X86ISelLowering.cpp revision 5f6913cecd9f760c02754772cb57fa4d9a96624f
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/ADT/StringExtras.h"
37#include "llvm/ParameterAttributes.h"
38using namespace llvm;
39
40X86TargetLowering::X86TargetLowering(TargetMachine &TM)
41  : TargetLowering(TM) {
42  Subtarget = &TM.getSubtarget<X86Subtarget>();
43  X86ScalarSSE = Subtarget->hasSSE2();
44  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
45
46  RegInfo = TM.getRegisterInfo();
47
48  // Set up the TargetLowering object.
49
50  // X86 is weird, it always uses i8 for shift amounts and setcc results.
51  setShiftAmountType(MVT::i8);
52  setSetCCResultType(MVT::i8);
53  setSetCCResultContents(ZeroOrOneSetCCResult);
54  setSchedulingPreference(SchedulingForRegPressure);
55  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
56  setStackPointerRegisterToSaveRestore(X86StackPtr);
57
58  if (Subtarget->isTargetDarwin()) {
59    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
60    setUseUnderscoreSetJmp(false);
61    setUseUnderscoreLongJmp(false);
62  } else if (Subtarget->isTargetMingw()) {
63    // MS runtime is weird: it exports _setjmp, but longjmp!
64    setUseUnderscoreSetJmp(true);
65    setUseUnderscoreLongJmp(false);
66  } else {
67    setUseUnderscoreSetJmp(true);
68    setUseUnderscoreLongJmp(true);
69  }
70
71  // Set up the register classes.
72  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
73  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
74  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
75  if (Subtarget->is64Bit())
76    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
77
78  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
79
80  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
81  // operation.
82  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
83  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
84  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
85
86  if (Subtarget->is64Bit()) {
87    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
88    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
89  } else {
90    if (X86ScalarSSE)
91      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
92      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
93    else
94      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
95  }
96
97  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
98  // this operation.
99  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
100  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
101  // SSE has no i16 to fp conversion, only i32
102  if (X86ScalarSSE) {
103    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
104    // f32 and f64 cases are Legal, f80 case is not
105    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
106  } else {
107    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
108    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
109  }
110
111  if (!Subtarget->is64Bit()) {
112    // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
113    setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
114    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
115  }
116
117  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
118  // this operation.
119  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
120  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
121
122  if (X86ScalarSSE) {
123    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
124    // f32 and f64 cases are Legal, f80 case is not
125    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
126  } else {
127    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
128    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
129  }
130
131  // Handle FP_TO_UINT by promoting the destination to a larger signed
132  // conversion.
133  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
134  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
135  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
136
137  if (Subtarget->is64Bit()) {
138    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
139    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
140  } else {
141    if (X86ScalarSSE && !Subtarget->hasSSE3())
142      // Expand FP_TO_UINT into a select.
143      // FIXME: We would like to use a Custom expander here eventually to do
144      // the optimal thing for SSE vs. the default expansion in the legalizer.
145      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
146    else
147      // With SSE3 we can use fisttpll to convert to a signed i64.
148      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
149  }
150
151  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
152  if (!X86ScalarSSE) {
153    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
154    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
155  }
156
157  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
158  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
159  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
160  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
161  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
162  if (Subtarget->is64Bit())
163    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
164  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
165  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
166  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
167  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
168  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
169
170  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
171  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
172  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
173  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
174  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
175  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
176  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
177  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
178  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
179  if (Subtarget->is64Bit()) {
180    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
181    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
182    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
183  }
184
185  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
186  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
187
188  // These should be promoted to a larger select which is supported.
189  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
190  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
191  // X86 wants to expand cmov itself.
192  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
193  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
194  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
195  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
196  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
197  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
198  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
199  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
200  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
201  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
202  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
203  if (Subtarget->is64Bit()) {
204    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
205    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
206  }
207  // X86 ret instruction may pop stack.
208  setOperationAction(ISD::RET             , MVT::Other, Custom);
209  if (!Subtarget->is64Bit())
210    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
211
212  // Darwin ABI issue.
213  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
214  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
215  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
216  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
217  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
218  if (Subtarget->is64Bit()) {
219    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
220    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
221    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
222    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
223  }
224  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
225  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
226  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
227  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
228  // X86 wants to expand memset / memcpy itself.
229  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
230  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
231
232  // We don't have line number support yet.
233  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
234  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
235  // FIXME - use subtarget debug flags
236  if (!Subtarget->isTargetDarwin() &&
237      !Subtarget->isTargetELF() &&
238      !Subtarget->isTargetCygMing())
239    setOperationAction(ISD::LABEL, MVT::Other, Expand);
240
241  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
242  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
243  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
244  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
245  if (Subtarget->is64Bit()) {
246    // FIXME: Verify
247    setExceptionPointerRegister(X86::RAX);
248    setExceptionSelectorRegister(X86::RDX);
249  } else {
250    setExceptionPointerRegister(X86::EAX);
251    setExceptionSelectorRegister(X86::EDX);
252  }
253  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
254
255  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
256
257  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
258  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
259  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
260  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
261  if (Subtarget->is64Bit())
262    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
263  else
264    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
265
266  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
267  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
268  if (Subtarget->is64Bit())
269    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
270  if (Subtarget->isTargetCygMing())
271    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
272  else
273    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
274
275  if (X86ScalarSSE) {
276    // Set up the FP register classes.
277    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
278    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
279
280    // Use ANDPD to simulate FABS.
281    setOperationAction(ISD::FABS , MVT::f64, Custom);
282    setOperationAction(ISD::FABS , MVT::f32, Custom);
283
284    // Use XORP to simulate FNEG.
285    setOperationAction(ISD::FNEG , MVT::f64, Custom);
286    setOperationAction(ISD::FNEG , MVT::f32, Custom);
287
288    // Use ANDPD and ORPD to simulate FCOPYSIGN.
289    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
290    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
291
292    // We don't support sin/cos/fmod
293    setOperationAction(ISD::FSIN , MVT::f64, Expand);
294    setOperationAction(ISD::FCOS , MVT::f64, Expand);
295    setOperationAction(ISD::FREM , MVT::f64, Expand);
296    setOperationAction(ISD::FSIN , MVT::f32, Expand);
297    setOperationAction(ISD::FCOS , MVT::f32, Expand);
298    setOperationAction(ISD::FREM , MVT::f32, Expand);
299
300    // Expand FP immediates into loads from the stack, except for the special
301    // cases we handle.
302    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
303    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
304    addLegalFPImmediate(APFloat(+0.0)); // xorps / xorpd
305
306    // Conversions to long double (in X87) go through memory.
307    setConvertAction(MVT::f32, MVT::f80, Expand);
308    setConvertAction(MVT::f64, MVT::f80, Expand);
309
310    // Conversions from long double (in X87) go through memory.
311    setConvertAction(MVT::f80, MVT::f32, Expand);
312    setConvertAction(MVT::f80, MVT::f64, Expand);
313  } else {
314    // Set up the FP register classes.
315    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
316    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
317
318    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
319    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
320    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
321    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
322
323    // Floating truncations need to go through memory.
324    setConvertAction(MVT::f80, MVT::f32, Expand);
325    setConvertAction(MVT::f64, MVT::f32, Expand);
326    setConvertAction(MVT::f80, MVT::f64, Expand);
327
328    if (!UnsafeFPMath) {
329      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
330      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
331    }
332
333    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
334    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
335    addLegalFPImmediate(APFloat(+0.0)); // FLD0
336    addLegalFPImmediate(APFloat(+1.0)); // FLD1
337    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
338    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
339  }
340
341  // Long double always uses X87.
342  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
343  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
344  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
345  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
346
347  // First set operation action for all vector types to expand. Then we
348  // will selectively turn on ones that can be effectively codegen'd.
349  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
350       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
351    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
352    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
353    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
354    setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
355    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
356    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
357    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
358    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
359    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
360    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
361    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
362    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
363    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
364    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
365    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
366    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
367    setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
368    setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
369    setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
370    setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
371    setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
372    setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
373    setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
374  }
375
376  if (Subtarget->hasMMX()) {
377    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
378    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
379    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
380    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
381
382    // FIXME: add MMX packed arithmetics
383
384    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
385    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
386    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
387    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
388
389    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
390    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
391    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
392
393    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
394    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
395
396    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
397    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
398    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
399    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
400    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
401    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
402    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
403
404    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
405    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
406    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
407    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
408    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
409    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
410    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
411
412    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
413    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
414    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
415    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
416    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
417    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
418    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
419
420    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
421    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
422    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
423    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
424    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
425    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
426    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
427
428    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
429    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
430    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
431    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
432
433    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
434    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
435    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
436    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
437
438    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
439    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
440    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Custom);
441    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
442  }
443
444  if (Subtarget->hasSSE1()) {
445    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
446
447    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
448    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
449    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
450    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
451    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
452    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
453    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
454    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
455    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
456    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
457    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
458  }
459
460  if (Subtarget->hasSSE2()) {
461    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
462    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
463    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
464    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
465    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
466
467    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
468    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
469    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
470    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
471    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
472    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
473    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
474    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
475    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
476    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
477    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
478    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
479    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
480    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
481    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
482
483    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
484    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
485    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
486    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
487    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
488    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
489
490    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
491    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
492      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
493      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
494      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
495    }
496    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
497    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
498    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
499    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
500    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
501    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
502
503    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
504    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
505      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
506      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
507      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
508      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
509      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
510      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
511      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
512      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
513      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
514      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
515    }
516
517    // Custom lower v2i64 and v2f64 selects.
518    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
519    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
520    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
521    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
522  }
523
524  // We want to custom lower some of our intrinsics.
525  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
526
527  // We have target-specific dag combine patterns for the following nodes:
528  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
529  setTargetDAGCombine(ISD::SELECT);
530
531  computeRegisterProperties();
532
533  // FIXME: These should be based on subtarget info. Plus, the values should
534  // be smaller when we are in optimizing for size mode.
535  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
536  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
537  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
538  allowUnalignedMemoryAccesses = true; // x86 supports it!
539}
540
541
542//===----------------------------------------------------------------------===//
543//               Return Value Calling Convention Implementation
544//===----------------------------------------------------------------------===//
545
546#include "X86GenCallingConv.inc"
547
548/// LowerRET - Lower an ISD::RET node.
549SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
550  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
551
552  SmallVector<CCValAssign, 16> RVLocs;
553  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
554  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
555  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
556  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
557
558
559  // If this is the first return lowered for this function, add the regs to the
560  // liveout set for the function.
561  if (DAG.getMachineFunction().liveout_empty()) {
562    for (unsigned i = 0; i != RVLocs.size(); ++i)
563      if (RVLocs[i].isRegLoc())
564        DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
565  }
566
567  SDOperand Chain = Op.getOperand(0);
568  SDOperand Flag;
569
570  // Copy the result values into the output registers.
571  if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
572      RVLocs[0].getLocReg() != X86::ST0) {
573    for (unsigned i = 0; i != RVLocs.size(); ++i) {
574      CCValAssign &VA = RVLocs[i];
575      assert(VA.isRegLoc() && "Can only return in registers!");
576      Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
577                               Flag);
578      Flag = Chain.getValue(1);
579    }
580  } else {
581    // We need to handle a destination of ST0 specially, because it isn't really
582    // a register.
583    SDOperand Value = Op.getOperand(1);
584
585    // If this is an FP return with ScalarSSE, we need to move the value from
586    // an XMM register onto the fp-stack.
587    if (X86ScalarSSE) {
588      SDOperand MemLoc;
589
590      // If this is a load into a scalarsse value, don't store the loaded value
591      // back to the stack, only to reload it: just replace the scalar-sse load.
592      if (ISD::isNON_EXTLoad(Value.Val) &&
593          (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
594        Chain  = Value.getOperand(0);
595        MemLoc = Value.getOperand(1);
596      } else {
597        // Spill the value to memory and reload it into top of stack.
598        unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
599        MachineFunction &MF = DAG.getMachineFunction();
600        int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
601        MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
602        Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
603      }
604      SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
605      SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
606      Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
607      Chain = Value.getValue(1);
608    }
609
610    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
611    SDOperand Ops[] = { Chain, Value };
612    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
613    Flag = Chain.getValue(1);
614  }
615
616  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
617  if (Flag.Val)
618    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
619  else
620    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
621}
622
623
624/// LowerCallResult - Lower the result values of an ISD::CALL into the
625/// appropriate copies out of appropriate physical registers.  This assumes that
626/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
627/// being lowered.  The returns a SDNode with the same number of values as the
628/// ISD::CALL.
629SDNode *X86TargetLowering::
630LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
631                unsigned CallingConv, SelectionDAG &DAG) {
632
633  // Assign locations to each value returned by this call.
634  SmallVector<CCValAssign, 16> RVLocs;
635  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
636  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
637  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
638
639
640  SmallVector<SDOperand, 8> ResultVals;
641
642  // Copy all of the result registers out of their specified physreg.
643  if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
644    for (unsigned i = 0; i != RVLocs.size(); ++i) {
645      Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
646                                 RVLocs[i].getValVT(), InFlag).getValue(1);
647      InFlag = Chain.getValue(2);
648      ResultVals.push_back(Chain.getValue(0));
649    }
650  } else {
651    // Copies from the FP stack are special, as ST0 isn't a valid register
652    // before the fp stackifier runs.
653
654    // Copy ST0 into an RFP register with FP_GET_RESULT.
655    SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
656    SDOperand GROps[] = { Chain, InFlag };
657    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
658    Chain  = RetVal.getValue(1);
659    InFlag = RetVal.getValue(2);
660
661    // If we are using ScalarSSE, store ST(0) to the stack and reload it into
662    // an XMM register.
663    if (X86ScalarSSE) {
664      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
665      // shouldn't be necessary except that RFP cannot be live across
666      // multiple blocks. When stackifier is fixed, they can be uncoupled.
667      MachineFunction &MF = DAG.getMachineFunction();
668      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
669      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
670      SDOperand Ops[] = {
671        Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
672      };
673      Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
674      RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
675      Chain = RetVal.getValue(1);
676    }
677    ResultVals.push_back(RetVal);
678  }
679
680  // Merge everything together with a MERGE_VALUES node.
681  ResultVals.push_back(Chain);
682  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
683                     &ResultVals[0], ResultVals.size()).Val;
684}
685
686
687//===----------------------------------------------------------------------===//
688//                C & StdCall Calling Convention implementation
689//===----------------------------------------------------------------------===//
690//  StdCall calling convention seems to be standard for many Windows' API
691//  routines and around. It differs from C calling convention just a little:
692//  callee should clean up the stack, not caller. Symbols should be also
693//  decorated in some fancy way :) It doesn't support any vector arguments.
694
695/// AddLiveIn - This helper function adds the specified physical register to the
696/// MachineFunction as a live in value.  It also creates a corresponding virtual
697/// register for it.
698static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
699                          const TargetRegisterClass *RC) {
700  assert(RC->contains(PReg) && "Not the correct regclass!");
701  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
702  MF.addLiveIn(PReg, VReg);
703  return VReg;
704}
705
706SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
707                                              const CCValAssign &VA,
708                                              MachineFrameInfo *MFI,
709                                              SDOperand Root, unsigned i) {
710  // Create the nodes corresponding to a load from this parameter slot.
711  int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
712                                  VA.getLocMemOffset());
713  SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
714
715  unsigned Flags =  cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
716
717  if (Flags & ISD::ParamFlags::ByVal)
718    return FIN;
719  else
720    return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
721}
722
723SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
724                                               bool isStdCall) {
725  unsigned NumArgs = Op.Val->getNumValues() - 1;
726  MachineFunction &MF = DAG.getMachineFunction();
727  MachineFrameInfo *MFI = MF.getFrameInfo();
728  SDOperand Root = Op.getOperand(0);
729  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
730
731  // Assign locations to all of the incoming arguments.
732  SmallVector<CCValAssign, 16> ArgLocs;
733  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
734                 getTargetMachine(), ArgLocs);
735  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
736
737  SmallVector<SDOperand, 8> ArgValues;
738  unsigned LastVal = ~0U;
739  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
740    CCValAssign &VA = ArgLocs[i];
741    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
742    // places.
743    assert(VA.getValNo() != LastVal &&
744           "Don't support value assigned to multiple locs yet");
745    LastVal = VA.getValNo();
746
747    if (VA.isRegLoc()) {
748      MVT::ValueType RegVT = VA.getLocVT();
749      TargetRegisterClass *RC;
750      if (RegVT == MVT::i32)
751        RC = X86::GR32RegisterClass;
752      else {
753        assert(MVT::isVector(RegVT));
754        RC = X86::VR128RegisterClass;
755      }
756
757      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
758      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
759
760      // If this is an 8 or 16-bit value, it is really passed promoted to 32
761      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
762      // right size.
763      if (VA.getLocInfo() == CCValAssign::SExt)
764        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
765                               DAG.getValueType(VA.getValVT()));
766      else if (VA.getLocInfo() == CCValAssign::ZExt)
767        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
768                               DAG.getValueType(VA.getValVT()));
769
770      if (VA.getLocInfo() != CCValAssign::Full)
771        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
772
773      ArgValues.push_back(ArgValue);
774    } else {
775      assert(VA.isMemLoc());
776      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
777    }
778  }
779
780  unsigned StackSize = CCInfo.getNextStackOffset();
781
782  ArgValues.push_back(Root);
783
784  // If the function takes variable number of arguments, make a frame index for
785  // the start of the first vararg value... for expansion of llvm.va_start.
786  if (isVarArg)
787    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
788
789  if (isStdCall && !isVarArg) {
790    BytesToPopOnReturn  = StackSize;    // Callee pops everything..
791    BytesCallerReserves = 0;
792  } else {
793    BytesToPopOnReturn  = 0; // Callee pops nothing.
794
795    // If this is an sret function, the return should pop the hidden pointer.
796    if (NumArgs &&
797        (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
798         ISD::ParamFlags::StructReturn))
799      BytesToPopOnReturn = 4;
800
801    BytesCallerReserves = StackSize;
802  }
803
804  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
805
806  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
807  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
808
809  // Return the new list of results.
810  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
811                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
812}
813
814SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
815                                            unsigned CC) {
816  SDOperand Chain     = Op.getOperand(0);
817  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
818  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
819  SDOperand Callee    = Op.getOperand(4);
820  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
821
822  // Analyze operands of the call, assigning locations to each operand.
823  SmallVector<CCValAssign, 16> ArgLocs;
824  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
825  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
826
827  // Get a count of how many bytes are to be pushed on the stack.
828  unsigned NumBytes = CCInfo.getNextStackOffset();
829
830  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
831
832  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
833  SmallVector<SDOperand, 8> MemOpChains;
834
835  SDOperand StackPtr;
836
837  // Walk the register/memloc assignments, inserting copies/loads.
838  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
839    CCValAssign &VA = ArgLocs[i];
840    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
841
842    // Promote the value if needed.
843    switch (VA.getLocInfo()) {
844    default: assert(0 && "Unknown loc info!");
845    case CCValAssign::Full: break;
846    case CCValAssign::SExt:
847      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
848      break;
849    case CCValAssign::ZExt:
850      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
851      break;
852    case CCValAssign::AExt:
853      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
854      break;
855    }
856
857    if (VA.isRegLoc()) {
858      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
859    } else {
860      assert(VA.isMemLoc());
861      if (StackPtr.Val == 0)
862        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
863      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
864      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
865      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
866    }
867  }
868
869  // If the first argument is an sret pointer, remember it.
870  bool isSRet = NumOps &&
871    (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
872     ISD::ParamFlags::StructReturn);
873
874  if (!MemOpChains.empty())
875    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
876                        &MemOpChains[0], MemOpChains.size());
877
878  // Build a sequence of copy-to-reg nodes chained together with token chain
879  // and flag operands which copy the outgoing args into registers.
880  SDOperand InFlag;
881  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
882    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
883                             InFlag);
884    InFlag = Chain.getValue(1);
885  }
886
887  // ELF / PIC requires GOT in the EBX register before function calls via PLT
888  // GOT pointer.
889  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
890      Subtarget->isPICStyleGOT()) {
891    Chain = DAG.getCopyToReg(Chain, X86::EBX,
892                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
893                             InFlag);
894    InFlag = Chain.getValue(1);
895  }
896
897  // If the callee is a GlobalAddress node (quite common, every direct call is)
898  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
899  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
900    // We should use extra load for direct calls to dllimported functions in
901    // non-JIT mode.
902    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
903                                        getTargetMachine(), true))
904      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
905  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
906    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
907
908  // Returns a chain & a flag for retval copy to use.
909  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
910  SmallVector<SDOperand, 8> Ops;
911  Ops.push_back(Chain);
912  Ops.push_back(Callee);
913
914  // Add argument registers to the end of the list so that they are known live
915  // into the call.
916  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
917    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
918                                  RegsToPass[i].second.getValueType()));
919
920  // Add an implicit use GOT pointer in EBX.
921  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
922      Subtarget->isPICStyleGOT())
923    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
924
925  if (InFlag.Val)
926    Ops.push_back(InFlag);
927
928  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
929                      NodeTys, &Ops[0], Ops.size());
930  InFlag = Chain.getValue(1);
931
932  // Create the CALLSEQ_END node.
933  unsigned NumBytesForCalleeToPush = 0;
934
935  if (CC == CallingConv::X86_StdCall) {
936    if (isVarArg)
937      NumBytesForCalleeToPush = isSRet ? 4 : 0;
938    else
939      NumBytesForCalleeToPush = NumBytes;
940  } else {
941    // If this is is a call to a struct-return function, the callee
942    // pops the hidden struct pointer, so we have to push it back.
943    // This is common for Darwin/X86, Linux & Mingw32 targets.
944    NumBytesForCalleeToPush = isSRet ? 4 : 0;
945  }
946
947  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
948  Ops.clear();
949  Ops.push_back(Chain);
950  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
951  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
952  Ops.push_back(InFlag);
953  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
954  InFlag = Chain.getValue(1);
955
956  // Handle result values, copying them out of physregs into vregs that we
957  // return.
958  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
959}
960
961
962//===----------------------------------------------------------------------===//
963//                   FastCall Calling Convention implementation
964//===----------------------------------------------------------------------===//
965//
966// The X86 'fastcall' calling convention passes up to two integer arguments in
967// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
968// and requires that the callee pop its arguments off the stack (allowing proper
969// tail calls), and has the same return value conventions as C calling convs.
970//
971// This calling convention always arranges for the callee pop value to be 8n+4
972// bytes, which is needed for tail recursion elimination and stack alignment
973// reasons.
974SDOperand
975X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
976  MachineFunction &MF = DAG.getMachineFunction();
977  MachineFrameInfo *MFI = MF.getFrameInfo();
978  SDOperand Root = Op.getOperand(0);
979  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
980
981  // Assign locations to all of the incoming arguments.
982  SmallVector<CCValAssign, 16> ArgLocs;
983  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
984                 getTargetMachine(), ArgLocs);
985  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
986
987  SmallVector<SDOperand, 8> ArgValues;
988  unsigned LastVal = ~0U;
989  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
990    CCValAssign &VA = ArgLocs[i];
991    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
992    // places.
993    assert(VA.getValNo() != LastVal &&
994           "Don't support value assigned to multiple locs yet");
995    LastVal = VA.getValNo();
996
997    if (VA.isRegLoc()) {
998      MVT::ValueType RegVT = VA.getLocVT();
999      TargetRegisterClass *RC;
1000      if (RegVT == MVT::i32)
1001        RC = X86::GR32RegisterClass;
1002      else {
1003        assert(MVT::isVector(RegVT));
1004        RC = X86::VR128RegisterClass;
1005      }
1006
1007      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1008      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1009
1010      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1011      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1012      // right size.
1013      if (VA.getLocInfo() == CCValAssign::SExt)
1014        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1015                               DAG.getValueType(VA.getValVT()));
1016      else if (VA.getLocInfo() == CCValAssign::ZExt)
1017        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1018                               DAG.getValueType(VA.getValVT()));
1019
1020      if (VA.getLocInfo() != CCValAssign::Full)
1021        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1022
1023      ArgValues.push_back(ArgValue);
1024    } else {
1025      assert(VA.isMemLoc());
1026
1027      // Create the nodes corresponding to a load from this parameter slot.
1028      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1029                                      VA.getLocMemOffset());
1030      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1031      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
1032    }
1033  }
1034
1035  ArgValues.push_back(Root);
1036
1037  unsigned StackSize = CCInfo.getNextStackOffset();
1038
1039  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1040    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1041    // arguments and the arguments after the retaddr has been pushed are aligned.
1042    if ((StackSize & 7) == 0)
1043      StackSize += 4;
1044  }
1045
1046  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1047  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
1048  BytesToPopOnReturn = StackSize;  // Callee pops all stack arguments.
1049  BytesCallerReserves = 0;
1050
1051  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1052  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1053
1054  // Return the new list of results.
1055  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1056                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1057}
1058
1059SDOperand
1060X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1061                                    const SDOperand &StackPtr,
1062                                    const CCValAssign &VA,
1063                                    SDOperand Chain,
1064                                    SDOperand Arg) {
1065  SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1066  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1067  SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1068  unsigned Flags    = cast<ConstantSDNode>(FlagsOp)->getValue();
1069  if (Flags & ISD::ParamFlags::ByVal) {
1070    unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1071                           ISD::ParamFlags::ByValAlignOffs);
1072
1073    assert (Align >= 8);
1074    unsigned  Size = (Flags & ISD::ParamFlags::ByValSize) >>
1075        ISD::ParamFlags::ByValSizeOffs;
1076
1077    SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1078    SDOperand  SizeNode = DAG.getConstant(Size, MVT::i32);
1079
1080    return DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, PtrOff, Arg, SizeNode,
1081                       AlignNode);
1082  } else {
1083    return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1084  }
1085}
1086
1087SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1088                                               unsigned CC) {
1089  SDOperand Chain     = Op.getOperand(0);
1090  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1091  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1092  SDOperand Callee    = Op.getOperand(4);
1093
1094  // Analyze operands of the call, assigning locations to each operand.
1095  SmallVector<CCValAssign, 16> ArgLocs;
1096  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1097  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1098
1099  // Get a count of how many bytes are to be pushed on the stack.
1100  unsigned NumBytes = CCInfo.getNextStackOffset();
1101
1102  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1103    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1104    // arguments and the arguments after the retaddr has been pushed are aligned.
1105    if ((NumBytes & 7) == 0)
1106      NumBytes += 4;
1107  }
1108
1109  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1110
1111  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1112  SmallVector<SDOperand, 8> MemOpChains;
1113
1114  SDOperand StackPtr;
1115
1116  // Walk the register/memloc assignments, inserting copies/loads.
1117  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1118    CCValAssign &VA = ArgLocs[i];
1119    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1120
1121    // Promote the value if needed.
1122    switch (VA.getLocInfo()) {
1123      default: assert(0 && "Unknown loc info!");
1124      case CCValAssign::Full: break;
1125      case CCValAssign::SExt:
1126        Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1127        break;
1128      case CCValAssign::ZExt:
1129        Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1130        break;
1131      case CCValAssign::AExt:
1132        Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1133        break;
1134    }
1135
1136    if (VA.isRegLoc()) {
1137      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1138    } else {
1139      assert(VA.isMemLoc());
1140      if (StackPtr.Val == 0)
1141        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1142      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1143      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1144      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1145    }
1146  }
1147
1148  if (!MemOpChains.empty())
1149    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1150                        &MemOpChains[0], MemOpChains.size());
1151
1152  // Build a sequence of copy-to-reg nodes chained together with token chain
1153  // and flag operands which copy the outgoing args into registers.
1154  SDOperand InFlag;
1155  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1156    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1157                             InFlag);
1158    InFlag = Chain.getValue(1);
1159  }
1160
1161  // If the callee is a GlobalAddress node (quite common, every direct call is)
1162  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1163  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1164    // We should use extra load for direct calls to dllimported functions in
1165    // non-JIT mode.
1166    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1167                                        getTargetMachine(), true))
1168      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1169  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1170    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1171
1172  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1173  // GOT pointer.
1174  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1175      Subtarget->isPICStyleGOT()) {
1176    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1177                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1178                             InFlag);
1179    InFlag = Chain.getValue(1);
1180  }
1181
1182  // Returns a chain & a flag for retval copy to use.
1183  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1184  SmallVector<SDOperand, 8> Ops;
1185  Ops.push_back(Chain);
1186  Ops.push_back(Callee);
1187
1188  // Add argument registers to the end of the list so that they are known live
1189  // into the call.
1190  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1191    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1192                                  RegsToPass[i].second.getValueType()));
1193
1194  // Add an implicit use GOT pointer in EBX.
1195  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1196      Subtarget->isPICStyleGOT())
1197    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1198
1199  if (InFlag.Val)
1200    Ops.push_back(InFlag);
1201
1202  // FIXME: Do not generate X86ISD::TAILCALL for now.
1203  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1204                      NodeTys, &Ops[0], Ops.size());
1205  InFlag = Chain.getValue(1);
1206
1207  // Returns a flag for retval copy to use.
1208  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1209  Ops.clear();
1210  Ops.push_back(Chain);
1211  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1212  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1213  Ops.push_back(InFlag);
1214  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1215  InFlag = Chain.getValue(1);
1216
1217  // Handle result values, copying them out of physregs into vregs that we
1218  // return.
1219  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1220}
1221
1222
1223//===----------------------------------------------------------------------===//
1224//                 X86-64 C Calling Convention implementation
1225//===----------------------------------------------------------------------===//
1226
1227SDOperand
1228X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1229  MachineFunction &MF = DAG.getMachineFunction();
1230  MachineFrameInfo *MFI = MF.getFrameInfo();
1231  SDOperand Root = Op.getOperand(0);
1232  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1233
1234  static const unsigned GPR64ArgRegs[] = {
1235    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1236  };
1237  static const unsigned XMMArgRegs[] = {
1238    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1239    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1240  };
1241
1242
1243  // Assign locations to all of the incoming arguments.
1244  SmallVector<CCValAssign, 16> ArgLocs;
1245  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1246                 getTargetMachine(), ArgLocs);
1247  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1248
1249  SmallVector<SDOperand, 8> ArgValues;
1250  unsigned LastVal = ~0U;
1251  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1252    CCValAssign &VA = ArgLocs[i];
1253    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1254    // places.
1255    assert(VA.getValNo() != LastVal &&
1256           "Don't support value assigned to multiple locs yet");
1257    LastVal = VA.getValNo();
1258
1259    if (VA.isRegLoc()) {
1260      MVT::ValueType RegVT = VA.getLocVT();
1261      TargetRegisterClass *RC;
1262      if (RegVT == MVT::i32)
1263        RC = X86::GR32RegisterClass;
1264      else if (RegVT == MVT::i64)
1265        RC = X86::GR64RegisterClass;
1266      else if (RegVT == MVT::f32)
1267        RC = X86::FR32RegisterClass;
1268      else if (RegVT == MVT::f64)
1269        RC = X86::FR64RegisterClass;
1270      else {
1271        assert(MVT::isVector(RegVT));
1272        if (MVT::getSizeInBits(RegVT) == 64) {
1273          RC = X86::GR64RegisterClass;       // MMX values are passed in GPRs.
1274          RegVT = MVT::i64;
1275        } else
1276          RC = X86::VR128RegisterClass;
1277      }
1278
1279      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1280      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1281
1282      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1283      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1284      // right size.
1285      if (VA.getLocInfo() == CCValAssign::SExt)
1286        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1287                               DAG.getValueType(VA.getValVT()));
1288      else if (VA.getLocInfo() == CCValAssign::ZExt)
1289        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1290                               DAG.getValueType(VA.getValVT()));
1291
1292      if (VA.getLocInfo() != CCValAssign::Full)
1293        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1294
1295      // Handle MMX values passed in GPRs.
1296      if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1297          MVT::getSizeInBits(RegVT) == 64)
1298        ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1299
1300      ArgValues.push_back(ArgValue);
1301    } else {
1302      assert(VA.isMemLoc());
1303      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1304    }
1305  }
1306
1307  unsigned StackSize = CCInfo.getNextStackOffset();
1308
1309  // If the function takes variable number of arguments, make a frame index for
1310  // the start of the first vararg value... for expansion of llvm.va_start.
1311  if (isVarArg) {
1312    unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1313    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1314
1315    // For X86-64, if there are vararg parameters that are passed via
1316    // registers, then we must store them to their spots on the stack so they
1317    // may be loaded by deferencing the result of va_next.
1318    VarArgsGPOffset = NumIntRegs * 8;
1319    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1320    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1321    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1322
1323    // Store the integer parameter registers.
1324    SmallVector<SDOperand, 8> MemOps;
1325    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1326    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1327                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1328    for (; NumIntRegs != 6; ++NumIntRegs) {
1329      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1330                                X86::GR64RegisterClass);
1331      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1332      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1333      MemOps.push_back(Store);
1334      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1335                        DAG.getConstant(8, getPointerTy()));
1336    }
1337
1338    // Now store the XMM (fp + vector) parameter registers.
1339    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1340                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1341    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1342      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1343                                X86::VR128RegisterClass);
1344      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1345      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1346      MemOps.push_back(Store);
1347      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1348                        DAG.getConstant(16, getPointerTy()));
1349    }
1350    if (!MemOps.empty())
1351        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1352                           &MemOps[0], MemOps.size());
1353  }
1354
1355  ArgValues.push_back(Root);
1356
1357  BytesToPopOnReturn = 0;  // Callee pops nothing.
1358  BytesCallerReserves = StackSize;
1359
1360  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1361  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1362
1363  // Return the new list of results.
1364  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1365                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1366}
1367
1368SDOperand
1369X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1370                                        unsigned CC) {
1371  SDOperand Chain     = Op.getOperand(0);
1372  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1373  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1374  SDOperand Callee    = Op.getOperand(4);
1375
1376  // Analyze operands of the call, assigning locations to each operand.
1377  SmallVector<CCValAssign, 16> ArgLocs;
1378  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1379  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1380
1381  // Get a count of how many bytes are to be pushed on the stack.
1382  unsigned NumBytes = CCInfo.getNextStackOffset();
1383  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1384
1385  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1386  SmallVector<SDOperand, 8> MemOpChains;
1387
1388  SDOperand StackPtr;
1389
1390  // Walk the register/memloc assignments, inserting copies/loads.
1391  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1392    CCValAssign &VA = ArgLocs[i];
1393    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1394
1395    // Promote the value if needed.
1396    switch (VA.getLocInfo()) {
1397    default: assert(0 && "Unknown loc info!");
1398    case CCValAssign::Full: break;
1399    case CCValAssign::SExt:
1400      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1401      break;
1402    case CCValAssign::ZExt:
1403      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1404      break;
1405    case CCValAssign::AExt:
1406      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1407      break;
1408    }
1409
1410    if (VA.isRegLoc()) {
1411      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1412    } else {
1413      assert(VA.isMemLoc());
1414      if (StackPtr.Val == 0)
1415        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1416
1417      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1418                                             Arg));
1419    }
1420  }
1421
1422  if (!MemOpChains.empty())
1423    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1424                        &MemOpChains[0], MemOpChains.size());
1425
1426  // Build a sequence of copy-to-reg nodes chained together with token chain
1427  // and flag operands which copy the outgoing args into registers.
1428  SDOperand InFlag;
1429  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1430    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1431                             InFlag);
1432    InFlag = Chain.getValue(1);
1433  }
1434
1435  if (isVarArg) {
1436    // From AMD64 ABI document:
1437    // For calls that may call functions that use varargs or stdargs
1438    // (prototype-less calls or calls to functions containing ellipsis (...) in
1439    // the declaration) %al is used as hidden argument to specify the number
1440    // of SSE registers used. The contents of %al do not need to match exactly
1441    // the number of registers, but must be an ubound on the number of SSE
1442    // registers used and is in the range 0 - 8 inclusive.
1443
1444    // Count the number of XMM registers allocated.
1445    static const unsigned XMMArgRegs[] = {
1446      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1447      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1448    };
1449    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1450
1451    Chain = DAG.getCopyToReg(Chain, X86::AL,
1452                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1453    InFlag = Chain.getValue(1);
1454  }
1455
1456  // If the callee is a GlobalAddress node (quite common, every direct call is)
1457  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1458  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1459    // We should use extra load for direct calls to dllimported functions in
1460    // non-JIT mode.
1461    if (getTargetMachine().getCodeModel() != CodeModel::Large
1462        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1463                                           getTargetMachine(), true))
1464      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1465  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1466    if (getTargetMachine().getCodeModel() != CodeModel::Large)
1467      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1468
1469  // Returns a chain & a flag for retval copy to use.
1470  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1471  SmallVector<SDOperand, 8> Ops;
1472  Ops.push_back(Chain);
1473  Ops.push_back(Callee);
1474
1475  // Add argument registers to the end of the list so that they are known live
1476  // into the call.
1477  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1478    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1479                                  RegsToPass[i].second.getValueType()));
1480
1481  if (InFlag.Val)
1482    Ops.push_back(InFlag);
1483
1484  // FIXME: Do not generate X86ISD::TAILCALL for now.
1485  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1486                      NodeTys, &Ops[0], Ops.size());
1487  InFlag = Chain.getValue(1);
1488
1489  // Returns a flag for retval copy to use.
1490  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1491  Ops.clear();
1492  Ops.push_back(Chain);
1493  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1494  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1495  Ops.push_back(InFlag);
1496  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1497  InFlag = Chain.getValue(1);
1498
1499  // Handle result values, copying them out of physregs into vregs that we
1500  // return.
1501  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1502}
1503
1504
1505//===----------------------------------------------------------------------===//
1506//                           Other Lowering Hooks
1507//===----------------------------------------------------------------------===//
1508
1509
1510SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1511  MachineFunction &MF = DAG.getMachineFunction();
1512  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1513  int ReturnAddrIndex = FuncInfo->getRAIndex();
1514
1515  if (ReturnAddrIndex == 0) {
1516    // Set up a frame object for the return address.
1517    if (Subtarget->is64Bit())
1518      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1519    else
1520      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1521
1522    FuncInfo->setRAIndex(ReturnAddrIndex);
1523  }
1524
1525  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1526}
1527
1528
1529
1530/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1531/// specific condition code. It returns a false if it cannot do a direct
1532/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1533/// needed.
1534static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1535                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1536                           SelectionDAG &DAG) {
1537  X86CC = X86::COND_INVALID;
1538  if (!isFP) {
1539    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1540      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1541        // X > -1   -> X == 0, jump !sign.
1542        RHS = DAG.getConstant(0, RHS.getValueType());
1543        X86CC = X86::COND_NS;
1544        return true;
1545      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1546        // X < 0   -> X == 0, jump on sign.
1547        X86CC = X86::COND_S;
1548        return true;
1549      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1550        // X < 1   -> X <= 0
1551        RHS = DAG.getConstant(0, RHS.getValueType());
1552        X86CC = X86::COND_LE;
1553        return true;
1554      }
1555    }
1556
1557    switch (SetCCOpcode) {
1558    default: break;
1559    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1560    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1561    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1562    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1563    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1564    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1565    case ISD::SETULT: X86CC = X86::COND_B;  break;
1566    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1567    case ISD::SETULE: X86CC = X86::COND_BE; break;
1568    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1569    }
1570  } else {
1571    // On a floating point condition, the flags are set as follows:
1572    // ZF  PF  CF   op
1573    //  0 | 0 | 0 | X > Y
1574    //  0 | 0 | 1 | X < Y
1575    //  1 | 0 | 0 | X == Y
1576    //  1 | 1 | 1 | unordered
1577    bool Flip = false;
1578    switch (SetCCOpcode) {
1579    default: break;
1580    case ISD::SETUEQ:
1581    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1582    case ISD::SETOLT: Flip = true; // Fallthrough
1583    case ISD::SETOGT:
1584    case ISD::SETGT: X86CC = X86::COND_A;  break;
1585    case ISD::SETOLE: Flip = true; // Fallthrough
1586    case ISD::SETOGE:
1587    case ISD::SETGE: X86CC = X86::COND_AE; break;
1588    case ISD::SETUGT: Flip = true; // Fallthrough
1589    case ISD::SETULT:
1590    case ISD::SETLT: X86CC = X86::COND_B;  break;
1591    case ISD::SETUGE: Flip = true; // Fallthrough
1592    case ISD::SETULE:
1593    case ISD::SETLE: X86CC = X86::COND_BE; break;
1594    case ISD::SETONE:
1595    case ISD::SETNE: X86CC = X86::COND_NE; break;
1596    case ISD::SETUO: X86CC = X86::COND_P;  break;
1597    case ISD::SETO:  X86CC = X86::COND_NP; break;
1598    }
1599    if (Flip)
1600      std::swap(LHS, RHS);
1601  }
1602
1603  return X86CC != X86::COND_INVALID;
1604}
1605
1606/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1607/// code. Current x86 isa includes the following FP cmov instructions:
1608/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1609static bool hasFPCMov(unsigned X86CC) {
1610  switch (X86CC) {
1611  default:
1612    return false;
1613  case X86::COND_B:
1614  case X86::COND_BE:
1615  case X86::COND_E:
1616  case X86::COND_P:
1617  case X86::COND_A:
1618  case X86::COND_AE:
1619  case X86::COND_NE:
1620  case X86::COND_NP:
1621    return true;
1622  }
1623}
1624
1625/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
1626/// true if Op is undef or if its value falls within the specified range (L, H].
1627static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1628  if (Op.getOpcode() == ISD::UNDEF)
1629    return true;
1630
1631  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1632  return (Val >= Low && Val < Hi);
1633}
1634
1635/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
1636/// true if Op is undef or if its value equal to the specified value.
1637static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1638  if (Op.getOpcode() == ISD::UNDEF)
1639    return true;
1640  return cast<ConstantSDNode>(Op)->getValue() == Val;
1641}
1642
1643/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1644/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1645bool X86::isPSHUFDMask(SDNode *N) {
1646  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1647
1648  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
1649    return false;
1650
1651  // Check if the value doesn't reference the second vector.
1652  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1653    SDOperand Arg = N->getOperand(i);
1654    if (Arg.getOpcode() == ISD::UNDEF) continue;
1655    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1656    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
1657      return false;
1658  }
1659
1660  return true;
1661}
1662
1663/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1664/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1665bool X86::isPSHUFHWMask(SDNode *N) {
1666  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1667
1668  if (N->getNumOperands() != 8)
1669    return false;
1670
1671  // Lower quadword copied in order.
1672  for (unsigned i = 0; i != 4; ++i) {
1673    SDOperand Arg = N->getOperand(i);
1674    if (Arg.getOpcode() == ISD::UNDEF) continue;
1675    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1676    if (cast<ConstantSDNode>(Arg)->getValue() != i)
1677      return false;
1678  }
1679
1680  // Upper quadword shuffled.
1681  for (unsigned i = 4; i != 8; ++i) {
1682    SDOperand Arg = N->getOperand(i);
1683    if (Arg.getOpcode() == ISD::UNDEF) continue;
1684    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1685    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1686    if (Val < 4 || Val > 7)
1687      return false;
1688  }
1689
1690  return true;
1691}
1692
1693/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1694/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1695bool X86::isPSHUFLWMask(SDNode *N) {
1696  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1697
1698  if (N->getNumOperands() != 8)
1699    return false;
1700
1701  // Upper quadword copied in order.
1702  for (unsigned i = 4; i != 8; ++i)
1703    if (!isUndefOrEqual(N->getOperand(i), i))
1704      return false;
1705
1706  // Lower quadword shuffled.
1707  for (unsigned i = 0; i != 4; ++i)
1708    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1709      return false;
1710
1711  return true;
1712}
1713
1714/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1715/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1716static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1717  if (NumElems != 2 && NumElems != 4) return false;
1718
1719  unsigned Half = NumElems / 2;
1720  for (unsigned i = 0; i < Half; ++i)
1721    if (!isUndefOrInRange(Elems[i], 0, NumElems))
1722      return false;
1723  for (unsigned i = Half; i < NumElems; ++i)
1724    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1725      return false;
1726
1727  return true;
1728}
1729
1730bool X86::isSHUFPMask(SDNode *N) {
1731  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1732  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1733}
1734
1735/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
1736/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1737/// half elements to come from vector 1 (which would equal the dest.) and
1738/// the upper half to come from vector 2.
1739static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1740  if (NumOps != 2 && NumOps != 4) return false;
1741
1742  unsigned Half = NumOps / 2;
1743  for (unsigned i = 0; i < Half; ++i)
1744    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1745      return false;
1746  for (unsigned i = Half; i < NumOps; ++i)
1747    if (!isUndefOrInRange(Ops[i], 0, NumOps))
1748      return false;
1749  return true;
1750}
1751
1752static bool isCommutedSHUFP(SDNode *N) {
1753  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1754  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1755}
1756
1757/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1758/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1759bool X86::isMOVHLPSMask(SDNode *N) {
1760  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1761
1762  if (N->getNumOperands() != 4)
1763    return false;
1764
1765  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1766  return isUndefOrEqual(N->getOperand(0), 6) &&
1767         isUndefOrEqual(N->getOperand(1), 7) &&
1768         isUndefOrEqual(N->getOperand(2), 2) &&
1769         isUndefOrEqual(N->getOperand(3), 3);
1770}
1771
1772/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1773/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1774/// <2, 3, 2, 3>
1775bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1776  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1777
1778  if (N->getNumOperands() != 4)
1779    return false;
1780
1781  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1782  return isUndefOrEqual(N->getOperand(0), 2) &&
1783         isUndefOrEqual(N->getOperand(1), 3) &&
1784         isUndefOrEqual(N->getOperand(2), 2) &&
1785         isUndefOrEqual(N->getOperand(3), 3);
1786}
1787
1788/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1789/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1790bool X86::isMOVLPMask(SDNode *N) {
1791  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1792
1793  unsigned NumElems = N->getNumOperands();
1794  if (NumElems != 2 && NumElems != 4)
1795    return false;
1796
1797  for (unsigned i = 0; i < NumElems/2; ++i)
1798    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1799      return false;
1800
1801  for (unsigned i = NumElems/2; i < NumElems; ++i)
1802    if (!isUndefOrEqual(N->getOperand(i), i))
1803      return false;
1804
1805  return true;
1806}
1807
1808/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1809/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1810/// and MOVLHPS.
1811bool X86::isMOVHPMask(SDNode *N) {
1812  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1813
1814  unsigned NumElems = N->getNumOperands();
1815  if (NumElems != 2 && NumElems != 4)
1816    return false;
1817
1818  for (unsigned i = 0; i < NumElems/2; ++i)
1819    if (!isUndefOrEqual(N->getOperand(i), i))
1820      return false;
1821
1822  for (unsigned i = 0; i < NumElems/2; ++i) {
1823    SDOperand Arg = N->getOperand(i + NumElems/2);
1824    if (!isUndefOrEqual(Arg, i + NumElems))
1825      return false;
1826  }
1827
1828  return true;
1829}
1830
1831/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1832/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1833bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1834                         bool V2IsSplat = false) {
1835  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1836    return false;
1837
1838  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1839    SDOperand BitI  = Elts[i];
1840    SDOperand BitI1 = Elts[i+1];
1841    if (!isUndefOrEqual(BitI, j))
1842      return false;
1843    if (V2IsSplat) {
1844      if (isUndefOrEqual(BitI1, NumElts))
1845        return false;
1846    } else {
1847      if (!isUndefOrEqual(BitI1, j + NumElts))
1848        return false;
1849    }
1850  }
1851
1852  return true;
1853}
1854
1855bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
1856  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1857  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1858}
1859
1860/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1861/// specifies a shuffle of elements that is suitable for input to UNPCKH.
1862bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
1863                         bool V2IsSplat = false) {
1864  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1865    return false;
1866
1867  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1868    SDOperand BitI  = Elts[i];
1869    SDOperand BitI1 = Elts[i+1];
1870    if (!isUndefOrEqual(BitI, j + NumElts/2))
1871      return false;
1872    if (V2IsSplat) {
1873      if (isUndefOrEqual(BitI1, NumElts))
1874        return false;
1875    } else {
1876      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
1877        return false;
1878    }
1879  }
1880
1881  return true;
1882}
1883
1884bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
1885  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1886  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1887}
1888
1889/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
1890/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
1891/// <0, 0, 1, 1>
1892bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
1893  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1894
1895  unsigned NumElems = N->getNumOperands();
1896  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1897    return false;
1898
1899  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1900    SDOperand BitI  = N->getOperand(i);
1901    SDOperand BitI1 = N->getOperand(i+1);
1902
1903    if (!isUndefOrEqual(BitI, j))
1904      return false;
1905    if (!isUndefOrEqual(BitI1, j))
1906      return false;
1907  }
1908
1909  return true;
1910}
1911
1912/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
1913/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
1914/// <2, 2, 3, 3>
1915bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
1916  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1917
1918  unsigned NumElems = N->getNumOperands();
1919  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1920    return false;
1921
1922  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
1923    SDOperand BitI  = N->getOperand(i);
1924    SDOperand BitI1 = N->getOperand(i + 1);
1925
1926    if (!isUndefOrEqual(BitI, j))
1927      return false;
1928    if (!isUndefOrEqual(BitI1, j))
1929      return false;
1930  }
1931
1932  return true;
1933}
1934
1935/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
1936/// specifies a shuffle of elements that is suitable for input to MOVSS,
1937/// MOVSD, and MOVD, i.e. setting the lowest element.
1938static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
1939  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1940    return false;
1941
1942  if (!isUndefOrEqual(Elts[0], NumElts))
1943    return false;
1944
1945  for (unsigned i = 1; i < NumElts; ++i) {
1946    if (!isUndefOrEqual(Elts[i], i))
1947      return false;
1948  }
1949
1950  return true;
1951}
1952
1953bool X86::isMOVLMask(SDNode *N) {
1954  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1955  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
1956}
1957
1958/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
1959/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
1960/// element of vector 2 and the other elements to come from vector 1 in order.
1961static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
1962                           bool V2IsSplat = false,
1963                           bool V2IsUndef = false) {
1964  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
1965    return false;
1966
1967  if (!isUndefOrEqual(Ops[0], 0))
1968    return false;
1969
1970  for (unsigned i = 1; i < NumOps; ++i) {
1971    SDOperand Arg = Ops[i];
1972    if (!(isUndefOrEqual(Arg, i+NumOps) ||
1973          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
1974          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
1975      return false;
1976  }
1977
1978  return true;
1979}
1980
1981static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
1982                           bool V2IsUndef = false) {
1983  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1984  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
1985                        V2IsSplat, V2IsUndef);
1986}
1987
1988/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1989/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
1990bool X86::isMOVSHDUPMask(SDNode *N) {
1991  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1992
1993  if (N->getNumOperands() != 4)
1994    return false;
1995
1996  // Expect 1, 1, 3, 3
1997  for (unsigned i = 0; i < 2; ++i) {
1998    SDOperand Arg = N->getOperand(i);
1999    if (Arg.getOpcode() == ISD::UNDEF) continue;
2000    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2001    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2002    if (Val != 1) return false;
2003  }
2004
2005  bool HasHi = false;
2006  for (unsigned i = 2; i < 4; ++i) {
2007    SDOperand Arg = N->getOperand(i);
2008    if (Arg.getOpcode() == ISD::UNDEF) continue;
2009    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2010    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2011    if (Val != 3) return false;
2012    HasHi = true;
2013  }
2014
2015  // Don't use movshdup if it can be done with a shufps.
2016  return HasHi;
2017}
2018
2019/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2020/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2021bool X86::isMOVSLDUPMask(SDNode *N) {
2022  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2023
2024  if (N->getNumOperands() != 4)
2025    return false;
2026
2027  // Expect 0, 0, 2, 2
2028  for (unsigned i = 0; i < 2; ++i) {
2029    SDOperand Arg = N->getOperand(i);
2030    if (Arg.getOpcode() == ISD::UNDEF) continue;
2031    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2032    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2033    if (Val != 0) return false;
2034  }
2035
2036  bool HasHi = false;
2037  for (unsigned i = 2; i < 4; ++i) {
2038    SDOperand Arg = N->getOperand(i);
2039    if (Arg.getOpcode() == ISD::UNDEF) continue;
2040    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2041    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2042    if (Val != 2) return false;
2043    HasHi = true;
2044  }
2045
2046  // Don't use movshdup if it can be done with a shufps.
2047  return HasHi;
2048}
2049
2050/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2051/// specifies a identity operation on the LHS or RHS.
2052static bool isIdentityMask(SDNode *N, bool RHS = false) {
2053  unsigned NumElems = N->getNumOperands();
2054  for (unsigned i = 0; i < NumElems; ++i)
2055    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2056      return false;
2057  return true;
2058}
2059
2060/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2061/// a splat of a single element.
2062static bool isSplatMask(SDNode *N) {
2063  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2064
2065  // This is a splat operation if each element of the permute is the same, and
2066  // if the value doesn't reference the second vector.
2067  unsigned NumElems = N->getNumOperands();
2068  SDOperand ElementBase;
2069  unsigned i = 0;
2070  for (; i != NumElems; ++i) {
2071    SDOperand Elt = N->getOperand(i);
2072    if (isa<ConstantSDNode>(Elt)) {
2073      ElementBase = Elt;
2074      break;
2075    }
2076  }
2077
2078  if (!ElementBase.Val)
2079    return false;
2080
2081  for (; i != NumElems; ++i) {
2082    SDOperand Arg = N->getOperand(i);
2083    if (Arg.getOpcode() == ISD::UNDEF) continue;
2084    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2085    if (Arg != ElementBase) return false;
2086  }
2087
2088  // Make sure it is a splat of the first vector operand.
2089  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2090}
2091
2092/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2093/// a splat of a single element and it's a 2 or 4 element mask.
2094bool X86::isSplatMask(SDNode *N) {
2095  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2096
2097  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2098  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2099    return false;
2100  return ::isSplatMask(N);
2101}
2102
2103/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2104/// specifies a splat of zero element.
2105bool X86::isSplatLoMask(SDNode *N) {
2106  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2107
2108  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2109    if (!isUndefOrEqual(N->getOperand(i), 0))
2110      return false;
2111  return true;
2112}
2113
2114/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2115/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2116/// instructions.
2117unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2118  unsigned NumOperands = N->getNumOperands();
2119  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2120  unsigned Mask = 0;
2121  for (unsigned i = 0; i < NumOperands; ++i) {
2122    unsigned Val = 0;
2123    SDOperand Arg = N->getOperand(NumOperands-i-1);
2124    if (Arg.getOpcode() != ISD::UNDEF)
2125      Val = cast<ConstantSDNode>(Arg)->getValue();
2126    if (Val >= NumOperands) Val -= NumOperands;
2127    Mask |= Val;
2128    if (i != NumOperands - 1)
2129      Mask <<= Shift;
2130  }
2131
2132  return Mask;
2133}
2134
2135/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2136/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2137/// instructions.
2138unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2139  unsigned Mask = 0;
2140  // 8 nodes, but we only care about the last 4.
2141  for (unsigned i = 7; i >= 4; --i) {
2142    unsigned Val = 0;
2143    SDOperand Arg = N->getOperand(i);
2144    if (Arg.getOpcode() != ISD::UNDEF)
2145      Val = cast<ConstantSDNode>(Arg)->getValue();
2146    Mask |= (Val - 4);
2147    if (i != 4)
2148      Mask <<= 2;
2149  }
2150
2151  return Mask;
2152}
2153
2154/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2155/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2156/// instructions.
2157unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2158  unsigned Mask = 0;
2159  // 8 nodes, but we only care about the first 4.
2160  for (int i = 3; i >= 0; --i) {
2161    unsigned Val = 0;
2162    SDOperand Arg = N->getOperand(i);
2163    if (Arg.getOpcode() != ISD::UNDEF)
2164      Val = cast<ConstantSDNode>(Arg)->getValue();
2165    Mask |= Val;
2166    if (i != 0)
2167      Mask <<= 2;
2168  }
2169
2170  return Mask;
2171}
2172
2173/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2174/// specifies a 8 element shuffle that can be broken into a pair of
2175/// PSHUFHW and PSHUFLW.
2176static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2177  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2178
2179  if (N->getNumOperands() != 8)
2180    return false;
2181
2182  // Lower quadword shuffled.
2183  for (unsigned i = 0; i != 4; ++i) {
2184    SDOperand Arg = N->getOperand(i);
2185    if (Arg.getOpcode() == ISD::UNDEF) continue;
2186    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2187    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2188    if (Val > 4)
2189      return false;
2190  }
2191
2192  // Upper quadword shuffled.
2193  for (unsigned i = 4; i != 8; ++i) {
2194    SDOperand Arg = N->getOperand(i);
2195    if (Arg.getOpcode() == ISD::UNDEF) continue;
2196    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2197    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2198    if (Val < 4 || Val > 7)
2199      return false;
2200  }
2201
2202  return true;
2203}
2204
2205/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2206/// values in ther permute mask.
2207static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2208                                      SDOperand &V2, SDOperand &Mask,
2209                                      SelectionDAG &DAG) {
2210  MVT::ValueType VT = Op.getValueType();
2211  MVT::ValueType MaskVT = Mask.getValueType();
2212  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2213  unsigned NumElems = Mask.getNumOperands();
2214  SmallVector<SDOperand, 8> MaskVec;
2215
2216  for (unsigned i = 0; i != NumElems; ++i) {
2217    SDOperand Arg = Mask.getOperand(i);
2218    if (Arg.getOpcode() == ISD::UNDEF) {
2219      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2220      continue;
2221    }
2222    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2223    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2224    if (Val < NumElems)
2225      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2226    else
2227      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2228  }
2229
2230  std::swap(V1, V2);
2231  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2232  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2233}
2234
2235/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2236/// match movhlps. The lower half elements should come from upper half of
2237/// V1 (and in order), and the upper half elements should come from the upper
2238/// half of V2 (and in order).
2239static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2240  unsigned NumElems = Mask->getNumOperands();
2241  if (NumElems != 4)
2242    return false;
2243  for (unsigned i = 0, e = 2; i != e; ++i)
2244    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2245      return false;
2246  for (unsigned i = 2; i != 4; ++i)
2247    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2248      return false;
2249  return true;
2250}
2251
2252/// isScalarLoadToVector - Returns true if the node is a scalar load that
2253/// is promoted to a vector.
2254static inline bool isScalarLoadToVector(SDNode *N) {
2255  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2256    N = N->getOperand(0).Val;
2257    return ISD::isNON_EXTLoad(N);
2258  }
2259  return false;
2260}
2261
2262/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2263/// match movlp{s|d}. The lower half elements should come from lower half of
2264/// V1 (and in order), and the upper half elements should come from the upper
2265/// half of V2 (and in order). And since V1 will become the source of the
2266/// MOVLP, it must be either a vector load or a scalar load to vector.
2267static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2268  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2269    return false;
2270  // Is V2 is a vector load, don't do this transformation. We will try to use
2271  // load folding shufps op.
2272  if (ISD::isNON_EXTLoad(V2))
2273    return false;
2274
2275  unsigned NumElems = Mask->getNumOperands();
2276  if (NumElems != 2 && NumElems != 4)
2277    return false;
2278  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2279    if (!isUndefOrEqual(Mask->getOperand(i), i))
2280      return false;
2281  for (unsigned i = NumElems/2; i != NumElems; ++i)
2282    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2283      return false;
2284  return true;
2285}
2286
2287/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2288/// all the same.
2289static bool isSplatVector(SDNode *N) {
2290  if (N->getOpcode() != ISD::BUILD_VECTOR)
2291    return false;
2292
2293  SDOperand SplatValue = N->getOperand(0);
2294  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2295    if (N->getOperand(i) != SplatValue)
2296      return false;
2297  return true;
2298}
2299
2300/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2301/// to an undef.
2302static bool isUndefShuffle(SDNode *N) {
2303  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2304    return false;
2305
2306  SDOperand V1 = N->getOperand(0);
2307  SDOperand V2 = N->getOperand(1);
2308  SDOperand Mask = N->getOperand(2);
2309  unsigned NumElems = Mask.getNumOperands();
2310  for (unsigned i = 0; i != NumElems; ++i) {
2311    SDOperand Arg = Mask.getOperand(i);
2312    if (Arg.getOpcode() != ISD::UNDEF) {
2313      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2314      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2315        return false;
2316      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2317        return false;
2318    }
2319  }
2320  return true;
2321}
2322
2323/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2324/// constant +0.0.
2325static inline bool isZeroNode(SDOperand Elt) {
2326  return ((isa<ConstantSDNode>(Elt) &&
2327           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2328          (isa<ConstantFPSDNode>(Elt) &&
2329           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2330}
2331
2332/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2333/// to an zero vector.
2334static bool isZeroShuffle(SDNode *N) {
2335  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2336    return false;
2337
2338  SDOperand V1 = N->getOperand(0);
2339  SDOperand V2 = N->getOperand(1);
2340  SDOperand Mask = N->getOperand(2);
2341  unsigned NumElems = Mask.getNumOperands();
2342  for (unsigned i = 0; i != NumElems; ++i) {
2343    SDOperand Arg = Mask.getOperand(i);
2344    if (Arg.getOpcode() != ISD::UNDEF) {
2345      unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2346      if (Idx < NumElems) {
2347        unsigned Opc = V1.Val->getOpcode();
2348        if (Opc == ISD::UNDEF)
2349          continue;
2350        if (Opc != ISD::BUILD_VECTOR ||
2351            !isZeroNode(V1.Val->getOperand(Idx)))
2352          return false;
2353      } else if (Idx >= NumElems) {
2354        unsigned Opc = V2.Val->getOpcode();
2355        if (Opc == ISD::UNDEF)
2356          continue;
2357        if (Opc != ISD::BUILD_VECTOR ||
2358            !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2359          return false;
2360      }
2361    }
2362  }
2363  return true;
2364}
2365
2366/// getZeroVector - Returns a vector of specified type with all zero elements.
2367///
2368static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2369  assert(MVT::isVector(VT) && "Expected a vector type");
2370  unsigned NumElems = MVT::getVectorNumElements(VT);
2371  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2372  bool isFP = MVT::isFloatingPoint(EVT);
2373  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2374  SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2375  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2376}
2377
2378/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2379/// that point to V2 points to its first element.
2380static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2381  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2382
2383  bool Changed = false;
2384  SmallVector<SDOperand, 8> MaskVec;
2385  unsigned NumElems = Mask.getNumOperands();
2386  for (unsigned i = 0; i != NumElems; ++i) {
2387    SDOperand Arg = Mask.getOperand(i);
2388    if (Arg.getOpcode() != ISD::UNDEF) {
2389      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2390      if (Val > NumElems) {
2391        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2392        Changed = true;
2393      }
2394    }
2395    MaskVec.push_back(Arg);
2396  }
2397
2398  if (Changed)
2399    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2400                       &MaskVec[0], MaskVec.size());
2401  return Mask;
2402}
2403
2404/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2405/// operation of specified width.
2406static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2407  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2408  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2409
2410  SmallVector<SDOperand, 8> MaskVec;
2411  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2412  for (unsigned i = 1; i != NumElems; ++i)
2413    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2414  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2415}
2416
2417/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2418/// of specified width.
2419static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2420  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2421  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2422  SmallVector<SDOperand, 8> MaskVec;
2423  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2424    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2425    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2426  }
2427  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2428}
2429
2430/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2431/// of specified width.
2432static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2433  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2434  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2435  unsigned Half = NumElems/2;
2436  SmallVector<SDOperand, 8> MaskVec;
2437  for (unsigned i = 0; i != Half; ++i) {
2438    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2439    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2440  }
2441  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2442}
2443
2444/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2445///
2446static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2447  SDOperand V1 = Op.getOperand(0);
2448  SDOperand Mask = Op.getOperand(2);
2449  MVT::ValueType VT = Op.getValueType();
2450  unsigned NumElems = Mask.getNumOperands();
2451  Mask = getUnpacklMask(NumElems, DAG);
2452  while (NumElems != 4) {
2453    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2454    NumElems >>= 1;
2455  }
2456  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2457
2458  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2459  Mask = getZeroVector(MaskVT, DAG);
2460  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2461                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2462  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2463}
2464
2465/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2466/// vector of zero or undef vector.
2467static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2468                                             unsigned NumElems, unsigned Idx,
2469                                             bool isZero, SelectionDAG &DAG) {
2470  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2471  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2472  MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2473  SDOperand Zero = DAG.getConstant(0, EVT);
2474  SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2475  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2476  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2477                               &MaskVec[0], MaskVec.size());
2478  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2479}
2480
2481/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2482///
2483static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2484                                       unsigned NumNonZero, unsigned NumZero,
2485                                       SelectionDAG &DAG, TargetLowering &TLI) {
2486  if (NumNonZero > 8)
2487    return SDOperand();
2488
2489  SDOperand V(0, 0);
2490  bool First = true;
2491  for (unsigned i = 0; i < 16; ++i) {
2492    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2493    if (ThisIsNonZero && First) {
2494      if (NumZero)
2495        V = getZeroVector(MVT::v8i16, DAG);
2496      else
2497        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2498      First = false;
2499    }
2500
2501    if ((i & 1) != 0) {
2502      SDOperand ThisElt(0, 0), LastElt(0, 0);
2503      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2504      if (LastIsNonZero) {
2505        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2506      }
2507      if (ThisIsNonZero) {
2508        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2509        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2510                              ThisElt, DAG.getConstant(8, MVT::i8));
2511        if (LastIsNonZero)
2512          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2513      } else
2514        ThisElt = LastElt;
2515
2516      if (ThisElt.Val)
2517        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2518                        DAG.getConstant(i/2, TLI.getPointerTy()));
2519    }
2520  }
2521
2522  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2523}
2524
2525/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2526///
2527static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2528                                       unsigned NumNonZero, unsigned NumZero,
2529                                       SelectionDAG &DAG, TargetLowering &TLI) {
2530  if (NumNonZero > 4)
2531    return SDOperand();
2532
2533  SDOperand V(0, 0);
2534  bool First = true;
2535  for (unsigned i = 0; i < 8; ++i) {
2536    bool isNonZero = (NonZeros & (1 << i)) != 0;
2537    if (isNonZero) {
2538      if (First) {
2539        if (NumZero)
2540          V = getZeroVector(MVT::v8i16, DAG);
2541        else
2542          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2543        First = false;
2544      }
2545      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2546                      DAG.getConstant(i, TLI.getPointerTy()));
2547    }
2548  }
2549
2550  return V;
2551}
2552
2553SDOperand
2554X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2555  // All zero's are handled with pxor.
2556  if (ISD::isBuildVectorAllZeros(Op.Val))
2557    return Op;
2558
2559  // All one's are handled with pcmpeqd.
2560  if (ISD::isBuildVectorAllOnes(Op.Val))
2561    return Op;
2562
2563  MVT::ValueType VT = Op.getValueType();
2564  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2565  unsigned EVTBits = MVT::getSizeInBits(EVT);
2566
2567  unsigned NumElems = Op.getNumOperands();
2568  unsigned NumZero  = 0;
2569  unsigned NumNonZero = 0;
2570  unsigned NonZeros = 0;
2571  unsigned NumNonZeroImms = 0;
2572  std::set<SDOperand> Values;
2573  for (unsigned i = 0; i < NumElems; ++i) {
2574    SDOperand Elt = Op.getOperand(i);
2575    if (Elt.getOpcode() != ISD::UNDEF) {
2576      Values.insert(Elt);
2577      if (isZeroNode(Elt))
2578        NumZero++;
2579      else {
2580        NonZeros |= (1 << i);
2581        NumNonZero++;
2582        if (Elt.getOpcode() == ISD::Constant ||
2583            Elt.getOpcode() == ISD::ConstantFP)
2584          NumNonZeroImms++;
2585      }
2586    }
2587  }
2588
2589  if (NumNonZero == 0) {
2590    if (NumZero == 0)
2591      // All undef vector. Return an UNDEF.
2592      return DAG.getNode(ISD::UNDEF, VT);
2593    else
2594      // A mix of zero and undef. Return a zero vector.
2595      return getZeroVector(VT, DAG);
2596  }
2597
2598  // Splat is obviously ok. Let legalizer expand it to a shuffle.
2599  if (Values.size() == 1)
2600    return SDOperand();
2601
2602  // Special case for single non-zero element.
2603  if (NumNonZero == 1) {
2604    unsigned Idx = CountTrailingZeros_32(NonZeros);
2605    SDOperand Item = Op.getOperand(Idx);
2606    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2607    if (Idx == 0)
2608      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2609      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2610                                         NumZero > 0, DAG);
2611
2612    if (EVTBits == 32) {
2613      // Turn it into a shuffle of zero and zero-extended scalar to vector.
2614      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2615                                         DAG);
2616      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
2617      MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2618      SmallVector<SDOperand, 8> MaskVec;
2619      for (unsigned i = 0; i < NumElems; i++)
2620        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2621      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2622                                   &MaskVec[0], MaskVec.size());
2623      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2624                         DAG.getNode(ISD::UNDEF, VT), Mask);
2625    }
2626  }
2627
2628  // A vector full of immediates; various special cases are already
2629  // handled, so this is best done with a single constant-pool load.
2630  if (NumNonZero == NumNonZeroImms)
2631    return SDOperand();
2632
2633  // Let legalizer expand 2-wide build_vectors.
2634  if (EVTBits == 64)
2635    return SDOperand();
2636
2637  // If element VT is < 32 bits, convert it to inserts into a zero vector.
2638  if (EVTBits == 8 && NumElems == 16) {
2639    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2640                                        *this);
2641    if (V.Val) return V;
2642  }
2643
2644  if (EVTBits == 16 && NumElems == 8) {
2645    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2646                                        *this);
2647    if (V.Val) return V;
2648  }
2649
2650  // If element VT is == 32 bits, turn it into a number of shuffles.
2651  SmallVector<SDOperand, 8> V;
2652  V.resize(NumElems);
2653  if (NumElems == 4 && NumZero > 0) {
2654    for (unsigned i = 0; i < 4; ++i) {
2655      bool isZero = !(NonZeros & (1 << i));
2656      if (isZero)
2657        V[i] = getZeroVector(VT, DAG);
2658      else
2659        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2660    }
2661
2662    for (unsigned i = 0; i < 2; ++i) {
2663      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2664        default: break;
2665        case 0:
2666          V[i] = V[i*2];  // Must be a zero vector.
2667          break;
2668        case 1:
2669          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2670                             getMOVLMask(NumElems, DAG));
2671          break;
2672        case 2:
2673          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2674                             getMOVLMask(NumElems, DAG));
2675          break;
2676        case 3:
2677          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2678                             getUnpacklMask(NumElems, DAG));
2679          break;
2680      }
2681    }
2682
2683    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2684    // clears the upper bits.
2685    // FIXME: we can do the same for v4f32 case when we know both parts of
2686    // the lower half come from scalar_to_vector (loadf32). We should do
2687    // that in post legalizer dag combiner with target specific hooks.
2688    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2689      return V[0];
2690    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2691    MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2692    SmallVector<SDOperand, 8> MaskVec;
2693    bool Reverse = (NonZeros & 0x3) == 2;
2694    for (unsigned i = 0; i < 2; ++i)
2695      if (Reverse)
2696        MaskVec.push_back(DAG.getConstant(1-i, EVT));
2697      else
2698        MaskVec.push_back(DAG.getConstant(i, EVT));
2699    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2700    for (unsigned i = 0; i < 2; ++i)
2701      if (Reverse)
2702        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2703      else
2704        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2705    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2706                                     &MaskVec[0], MaskVec.size());
2707    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2708  }
2709
2710  if (Values.size() > 2) {
2711    // Expand into a number of unpckl*.
2712    // e.g. for v4f32
2713    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2714    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2715    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
2716    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2717    for (unsigned i = 0; i < NumElems; ++i)
2718      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2719    NumElems >>= 1;
2720    while (NumElems != 0) {
2721      for (unsigned i = 0; i < NumElems; ++i)
2722        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2723                           UnpckMask);
2724      NumElems >>= 1;
2725    }
2726    return V[0];
2727  }
2728
2729  return SDOperand();
2730}
2731
2732SDOperand
2733X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2734  SDOperand V1 = Op.getOperand(0);
2735  SDOperand V2 = Op.getOperand(1);
2736  SDOperand PermMask = Op.getOperand(2);
2737  MVT::ValueType VT = Op.getValueType();
2738  unsigned NumElems = PermMask.getNumOperands();
2739  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2740  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2741  bool V1IsSplat = false;
2742  bool V2IsSplat = false;
2743
2744  if (isUndefShuffle(Op.Val))
2745    return DAG.getNode(ISD::UNDEF, VT);
2746
2747  if (isZeroShuffle(Op.Val))
2748    return getZeroVector(VT, DAG);
2749
2750  if (isIdentityMask(PermMask.Val))
2751    return V1;
2752  else if (isIdentityMask(PermMask.Val, true))
2753    return V2;
2754
2755  if (isSplatMask(PermMask.Val)) {
2756    if (NumElems <= 4) return Op;
2757    // Promote it to a v4i32 splat.
2758    return PromoteSplat(Op, DAG);
2759  }
2760
2761  if (X86::isMOVLMask(PermMask.Val))
2762    return (V1IsUndef) ? V2 : Op;
2763
2764  if (X86::isMOVSHDUPMask(PermMask.Val) ||
2765      X86::isMOVSLDUPMask(PermMask.Val) ||
2766      X86::isMOVHLPSMask(PermMask.Val) ||
2767      X86::isMOVHPMask(PermMask.Val) ||
2768      X86::isMOVLPMask(PermMask.Val))
2769    return Op;
2770
2771  if (ShouldXformToMOVHLPS(PermMask.Val) ||
2772      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2773    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2774
2775  bool Commuted = false;
2776  V1IsSplat = isSplatVector(V1.Val);
2777  V2IsSplat = isSplatVector(V2.Val);
2778  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2779    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2780    std::swap(V1IsSplat, V2IsSplat);
2781    std::swap(V1IsUndef, V2IsUndef);
2782    Commuted = true;
2783  }
2784
2785  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2786    if (V2IsUndef) return V1;
2787    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2788    if (V2IsSplat) {
2789      // V2 is a splat, so the mask may be malformed. That is, it may point
2790      // to any V2 element. The instruction selectior won't like this. Get
2791      // a corrected mask and commute to form a proper MOVS{S|D}.
2792      SDOperand NewMask = getMOVLMask(NumElems, DAG);
2793      if (NewMask.Val != PermMask.Val)
2794        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2795    }
2796    return Op;
2797  }
2798
2799  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2800      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2801      X86::isUNPCKLMask(PermMask.Val) ||
2802      X86::isUNPCKHMask(PermMask.Val))
2803    return Op;
2804
2805  if (V2IsSplat) {
2806    // Normalize mask so all entries that point to V2 points to its first
2807    // element then try to match unpck{h|l} again. If match, return a
2808    // new vector_shuffle with the corrected mask.
2809    SDOperand NewMask = NormalizeMask(PermMask, DAG);
2810    if (NewMask.Val != PermMask.Val) {
2811      if (X86::isUNPCKLMask(PermMask.Val, true)) {
2812        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2813        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2814      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2815        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2816        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2817      }
2818    }
2819  }
2820
2821  // Normalize the node to match x86 shuffle ops if needed
2822  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
2823      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2824
2825  if (Commuted) {
2826    // Commute is back and try unpck* again.
2827    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2828    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2829        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2830        X86::isUNPCKLMask(PermMask.Val) ||
2831        X86::isUNPCKHMask(PermMask.Val))
2832      return Op;
2833  }
2834
2835  // If VT is integer, try PSHUF* first, then SHUFP*.
2836  if (MVT::isInteger(VT)) {
2837    // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
2838    // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
2839    if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
2840         X86::isPSHUFDMask(PermMask.Val)) ||
2841        X86::isPSHUFHWMask(PermMask.Val) ||
2842        X86::isPSHUFLWMask(PermMask.Val)) {
2843      if (V2.getOpcode() != ISD::UNDEF)
2844        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2845                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2846      return Op;
2847    }
2848
2849    if (X86::isSHUFPMask(PermMask.Val) &&
2850        MVT::getSizeInBits(VT) != 64)    // Don't do this for MMX.
2851      return Op;
2852
2853    // Handle v8i16 shuffle high / low shuffle node pair.
2854    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
2855      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2856      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2857      SmallVector<SDOperand, 8> MaskVec;
2858      for (unsigned i = 0; i != 4; ++i)
2859        MaskVec.push_back(PermMask.getOperand(i));
2860      for (unsigned i = 4; i != 8; ++i)
2861        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2862      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2863                                   &MaskVec[0], MaskVec.size());
2864      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2865      MaskVec.clear();
2866      for (unsigned i = 0; i != 4; ++i)
2867        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2868      for (unsigned i = 4; i != 8; ++i)
2869        MaskVec.push_back(PermMask.getOperand(i));
2870      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
2871      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2872    }
2873  } else {
2874    // Floating point cases in the other order.
2875    if (X86::isSHUFPMask(PermMask.Val))
2876      return Op;
2877    if (X86::isPSHUFDMask(PermMask.Val) ||
2878        X86::isPSHUFHWMask(PermMask.Val) ||
2879        X86::isPSHUFLWMask(PermMask.Val)) {
2880      if (V2.getOpcode() != ISD::UNDEF)
2881        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2882                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2883      return Op;
2884    }
2885  }
2886
2887  if (NumElems == 4 &&
2888      // Don't do this for MMX.
2889      MVT::getSizeInBits(VT) != 64) {
2890    MVT::ValueType MaskVT = PermMask.getValueType();
2891    MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2892    SmallVector<std::pair<int, int>, 8> Locs;
2893    Locs.reserve(NumElems);
2894    SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2895    SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2896    unsigned NumHi = 0;
2897    unsigned NumLo = 0;
2898    // If no more than two elements come from either vector. This can be
2899    // implemented with two shuffles. First shuffle gather the elements.
2900    // The second shuffle, which takes the first shuffle as both of its
2901    // vector operands, put the elements into the right order.
2902    for (unsigned i = 0; i != NumElems; ++i) {
2903      SDOperand Elt = PermMask.getOperand(i);
2904      if (Elt.getOpcode() == ISD::UNDEF) {
2905        Locs[i] = std::make_pair(-1, -1);
2906      } else {
2907        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
2908        if (Val < NumElems) {
2909          Locs[i] = std::make_pair(0, NumLo);
2910          Mask1[NumLo] = Elt;
2911          NumLo++;
2912        } else {
2913          Locs[i] = std::make_pair(1, NumHi);
2914          if (2+NumHi < NumElems)
2915            Mask1[2+NumHi] = Elt;
2916          NumHi++;
2917        }
2918      }
2919    }
2920    if (NumLo <= 2 && NumHi <= 2) {
2921      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2922                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2923                                   &Mask1[0], Mask1.size()));
2924      for (unsigned i = 0; i != NumElems; ++i) {
2925        if (Locs[i].first == -1)
2926          continue;
2927        else {
2928          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
2929          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
2930          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
2931        }
2932      }
2933
2934      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
2935                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2936                                     &Mask2[0], Mask2.size()));
2937    }
2938
2939    // Break it into (shuffle shuffle_hi, shuffle_lo).
2940    Locs.clear();
2941    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2942    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2943    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
2944    unsigned MaskIdx = 0;
2945    unsigned LoIdx = 0;
2946    unsigned HiIdx = NumElems/2;
2947    for (unsigned i = 0; i != NumElems; ++i) {
2948      if (i == NumElems/2) {
2949        MaskPtr = &HiMask;
2950        MaskIdx = 1;
2951        LoIdx = 0;
2952        HiIdx = NumElems/2;
2953      }
2954      SDOperand Elt = PermMask.getOperand(i);
2955      if (Elt.getOpcode() == ISD::UNDEF) {
2956        Locs[i] = std::make_pair(-1, -1);
2957      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
2958        Locs[i] = std::make_pair(MaskIdx, LoIdx);
2959        (*MaskPtr)[LoIdx] = Elt;
2960        LoIdx++;
2961      } else {
2962        Locs[i] = std::make_pair(MaskIdx, HiIdx);
2963        (*MaskPtr)[HiIdx] = Elt;
2964        HiIdx++;
2965      }
2966    }
2967
2968    SDOperand LoShuffle =
2969      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2970                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2971                              &LoMask[0], LoMask.size()));
2972    SDOperand HiShuffle =
2973      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2974                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2975                              &HiMask[0], HiMask.size()));
2976    SmallVector<SDOperand, 8> MaskOps;
2977    for (unsigned i = 0; i != NumElems; ++i) {
2978      if (Locs[i].first == -1) {
2979        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
2980      } else {
2981        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
2982        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
2983      }
2984    }
2985    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
2986                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2987                                   &MaskOps[0], MaskOps.size()));
2988  }
2989
2990  return SDOperand();
2991}
2992
2993SDOperand
2994X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
2995  if (!isa<ConstantSDNode>(Op.getOperand(1)))
2996    return SDOperand();
2997
2998  MVT::ValueType VT = Op.getValueType();
2999  // TODO: handle v16i8.
3000  if (MVT::getSizeInBits(VT) == 16) {
3001    // Transform it so it match pextrw which produces a 32-bit result.
3002    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3003    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3004                                    Op.getOperand(0), Op.getOperand(1));
3005    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3006                                    DAG.getValueType(VT));
3007    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3008  } else if (MVT::getSizeInBits(VT) == 32) {
3009    SDOperand Vec = Op.getOperand(0);
3010    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3011    if (Idx == 0)
3012      return Op;
3013    // SHUFPS the element to the lowest double word, then movss.
3014    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3015    SmallVector<SDOperand, 8> IdxVec;
3016    IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3017    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3018    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3019    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3020    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3021                                 &IdxVec[0], IdxVec.size());
3022    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3023                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3024    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3025                       DAG.getConstant(0, getPointerTy()));
3026  } else if (MVT::getSizeInBits(VT) == 64) {
3027    SDOperand Vec = Op.getOperand(0);
3028    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3029    if (Idx == 0)
3030      return Op;
3031
3032    // UNPCKHPD the element to the lowest double word, then movsd.
3033    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3034    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3035    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3036    SmallVector<SDOperand, 8> IdxVec;
3037    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3038    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3039    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3040                                 &IdxVec[0], IdxVec.size());
3041    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3042                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3043    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3044                       DAG.getConstant(0, getPointerTy()));
3045  }
3046
3047  return SDOperand();
3048}
3049
3050SDOperand
3051X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3052  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3053  // as its second argument.
3054  MVT::ValueType VT = Op.getValueType();
3055  MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3056  SDOperand N0 = Op.getOperand(0);
3057  SDOperand N1 = Op.getOperand(1);
3058  SDOperand N2 = Op.getOperand(2);
3059  if (MVT::getSizeInBits(BaseVT) == 16) {
3060    if (N1.getValueType() != MVT::i32)
3061      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3062    if (N2.getValueType() != MVT::i32)
3063      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3064    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3065  } else if (MVT::getSizeInBits(BaseVT) == 32) {
3066    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3067    if (Idx == 0) {
3068      // Use a movss.
3069      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3070      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3071      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3072      SmallVector<SDOperand, 8> MaskVec;
3073      MaskVec.push_back(DAG.getConstant(4, BaseVT));
3074      for (unsigned i = 1; i <= 3; ++i)
3075        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3076      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3077                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3078                                     &MaskVec[0], MaskVec.size()));
3079    } else {
3080      // Use two pinsrw instructions to insert a 32 bit value.
3081      Idx <<= 1;
3082      if (MVT::isFloatingPoint(N1.getValueType())) {
3083        N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3084        N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3085        N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3086                         DAG.getConstant(0, getPointerTy()));
3087      }
3088      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3089      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3090                       DAG.getConstant(Idx, getPointerTy()));
3091      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3092      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3093                       DAG.getConstant(Idx+1, getPointerTy()));
3094      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3095    }
3096  }
3097
3098  return SDOperand();
3099}
3100
3101SDOperand
3102X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3103  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3104  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3105}
3106
3107// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3108// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3109// one of the above mentioned nodes. It has to be wrapped because otherwise
3110// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3111// be used to form addressing mode. These wrapped nodes will be selected
3112// into MOV32ri.
3113SDOperand
3114X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3115  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3116  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3117                                               getPointerTy(),
3118                                               CP->getAlignment());
3119  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3120  // With PIC, the address is actually $g + Offset.
3121  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3122      !Subtarget->isPICStyleRIPRel()) {
3123    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3124                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3125                         Result);
3126  }
3127
3128  return Result;
3129}
3130
3131SDOperand
3132X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3133  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3134  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3135  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3136  // With PIC, the address is actually $g + Offset.
3137  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3138      !Subtarget->isPICStyleRIPRel()) {
3139    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3140                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3141                         Result);
3142  }
3143
3144  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3145  // load the value at address GV, not the value of GV itself. This means that
3146  // the GlobalAddress must be in the base or index register of the address, not
3147  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3148  // The same applies for external symbols during PIC codegen
3149  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3150    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3151
3152  return Result;
3153}
3154
3155// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3156static SDOperand
3157LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3158                              const MVT::ValueType PtrVT) {
3159  SDOperand InFlag;
3160  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3161                                     DAG.getNode(X86ISD::GlobalBaseReg,
3162                                                 PtrVT), InFlag);
3163  InFlag = Chain.getValue(1);
3164
3165  // emit leal symbol@TLSGD(,%ebx,1), %eax
3166  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3167  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3168                                             GA->getValueType(0),
3169                                             GA->getOffset());
3170  SDOperand Ops[] = { Chain,  TGA, InFlag };
3171  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3172  InFlag = Result.getValue(2);
3173  Chain = Result.getValue(1);
3174
3175  // call ___tls_get_addr. This function receives its argument in
3176  // the register EAX.
3177  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3178  InFlag = Chain.getValue(1);
3179
3180  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3181  SDOperand Ops1[] = { Chain,
3182                      DAG.getTargetExternalSymbol("___tls_get_addr",
3183                                                  PtrVT),
3184                      DAG.getRegister(X86::EAX, PtrVT),
3185                      DAG.getRegister(X86::EBX, PtrVT),
3186                      InFlag };
3187  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3188  InFlag = Chain.getValue(1);
3189
3190  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3191}
3192
3193// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3194// "local exec" model.
3195static SDOperand
3196LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3197                         const MVT::ValueType PtrVT) {
3198  // Get the Thread Pointer
3199  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3200  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3201  // exec)
3202  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3203                                             GA->getValueType(0),
3204                                             GA->getOffset());
3205  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3206
3207  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3208    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3209
3210  // The address of the thread local variable is the add of the thread
3211  // pointer with the offset of the variable.
3212  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3213}
3214
3215SDOperand
3216X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3217  // TODO: implement the "local dynamic" model
3218  // TODO: implement the "initial exec"model for pic executables
3219  assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3220         "TLS not implemented for non-ELF and 64-bit targets");
3221  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3222  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3223  // otherwise use the "Local Exec"TLS Model
3224  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3225    return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3226  else
3227    return LowerToTLSExecModel(GA, DAG, getPointerTy());
3228}
3229
3230SDOperand
3231X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3232  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3233  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3234  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3235  // With PIC, the address is actually $g + Offset.
3236  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3237      !Subtarget->isPICStyleRIPRel()) {
3238    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3239                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3240                         Result);
3241  }
3242
3243  return Result;
3244}
3245
3246SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3247  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3248  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3249  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3250  // With PIC, the address is actually $g + Offset.
3251  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3252      !Subtarget->isPICStyleRIPRel()) {
3253    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3254                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3255                         Result);
3256  }
3257
3258  return Result;
3259}
3260
3261SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3262    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3263           "Not an i64 shift!");
3264    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3265    SDOperand ShOpLo = Op.getOperand(0);
3266    SDOperand ShOpHi = Op.getOperand(1);
3267    SDOperand ShAmt  = Op.getOperand(2);
3268    SDOperand Tmp1 = isSRA ?
3269      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3270      DAG.getConstant(0, MVT::i32);
3271
3272    SDOperand Tmp2, Tmp3;
3273    if (Op.getOpcode() == ISD::SHL_PARTS) {
3274      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3275      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3276    } else {
3277      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3278      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3279    }
3280
3281    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3282    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3283                                    DAG.getConstant(32, MVT::i8));
3284    SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3285    SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3286
3287    SDOperand Hi, Lo;
3288    SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3289
3290    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3291    SmallVector<SDOperand, 4> Ops;
3292    if (Op.getOpcode() == ISD::SHL_PARTS) {
3293      Ops.push_back(Tmp2);
3294      Ops.push_back(Tmp3);
3295      Ops.push_back(CC);
3296      Ops.push_back(InFlag);
3297      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3298      InFlag = Hi.getValue(1);
3299
3300      Ops.clear();
3301      Ops.push_back(Tmp3);
3302      Ops.push_back(Tmp1);
3303      Ops.push_back(CC);
3304      Ops.push_back(InFlag);
3305      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3306    } else {
3307      Ops.push_back(Tmp2);
3308      Ops.push_back(Tmp3);
3309      Ops.push_back(CC);
3310      Ops.push_back(InFlag);
3311      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3312      InFlag = Lo.getValue(1);
3313
3314      Ops.clear();
3315      Ops.push_back(Tmp3);
3316      Ops.push_back(Tmp1);
3317      Ops.push_back(CC);
3318      Ops.push_back(InFlag);
3319      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3320    }
3321
3322    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3323    Ops.clear();
3324    Ops.push_back(Lo);
3325    Ops.push_back(Hi);
3326    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3327}
3328
3329SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3330  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3331         Op.getOperand(0).getValueType() >= MVT::i16 &&
3332         "Unknown SINT_TO_FP to lower!");
3333
3334  SDOperand Result;
3335  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3336  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3337  MachineFunction &MF = DAG.getMachineFunction();
3338  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3339  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3340  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3341                                 StackSlot, NULL, 0);
3342
3343  // These are really Legal; caller falls through into that case.
3344  if (SrcVT==MVT::i32 && Op.getValueType() != MVT::f80 && X86ScalarSSE)
3345    return Result;
3346
3347  // Build the FILD
3348  SDVTList Tys;
3349  bool useSSE = X86ScalarSSE && Op.getValueType() != MVT::f80;
3350  if (useSSE)
3351    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3352  else
3353    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3354  SmallVector<SDOperand, 8> Ops;
3355  Ops.push_back(Chain);
3356  Ops.push_back(StackSlot);
3357  Ops.push_back(DAG.getValueType(SrcVT));
3358  Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3359                       Tys, &Ops[0], Ops.size());
3360
3361  if (useSSE) {
3362    Chain = Result.getValue(1);
3363    SDOperand InFlag = Result.getValue(2);
3364
3365    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3366    // shouldn't be necessary except that RFP cannot be live across
3367    // multiple blocks. When stackifier is fixed, they can be uncoupled.
3368    MachineFunction &MF = DAG.getMachineFunction();
3369    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3370    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3371    Tys = DAG.getVTList(MVT::Other);
3372    SmallVector<SDOperand, 8> Ops;
3373    Ops.push_back(Chain);
3374    Ops.push_back(Result);
3375    Ops.push_back(StackSlot);
3376    Ops.push_back(DAG.getValueType(Op.getValueType()));
3377    Ops.push_back(InFlag);
3378    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3379    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3380  }
3381
3382  return Result;
3383}
3384
3385SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3386  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3387         "Unknown FP_TO_SINT to lower!");
3388  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3389  // stack slot.
3390  SDOperand Result;
3391  MachineFunction &MF = DAG.getMachineFunction();
3392  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3393  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3394  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3395
3396  // These are really Legal.
3397  if (Op.getValueType() == MVT::i32 && X86ScalarSSE &&
3398      Op.getOperand(0).getValueType() != MVT::f80)
3399    return Result;
3400
3401  unsigned Opc;
3402  switch (Op.getValueType()) {
3403    default: assert(0 && "Invalid FP_TO_SINT to lower!");
3404    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3405    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3406    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3407  }
3408
3409  SDOperand Chain = DAG.getEntryNode();
3410  SDOperand Value = Op.getOperand(0);
3411  if (X86ScalarSSE && Op.getOperand(0).getValueType() != MVT::f80) {
3412    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3413    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3414    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3415    SDOperand Ops[] = {
3416      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3417    };
3418    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3419    Chain = Value.getValue(1);
3420    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3421    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3422  }
3423
3424  // Build the FP_TO_INT*_IN_MEM
3425  SDOperand Ops[] = { Chain, Value, StackSlot };
3426  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3427
3428  // Load the result.
3429  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3430}
3431
3432SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3433  MVT::ValueType VT = Op.getValueType();
3434  MVT::ValueType EltVT = VT;
3435  if (MVT::isVector(VT))
3436    EltVT = MVT::getVectorElementType(VT);
3437  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
3438  std::vector<Constant*> CV;
3439  if (EltVT == MVT::f64) {
3440    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
3441    CV.push_back(C);
3442    CV.push_back(C);
3443  } else {
3444    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
3445    CV.push_back(C);
3446    CV.push_back(C);
3447    CV.push_back(C);
3448    CV.push_back(C);
3449  }
3450  Constant *C = ConstantVector::get(CV);
3451  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3452  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3453                               false, 16);
3454  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3455}
3456
3457SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3458  MVT::ValueType VT = Op.getValueType();
3459  MVT::ValueType EltVT = VT;
3460  unsigned EltNum = 1;
3461  if (MVT::isVector(VT)) {
3462    EltVT = MVT::getVectorElementType(VT);
3463    EltNum = MVT::getVectorNumElements(VT);
3464  }
3465  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
3466  std::vector<Constant*> CV;
3467  if (EltVT == MVT::f64) {
3468    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
3469    CV.push_back(C);
3470    CV.push_back(C);
3471  } else {
3472    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
3473    CV.push_back(C);
3474    CV.push_back(C);
3475    CV.push_back(C);
3476    CV.push_back(C);
3477  }
3478  Constant *C = ConstantVector::get(CV);
3479  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3480  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3481                               false, 16);
3482  if (MVT::isVector(VT)) {
3483    return DAG.getNode(ISD::BIT_CONVERT, VT,
3484                       DAG.getNode(ISD::XOR, MVT::v2i64,
3485                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
3486                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
3487  } else {
3488    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3489  }
3490}
3491
3492SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3493  SDOperand Op0 = Op.getOperand(0);
3494  SDOperand Op1 = Op.getOperand(1);
3495  MVT::ValueType VT = Op.getValueType();
3496  MVT::ValueType SrcVT = Op1.getValueType();
3497  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
3498
3499  // If second operand is smaller, extend it first.
3500  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3501    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3502    SrcVT = VT;
3503    SrcTy = MVT::getTypeForValueType(SrcVT);
3504  }
3505
3506  // First get the sign bit of second operand.
3507  std::vector<Constant*> CV;
3508  if (SrcVT == MVT::f64) {
3509    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
3510    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
3511  } else {
3512    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
3513    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3514    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3515    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3516  }
3517  Constant *C = ConstantVector::get(CV);
3518  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3519  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
3520                                false, 16);
3521  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3522
3523  // Shift sign bit right or left if the two operands have different types.
3524  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3525    // Op0 is MVT::f32, Op1 is MVT::f64.
3526    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3527    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3528                          DAG.getConstant(32, MVT::i32));
3529    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3530    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3531                          DAG.getConstant(0, getPointerTy()));
3532  }
3533
3534  // Clear first operand sign bit.
3535  CV.clear();
3536  if (VT == MVT::f64) {
3537    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
3538    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
3539  } else {
3540    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
3541    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3542    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3543    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3544  }
3545  C = ConstantVector::get(CV);
3546  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3547  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3548                                false, 16);
3549  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3550
3551  // Or the value with the sign bit.
3552  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3553}
3554
3555SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3556                                        SDOperand Chain) {
3557  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3558  SDOperand Cond;
3559  SDOperand Op0 = Op.getOperand(0);
3560  SDOperand Op1 = Op.getOperand(1);
3561  SDOperand CC = Op.getOperand(2);
3562  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3563  const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3564  const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3565  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3566  unsigned X86CC;
3567
3568  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3569                     Op0, Op1, DAG)) {
3570    SDOperand Ops1[] = { Chain, Op0, Op1 };
3571    Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3572    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3573    return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3574  }
3575
3576  assert(isFP && "Illegal integer SetCC!");
3577
3578  SDOperand COps[] = { Chain, Op0, Op1 };
3579  Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3580
3581  switch (SetCCOpcode) {
3582  default: assert(false && "Illegal floating point SetCC!");
3583  case ISD::SETOEQ: {  // !PF & ZF
3584    SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3585    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3586    SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3587                         Tmp1.getValue(1) };
3588    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3589    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3590  }
3591  case ISD::SETUNE: {  // PF | !ZF
3592    SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3593    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3594    SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3595                         Tmp1.getValue(1) };
3596    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3597    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3598  }
3599  }
3600}
3601
3602SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3603  bool addTest = true;
3604  SDOperand Chain = DAG.getEntryNode();
3605  SDOperand Cond  = Op.getOperand(0);
3606  SDOperand CC;
3607  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3608
3609  if (Cond.getOpcode() == ISD::SETCC)
3610    Cond = LowerSETCC(Cond, DAG, Chain);
3611
3612  if (Cond.getOpcode() == X86ISD::SETCC) {
3613    CC = Cond.getOperand(0);
3614
3615    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3616    // (since flag operand cannot be shared). Use it as the condition setting
3617    // operand in place of the X86ISD::SETCC.
3618    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3619    // to use a test instead of duplicating the X86ISD::CMP (for register
3620    // pressure reason)?
3621    SDOperand Cmp = Cond.getOperand(1);
3622    unsigned Opc = Cmp.getOpcode();
3623    bool IllegalFPCMov = !X86ScalarSSE &&
3624      MVT::isFloatingPoint(Op.getValueType()) &&
3625      !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3626    if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3627        !IllegalFPCMov) {
3628      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3629      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3630      addTest = false;
3631    }
3632  }
3633
3634  if (addTest) {
3635    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3636    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3637    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3638  }
3639
3640  VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3641  SmallVector<SDOperand, 4> Ops;
3642  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3643  // condition is true.
3644  Ops.push_back(Op.getOperand(2));
3645  Ops.push_back(Op.getOperand(1));
3646  Ops.push_back(CC);
3647  Ops.push_back(Cond.getValue(1));
3648  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3649}
3650
3651SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3652  bool addTest = true;
3653  SDOperand Chain = Op.getOperand(0);
3654  SDOperand Cond  = Op.getOperand(1);
3655  SDOperand Dest  = Op.getOperand(2);
3656  SDOperand CC;
3657  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3658
3659  if (Cond.getOpcode() == ISD::SETCC)
3660    Cond = LowerSETCC(Cond, DAG, Chain);
3661
3662  if (Cond.getOpcode() == X86ISD::SETCC) {
3663    CC = Cond.getOperand(0);
3664
3665    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3666    // (since flag operand cannot be shared). Use it as the condition setting
3667    // operand in place of the X86ISD::SETCC.
3668    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3669    // to use a test instead of duplicating the X86ISD::CMP (for register
3670    // pressure reason)?
3671    SDOperand Cmp = Cond.getOperand(1);
3672    unsigned Opc = Cmp.getOpcode();
3673    if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3674      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3675      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3676      addTest = false;
3677    }
3678  }
3679
3680  if (addTest) {
3681    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3682    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3683    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3684  }
3685  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3686                     Cond, Op.getOperand(2), CC, Cond.getValue(1));
3687}
3688
3689SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3690  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3691
3692  if (Subtarget->is64Bit())
3693    return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3694  else
3695    switch (CallingConv) {
3696    default:
3697      assert(0 && "Unsupported calling convention");
3698    case CallingConv::Fast:
3699      // TODO: Implement fastcc
3700      // Falls through
3701    case CallingConv::C:
3702    case CallingConv::X86_StdCall:
3703      return LowerCCCCallTo(Op, DAG, CallingConv);
3704    case CallingConv::X86_FastCall:
3705      return LowerFastCCCallTo(Op, DAG, CallingConv);
3706    }
3707}
3708
3709
3710// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3711// Calls to _alloca is needed to probe the stack when allocating more than 4k
3712// bytes in one go. Touching the stack at 4K increments is necessary to ensure
3713// that the guard pages used by the OS virtual memory manager are allocated in
3714// correct sequence.
3715SDOperand
3716X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
3717                                           SelectionDAG &DAG) {
3718  assert(Subtarget->isTargetCygMing() &&
3719         "This should be used only on Cygwin/Mingw targets");
3720
3721  // Get the inputs.
3722  SDOperand Chain = Op.getOperand(0);
3723  SDOperand Size  = Op.getOperand(1);
3724  // FIXME: Ensure alignment here
3725
3726  SDOperand Flag;
3727
3728  MVT::ValueType IntPtr = getPointerTy();
3729  MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
3730
3731  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
3732  Flag = Chain.getValue(1);
3733
3734  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3735  SDOperand Ops[] = { Chain,
3736                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
3737                      DAG.getRegister(X86::EAX, IntPtr),
3738                      Flag };
3739  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
3740  Flag = Chain.getValue(1);
3741
3742  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
3743
3744  std::vector<MVT::ValueType> Tys;
3745  Tys.push_back(SPTy);
3746  Tys.push_back(MVT::Other);
3747  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
3748  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
3749}
3750
3751SDOperand
3752X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
3753  MachineFunction &MF = DAG.getMachineFunction();
3754  const Function* Fn = MF.getFunction();
3755  if (Fn->hasExternalLinkage() &&
3756      Subtarget->isTargetCygMing() &&
3757      Fn->getName() == "main")
3758    MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
3759
3760  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3761  if (Subtarget->is64Bit())
3762    return LowerX86_64CCCArguments(Op, DAG);
3763  else
3764    switch(CC) {
3765    default:
3766      assert(0 && "Unsupported calling convention");
3767    case CallingConv::Fast:
3768      // TODO: implement fastcc.
3769
3770      // Falls through
3771    case CallingConv::C:
3772      return LowerCCCArguments(Op, DAG);
3773    case CallingConv::X86_StdCall:
3774      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
3775      return LowerCCCArguments(Op, DAG, true);
3776    case CallingConv::X86_FastCall:
3777      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
3778      return LowerFastCCArguments(Op, DAG);
3779    }
3780}
3781
3782SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
3783  SDOperand InFlag(0, 0);
3784  SDOperand Chain = Op.getOperand(0);
3785  unsigned Align =
3786    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3787  if (Align == 0) Align = 1;
3788
3789  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3790  // If not DWORD aligned or size is more than the threshold, call memset.
3791  // The libc version is likely to be faster for these cases. It can use the
3792  // address value and run time information about the CPU.
3793  if ((Align & 3) != 0 ||
3794      (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
3795    MVT::ValueType IntPtr = getPointerTy();
3796    const Type *IntPtrTy = getTargetData()->getIntPtrType();
3797    TargetLowering::ArgListTy Args;
3798    TargetLowering::ArgListEntry Entry;
3799    Entry.Node = Op.getOperand(1);
3800    Entry.Ty = IntPtrTy;
3801    Args.push_back(Entry);
3802    // Extend the unsigned i8 argument to be an int value for the call.
3803    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
3804    Entry.Ty = IntPtrTy;
3805    Args.push_back(Entry);
3806    Entry.Node = Op.getOperand(3);
3807    Args.push_back(Entry);
3808    std::pair<SDOperand,SDOperand> CallResult =
3809      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3810                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
3811    return CallResult.second;
3812  }
3813
3814  MVT::ValueType AVT;
3815  SDOperand Count;
3816  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3817  unsigned BytesLeft = 0;
3818  bool TwoRepStos = false;
3819  if (ValC) {
3820    unsigned ValReg;
3821    uint64_t Val = ValC->getValue() & 255;
3822
3823    // If the value is a constant, then we can potentially use larger sets.
3824    switch (Align & 3) {
3825      case 2:   // WORD aligned
3826        AVT = MVT::i16;
3827        ValReg = X86::AX;
3828        Val = (Val << 8) | Val;
3829        break;
3830      case 0:  // DWORD aligned
3831        AVT = MVT::i32;
3832        ValReg = X86::EAX;
3833        Val = (Val << 8)  | Val;
3834        Val = (Val << 16) | Val;
3835        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
3836          AVT = MVT::i64;
3837          ValReg = X86::RAX;
3838          Val = (Val << 32) | Val;
3839        }
3840        break;
3841      default:  // Byte aligned
3842        AVT = MVT::i8;
3843        ValReg = X86::AL;
3844        Count = Op.getOperand(3);
3845        break;
3846    }
3847
3848    if (AVT > MVT::i8) {
3849      if (I) {
3850        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3851        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3852        BytesLeft = I->getValue() % UBytes;
3853      } else {
3854        assert(AVT >= MVT::i32 &&
3855               "Do not use rep;stos if not at least DWORD aligned");
3856        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3857                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3858        TwoRepStos = true;
3859      }
3860    }
3861
3862    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
3863                              InFlag);
3864    InFlag = Chain.getValue(1);
3865  } else {
3866    AVT = MVT::i8;
3867    Count  = Op.getOperand(3);
3868    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
3869    InFlag = Chain.getValue(1);
3870  }
3871
3872  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3873                            Count, InFlag);
3874  InFlag = Chain.getValue(1);
3875  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3876                            Op.getOperand(1), InFlag);
3877  InFlag = Chain.getValue(1);
3878
3879  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3880  SmallVector<SDOperand, 8> Ops;
3881  Ops.push_back(Chain);
3882  Ops.push_back(DAG.getValueType(AVT));
3883  Ops.push_back(InFlag);
3884  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3885
3886  if (TwoRepStos) {
3887    InFlag = Chain.getValue(1);
3888    Count = Op.getOperand(3);
3889    MVT::ValueType CVT = Count.getValueType();
3890    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3891                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3892    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3893                              Left, InFlag);
3894    InFlag = Chain.getValue(1);
3895    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3896    Ops.clear();
3897    Ops.push_back(Chain);
3898    Ops.push_back(DAG.getValueType(MVT::i8));
3899    Ops.push_back(InFlag);
3900    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3901  } else if (BytesLeft) {
3902    // Issue stores for the last 1 - 7 bytes.
3903    SDOperand Value;
3904    unsigned Val = ValC->getValue() & 255;
3905    unsigned Offset = I->getValue() - BytesLeft;
3906    SDOperand DstAddr = Op.getOperand(1);
3907    MVT::ValueType AddrVT = DstAddr.getValueType();
3908    if (BytesLeft >= 4) {
3909      Val = (Val << 8)  | Val;
3910      Val = (Val << 16) | Val;
3911      Value = DAG.getConstant(Val, MVT::i32);
3912      Chain = DAG.getStore(Chain, Value,
3913                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3914                                       DAG.getConstant(Offset, AddrVT)),
3915                           NULL, 0);
3916      BytesLeft -= 4;
3917      Offset += 4;
3918    }
3919    if (BytesLeft >= 2) {
3920      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
3921      Chain = DAG.getStore(Chain, Value,
3922                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3923                                       DAG.getConstant(Offset, AddrVT)),
3924                           NULL, 0);
3925      BytesLeft -= 2;
3926      Offset += 2;
3927    }
3928    if (BytesLeft == 1) {
3929      Value = DAG.getConstant(Val, MVT::i8);
3930      Chain = DAG.getStore(Chain, Value,
3931                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3932                                       DAG.getConstant(Offset, AddrVT)),
3933                           NULL, 0);
3934    }
3935  }
3936
3937  return Chain;
3938}
3939
3940SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
3941  SDOperand Chain = Op.getOperand(0);
3942  unsigned Align =
3943    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3944  if (Align == 0) Align = 1;
3945
3946  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3947  // If not DWORD aligned or size is more than the threshold, call memcpy.
3948  // The libc version is likely to be faster for these cases. It can use the
3949  // address value and run time information about the CPU.
3950  // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
3951  if ((Align & 3) != 0 ||
3952      (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
3953    MVT::ValueType IntPtr = getPointerTy();
3954    TargetLowering::ArgListTy Args;
3955    TargetLowering::ArgListEntry Entry;
3956    Entry.Ty = getTargetData()->getIntPtrType();
3957    Entry.Node = Op.getOperand(1); Args.push_back(Entry);
3958    Entry.Node = Op.getOperand(2); Args.push_back(Entry);
3959    Entry.Node = Op.getOperand(3); Args.push_back(Entry);
3960    std::pair<SDOperand,SDOperand> CallResult =
3961      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3962                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
3963    return CallResult.second;
3964  }
3965
3966  MVT::ValueType AVT;
3967  SDOperand Count;
3968  unsigned BytesLeft = 0;
3969  bool TwoRepMovs = false;
3970  switch (Align & 3) {
3971    case 2:   // WORD aligned
3972      AVT = MVT::i16;
3973      break;
3974    case 0:  // DWORD aligned
3975      AVT = MVT::i32;
3976      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
3977        AVT = MVT::i64;
3978      break;
3979    default:  // Byte aligned
3980      AVT = MVT::i8;
3981      Count = Op.getOperand(3);
3982      break;
3983  }
3984
3985  if (AVT > MVT::i8) {
3986    if (I) {
3987      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3988      Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3989      BytesLeft = I->getValue() % UBytes;
3990    } else {
3991      assert(AVT >= MVT::i32 &&
3992             "Do not use rep;movs if not at least DWORD aligned");
3993      Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3994                          Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3995      TwoRepMovs = true;
3996    }
3997  }
3998
3999  SDOperand InFlag(0, 0);
4000  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4001                            Count, InFlag);
4002  InFlag = Chain.getValue(1);
4003  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4004                            Op.getOperand(1), InFlag);
4005  InFlag = Chain.getValue(1);
4006  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4007                            Op.getOperand(2), InFlag);
4008  InFlag = Chain.getValue(1);
4009
4010  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4011  SmallVector<SDOperand, 8> Ops;
4012  Ops.push_back(Chain);
4013  Ops.push_back(DAG.getValueType(AVT));
4014  Ops.push_back(InFlag);
4015  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4016
4017  if (TwoRepMovs) {
4018    InFlag = Chain.getValue(1);
4019    Count = Op.getOperand(3);
4020    MVT::ValueType CVT = Count.getValueType();
4021    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4022                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4023    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4024                              Left, InFlag);
4025    InFlag = Chain.getValue(1);
4026    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4027    Ops.clear();
4028    Ops.push_back(Chain);
4029    Ops.push_back(DAG.getValueType(MVT::i8));
4030    Ops.push_back(InFlag);
4031    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4032  } else if (BytesLeft) {
4033    // Issue loads and stores for the last 1 - 7 bytes.
4034    unsigned Offset = I->getValue() - BytesLeft;
4035    SDOperand DstAddr = Op.getOperand(1);
4036    MVT::ValueType DstVT = DstAddr.getValueType();
4037    SDOperand SrcAddr = Op.getOperand(2);
4038    MVT::ValueType SrcVT = SrcAddr.getValueType();
4039    SDOperand Value;
4040    if (BytesLeft >= 4) {
4041      Value = DAG.getLoad(MVT::i32, Chain,
4042                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4043                                      DAG.getConstant(Offset, SrcVT)),
4044                          NULL, 0);
4045      Chain = Value.getValue(1);
4046      Chain = DAG.getStore(Chain, Value,
4047                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4048                                       DAG.getConstant(Offset, DstVT)),
4049                           NULL, 0);
4050      BytesLeft -= 4;
4051      Offset += 4;
4052    }
4053    if (BytesLeft >= 2) {
4054      Value = DAG.getLoad(MVT::i16, Chain,
4055                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4056                                      DAG.getConstant(Offset, SrcVT)),
4057                          NULL, 0);
4058      Chain = Value.getValue(1);
4059      Chain = DAG.getStore(Chain, Value,
4060                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4061                                       DAG.getConstant(Offset, DstVT)),
4062                           NULL, 0);
4063      BytesLeft -= 2;
4064      Offset += 2;
4065    }
4066
4067    if (BytesLeft == 1) {
4068      Value = DAG.getLoad(MVT::i8, Chain,
4069                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4070                                      DAG.getConstant(Offset, SrcVT)),
4071                          NULL, 0);
4072      Chain = Value.getValue(1);
4073      Chain = DAG.getStore(Chain, Value,
4074                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4075                                       DAG.getConstant(Offset, DstVT)),
4076                           NULL, 0);
4077    }
4078  }
4079
4080  return Chain;
4081}
4082
4083SDOperand
4084X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4085  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4086  SDOperand TheOp = Op.getOperand(0);
4087  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4088  if (Subtarget->is64Bit()) {
4089    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4090    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4091                                         MVT::i64, Copy1.getValue(2));
4092    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4093                                DAG.getConstant(32, MVT::i8));
4094    SDOperand Ops[] = {
4095      DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4096    };
4097
4098    Tys = DAG.getVTList(MVT::i64, MVT::Other);
4099    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4100  }
4101
4102  SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4103  SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4104                                       MVT::i32, Copy1.getValue(2));
4105  SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4106  Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4107  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4108}
4109
4110SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4111  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4112
4113  if (!Subtarget->is64Bit()) {
4114    // vastart just stores the address of the VarArgsFrameIndex slot into the
4115    // memory location argument.
4116    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4117    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4118                        SV->getOffset());
4119  }
4120
4121  // __va_list_tag:
4122  //   gp_offset         (0 - 6 * 8)
4123  //   fp_offset         (48 - 48 + 8 * 16)
4124  //   overflow_arg_area (point to parameters coming in memory).
4125  //   reg_save_area
4126  SmallVector<SDOperand, 8> MemOps;
4127  SDOperand FIN = Op.getOperand(1);
4128  // Store gp_offset
4129  SDOperand Store = DAG.getStore(Op.getOperand(0),
4130                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4131                                 FIN, SV->getValue(), SV->getOffset());
4132  MemOps.push_back(Store);
4133
4134  // Store fp_offset
4135  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4136                    DAG.getConstant(4, getPointerTy()));
4137  Store = DAG.getStore(Op.getOperand(0),
4138                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4139                       FIN, SV->getValue(), SV->getOffset());
4140  MemOps.push_back(Store);
4141
4142  // Store ptr to overflow_arg_area
4143  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4144                    DAG.getConstant(4, getPointerTy()));
4145  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4146  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4147                       SV->getOffset());
4148  MemOps.push_back(Store);
4149
4150  // Store ptr to reg_save_area.
4151  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4152                    DAG.getConstant(8, getPointerTy()));
4153  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4154  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4155                       SV->getOffset());
4156  MemOps.push_back(Store);
4157  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4158}
4159
4160SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4161  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4162  SDOperand Chain = Op.getOperand(0);
4163  SDOperand DstPtr = Op.getOperand(1);
4164  SDOperand SrcPtr = Op.getOperand(2);
4165  SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4166  SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4167
4168  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4169                       SrcSV->getValue(), SrcSV->getOffset());
4170  Chain = SrcPtr.getValue(1);
4171  for (unsigned i = 0; i < 3; ++i) {
4172    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4173                                SrcSV->getValue(), SrcSV->getOffset());
4174    Chain = Val.getValue(1);
4175    Chain = DAG.getStore(Chain, Val, DstPtr,
4176                         DstSV->getValue(), DstSV->getOffset());
4177    if (i == 2)
4178      break;
4179    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4180                         DAG.getConstant(8, getPointerTy()));
4181    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4182                         DAG.getConstant(8, getPointerTy()));
4183  }
4184  return Chain;
4185}
4186
4187SDOperand
4188X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4189  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4190  switch (IntNo) {
4191  default: return SDOperand();    // Don't custom lower most intrinsics.
4192    // Comparison intrinsics.
4193  case Intrinsic::x86_sse_comieq_ss:
4194  case Intrinsic::x86_sse_comilt_ss:
4195  case Intrinsic::x86_sse_comile_ss:
4196  case Intrinsic::x86_sse_comigt_ss:
4197  case Intrinsic::x86_sse_comige_ss:
4198  case Intrinsic::x86_sse_comineq_ss:
4199  case Intrinsic::x86_sse_ucomieq_ss:
4200  case Intrinsic::x86_sse_ucomilt_ss:
4201  case Intrinsic::x86_sse_ucomile_ss:
4202  case Intrinsic::x86_sse_ucomigt_ss:
4203  case Intrinsic::x86_sse_ucomige_ss:
4204  case Intrinsic::x86_sse_ucomineq_ss:
4205  case Intrinsic::x86_sse2_comieq_sd:
4206  case Intrinsic::x86_sse2_comilt_sd:
4207  case Intrinsic::x86_sse2_comile_sd:
4208  case Intrinsic::x86_sse2_comigt_sd:
4209  case Intrinsic::x86_sse2_comige_sd:
4210  case Intrinsic::x86_sse2_comineq_sd:
4211  case Intrinsic::x86_sse2_ucomieq_sd:
4212  case Intrinsic::x86_sse2_ucomilt_sd:
4213  case Intrinsic::x86_sse2_ucomile_sd:
4214  case Intrinsic::x86_sse2_ucomigt_sd:
4215  case Intrinsic::x86_sse2_ucomige_sd:
4216  case Intrinsic::x86_sse2_ucomineq_sd: {
4217    unsigned Opc = 0;
4218    ISD::CondCode CC = ISD::SETCC_INVALID;
4219    switch (IntNo) {
4220    default: break;
4221    case Intrinsic::x86_sse_comieq_ss:
4222    case Intrinsic::x86_sse2_comieq_sd:
4223      Opc = X86ISD::COMI;
4224      CC = ISD::SETEQ;
4225      break;
4226    case Intrinsic::x86_sse_comilt_ss:
4227    case Intrinsic::x86_sse2_comilt_sd:
4228      Opc = X86ISD::COMI;
4229      CC = ISD::SETLT;
4230      break;
4231    case Intrinsic::x86_sse_comile_ss:
4232    case Intrinsic::x86_sse2_comile_sd:
4233      Opc = X86ISD::COMI;
4234      CC = ISD::SETLE;
4235      break;
4236    case Intrinsic::x86_sse_comigt_ss:
4237    case Intrinsic::x86_sse2_comigt_sd:
4238      Opc = X86ISD::COMI;
4239      CC = ISD::SETGT;
4240      break;
4241    case Intrinsic::x86_sse_comige_ss:
4242    case Intrinsic::x86_sse2_comige_sd:
4243      Opc = X86ISD::COMI;
4244      CC = ISD::SETGE;
4245      break;
4246    case Intrinsic::x86_sse_comineq_ss:
4247    case Intrinsic::x86_sse2_comineq_sd:
4248      Opc = X86ISD::COMI;
4249      CC = ISD::SETNE;
4250      break;
4251    case Intrinsic::x86_sse_ucomieq_ss:
4252    case Intrinsic::x86_sse2_ucomieq_sd:
4253      Opc = X86ISD::UCOMI;
4254      CC = ISD::SETEQ;
4255      break;
4256    case Intrinsic::x86_sse_ucomilt_ss:
4257    case Intrinsic::x86_sse2_ucomilt_sd:
4258      Opc = X86ISD::UCOMI;
4259      CC = ISD::SETLT;
4260      break;
4261    case Intrinsic::x86_sse_ucomile_ss:
4262    case Intrinsic::x86_sse2_ucomile_sd:
4263      Opc = X86ISD::UCOMI;
4264      CC = ISD::SETLE;
4265      break;
4266    case Intrinsic::x86_sse_ucomigt_ss:
4267    case Intrinsic::x86_sse2_ucomigt_sd:
4268      Opc = X86ISD::UCOMI;
4269      CC = ISD::SETGT;
4270      break;
4271    case Intrinsic::x86_sse_ucomige_ss:
4272    case Intrinsic::x86_sse2_ucomige_sd:
4273      Opc = X86ISD::UCOMI;
4274      CC = ISD::SETGE;
4275      break;
4276    case Intrinsic::x86_sse_ucomineq_ss:
4277    case Intrinsic::x86_sse2_ucomineq_sd:
4278      Opc = X86ISD::UCOMI;
4279      CC = ISD::SETNE;
4280      break;
4281    }
4282
4283    unsigned X86CC;
4284    SDOperand LHS = Op.getOperand(1);
4285    SDOperand RHS = Op.getOperand(2);
4286    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4287
4288    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4289    SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4290    SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4291    VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4292    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4293    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4294    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4295  }
4296  }
4297}
4298
4299SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4300  // Depths > 0 not supported yet!
4301  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4302    return SDOperand();
4303
4304  // Just load the return address
4305  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4306  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4307}
4308
4309SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4310  // Depths > 0 not supported yet!
4311  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4312    return SDOperand();
4313
4314  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4315  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4316                     DAG.getConstant(4, getPointerTy()));
4317}
4318
4319SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4320                                                       SelectionDAG &DAG) {
4321  // Is not yet supported on x86-64
4322  if (Subtarget->is64Bit())
4323    return SDOperand();
4324
4325  return DAG.getConstant(8, getPointerTy());
4326}
4327
4328SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4329{
4330  assert(!Subtarget->is64Bit() &&
4331         "Lowering of eh_return builtin is not supported yet on x86-64");
4332
4333  MachineFunction &MF = DAG.getMachineFunction();
4334  SDOperand Chain     = Op.getOperand(0);
4335  SDOperand Offset    = Op.getOperand(1);
4336  SDOperand Handler   = Op.getOperand(2);
4337
4338  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4339                                    getPointerTy());
4340
4341  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4342                                    DAG.getConstant(-4UL, getPointerTy()));
4343  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4344  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4345  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4346  MF.addLiveOut(X86::ECX);
4347
4348  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4349                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4350}
4351
4352SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4353                                             SelectionDAG &DAG) {
4354  SDOperand Root = Op.getOperand(0);
4355  SDOperand Trmp = Op.getOperand(1); // trampoline
4356  SDOperand FPtr = Op.getOperand(2); // nested function
4357  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4358
4359  SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4360
4361  if (Subtarget->is64Bit()) {
4362    return SDOperand(); // not yet supported
4363  } else {
4364    Function *Func = (Function *)
4365      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4366    unsigned CC = Func->getCallingConv();
4367    unsigned NestReg;
4368
4369    switch (CC) {
4370    default:
4371      assert(0 && "Unsupported calling convention");
4372    case CallingConv::C:
4373    case CallingConv::Fast:
4374    case CallingConv::X86_StdCall: {
4375      // Pass 'nest' parameter in ECX.
4376      // Must be kept in sync with X86CallingConv.td
4377      NestReg = X86::ECX;
4378
4379      // Check that ECX wasn't needed by an 'inreg' parameter.
4380      const FunctionType *FTy = Func->getFunctionType();
4381      const ParamAttrsList *Attrs = FTy->getParamAttrs();
4382
4383      if (Attrs && !Func->isVarArg()) {
4384        unsigned InRegCount = 0;
4385        unsigned Idx = 1;
4386
4387        for (FunctionType::param_iterator I = FTy->param_begin(),
4388             E = FTy->param_end(); I != E; ++I, ++Idx)
4389          if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4390            // FIXME: should only count parameters that are lowered to integers.
4391            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4392
4393        if (InRegCount > 2) {
4394          cerr << "Nest register in use - reduce number of inreg parameters!\n";
4395          abort();
4396        }
4397      }
4398      break;
4399    }
4400    case CallingConv::X86_FastCall:
4401      // Pass 'nest' parameter in EAX.
4402      // Must be kept in sync with X86CallingConv.td
4403      NestReg = X86::EAX;
4404      break;
4405    }
4406
4407    const X86InstrInfo *TII =
4408      ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4409
4410    SDOperand OutChains[4];
4411    SDOperand Addr, Disp;
4412
4413    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4414    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4415
4416    unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
4417    unsigned char N86Reg  = ((X86RegisterInfo&)RegInfo).getX86RegNum(NestReg);
4418    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
4419                                Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4420
4421    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4422    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4423                                TrmpSV->getOffset() + 1, false, 1);
4424
4425    unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
4426    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4427    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4428                                TrmpSV->getValue() + 5, TrmpSV->getOffset());
4429
4430    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4431    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4432                                TrmpSV->getOffset() + 6, false, 1);
4433
4434    SDOperand Ops[] =
4435      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
4436    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
4437  }
4438}
4439
4440/// LowerOperation - Provide custom lowering hooks for some operations.
4441///
4442SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4443  switch (Op.getOpcode()) {
4444  default: assert(0 && "Should not custom lower this!");
4445  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4446  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4447  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4448  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
4449  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4450  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4451  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4452  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4453  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
4454  case ISD::SHL_PARTS:
4455  case ISD::SRA_PARTS:
4456  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
4457  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4458  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
4459  case ISD::FABS:               return LowerFABS(Op, DAG);
4460  case ISD::FNEG:               return LowerFNEG(Op, DAG);
4461  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
4462  case ISD::SETCC:              return LowerSETCC(Op, DAG, DAG.getEntryNode());
4463  case ISD::SELECT:             return LowerSELECT(Op, DAG);
4464  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
4465  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4466  case ISD::CALL:               return LowerCALL(Op, DAG);
4467  case ISD::RET:                return LowerRET(Op, DAG);
4468  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
4469  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
4470  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
4471  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
4472  case ISD::VASTART:            return LowerVASTART(Op, DAG);
4473  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
4474  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4475  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4476  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4477  case ISD::FRAME_TO_ARGS_OFFSET:
4478                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
4479  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4480  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
4481  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4482  }
4483  return SDOperand();
4484}
4485
4486const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4487  switch (Opcode) {
4488  default: return NULL;
4489  case X86ISD::SHLD:               return "X86ISD::SHLD";
4490  case X86ISD::SHRD:               return "X86ISD::SHRD";
4491  case X86ISD::FAND:               return "X86ISD::FAND";
4492  case X86ISD::FOR:                return "X86ISD::FOR";
4493  case X86ISD::FXOR:               return "X86ISD::FXOR";
4494  case X86ISD::FSRL:               return "X86ISD::FSRL";
4495  case X86ISD::FILD:               return "X86ISD::FILD";
4496  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
4497  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4498  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4499  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4500  case X86ISD::FLD:                return "X86ISD::FLD";
4501  case X86ISD::FST:                return "X86ISD::FST";
4502  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
4503  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
4504  case X86ISD::CALL:               return "X86ISD::CALL";
4505  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
4506  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
4507  case X86ISD::CMP:                return "X86ISD::CMP";
4508  case X86ISD::COMI:               return "X86ISD::COMI";
4509  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
4510  case X86ISD::SETCC:              return "X86ISD::SETCC";
4511  case X86ISD::CMOV:               return "X86ISD::CMOV";
4512  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
4513  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
4514  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
4515  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
4516  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
4517  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
4518  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
4519  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
4520  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
4521  case X86ISD::FMAX:               return "X86ISD::FMAX";
4522  case X86ISD::FMIN:               return "X86ISD::FMIN";
4523  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
4524  case X86ISD::FRCP:               return "X86ISD::FRCP";
4525  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
4526  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
4527  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
4528  }
4529}
4530
4531// isLegalAddressingMode - Return true if the addressing mode represented
4532// by AM is legal for this target, for a load/store of the specified type.
4533bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
4534                                              const Type *Ty) const {
4535  // X86 supports extremely general addressing modes.
4536
4537  // X86 allows a sign-extended 32-bit immediate field as a displacement.
4538  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
4539    return false;
4540
4541  if (AM.BaseGV) {
4542    // We can only fold this if we don't need an extra load.
4543    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
4544      return false;
4545
4546    // X86-64 only supports addr of globals in small code model.
4547    if (Subtarget->is64Bit()) {
4548      if (getTargetMachine().getCodeModel() != CodeModel::Small)
4549        return false;
4550      // If lower 4G is not available, then we must use rip-relative addressing.
4551      if (AM.BaseOffs || AM.Scale > 1)
4552        return false;
4553    }
4554  }
4555
4556  switch (AM.Scale) {
4557  case 0:
4558  case 1:
4559  case 2:
4560  case 4:
4561  case 8:
4562    // These scales always work.
4563    break;
4564  case 3:
4565  case 5:
4566  case 9:
4567    // These scales are formed with basereg+scalereg.  Only accept if there is
4568    // no basereg yet.
4569    if (AM.HasBaseReg)
4570      return false;
4571    break;
4572  default:  // Other stuff never works.
4573    return false;
4574  }
4575
4576  return true;
4577}
4578
4579
4580/// isShuffleMaskLegal - Targets can use this to indicate that they only
4581/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4582/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4583/// are assumed to be legal.
4584bool
4585X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4586  // Only do shuffles on 128-bit vector types for now.
4587  if (MVT::getSizeInBits(VT) == 64) return false;
4588  return (Mask.Val->getNumOperands() <= 4 ||
4589          isIdentityMask(Mask.Val) ||
4590          isIdentityMask(Mask.Val, true) ||
4591          isSplatMask(Mask.Val)  ||
4592          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4593          X86::isUNPCKLMask(Mask.Val) ||
4594          X86::isUNPCKHMask(Mask.Val) ||
4595          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4596          X86::isUNPCKH_v_undef_Mask(Mask.Val));
4597}
4598
4599bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4600                                               MVT::ValueType EVT,
4601                                               SelectionDAG &DAG) const {
4602  unsigned NumElts = BVOps.size();
4603  // Only do shuffles on 128-bit vector types for now.
4604  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4605  if (NumElts == 2) return true;
4606  if (NumElts == 4) {
4607    return (isMOVLMask(&BVOps[0], 4)  ||
4608            isCommutedMOVL(&BVOps[0], 4, true) ||
4609            isSHUFPMask(&BVOps[0], 4) ||
4610            isCommutedSHUFP(&BVOps[0], 4));
4611  }
4612  return false;
4613}
4614
4615//===----------------------------------------------------------------------===//
4616//                           X86 Scheduler Hooks
4617//===----------------------------------------------------------------------===//
4618
4619MachineBasicBlock *
4620X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4621                                           MachineBasicBlock *BB) {
4622  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4623  switch (MI->getOpcode()) {
4624  default: assert(false && "Unexpected instr type to insert");
4625  case X86::CMOV_FR32:
4626  case X86::CMOV_FR64:
4627  case X86::CMOV_V4F32:
4628  case X86::CMOV_V2F64:
4629  case X86::CMOV_V2I64: {
4630    // To "insert" a SELECT_CC instruction, we actually have to insert the
4631    // diamond control-flow pattern.  The incoming instruction knows the
4632    // destination vreg to set, the condition code register to branch on, the
4633    // true/false values to select between, and a branch opcode to use.
4634    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4635    ilist<MachineBasicBlock>::iterator It = BB;
4636    ++It;
4637
4638    //  thisMBB:
4639    //  ...
4640    //   TrueVal = ...
4641    //   cmpTY ccX, r1, r2
4642    //   bCC copy1MBB
4643    //   fallthrough --> copy0MBB
4644    MachineBasicBlock *thisMBB = BB;
4645    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4646    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4647    unsigned Opc =
4648      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4649    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4650    MachineFunction *F = BB->getParent();
4651    F->getBasicBlockList().insert(It, copy0MBB);
4652    F->getBasicBlockList().insert(It, sinkMBB);
4653    // Update machine-CFG edges by first adding all successors of the current
4654    // block to the new block which will contain the Phi node for the select.
4655    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4656        e = BB->succ_end(); i != e; ++i)
4657      sinkMBB->addSuccessor(*i);
4658    // Next, remove all successors of the current block, and add the true
4659    // and fallthrough blocks as its successors.
4660    while(!BB->succ_empty())
4661      BB->removeSuccessor(BB->succ_begin());
4662    BB->addSuccessor(copy0MBB);
4663    BB->addSuccessor(sinkMBB);
4664
4665    //  copy0MBB:
4666    //   %FalseValue = ...
4667    //   # fallthrough to sinkMBB
4668    BB = copy0MBB;
4669
4670    // Update machine-CFG edges
4671    BB->addSuccessor(sinkMBB);
4672
4673    //  sinkMBB:
4674    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4675    //  ...
4676    BB = sinkMBB;
4677    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4678      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4679      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4680
4681    delete MI;   // The pseudo instruction is gone now.
4682    return BB;
4683  }
4684
4685  case X86::FP32_TO_INT16_IN_MEM:
4686  case X86::FP32_TO_INT32_IN_MEM:
4687  case X86::FP32_TO_INT64_IN_MEM:
4688  case X86::FP64_TO_INT16_IN_MEM:
4689  case X86::FP64_TO_INT32_IN_MEM:
4690  case X86::FP64_TO_INT64_IN_MEM:
4691  case X86::FP80_TO_INT16_IN_MEM:
4692  case X86::FP80_TO_INT32_IN_MEM:
4693  case X86::FP80_TO_INT64_IN_MEM: {
4694    // Change the floating point control register to use "round towards zero"
4695    // mode when truncating to an integer value.
4696    MachineFunction *F = BB->getParent();
4697    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4698    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4699
4700    // Load the old value of the high byte of the control word...
4701    unsigned OldCW =
4702      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4703    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4704
4705    // Set the high part to be round to zero...
4706    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4707      .addImm(0xC7F);
4708
4709    // Reload the modified control word now...
4710    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4711
4712    // Restore the memory image of control word to original value
4713    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4714      .addReg(OldCW);
4715
4716    // Get the X86 opcode to use.
4717    unsigned Opc;
4718    switch (MI->getOpcode()) {
4719    default: assert(0 && "illegal opcode!");
4720    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
4721    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
4722    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
4723    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
4724    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
4725    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
4726    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
4727    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
4728    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
4729    }
4730
4731    X86AddressMode AM;
4732    MachineOperand &Op = MI->getOperand(0);
4733    if (Op.isRegister()) {
4734      AM.BaseType = X86AddressMode::RegBase;
4735      AM.Base.Reg = Op.getReg();
4736    } else {
4737      AM.BaseType = X86AddressMode::FrameIndexBase;
4738      AM.Base.FrameIndex = Op.getFrameIndex();
4739    }
4740    Op = MI->getOperand(1);
4741    if (Op.isImmediate())
4742      AM.Scale = Op.getImm();
4743    Op = MI->getOperand(2);
4744    if (Op.isImmediate())
4745      AM.IndexReg = Op.getImm();
4746    Op = MI->getOperand(3);
4747    if (Op.isGlobalAddress()) {
4748      AM.GV = Op.getGlobal();
4749    } else {
4750      AM.Disp = Op.getImm();
4751    }
4752    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4753                      .addReg(MI->getOperand(4).getReg());
4754
4755    // Reload the original control word now.
4756    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4757
4758    delete MI;   // The pseudo instruction is gone now.
4759    return BB;
4760  }
4761  }
4762}
4763
4764//===----------------------------------------------------------------------===//
4765//                           X86 Optimization Hooks
4766//===----------------------------------------------------------------------===//
4767
4768void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4769                                                       uint64_t Mask,
4770                                                       uint64_t &KnownZero,
4771                                                       uint64_t &KnownOne,
4772                                                       const SelectionDAG &DAG,
4773                                                       unsigned Depth) const {
4774  unsigned Opc = Op.getOpcode();
4775  assert((Opc >= ISD::BUILTIN_OP_END ||
4776          Opc == ISD::INTRINSIC_WO_CHAIN ||
4777          Opc == ISD::INTRINSIC_W_CHAIN ||
4778          Opc == ISD::INTRINSIC_VOID) &&
4779         "Should use MaskedValueIsZero if you don't know whether Op"
4780         " is a target node!");
4781
4782  KnownZero = KnownOne = 0;   // Don't know anything.
4783  switch (Opc) {
4784  default: break;
4785  case X86ISD::SETCC:
4786    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4787    break;
4788  }
4789}
4790
4791/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4792/// element of the result of the vector shuffle.
4793static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4794  MVT::ValueType VT = N->getValueType(0);
4795  SDOperand PermMask = N->getOperand(2);
4796  unsigned NumElems = PermMask.getNumOperands();
4797  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4798  i %= NumElems;
4799  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4800    return (i == 0)
4801      ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4802  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4803    SDOperand Idx = PermMask.getOperand(i);
4804    if (Idx.getOpcode() == ISD::UNDEF)
4805      return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4806    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4807  }
4808  return SDOperand();
4809}
4810
4811/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4812/// node is a GlobalAddress + an offset.
4813static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4814  unsigned Opc = N->getOpcode();
4815  if (Opc == X86ISD::Wrapper) {
4816    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4817      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4818      return true;
4819    }
4820  } else if (Opc == ISD::ADD) {
4821    SDOperand N1 = N->getOperand(0);
4822    SDOperand N2 = N->getOperand(1);
4823    if (isGAPlusOffset(N1.Val, GA, Offset)) {
4824      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4825      if (V) {
4826        Offset += V->getSignExtended();
4827        return true;
4828      }
4829    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4830      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4831      if (V) {
4832        Offset += V->getSignExtended();
4833        return true;
4834      }
4835    }
4836  }
4837  return false;
4838}
4839
4840/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4841/// + Dist * Size.
4842static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4843                              MachineFrameInfo *MFI) {
4844  if (N->getOperand(0).Val != Base->getOperand(0).Val)
4845    return false;
4846
4847  SDOperand Loc = N->getOperand(1);
4848  SDOperand BaseLoc = Base->getOperand(1);
4849  if (Loc.getOpcode() == ISD::FrameIndex) {
4850    if (BaseLoc.getOpcode() != ISD::FrameIndex)
4851      return false;
4852    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
4853    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
4854    int FS  = MFI->getObjectSize(FI);
4855    int BFS = MFI->getObjectSize(BFI);
4856    if (FS != BFS || FS != Size) return false;
4857    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4858  } else {
4859    GlobalValue *GV1 = NULL;
4860    GlobalValue *GV2 = NULL;
4861    int64_t Offset1 = 0;
4862    int64_t Offset2 = 0;
4863    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4864    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4865    if (isGA1 && isGA2 && GV1 == GV2)
4866      return Offset1 == (Offset2 + Dist*Size);
4867  }
4868
4869  return false;
4870}
4871
4872static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4873                              const X86Subtarget *Subtarget) {
4874  GlobalValue *GV;
4875  int64_t Offset;
4876  if (isGAPlusOffset(Base, GV, Offset))
4877    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4878  else {
4879    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
4880    int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
4881    if (BFI < 0)
4882      // Fixed objects do not specify alignment, however the offsets are known.
4883      return ((Subtarget->getStackAlignment() % 16) == 0 &&
4884              (MFI->getObjectOffset(BFI) % 16) == 0);
4885    else
4886      return MFI->getObjectAlignment(BFI) >= 16;
4887  }
4888  return false;
4889}
4890
4891
4892/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
4893/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
4894/// if the load addresses are consecutive, non-overlapping, and in the right
4895/// order.
4896static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
4897                                       const X86Subtarget *Subtarget) {
4898  MachineFunction &MF = DAG.getMachineFunction();
4899  MachineFrameInfo *MFI = MF.getFrameInfo();
4900  MVT::ValueType VT = N->getValueType(0);
4901  MVT::ValueType EVT = MVT::getVectorElementType(VT);
4902  SDOperand PermMask = N->getOperand(2);
4903  int NumElems = (int)PermMask.getNumOperands();
4904  SDNode *Base = NULL;
4905  for (int i = 0; i < NumElems; ++i) {
4906    SDOperand Idx = PermMask.getOperand(i);
4907    if (Idx.getOpcode() == ISD::UNDEF) {
4908      if (!Base) return SDOperand();
4909    } else {
4910      SDOperand Arg =
4911        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
4912      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
4913        return SDOperand();
4914      if (!Base)
4915        Base = Arg.Val;
4916      else if (!isConsecutiveLoad(Arg.Val, Base,
4917                                  i, MVT::getSizeInBits(EVT)/8,MFI))
4918        return SDOperand();
4919    }
4920  }
4921
4922  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
4923  LoadSDNode *LD = cast<LoadSDNode>(Base);
4924  if (isAlign16) {
4925    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4926                       LD->getSrcValueOffset(), LD->isVolatile());
4927  } else {
4928    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4929                       LD->getSrcValueOffset(), LD->isVolatile(),
4930                       LD->getAlignment());
4931  }
4932}
4933
4934/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
4935static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
4936                                      const X86Subtarget *Subtarget) {
4937  SDOperand Cond = N->getOperand(0);
4938
4939  // If we have SSE[12] support, try to form min/max nodes.
4940  if (Subtarget->hasSSE2() &&
4941      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
4942    if (Cond.getOpcode() == ISD::SETCC) {
4943      // Get the LHS/RHS of the select.
4944      SDOperand LHS = N->getOperand(1);
4945      SDOperand RHS = N->getOperand(2);
4946      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
4947
4948      unsigned Opcode = 0;
4949      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
4950        switch (CC) {
4951        default: break;
4952        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
4953        case ISD::SETULE:
4954        case ISD::SETLE:
4955          if (!UnsafeFPMath) break;
4956          // FALL THROUGH.
4957        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
4958        case ISD::SETLT:
4959          Opcode = X86ISD::FMIN;
4960          break;
4961
4962        case ISD::SETOGT: // (X > Y) ? X : Y -> max
4963        case ISD::SETUGT:
4964        case ISD::SETGT:
4965          if (!UnsafeFPMath) break;
4966          // FALL THROUGH.
4967        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
4968        case ISD::SETGE:
4969          Opcode = X86ISD::FMAX;
4970          break;
4971        }
4972      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
4973        switch (CC) {
4974        default: break;
4975        case ISD::SETOGT: // (X > Y) ? Y : X -> min
4976        case ISD::SETUGT:
4977        case ISD::SETGT:
4978          if (!UnsafeFPMath) break;
4979          // FALL THROUGH.
4980        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
4981        case ISD::SETGE:
4982          Opcode = X86ISD::FMIN;
4983          break;
4984
4985        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
4986        case ISD::SETULE:
4987        case ISD::SETLE:
4988          if (!UnsafeFPMath) break;
4989          // FALL THROUGH.
4990        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
4991        case ISD::SETLT:
4992          Opcode = X86ISD::FMAX;
4993          break;
4994        }
4995      }
4996
4997      if (Opcode)
4998        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
4999    }
5000
5001  }
5002
5003  return SDOperand();
5004}
5005
5006
5007SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5008                                               DAGCombinerInfo &DCI) const {
5009  SelectionDAG &DAG = DCI.DAG;
5010  switch (N->getOpcode()) {
5011  default: break;
5012  case ISD::VECTOR_SHUFFLE:
5013    return PerformShuffleCombine(N, DAG, Subtarget);
5014  case ISD::SELECT:
5015    return PerformSELECTCombine(N, DAG, Subtarget);
5016  }
5017
5018  return SDOperand();
5019}
5020
5021//===----------------------------------------------------------------------===//
5022//                           X86 Inline Assembly Support
5023//===----------------------------------------------------------------------===//
5024
5025/// getConstraintType - Given a constraint letter, return the type of
5026/// constraint it is for this target.
5027X86TargetLowering::ConstraintType
5028X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5029  if (Constraint.size() == 1) {
5030    switch (Constraint[0]) {
5031    case 'A':
5032    case 'r':
5033    case 'R':
5034    case 'l':
5035    case 'q':
5036    case 'Q':
5037    case 'x':
5038    case 'Y':
5039      return C_RegisterClass;
5040    default:
5041      break;
5042    }
5043  }
5044  return TargetLowering::getConstraintType(Constraint);
5045}
5046
5047/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5048/// vector.  If it is invalid, don't add anything to Ops.
5049void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5050                                                     char Constraint,
5051                                                     std::vector<SDOperand>&Ops,
5052                                                     SelectionDAG &DAG) {
5053  SDOperand Result(0, 0);
5054
5055  switch (Constraint) {
5056  default: break;
5057  case 'I':
5058    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5059      if (C->getValue() <= 31) {
5060        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5061        break;
5062      }
5063    }
5064    return;
5065  case 'N':
5066    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5067      if (C->getValue() <= 255) {
5068        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5069        break;
5070      }
5071    }
5072    return;
5073  case 'i': {
5074    // Literal immediates are always ok.
5075    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5076      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5077      break;
5078    }
5079
5080    // If we are in non-pic codegen mode, we allow the address of a global (with
5081    // an optional displacement) to be used with 'i'.
5082    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5083    int64_t Offset = 0;
5084
5085    // Match either (GA) or (GA+C)
5086    if (GA) {
5087      Offset = GA->getOffset();
5088    } else if (Op.getOpcode() == ISD::ADD) {
5089      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5090      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5091      if (C && GA) {
5092        Offset = GA->getOffset()+C->getValue();
5093      } else {
5094        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5095        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5096        if (C && GA)
5097          Offset = GA->getOffset()+C->getValue();
5098        else
5099          C = 0, GA = 0;
5100      }
5101    }
5102
5103    if (GA) {
5104      // If addressing this global requires a load (e.g. in PIC mode), we can't
5105      // match.
5106      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5107                                         false))
5108        return;
5109
5110      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5111                                      Offset);
5112      Result = Op;
5113      break;
5114    }
5115
5116    // Otherwise, not valid for this mode.
5117    return;
5118  }
5119  }
5120
5121  if (Result.Val) {
5122    Ops.push_back(Result);
5123    return;
5124  }
5125  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5126}
5127
5128std::vector<unsigned> X86TargetLowering::
5129getRegClassForInlineAsmConstraint(const std::string &Constraint,
5130                                  MVT::ValueType VT) const {
5131  if (Constraint.size() == 1) {
5132    // FIXME: not handling fp-stack yet!
5133    switch (Constraint[0]) {      // GCC X86 Constraint Letters
5134    default: break;  // Unknown constraint letter
5135    case 'A':   // EAX/EDX
5136      if (VT == MVT::i32 || VT == MVT::i64)
5137        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5138      break;
5139    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
5140    case 'Q':   // Q_REGS
5141      if (VT == MVT::i32)
5142        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5143      else if (VT == MVT::i16)
5144        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5145      else if (VT == MVT::i8)
5146        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
5147        break;
5148    }
5149  }
5150
5151  return std::vector<unsigned>();
5152}
5153
5154std::pair<unsigned, const TargetRegisterClass*>
5155X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5156                                                MVT::ValueType VT) const {
5157  // First, see if this is a constraint that directly corresponds to an LLVM
5158  // register class.
5159  if (Constraint.size() == 1) {
5160    // GCC Constraint Letters
5161    switch (Constraint[0]) {
5162    default: break;
5163    case 'r':   // GENERAL_REGS
5164    case 'R':   // LEGACY_REGS
5165    case 'l':   // INDEX_REGS
5166      if (VT == MVT::i64 && Subtarget->is64Bit())
5167        return std::make_pair(0U, X86::GR64RegisterClass);
5168      if (VT == MVT::i32)
5169        return std::make_pair(0U, X86::GR32RegisterClass);
5170      else if (VT == MVT::i16)
5171        return std::make_pair(0U, X86::GR16RegisterClass);
5172      else if (VT == MVT::i8)
5173        return std::make_pair(0U, X86::GR8RegisterClass);
5174      break;
5175    case 'y':   // MMX_REGS if MMX allowed.
5176      if (!Subtarget->hasMMX()) break;
5177      return std::make_pair(0U, X86::VR64RegisterClass);
5178      break;
5179    case 'Y':   // SSE_REGS if SSE2 allowed
5180      if (!Subtarget->hasSSE2()) break;
5181      // FALL THROUGH.
5182    case 'x':   // SSE_REGS if SSE1 allowed
5183      if (!Subtarget->hasSSE1()) break;
5184
5185      switch (VT) {
5186      default: break;
5187      // Scalar SSE types.
5188      case MVT::f32:
5189      case MVT::i32:
5190        return std::make_pair(0U, X86::FR32RegisterClass);
5191      case MVT::f64:
5192      case MVT::i64:
5193        return std::make_pair(0U, X86::FR64RegisterClass);
5194      // Vector types.
5195      case MVT::v16i8:
5196      case MVT::v8i16:
5197      case MVT::v4i32:
5198      case MVT::v2i64:
5199      case MVT::v4f32:
5200      case MVT::v2f64:
5201        return std::make_pair(0U, X86::VR128RegisterClass);
5202      }
5203      break;
5204    }
5205  }
5206
5207  // Use the default implementation in TargetLowering to convert the register
5208  // constraint into a member of a register class.
5209  std::pair<unsigned, const TargetRegisterClass*> Res;
5210  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5211
5212  // Not found as a standard register?
5213  if (Res.second == 0) {
5214    // GCC calls "st(0)" just plain "st".
5215    if (StringsEqualNoCase("{st}", Constraint)) {
5216      Res.first = X86::ST0;
5217      Res.second = X86::RSTRegisterClass;
5218    }
5219
5220    return Res;
5221  }
5222
5223  // Otherwise, check to see if this is a register class of the wrong value
5224  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5225  // turn into {ax},{dx}.
5226  if (Res.second->hasType(VT))
5227    return Res;   // Correct type already, nothing to do.
5228
5229  // All of the single-register GCC register classes map their values onto
5230  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
5231  // really want an 8-bit or 32-bit register, map to the appropriate register
5232  // class and return the appropriate register.
5233  if (Res.second != X86::GR16RegisterClass)
5234    return Res;
5235
5236  if (VT == MVT::i8) {
5237    unsigned DestReg = 0;
5238    switch (Res.first) {
5239    default: break;
5240    case X86::AX: DestReg = X86::AL; break;
5241    case X86::DX: DestReg = X86::DL; break;
5242    case X86::CX: DestReg = X86::CL; break;
5243    case X86::BX: DestReg = X86::BL; break;
5244    }
5245    if (DestReg) {
5246      Res.first = DestReg;
5247      Res.second = Res.second = X86::GR8RegisterClass;
5248    }
5249  } else if (VT == MVT::i32) {
5250    unsigned DestReg = 0;
5251    switch (Res.first) {
5252    default: break;
5253    case X86::AX: DestReg = X86::EAX; break;
5254    case X86::DX: DestReg = X86::EDX; break;
5255    case X86::CX: DestReg = X86::ECX; break;
5256    case X86::BX: DestReg = X86::EBX; break;
5257    case X86::SI: DestReg = X86::ESI; break;
5258    case X86::DI: DestReg = X86::EDI; break;
5259    case X86::BP: DestReg = X86::EBP; break;
5260    case X86::SP: DestReg = X86::ESP; break;
5261    }
5262    if (DestReg) {
5263      Res.first = DestReg;
5264      Res.second = Res.second = X86::GR32RegisterClass;
5265    }
5266  } else if (VT == MVT::i64) {
5267    unsigned DestReg = 0;
5268    switch (Res.first) {
5269    default: break;
5270    case X86::AX: DestReg = X86::RAX; break;
5271    case X86::DX: DestReg = X86::RDX; break;
5272    case X86::CX: DestReg = X86::RCX; break;
5273    case X86::BX: DestReg = X86::RBX; break;
5274    case X86::SI: DestReg = X86::RSI; break;
5275    case X86::DI: DestReg = X86::RDI; break;
5276    case X86::BP: DestReg = X86::RBP; break;
5277    case X86::SP: DestReg = X86::RSP; break;
5278    }
5279    if (DestReg) {
5280      Res.first = DestReg;
5281      Res.second = Res.second = X86::GR64RegisterClass;
5282    }
5283  }
5284
5285  return Res;
5286}
5287