } else {
2361      if (!isUndefOrEqual(BitI1, j + NumElts))
2362        return false;
2363    }
2364  }
2365
2366  return true;
2367}
2368
2369bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2370  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2371  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2372}
2373
2374/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2375/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2376template<class SDOperand>
2377bool static isUNPCKHMask(SDOperand *Elts, unsigned NumElts,
2378                         bool V2IsSplat = false) {
2379  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2380    return false;
2381
2382  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2383    SDValue BitI  = Elts[i];
2384    SDValue BitI1 = Elts[i+1];
2385    if (!isUndefOrEqual(BitI, j + NumElts/2))
2386      return false;
2387    if (V2IsSplat) {
2388      if (isUndefOrEqual(BitI1, NumElts))
2389        return false;
2390    } else {
2391      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2392        return false;
2393    }
2394  }
2395
2396  return true;
2397}
2398
2399bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2400  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2401  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2402}
2403
2404/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2405/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2406/// <0, 0, 1, 1>
2407bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2408  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2409
2410  unsigned NumElems = N->getNumOperands();
2411  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2412    return false;
2413
2414  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2415    SDValue BitI  = N->getOperand(i);
2416    SDValue BitI1 = N->getOperand(i+1);
2417
2418    if (!isUndefOrEqual(BitI, j))
2419      return false;
2420    if (!isUndefOrEqual(BitI1, j))
2421      return false;
2422  }
2423
2424  return true;
2425}
2426
2427/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2428/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2429/// <2, 2, 3, 3>
2430bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2431  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2432
2433  unsigned NumElems = N->getNumOperands();
2434  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2435    return false;
2436
2437  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2438    SDValue BitI  = N->getOperand(i);
2439    SDValue BitI1 = N->getOperand(i + 1);
2440
2441    if (!isUndefOrEqual(BitI, j))
2442      return false;
2443    if (!isUndefOrEqual(BitI1, j))
2444      return false;
2445  }
2446
2447  return true;
2448}
2449
2450/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2451/// specifies a shuffle of elements that is suitable for input to MOVSS,
2452/// MOVSD, and MOVD, i.e. setting the lowest element.
2453template<class SDOperand>
2454static bool isMOVLMask(SDOperand *Elts, unsigned NumElts) {
2455  if (NumElts != 2 && NumElts != 4)
2456    return false;
2457
2458  if (!isUndefOrEqual(Elts[0], NumElts))
2459    return false;
2460
2461  for (unsigned i = 1; i < NumElts; ++i) {
2462    if (!isUndefOrEqual(Elts[i], i))
2463      return false;
2464  }
2465
2466  return true;
2467}
2468
2469bool X86::isMOVLMask(SDNode *N) {
2470  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2471  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2472}
2473
2474/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2475/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2476/// element of vector 2 and the other elements to come from vector 1 in order.
2477template<class SDOperand>
2478static bool isCommutedMOVL(SDOperand *Ops, unsigned NumOps,
2479                           bool V2IsSplat = false,
2480                           bool V2IsUndef = false) {
2481  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2482    return false;
2483
2484  if (!isUndefOrEqual(Ops[0], 0))
2485    return false;
2486
2487  for (unsigned i = 1; i < NumOps; ++i) {
2488    SDValue Arg = Ops[i];
2489    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2490          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2491          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2492      return false;
2493  }
2494
2495  return true;
2496}
2497
2498static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2499                           bool V2IsUndef = false) {
2500  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2501  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2502                        V2IsSplat, V2IsUndef);
2503}
2504
2505/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2506/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2507bool X86::isMOVSHDUPMask(SDNode *N) {
2508  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2509
2510  if (N->getNumOperands() != 4)
2511    return false;
2512
2513  // Expect 1, 1, 3, 3
2514  for (unsigned i = 0; i < 2; ++i) {
2515    SDValue Arg = N->getOperand(i);
2516    if (Arg.getOpcode() == ISD::UNDEF) continue;
2517    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2518    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2519    if (Val != 1) return false;
2520  }
2521
2522  bool HasHi = false;
2523  for (unsigned i = 2; i < 4; ++i) {
2524    SDValue Arg = N->getOperand(i);
2525    if (Arg.getOpcode() == ISD::UNDEF) continue;
2526    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2527    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2528    if (Val != 3) return false;
2529    HasHi = true;
2530  }
2531
2532  // Don't use movshdup if it can be done with a shufps.
2533  return HasHi;
2534}
2535
2536/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2537/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2538bool X86::isMOVSLDUPMask(SDNode *N) {
2539  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2540
2541  if (N->getNumOperands() != 4)
2542    return false;
2543
2544  // Expect 0, 0, 2, 2
2545  for (unsigned i = 0; i < 2; ++i) {
2546    SDValue Arg = N->getOperand(i);
2547    if (Arg.getOpcode() == ISD::UNDEF) continue;
2548    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2549    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2550    if (Val != 0) return false;
2551  }
2552
2553  bool HasHi = false;
2554  for (unsigned i = 2; i < 4; ++i) {
2555    SDValue Arg = N->getOperand(i);
2556    if (Arg.getOpcode() == ISD::UNDEF) continue;
2557    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2558    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2559    if (Val != 2) return false;
2560    HasHi = true;
2561  }
2562
2563  // Don't use movshdup if it can be done with a shufps.
2564  return HasHi;
2565}
2566
2567/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2568/// specifies a identity operation on the LHS or RHS.
2569static bool isIdentityMask(SDNode *N, bool RHS = false) {
2570  unsigned NumElems = N->getNumOperands();
2571  for (unsigned i = 0; i < NumElems; ++i)
2572    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2573      return false;
2574  return true;
2575}
2576
2577/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2578/// a splat of a single element.
2579static bool isSplatMask(SDNode *N) {
2580  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2581
2582  // This is a splat operation if each element of the permute is the same, and
2583  // if the value doesn't reference the second vector.
2584  unsigned NumElems = N->getNumOperands();
2585  SDValue ElementBase;
2586  unsigned i = 0;
2587  for (; i != NumElems; ++i) {
2588    SDValue Elt = N->getOperand(i);
2589    if (isa<ConstantSDNode>(Elt)) {
2590      ElementBase = Elt;
2591      break;
2592    }
2593  }
2594
2595  if (!ElementBase.getNode())
2596    return false;
2597
2598  for (; i != NumElems; ++i) {
2599    SDValue Arg = N->getOperand(i);
2600    if (Arg.getOpcode() == ISD::UNDEF) continue;
2601    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2602    if (Arg != ElementBase) return false;
2603  }
2604
2605  // Make sure it is a splat of the first vector operand.
2606  return cast<ConstantSDNode>(ElementBase)->getZExtValue() < NumElems;
2607}
2608
2609/// getSplatMaskEltNo - Given a splat mask, return the index to the element
2610/// we want to splat.
2611static SDValue getSplatMaskEltNo(SDNode *N) {
2612  assert(isSplatMask(N) && "Not a splat mask");
2613  unsigned NumElems = N->getNumOperands();
2614  SDValue ElementBase;
2615  unsigned i = 0;
2616  for (; i != NumElems; ++i) {
2617    SDValue Elt = N->getOperand(i);
2618    if (isa<ConstantSDNode>(Elt))
2619      return Elt;
2620  }
2621  assert(0 && " No splat value found!");
2622  return SDValue();
2623}
2624
2625
2626/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2627/// a splat of a single element and it's a 2 or 4 element mask.
2628bool X86::isSplatMask(SDNode *N) {
2629  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2630
2631  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2632  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2633    return false;
2634  return ::isSplatMask(N);
2635}
2636
2637/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2638/// specifies a splat of zero element.
2639bool X86::isSplatLoMask(SDNode *N) {
2640  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2641
2642  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2643    if (!isUndefOrEqual(N->getOperand(i), 0))
2644      return false;
2645  return true;
2646}
2647
2648/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2649/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2650bool X86::isMOVDDUPMask(SDNode *N) {
2651  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2652
2653  unsigned e = N->getNumOperands() / 2;
2654  for (unsigned i = 0; i < e; ++i)
2655    if (!isUndefOrEqual(N->getOperand(i), i))
2656      return false;
2657  for (unsigned i = 0; i < e; ++i)
2658    if (!isUndefOrEqual(N->getOperand(e+i), i))
2659      return false;
2660  return true;
2661}
2662
2663/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2664/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2665/// instructions.
2666unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2667  unsigned NumOperands = N->getNumOperands();
2668  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2669  unsigned Mask = 0;
2670  for (unsigned i = 0; i < NumOperands; ++i) {
2671    unsigned Val = 0;
2672    SDValue Arg = N->getOperand(NumOperands-i-1);
2673    if (Arg.getOpcode() != ISD::UNDEF)
2674      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2675    if (Val >= NumOperands) Val -= NumOperands;
2676    Mask |= Val;
2677    if (i != NumOperands - 1)
2678      Mask <<= Shift;
2679  }
2680
2681  return Mask;
2682}
2683
2684/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2685/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2686/// instructions.
2687unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2688  unsigned Mask = 0;
2689  // 8 nodes, but we only care about the last 4.
2690  for (unsigned i = 7; i >= 4; --i) {
2691    unsigned Val = 0;
2692    SDValue Arg = N->getOperand(i);
2693    if (Arg.getOpcode() != ISD::UNDEF) {
2694      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2695      Mask |= (Val - 4);
2696    }
2697    if (i != 4)
2698      Mask <<= 2;
2699  }
2700
2701  return Mask;
2702}
2703
2704/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2705/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2706/// instructions.
2707unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2708  unsigned Mask = 0;
2709  // 8 nodes, but we only care about the first 4.
2710  for (int i = 3; i >= 0; --i) {
2711    unsigned Val = 0;
2712    SDValue Arg = N->getOperand(i);
2713    if (Arg.getOpcode() != ISD::UNDEF)
2714      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2715    Mask |= Val;
2716    if (i != 0)
2717      Mask <<= 2;
2718  }
2719
2720  return Mask;
2721}
2722
2723/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2724/// values in ther permute mask.
2725static SDValue CommuteVectorShuffle(SDValue Op, SDValue &V1,
2726                                      SDValue &V2, SDValue &Mask,
2727                                      SelectionDAG &DAG) {
2728  MVT VT = Op.getValueType();
2729  MVT MaskVT = Mask.getValueType();
2730  MVT EltVT = MaskVT.getVectorElementType();
2731  unsigned NumElems = Mask.getNumOperands();
2732  SmallVector<SDValue, 8> MaskVec;
2733  DebugLoc dl = Op.getDebugLoc();
2734
2735  for (unsigned i = 0; i != NumElems; ++i) {
2736    SDValue Arg = Mask.getOperand(i);
2737    if (Arg.getOpcode() == ISD::UNDEF) {
2738      MaskVec.push_back(DAG.getUNDEF(EltVT));
2739      continue;
2740    }
2741    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2742    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2743    if (Val < NumElems)
2744      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2745    else
2746      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2747  }
2748
2749  std::swap(V1, V2);
2750  Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT, &MaskVec[0], NumElems);
2751  return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2, Mask);
2752}
2753
2754/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2755/// the two vector operands have swapped position.
2756static
2757SDValue CommuteVectorShuffleMask(SDValue Mask, SelectionDAG &DAG, DebugLoc dl) {
2758  MVT MaskVT = Mask.getValueType();
2759  MVT EltVT = MaskVT.getVectorElementType();
2760  unsigned NumElems = Mask.getNumOperands();
2761  SmallVector<SDValue, 8> MaskVec;
2762  for (unsigned i = 0; i != NumElems; ++i) {
2763    SDValue Arg = Mask.getOperand(i);
2764    if (Arg.getOpcode() == ISD::UNDEF) {
2765      MaskVec.push_back(DAG.getUNDEF(EltVT));
2766      continue;
2767    }
2768    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2769    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2770    if (Val < NumElems)
2771      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2772    else
2773      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2774  }
2775  return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT, &MaskVec[0], NumElems);
2776}
2777
2778
2779/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2780/// match movhlps. The lower half elements should come from upper half of
2781/// V1 (and in order), and the upper half elements should come from the upper
2782/// half of V2 (and in order).
2783static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2784  unsigned NumElems = Mask->getNumOperands();
2785  if (NumElems != 4)
2786    return false;
2787  for (unsigned i = 0, e = 2; i != e; ++i)
2788    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2789      return false;
2790  for (unsigned i = 2; i != 4; ++i)
2791    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2792      return false;
2793  return true;
2794}
2795
2796/// isScalarLoadToVector - Returns true if the node is a scalar load that
2797/// is promoted to a vector. It also returns the LoadSDNode by reference if
2798/// required.
2799static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2800  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2801    return false;
2802  N = N->getOperand(0).getNode();
2803  if (!ISD::isNON_EXTLoad(N))
2804    return false;
2805  if (LD)
2806    *LD = cast<LoadSDNode>(N);
2807  return true;
2808}
2809
2810/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2811/// match movlp{s|d}. The lower half elements should come from lower half of
2812/// V1 (and in order), and the upper half elements should come from the upper
2813/// half of V2 (and in order). And since V1 will become the source of the
2814/// MOVLP, it must be either a vector load or a scalar load to vector.
2815static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2816  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2817    return false;
2818  // Is V2 is a vector load, don't do this transformation. We will try to use
2819  // load folding shufps op.
2820  if (ISD::isNON_EXTLoad(V2))
2821    return false;
2822
2823  unsigned NumElems = Mask->getNumOperands();
2824  if (NumElems != 2 && NumElems != 4)
2825    return false;
2826  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2827    if (!isUndefOrEqual(Mask->getOperand(i), i))
2828      return false;
2829  for (unsigned i = NumElems/2; i != NumElems; ++i)
2830    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2831      return false;
2832  return true;
2833}
2834
2835/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2836/// all the same.
2837static bool isSplatVector(SDNode *N) {
2838  if (N->getOpcode() != ISD::BUILD_VECTOR)
2839    return false;
2840
2841  SDValue SplatValue = N->getOperand(0);
2842  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2843    if (N->getOperand(i) != SplatValue)
2844      return false;
2845  return true;
2846}
2847
2848/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2849/// to an undef.
2850static bool isUndefShuffle(SDNode *N) {
2851  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2852    return false;
2853
2854  SDValue V1 = N->getOperand(0);
2855  SDValue V2 = N->getOperand(1);
2856  SDValue Mask = N->getOperand(2);
2857  unsigned NumElems = Mask.getNumOperands();
2858  for (unsigned i = 0; i != NumElems; ++i) {
2859    SDValue Arg = Mask.getOperand(i);
2860    if (Arg.getOpcode() != ISD::UNDEF) {
2861      unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2862      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2863        return false;
2864      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2865        return false;
2866    }
2867  }
2868  return true;
2869}
2870
2871/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2872/// constant +0.0.
2873static inline bool isZeroNode(SDValue Elt) {
2874  return ((isa<ConstantSDNode>(Elt) &&
2875           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2876          (isa<ConstantFPSDNode>(Elt) &&
2877           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2878}
2879
2880/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2881/// to an zero vector.
2882static bool isZeroShuffle(SDNode *N) {
2883  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2884    return false;
2885
2886  SDValue V1 = N->getOperand(0);
2887  SDValue V2 = N->getOperand(1);
2888  SDValue Mask = N->getOperand(2);
2889  unsigned NumElems = Mask.getNumOperands();
2890  for (unsigned i = 0; i != NumElems; ++i) {
2891    SDValue Arg = Mask.getOperand(i);
2892    if (Arg.getOpcode() == ISD::UNDEF)
2893      continue;
2894
2895    unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
2896    if (Idx < NumElems) {
2897      unsigned Opc = V1.getNode()->getOpcode();
2898      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2899        continue;
2900      if (Opc != ISD::BUILD_VECTOR ||
2901          !isZeroNode(V1.getNode()->getOperand(Idx)))
2902        return false;
2903    } else if (Idx >= NumElems) {
2904      unsigned Opc = V2.getNode()->getOpcode();
2905      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2906        continue;
2907      if (Opc != ISD::BUILD_VECTOR ||
2908          !isZeroNode(V2.getNode()->getOperand(Idx - NumElems)))
2909        return false;
2910    }
2911  }
2912  return true;
2913}
2914
2915/// getZeroVector - Returns a vector of specified type with all zero elements.
2916///
2917static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG,
2918                             DebugLoc dl) {
2919  assert(VT.isVector() && "Expected a vector type");
2920
2921  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2922  // type.  This ensures they get CSE'd.
2923  SDValue Vec;
2924  if (VT.getSizeInBits() == 64) { // MMX
2925    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2926    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2927  } else if (HasSSE2) {  // SSE2
2928    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2929    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2930  } else { // SSE1
2931    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2932    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
2933  }
2934  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2935}
2936
2937/// getOnesVector - Returns a vector of specified type with all bits set.
2938///
2939static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
2940  assert(VT.isVector() && "Expected a vector type");
2941
2942  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2943  // type.  This ensures they get CSE'd.
2944  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2945  SDValue Vec;
2946  if (VT.getSizeInBits() == 64)  // MMX
2947    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2948  else                                              // SSE
2949    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2950  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2951}
2952
2953
2954/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2955/// that point to V2 points to its first element.
2956static SDValue NormalizeMask(SDValue Mask, SelectionDAG &DAG) {
2957  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2958
2959  bool Changed = false;
2960  SmallVector<SDValue, 8> MaskVec;
2961  unsigned NumElems = Mask.getNumOperands();
2962  for (unsigned i = 0; i != NumElems; ++i) {
2963    SDValue Arg = Mask.getOperand(i);
2964    if (Arg.getOpcode() != ISD::UNDEF) {
2965      unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2966      if (Val > NumElems) {
2967        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2968        Changed = true;
2969      }
2970    }
2971    MaskVec.push_back(Arg);
2972  }
2973
2974  if (Changed)
2975    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getDebugLoc(),
2976                       Mask.getValueType(),
2977                       &MaskVec[0], MaskVec.size());
2978  return Mask;
2979}
2980
2981/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2982/// operation of specified width.
2983static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG, DebugLoc dl) {
2984  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2985  MVT BaseVT = MaskVT.getVectorElementType();
2986
2987  SmallVector<SDValue, 8> MaskVec;
2988  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2989  for (unsigned i = 1; i != NumElems; ++i)
2990    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2991  return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
2992                     &MaskVec[0], MaskVec.size());
2993}
2994
2995/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2996/// of specified width.
2997static SDValue getUnpacklMask(unsigned NumElems, SelectionDAG &DAG,
2998                              DebugLoc dl) {
2999  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3000  MVT BaseVT = MaskVT.getVectorElementType();
3001  SmallVector<SDValue, 8> MaskVec;
3002  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3003    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
3004    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
3005  }
3006  return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
3007                     &MaskVec[0], MaskVec.size());
3008}
3009
3010/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
3011/// of specified width.
3012static SDValue getUnpackhMask(unsigned NumElems, SelectionDAG &DAG,
3013                              DebugLoc dl) {
3014  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3015  MVT BaseVT = MaskVT.getVectorElementType();
3016  unsigned Half = NumElems/2;
3017  SmallVector<SDValue, 8> MaskVec;
3018  for (unsigned i = 0; i != Half; ++i) {
3019    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
3020    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
3021  }
3022  return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
3023                     &MaskVec[0], MaskVec.size());
3024}
3025
3026/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
3027/// element #0 of a vector with the specified index, leaving the rest of the
3028/// elements in place.
3029static SDValue getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
3030                                   SelectionDAG &DAG, DebugLoc dl) {
3031  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3032  MVT BaseVT = MaskVT.getVectorElementType();
3033  SmallVector<SDValue, 8> MaskVec;
3034  // Element #0 of the result gets the elt we are replacing.
3035  MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
3036  for (unsigned i = 1; i != NumElems; ++i)
3037    MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
3038  return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
3039                     &MaskVec[0], MaskVec.size());
3040}
3041
3042/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3043static SDValue PromoteSplat(SDValue Op, SelectionDAG &DAG, bool HasSSE2) {
3044  MVT PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32;
3045  MVT VT = Op.getValueType();
3046  if (PVT == VT)
3047    return Op;
3048  SDValue V1 = Op.getOperand(0);
3049  SDValue Mask = Op.getOperand(2);
3050  unsigned MaskNumElems = Mask.getNumOperands();
3051  unsigned NumElems = MaskNumElems;
3052  DebugLoc dl = Op.getDebugLoc();
3053  // Special handling of v4f32 -> v4i32.
3054  if (VT != MVT::v4f32) {
3055    // Find which element we want to splat.
3056    SDNode* EltNoNode = getSplatMaskEltNo(Mask.getNode()).getNode();
3057    unsigned EltNo = cast<ConstantSDNode>(EltNoNode)->getZExtValue();
3058    // unpack elements to the correct location
3059    while (NumElems > 4) {
3060      if (EltNo < NumElems/2) {
3061        Mask = getUnpacklMask(MaskNumElems, DAG, dl);
3062      } else {
3063        Mask = getUnpackhMask(MaskNumElems, DAG, dl);
3064        EltNo -= NumElems/2;
3065      }
3066      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V1, Mask);
3067      NumElems >>= 1;
3068    }
3069    SDValue Cst = DAG.getConstant(EltNo, MVT::i32);
3070    Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3071  }
3072
3073  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3074  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, PVT, V1,
3075                                  DAG.getUNDEF(PVT), Mask);
3076  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Shuffle);
3077}
3078
3079/// isVectorLoad - Returns true if the node is a vector load, a scalar
3080/// load that's promoted to vector, or a load bitcasted.
3081static bool isVectorLoad(SDValue Op) {
3082  assert(Op.getValueType().isVector() && "Expected a vector type");
3083  if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR ||
3084      Op.getOpcode() == ISD::BIT_CONVERT) {
3085    return isa<LoadSDNode>(Op.getOperand(0));
3086  }
3087  return isa<LoadSDNode>(Op);
3088}
3089
3090
3091/// CanonicalizeMovddup - Cannonicalize movddup shuffle to v2f64.
3092///
3093static SDValue CanonicalizeMovddup(SDValue Op, SDValue V1, SDValue Mask,
3094                                   SelectionDAG &DAG, bool HasSSE3) {
3095  // If we have sse3 and shuffle has more than one use or input is a load, then
3096  // use movddup. Otherwise, use movlhps.
3097  bool UseMovddup = HasSSE3 && (!Op.hasOneUse() || isVectorLoad(V1));
3098  MVT PVT = UseMovddup ? MVT::v2f64 : MVT::v4f32;
3099  MVT VT = Op.getValueType();
3100  if (VT == PVT)
3101    return Op;
3102  DebugLoc dl = Op.getDebugLoc();
3103  unsigned NumElems = PVT.getVectorNumElements();
3104  if (NumElems == 2) {
3105    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3106    Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3107  } else {
3108    assert(NumElems == 4);
3109    SDValue Cst0 = DAG.getTargetConstant(0, MVT::i32);
3110    SDValue Cst1 = DAG.getTargetConstant(1, MVT::i32);
3111    Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
3112                       Cst0, Cst1, Cst0, Cst1);
3113  }
3114
3115  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3116  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, PVT, V1,
3117                                DAG.getUNDEF(PVT), Mask);
3118  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Shuffle);
3119}
3120
3121/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3122/// vector of zero or undef vector.  This produces a shuffle where the low
3123/// element of V2 is swizzled into the zero/undef vector, landing at element
3124/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3125static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3126                                             bool isZero, bool HasSSE2,
3127                                             SelectionDAG &DAG) {
3128  DebugLoc dl = V2.getDebugLoc();
3129  MVT VT = V2.getValueType();
3130  SDValue V1 = isZero
3131    ? getZeroVector(VT, HasSSE2, DAG, dl) : DAG.getUNDEF(VT);
3132  unsigned NumElems = V2.getValueType().getVectorNumElements();
3133  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3134  MVT EVT = MaskVT.getVectorElementType();
3135  SmallVector<SDValue, 16> MaskVec;
3136  for (unsigned i = 0; i != NumElems; ++i)
3137    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
3138      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
3139    else
3140      MaskVec.push_back(DAG.getConstant(i, EVT));
3141  SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
3142                               &MaskVec[0], MaskVec.size());
3143  return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2, Mask);
3144}
3145
3146/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3147/// a shuffle that is zero.
3148static
3149unsigned getNumOfConsecutiveZeros(SDValue Op, SDValue Mask,
3150                                  unsigned NumElems, bool Low,
3151                                  SelectionDAG &DAG) {
3152  unsigned NumZeros = 0;
3153  for (unsigned i = 0; i < NumElems; ++i) {
3154    unsigned Index = Low ? i : NumElems-i-1;
3155    SDValue Idx = Mask.getOperand(Index);
3156    if (Idx.getOpcode() == ISD::UNDEF) {
3157      ++NumZeros;
3158      continue;
3159    }
3160    SDValue Elt = DAG.getShuffleScalarElt(Op.getNode(), Index);
3161    if (Elt.getNode() && isZeroNode(Elt))
3162      ++NumZeros;
3163    else
3164      break;
3165  }
3166  return NumZeros;
3167}
3168
3169/// isVectorShift - Returns true if the shuffle can be implemented as a
3170/// logical left or right shift of a vector.
3171static bool isVectorShift(SDValue Op, SDValue Mask, SelectionDAG &DAG,
3172                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3173  unsigned NumElems = Mask.getNumOperands();
3174
3175  isLeft = true;
3176  unsigned NumZeros= getNumOfConsecutiveZeros(Op, Mask, NumElems, true, DAG);
3177  if (!NumZeros) {
3178    isLeft = false;
3179    NumZeros = getNumOfConsecutiveZeros(Op, Mask, NumElems, false, DAG);
3180    if (!NumZeros)
3181      return false;
3182  }
3183
3184  bool SeenV1 = false;
3185  bool SeenV2 = false;
3186  for (unsigned i = NumZeros; i < NumElems; ++i) {
3187    unsigned Val = isLeft ? (i - NumZeros) : i;
3188    SDValue Idx = Mask.getOperand(isLeft ? i : (i - NumZeros));
3189    if (Idx.getOpcode() == ISD::UNDEF)
3190      continue;
3191    unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
3192    if (Index < NumElems)
3193      SeenV1 = true;
3194    else {
3195      Index -= NumElems;
3196      SeenV2 = true;
3197    }
3198    if (Index != Val)
3199      return false;
3200  }
3201  if (SeenV1 && SeenV2)
3202    return false;
3203
3204  ShVal = SeenV1 ? Op.getOperand(0) : Op.getOperand(1);
3205  ShAmt = NumZeros;
3206  return true;
3207}
3208
3209
3210/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3211///
3212static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3213                                       unsigned NumNonZero, unsigned NumZero,
3214                                       SelectionDAG &DAG, TargetLowering &TLI) {
3215  if (NumNonZero > 8)
3216    return SDValue();
3217
3218  DebugLoc dl = Op.getDebugLoc();
3219  SDValue V(0, 0);
3220  bool First = true;
3221  for (unsigned i = 0; i < 16; ++i) {
3222    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3223    if (ThisIsNonZero && First) {
3224      if (NumZero)
3225        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3226      else
3227        V = DAG.getUNDEF(MVT::v8i16);
3228      First = false;
3229    }
3230
3231    if ((i & 1) != 0) {
3232      SDValue ThisElt(0, 0), LastElt(0, 0);
3233      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3234      if (LastIsNonZero) {
3235        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3236                              MVT::i16, Op.getOperand(i-1));
3237      }
3238      if (ThisIsNonZero) {
3239        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3240        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3241                              ThisElt, DAG.getConstant(8, MVT::i8));
3242        if (LastIsNonZero)
3243          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3244      } else
3245        ThisElt = LastElt;
3246
3247      if (ThisElt.getNode())
3248        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3249                        DAG.getIntPtrConstant(i/2));
3250    }
3251  }
3252
3253  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3254}
3255
3256/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3257///
3258static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3259                                       unsigned NumNonZero, unsigned NumZero,
3260                                       SelectionDAG &DAG, TargetLowering &TLI) {
3261  if (NumNonZero > 4)
3262    return SDValue();
3263
3264  DebugLoc dl = Op.getDebugLoc();
3265  SDValue V(0, 0);
3266  bool First = true;
3267  for (unsigned i = 0; i < 8; ++i) {
3268    bool isNonZero = (NonZeros & (1 << i)) != 0;
3269    if (isNonZero) {
3270      if (First) {
3271        if (NumZero)
3272          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3273        else
3274          V = DAG.getUNDEF(MVT::v8i16);
3275        First = false;
3276      }
3277      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3278                      MVT::v8i16, V, Op.getOperand(i),
3279                      DAG.getIntPtrConstant(i));
3280    }
3281  }
3282
3283  return V;
3284}
3285
3286/// getVShift - Return a vector logical shift node.
3287///
3288static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
3289                           unsigned NumBits, SelectionDAG &DAG,
3290                           const TargetLowering &TLI, DebugLoc dl) {
3291  bool isMMX = VT.getSizeInBits() == 64;
3292  MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3293  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3294  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3295  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3296                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3297                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3298}
3299
3300SDValue
3301X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3302  DebugLoc dl = Op.getDebugLoc();
3303  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3304  if (ISD::isBuildVectorAllZeros(Op.getNode())
3305      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3306    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3307    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3308    // eliminated on x86-32 hosts.
3309    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3310      return Op;
3311
3312    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3313      return getOnesVector(Op.getValueType(), DAG, dl);
3314    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3315  }
3316
3317  MVT VT = Op.getValueType();
3318  MVT EVT = VT.getVectorElementType();
3319  unsigned EVTBits = EVT.getSizeInBits();
3320
3321  unsigned NumElems = Op.getNumOperands();
3322  unsigned NumZero  = 0;
3323  unsigned NumNonZero = 0;
3324  unsigned NonZeros = 0;
3325  bool IsAllConstants = true;
3326  SmallSet<SDValue, 8> Values;
3327  for (unsigned i = 0; i < NumElems; ++i) {
3328    SDValue Elt = Op.getOperand(i);
3329    if (Elt.getOpcode() == ISD::UNDEF)
3330      continue;
3331    Values.insert(Elt);
3332    if (Elt.getOpcode() != ISD::Constant &&
3333        Elt.getOpcode() != ISD::ConstantFP)
3334      IsAllConstants = false;
3335    if (isZeroNode(Elt))
3336      NumZero++;
3337    else {
3338      NonZeros |= (1 << i);
3339      NumNonZero++;
3340    }
3341  }
3342
3343  if (NumNonZero == 0) {
3344    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3345    return DAG.getUNDEF(VT);
3346  }
3347
3348  // Special case for single non-zero, non-undef, element.
3349  if (NumNonZero == 1 && NumElems <= 4) {
3350    unsigned Idx = CountTrailingZeros_32(NonZeros);
3351    SDValue Item = Op.getOperand(Idx);
3352
3353    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3354    // the value are obviously zero, truncate the value to i32 and do the
3355    // insertion that way.  Only do this if the value is non-constant or if the
3356    // value is a constant being inserted into element 0.  It is cheaper to do
3357    // a constant pool load than it is to do a movd + shuffle.
3358    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3359        (!IsAllConstants || Idx == 0)) {
3360      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3361        // Handle MMX and SSE both.
3362        MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3363        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3364
3365        // Truncate the value (which may itself be a constant) to i32, and
3366        // convert it to a vector with movd (S2V+shuffle to zero extend).
3367        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3368        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3369        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3370                                           Subtarget->hasSSE2(), DAG);
3371
3372        // Now we have our 32-bit value zero extended in the low element of
3373        // a vector.  If Idx != 0, swizzle it into place.
3374        if (Idx != 0) {
3375          SDValue Ops[] = {
3376            Item, DAG.getUNDEF(Item.getValueType()),
3377            getSwapEltZeroMask(VecElts, Idx, DAG, dl)
3378          };
3379          Item = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VecVT, Ops, 3);
3380        }
3381        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3382      }
3383    }
3384
3385    // If we have a constant or non-constant insertion into the low element of
3386    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3387    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3388    // depending on what the source datatype is.  Because we can only get here
3389    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3390    if (Idx == 0 &&
3391        // Don't do this for i64 values on x86-32.
3392        (EVT != MVT::i64 || Subtarget->is64Bit())) {
3393      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3394      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3395      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3396                                         Subtarget->hasSSE2(), DAG);
3397    }
3398
3399    // Is it a vector logical left shift?
3400    if (NumElems == 2 && Idx == 1 &&
3401        isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
3402      unsigned NumBits = VT.getSizeInBits();
3403      return getVShift(true, VT,
3404                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3405                                   VT, Op.getOperand(1)),
3406                       NumBits/2, DAG, *this, dl);
3407    }
3408
3409    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3410      return SDValue();
3411
3412    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3413    // is a non-constant being inserted into an element other than the low one,
3414    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3415    // movd/movss) to move this into the low element, then shuffle it into
3416    // place.
3417    if (EVTBits == 32) {
3418      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3419
3420      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3421      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3422                                         Subtarget->hasSSE2(), DAG);
3423      MVT MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3424      MVT MaskEVT = MaskVT.getVectorElementType();
3425      SmallVector<SDValue, 8> MaskVec;
3426      for (unsigned i = 0; i < NumElems; i++)
3427        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3428      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
3429                                   &MaskVec[0], MaskVec.size());
3430      return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, Item,
3431                         DAG.getUNDEF(VT), Mask);
3432    }
3433  }
3434
3435  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3436  if (Values.size() == 1)
3437    return SDValue();
3438
3439  // A vector full of immediates; various special cases are already
3440  // handled, so this is best done with a single constant-pool load.
3441  if (IsAllConstants)
3442    return SDValue();
3443
3444  // Let legalizer expand 2-wide build_vectors.
3445  if (EVTBits == 64) {
3446    if (NumNonZero == 1) {
3447      // One half is zero or undef.
3448      unsigned Idx = CountTrailingZeros_32(NonZeros);
3449      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3450                                 Op.getOperand(Idx));
3451      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3452                                         Subtarget->hasSSE2(), DAG);
3453    }
3454    return SDValue();
3455  }
3456
3457  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3458  if (EVTBits == 8 && NumElems == 16) {
3459    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3460                                        *this);
3461    if (V.getNode()) return V;
3462  }
3463
3464  if (EVTBits == 16 && NumElems == 8) {
3465    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3466                                        *this);
3467    if (V.getNode()) return V;
3468  }
3469
3470  // If element VT is == 32 bits, turn it into a number of shuffles.
3471  SmallVector<SDValue, 8> V;
3472  V.resize(NumElems);
3473  if (NumElems == 4 && NumZero > 0) {
3474    for (unsigned i = 0; i < 4; ++i) {
3475      bool isZero = !(NonZeros & (1 << i));
3476      if (isZero)
3477        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3478      else
3479        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3480    }
3481
3482    for (unsigned i = 0; i < 2; ++i) {
3483      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3484        default: break;
3485        case 0:
3486          V[i] = V[i*2];  // Must be a zero vector.
3487          break;
3488        case 1:
3489          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V[i*2+1], V[i*2],
3490                             getMOVLMask(NumElems, DAG, dl));
3491          break;
3492        case 2:
3493          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V[i*2], V[i*2+1],
3494                             getMOVLMask(NumElems, DAG, dl));
3495          break;
3496        case 3:
3497          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V[i*2], V[i*2+1],
3498                             getUnpacklMask(NumElems, DAG, dl));
3499          break;
3500      }
3501    }
3502
3503    MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3504    MVT EVT = MaskVT.getVectorElementType();
3505    SmallVector<SDValue, 8> MaskVec;
3506    bool Reverse = (NonZeros & 0x3) == 2;
3507    for (unsigned i = 0; i < 2; ++i)
3508      if (Reverse)
3509        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3510      else
3511        MaskVec.push_back(DAG.getConstant(i, EVT));
3512    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3513    for (unsigned i = 0; i < 2; ++i)
3514      if (Reverse)
3515        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3516      else
3517        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3518    SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
3519                                     &MaskVec[0], MaskVec.size());
3520    return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V[0], V[1], ShufMask);
3521  }
3522
3523  if (Values.size() > 2) {
3524    // Expand into a number of unpckl*.
3525    // e.g. for v4f32
3526    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3527    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3528    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3529    SDValue UnpckMask = getUnpacklMask(NumElems, DAG, dl);
3530    for (unsigned i = 0; i < NumElems; ++i)
3531      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3532    NumElems >>= 1;
3533    while (NumElems != 0) {
3534      for (unsigned i = 0; i < NumElems; ++i)
3535        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V[i], V[i + NumElems],
3536                           UnpckMask);
3537      NumElems >>= 1;
3538    }
3539    return V[0];
3540  }
3541
3542  return SDValue();
3543}
3544
3545// v8i16 shuffles - Prefer shuffles in the following order:
3546// 1. [all]   pshuflw, pshufhw, optional move
3547// 2. [ssse3] 1 x pshufb
3548// 3. [ssse3] 2 x pshufb + 1 x por
3549// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3550static
3551SDValue LowerVECTOR_SHUFFLEv8i16(SDValue V1, SDValue V2,
3552                                 SDValue PermMask, SelectionDAG &DAG,
3553                                 X86TargetLowering &TLI, DebugLoc dl) {
3554  SmallVector<SDValue, 8> MaskElts(PermMask.getNode()->op_begin(),
3555                                   PermMask.getNode()->op_end());
3556  SmallVector<int, 8> MaskVals;
3557
3558  // Determine if more than 1 of the words in each of the low and high quadwords
3559  // of the result come from the same quadword of one of the two inputs.  Undef
3560  // mask values count as coming from any quadword, for better codegen.
3561  SmallVector<unsigned, 4> LoQuad(4);
3562  SmallVector<unsigned, 4> HiQuad(4);
3563  BitVector InputQuads(4);
3564  for (unsigned i = 0; i < 8; ++i) {
3565    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3566    SDValue Elt = MaskElts[i];
3567    int EltIdx = Elt.getOpcode() == ISD::UNDEF ? -1 :
3568                 cast<ConstantSDNode>(Elt)->getZExtValue();
3569    MaskVals.push_back(EltIdx);
3570    if (EltIdx < 0) {
3571      ++Quad[0];
3572      ++Quad[1];
3573      ++Quad[2];
3574      ++Quad[3];
3575      continue;
3576    }
3577    ++Quad[EltIdx / 4];
3578    InputQuads.set(EltIdx / 4);
3579  }
3580
3581  int BestLoQuad = -1;
3582  unsigned MaxQuad = 1;
3583  for (unsigned i = 0; i < 4; ++i) {
3584    if (LoQuad[i] > MaxQuad) {
3585      BestLoQuad = i;
3586      MaxQuad = LoQuad[i];
3587    }
3588  }
3589
3590  int BestHiQuad = -1;
3591  MaxQuad = 1;
3592  for (unsigned i = 0; i < 4; ++i) {
3593    if (HiQuad[i] > MaxQuad) {
3594      BestHiQuad = i;
3595      MaxQuad = HiQuad[i];
3596    }
3597  }
3598
3599  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3600  // of the two input vectors, shuffle them into one input vector so only a
3601  // single pshufb instruction is necessary. If There are more than 2 input
3602  // quads, disable the next transformation since it does not help SSSE3.
3603  bool V1Used = InputQuads[0] || InputQuads[1];
3604  bool V2Used = InputQuads[2] || InputQuads[3];
3605  if (TLI.getSubtarget()->hasSSSE3()) {
3606    if (InputQuads.count() == 2 && V1Used && V2Used) {
3607      BestLoQuad = InputQuads.find_first();
3608      BestHiQuad = InputQuads.find_next(BestLoQuad);
3609    }
3610    if (InputQuads.count() > 2) {
3611      BestLoQuad = -1;
3612      BestHiQuad = -1;
3613    }
3614  }
3615
3616  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3617  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3618  // words from all 4 input quadwords.
3619  SDValue NewV;
3620  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3621    SmallVector<SDValue,8> MaskV;
3622    MaskV.push_back(DAG.getConstant(BestLoQuad < 0 ? 0 : BestLoQuad, MVT::i64));
3623    MaskV.push_back(DAG.getConstant(BestHiQuad < 0 ? 1 : BestHiQuad, MVT::i64));
3624    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, &MaskV[0], 2);
3625
3626    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v2i64,
3627                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3628                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), Mask);
3629    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3630
3631    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3632    // source words for the shuffle, to aid later transformations.
3633    bool AllWordsInNewV = true;
3634    bool InOrder[2] = { true, true };
3635    for (unsigned i = 0; i != 8; ++i) {
3636      int idx = MaskVals[i];
3637      if (idx != (int)i)
3638        InOrder[i/4] = false;
3639      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3640        continue;
3641      AllWordsInNewV = false;
3642      break;
3643    }
3644
3645    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3646    if (AllWordsInNewV) {
3647      for (int i = 0; i != 8; ++i) {
3648        int idx = MaskVals[i];
3649        if (idx < 0)
3650          continue;
3651        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3652        if ((idx != i) && idx < 4)
3653          pshufhw = false;
3654        if ((idx != i) && idx > 3)
3655          pshuflw = false;
3656      }
3657      V1 = NewV;
3658      V2Used = false;
3659      BestLoQuad = 0;
3660      BestHiQuad = 1;
3661    }
3662
3663    // If we've eliminated the use of V2, and the new mask is a pshuflw or
3664    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
3665    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3666      MaskV.clear();
3667      for (unsigned i = 0; i != 8; ++i)
3668        MaskV.push_back((MaskVals[i] < 0) ? DAG.getUNDEF(MVT::i16)
3669                                          : DAG.getConstant(MaskVals[i],
3670                                                            MVT::i16));
3671      return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v8i16, NewV,
3672                         DAG.getUNDEF(MVT::v8i16),
3673                         DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i16,
3674                                     &MaskV[0], 8));
3675    }
3676  }
3677
3678  // If we have SSSE3, and all words of the result are from 1 input vector,
3679  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
3680  // is present, fall back to case 4.
3681  if (TLI.getSubtarget()->hasSSSE3()) {
3682    SmallVector<SDValue,16> pshufbMask;
3683
3684    // If we have elements from both input vectors, set the high bit of the
3685    // shuffle mask element to zero out elements that come from V2 in the V1
3686    // mask, and elements that come from V1 in the V2 mask, so that the two
3687    // results can be OR'd together.
3688    bool TwoInputs = V1Used && V2Used;
3689    for (unsigned i = 0; i != 8; ++i) {
3690      int EltIdx = MaskVals[i] * 2;
3691      if (TwoInputs && (EltIdx >= 16)) {
3692        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3693        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3694        continue;
3695      }
3696      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
3697      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
3698    }
3699    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
3700    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3701                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3702                                 MVT::v16i8, &pshufbMask[0], 16));
3703    if (!TwoInputs)
3704      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3705
3706    // Calculate the shuffle mask for the second input, shuffle it, and
3707    // OR it with the first shuffled input.
3708    pshufbMask.clear();
3709    for (unsigned i = 0; i != 8; ++i) {
3710      int EltIdx = MaskVals[i] * 2;
3711      if (EltIdx < 16) {
3712        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3713        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3714        continue;
3715      }
3716      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3717      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
3718    }
3719    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
3720    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3721                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3722                                 MVT::v16i8, &pshufbMask[0], 16));
3723    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3724    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3725  }
3726
3727  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3728  // and update MaskVals with new element order.
3729  BitVector InOrder(8);
3730  if (BestLoQuad >= 0) {
3731    SmallVector<SDValue, 8> MaskV;
3732    for (int i = 0; i != 4; ++i) {
3733      int idx = MaskVals[i];
3734      if (idx < 0) {
3735        MaskV.push_back(DAG.getUNDEF(MVT::i16));
3736        InOrder.set(i);
3737      } else if ((idx / 4) == BestLoQuad) {
3738        MaskV.push_back(DAG.getConstant(idx & 3, MVT::i16));
3739        InOrder.set(i);
3740      } else {
3741        MaskV.push_back(DAG.getUNDEF(MVT::i16));
3742      }
3743    }
3744    for (unsigned i = 4; i != 8; ++i)
3745      MaskV.push_back(DAG.getConstant(i, MVT::i16));
3746    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v8i16, NewV,
3747                       DAG.getUNDEF(MVT::v8i16),
3748                       DAG.getNode(ISD::BUILD_VECTOR, dl,
3749                                   MVT::v8i16, &MaskV[0], 8));
3750  }
3751
3752  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3753  // and update MaskVals with the new element order.
3754  if (BestHiQuad >= 0) {
3755    SmallVector<SDValue, 8> MaskV;
3756    for (unsigned i = 0; i != 4; ++i)
3757      MaskV.push_back(DAG.getConstant(i, MVT::i16));
3758    for (unsigned i = 4; i != 8; ++i) {
3759      int idx = MaskVals[i];
3760      if (idx < 0) {
3761        MaskV.push_back(DAG.getUNDEF(MVT::i16));
3762        InOrder.set(i);
3763      } else if ((idx / 4) == BestHiQuad) {
3764        MaskV.push_back(DAG.getConstant((idx & 3) + 4, MVT::i16));
3765        InOrder.set(i);
3766      } else {
3767        MaskV.push_back(DAG.getUNDEF(MVT::i16));
3768      }
3769    }
3770    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v8i16, NewV,
3771                       DAG.getUNDEF(MVT::v8i16),
3772                       DAG.getNode(ISD::BUILD_VECTOR, dl,
3773                                   MVT::v8i16, &MaskV[0], 8));
3774  }
3775
3776  // In case BestHi & BestLo were both -1, which means each quadword has a word
3777  // from each of the four input quadwords, calculate the InOrder bitvector now
3778  // before falling through to the insert/extract cleanup.
3779  if (BestLoQuad == -1 && BestHiQuad == -1) {
3780    NewV = V1;
3781    for (int i = 0; i != 8; ++i)
3782      if (MaskVals[i] < 0 || MaskVals[i] == i)
3783        InOrder.set(i);
3784  }
3785
3786  // The other elements are put in the right place using pextrw and pinsrw.
3787  for (unsigned i = 0; i != 8; ++i) {
3788    if (InOrder[i])
3789      continue;
3790    int EltIdx = MaskVals[i];
3791    if (EltIdx < 0)
3792      continue;
3793    SDValue ExtOp = (EltIdx < 8)
3794    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
3795                  DAG.getIntPtrConstant(EltIdx))
3796    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
3797                  DAG.getIntPtrConstant(EltIdx - 8));
3798    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
3799                       DAG.getIntPtrConstant(i));
3800  }
3801  return NewV;
3802}
3803
3804// v16i8 shuffles - Prefer shuffles in the following order:
3805// 1. [ssse3] 1 x pshufb
3806// 2. [ssse3] 2 x pshufb + 1 x por
3807// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
3808static
3809SDValue LowerVECTOR_SHUFFLEv16i8(SDValue V1, SDValue V2,
3810                                 SDValue PermMask, SelectionDAG &DAG,
3811                                 X86TargetLowering &TLI, DebugLoc dl) {
3812  SmallVector<SDValue, 16> MaskElts(PermMask.getNode()->op_begin(),
3813                                    PermMask.getNode()->op_end());
3814  SmallVector<int, 16> MaskVals;
3815
3816  // If we have SSSE3, case 1 is generated when all result bytes come from
3817  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
3818  // present, fall back to case 3.
3819  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3820  bool V1Only = true;
3821  bool V2Only = true;
3822  for (unsigned i = 0; i < 16; ++i) {
3823    SDValue Elt = MaskElts[i];
3824    int EltIdx = Elt.getOpcode() == ISD::UNDEF ? -1 :
3825                 cast<ConstantSDNode>(Elt)->getZExtValue();
3826    MaskVals.push_back(EltIdx);
3827    if (EltIdx < 0)
3828      continue;
3829    if (EltIdx < 16)
3830      V2Only = false;
3831    else
3832      V1Only = false;
3833  }
3834
3835  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3836  if (TLI.getSubtarget()->hasSSSE3()) {
3837    SmallVector<SDValue,16> pshufbMask;
3838
3839    // If all result elements are from one input vector, then only translate
3840    // undef mask values to 0x80 (zero out result) in the pshufb mask.
3841    //
3842    // Otherwise, we have elements from both input vectors, and must zero out
3843    // elements that come from V2 in the first mask, and V1 in the second mask
3844    // so that we can OR them together.
3845    bool TwoInputs = !(V1Only || V2Only);
3846    for (unsigned i = 0; i != 16; ++i) {
3847      int EltIdx = MaskVals[i];
3848      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
3849        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3850        continue;
3851      }
3852      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3853    }
3854    // If all the elements are from V2, assign it to V1 and return after
3855    // building the first pshufb.
3856    if (V2Only)
3857      V1 = V2;
3858    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3859                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3860                                 MVT::v16i8, &pshufbMask[0], 16));
3861    if (!TwoInputs)
3862      return V1;
3863
3864    // Calculate the shuffle mask for the second input, shuffle it, and
3865    // OR it with the first shuffled input.
3866    pshufbMask.clear();
3867    for (unsigned i = 0; i != 16; ++i) {
3868      int EltIdx = MaskVals[i];
3869      if (EltIdx < 16) {
3870        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3871        continue;
3872      }
3873      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3874    }
3875    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3876                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3877                                 MVT::v16i8, &pshufbMask[0], 16));
3878    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3879  }
3880
3881  // No SSSE3 - Calculate in place words and then fix all out of place words
3882  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
3883  // the 16 different words that comprise the two doublequadword input vectors.
3884  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3885  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
3886  SDValue NewV = V2Only ? V2 : V1;
3887  for (int i = 0; i != 8; ++i) {
3888    int Elt0 = MaskVals[i*2];
3889    int Elt1 = MaskVals[i*2+1];
3890
3891    // This word of the result is all undef, skip it.
3892    if (Elt0 < 0 && Elt1 < 0)
3893      continue;
3894
3895    // This word of the result is already in the correct place, skip it.
3896    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
3897      continue;
3898    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
3899      continue;
3900
3901    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
3902    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
3903    SDValue InsElt;
3904
3905    // If Elt0 and Elt1 are defined, are consecutive, and can be load
3906    // using a single extract together, load it and store it.
3907    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
3908      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3909                           DAG.getIntPtrConstant(Elt1 / 2));
3910      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3911                        DAG.getIntPtrConstant(i));
3912      continue;
3913    }
3914
3915    // If Elt1 is defined, extract it from the appropriate source.  If the
3916    // source byte is not also odd, shift the extracted word left 8 bits
3917    // otherwise clear the bottom 8 bits if we need to do an or.
3918    if (Elt1 >= 0) {
3919      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3920                           DAG.getIntPtrConstant(Elt1 / 2));
3921      if ((Elt1 & 1) == 0)
3922        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
3923                             DAG.getConstant(8, TLI.getShiftAmountTy()));
3924      else if (Elt0 >= 0)
3925        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
3926                             DAG.getConstant(0xFF00, MVT::i16));
3927    }
3928    // If Elt0 is defined, extract it from the appropriate source.  If the
3929    // source byte is not also even, shift the extracted word right 8 bits. If
3930    // Elt1 was also defined, OR the extracted values together before
3931    // inserting them in the result.
3932    if (Elt0 >= 0) {
3933      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
3934                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
3935      if ((Elt0 & 1) != 0)
3936        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
3937                              DAG.getConstant(8, TLI.getShiftAmountTy()));
3938      else if (Elt1 >= 0)
3939        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
3940                             DAG.getConstant(0x00FF, MVT::i16));
3941      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
3942                         : InsElt0;
3943    }
3944    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3945                       DAG.getIntPtrConstant(i));
3946  }
3947  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
3948}
3949
3950/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3951/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3952/// done when every pair / quad of shuffle mask elements point to elements in
3953/// the right sequence. e.g.
3954/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3955static
3956SDValue RewriteAsNarrowerShuffle(SDValue V1, SDValue V2,
3957                                MVT VT,
3958                                SDValue PermMask, SelectionDAG &DAG,
3959                                TargetLowering &TLI, DebugLoc dl) {
3960  unsigned NumElems = PermMask.getNumOperands();
3961  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3962  MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3963  MVT MaskEltVT = MaskVT.getVectorElementType();
3964  MVT NewVT = MaskVT;
3965  switch (VT.getSimpleVT()) {
3966  default: assert(false && "Unexpected!");
3967  case MVT::v4f32: NewVT = MVT::v2f64; break;
3968  case MVT::v4i32: NewVT = MVT::v2i64; break;
3969  case MVT::v8i16: NewVT = MVT::v4i32; break;
3970  case MVT::v16i8: NewVT = MVT::v4i32; break;
3971  }
3972
3973  if (NewWidth == 2) {
3974    if (VT.isInteger())
3975      NewVT = MVT::v2i64;
3976    else
3977      NewVT = MVT::v2f64;
3978  }
3979  unsigned Scale = NumElems / NewWidth;
3980  SmallVector<SDValue, 8> MaskVec;
3981  for (unsigned i = 0; i < NumElems; i += Scale) {
3982    unsigned StartIdx = ~0U;
3983    for (unsigned j = 0; j < Scale; ++j) {
3984      SDValue Elt = PermMask.getOperand(i+j);
3985      if (Elt.getOpcode() == ISD::UNDEF)
3986        continue;
3987      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3988      if (StartIdx == ~0U)
3989        StartIdx = EltIdx - (EltIdx % Scale);
3990      if (EltIdx != StartIdx + j)
3991        return SDValue();
3992    }
3993    if (StartIdx == ~0U)
3994      MaskVec.push_back(DAG.getUNDEF(MaskEltVT));
3995    else
3996      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MaskEltVT));
3997  }
3998
3999  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4000  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4001  return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, NewVT, V1, V2,
4002                     DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4003                                 &MaskVec[0], MaskVec.size()));
4004}
4005
4006/// getVZextMovL - Return a zero-extending vector move low node.
4007///
4008static SDValue getVZextMovL(MVT VT, MVT OpVT,
4009                              SDValue SrcOp, SelectionDAG &DAG,
4010                              const X86Subtarget *Subtarget, DebugLoc dl) {
4011  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4012    LoadSDNode *LD = NULL;
4013    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4014      LD = dyn_cast<LoadSDNode>(SrcOp);
4015    if (!LD) {
4016      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4017      // instead.
4018      MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4019      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
4020          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4021          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4022          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
4023        // PR2108
4024        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4025        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4026                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4027                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4028                                                   OpVT,
4029                                                   SrcOp.getOperand(0)
4030                                                          .getOperand(0))));
4031      }
4032    }
4033  }
4034
4035  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4036                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4037                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4038                                             OpVT, SrcOp)));
4039}
4040
4041/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4042/// shuffles.
4043static SDValue
4044LowerVECTOR_SHUFFLE_4wide(SDValue V1, SDValue V2,
4045                          SDValue PermMask, MVT VT, SelectionDAG &DAG,
4046                          DebugLoc dl) {
4047  MVT MaskVT = PermMask.getValueType();
4048  MVT MaskEVT = MaskVT.getVectorElementType();
4049  SmallVector<std::pair<int, int>, 8> Locs;
4050  Locs.resize(4);
4051  SmallVector<SDValue, 8> Mask1(4, DAG.getUNDEF(MaskEVT));
4052  unsigned NumHi = 0;
4053  unsigned NumLo = 0;
4054  for (unsigned i = 0; i != 4; ++i) {
4055    SDValue Elt = PermMask.getOperand(i);
4056    if (Elt.getOpcode() == ISD::UNDEF) {
4057      Locs[i] = std::make_pair(-1, -1);
4058    } else {
4059      unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
4060      assert(Val < 8 && "Invalid VECTOR_SHUFFLE index!");
4061      if (Val < 4) {
4062        Locs[i] = std::make_pair(0, NumLo);
4063        Mask1[NumLo] = Elt;
4064        NumLo++;
4065      } else {
4066        Locs[i] = std::make_pair(1, NumHi);
4067        if (2+NumHi < 4)
4068          Mask1[2+NumHi] = Elt;
4069        NumHi++;
4070      }
4071    }
4072  }
4073
4074  if (NumLo <= 2 && NumHi <= 2) {
4075    // If no more than two elements come from either vector. This can be
4076    // implemented with two shuffles. First shuffle gather the elements.
4077    // The second shuffle, which takes the first shuffle as both of its
4078    // vector operands, put the elements into the right order.
4079    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2,
4080                     DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4081                                 &Mask1[0], Mask1.size()));
4082
4083    SmallVector<SDValue, 8> Mask2(4, DAG.getUNDEF(MaskEVT));
4084    for (unsigned i = 0; i != 4; ++i) {
4085      if (Locs[i].first == -1)
4086        continue;
4087      else {
4088        unsigned Idx = (i < 2) ? 0 : 4;
4089        Idx += Locs[i].first * 2 + Locs[i].second;
4090        Mask2[i] = DAG.getConstant(Idx, MaskEVT);
4091      }
4092    }
4093
4094    return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V1,
4095                       DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4096                                   &Mask2[0], Mask2.size()));
4097  } else if (NumLo == 3 || NumHi == 3) {
4098    // Otherwise, we must have three elements from one vector, call it X, and
4099    // one element from the other, call it Y.  First, use a shufps to build an
4100    // intermediate vector with the one element from Y and the element from X
4101    // that will be in the same half in the final destination (the indexes don't
4102    // matter). Then, use a shufps to build the final vector, taking the half
4103    // containing the element from Y from the intermediate, and the other half
4104    // from X.
4105    if (NumHi == 3) {
4106      // Normalize it so the 3 elements come from V1.
4107      PermMask = CommuteVectorShuffleMask(PermMask, DAG, dl);
4108      std::swap(V1, V2);
4109    }
4110
4111    // Find the element from V2.
4112    unsigned HiIndex;
4113    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4114      SDValue Elt = PermMask.getOperand(HiIndex);
4115      if (Elt.getOpcode() == ISD::UNDEF)
4116        continue;
4117      unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
4118      if (Val >= 4)
4119        break;
4120    }
4121
4122    Mask1[0] = PermMask.getOperand(HiIndex);
4123    Mask1[1] = DAG.getUNDEF(MaskEVT);
4124    Mask1[2] = PermMask.getOperand(HiIndex^1);
4125    Mask1[3] = DAG.getUNDEF(MaskEVT);
4126    V2 = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2,
4127                     DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT, &Mask1[0], 4));
4128
4129    if (HiIndex >= 2) {
4130      Mask1[0] = PermMask.getOperand(0);
4131      Mask1[1] = PermMask.getOperand(1);
4132      Mask1[2] = DAG.getConstant(HiIndex & 1 ? 6 : 4, MaskEVT);
4133      Mask1[3] = DAG.getConstant(HiIndex & 1 ? 4 : 6, MaskEVT);
4134      return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2,
4135                         DAG.getNode(ISD::BUILD_VECTOR, dl,
4136                                     MaskVT, &Mask1[0], 4));
4137    } else {
4138      Mask1[0] = DAG.getConstant(HiIndex & 1 ? 2 : 0, MaskEVT);
4139      Mask1[1] = DAG.getConstant(HiIndex & 1 ? 0 : 2, MaskEVT);
4140      Mask1[2] = PermMask.getOperand(2);
4141      Mask1[3] = PermMask.getOperand(3);
4142      if (Mask1[2].getOpcode() != ISD::UNDEF)
4143        Mask1[2] =
4144          DAG.getConstant(cast<ConstantSDNode>(Mask1[2])->getZExtValue()+4,
4145                          MaskEVT);
4146      if (Mask1[3].getOpcode() != ISD::UNDEF)
4147        Mask1[3] =
4148          DAG.getConstant(cast<ConstantSDNode>(Mask1[3])->getZExtValue()+4,
4149                          MaskEVT);
4150      return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V2, V1,
4151                         DAG.getNode(ISD::BUILD_VECTOR, dl,
4152                                     MaskVT, &Mask1[0], 4));
4153    }
4154  }
4155
4156  // Break it into (shuffle shuffle_hi, shuffle_lo).
4157  Locs.clear();
4158  SmallVector<SDValue,8> LoMask(4, DAG.getUNDEF(MaskEVT));
4159  SmallVector<SDValue,8> HiMask(4, DAG.getUNDEF(MaskEVT));
4160  SmallVector<SDValue,8> *MaskPtr = &LoMask;
4161  unsigned MaskIdx = 0;
4162  unsigned LoIdx = 0;
4163  unsigned HiIdx = 2;
4164  for (unsigned i = 0; i != 4; ++i) {
4165    if (i == 2) {
4166      MaskPtr = &HiMask;
4167      MaskIdx = 1;
4168      LoIdx = 0;
4169      HiIdx = 2;
4170    }
4171    SDValue Elt = PermMask.getOperand(i);
4172    if (Elt.getOpcode() == ISD::UNDEF) {
4173      Locs[i] = std::make_pair(-1, -1);
4174    } else if (cast<ConstantSDNode>(Elt)->getZExtValue() < 4) {
4175      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4176      (*MaskPtr)[LoIdx] = Elt;
4177      LoIdx++;
4178    } else {
4179      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4180      (*MaskPtr)[HiIdx] = Elt;
4181      HiIdx++;
4182    }
4183  }
4184
4185  SDValue LoShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2,
4186                                    DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4187                                                &LoMask[0], LoMask.size()));
4188  SDValue HiShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2,
4189                                    DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4190                                                &HiMask[0], HiMask.size()));
4191  SmallVector<SDValue, 8> MaskOps;
4192  for (unsigned i = 0; i != 4; ++i) {
4193    if (Locs[i].first == -1) {
4194      MaskOps.push_back(DAG.getUNDEF(MaskEVT));
4195    } else {
4196      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4197      MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
4198    }
4199  }
4200  return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, LoShuffle, HiShuffle,
4201                     DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4202                                 &MaskOps[0], MaskOps.size()));
4203}
4204
4205SDValue
4206X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4207  SDValue V1 = Op.getOperand(0);
4208  SDValue V2 = Op.getOperand(1);
4209  SDValue PermMask = Op.getOperand(2);
4210  MVT VT = Op.getValueType();
4211  DebugLoc dl = Op.getDebugLoc();
4212  unsigned NumElems = PermMask.getNumOperands();
4213  bool isMMX = VT.getSizeInBits() == 64;
4214  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4215  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4216  bool V1IsSplat = false;
4217  bool V2IsSplat = false;
4218
4219  // FIXME: Check for legal shuffle and return?
4220
4221  if (isUndefShuffle(Op.getNode()))
4222    return DAG.getUNDEF(VT);
4223
4224  if (isZeroShuffle(Op.getNode()))
4225    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4226
4227  if (isIdentityMask(PermMask.getNode()))
4228    return V1;
4229  else if (isIdentityMask(PermMask.getNode(), true))
4230    return V2;
4231
4232  // Canonicalize movddup shuffles.
4233  if (V2IsUndef && Subtarget->hasSSE2() &&
4234      VT.getSizeInBits() == 128 &&
4235      X86::isMOVDDUPMask(PermMask.getNode()))
4236    return CanonicalizeMovddup(Op, V1, PermMask, DAG, Subtarget->hasSSE3());
4237
4238  if (isSplatMask(PermMask.getNode())) {
4239    if (isMMX || NumElems < 4) return Op;
4240    // Promote it to a v4{if}32 splat.
4241    return PromoteSplat(Op, DAG, Subtarget->hasSSE2());
4242  }
4243
4244  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4245  // do it!
4246  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4247    SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG,
4248                                            *this, dl);
4249    if (NewOp.getNode())
4250      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4251                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4252  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4253    // FIXME: Figure out a cleaner way to do this.
4254    // Try to make use of movq to zero out the top part.
4255    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4256      SDValue NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
4257                                                 DAG, *this, dl);
4258      if (NewOp.getNode()) {
4259        SDValue NewV1 = NewOp.getOperand(0);
4260        SDValue NewV2 = NewOp.getOperand(1);
4261        SDValue NewMask = NewOp.getOperand(2);
4262        if (isCommutedMOVL(NewMask.getNode(), true, false)) {
4263          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
4264          return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget,
4265                              dl);
4266        }
4267      }
4268    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4269      SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
4270                                                DAG, *this, dl);
4271      if (NewOp.getNode() && X86::isMOVLMask(NewOp.getOperand(2).getNode()))
4272        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4273                             DAG, Subtarget, dl);
4274    }
4275  }
4276
4277  // Check if this can be converted into a logical shift.
4278  bool isLeft = false;
4279  unsigned ShAmt = 0;
4280  SDValue ShVal;
4281  bool isShift = isVectorShift(Op, PermMask, DAG, isLeft, ShVal, ShAmt);
4282  if (isShift && ShVal.hasOneUse()) {
4283    // If the shifted value has multiple uses, it may be cheaper to use
4284    // v_set0 + movlhps or movhlps, etc.
4285    MVT EVT = VT.getVectorElementType();
4286    ShAmt *= EVT.getSizeInBits();
4287    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4288  }
4289
4290  if (X86::isMOVLMask(PermMask.getNode())) {
4291    if (V1IsUndef)
4292      return V2;
4293    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4294      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4295    if (!isMMX)
4296      return Op;
4297  }
4298
4299  if (!isMMX && (X86::isMOVSHDUPMask(PermMask.getNode()) ||
4300                 X86::isMOVSLDUPMask(PermMask.getNode()) ||
4301                 X86::isMOVHLPSMask(PermMask.getNode()) ||
4302                 X86::isMOVHPMask(PermMask.getNode()) ||
4303                 X86::isMOVLPMask(PermMask.getNode())))
4304    return Op;
4305
4306  if (ShouldXformToMOVHLPS(PermMask.getNode()) ||
4307      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), PermMask.getNode()))
4308    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4309
4310  if (isShift) {
4311    // No better options. Use a vshl / vsrl.
4312    MVT EVT = VT.getVectorElementType();
4313    ShAmt *= EVT.getSizeInBits();
4314    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4315  }
4316
4317  bool Commuted = false;
4318  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4319  // 1,1,1,1 -> v8i16 though.
4320  V1IsSplat = isSplatVector(V1.getNode());
4321  V2IsSplat = isSplatVector(V2.getNode());
4322
4323  // Canonicalize the splat or undef, if present, to be on the RHS.
4324  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4325    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4326    std::swap(V1IsSplat, V2IsSplat);
4327    std::swap(V1IsUndef, V2IsUndef);
4328    Commuted = true;
4329  }
4330
4331  // FIXME: Figure out a cleaner way to do this.
4332  if (isCommutedMOVL(PermMask.getNode(), V2IsSplat, V2IsUndef)) {
4333    if (V2IsUndef) return V1;
4334    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4335    if (V2IsSplat) {
4336      // V2 is a splat, so the mask may be malformed. That is, it may point
4337      // to any V2 element. The instruction selectior won't like this. Get
4338      // a corrected mask and commute to form a proper MOVS{S|D}.
4339      SDValue NewMask = getMOVLMask(NumElems, DAG, dl);
4340      if (NewMask.getNode() != PermMask.getNode())
4341        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2, NewMask);
4342    }
4343    return Op;
4344  }
4345
4346  if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
4347      X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
4348      X86::isUNPCKLMask(PermMask.getNode()) ||
4349      X86::isUNPCKHMask(PermMask.getNode()))
4350    return Op;
4351
4352  if (V2IsSplat) {
4353    // Normalize mask so all entries that point to V2 points to its first
4354    // element then try to match unpck{h|l} again. If match, return a
4355    // new vector_shuffle with the corrected mask.
4356    SDValue NewMask = NormalizeMask(PermMask, DAG);
4357    if (NewMask.getNode() != PermMask.getNode()) {
4358      if (X86::isUNPCKLMask(NewMask.getNode(), true)) {
4359        SDValue NewMask = getUnpacklMask(NumElems, DAG, dl);
4360        return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2, NewMask);
4361      } else if (X86::isUNPCKHMask(NewMask.getNode(), true)) {
4362        SDValue NewMask = getUnpackhMask(NumElems, DAG, dl);
4363        return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2, NewMask);
4364      }
4365    }
4366  }
4367
4368  // Normalize the node to match x86 shuffle ops if needed
4369  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.getNode()))
4370      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4371
4372  if (Commuted) {
4373    // Commute is back and try unpck* again.
4374    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4375    if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
4376        X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
4377        X86::isUNPCKLMask(PermMask.getNode()) ||
4378        X86::isUNPCKHMask(PermMask.getNode()))
4379      return Op;
4380  }
4381
4382  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4383  // Try PSHUF* first, then SHUFP*.
4384  // MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically
4385  // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
4386  if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.getNode())) {
4387    if (V2.getOpcode() != ISD::UNDEF)
4388      return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1,
4389                         DAG.getUNDEF(VT), PermMask);
4390    return Op;
4391  }
4392
4393  if (!isMMX) {
4394    if (Subtarget->hasSSE2() &&
4395        (X86::isPSHUFDMask(PermMask.getNode()) ||
4396         X86::isPSHUFHWMask(PermMask.getNode()) ||
4397         X86::isPSHUFLWMask(PermMask.getNode()))) {
4398      MVT RVT = VT;
4399      if (VT == MVT::v4f32) {
4400        RVT = MVT::v4i32;
4401        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, RVT,
4402                         DAG.getNode(ISD::BIT_CONVERT, dl, RVT, V1),
4403                         DAG.getUNDEF(RVT), PermMask);
4404      } else if (V2.getOpcode() != ISD::UNDEF)
4405        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, RVT, V1,
4406                         DAG.getUNDEF(RVT), PermMask);
4407      if (RVT != VT)
4408        Op = DAG.getNode(ISD::BIT_CONVERT, dl, VT, Op);
4409      return Op;
4410    }
4411
4412    // Binary or unary shufps.
4413    if (X86::isSHUFPMask(PermMask.getNode()) ||
4414        (V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.getNode())))
4415      return Op;
4416  }
4417
4418  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4419  if (VT == MVT::v8i16) {
4420    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this, dl);
4421    if (NewOp.getNode())
4422      return NewOp;
4423  }
4424
4425  if (VT == MVT::v16i8) {
4426    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(V1, V2, PermMask, DAG, *this, dl);
4427    if (NewOp.getNode())
4428      return NewOp;
4429  }
4430
4431  // Handle all 4 wide cases with a number of shuffles except for MMX.
4432  if (NumElems == 4 && !isMMX)
4433    return LowerVECTOR_SHUFFLE_4wide(V1, V2, PermMask, VT, DAG, dl);
4434
4435  return SDValue();
4436}
4437
4438SDValue
4439X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4440                                                SelectionDAG &DAG) {
4441  MVT VT = Op.getValueType();
4442  DebugLoc dl = Op.getDebugLoc();
4443  if (VT.getSizeInBits() == 8) {
4444    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4445                                    Op.getOperand(0), Op.getOperand(1));
4446    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4447                                    DAG.getValueType(VT));
4448    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4449  } else if (VT.getSizeInBits() == 16) {
4450    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4451    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4452    if (Idx == 0)
4453      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4454                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4455                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4456                                                 MVT::v4i32,
4457                                                 Op.getOperand(0)),
4458                                     Op.getOperand(1)));
4459    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4460                                    Op.getOperand(0), Op.getOperand(1));
4461    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4462                                    DAG.getValueType(VT));
4463    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4464  } else if (VT == MVT::f32) {
4465    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4466    // the result back to FR32 register. It's only worth matching if the
4467    // result has a single use which is a store or a bitcast to i32.  And in
4468    // the case of a store, it's not worth it if the index is a constant 0,
4469    // because a MOVSSmr can be used instead, which is smaller and faster.
4470    if (!Op.hasOneUse())
4471      return SDValue();
4472    SDNode *User = *Op.getNode()->use_begin();
4473    if ((User->getOpcode() != ISD::STORE ||
4474         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4475          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4476        (User->getOpcode() != ISD::BIT_CONVERT ||
4477         User->getValueType(0) != MVT::i32))
4478      return SDValue();
4479    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4480                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4481                                              Op.getOperand(0)),
4482                                              Op.getOperand(1));
4483    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4484  } else if (VT == MVT::i32) {
4485    // ExtractPS works with constant index.
4486    if (isa<ConstantSDNode>(Op.getOperand(1)))
4487      return Op;
4488  }
4489  return SDValue();
4490}
4491
4492
4493SDValue
4494X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4495  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4496    return SDValue();
4497
4498  if (Subtarget->hasSSE41()) {
4499    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4500    if (Res.getNode())
4501      return Res;
4502  }
4503
4504  MVT VT = Op.getValueType();
4505  DebugLoc dl = Op.getDebugLoc();
4506  // TODO: handle v16i8.
4507  if (VT.getSizeInBits() == 16) {
4508    SDValue Vec = Op.getOperand(0);
4509    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4510    if (Idx == 0)
4511      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4512                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4513                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4514                                                 MVT::v4i32, Vec),
4515                                     Op.getOperand(1)));
4516    // Transform it so it match pextrw which produces a 32-bit result.
4517    MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4518    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EVT,
4519                                    Op.getOperand(0), Op.getOperand(1));
4520    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EVT, Extract,
4521                                    DAG.getValueType(VT));
4522    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4523  } else if (VT.getSizeInBits() == 32) {
4524    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4525    if (Idx == 0)
4526      return Op;
4527    // SHUFPS the element to the lowest double word, then movss.
4528    MVT MaskVT = MVT::getIntVectorWithNumElements(4);
4529    SmallVector<SDValue, 8> IdxVec;
4530    IdxVec.
4531      push_back(DAG.getConstant(Idx, MaskVT.getVectorElementType()));
4532    IdxVec.
4533      push_back(DAG.getUNDEF(MaskVT.getVectorElementType()));
4534    IdxVec.
4535      push_back(DAG.getUNDEF(MaskVT.getVectorElementType()));
4536    IdxVec.
4537      push_back(DAG.getUNDEF(MaskVT.getVectorElementType()));
4538    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4539                                 &IdxVec[0], IdxVec.size());
4540    SDValue Vec = Op.getOperand(0);
4541    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, Vec.getValueType(),
4542                      Vec, DAG.getUNDEF(Vec.getValueType()), Mask);
4543    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4544                       DAG.getIntPtrConstant(0));
4545  } else if (VT.getSizeInBits() == 64) {
4546    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4547    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4548    //        to match extract_elt for f64.
4549    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4550    if (Idx == 0)
4551      return Op;
4552
4553    // UNPCKHPD the element to the lowest double word, then movsd.
4554    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4555    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4556    MVT MaskVT = MVT::getIntVectorWithNumElements(2);
4557    SmallVector<SDValue, 8> IdxVec;
4558    IdxVec.push_back(DAG.getConstant(1, MaskVT.getVectorElementType()));
4559    IdxVec.
4560      push_back(DAG.getUNDEF(MaskVT.getVectorElementType()));
4561    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4562                                 &IdxVec[0], IdxVec.size());
4563    SDValue Vec = Op.getOperand(0);
4564    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, Vec.getValueType(),
4565                      Vec, DAG.getUNDEF(Vec.getValueType()),
4566                      Mask);
4567    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4568                       DAG.getIntPtrConstant(0));
4569  }
4570
4571  return SDValue();
4572}
4573
4574SDValue
4575X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4576  MVT VT = Op.getValueType();
4577  MVT EVT = VT.getVectorElementType();
4578  DebugLoc dl = Op.getDebugLoc();
4579
4580  SDValue N0 = Op.getOperand(0);
4581  SDValue N1 = Op.getOperand(1);
4582  SDValue N2 = Op.getOperand(2);
4583
4584  if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4585      isa<ConstantSDNode>(N2)) {
4586    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4587                                              : X86ISD::PINSRW;
4588    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4589    // argument.
4590    if (N1.getValueType() != MVT::i32)
4591      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4592    if (N2.getValueType() != MVT::i32)
4593      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4594    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4595  } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4596    // Bits [7:6] of the constant are the source select.  This will always be
4597    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4598    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4599    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4600    // Bits [5:4] of the constant are the destination select.  This is the
4601    //  value of the incoming immediate.
4602    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4603    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4604    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4605    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4606  } else if (EVT == MVT::i32) {
4607    // InsertPS works with constant index.
4608    if (isa<ConstantSDNode>(N2))
4609      return Op;
4610  }
4611  return SDValue();
4612}
4613
4614SDValue
4615X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4616  MVT VT = Op.getValueType();
4617  MVT EVT = VT.getVectorElementType();
4618
4619  if (Subtarget->hasSSE41())
4620    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4621
4622  if (EVT == MVT::i8)
4623    return SDValue();
4624
4625  DebugLoc dl = Op.getDebugLoc();
4626  SDValue N0 = Op.getOperand(0);
4627  SDValue N1 = Op.getOperand(1);
4628  SDValue N2 = Op.getOperand(2);
4629
4630  if (EVT.getSizeInBits() == 16) {
4631    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4632    // as its second argument.
4633    if (N1.getValueType() != MVT::i32)
4634      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4635    if (N2.getValueType() != MVT::i32)
4636      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4637    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4638  }
4639  return SDValue();
4640}
4641
4642SDValue
4643X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4644  DebugLoc dl = Op.getDebugLoc();
4645  if (Op.getValueType() == MVT::v2f32)
4646    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4647                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4648                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4649                                               Op.getOperand(0))));
4650
4651  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4652  MVT VT = MVT::v2i32;
4653  switch (Op.getValueType().getSimpleVT()) {
4654  default: break;
4655  case MVT::v16i8:
4656  case MVT::v8i16:
4657    VT = MVT::v4i32;
4658    break;
4659  }
4660  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4661                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4662}
4663
4664// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4665// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4666// one of the above mentioned nodes. It has to be wrapped because otherwise
4667// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4668// be used to form addressing mode. These wrapped nodes will be selected
4669// into MOV32ri.
4670SDValue
4671X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4672  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4673  // FIXME there isn't really any debug info here, should come from the parent
4674  DebugLoc dl = CP->getDebugLoc();
4675  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(),
4676                                               getPointerTy(),
4677                                               CP->getAlignment());
4678  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4679  // With PIC, the address is actually $g + Offset.
4680  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4681      !Subtarget->isPICStyleRIPRel()) {
4682    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4683                         DAG.getNode(X86ISD::GlobalBaseReg,
4684                                     DebugLoc::getUnknownLoc(),
4685                                     getPointerTy()),
4686                         Result);
4687  }
4688
4689  return Result;
4690}
4691
4692SDValue
4693X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
4694                                      int64_t Offset,
4695                                      SelectionDAG &DAG) const {
4696  bool IsPic = getTargetMachine().getRelocationModel() == Reloc::PIC_;
4697  bool ExtraLoadRequired =
4698    Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false);
4699
4700  // Create the TargetGlobalAddress node, folding in the constant
4701  // offset if it is legal.
4702  SDValue Result;
4703  if (!IsPic && !ExtraLoadRequired && isInt32(Offset)) {
4704    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4705    Offset = 0;
4706  } else
4707    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0);
4708  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4709
4710  // With PIC, the address is actually $g + Offset.
4711  if (IsPic && !Subtarget->isPICStyleRIPRel()) {
4712    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4713                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
4714                         Result);
4715  }
4716
4717  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4718  // load the value at address GV, not the value of GV itself. This means that
4719  // the GlobalAddress must be in the base or index register of the address, not
4720  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4721  // The same applies for external symbols during PIC codegen
4722  if (ExtraLoadRequired)
4723    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
4724                         PseudoSourceValue::getGOT(), 0);
4725
4726  // If there was a non-zero offset that we didn't fold, create an explicit
4727  // addition for it.
4728  if (Offset != 0)
4729    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
4730                         DAG.getConstant(Offset, getPointerTy()));
4731
4732  return Result;
4733}
4734
4735SDValue
4736X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4737  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4738  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4739  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
4740}
4741
4742// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4743static SDValue
4744LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4745                                const MVT PtrVT) {
4746  SDValue InFlag;
4747  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
4748  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
4749                                     DAG.getNode(X86ISD::GlobalBaseReg,
4750                                                 DebugLoc::getUnknownLoc(),
4751                                                 PtrVT), InFlag);
4752  InFlag = Chain.getValue(1);
4753
4754  // emit leal symbol@TLSGD(,%ebx,1), %eax
4755  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4756  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4757                                             GA->getValueType(0),
4758                                             GA->getOffset());
4759  SDValue Ops[] = { Chain,  TGA, InFlag };
4760  SDValue Result = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
4761  InFlag = Result.getValue(2);
4762  Chain = Result.getValue(1);
4763
4764  // call ___tls_get_addr. This function receives its argument in
4765  // the register EAX.
4766  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Result, InFlag);
4767  InFlag = Chain.getValue(1);
4768
4769  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4770  SDValue Ops1[] = { Chain,
4771                      DAG.getTargetExternalSymbol("___tls_get_addr",
4772                                                  PtrVT),
4773                      DAG.getRegister(X86::EAX, PtrVT),
4774                      DAG.getRegister(X86::EBX, PtrVT),
4775                      InFlag };
4776  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops1, 5);
4777  InFlag = Chain.getValue(1);
4778
4779  return DAG.getCopyFromReg(Chain, dl, X86::EAX, PtrVT, InFlag);
4780}
4781
4782// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4783static SDValue
4784LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4785                                const MVT PtrVT) {
4786  SDValue InFlag, Chain;
4787  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
4788
4789  // emit leaq symbol@TLSGD(%rip), %rdi
4790  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4791  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4792                                             GA->getValueType(0),
4793                                             GA->getOffset());
4794  SDValue Ops[]  = { DAG.getEntryNode(), TGA};
4795  SDValue Result = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
4796  Chain  = Result.getValue(1);
4797  InFlag = Result.getValue(2);
4798
4799  // call __tls_get_addr. This function receives its argument in
4800  // the register RDI.
4801  Chain = DAG.getCopyToReg(Chain, dl, X86::RDI, Result, InFlag);
4802  InFlag = Chain.getValue(1);
4803
4804  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4805  SDValue Ops1[] = { Chain,
4806                      DAG.getTargetExternalSymbol("__tls_get_addr",
4807                                                  PtrVT),
4808                      DAG.getRegister(X86::RDI, PtrVT),
4809                      InFlag };
4810  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops1, 4);
4811  InFlag = Chain.getValue(1);
4812
4813  return DAG.getCopyFromReg(Chain, dl, X86::RAX, PtrVT, InFlag);
4814}
4815
4816// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4817// "local exec" model.
4818static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4819                                   const MVT PtrVT, TLSModel::Model model) {
4820  DebugLoc dl = GA->getDebugLoc();
4821  // Get the Thread Pointer
4822  SDValue ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER,
4823                                      DebugLoc::getUnknownLoc(), PtrVT);
4824  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4825  // exec)
4826  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4827                                             GA->getValueType(0),
4828                                             GA->getOffset());
4829  SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA);
4830
4831  if (model == TLSModel::InitialExec)
4832    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
4833                         PseudoSourceValue::getGOT(), 0);
4834
4835  // The address of the thread local variable is the add of the thread
4836  // pointer with the offset of the variable.
4837  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
4838}
4839
4840SDValue
4841X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4842  // TODO: implement the "local dynamic" model
4843  // TODO: implement the "initial exec"model for pic executables
4844  assert(Subtarget->isTargetELF() &&
4845         "TLS not implemented for non-ELF targets");
4846  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4847  GlobalValue *GV = GA->getGlobal();
4848  TLSModel::Model model =
4849    getTLSModel (GV, getTargetMachine().getRelocationModel());
4850  if (Subtarget->is64Bit()) {
4851    switch (model) {
4852    case TLSModel::GeneralDynamic:
4853    case TLSModel::LocalDynamic: // not implemented
4854    case TLSModel::InitialExec:  // not implemented
4855    case TLSModel::LocalExec:    // not implemented
4856      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4857    default:
4858      assert (0 && "Unknown TLS model");
4859    }
4860  } else {
4861    switch (model) {
4862    case TLSModel::GeneralDynamic:
4863    case TLSModel::LocalDynamic: // not implemented
4864      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4865
4866    case TLSModel::InitialExec:
4867    case TLSModel::LocalExec:
4868      return LowerToTLSExecModel(GA, DAG, getPointerTy(), model);
4869    default:
4870      assert (0 && "Unknown TLS model");
4871    }
4872  }
4873}
4874
4875SDValue
4876X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4877  // FIXME there isn't really any debug info here
4878  DebugLoc dl = Op.getDebugLoc();
4879  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4880  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4881  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4882  // With PIC, the address is actually $g + Offset.
4883  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4884      !Subtarget->isPICStyleRIPRel()) {
4885    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4886                         DAG.getNode(X86ISD::GlobalBaseReg,
4887                                     DebugLoc::getUnknownLoc(),
4888                                     getPointerTy()),
4889                         Result);
4890  }
4891
4892  return Result;
4893}
4894
4895SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4896  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4897  // FIXME there isn't really any debug into here
4898  DebugLoc dl = JT->getDebugLoc();
4899  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4900  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4901  // With PIC, the address is actually $g + Offset.
4902  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4903      !Subtarget->isPICStyleRIPRel()) {
4904    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4905                         DAG.getNode(X86ISD::GlobalBaseReg,
4906                                     DebugLoc::getUnknownLoc(),
4907                                     getPointerTy()),
4908                         Result);
4909  }
4910
4911  return Result;
4912}
4913
4914/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4915/// take a 2 x i32 value to shift plus a shift amount.
4916SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4917  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4918  MVT VT = Op.getValueType();
4919  unsigned VTBits = VT.getSizeInBits();
4920  DebugLoc dl = Op.getDebugLoc();
4921  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4922  SDValue ShOpLo = Op.getOperand(0);
4923  SDValue ShOpHi = Op.getOperand(1);
4924  SDValue ShAmt  = Op.getOperand(2);
4925  SDValue Tmp1 = isSRA ?
4926    DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
4927                DAG.getConstant(VTBits - 1, MVT::i8)) :
4928    DAG.getConstant(0, VT);
4929
4930  SDValue Tmp2, Tmp3;
4931  if (Op.getOpcode() == ISD::SHL_PARTS) {
4932    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
4933    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4934  } else {
4935    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
4936    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
4937  }
4938
4939  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
4940                                  DAG.getConstant(VTBits, MVT::i8));
4941  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
4942                               AndNode, DAG.getConstant(0, MVT::i8));
4943
4944  SDValue Hi, Lo;
4945  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4946  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4947  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4948
4949  if (Op.getOpcode() == ISD::SHL_PARTS) {
4950    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4951    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4952  } else {
4953    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4954    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4955  }
4956
4957  SDValue Ops[2] = { Lo, Hi };
4958  return DAG.getMergeValues(Ops, 2, dl);
4959}
4960
4961SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4962  MVT SrcVT = Op.getOperand(0).getValueType();
4963  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4964         "Unknown SINT_TO_FP to lower!");
4965
4966  // These are really Legal; caller falls through into that case.
4967  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4968    return SDValue();
4969  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4970      Subtarget->is64Bit())
4971    return SDValue();
4972
4973  DebugLoc dl = Op.getDebugLoc();
4974  unsigned Size = SrcVT.getSizeInBits()/8;
4975  MachineFunction &MF = DAG.getMachineFunction();
4976  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4977  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4978  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4979                                 StackSlot,
4980                                 PseudoSourceValue::getFixedStack(SSFI), 0);
4981
4982  // Build the FILD
4983  SDVTList Tys;
4984  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4985  if (useSSE)
4986    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4987  else
4988    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4989  SmallVector<SDValue, 8> Ops;
4990  Ops.push_back(Chain);
4991  Ops.push_back(StackSlot);
4992  Ops.push_back(DAG.getValueType(SrcVT));
4993  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
4994                                 Tys, &Ops[0], Ops.size());
4995
4996  if (useSSE) {
4997    Chain = Result.getValue(1);
4998    SDValue InFlag = Result.getValue(2);
4999
5000    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5001    // shouldn't be necessary except that RFP cannot be live across
5002    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5003    MachineFunction &MF = DAG.getMachineFunction();
5004    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
5005    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5006    Tys = DAG.getVTList(MVT::Other);
5007    SmallVector<SDValue, 8> Ops;
5008    Ops.push_back(Chain);
5009    Ops.push_back(Result);
5010    Ops.push_back(StackSlot);
5011    Ops.push_back(DAG.getValueType(Op.getValueType()));
5012    Ops.push_back(InFlag);
5013    Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
5014    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5015                         PseudoSourceValue::getFixedStack(SSFI), 0);
5016  }
5017
5018  return Result;
5019}
5020
5021// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5022SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
5023  // This algorithm is not obvious. Here it is in C code, more or less:
5024  /*
5025    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5026      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5027      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5028
5029      // Copy ints to xmm registers.
5030      __m128i xh = _mm_cvtsi32_si128( hi );
5031      __m128i xl = _mm_cvtsi32_si128( lo );
5032
5033      // Combine into low half of a single xmm register.
5034      __m128i x = _mm_unpacklo_epi32( xh, xl );
5035      __m128d d;
5036      double sd;
5037
5038      // Merge in appropriate exponents to give the integer bits the right
5039      // magnitude.
5040      x = _mm_unpacklo_epi32( x, exp );
5041
5042      // Subtract away the biases to deal with the IEEE-754 double precision
5043      // implicit 1.
5044      d = _mm_sub_pd( (__m128d) x, bias );
5045
5046      // All conversions up to here are exact. The correctly rounded result is
5047      // calculated using the current rounding mode using the following
5048      // horizontal add.
5049      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5050      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5051                                // store doesn't really need to be here (except
5052                                // maybe to zero the other double)
5053      return sd;
5054    }
5055  */
5056
5057  DebugLoc dl = Op.getDebugLoc();
5058
5059  // Build some magic constants.
5060  std::vector<Constant*> CV0;
5061  CV0.push_back(ConstantInt::get(APInt(32, 0x45300000)));
5062  CV0.push_back(ConstantInt::get(APInt(32, 0x43300000)));
5063  CV0.push_back(ConstantInt::get(APInt(32, 0)));
5064  CV0.push_back(ConstantInt::get(APInt(32, 0)));
5065  Constant *C0 = ConstantVector::get(CV0);
5066  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 4);
5067
5068  std::vector<Constant*> CV1;
5069  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4530000000000000ULL))));
5070  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4330000000000000ULL))));
5071  Constant *C1 = ConstantVector::get(CV1);
5072  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 4);
5073
5074  SmallVector<SDValue, 4> MaskVec;
5075  MaskVec.push_back(DAG.getConstant(0, MVT::i32));
5076  MaskVec.push_back(DAG.getConstant(4, MVT::i32));
5077  MaskVec.push_back(DAG.getConstant(1, MVT::i32));
5078  MaskVec.push_back(DAG.getConstant(5, MVT::i32));
5079  SDValue UnpcklMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
5080                                   &MaskVec[0], MaskVec.size());
5081  SmallVector<SDValue, 4> MaskVec2;
5082  MaskVec2.push_back(DAG.getConstant(1, MVT::i32));
5083  MaskVec2.push_back(DAG.getConstant(0, MVT::i32));
5084  SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32,
5085                                 &MaskVec2[0], MaskVec2.size());
5086
5087  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5088                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5089                                        Op.getOperand(0),
5090                                        DAG.getIntPtrConstant(1)));
5091  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5092                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5093                                        Op.getOperand(0),
5094                                        DAG.getIntPtrConstant(0)));
5095  SDValue Unpck1 = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v4i32,
5096                                XR1, XR2, UnpcklMask);
5097  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5098                              PseudoSourceValue::getConstantPool(), 0,
5099                              false, 16);
5100  SDValue Unpck2 = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v4i32,
5101                               Unpck1, CLod0, UnpcklMask);
5102  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5103  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5104                              PseudoSourceValue::getConstantPool(), 0,
5105                              false, 16);
5106  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5107
5108  // Add the halves; easiest way is to swap them into another reg first.
5109  SDValue Shuf = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v2f64,
5110                             Sub, Sub, ShufMask);
5111  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5112  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5113                     DAG.getIntPtrConstant(0));
5114}
5115
5116// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5117SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
5118  DebugLoc dl = Op.getDebugLoc();
5119  // FP constant to bias correct the final result.
5120  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5121                                   MVT::f64);
5122
5123  // Load the 32-bit value into an XMM register.
5124  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5125                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5126                                         Op.getOperand(0),
5127                                         DAG.getIntPtrConstant(0)));
5128
5129  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5130                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5131                     DAG.getIntPtrConstant(0));
5132
5133  // Or the load with the bias.
5134  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5135                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5136                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5137                                                   MVT::v2f64, Load)),
5138                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5139                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5140                                                   MVT::v2f64, Bias)));
5141  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5142                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5143                   DAG.getIntPtrConstant(0));
5144
5145  // Subtract the bias.
5146  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5147
5148  // Handle final rounding.
5149  MVT DestVT = Op.getValueType();
5150
5151  if (DestVT.bitsLT(MVT::f64)) {
5152    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5153                       DAG.getIntPtrConstant(0));
5154  } else if (DestVT.bitsGT(MVT::f64)) {
5155    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5156  }
5157
5158  // Handle final rounding.
5159  return Sub;
5160}
5161
5162SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5163  SDValue N0 = Op.getOperand(0);
5164  DebugLoc dl = Op.getDebugLoc();
5165
5166  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5167  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5168  // the optimization here.
5169  if (DAG.SignBitIsZero(N0))
5170    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5171
5172  MVT SrcVT = N0.getValueType();
5173  if (SrcVT == MVT::i64) {
5174    // We only handle SSE2 f64 target here; caller can handle the rest.
5175    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5176      return SDValue();
5177
5178    return LowerUINT_TO_FP_i64(Op, DAG);
5179  } else if (SrcVT == MVT::i32) {
5180    return LowerUINT_TO_FP_i32(Op, DAG);
5181  }
5182
5183  assert(0 && "Unknown UINT_TO_FP to lower!");
5184  return SDValue();
5185}
5186
5187std::pair<SDValue,SDValue> X86TargetLowering::
5188FP_TO_SINTHelper(SDValue Op, SelectionDAG &DAG) {
5189  DebugLoc dl = Op.getDebugLoc();
5190  assert(Op.getValueType().getSimpleVT() <= MVT::i64 &&
5191         Op.getValueType().getSimpleVT() >= MVT::i16 &&
5192         "Unknown FP_TO_SINT to lower!");
5193
5194  // These are really Legal.
5195  if (Op.getValueType() == MVT::i32 &&
5196      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5197    return std::make_pair(SDValue(), SDValue());
5198  if (Subtarget->is64Bit() &&
5199      Op.getValueType() == MVT::i64 &&
5200      Op.getOperand(0).getValueType() != MVT::f80)
5201    return std::make_pair(SDValue(), SDValue());
5202
5203  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5204  // stack slot.
5205  MachineFunction &MF = DAG.getMachineFunction();
5206  unsigned MemSize = Op.getValueType().getSizeInBits()/8;
5207  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5208  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5209  unsigned Opc;
5210  switch (Op.getValueType().getSimpleVT()) {
5211  default: assert(0 && "Invalid FP_TO_SINT to lower!");
5212  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5213  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5214  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5215  }
5216
5217  SDValue Chain = DAG.getEntryNode();
5218  SDValue Value = Op.getOperand(0);
5219  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5220    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5221    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5222                         PseudoSourceValue::getFixedStack(SSFI), 0);
5223    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5224    SDValue Ops[] = {
5225      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5226    };
5227    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5228    Chain = Value.getValue(1);
5229    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5230    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5231  }
5232
5233  // Build the FP_TO_INT*_IN_MEM
5234  SDValue Ops[] = { Chain, Value, StackSlot };
5235  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5236
5237  return std::make_pair(FIST, StackSlot);
5238}
5239
5240SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5241  std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(Op, DAG);
5242  SDValue FIST = Vals.first, StackSlot = Vals.second;
5243  if (FIST.getNode() == 0) return SDValue();
5244
5245  // Load the result.
5246  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5247                     FIST, StackSlot, NULL, 0);
5248}
5249
5250SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5251  DebugLoc dl = Op.getDebugLoc();
5252  MVT VT = Op.getValueType();
5253  MVT EltVT = VT;
5254  if (VT.isVector())
5255    EltVT = VT.getVectorElementType();
5256  std::vector<Constant*> CV;
5257  if (EltVT == MVT::f64) {
5258    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
5259    CV.push_back(C);
5260    CV.push_back(C);
5261  } else {
5262    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
5263    CV.push_back(C);
5264    CV.push_back(C);
5265    CV.push_back(C);
5266    CV.push_back(C);
5267  }
5268  Constant *C = ConstantVector::get(CV);
5269  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
5270  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5271                               PseudoSourceValue::getConstantPool(), 0,
5272                               false, 16);
5273  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5274}
5275
5276SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5277  DebugLoc dl = Op.getDebugLoc();
5278  MVT VT = Op.getValueType();
5279  MVT EltVT = VT;
5280  unsigned EltNum = 1;
5281  if (VT.isVector()) {
5282    EltVT = VT.getVectorElementType();
5283    EltNum = VT.getVectorNumElements();
5284  }
5285  std::vector<Constant*> CV;
5286  if (EltVT == MVT::f64) {
5287    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
5288    CV.push_back(C);
5289    CV.push_back(C);
5290  } else {
5291    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
5292    CV.push_back(C);
5293    CV.push_back(C);
5294    CV.push_back(C);
5295    CV.push_back(C);
5296  }
5297  Constant *C = ConstantVector::get(CV);
5298  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
5299  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5300                               PseudoSourceValue::getConstantPool(), 0,
5301                               false, 16);
5302  if (VT.isVector()) {
5303    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5304                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5305                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5306                                Op.getOperand(0)),
5307                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5308  } else {
5309    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5310  }
5311}
5312
5313SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5314  SDValue Op0 = Op.getOperand(0);
5315  SDValue Op1 = Op.getOperand(1);
5316  DebugLoc dl = Op.getDebugLoc();
5317  MVT VT = Op.getValueType();
5318  MVT SrcVT = Op1.getValueType();
5319
5320  // If second operand is smaller, extend it first.
5321  if (SrcVT.bitsLT(VT)) {
5322    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5323    SrcVT = VT;
5324  }
5325  // And if it is bigger, shrink it first.
5326  if (SrcVT.bitsGT(VT)) {
5327    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5328    SrcVT = VT;
5329  }
5330
5331  // At this point the operands and the result should have the same
5332  // type, and that won't be f80 since that is not custom lowered.
5333
5334  // First get the sign bit of second operand.
5335  std::vector<Constant*> CV;
5336  if (SrcVT == MVT::f64) {
5337    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
5338    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
5339  } else {
5340    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
5341    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5342    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5343    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5344  }
5345  Constant *C = ConstantVector::get(CV);
5346  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
5347  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5348                                PseudoSourceValue::getConstantPool(), 0,
5349                                false, 16);
5350  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5351
5352  // Shift sign bit right or left if the two operands have different types.
5353  if (SrcVT.bitsGT(VT)) {
5354    // Op0 is MVT::f32, Op1 is MVT::f64.
5355    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5356    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5357                          DAG.getConstant(32, MVT::i32));
5358    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5359    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5360                          DAG.getIntPtrConstant(0));
5361  }
5362
5363  // Clear first operand sign bit.
5364  CV.clear();
5365  if (VT == MVT::f64) {
5366    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
5367    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
5368  } else {
5369    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
5370    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5371    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5372    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5373  }
5374  C = ConstantVector::get(CV);
5375  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
5376  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5377                                PseudoSourceValue::getConstantPool(), 0,
5378                                false, 16);
5379  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5380
5381  // Or the value with the sign bit.
5382  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5383}
5384
5385/// Emit nodes that will be selected as "test Op0,Op0", or something
5386/// equivalent.
5387SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5388                                    SelectionDAG &DAG) {
5389  DebugLoc dl = Op.getDebugLoc();
5390
5391  // CF and OF aren't always set the way we want. Determine which
5392  // of these we need.
5393  bool NeedCF = false;
5394  bool NeedOF = false;
5395  switch (X86CC) {
5396  case X86::COND_A: case X86::COND_AE:
5397  case X86::COND_B: case X86::COND_BE:
5398    NeedCF = true;
5399    break;
5400  case X86::COND_G: case X86::COND_GE:
5401  case X86::COND_L: case X86::COND_LE:
5402  case X86::COND_O: case X86::COND_NO:
5403    NeedOF = true;
5404    break;
5405  default: break;
5406  }
5407
5408  // See if we can use the EFLAGS value from the operand instead of
5409  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5410  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5411  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5412    unsigned Opcode = 0;
5413    unsigned NumOperands = 0;
5414    switch (Op.getNode()->getOpcode()) {
5415    case ISD::ADD:
5416      // Due to an isel shortcoming, be conservative if this add is likely to
5417      // be selected as part of a load-modify-store instruction. When the root
5418      // node in a match is a store, isel doesn't know how to remap non-chain
5419      // non-flag uses of other nodes in the match, such as the ADD in this
5420      // case. This leads to the ADD being left around and reselected, with
5421      // the result being two adds in the output.
5422      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5423           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5424        if (UI->getOpcode() == ISD::STORE)
5425          goto default_case;
5426      if (ConstantSDNode *C =
5427            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5428        // An add of one will be selected as an INC.
5429        if (C->getAPIntValue() == 1) {
5430          Opcode = X86ISD::INC;
5431          NumOperands = 1;
5432          break;
5433        }
5434        // An add of negative one (subtract of one) will be selected as a DEC.
5435        if (C->getAPIntValue().isAllOnesValue()) {
5436          Opcode = X86ISD::DEC;
5437          NumOperands = 1;
5438          break;
5439        }
5440      }
5441      // Otherwise use a regular EFLAGS-setting add.
5442      Opcode = X86ISD::ADD;
5443      NumOperands = 2;
5444      break;
5445    case ISD::SUB:
5446      // Due to the ISEL shortcoming noted above, be conservative if this sub is
5447      // likely to be selected as part of a load-modify-store instruction.
5448      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5449           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5450        if (UI->getOpcode() == ISD::STORE)
5451          goto default_case;
5452      // Otherwise use a regular EFLAGS-setting sub.
5453      Opcode = X86ISD::SUB;
5454      NumOperands = 2;
5455      break;
5456    case X86ISD::ADD:
5457    case X86ISD::SUB:
5458    case X86ISD::INC:
5459    case X86ISD::DEC:
5460      return SDValue(Op.getNode(), 1);
5461    default:
5462    default_case:
5463      break;
5464    }
5465    if (Opcode != 0) {
5466      const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::i32);
5467      SmallVector<SDValue, 4> Ops;
5468      for (unsigned i = 0; i != NumOperands; ++i)
5469        Ops.push_back(Op.getOperand(i));
5470      SDValue New = DAG.getNode(Opcode, dl, VTs, 2, &Ops[0], NumOperands);
5471      DAG.ReplaceAllUsesWith(Op, New);
5472      return SDValue(New.getNode(), 1);
5473    }
5474  }
5475
5476  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5477  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5478                     DAG.getConstant(0, Op.getValueType()));
5479}
5480
5481/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5482/// equivalent.
5483SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5484                                   SelectionDAG &DAG) {
5485  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5486    if (C->getAPIntValue() == 0)
5487      return EmitTest(Op0, X86CC, DAG);
5488
5489  DebugLoc dl = Op0.getDebugLoc();
5490  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5491}
5492
5493SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5494  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5495  SDValue Op0 = Op.getOperand(0);
5496  SDValue Op1 = Op.getOperand(1);
5497  DebugLoc dl = Op.getDebugLoc();
5498  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5499
5500  // Lower (X & (1 << N)) == 0 to BT(X, N).
5501  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5502  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5503  if (Op0.getOpcode() == ISD::AND &&
5504      Op0.hasOneUse() &&
5505      Op1.getOpcode() == ISD::Constant &&
5506      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5507      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5508    SDValue LHS, RHS;
5509    if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5510      if (ConstantSDNode *Op010C =
5511            dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5512        if (Op010C->getZExtValue() == 1) {
5513          LHS = Op0.getOperand(0);
5514          RHS = Op0.getOperand(1).getOperand(1);
5515        }
5516    } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5517      if (ConstantSDNode *Op000C =
5518            dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5519        if (Op000C->getZExtValue() == 1) {
5520          LHS = Op0.getOperand(1);
5521          RHS = Op0.getOperand(0).getOperand(1);
5522        }
5523    } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5524      ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5525      SDValue AndLHS = Op0.getOperand(0);
5526      if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5527        LHS = AndLHS.getOperand(0);
5528        RHS = AndLHS.getOperand(1);
5529      }
5530    }
5531
5532    if (LHS.getNode()) {
5533      // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5534      // instruction.  Since the shift amount is in-range-or-undefined, we know
5535      // that doing a bittest on the i16 value is ok.  We extend to i32 because
5536      // the encoding for the i16 version is larger than the i32 version.
5537      if (LHS.getValueType() == MVT::i8)
5538        LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5539
5540      // If the operand types disagree, extend the shift amount to match.  Since
5541      // BT ignores high bits (like shifts) we can use anyextend.
5542      if (LHS.getValueType() != RHS.getValueType())
5543        RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5544
5545      SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5546      unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5547      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5548                         DAG.getConstant(Cond, MVT::i8), BT);
5549    }
5550  }
5551
5552  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5553  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5554
5555  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5556  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5557                     DAG.getConstant(X86CC, MVT::i8), Cond);
5558}
5559
5560SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5561  SDValue Cond;
5562  SDValue Op0 = Op.getOperand(0);
5563  SDValue Op1 = Op.getOperand(1);
5564  SDValue CC = Op.getOperand(2);
5565  MVT VT = Op.getValueType();
5566  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5567  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5568  DebugLoc dl = Op.getDebugLoc();
5569
5570  if (isFP) {
5571    unsigned SSECC = 8;
5572    MVT VT0 = Op0.getValueType();
5573    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5574    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5575    bool Swap = false;
5576
5577    switch (SetCCOpcode) {
5578    default: break;
5579    case ISD::SETOEQ:
5580    case ISD::SETEQ:  SSECC = 0; break;
5581    case ISD::SETOGT:
5582    case ISD::SETGT: Swap = true; // Fallthrough
5583    case ISD::SETLT:
5584    case ISD::SETOLT: SSECC = 1; break;
5585    case ISD::SETOGE:
5586    case ISD::SETGE: Swap = true; // Fallthrough
5587    case ISD::SETLE:
5588    case ISD::SETOLE: SSECC = 2; break;
5589    case ISD::SETUO:  SSECC = 3; break;
5590    case ISD::SETUNE:
5591    case ISD::SETNE:  SSECC = 4; break;
5592    case ISD::SETULE: Swap = true;
5593    case ISD::SETUGE: SSECC = 5; break;
5594    case ISD::SETULT: Swap = true;
5595    case ISD::SETUGT: SSECC = 6; break;
5596    case ISD::SETO:   SSECC = 7; break;
5597    }
5598    if (Swap)
5599      std::swap(Op0, Op1);
5600
5601    // In the two special cases we can't handle, emit two comparisons.
5602    if (SSECC == 8) {
5603      if (SetCCOpcode == ISD::SETUEQ) {
5604        SDValue UNORD, EQ;
5605        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5606        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5607        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
5608      }
5609      else if (SetCCOpcode == ISD::SETONE) {
5610        SDValue ORD, NEQ;
5611        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5612        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5613        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
5614      }
5615      assert(0 && "Illegal FP comparison");
5616    }
5617    // Handle all other FP comparisons here.
5618    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5619  }
5620
5621  // We are handling one of the integer comparisons here.  Since SSE only has
5622  // GT and EQ comparisons for integer, swapping operands and multiple
5623  // operations may be required for some comparisons.
5624  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5625  bool Swap = false, Invert = false, FlipSigns = false;
5626
5627  switch (VT.getSimpleVT()) {
5628  default: break;
5629  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5630  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5631  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5632  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5633  }
5634
5635  switch (SetCCOpcode) {
5636  default: break;
5637  case ISD::SETNE:  Invert = true;
5638  case ISD::SETEQ:  Opc = EQOpc; break;
5639  case ISD::SETLT:  Swap = true;
5640  case ISD::SETGT:  Opc = GTOpc; break;
5641  case ISD::SETGE:  Swap = true;
5642  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5643  case ISD::SETULT: Swap = true;
5644  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5645  case ISD::SETUGE: Swap = true;
5646  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5647  }
5648  if (Swap)
5649    std::swap(Op0, Op1);
5650
5651  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5652  // bits of the inputs before performing those operations.
5653  if (FlipSigns) {
5654    MVT EltVT = VT.getVectorElementType();
5655    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
5656                                      EltVT);
5657    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5658    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
5659                                    SignBits.size());
5660    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
5661    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
5662  }
5663
5664  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
5665
5666  // If the logical-not of the result is required, perform that now.
5667  if (Invert)
5668    Result = DAG.getNOT(dl, Result, VT);
5669
5670  return Result;
5671}
5672
5673// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5674static bool isX86LogicalCmp(SDValue Op) {
5675  unsigned Opc = Op.getNode()->getOpcode();
5676  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
5677    return true;
5678  if (Op.getResNo() == 1 &&
5679      (Opc == X86ISD::ADD ||
5680       Opc == X86ISD::SUB ||
5681       Opc == X86ISD::SMUL ||
5682       Opc == X86ISD::UMUL ||
5683       Opc == X86ISD::INC ||
5684       Opc == X86ISD::DEC))
5685    return true;
5686
5687  return false;
5688}
5689
5690SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5691  bool addTest = true;
5692  SDValue Cond  = Op.getOperand(0);
5693  DebugLoc dl = Op.getDebugLoc();
5694  SDValue CC;
5695
5696  if (Cond.getOpcode() == ISD::SETCC)
5697    Cond = LowerSETCC(Cond, DAG);
5698
5699  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5700  // setting operand in place of the X86ISD::SETCC.
5701  if (Cond.getOpcode() == X86ISD::SETCC) {
5702    CC = Cond.getOperand(0);
5703
5704    SDValue Cmp = Cond.getOperand(1);
5705    unsigned Opc = Cmp.getOpcode();
5706    MVT VT = Op.getValueType();
5707
5708    bool IllegalFPCMov = false;
5709    if (VT.isFloatingPoint() && !VT.isVector() &&
5710        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5711      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5712
5713    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) || Opc == X86ISD::BT) { // FIXME
5714      Cond = Cmp;
5715      addTest = false;
5716    }
5717  }
5718
5719  if (addTest) {
5720    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5721    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5722  }
5723
5724  const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(),
5725                                                    MVT::Flag);
5726  SmallVector<SDValue, 4> Ops;
5727  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5728  // condition is true.
5729  Ops.push_back(Op.getOperand(2));
5730  Ops.push_back(Op.getOperand(1));
5731  Ops.push_back(CC);
5732  Ops.push_back(Cond);
5733  return DAG.getNode(X86ISD::CMOV, dl, VTs, 2, &Ops[0], Ops.size());
5734}
5735
5736// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5737// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5738// from the AND / OR.
5739static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5740  Opc = Op.getOpcode();
5741  if (Opc != ISD::OR && Opc != ISD::AND)
5742    return false;
5743  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5744          Op.getOperand(0).hasOneUse() &&
5745          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5746          Op.getOperand(1).hasOneUse());
5747}
5748
5749// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5750// 1 and that the SETCC node has a single use.
5751static bool isXor1OfSetCC(SDValue Op) {
5752  if (Op.getOpcode() != ISD::XOR)
5753    return false;
5754  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5755  if (N1C && N1C->getAPIntValue() == 1) {
5756    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5757      Op.getOperand(0).hasOneUse();
5758  }
5759  return false;
5760}
5761
5762SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5763  bool addTest = true;
5764  SDValue Chain = Op.getOperand(0);
5765  SDValue Cond  = Op.getOperand(1);
5766  SDValue Dest  = Op.getOperand(2);
5767  DebugLoc dl = Op.getDebugLoc();
5768  SDValue CC;
5769
5770  if (Cond.getOpcode() == ISD::SETCC)
5771    Cond = LowerSETCC(Cond, DAG);
5772#if 0
5773  // FIXME: LowerXALUO doesn't handle these!!
5774  else if (Cond.getOpcode() == X86ISD::ADD  ||
5775           Cond.getOpcode() == X86ISD::SUB  ||
5776           Cond.getOpcode() == X86ISD::SMUL ||
5777           Cond.getOpcode() == X86ISD::UMUL)
5778    Cond = LowerXALUO(Cond, DAG);
5779#endif
5780
5781  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5782  // setting operand in place of the X86ISD::SETCC.
5783  if (Cond.getOpcode() == X86ISD::SETCC) {
5784    CC = Cond.getOperand(0);
5785
5786    SDValue Cmp = Cond.getOperand(1);
5787    unsigned Opc = Cmp.getOpcode();
5788    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5789    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
5790      Cond = Cmp;
5791      addTest = false;
5792    } else {
5793      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5794      default: break;
5795      case X86::COND_O:
5796      case X86::COND_B:
5797        // These can only come from an arithmetic instruction with overflow,
5798        // e.g. SADDO, UADDO.
5799        Cond = Cond.getNode()->getOperand(1);
5800        addTest = false;
5801        break;
5802      }
5803    }
5804  } else {
5805    unsigned CondOpc;
5806    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5807      SDValue Cmp = Cond.getOperand(0).getOperand(1);
5808      if (CondOpc == ISD::OR) {
5809        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5810        // two branches instead of an explicit OR instruction with a
5811        // separate test.
5812        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5813            isX86LogicalCmp(Cmp)) {
5814          CC = Cond.getOperand(0).getOperand(0);
5815          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5816                              Chain, Dest, CC, Cmp);
5817          CC = Cond.getOperand(1).getOperand(0);
5818          Cond = Cmp;
5819          addTest = false;
5820        }
5821      } else { // ISD::AND
5822        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5823        // two branches instead of an explicit AND instruction with a
5824        // separate test. However, we only do this if this block doesn't
5825        // have a fall-through edge, because this requires an explicit
5826        // jmp when the condition is false.
5827        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5828            isX86LogicalCmp(Cmp) &&
5829            Op.getNode()->hasOneUse()) {
5830          X86::CondCode CCode =
5831            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5832          CCode = X86::GetOppositeBranchCondition(CCode);
5833          CC = DAG.getConstant(CCode, MVT::i8);
5834          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5835          // Look for an unconditional branch following this conditional branch.
5836          // We need this because we need to reverse the successors in order
5837          // to implement FCMP_OEQ.
5838          if (User.getOpcode() == ISD::BR) {
5839            SDValue FalseBB = User.getOperand(1);
5840            SDValue NewBR =
5841              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5842            assert(NewBR == User);
5843            Dest = FalseBB;
5844
5845            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5846                                Chain, Dest, CC, Cmp);
5847            X86::CondCode CCode =
5848              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5849            CCode = X86::GetOppositeBranchCondition(CCode);
5850            CC = DAG.getConstant(CCode, MVT::i8);
5851            Cond = Cmp;
5852            addTest = false;
5853          }
5854        }
5855      }
5856    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
5857      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5858      // It should be transformed during dag combiner except when the condition
5859      // is set by a arithmetics with overflow node.
5860      X86::CondCode CCode =
5861        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5862      CCode = X86::GetOppositeBranchCondition(CCode);
5863      CC = DAG.getConstant(CCode, MVT::i8);
5864      Cond = Cond.getOperand(0).getOperand(1);
5865      addTest = false;
5866    }
5867  }
5868
5869  if (addTest) {
5870    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5871    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5872  }
5873  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5874                     Chain, Dest, CC, Cond);
5875}
5876
5877
5878// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5879// Calls to _alloca is needed to probe the stack when allocating more than 4k
5880// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5881// that the guard pages used by the OS virtual memory manager are allocated in
5882// correct sequence.
5883SDValue
5884X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5885                                           SelectionDAG &DAG) {
5886  assert(Subtarget->isTargetCygMing() &&
5887         "This should be used only on Cygwin/Mingw targets");
5888  DebugLoc dl = Op.getDebugLoc();
5889
5890  // Get the inputs.
5891  SDValue Chain = Op.getOperand(0);
5892  SDValue Size  = Op.getOperand(1);
5893  // FIXME: Ensure alignment here
5894
5895  SDValue Flag;
5896
5897  MVT IntPtr = getPointerTy();
5898  MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5899
5900  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5901
5902  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
5903  Flag = Chain.getValue(1);
5904
5905  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5906  SDValue Ops[] = { Chain,
5907                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5908                      DAG.getRegister(X86::EAX, IntPtr),
5909                      DAG.getRegister(X86StackPtr, SPTy),
5910                      Flag };
5911  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
5912  Flag = Chain.getValue(1);
5913
5914  Chain = DAG.getCALLSEQ_END(Chain,
5915                             DAG.getIntPtrConstant(0, true),
5916                             DAG.getIntPtrConstant(0, true),
5917                             Flag);
5918
5919  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
5920
5921  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5922  return DAG.getMergeValues(Ops1, 2, dl);
5923}
5924
5925SDValue
5926X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
5927                                           SDValue Chain,
5928                                           SDValue Dst, SDValue Src,
5929                                           SDValue Size, unsigned Align,
5930                                           const Value *DstSV,
5931                                           uint64_t DstSVOff) {
5932  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5933
5934  // If not DWORD aligned or size is more than the threshold, call the library.
5935  // The libc version is likely to be faster for these cases. It can use the
5936  // address value and run time information about the CPU.
5937  if ((Align & 3) != 0 ||
5938      !ConstantSize ||
5939      ConstantSize->getZExtValue() >
5940        getSubtarget()->getMaxInlineSizeThreshold()) {
5941    SDValue InFlag(0, 0);
5942
5943    // Check to see if there is a specialized entry-point for memory zeroing.
5944    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5945
5946    if (const char *bzeroEntry =  V &&
5947        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5948      MVT IntPtr = getPointerTy();
5949      const Type *IntPtrTy = TD->getIntPtrType();
5950      TargetLowering::ArgListTy Args;
5951      TargetLowering::ArgListEntry Entry;
5952      Entry.Node = Dst;
5953      Entry.Ty = IntPtrTy;
5954      Args.push_back(Entry);
5955      Entry.Node = Size;
5956      Args.push_back(Entry);
5957      std::pair<SDValue,SDValue> CallResult =
5958        LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
5959                    CallingConv::C, false,
5960                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
5961      return CallResult.second;
5962    }
5963
5964    // Otherwise have the target-independent code call memset.
5965    return SDValue();
5966  }
5967
5968  uint64_t SizeVal = ConstantSize->getZExtValue();
5969  SDValue InFlag(0, 0);
5970  MVT AVT;
5971  SDValue Count;
5972  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5973  unsigned BytesLeft = 0;
5974  bool TwoRepStos = false;
5975  if (ValC) {
5976    unsigned ValReg;
5977    uint64_t Val = ValC->getZExtValue() & 255;
5978
5979    // If the value is a constant, then we can potentially use larger sets.
5980    switch (Align & 3) {
5981    case 2:   // WORD aligned
5982      AVT = MVT::i16;
5983      ValReg = X86::AX;
5984      Val = (Val << 8) | Val;
5985      break;
5986    case 0:  // DWORD aligned
5987      AVT = MVT::i32;
5988      ValReg = X86::EAX;
5989      Val = (Val << 8)  | Val;
5990      Val = (Val << 16) | Val;
5991      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
5992        AVT = MVT::i64;
5993        ValReg = X86::RAX;
5994        Val = (Val << 32) | Val;
5995      }
5996      break;
5997    default:  // Byte aligned
5998      AVT = MVT::i8;
5999      ValReg = X86::AL;
6000      Count = DAG.getIntPtrConstant(SizeVal);
6001      break;
6002    }
6003
6004    if (AVT.bitsGT(MVT::i8)) {
6005      unsigned UBytes = AVT.getSizeInBits() / 8;
6006      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
6007      BytesLeft = SizeVal % UBytes;
6008    }
6009
6010    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
6011                              InFlag);
6012    InFlag = Chain.getValue(1);
6013  } else {
6014    AVT = MVT::i8;
6015    Count  = DAG.getIntPtrConstant(SizeVal);
6016    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
6017    InFlag = Chain.getValue(1);
6018  }
6019
6020  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6021                                                              X86::ECX,
6022                            Count, InFlag);
6023  InFlag = Chain.getValue(1);
6024  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6025                                                              X86::EDI,
6026                            Dst, InFlag);
6027  InFlag = Chain.getValue(1);
6028
6029  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6030  SmallVector<SDValue, 8> Ops;
6031  Ops.push_back(Chain);
6032  Ops.push_back(DAG.getValueType(AVT));
6033  Ops.push_back(InFlag);
6034  Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
6035
6036  if (TwoRepStos) {
6037    InFlag = Chain.getValue(1);
6038    Count  = Size;
6039    MVT CVT = Count.getValueType();
6040    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
6041                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
6042    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
6043                                                             X86::ECX,
6044                              Left, InFlag);
6045    InFlag = Chain.getValue(1);
6046    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6047    Ops.clear();
6048    Ops.push_back(Chain);
6049    Ops.push_back(DAG.getValueType(MVT::i8));
6050    Ops.push_back(InFlag);
6051    Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
6052  } else if (BytesLeft) {
6053    // Handle the last 1 - 7 bytes.
6054    unsigned Offset = SizeVal - BytesLeft;
6055    MVT AddrVT = Dst.getValueType();
6056    MVT SizeVT = Size.getValueType();
6057
6058    Chain = DAG.getMemset(Chain, dl,
6059                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
6060                                      DAG.getConstant(Offset, AddrVT)),
6061                          Src,
6062                          DAG.getConstant(BytesLeft, SizeVT),
6063                          Align, DstSV, DstSVOff + Offset);
6064  }
6065
6066  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
6067  return Chain;
6068}
6069
6070SDValue
6071X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
6072                                      SDValue Chain, SDValue Dst, SDValue Src,
6073                                      SDValue Size, unsigned Align,
6074                                      bool AlwaysInline,
6075                                      const Value *DstSV, uint64_t DstSVOff,
6076                                      const Value *SrcSV, uint64_t SrcSVOff) {
6077  // This requires the copy size to be a constant, preferrably
6078  // within a subtarget-specific limit.
6079  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6080  if (!ConstantSize)
6081    return SDValue();
6082  uint64_t SizeVal = ConstantSize->getZExtValue();
6083  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6084    return SDValue();
6085
6086  /// If not DWORD aligned, call the library.
6087  if ((Align & 3) != 0)
6088    return SDValue();
6089
6090  // DWORD aligned
6091  MVT AVT = MVT::i32;
6092  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
6093    AVT = MVT::i64;
6094
6095  unsigned UBytes = AVT.getSizeInBits() / 8;
6096  unsigned CountVal = SizeVal / UBytes;
6097  SDValue Count = DAG.getIntPtrConstant(CountVal);
6098  unsigned BytesLeft = SizeVal % UBytes;
6099
6100  SDValue InFlag(0, 0);
6101  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6102                                                              X86::ECX,
6103                            Count, InFlag);
6104  InFlag = Chain.getValue(1);
6105  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6106                                                             X86::EDI,
6107                            Dst, InFlag);
6108  InFlag = Chain.getValue(1);
6109  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6110                                                              X86::ESI,
6111                            Src, InFlag);
6112  InFlag = Chain.getValue(1);
6113
6114  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6115  SmallVector<SDValue, 8> Ops;
6116  Ops.push_back(Chain);
6117  Ops.push_back(DAG.getValueType(AVT));
6118  Ops.push_back(InFlag);
6119  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size());
6120
6121  SmallVector<SDValue, 4> Results;
6122  Results.push_back(RepMovs);
6123  if (BytesLeft) {
6124    // Handle the last 1 - 7 bytes.
6125    unsigned Offset = SizeVal - BytesLeft;
6126    MVT DstVT = Dst.getValueType();
6127    MVT SrcVT = Src.getValueType();
6128    MVT SizeVT = Size.getValueType();
6129    Results.push_back(DAG.getMemcpy(Chain, dl,
6130                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6131                                                DAG.getConstant(Offset, DstVT)),
6132                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6133                                                DAG.getConstant(Offset, SrcVT)),
6134                                    DAG.getConstant(BytesLeft, SizeVT),
6135                                    Align, AlwaysInline,
6136                                    DstSV, DstSVOff + Offset,
6137                                    SrcSV, SrcSVOff + Offset));
6138  }
6139
6140  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6141                     &Results[0], Results.size());
6142}
6143
6144SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6145  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6146  DebugLoc dl = Op.getDebugLoc();
6147
6148  if (!Subtarget->is64Bit()) {
6149    // vastart just stores the address of the VarArgsFrameIndex slot into the
6150    // memory location argument.
6151    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6152    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
6153  }
6154
6155  // __va_list_tag:
6156  //   gp_offset         (0 - 6 * 8)
6157  //   fp_offset         (48 - 48 + 8 * 16)
6158  //   overflow_arg_area (point to parameters coming in memory).
6159  //   reg_save_area
6160  SmallVector<SDValue, 8> MemOps;
6161  SDValue FIN = Op.getOperand(1);
6162  // Store gp_offset
6163  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6164                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
6165                                 FIN, SV, 0);
6166  MemOps.push_back(Store);
6167
6168  // Store fp_offset
6169  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6170                    FIN, DAG.getIntPtrConstant(4));
6171  Store = DAG.getStore(Op.getOperand(0), dl,
6172                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6173                       FIN, SV, 0);
6174  MemOps.push_back(Store);
6175
6176  // Store ptr to overflow_arg_area
6177  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6178                    FIN, DAG.getIntPtrConstant(4));
6179  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6180  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
6181  MemOps.push_back(Store);
6182
6183  // Store ptr to reg_save_area.
6184  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6185                    FIN, DAG.getIntPtrConstant(8));
6186  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6187  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
6188  MemOps.push_back(Store);
6189  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6190                     &MemOps[0], MemOps.size());
6191}
6192
6193SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6194  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6195  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6196  SDValue Chain = Op.getOperand(0);
6197  SDValue SrcPtr = Op.getOperand(1);
6198  SDValue SrcSV = Op.getOperand(2);
6199
6200  assert(0 && "VAArgInst is not yet implemented for x86-64!");
6201  abort();
6202  return SDValue();
6203}
6204
6205SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6206  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6207  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6208  SDValue Chain = Op.getOperand(0);
6209  SDValue DstPtr = Op.getOperand(1);
6210  SDValue SrcPtr = Op.getOperand(2);
6211  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6212  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6213  DebugLoc dl = Op.getDebugLoc();
6214
6215  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6216                       DAG.getIntPtrConstant(24), 8, false,
6217                       DstSV, 0, SrcSV, 0);
6218}
6219
6220SDValue
6221X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6222  DebugLoc dl = Op.getDebugLoc();
6223  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6224  switch (IntNo) {
6225  default: return SDValue();    // Don't custom lower most intrinsics.
6226  // Comparison intrinsics.
6227  case Intrinsic::x86_sse_comieq_ss:
6228  case Intrinsic::x86_sse_comilt_ss:
6229  case Intrinsic::x86_sse_comile_ss:
6230  case Intrinsic::x86_sse_comigt_ss:
6231  case Intrinsic::x86_sse_comige_ss:
6232  case Intrinsic::x86_sse_comineq_ss:
6233  case Intrinsic::x86_sse_ucomieq_ss:
6234  case Intrinsic::x86_sse_ucomilt_ss:
6235  case Intrinsic::x86_sse_ucomile_ss:
6236  case Intrinsic::x86_sse_ucomigt_ss:
6237  case Intrinsic::x86_sse_ucomige_ss:
6238  case Intrinsic::x86_sse_ucomineq_ss:
6239  case Intrinsic::x86_sse2_comieq_sd:
6240  case Intrinsic::x86_sse2_comilt_sd:
6241  case Intrinsic::x86_sse2_comile_sd:
6242  case Intrinsic::x86_sse2_comigt_sd:
6243  case Intrinsic::x86_sse2_comige_sd:
6244  case Intrinsic::x86_sse2_comineq_sd:
6245  case Intrinsic::x86_sse2_ucomieq_sd:
6246  case Intrinsic::x86_sse2_ucomilt_sd:
6247  case Intrinsic::x86_sse2_ucomile_sd:
6248  case Intrinsic::x86_sse2_ucomigt_sd:
6249  case Intrinsic::x86_sse2_ucomige_sd:
6250  case Intrinsic::x86_sse2_ucomineq_sd: {
6251    unsigned Opc = 0;
6252    ISD::CondCode CC = ISD::SETCC_INVALID;
6253    switch (IntNo) {
6254    default: break;
6255    case Intrinsic::x86_sse_comieq_ss:
6256    case Intrinsic::x86_sse2_comieq_sd:
6257      Opc = X86ISD::COMI;
6258      CC = ISD::SETEQ;
6259      break;
6260    case Intrinsic::x86_sse_comilt_ss:
6261    case Intrinsic::x86_sse2_comilt_sd:
6262      Opc = X86ISD::COMI;
6263      CC = ISD::SETLT;
6264      break;
6265    case Intrinsic::x86_sse_comile_ss:
6266    case Intrinsic::x86_sse2_comile_sd:
6267      Opc = X86ISD::COMI;
6268      CC = ISD::SETLE;
6269      break;
6270    case Intrinsic::x86_sse_comigt_ss:
6271    case Intrinsic::x86_sse2_comigt_sd:
6272      Opc = X86ISD::COMI;
6273      CC = ISD::SETGT;
6274      break;
6275    case Intrinsic::x86_sse_comige_ss:
6276    case Intrinsic::x86_sse2_comige_sd:
6277      Opc = X86ISD::COMI;
6278      CC = ISD::SETGE;
6279      break;
6280    case Intrinsic::x86_sse_comineq_ss:
6281    case Intrinsic::x86_sse2_comineq_sd:
6282      Opc = X86ISD::COMI;
6283      CC = ISD::SETNE;
6284      break;
6285    case Intrinsic::x86_sse_ucomieq_ss:
6286    case Intrinsic::x86_sse2_ucomieq_sd:
6287      Opc = X86ISD::UCOMI;
6288      CC = ISD::SETEQ;
6289      break;
6290    case Intrinsic::x86_sse_ucomilt_ss:
6291    case Intrinsic::x86_sse2_ucomilt_sd:
6292      Opc = X86ISD::UCOMI;
6293      CC = ISD::SETLT;
6294      break;
6295    case Intrinsic::x86_sse_ucomile_ss:
6296    case Intrinsic::x86_sse2_ucomile_sd:
6297      Opc = X86ISD::UCOMI;
6298      CC = ISD::SETLE;
6299      break;
6300    case Intrinsic::x86_sse_ucomigt_ss:
6301    case Intrinsic::x86_sse2_ucomigt_sd:
6302      Opc = X86ISD::UCOMI;
6303      CC = ISD::SETGT;
6304      break;
6305    case Intrinsic::x86_sse_ucomige_ss:
6306    case Intrinsic::x86_sse2_ucomige_sd:
6307      Opc = X86ISD::UCOMI;
6308      CC = ISD::SETGE;
6309      break;
6310    case Intrinsic::x86_sse_ucomineq_ss:
6311    case Intrinsic::x86_sse2_ucomineq_sd:
6312      Opc = X86ISD::UCOMI;
6313      CC = ISD::SETNE;
6314      break;
6315    }
6316
6317    SDValue LHS = Op.getOperand(1);
6318    SDValue RHS = Op.getOperand(2);
6319    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6320    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6321    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6322                                DAG.getConstant(X86CC, MVT::i8), Cond);
6323    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6324  }
6325
6326  // Fix vector shift instructions where the last operand is a non-immediate
6327  // i32 value.
6328  case Intrinsic::x86_sse2_pslli_w:
6329  case Intrinsic::x86_sse2_pslli_d:
6330  case Intrinsic::x86_sse2_pslli_q:
6331  case Intrinsic::x86_sse2_psrli_w:
6332  case Intrinsic::x86_sse2_psrli_d:
6333  case Intrinsic::x86_sse2_psrli_q:
6334  case Intrinsic::x86_sse2_psrai_w:
6335  case Intrinsic::x86_sse2_psrai_d:
6336  case Intrinsic::x86_mmx_pslli_w:
6337  case Intrinsic::x86_mmx_pslli_d:
6338  case Intrinsic::x86_mmx_pslli_q:
6339  case Intrinsic::x86_mmx_psrli_w:
6340  case Intrinsic::x86_mmx_psrli_d:
6341  case Intrinsic::x86_mmx_psrli_q:
6342  case Intrinsic::x86_mmx_psrai_w:
6343  case Intrinsic::x86_mmx_psrai_d: {
6344    SDValue ShAmt = Op.getOperand(2);
6345    if (isa<ConstantSDNode>(ShAmt))
6346      return SDValue();
6347
6348    unsigned NewIntNo = 0;
6349    MVT ShAmtVT = MVT::v4i32;
6350    switch (IntNo) {
6351    case Intrinsic::x86_sse2_pslli_w:
6352      NewIntNo = Intrinsic::x86_sse2_psll_w;
6353      break;
6354    case Intrinsic::x86_sse2_pslli_d:
6355      NewIntNo = Intrinsic::x86_sse2_psll_d;
6356      break;
6357    case Intrinsic::x86_sse2_pslli_q:
6358      NewIntNo = Intrinsic::x86_sse2_psll_q;
6359      break;
6360    case Intrinsic::x86_sse2_psrli_w:
6361      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6362      break;
6363    case Intrinsic::x86_sse2_psrli_d:
6364      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6365      break;
6366    case Intrinsic::x86_sse2_psrli_q:
6367      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6368      break;
6369    case Intrinsic::x86_sse2_psrai_w:
6370      NewIntNo = Intrinsic::x86_sse2_psra_w;
6371      break;
6372    case Intrinsic::x86_sse2_psrai_d:
6373      NewIntNo = Intrinsic::x86_sse2_psra_d;
6374      break;
6375    default: {
6376      ShAmtVT = MVT::v2i32;
6377      switch (IntNo) {
6378      case Intrinsic::x86_mmx_pslli_w:
6379        NewIntNo = Intrinsic::x86_mmx_psll_w;
6380        break;
6381      case Intrinsic::x86_mmx_pslli_d:
6382        NewIntNo = Intrinsic::x86_mmx_psll_d;
6383        break;
6384      case Intrinsic::x86_mmx_pslli_q:
6385        NewIntNo = Intrinsic::x86_mmx_psll_q;
6386        break;
6387      case Intrinsic::x86_mmx_psrli_w:
6388        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6389        break;
6390      case Intrinsic::x86_mmx_psrli_d:
6391        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6392        break;
6393      case Intrinsic::x86_mmx_psrli_q:
6394        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6395        break;
6396      case Intrinsic::x86_mmx_psrai_w:
6397        NewIntNo = Intrinsic::x86_mmx_psra_w;
6398        break;
6399      case Intrinsic::x86_mmx_psrai_d:
6400        NewIntNo = Intrinsic::x86_mmx_psra_d;
6401        break;
6402      default: abort();  // Can't reach here.
6403      }
6404      break;
6405    }
6406    }
6407    MVT VT = Op.getValueType();
6408    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6409                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShAmtVT, ShAmt));
6410    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6411                       DAG.getConstant(NewIntNo, MVT::i32),
6412                       Op.getOperand(1), ShAmt);
6413  }
6414  }
6415}
6416
6417SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6418  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6419  DebugLoc dl = Op.getDebugLoc();
6420
6421  if (Depth > 0) {
6422    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6423    SDValue Offset =
6424      DAG.getConstant(TD->getPointerSize(),
6425                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6426    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6427                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6428                                   FrameAddr, Offset),
6429                       NULL, 0);
6430  }
6431
6432  // Just load the return address.
6433  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6434  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6435                     RetAddrFI, NULL, 0);
6436}
6437
6438SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6439  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6440  MFI->setFrameAddressIsTaken(true);
6441  MVT VT = Op.getValueType();
6442  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
6443  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6444  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6445  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6446  while (Depth--)
6447    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
6448  return FrameAddr;
6449}
6450
6451SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6452                                                     SelectionDAG &DAG) {
6453  return DAG.getIntPtrConstant(2*TD->getPointerSize());
6454}
6455
6456SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6457{
6458  MachineFunction &MF = DAG.getMachineFunction();
6459  SDValue Chain     = Op.getOperand(0);
6460  SDValue Offset    = Op.getOperand(1);
6461  SDValue Handler   = Op.getOperand(2);
6462  DebugLoc dl       = Op.getDebugLoc();
6463
6464  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6465                                  getPointerTy());
6466  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6467
6468  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6469                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6470  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6471  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
6472  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
6473  MF.getRegInfo().addLiveOut(StoreAddrReg);
6474
6475  return DAG.getNode(X86ISD::EH_RETURN, dl,
6476                     MVT::Other,
6477                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6478}
6479
6480SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6481                                             SelectionDAG &DAG) {
6482  SDValue Root = Op.getOperand(0);
6483  SDValue Trmp = Op.getOperand(1); // trampoline
6484  SDValue FPtr = Op.getOperand(2); // nested function
6485  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6486  DebugLoc dl  = Op.getDebugLoc();
6487
6488  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6489
6490  const X86InstrInfo *TII =
6491    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6492
6493  if (Subtarget->is64Bit()) {
6494    SDValue OutChains[6];
6495
6496    // Large code-model.
6497
6498    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
6499    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6500
6501    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6502    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6503
6504    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6505
6506    // Load the pointer to the nested function into R11.
6507    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6508    SDValue Addr = Trmp;
6509    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6510                                Addr, TrmpAddr, 0);
6511
6512    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6513                       DAG.getConstant(2, MVT::i64));
6514    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
6515
6516    // Load the 'nest' parameter value into R10.
6517    // R10 is specified in X86CallingConv.td
6518    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6519    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6520                       DAG.getConstant(10, MVT::i64));
6521    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6522                                Addr, TrmpAddr, 10);
6523
6524    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6525                       DAG.getConstant(12, MVT::i64));
6526    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
6527
6528    // Jump to the nested function.
6529    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6530    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6531                       DAG.getConstant(20, MVT::i64));
6532    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6533                                Addr, TrmpAddr, 20);
6534
6535    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6536    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6537                       DAG.getConstant(22, MVT::i64));
6538    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
6539                                TrmpAddr, 22);
6540
6541    SDValue Ops[] =
6542      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
6543    return DAG.getMergeValues(Ops, 2, dl);
6544  } else {
6545    const Function *Func =
6546      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6547    unsigned CC = Func->getCallingConv();
6548    unsigned NestReg;
6549
6550    switch (CC) {
6551    default:
6552      assert(0 && "Unsupported calling convention");
6553    case CallingConv::C:
6554    case CallingConv::X86_StdCall: {
6555      // Pass 'nest' parameter in ECX.
6556      // Must be kept in sync with X86CallingConv.td
6557      NestReg = X86::ECX;
6558
6559      // Check that ECX wasn't needed by an 'inreg' parameter.
6560      const FunctionType *FTy = Func->getFunctionType();
6561      const AttrListPtr &Attrs = Func->getAttributes();
6562
6563      if (!Attrs.isEmpty() && !Func->isVarArg()) {
6564        unsigned InRegCount = 0;
6565        unsigned Idx = 1;
6566
6567        for (FunctionType::param_iterator I = FTy->param_begin(),
6568             E = FTy->param_end(); I != E; ++I, ++Idx)
6569          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6570            // FIXME: should only count parameters that are lowered to integers.
6571            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6572
6573        if (InRegCount > 2) {
6574          cerr << "Nest register in use - reduce number of inreg parameters!\n";
6575          abort();
6576        }
6577      }
6578      break;
6579    }
6580    case CallingConv::X86_FastCall:
6581    case CallingConv::Fast:
6582      // Pass 'nest' parameter in EAX.
6583      // Must be kept in sync with X86CallingConv.td
6584      NestReg = X86::EAX;
6585      break;
6586    }
6587
6588    SDValue OutChains[4];
6589    SDValue Addr, Disp;
6590
6591    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6592                       DAG.getConstant(10, MVT::i32));
6593    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
6594
6595    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6596    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6597    OutChains[0] = DAG.getStore(Root, dl,
6598                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6599                                Trmp, TrmpAddr, 0);
6600
6601    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6602                       DAG.getConstant(1, MVT::i32));
6603    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
6604
6605    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6606    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6607                       DAG.getConstant(5, MVT::i32));
6608    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
6609                                TrmpAddr, 5, false, 1);
6610
6611    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6612                       DAG.getConstant(6, MVT::i32));
6613    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
6614
6615    SDValue Ops[] =
6616      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
6617    return DAG.getMergeValues(Ops, 2, dl);
6618  }
6619}
6620
6621SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6622  /*
6623   The rounding mode is in bits 11:10 of FPSR, and has the following
6624   settings:
6625     00 Round to nearest
6626     01 Round to -inf
6627     10 Round to +inf
6628     11 Round to 0
6629
6630  FLT_ROUNDS, on the other hand, expects the following:
6631    -1 Undefined
6632     0 Round to 0
6633     1 Round to nearest
6634     2 Round to +inf
6635     3 Round to -inf
6636
6637  To perform the conversion, we do:
6638    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6639  */
6640
6641  MachineFunction &MF = DAG.getMachineFunction();
6642  const TargetMachine &TM = MF.getTarget();
6643  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6644  unsigned StackAlignment = TFI.getStackAlignment();
6645  MVT VT = Op.getValueType();
6646  DebugLoc dl = Op.getDebugLoc();
6647
6648  // Save FP Control Word to stack slot
6649  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6650  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6651
6652  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
6653                              DAG.getEntryNode(), StackSlot);
6654
6655  // Load FP Control Word from stack slot
6656  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
6657
6658  // Transform as necessary
6659  SDValue CWD1 =
6660    DAG.getNode(ISD::SRL, dl, MVT::i16,
6661                DAG.getNode(ISD::AND, dl, MVT::i16,
6662                            CWD, DAG.getConstant(0x800, MVT::i16)),
6663                DAG.getConstant(11, MVT::i8));
6664  SDValue CWD2 =
6665    DAG.getNode(ISD::SRL, dl, MVT::i16,
6666                DAG.getNode(ISD::AND, dl, MVT::i16,
6667                            CWD, DAG.getConstant(0x400, MVT::i16)),
6668                DAG.getConstant(9, MVT::i8));
6669
6670  SDValue RetVal =
6671    DAG.getNode(ISD::AND, dl, MVT::i16,
6672                DAG.getNode(ISD::ADD, dl, MVT::i16,
6673                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
6674                            DAG.getConstant(1, MVT::i16)),
6675                DAG.getConstant(3, MVT::i16));
6676
6677
6678  return DAG.getNode((VT.getSizeInBits() < 16 ?
6679                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6680}
6681
6682SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6683  MVT VT = Op.getValueType();
6684  MVT OpVT = VT;
6685  unsigned NumBits = VT.getSizeInBits();
6686  DebugLoc dl = Op.getDebugLoc();
6687
6688  Op = Op.getOperand(0);
6689  if (VT == MVT::i8) {
6690    // Zero extend to i32 since there is not an i8 bsr.
6691    OpVT = MVT::i32;
6692    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6693  }
6694
6695  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6696  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6697  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
6698
6699  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6700  SmallVector<SDValue, 4> Ops;
6701  Ops.push_back(Op);
6702  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6703  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6704  Ops.push_back(Op.getValue(1));
6705  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6706
6707  // Finally xor with NumBits-1.
6708  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6709
6710  if (VT == MVT::i8)
6711    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6712  return Op;
6713}
6714
6715SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6716  MVT VT = Op.getValueType();
6717  MVT OpVT = VT;
6718  unsigned NumBits = VT.getSizeInBits();
6719  DebugLoc dl = Op.getDebugLoc();
6720
6721  Op = Op.getOperand(0);
6722  if (VT == MVT::i8) {
6723    OpVT = MVT::i32;
6724    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6725  }
6726
6727  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6728  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6729  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
6730
6731  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6732  SmallVector<SDValue, 4> Ops;
6733  Ops.push_back(Op);
6734  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6735  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6736  Ops.push_back(Op.getValue(1));
6737  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6738
6739  if (VT == MVT::i8)
6740    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6741  return Op;
6742}
6743
6744SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6745  MVT VT = Op.getValueType();
6746  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6747  DebugLoc dl = Op.getDebugLoc();
6748
6749  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6750  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6751  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6752  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6753  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6754  //
6755  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6756  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6757  //  return AloBlo + AloBhi + AhiBlo;
6758
6759  SDValue A = Op.getOperand(0);
6760  SDValue B = Op.getOperand(1);
6761
6762  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6763                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6764                       A, DAG.getConstant(32, MVT::i32));
6765  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6766                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6767                       B, DAG.getConstant(32, MVT::i32));
6768  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6769                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6770                       A, B);
6771  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6772                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6773                       A, Bhi);
6774  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6775                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6776                       Ahi, B);
6777  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6778                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6779                       AloBhi, DAG.getConstant(32, MVT::i32));
6780  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6781                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6782                       AhiBlo, DAG.getConstant(32, MVT::i32));
6783  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
6784  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
6785  return Res;
6786}
6787
6788
6789SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6790  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6791  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6792  // looks for this combo and may remove the "setcc" instruction if the "setcc"
6793  // has only one use.
6794  SDNode *N = Op.getNode();
6795  SDValue LHS = N->getOperand(0);
6796  SDValue RHS = N->getOperand(1);
6797  unsigned BaseOp = 0;
6798  unsigned Cond = 0;
6799  DebugLoc dl = Op.getDebugLoc();
6800
6801  switch (Op.getOpcode()) {
6802  default: assert(0 && "Unknown ovf instruction!");
6803  case ISD::SADDO:
6804    // A subtract of one will be selected as a INC. Note that INC doesn't
6805    // set CF, so we can't do this for UADDO.
6806    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6807      if (C->getAPIntValue() == 1) {
6808        BaseOp = X86ISD::INC;
6809        Cond = X86::COND_O;
6810        break;
6811      }
6812    BaseOp = X86ISD::ADD;
6813    Cond = X86::COND_O;
6814    break;
6815  case ISD::UADDO:
6816    BaseOp = X86ISD::ADD;
6817    Cond = X86::COND_B;
6818    break;
6819  case ISD::SSUBO:
6820    // A subtract of one will be selected as a DEC. Note that DEC doesn't
6821    // set CF, so we can't do this for USUBO.
6822    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6823      if (C->getAPIntValue() == 1) {
6824        BaseOp = X86ISD::DEC;
6825        Cond = X86::COND_O;
6826        break;
6827      }
6828    BaseOp = X86ISD::SUB;
6829    Cond = X86::COND_O;
6830    break;
6831  case ISD::USUBO:
6832    BaseOp = X86ISD::SUB;
6833    Cond = X86::COND_B;
6834    break;
6835  case ISD::SMULO:
6836    BaseOp = X86ISD::SMUL;
6837    Cond = X86::COND_O;
6838    break;
6839  case ISD::UMULO:
6840    BaseOp = X86ISD::UMUL;
6841    Cond = X86::COND_B;
6842    break;
6843  }
6844
6845  // Also sets EFLAGS.
6846  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6847  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
6848
6849  SDValue SetCC =
6850    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
6851                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6852
6853  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6854  return Sum;
6855}
6856
6857SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6858  MVT T = Op.getValueType();
6859  DebugLoc dl = Op.getDebugLoc();
6860  unsigned Reg = 0;
6861  unsigned size = 0;
6862  switch(T.getSimpleVT()) {
6863  default:
6864    assert(false && "Invalid value type!");
6865  case MVT::i8:  Reg = X86::AL;  size = 1; break;
6866  case MVT::i16: Reg = X86::AX;  size = 2; break;
6867  case MVT::i32: Reg = X86::EAX; size = 4; break;
6868  case MVT::i64:
6869    assert(Subtarget->is64Bit() && "Node not type legal!");
6870    Reg = X86::RAX; size = 8;
6871    break;
6872  }
6873  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
6874                                    Op.getOperand(2), SDValue());
6875  SDValue Ops[] = { cpIn.getValue(0),
6876                    Op.getOperand(1),
6877                    Op.getOperand(3),
6878                    DAG.getTargetConstant(size, MVT::i8),
6879                    cpIn.getValue(1) };
6880  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6881  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
6882  SDValue cpOut =
6883    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
6884  return cpOut;
6885}
6886
6887SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
6888                                                 SelectionDAG &DAG) {
6889  assert(Subtarget->is64Bit() && "Result not type legalized?");
6890  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6891  SDValue TheChain = Op.getOperand(0);
6892  DebugLoc dl = Op.getDebugLoc();
6893  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6894  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
6895  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
6896                                   rax.getValue(2));
6897  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
6898                            DAG.getConstant(32, MVT::i8));
6899  SDValue Ops[] = {
6900    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
6901    rdx.getValue(1)
6902  };
6903  return DAG.getMergeValues(Ops, 2, dl);
6904}
6905
6906SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6907  SDNode *Node = Op.getNode();
6908  DebugLoc dl = Node->getDebugLoc();
6909  MVT T = Node->getValueType(0);
6910  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
6911                              DAG.getConstant(0, T), Node->getOperand(2));
6912  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
6913                       cast<AtomicSDNode>(Node)->getMemoryVT(),
6914                       Node->getOperand(0),
6915                       Node->getOperand(1), negOp,
6916                       cast<AtomicSDNode>(Node)->getSrcValue(),
6917                       cast<AtomicSDNode>(Node)->getAlignment());
6918}
6919
6920/// LowerOperation - Provide custom lowering hooks for some operations.
6921///
6922SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6923  switch (Op.getOpcode()) {
6924  default: assert(0 && "Should not custom lower this!");
6925  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
6926  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
6927  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
6928  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
6929  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6930  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
6931  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
6932  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
6933  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
6934  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
6935  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
6936  case ISD::SHL_PARTS:
6937  case ISD::SRA_PARTS:
6938  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
6939  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
6940  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
6941  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
6942  case ISD::FABS:               return LowerFABS(Op, DAG);
6943  case ISD::FNEG:               return LowerFNEG(Op, DAG);
6944  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
6945  case ISD::SETCC:              return LowerSETCC(Op, DAG);
6946  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
6947  case ISD::SELECT:             return LowerSELECT(Op, DAG);
6948  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
6949  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
6950  case ISD::CALL:               return LowerCALL(Op, DAG);
6951  case ISD::RET:                return LowerRET(Op, DAG);
6952  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
6953  case ISD::VASTART:            return LowerVASTART(Op, DAG);
6954  case ISD::VAARG:              return LowerVAARG(Op, DAG);
6955  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
6956  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6957  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
6958  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
6959  case ISD::FRAME_TO_ARGS_OFFSET:
6960                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6961  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6962  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
6963  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
6964  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
6965  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
6966  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
6967  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
6968  case ISD::SADDO:
6969  case ISD::UADDO:
6970  case ISD::SSUBO:
6971  case ISD::USUBO:
6972  case ISD::SMULO:
6973  case ISD::UMULO:              return LowerXALUO(Op, DAG);
6974  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
6975  }
6976}
6977
6978void X86TargetLowering::
6979ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
6980                        SelectionDAG &DAG, unsigned NewOp) {
6981  MVT T = Node->getValueType(0);
6982  DebugLoc dl = Node->getDebugLoc();
6983  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
6984
6985  SDValue Chain = Node->getOperand(0);
6986  SDValue In1 = Node->getOperand(1);
6987  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6988                             Node->getOperand(2), DAG.getIntPtrConstant(0));
6989  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6990                             Node->getOperand(2), DAG.getIntPtrConstant(1));
6991  // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6992  // have a MemOperand.  Pass the info through as a normal operand.
6993  SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
6994  SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
6995  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6996  SDValue Result = DAG.getNode(NewOp, dl, Tys, Ops, 5);
6997  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
6998  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6999  Results.push_back(Result.getValue(2));
7000}
7001
7002/// ReplaceNodeResults - Replace a node with an illegal result type
7003/// with a new node built out of custom code.
7004void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7005                                           SmallVectorImpl<SDValue>&Results,
7006                                           SelectionDAG &DAG) {
7007  DebugLoc dl = N->getDebugLoc();
7008  switch (N->getOpcode()) {
7009  default:
7010    assert(false && "Do not know how to custom type legalize this operation!");
7011    return;
7012  case ISD::FP_TO_SINT: {
7013    std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(SDValue(N, 0), DAG);
7014    SDValue FIST = Vals.first, StackSlot = Vals.second;
7015    if (FIST.getNode() != 0) {
7016      MVT VT = N->getValueType(0);
7017      // Return a load from the stack slot.
7018      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
7019    }
7020    return;
7021  }
7022  case ISD::READCYCLECOUNTER: {
7023    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7024    SDValue TheChain = N->getOperand(0);
7025    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7026    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7027                                     rd.getValue(1));
7028    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7029                                     eax.getValue(2));
7030    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7031    SDValue Ops[] = { eax, edx };
7032    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7033    Results.push_back(edx.getValue(1));
7034    return;
7035  }
7036  case ISD::ATOMIC_CMP_SWAP: {
7037    MVT T = N->getValueType(0);
7038    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7039    SDValue cpInL, cpInH;
7040    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7041                        DAG.getConstant(0, MVT::i32));
7042    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7043                        DAG.getConstant(1, MVT::i32));
7044    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7045    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7046                             cpInL.getValue(1));
7047    SDValue swapInL, swapInH;
7048    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7049                          DAG.getConstant(0, MVT::i32));
7050    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7051                          DAG.getConstant(1, MVT::i32));
7052    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7053                               cpInH.getValue(1));
7054    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7055                               swapInL.getValue(1));
7056    SDValue Ops[] = { swapInH.getValue(0),
7057                      N->getOperand(1),
7058                      swapInH.getValue(1) };
7059    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7060    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7061    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7062                                        MVT::i32, Result.getValue(1));
7063    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7064                                        MVT::i32, cpOutL.getValue(2));
7065    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7066    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7067    Results.push_back(cpOutH.getValue(1));
7068    return;
7069  }
7070  case ISD::ATOMIC_LOAD_ADD:
7071    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7072    return;
7073  case ISD::ATOMIC_LOAD_AND:
7074    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7075    return;
7076  case ISD::ATOMIC_LOAD_NAND:
7077    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7078    return;
7079  case ISD::ATOMIC_LOAD_OR:
7080    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7081    return;
7082  case ISD::ATOMIC_LOAD_SUB:
7083    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7084    return;
7085  case ISD::ATOMIC_LOAD_XOR:
7086    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7087    return;
7088  case ISD::ATOMIC_SWAP:
7089    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7090    return;
7091  }
7092}
7093
7094const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7095  switch (Opcode) {
7096  default: return NULL;
7097  case X86ISD::BSF:                return "X86ISD::BSF";
7098  case X86ISD::BSR:                return "X86ISD::BSR";
7099  case X86ISD::SHLD:               return "X86ISD::SHLD";
7100  case X86ISD::SHRD:               return "X86ISD::SHRD";
7101  case X86ISD::FAND:               return "X86ISD::FAND";
7102  case X86ISD::FOR:                return "X86ISD::FOR";
7103  case X86ISD::FXOR:               return "X86ISD::FXOR";
7104  case X86ISD::FSRL:               return "X86ISD::FSRL";
7105  case X86ISD::FILD:               return "X86ISD::FILD";
7106  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7107  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7108  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7109  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7110  case X86ISD::FLD:                return "X86ISD::FLD";
7111  case X86ISD::FST:                return "X86ISD::FST";
7112  case X86ISD::CALL:               return "X86ISD::CALL";
7113  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
7114  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7115  case X86ISD::BT:                 return "X86ISD::BT";
7116  case X86ISD::CMP:                return "X86ISD::CMP";
7117  case X86ISD::COMI:               return "X86ISD::COMI";
7118  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7119  case X86ISD::SETCC:              return "X86ISD::SETCC";
7120  case X86ISD::CMOV:               return "X86ISD::CMOV";
7121  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7122  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7123  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7124  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7125  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7126  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7127  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7128  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7129  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7130  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7131  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7132  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7133  case X86ISD::FMAX:               return "X86ISD::FMAX";
7134  case X86ISD::FMIN:               return "X86ISD::FMIN";
7135  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7136  case X86ISD::FRCP:               return "X86ISD::FRCP";
7137  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7138  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
7139  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7140  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7141  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7142  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7143  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7144  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7145  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7146  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7147  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7148  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7149  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7150  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7151  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7152  case X86ISD::VSHL:               return "X86ISD::VSHL";
7153  case X86ISD::VSRL:               return "X86ISD::VSRL";
7154  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7155  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7156  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7157  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7158  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7159  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7160  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7161  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7162  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7163  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7164  case X86ISD::ADD:                return "X86ISD::ADD";
7165  case X86ISD::SUB:                return "X86ISD::SUB";
7166  case X86ISD::SMUL:               return "X86ISD::SMUL";
7167  case X86ISD::UMUL:               return "X86ISD::UMUL";
7168  case X86ISD::INC:                return "X86ISD::INC";
7169  case X86ISD::DEC:                return "X86ISD::DEC";
7170  }
7171}
7172
7173// isLegalAddressingMode - Return true if the addressing mode represented
7174// by AM is legal for this target, for a load/store of the specified type.
7175bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7176                                              const Type *Ty) const {
7177  // X86 supports extremely general addressing modes.
7178
7179  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7180  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
7181    return false;
7182
7183  if (AM.BaseGV) {
7184    // We can only fold this if we don't need an extra load.
7185    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
7186      return false;
7187    // If BaseGV requires a register, we cannot also have a BaseReg.
7188    if (Subtarget->GVRequiresRegister(AM.BaseGV, getTargetMachine(), false) &&
7189        AM.HasBaseReg)
7190      return false;
7191
7192    // X86-64 only supports addr of globals in small code model.
7193    if (Subtarget->is64Bit()) {
7194      if (getTargetMachine().getCodeModel() != CodeModel::Small)
7195        return false;
7196      // If lower 4G is not available, then we must use rip-relative addressing.
7197      if (AM.BaseOffs || AM.Scale > 1)
7198        return false;
7199    }
7200  }
7201
7202  switch (AM.Scale) {
7203  case 0:
7204  case 1:
7205  case 2:
7206  case 4:
7207  case 8:
7208    // These scales always work.
7209    break;
7210  case 3:
7211  case 5:
7212  case 9:
7213    // These scales are formed with basereg+scalereg.  Only accept if there is
7214    // no basereg yet.
7215    if (AM.HasBaseReg)
7216      return false;
7217    break;
7218  default:  // Other stuff never works.
7219    return false;
7220  }
7221
7222  return true;
7223}
7224
7225
7226bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7227  if (!Ty1->isInteger() || !Ty2->isInteger())
7228    return false;
7229  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7230  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7231  if (NumBits1 <= NumBits2)
7232    return false;
7233  return Subtarget->is64Bit() || NumBits1 < 64;
7234}
7235
7236bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
7237  if (!VT1.isInteger() || !VT2.isInteger())
7238    return false;
7239  unsigned NumBits1 = VT1.getSizeInBits();
7240  unsigned NumBits2 = VT2.getSizeInBits();
7241  if (NumBits1 <= NumBits2)
7242    return false;
7243  return Subtarget->is64Bit() || NumBits1 < 64;
7244}
7245
7246/// isShuffleMaskLegal - Targets can use this to indicate that they only
7247/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7248/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7249/// are assumed to be legal.
7250bool
7251X86TargetLowering::isShuffleMaskLegal(SDValue Mask, MVT VT) const {
7252  // Only do shuffles on 128-bit vector types for now.
7253  // FIXME: pshufb, blends
7254  if (VT.getSizeInBits() == 64) return false;
7255  return (Mask.getNode()->getNumOperands() <= 4 ||
7256          isIdentityMask(Mask.getNode()) ||
7257          isIdentityMask(Mask.getNode(), true) ||
7258          isSplatMask(Mask.getNode())  ||
7259          X86::isPSHUFHWMask(Mask.getNode()) ||
7260          X86::isPSHUFLWMask(Mask.getNode()) ||
7261          X86::isUNPCKLMask(Mask.getNode()) ||
7262          X86::isUNPCKHMask(Mask.getNode()) ||
7263          X86::isUNPCKL_v_undef_Mask(Mask.getNode()) ||
7264          X86::isUNPCKH_v_undef_Mask(Mask.getNode()));
7265}
7266
7267bool
7268X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDValue> &BVOps,
7269                                          MVT EVT, SelectionDAG &DAG) const {
7270  unsigned NumElts = BVOps.size();
7271  // Only do shuffles on 128-bit vector types for now.
7272  if (EVT.getSizeInBits() * NumElts == 64) return false;
7273  if (NumElts == 2) return true;
7274  if (NumElts == 4) {
7275    return (isMOVLMask(&BVOps[0], 4)  ||
7276            isCommutedMOVL(&BVOps[0], 4, true) ||
7277            isSHUFPMask(&BVOps[0], 4) ||
7278            isCommutedSHUFP(&BVOps[0], 4));
7279  }
7280  return false;
7281}
7282
7283//===----------------------------------------------------------------------===//
7284//                           X86 Scheduler Hooks
7285//===----------------------------------------------------------------------===//
7286
7287// private utility function
7288MachineBasicBlock *
7289X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7290                                                       MachineBasicBlock *MBB,
7291                                                       unsigned regOpc,
7292                                                       unsigned immOpc,
7293                                                       unsigned LoadOpc,
7294                                                       unsigned CXchgOpc,
7295                                                       unsigned copyOpc,
7296                                                       unsigned notOpc,
7297                                                       unsigned EAXreg,
7298                                                       TargetRegisterClass *RC,
7299                                                       bool invSrc) const {
7300  // For the atomic bitwise operator, we generate
7301  //   thisMBB:
7302  //   newMBB:
7303  //     ld  t1 = [bitinstr.addr]
7304  //     op  t2 = t1, [bitinstr.val]
7305  //     mov EAX = t1
7306  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7307  //     bz  newMBB
7308  //     fallthrough -->nextMBB
7309  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7310  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7311  MachineFunction::iterator MBBIter = MBB;
7312  ++MBBIter;
7313
7314  /// First build the CFG
7315  MachineFunction *F = MBB->getParent();
7316  MachineBasicBlock *thisMBB = MBB;
7317  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7318  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7319  F->insert(MBBIter, newMBB);
7320  F->insert(MBBIter, nextMBB);
7321
7322  // Move all successors to thisMBB to nextMBB
7323  nextMBB->transferSuccessors(thisMBB);
7324
7325  // Update thisMBB to fall through to newMBB
7326  thisMBB->addSuccessor(newMBB);
7327
7328  // newMBB jumps to itself and fall through to nextMBB
7329  newMBB->addSuccessor(nextMBB);
7330  newMBB->addSuccessor(newMBB);
7331
7332  // Insert instructions into newMBB based on incoming instruction
7333  assert(bInstr->getNumOperands() < 8 && "unexpected number of operands");
7334  DebugLoc dl = bInstr->getDebugLoc();
7335  MachineOperand& destOper = bInstr->getOperand(0);
7336  MachineOperand* argOpers[6];
7337  int numArgs = bInstr->getNumOperands() - 1;
7338  for (int i=0; i < numArgs; ++i)
7339    argOpers[i] = &bInstr->getOperand(i+1);
7340
7341  // x86 address has 4 operands: base, index, scale, and displacement
7342  int lastAddrIndx = 3; // [0,3]
7343  int valArgIndx = 4;
7344
7345  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7346  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7347  for (int i=0; i <= lastAddrIndx; ++i)
7348    (*MIB).addOperand(*argOpers[i]);
7349
7350  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7351  if (invSrc) {
7352    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7353  }
7354  else
7355    tt = t1;
7356
7357  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7358  assert((argOpers[valArgIndx]->isReg() ||
7359          argOpers[valArgIndx]->isImm()) &&
7360         "invalid operand");
7361  if (argOpers[valArgIndx]->isReg())
7362    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7363  else
7364    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7365  MIB.addReg(tt);
7366  (*MIB).addOperand(*argOpers[valArgIndx]);
7367
7368  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7369  MIB.addReg(t1);
7370
7371  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7372  for (int i=0; i <= lastAddrIndx; ++i)
7373    (*MIB).addOperand(*argOpers[i]);
7374  MIB.addReg(t2);
7375  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7376  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7377
7378  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7379  MIB.addReg(EAXreg);
7380
7381  // insert branch
7382  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7383
7384  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7385  return nextMBB;
7386}
7387
7388// private utility function:  64 bit atomics on 32 bit host.
7389MachineBasicBlock *
7390X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7391                                                       MachineBasicBlock *MBB,
7392                                                       unsigned regOpcL,
7393                                                       unsigned regOpcH,
7394                                                       unsigned immOpcL,
7395                                                       unsigned immOpcH,
7396                                                       bool invSrc) const {
7397  // For the atomic bitwise operator, we generate
7398  //   thisMBB (instructions are in pairs, except cmpxchg8b)
7399  //     ld t1,t2 = [bitinstr.addr]
7400  //   newMBB:
7401  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7402  //     op  t5, t6 <- out1, out2, [bitinstr.val]
7403  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
7404  //     mov ECX, EBX <- t5, t6
7405  //     mov EAX, EDX <- t1, t2
7406  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
7407  //     mov t3, t4 <- EAX, EDX
7408  //     bz  newMBB
7409  //     result in out1, out2
7410  //     fallthrough -->nextMBB
7411
7412  const TargetRegisterClass *RC = X86::GR32RegisterClass;
7413  const unsigned LoadOpc = X86::MOV32rm;
7414  const unsigned copyOpc = X86::MOV32rr;
7415  const unsigned NotOpc = X86::NOT32r;
7416  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7417  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7418  MachineFunction::iterator MBBIter = MBB;
7419  ++MBBIter;
7420
7421  /// First build the CFG
7422  MachineFunction *F = MBB->getParent();
7423  MachineBasicBlock *thisMBB = MBB;
7424  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7425  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7426  F->insert(MBBIter, newMBB);
7427  F->insert(MBBIter, nextMBB);
7428
7429  // Move all successors to thisMBB to nextMBB
7430  nextMBB->transferSuccessors(thisMBB);
7431
7432  // Update thisMBB to fall through to newMBB
7433  thisMBB->addSuccessor(newMBB);
7434
7435  // newMBB jumps to itself and fall through to nextMBB
7436  newMBB->addSuccessor(nextMBB);
7437  newMBB->addSuccessor(newMBB);
7438
7439  DebugLoc dl = bInstr->getDebugLoc();
7440  // Insert instructions into newMBB based on incoming instruction
7441  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7442  assert(bInstr->getNumOperands() < 18 && "unexpected number of operands");
7443  MachineOperand& dest1Oper = bInstr->getOperand(0);
7444  MachineOperand& dest2Oper = bInstr->getOperand(1);
7445  MachineOperand* argOpers[6];
7446  for (int i=0; i < 6; ++i)
7447    argOpers[i] = &bInstr->getOperand(i+2);
7448
7449  // x86 address has 4 operands: base, index, scale, and displacement
7450  int lastAddrIndx = 3; // [0,3]
7451
7452  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7453  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
7454  for (int i=0; i <= lastAddrIndx; ++i)
7455    (*MIB).addOperand(*argOpers[i]);
7456  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7457  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
7458  // add 4 to displacement.
7459  for (int i=0; i <= lastAddrIndx-1; ++i)
7460    (*MIB).addOperand(*argOpers[i]);
7461  MachineOperand newOp3 = *(argOpers[3]);
7462  if (newOp3.isImm())
7463    newOp3.setImm(newOp3.getImm()+4);
7464  else
7465    newOp3.setOffset(newOp3.getOffset()+4);
7466  (*MIB).addOperand(newOp3);
7467
7468  // t3/4 are defined later, at the bottom of the loop
7469  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
7470  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
7471  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
7472    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
7473  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
7474    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
7475
7476  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
7477  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
7478  if (invSrc) {
7479    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
7480    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
7481  } else {
7482    tt1 = t1;
7483    tt2 = t2;
7484  }
7485
7486  assert((argOpers[4]->isReg() || argOpers[4]->isImm()) &&
7487         "invalid operand");
7488  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
7489  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
7490  if (argOpers[4]->isReg())
7491    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
7492  else
7493    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
7494  if (regOpcL != X86::MOV32rr)
7495    MIB.addReg(tt1);
7496  (*MIB).addOperand(*argOpers[4]);
7497  assert(argOpers[5]->isReg() == argOpers[4]->isReg());
7498  assert(argOpers[5]->isImm() == argOpers[4]->isImm());
7499  if (argOpers[5]->isReg())
7500    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
7501  else
7502    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
7503  if (regOpcH != X86::MOV32rr)
7504    MIB.addReg(tt2);
7505  (*MIB).addOperand(*argOpers[5]);
7506
7507  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
7508  MIB.addReg(t1);
7509  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
7510  MIB.addReg(t2);
7511
7512  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
7513  MIB.addReg(t5);
7514  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
7515  MIB.addReg(t6);
7516
7517  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
7518  for (int i=0; i <= lastAddrIndx; ++i)
7519    (*MIB).addOperand(*argOpers[i]);
7520
7521  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7522  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7523
7524  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
7525  MIB.addReg(X86::EAX);
7526  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
7527  MIB.addReg(X86::EDX);
7528
7529  // insert branch
7530  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7531
7532  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7533  return nextMBB;
7534}
7535
7536// private utility function
7537MachineBasicBlock *
7538X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7539                                                      MachineBasicBlock *MBB,
7540                                                      unsigned cmovOpc) const {
7541  // For the atomic min/max operator, we generate
7542  //   thisMBB:
7543  //   newMBB:
7544  //     ld t1 = [min/max.addr]
7545  //     mov t2 = [min/max.val]
7546  //     cmp  t1, t2
7547  //     cmov[cond] t2 = t1
7548  //     mov EAX = t1
7549  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7550  //     bz   newMBB
7551  //     fallthrough -->nextMBB
7552  //
7553  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7554  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7555  MachineFunction::iterator MBBIter = MBB;
7556  ++MBBIter;
7557
7558  /// First build the CFG
7559  MachineFunction *F = MBB->getParent();
7560  MachineBasicBlock *thisMBB = MBB;
7561  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7562  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7563  F->insert(MBBIter, newMBB);
7564  F->insert(MBBIter, nextMBB);
7565
7566  // Move all successors to thisMBB to nextMBB
7567  nextMBB->transferSuccessors(thisMBB);
7568
7569  // Update thisMBB to fall through to newMBB
7570  thisMBB->addSuccessor(newMBB);
7571
7572  // newMBB jumps to newMBB and fall through to nextMBB
7573  newMBB->addSuccessor(nextMBB);
7574  newMBB->addSuccessor(newMBB);
7575
7576  DebugLoc dl = mInstr->getDebugLoc();
7577  // Insert instructions into newMBB based on incoming instruction
7578  assert(mInstr->getNumOperands() < 8 && "unexpected number of operands");
7579  MachineOperand& destOper = mInstr->getOperand(0);
7580  MachineOperand* argOpers[6];
7581  int numArgs = mInstr->getNumOperands() - 1;
7582  for (int i=0; i < numArgs; ++i)
7583    argOpers[i] = &mInstr->getOperand(i+1);
7584
7585  // x86 address has 4 operands: base, index, scale, and displacement
7586  int lastAddrIndx = 3; // [0,3]
7587  int valArgIndx = 4;
7588
7589  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7590  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
7591  for (int i=0; i <= lastAddrIndx; ++i)
7592    (*MIB).addOperand(*argOpers[i]);
7593
7594  // We only support register and immediate values
7595  assert((argOpers[valArgIndx]->isReg() ||
7596          argOpers[valArgIndx]->isImm()) &&
7597         "invalid operand");
7598
7599  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7600  if (argOpers[valArgIndx]->isReg())
7601    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7602  else
7603    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7604  (*MIB).addOperand(*argOpers[valArgIndx]);
7605
7606  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
7607  MIB.addReg(t1);
7608
7609  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
7610  MIB.addReg(t1);
7611  MIB.addReg(t2);
7612
7613  // Generate movc
7614  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7615  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
7616  MIB.addReg(t2);
7617  MIB.addReg(t1);
7618
7619  // Cmp and exchange if none has modified the memory location
7620  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
7621  for (int i=0; i <= lastAddrIndx; ++i)
7622    (*MIB).addOperand(*argOpers[i]);
7623  MIB.addReg(t3);
7624  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7625  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
7626
7627  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
7628  MIB.addReg(X86::EAX);
7629
7630  // insert branch
7631  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7632
7633  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
7634  return nextMBB;
7635}
7636
7637
7638MachineBasicBlock *
7639X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7640                                               MachineBasicBlock *BB) const {
7641  DebugLoc dl = MI->getDebugLoc();
7642  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7643  switch (MI->getOpcode()) {
7644  default: assert(false && "Unexpected instr type to insert");
7645  case X86::CMOV_V1I64:
7646  case X86::CMOV_FR32:
7647  case X86::CMOV_FR64:
7648  case X86::CMOV_V4F32:
7649  case X86::CMOV_V2F64:
7650  case X86::CMOV_V2I64: {
7651    // To "insert" a SELECT_CC instruction, we actually have to insert the
7652    // diamond control-flow pattern.  The incoming instruction knows the
7653    // destination vreg to set, the condition code register to branch on, the
7654    // true/false values to select between, and a branch opcode to use.
7655    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7656    MachineFunction::iterator It = BB;
7657    ++It;
7658
7659    //  thisMBB:
7660    //  ...
7661    //   TrueVal = ...
7662    //   cmpTY ccX, r1, r2
7663    //   bCC copy1MBB
7664    //   fallthrough --> copy0MBB
7665    MachineBasicBlock *thisMBB = BB;
7666    MachineFunction *F = BB->getParent();
7667    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7668    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7669    unsigned Opc =
7670      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7671    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
7672    F->insert(It, copy0MBB);
7673    F->insert(It, sinkMBB);
7674    // Update machine-CFG edges by transferring all successors of the current
7675    // block to the new block which will contain the Phi node for the select.
7676    sinkMBB->transferSuccessors(BB);
7677
7678    // Add the true and fallthrough blocks as its successors.
7679    BB->addSuccessor(copy0MBB);
7680    BB->addSuccessor(sinkMBB);
7681
7682    //  copy0MBB:
7683    //   %FalseValue = ...
7684    //   # fallthrough to sinkMBB
7685    BB = copy0MBB;
7686
7687    // Update machine-CFG edges
7688    BB->addSuccessor(sinkMBB);
7689
7690    //  sinkMBB:
7691    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7692    //  ...
7693    BB = sinkMBB;
7694    BuildMI(BB, dl, TII->get(X86::PHI), MI->getOperand(0).getReg())
7695      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7696      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7697
7698    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7699    return BB;
7700  }
7701
7702  case X86::FP32_TO_INT16_IN_MEM:
7703  case X86::FP32_TO_INT32_IN_MEM:
7704  case X86::FP32_TO_INT64_IN_MEM:
7705  case X86::FP64_TO_INT16_IN_MEM:
7706  case X86::FP64_TO_INT32_IN_MEM:
7707  case X86::FP64_TO_INT64_IN_MEM:
7708  case X86::FP80_TO_INT16_IN_MEM:
7709  case X86::FP80_TO_INT32_IN_MEM:
7710  case X86::FP80_TO_INT64_IN_MEM: {
7711    // Change the floating point control register to use "round towards zero"
7712    // mode when truncating to an integer value.
7713    MachineFunction *F = BB->getParent();
7714    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
7715    addFrameReference(BuildMI(BB, dl, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7716
7717    // Load the old value of the high byte of the control word...
7718    unsigned OldCW =
7719      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7720    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16rm), OldCW),
7721                      CWFrameIdx);
7722
7723    // Set the high part to be round to zero...
7724    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mi)), CWFrameIdx)
7725      .addImm(0xC7F);
7726
7727    // Reload the modified control word now...
7728    addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7729
7730    // Restore the memory image of control word to original value
7731    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mr)), CWFrameIdx)
7732      .addReg(OldCW);
7733
7734    // Get the X86 opcode to use.
7735    unsigned Opc;
7736    switch (MI->getOpcode()) {
7737    default: assert(0 && "illegal opcode!");
7738    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
7739    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
7740    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
7741    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
7742    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
7743    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
7744    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
7745    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
7746    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
7747    }
7748
7749    X86AddressMode AM;
7750    MachineOperand &Op = MI->getOperand(0);
7751    if (Op.isReg()) {
7752      AM.BaseType = X86AddressMode::RegBase;
7753      AM.Base.Reg = Op.getReg();
7754    } else {
7755      AM.BaseType = X86AddressMode::FrameIndexBase;
7756      AM.Base.FrameIndex = Op.getIndex();
7757    }
7758    Op = MI->getOperand(1);
7759    if (Op.isImm())
7760      AM.Scale = Op.getImm();
7761    Op = MI->getOperand(2);
7762    if (Op.isImm())
7763      AM.IndexReg = Op.getImm();
7764    Op = MI->getOperand(3);
7765    if (Op.isGlobal()) {
7766      AM.GV = Op.getGlobal();
7767    } else {
7768      AM.Disp = Op.getImm();
7769    }
7770    addFullAddress(BuildMI(BB, dl, TII->get(Opc)), AM)
7771                      .addReg(MI->getOperand(4).getReg());
7772
7773    // Reload the original control word now.
7774    addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7775
7776    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7777    return BB;
7778  }
7779  case X86::ATOMAND32:
7780    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7781                                               X86::AND32ri, X86::MOV32rm,
7782                                               X86::LCMPXCHG32, X86::MOV32rr,
7783                                               X86::NOT32r, X86::EAX,
7784                                               X86::GR32RegisterClass);
7785  case X86::ATOMOR32:
7786    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7787                                               X86::OR32ri, X86::MOV32rm,
7788                                               X86::LCMPXCHG32, X86::MOV32rr,
7789                                               X86::NOT32r, X86::EAX,
7790                                               X86::GR32RegisterClass);
7791  case X86::ATOMXOR32:
7792    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7793                                               X86::XOR32ri, X86::MOV32rm,
7794                                               X86::LCMPXCHG32, X86::MOV32rr,
7795                                               X86::NOT32r, X86::EAX,
7796                                               X86::GR32RegisterClass);
7797  case X86::ATOMNAND32:
7798    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7799                                               X86::AND32ri, X86::MOV32rm,
7800                                               X86::LCMPXCHG32, X86::MOV32rr,
7801                                               X86::NOT32r, X86::EAX,
7802                                               X86::GR32RegisterClass, true);
7803  case X86::ATOMMIN32:
7804    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7805  case X86::ATOMMAX32:
7806    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7807  case X86::ATOMUMIN32:
7808    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7809  case X86::ATOMUMAX32:
7810    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7811
7812  case X86::ATOMAND16:
7813    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7814                                               X86::AND16ri, X86::MOV16rm,
7815                                               X86::LCMPXCHG16, X86::MOV16rr,
7816                                               X86::NOT16r, X86::AX,
7817                                               X86::GR16RegisterClass);
7818  case X86::ATOMOR16:
7819    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7820                                               X86::OR16ri, X86::MOV16rm,
7821                                               X86::LCMPXCHG16, X86::MOV16rr,
7822                                               X86::NOT16r, X86::AX,
7823                                               X86::GR16RegisterClass);
7824  case X86::ATOMXOR16:
7825    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7826                                               X86::XOR16ri, X86::MOV16rm,
7827                                               X86::LCMPXCHG16, X86::MOV16rr,
7828                                               X86::NOT16r, X86::AX,
7829                                               X86::GR16RegisterClass);
7830  case X86::ATOMNAND16:
7831    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7832                                               X86::AND16ri, X86::MOV16rm,
7833                                               X86::LCMPXCHG16, X86::MOV16rr,
7834                                               X86::NOT16r, X86::AX,
7835                                               X86::GR16RegisterClass, true);
7836  case X86::ATOMMIN16:
7837    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
7838  case X86::ATOMMAX16:
7839    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
7840  case X86::ATOMUMIN16:
7841    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
7842  case X86::ATOMUMAX16:
7843    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
7844
7845  case X86::ATOMAND8:
7846    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7847                                               X86::AND8ri, X86::MOV8rm,
7848                                               X86::LCMPXCHG8, X86::MOV8rr,
7849                                               X86::NOT8r, X86::AL,
7850                                               X86::GR8RegisterClass);
7851  case X86::ATOMOR8:
7852    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
7853                                               X86::OR8ri, X86::MOV8rm,
7854                                               X86::LCMPXCHG8, X86::MOV8rr,
7855                                               X86::NOT8r, X86::AL,
7856                                               X86::GR8RegisterClass);
7857  case X86::ATOMXOR8:
7858    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
7859                                               X86::XOR8ri, X86::MOV8rm,
7860                                               X86::LCMPXCHG8, X86::MOV8rr,
7861                                               X86::NOT8r, X86::AL,
7862                                               X86::GR8RegisterClass);
7863  case X86::ATOMNAND8:
7864    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7865                                               X86::AND8ri, X86::MOV8rm,
7866                                               X86::LCMPXCHG8, X86::MOV8rr,
7867                                               X86::NOT8r, X86::AL,
7868                                               X86::GR8RegisterClass, true);
7869  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7870  // This group is for 64-bit host.
7871  case X86::ATOMAND64:
7872    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7873                                               X86::AND64ri32, X86::MOV64rm,
7874                                               X86::LCMPXCHG64, X86::MOV64rr,
7875                                               X86::NOT64r, X86::RAX,
7876                                               X86::GR64RegisterClass);
7877  case X86::ATOMOR64:
7878    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
7879                                               X86::OR64ri32, X86::MOV64rm,
7880                                               X86::LCMPXCHG64, X86::MOV64rr,
7881                                               X86::NOT64r, X86::RAX,
7882                                               X86::GR64RegisterClass);
7883  case X86::ATOMXOR64:
7884    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
7885                                               X86::XOR64ri32, X86::MOV64rm,
7886                                               X86::LCMPXCHG64, X86::MOV64rr,
7887                                               X86::NOT64r, X86::RAX,
7888                                               X86::GR64RegisterClass);
7889  case X86::ATOMNAND64:
7890    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7891                                               X86::AND64ri32, X86::MOV64rm,
7892                                               X86::LCMPXCHG64, X86::MOV64rr,
7893                                               X86::NOT64r, X86::RAX,
7894                                               X86::GR64RegisterClass, true);
7895  case X86::ATOMMIN64:
7896    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
7897  case X86::ATOMMAX64:
7898    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
7899  case X86::ATOMUMIN64:
7900    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
7901  case X86::ATOMUMAX64:
7902    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
7903
7904  // This group does 64-bit operations on a 32-bit host.
7905  case X86::ATOMAND6432:
7906    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7907                                               X86::AND32rr, X86::AND32rr,
7908                                               X86::AND32ri, X86::AND32ri,
7909                                               false);
7910  case X86::ATOMOR6432:
7911    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7912                                               X86::OR32rr, X86::OR32rr,
7913                                               X86::OR32ri, X86::OR32ri,
7914                                               false);
7915  case X86::ATOMXOR6432:
7916    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7917                                               X86::XOR32rr, X86::XOR32rr,
7918                                               X86::XOR32ri, X86::XOR32ri,
7919                                               false);
7920  case X86::ATOMNAND6432:
7921    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7922                                               X86::AND32rr, X86::AND32rr,
7923                                               X86::AND32ri, X86::AND32ri,
7924                                               true);
7925  case X86::ATOMADD6432:
7926    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7927                                               X86::ADD32rr, X86::ADC32rr,
7928                                               X86::ADD32ri, X86::ADC32ri,
7929                                               false);
7930  case X86::ATOMSUB6432:
7931    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7932                                               X86::SUB32rr, X86::SBB32rr,
7933                                               X86::SUB32ri, X86::SBB32ri,
7934                                               false);
7935  case X86::ATOMSWAP6432:
7936    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7937                                               X86::MOV32rr, X86::MOV32rr,
7938                                               X86::MOV32ri, X86::MOV32ri,
7939                                               false);
7940  }
7941}
7942
7943//===----------------------------------------------------------------------===//
7944//                           X86 Optimization Hooks
7945//===----------------------------------------------------------------------===//
7946
7947void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7948                                                       const APInt &Mask,
7949                                                       APInt &KnownZero,
7950                                                       APInt &KnownOne,
7951                                                       const SelectionDAG &DAG,
7952                                                       unsigned Depth) const {
7953  unsigned Opc = Op.getOpcode();
7954  assert((Opc >= ISD::BUILTIN_OP_END ||
7955          Opc == ISD::INTRINSIC_WO_CHAIN ||
7956          Opc == ISD::INTRINSIC_W_CHAIN ||
7957          Opc == ISD::INTRINSIC_VOID) &&
7958         "Should use MaskedValueIsZero if you don't know whether Op"
7959         " is a target node!");
7960
7961  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
7962  switch (Opc) {
7963  default: break;
7964  case X86ISD::ADD:
7965  case X86ISD::SUB:
7966  case X86ISD::SMUL:
7967  case X86ISD::UMUL:
7968  case X86ISD::INC:
7969  case X86ISD::DEC:
7970    // These nodes' second result is a boolean.
7971    if (Op.getResNo() == 0)
7972      break;
7973    // Fallthrough
7974  case X86ISD::SETCC:
7975    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
7976                                       Mask.getBitWidth() - 1);
7977    break;
7978  }
7979}
7980
7981/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
7982/// node is a GlobalAddress + offset.
7983bool X86TargetLowering::isGAPlusOffset(SDNode *N,
7984                                       GlobalValue* &GA, int64_t &Offset) const{
7985  if (N->getOpcode() == X86ISD::Wrapper) {
7986    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
7987      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
7988      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
7989      return true;
7990    }
7991  }
7992  return TargetLowering::isGAPlusOffset(N, GA, Offset);
7993}
7994
7995static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
7996                               const TargetLowering &TLI) {
7997  GlobalValue *GV;
7998  int64_t Offset = 0;
7999  if (TLI.isGAPlusOffset(Base, GV, Offset))
8000    return (GV->getAlignment() >= N && (Offset % N) == 0);
8001  // DAG combine handles the stack object case.
8002  return false;
8003}
8004
8005static bool EltsFromConsecutiveLoads(SDNode *N, SDValue PermMask,
8006                                     unsigned NumElems, MVT EVT,
8007                                     SDNode *&Base,
8008                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
8009                                     const TargetLowering &TLI) {
8010  Base = NULL;
8011  for (unsigned i = 0; i < NumElems; ++i) {
8012    SDValue Idx = PermMask.getOperand(i);
8013    if (Idx.getOpcode() == ISD::UNDEF) {
8014      if (!Base)
8015        return false;
8016      continue;
8017    }
8018
8019    SDValue Elt = DAG.getShuffleScalarElt(N, i);
8020    if (!Elt.getNode() ||
8021        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
8022      return false;
8023    if (!Base) {
8024      Base = Elt.getNode();
8025      if (Base->getOpcode() == ISD::UNDEF)
8026        return false;
8027      continue;
8028    }
8029    if (Elt.getOpcode() == ISD::UNDEF)
8030      continue;
8031
8032    if (!TLI.isConsecutiveLoad(Elt.getNode(), Base,
8033                               EVT.getSizeInBits()/8, i, MFI))
8034      return false;
8035  }
8036  return true;
8037}
8038
8039/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8040/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8041/// if the load addresses are consecutive, non-overlapping, and in the right
8042/// order.
8043static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8044                                       const TargetLowering &TLI) {
8045  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8046  DebugLoc dl = N->getDebugLoc();
8047  MVT VT = N->getValueType(0);
8048  MVT EVT = VT.getVectorElementType();
8049  SDValue PermMask = N->getOperand(2);
8050  unsigned NumElems = PermMask.getNumOperands();
8051  SDNode *Base = NULL;
8052  if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base,
8053                                DAG, MFI, TLI))
8054    return SDValue();
8055
8056  LoadSDNode *LD = cast<LoadSDNode>(Base);
8057  if (isBaseAlignmentOfN(16, Base->getOperand(1).getNode(), TLI))
8058    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8059                       LD->getSrcValue(), LD->getSrcValueOffset(),
8060                       LD->isVolatile());
8061  return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8062                     LD->getSrcValue(), LD->getSrcValueOffset(),
8063                     LD->isVolatile(), LD->getAlignment());
8064}
8065
8066/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
8067static SDValue PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
8068                                         TargetLowering::DAGCombinerInfo &DCI,
8069                                         const X86Subtarget *Subtarget,
8070                                         const TargetLowering &TLI) {
8071  unsigned NumOps = N->getNumOperands();
8072  DebugLoc dl = N->getDebugLoc();
8073
8074  // Ignore single operand BUILD_VECTOR.
8075  if (NumOps == 1)
8076    return SDValue();
8077
8078  MVT VT = N->getValueType(0);
8079  MVT EVT = VT.getVectorElementType();
8080  if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
8081    // We are looking for load i64 and zero extend. We want to transform
8082    // it before legalizer has a chance to expand it. Also look for i64
8083    // BUILD_PAIR bit casted to f64.
8084    return SDValue();
8085  // This must be an insertion into a zero vector.
8086  SDValue HighElt = N->getOperand(1);
8087  if (!isZeroNode(HighElt))
8088    return SDValue();
8089
8090  // Value must be a load.
8091  SDNode *Base = N->getOperand(0).getNode();
8092  if (!isa<LoadSDNode>(Base)) {
8093    if (Base->getOpcode() != ISD::BIT_CONVERT)
8094      return SDValue();
8095    Base = Base->getOperand(0).getNode();
8096    if (!isa<LoadSDNode>(Base))
8097      return SDValue();
8098  }
8099
8100  // Transform it into VZEXT_LOAD addr.
8101  LoadSDNode *LD = cast<LoadSDNode>(Base);
8102
8103  // Load must not be an extload.
8104  if (LD->getExtensionType() != ISD::NON_EXTLOAD)
8105    return SDValue();
8106
8107  // Load type should legal type so we don't have to legalize it.
8108  if (!TLI.isTypeLegal(VT))
8109    return SDValue();
8110
8111  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
8112  SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
8113  SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
8114  TargetLowering::TargetLoweringOpt TLO(DAG);
8115  TLO.CombineTo(SDValue(Base, 1), ResNode.getValue(1));
8116  DCI.CommitTargetLoweringOpt(TLO);
8117  return ResNode;
8118}
8119
8120/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8121static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8122                                    const X86Subtarget *Subtarget) {
8123  DebugLoc DL = N->getDebugLoc();
8124  SDValue Cond = N->getOperand(0);
8125  // Get the LHS/RHS of the select.
8126  SDValue LHS = N->getOperand(1);
8127  SDValue RHS = N->getOperand(2);
8128
8129  // If we have SSE[12] support, try to form min/max nodes.
8130  if (Subtarget->hasSSE2() &&
8131      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
8132      Cond.getOpcode() == ISD::SETCC) {
8133    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
8134
8135    unsigned Opcode = 0;
8136    if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
8137      switch (CC) {
8138      default: break;
8139      case ISD::SETOLE: // (X <= Y) ? X : Y -> min
8140      case ISD::SETULE:
8141      case ISD::SETLE:
8142        if (!UnsafeFPMath) break;
8143        // FALL THROUGH.
8144      case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
8145      case ISD::SETLT:
8146        Opcode = X86ISD::FMIN;
8147        break;
8148
8149      case ISD::SETOGT: // (X > Y) ? X : Y -> max
8150      case ISD::SETUGT:
8151      case ISD::SETGT:
8152        if (!UnsafeFPMath) break;
8153        // FALL THROUGH.
8154      case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
8155      case ISD::SETGE:
8156        Opcode = X86ISD::FMAX;
8157        break;
8158      }
8159    } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
8160      switch (CC) {
8161      default: break;
8162      case ISD::SETOGT: // (X > Y) ? Y : X -> min
8163      case ISD::SETUGT:
8164      case ISD::SETGT:
8165        if (!UnsafeFPMath) break;
8166        // FALL THROUGH.
8167      case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
8168      case ISD::SETGE:
8169        Opcode = X86ISD::FMIN;
8170        break;
8171
8172      case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
8173      case ISD::SETULE:
8174      case ISD::SETLE:
8175        if (!UnsafeFPMath) break;
8176        // FALL THROUGH.
8177      case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
8178      case ISD::SETLT:
8179        Opcode = X86ISD::FMAX;
8180        break;
8181      }
8182    }
8183
8184    if (Opcode)
8185      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
8186  }
8187
8188  return SDValue();
8189}
8190
8191/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8192///                       when possible.
8193static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
8194                                   const X86Subtarget *Subtarget) {
8195  // On X86 with SSE2 support, we can transform this to a vector shift if
8196  // all elements are shifted by the same amount.  We can't do this in legalize
8197  // because the a constant vector is typically transformed to a constant pool
8198  // so we have no knowledge of the shift amount.
8199  if (!Subtarget->hasSSE2())
8200    return SDValue();
8201
8202  MVT VT = N->getValueType(0);
8203  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
8204    return SDValue();
8205
8206  SDValue ShAmtOp = N->getOperand(1);
8207  MVT EltVT = VT.getVectorElementType();
8208  DebugLoc DL = N->getDebugLoc();
8209  SDValue BaseShAmt;
8210  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
8211    unsigned NumElts = VT.getVectorNumElements();
8212    unsigned i = 0;
8213    for (; i != NumElts; ++i) {
8214      SDValue Arg = ShAmtOp.getOperand(i);
8215      if (Arg.getOpcode() == ISD::UNDEF) continue;
8216      BaseShAmt = Arg;
8217      break;
8218    }
8219    for (; i != NumElts; ++i) {
8220      SDValue Arg = ShAmtOp.getOperand(i);
8221      if (Arg.getOpcode() == ISD::UNDEF) continue;
8222      if (Arg != BaseShAmt) {
8223        return SDValue();
8224      }
8225    }
8226  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
8227             isSplatMask(ShAmtOp.getOperand(2).getNode())) {
8228      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
8229                              DAG.getIntPtrConstant(0));
8230  } else
8231    return SDValue();
8232
8233  if (EltVT.bitsGT(MVT::i32))
8234    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
8235  else if (EltVT.bitsLT(MVT::i32))
8236    BaseShAmt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, BaseShAmt);
8237
8238  // The shift amount is identical so we can do a vector shift.
8239  SDValue  ValOp = N->getOperand(0);
8240  switch (N->getOpcode()) {
8241  default:
8242    assert(0 && "Unknown shift opcode!");
8243    break;
8244  case ISD::SHL:
8245    if (VT == MVT::v2i64)
8246      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8247                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8248                         ValOp, BaseShAmt);
8249    if (VT == MVT::v4i32)
8250      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8251                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8252                         ValOp, BaseShAmt);
8253    if (VT == MVT::v8i16)
8254      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8255                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8256                         ValOp, BaseShAmt);
8257    break;
8258  case ISD::SRA:
8259    if (VT == MVT::v4i32)
8260      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8261                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8262                         ValOp, BaseShAmt);
8263    if (VT == MVT::v8i16)
8264      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8265                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8266                         ValOp, BaseShAmt);
8267    break;
8268  case ISD::SRL:
8269    if (VT == MVT::v2i64)
8270      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8271                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8272                         ValOp, BaseShAmt);
8273    if (VT == MVT::v4i32)
8274      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8275                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8276                         ValOp, BaseShAmt);
8277    if (VT ==  MVT::v8i16)
8278      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8279                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8280                         ValOp, BaseShAmt);
8281    break;
8282  }
8283  return SDValue();
8284}
8285
8286/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8287static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
8288                                   const X86Subtarget *Subtarget) {
8289  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
8290  // the FP state in cases where an emms may be missing.
8291  // A preferable solution to the general problem is to figure out the right
8292  // places to insert EMMS.  This qualifies as a quick hack.
8293
8294  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8295  StoreSDNode *St = cast<StoreSDNode>(N);
8296  MVT VT = St->getValue().getValueType();
8297  if (VT.getSizeInBits() != 64)
8298    return SDValue();
8299
8300  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloat && Subtarget->hasSSE2();
8301  if ((VT.isVector() ||
8302       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
8303      isa<LoadSDNode>(St->getValue()) &&
8304      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
8305      St->getChain().hasOneUse() && !St->isVolatile()) {
8306    SDNode* LdVal = St->getValue().getNode();
8307    LoadSDNode *Ld = 0;
8308    int TokenFactorIndex = -1;
8309    SmallVector<SDValue, 8> Ops;
8310    SDNode* ChainVal = St->getChain().getNode();
8311    // Must be a store of a load.  We currently handle two cases:  the load
8312    // is a direct child, and it's under an intervening TokenFactor.  It is
8313    // possible to dig deeper under nested TokenFactors.
8314    if (ChainVal == LdVal)
8315      Ld = cast<LoadSDNode>(St->getChain());
8316    else if (St->getValue().hasOneUse() &&
8317             ChainVal->getOpcode() == ISD::TokenFactor) {
8318      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
8319        if (ChainVal->getOperand(i).getNode() == LdVal) {
8320          TokenFactorIndex = i;
8321          Ld = cast<LoadSDNode>(St->getValue());
8322        } else
8323          Ops.push_back(ChainVal->getOperand(i));
8324      }
8325    }
8326
8327    if (!Ld || !ISD::isNormalLoad(Ld))
8328      return SDValue();
8329
8330    // If this is not the MMX case, i.e. we are just turning i64 load/store
8331    // into f64 load/store, avoid the transformation if there are multiple
8332    // uses of the loaded value.
8333    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
8334      return SDValue();
8335
8336    DebugLoc LdDL = Ld->getDebugLoc();
8337    DebugLoc StDL = N->getDebugLoc();
8338    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8339    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8340    // pair instead.
8341    if (Subtarget->is64Bit() || F64IsLegal) {
8342      MVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
8343      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
8344                                  Ld->getBasePtr(), Ld->getSrcValue(),
8345                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
8346                                  Ld->getAlignment());
8347      SDValue NewChain = NewLd.getValue(1);
8348      if (TokenFactorIndex != -1) {
8349        Ops.push_back(NewChain);
8350        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8351                               Ops.size());
8352      }
8353      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
8354                          St->getSrcValue(), St->getSrcValueOffset(),
8355                          St->isVolatile(), St->getAlignment());
8356    }
8357
8358    // Otherwise, lower to two pairs of 32-bit loads / stores.
8359    SDValue LoAddr = Ld->getBasePtr();
8360    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
8361                                 DAG.getConstant(4, MVT::i32));
8362
8363    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
8364                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
8365                               Ld->isVolatile(), Ld->getAlignment());
8366    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
8367                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
8368                               Ld->isVolatile(),
8369                               MinAlign(Ld->getAlignment(), 4));
8370
8371    SDValue NewChain = LoLd.getValue(1);
8372    if (TokenFactorIndex != -1) {
8373      Ops.push_back(LoLd);
8374      Ops.push_back(HiLd);
8375      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8376                             Ops.size());
8377    }
8378
8379    LoAddr = St->getBasePtr();
8380    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
8381                         DAG.getConstant(4, MVT::i32));
8382
8383    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
8384                                St->getSrcValue(), St->getSrcValueOffset(),
8385                                St->isVolatile(), St->getAlignment());
8386    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
8387                                St->getSrcValue(),
8388                                St->getSrcValueOffset() + 4,
8389                                St->isVolatile(),
8390                                MinAlign(St->getAlignment(), 4));
8391    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
8392  }
8393  return SDValue();
8394}
8395
8396/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8397/// X86ISD::FXOR nodes.
8398static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
8399  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
8400  // F[X]OR(0.0, x) -> x
8401  // F[X]OR(x, 0.0) -> x
8402  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8403    if (C->getValueAPF().isPosZero())
8404      return N->getOperand(1);
8405  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8406    if (C->getValueAPF().isPosZero())
8407      return N->getOperand(0);
8408  return SDValue();
8409}
8410
8411/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8412static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
8413  // FAND(0.0, x) -> 0.0
8414  // FAND(x, 0.0) -> 0.0
8415  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8416    if (C->getValueAPF().isPosZero())
8417      return N->getOperand(0);
8418  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8419    if (C->getValueAPF().isPosZero())
8420      return N->getOperand(1);
8421  return SDValue();
8422}
8423
8424static SDValue PerformBTCombine(SDNode *N,
8425                                SelectionDAG &DAG,
8426                                TargetLowering::DAGCombinerInfo &DCI) {
8427  // BT ignores high bits in the bit index operand.
8428  SDValue Op1 = N->getOperand(1);
8429  if (Op1.hasOneUse()) {
8430    unsigned BitWidth = Op1.getValueSizeInBits();
8431    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
8432    APInt KnownZero, KnownOne;
8433    TargetLowering::TargetLoweringOpt TLO(DAG);
8434    TargetLowering &TLI = DAG.getTargetLoweringInfo();
8435    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
8436        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
8437      DCI.CommitTargetLoweringOpt(TLO);
8438  }
8439  return SDValue();
8440}
8441
8442SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
8443                                             DAGCombinerInfo &DCI) const {
8444  SelectionDAG &DAG = DCI.DAG;
8445  switch (N->getOpcode()) {
8446  default: break;
8447  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
8448  case ISD::BUILD_VECTOR:
8449    return PerformBuildVectorCombine(N, DAG, DCI, Subtarget, *this);
8450  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
8451  case ISD::SHL:
8452  case ISD::SRA:
8453  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
8454  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
8455  case X86ISD::FXOR:
8456  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
8457  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
8458  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
8459  }
8460
8461  return SDValue();
8462}
8463
8464//===----------------------------------------------------------------------===//
8465//                           X86 Inline Assembly Support
8466//===----------------------------------------------------------------------===//
8467
8468/// getConstraintType - Given a constraint letter, return the type of
8469/// constraint it is for this target.
8470X86TargetLowering::ConstraintType
8471X86TargetLowering::getConstraintType(const std::string &Constraint) const {
8472  if (Constraint.size() == 1) {
8473    switch (Constraint[0]) {
8474    case 'A':
8475      return C_Register;
8476    case 'f':
8477    case 'r':
8478    case 'R':
8479    case 'l':
8480    case 'q':
8481    case 'Q':
8482    case 'x':
8483    case 'y':
8484    case 'Y':
8485      return C_RegisterClass;
8486    case 'e':
8487    case 'Z':
8488      return C_Other;
8489    default:
8490      break;
8491    }
8492  }
8493  return TargetLowering::getConstraintType(Constraint);
8494}
8495
8496/// LowerXConstraint - try to replace an X constraint, which matches anything,
8497/// with another that has more specific requirements based on the type of the
8498/// corresponding operand.
8499const char *X86TargetLowering::
8500LowerXConstraint(MVT ConstraintVT) const {
8501  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
8502  // 'f' like normal targets.
8503  if (ConstraintVT.isFloatingPoint()) {
8504    if (Subtarget->hasSSE2())
8505      return "Y";
8506    if (Subtarget->hasSSE1())
8507      return "x";
8508  }
8509
8510  return TargetLowering::LowerXConstraint(ConstraintVT);
8511}
8512
8513/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8514/// vector.  If it is invalid, don't add anything to Ops.
8515void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8516                                                     char Constraint,
8517                                                     bool hasMemory,
8518                                                     std::vector<SDValue>&Ops,
8519                                                     SelectionDAG &DAG) const {
8520  SDValue Result(0, 0);
8521
8522  switch (Constraint) {
8523  default: break;
8524  case 'I':
8525    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8526      if (C->getZExtValue() <= 31) {
8527        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8528        break;
8529      }
8530    }
8531    return;
8532  case 'J':
8533    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8534      if (C->getZExtValue() <= 63) {
8535        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8536        break;
8537      }
8538    }
8539    return;
8540  case 'N':
8541    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8542      if (C->getZExtValue() <= 255) {
8543        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8544        break;
8545      }
8546    }
8547    return;
8548  case 'e': {
8549    // 32-bit signed value
8550    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8551      const ConstantInt *CI = C->getConstantIntValue();
8552      if (CI->isValueValidForType(Type::Int32Ty, C->getSExtValue())) {
8553        // Widen to 64 bits here to get it sign extended.
8554        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
8555        break;
8556      }
8557    // FIXME gcc accepts some relocatable values here too, but only in certain
8558    // memory models; it's complicated.
8559    }
8560    return;
8561  }
8562  case 'Z': {
8563    // 32-bit unsigned value
8564    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8565      const ConstantInt *CI = C->getConstantIntValue();
8566      if (CI->isValueValidForType(Type::Int32Ty, C->getZExtValue())) {
8567        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8568        break;
8569      }
8570    }
8571    // FIXME gcc accepts some relocatable values here too, but only in certain
8572    // memory models; it's complicated.
8573    return;
8574  }
8575  case 'i': {
8576    // Literal immediates are always ok.
8577    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
8578      // Widen to 64 bits here to get it sign extended.
8579      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
8580      break;
8581    }
8582
8583    // If we are in non-pic codegen mode, we allow the address of a global (with
8584    // an optional displacement) to be used with 'i'.
8585    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
8586    int64_t Offset = 0;
8587
8588    // Match either (GA) or (GA+C)
8589    if (GA) {
8590      Offset = GA->getOffset();
8591    } else if (Op.getOpcode() == ISD::ADD) {
8592      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8593      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
8594      if (C && GA) {
8595        Offset = GA->getOffset()+C->getZExtValue();
8596      } else {
8597        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8598        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
8599        if (C && GA)
8600          Offset = GA->getOffset()+C->getZExtValue();
8601        else
8602          C = 0, GA = 0;
8603      }
8604    }
8605
8606    if (GA) {
8607      if (hasMemory)
8608        Op = LowerGlobalAddress(GA->getGlobal(), Op.getDebugLoc(),
8609                                Offset, DAG);
8610      else
8611        Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
8612                                        Offset);
8613      Result = Op;
8614      break;
8615    }
8616
8617    // Otherwise, not valid for this mode.
8618    return;
8619  }
8620  }
8621
8622  if (Result.getNode()) {
8623    Ops.push_back(Result);
8624    return;
8625  }
8626  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
8627                                                      Ops, DAG);
8628}
8629
8630std::vector<unsigned> X86TargetLowering::
8631getRegClassForInlineAsmConstraint(const std::string &Constraint,
8632                                  MVT VT) const {
8633  if (Constraint.size() == 1) {
8634    // FIXME: not handling fp-stack yet!
8635    switch (Constraint[0]) {      // GCC X86 Constraint Letters
8636    default: break;  // Unknown constraint letter
8637    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
8638    case 'Q':   // Q_REGS
8639      if (VT == MVT::i32)
8640        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
8641      else if (VT == MVT::i16)
8642        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
8643      else if (VT == MVT::i8)
8644        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
8645      else if (VT == MVT::i64)
8646        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
8647      break;
8648    }
8649  }
8650
8651  return std::vector<unsigned>();
8652}
8653
8654std::pair<unsigned, const TargetRegisterClass*>
8655X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8656                                                MVT VT) const {
8657  // First, see if this is a constraint that directly corresponds to an LLVM
8658  // register class.
8659  if (Constraint.size() == 1) {
8660    // GCC Constraint Letters
8661    switch (Constraint[0]) {
8662    default: break;
8663    case 'r':   // GENERAL_REGS
8664    case 'R':   // LEGACY_REGS
8665    case 'l':   // INDEX_REGS
8666      if (VT == MVT::i8)
8667        return std::make_pair(0U, X86::GR8RegisterClass);
8668      if (VT == MVT::i16)
8669        return std::make_pair(0U, X86::GR16RegisterClass);
8670      if (VT == MVT::i32 || !Subtarget->is64Bit())
8671        return std::make_pair(0U, X86::GR32RegisterClass);
8672      return std::make_pair(0U, X86::GR64RegisterClass);
8673    case 'f':  // FP Stack registers.
8674      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
8675      // value to the correct fpstack register class.
8676      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
8677        return std::make_pair(0U, X86::RFP32RegisterClass);
8678      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
8679        return std::make_pair(0U, X86::RFP64RegisterClass);
8680      return std::make_pair(0U, X86::RFP80RegisterClass);
8681    case 'y':   // MMX_REGS if MMX allowed.
8682      if (!Subtarget->hasMMX()) break;
8683      return std::make_pair(0U, X86::VR64RegisterClass);
8684    case 'Y':   // SSE_REGS if SSE2 allowed
8685      if (!Subtarget->hasSSE2()) break;
8686      // FALL THROUGH.
8687    case 'x':   // SSE_REGS if SSE1 allowed
8688      if (!Subtarget->hasSSE1()) break;
8689
8690      switch (VT.getSimpleVT()) {
8691      default: break;
8692      // Scalar SSE types.
8693      case MVT::f32:
8694      case MVT::i32:
8695        return std::make_pair(0U, X86::FR32RegisterClass);
8696      case MVT::f64:
8697      case MVT::i64:
8698        return std::make_pair(0U, X86::FR64RegisterClass);
8699      // Vector types.
8700      case MVT::v16i8:
8701      case MVT::v8i16:
8702      case MVT::v4i32:
8703      case MVT::v2i64:
8704      case MVT::v4f32:
8705      case MVT::v2f64:
8706        return std::make_pair(0U, X86::VR128RegisterClass);
8707      }
8708      break;
8709    }
8710  }
8711
8712  // Use the default implementation in TargetLowering to convert the register
8713  // constraint into a member of a register class.
8714  std::pair<unsigned, const TargetRegisterClass*> Res;
8715  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8716
8717  // Not found as a standard register?
8718  if (Res.second == 0) {
8719    // GCC calls "st(0)" just plain "st".
8720    if (StringsEqualNoCase("{st}", Constraint)) {
8721      Res.first = X86::ST0;
8722      Res.second = X86::RFP80RegisterClass;
8723    }
8724    // 'A' means EAX + EDX.
8725    if (Constraint == "A") {
8726      Res.first = X86::EAX;
8727      Res.second = X86::GRADRegisterClass;
8728    }
8729    return Res;
8730  }
8731
8732  // Otherwise, check to see if this is a register class of the wrong value
8733  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
8734  // turn into {ax},{dx}.
8735  if (Res.second->hasType(VT))
8736    return Res;   // Correct type already, nothing to do.
8737
8738  // All of the single-register GCC register classes map their values onto
8739  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
8740  // really want an 8-bit or 32-bit register, map to the appropriate register
8741  // class and return the appropriate register.
8742  if (Res.second == X86::GR16RegisterClass) {
8743    if (VT == MVT::i8) {
8744      unsigned DestReg = 0;
8745      switch (Res.first) {
8746      default: break;
8747      case X86::AX: DestReg = X86::AL; break;
8748      case X86::DX: DestReg = X86::DL; break;
8749      case X86::CX: DestReg = X86::CL; break;
8750      case X86::BX: DestReg = X86::BL; break;
8751      }
8752      if (DestReg) {
8753        Res.first = DestReg;
8754        Res.second = Res.second = X86::GR8RegisterClass;
8755      }
8756    } else if (VT == MVT::i32) {
8757      unsigned DestReg = 0;
8758      switch (Res.first) {
8759      default: break;
8760      case X86::AX: DestReg = X86::EAX; break;
8761      case X86::DX: DestReg = X86::EDX; break;
8762      case X86::CX: DestReg = X86::ECX; break;
8763      case X86::BX: DestReg = X86::EBX; break;
8764      case X86::SI: DestReg = X86::ESI; break;
8765      case X86::DI: DestReg = X86::EDI; break;
8766      case X86::BP: DestReg = X86::EBP; break;
8767      case X86::SP: DestReg = X86::ESP; break;
8768      }
8769      if (DestReg) {
8770        Res.first = DestReg;
8771        Res.second = Res.second = X86::GR32RegisterClass;
8772      }
8773    } else if (VT == MVT::i64) {
8774      unsigned DestReg = 0;
8775      switch (Res.first) {
8776      default: break;
8777      case X86::AX: DestReg = X86::RAX; break;
8778      case X86::DX: DestReg = X86::RDX; break;
8779      case X86::CX: DestReg = X86::RCX; break;
8780      case X86::BX: DestReg = X86::RBX; break;
8781      case X86::SI: DestReg = X86::RSI; break;
8782      case X86::DI: DestReg = X86::RDI; break;
8783      case X86::BP: DestReg = X86::RBP; break;
8784      case X86::SP: DestReg = X86::RSP; break;
8785      }
8786      if (DestReg) {
8787        Res.first = DestReg;
8788        Res.second = Res.second = X86::GR64RegisterClass;
8789      }
8790    }
8791  } else if (Res.second == X86::FR32RegisterClass ||
8792             Res.second == X86::FR64RegisterClass ||
8793             Res.second == X86::VR128RegisterClass) {
8794    // Handle references to XMM physical registers that got mapped into the
8795    // wrong class.  This can happen with constraints like {xmm0} where the
8796    // target independent register mapper will just pick the first match it can
8797    // find, ignoring the required type.
8798    if (VT == MVT::f32)
8799      Res.second = X86::FR32RegisterClass;
8800    else if (VT == MVT::f64)
8801      Res.second = X86::FR64RegisterClass;
8802    else if (X86::VR128RegisterClass->hasType(VT))
8803      Res.second = X86::VR128RegisterClass;
8804  }
8805
8806  return Res;
8807}
8808
8809//===----------------------------------------------------------------------===//
8810//                           X86 Widen vector type
8811//===----------------------------------------------------------------------===//
8812
8813/// getWidenVectorType: given a vector type, returns the type to widen
8814/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
8815/// If there is no vector type that we want to widen to, returns MVT::Other
8816/// When and where to widen is target dependent based on the cost of
8817/// scalarizing vs using the wider vector type.
8818
8819MVT X86TargetLowering::getWidenVectorType(MVT VT) const {
8820  assert(VT.isVector());
8821  if (isTypeLegal(VT))
8822    return VT;
8823
8824  // TODO: In computeRegisterProperty, we can compute the list of legal vector
8825  //       type based on element type.  This would speed up our search (though
8826  //       it may not be worth it since the size of the list is relatively
8827  //       small).
8828  MVT EltVT = VT.getVectorElementType();
8829  unsigned NElts = VT.getVectorNumElements();
8830
8831  // On X86, it make sense to widen any vector wider than 1
8832  if (NElts <= 1)
8833    return MVT::Other;
8834
8835  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
8836       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
8837    MVT SVT = (MVT::SimpleValueType)nVT;
8838
8839    if (isTypeLegal(SVT) &&
8840        SVT.getVectorElementType() == EltVT &&
8841        SVT.getVectorNumElements() > NElts)
8842      return SVT;
8843  }
8844  return MVT::Other;
8845}
8846