X86ISelLowering.cpp revision 6a32b6f0c088e4d2972cf5d208c54f42c2c52f85
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VariadicFunction.h"
47#include "llvm/Support/CallSite.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetOptions.h"
55using namespace llvm;
56using namespace dwarf;
57
58STATISTIC(NumTailCalls, "Number of tail calls");
59
60static cl::opt<bool> UseRegMask("x86-use-regmask",
61                                cl::desc("Use register masks for x86 calls"));
62
63// Forward declarations.
64static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
65                       SDValue V2);
66
67static SDValue Insert128BitVector(SDValue Result,
68                                  SDValue Vec,
69                                  SDValue Idx,
70                                  SelectionDAG &DAG,
71                                  DebugLoc dl);
72
73static SDValue Extract128BitVector(SDValue Vec,
74                                   SDValue Idx,
75                                   SelectionDAG &DAG,
76                                   DebugLoc dl);
77
78/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
79/// sets things up to match to an AVX VEXTRACTF128 instruction or a
80/// simple subregister reference.  Idx is an index in the 128 bits we
81/// want.  It need not be aligned to a 128-bit bounday.  That makes
82/// lowering EXTRACT_VECTOR_ELT operations easier.
83static SDValue Extract128BitVector(SDValue Vec,
84                                   SDValue Idx,
85                                   SelectionDAG &DAG,
86                                   DebugLoc dl) {
87  EVT VT = Vec.getValueType();
88  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
89  EVT ElVT = VT.getVectorElementType();
90  int Factor = VT.getSizeInBits()/128;
91  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
92                                  VT.getVectorNumElements()/Factor);
93
94  // Extract from UNDEF is UNDEF.
95  if (Vec.getOpcode() == ISD::UNDEF)
96    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
97
98  if (isa<ConstantSDNode>(Idx)) {
99    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
100
101    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
102    // we can match to VEXTRACTF128.
103    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
104
105    // This is the index of the first element of the 128-bit chunk
106    // we want.
107    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
108                                 * ElemsPerChunk);
109
110    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
111    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
112                                 VecIdx);
113
114    return Result;
115  }
116
117  return SDValue();
118}
119
120/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
121/// sets things up to match to an AVX VINSERTF128 instruction or a
122/// simple superregister reference.  Idx is an index in the 128 bits
123/// we want.  It need not be aligned to a 128-bit bounday.  That makes
124/// lowering INSERT_VECTOR_ELT operations easier.
125static SDValue Insert128BitVector(SDValue Result,
126                                  SDValue Vec,
127                                  SDValue Idx,
128                                  SelectionDAG &DAG,
129                                  DebugLoc dl) {
130  if (isa<ConstantSDNode>(Idx)) {
131    EVT VT = Vec.getValueType();
132    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
133
134    EVT ElVT = VT.getVectorElementType();
135    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
136    EVT ResultVT = Result.getValueType();
137
138    // Insert the relevant 128 bits.
139    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
140
141    // This is the index of the first element of the 128-bit chunk
142    // we want.
143    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
144                                 * ElemsPerChunk);
145
146    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
147    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
148                         VecIdx);
149    return Result;
150  }
151
152  return SDValue();
153}
154
155static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
156  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
157  bool is64Bit = Subtarget->is64Bit();
158
159  if (Subtarget->isTargetEnvMacho()) {
160    if (is64Bit)
161      return new X8664_MachoTargetObjectFile();
162    return new TargetLoweringObjectFileMachO();
163  }
164
165  if (Subtarget->isTargetELF())
166    return new TargetLoweringObjectFileELF();
167  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
168    return new TargetLoweringObjectFileCOFF();
169  llvm_unreachable("unknown subtarget type");
170}
171
172X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
173  : TargetLowering(TM, createTLOF(TM)) {
174  Subtarget = &TM.getSubtarget<X86Subtarget>();
175  X86ScalarSSEf64 = Subtarget->hasSSE2();
176  X86ScalarSSEf32 = Subtarget->hasSSE1();
177  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
178
179  RegInfo = TM.getRegisterInfo();
180  TD = getTargetData();
181
182  // Set up the TargetLowering object.
183  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
184
185  // X86 is weird, it always uses i8 for shift amounts and setcc results.
186  setBooleanContents(ZeroOrOneBooleanContent);
187  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
188  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
189
190  // For 64-bit since we have so many registers use the ILP scheduler, for
191  // 32-bit code use the register pressure specific scheduling.
192  if (Subtarget->is64Bit())
193    setSchedulingPreference(Sched::ILP);
194  else
195    setSchedulingPreference(Sched::RegPressure);
196  setStackPointerRegisterToSaveRestore(X86StackPtr);
197
198  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
199    // Setup Windows compiler runtime calls.
200    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
201    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
202    setLibcallName(RTLIB::SREM_I64, "_allrem");
203    setLibcallName(RTLIB::UREM_I64, "_aullrem");
204    setLibcallName(RTLIB::MUL_I64, "_allmul");
205    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
206    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
207    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
208    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
209    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
210    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
211    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
212    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
213    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
214  }
215
216  if (Subtarget->isTargetDarwin()) {
217    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
218    setUseUnderscoreSetJmp(false);
219    setUseUnderscoreLongJmp(false);
220  } else if (Subtarget->isTargetMingw()) {
221    // MS runtime is weird: it exports _setjmp, but longjmp!
222    setUseUnderscoreSetJmp(true);
223    setUseUnderscoreLongJmp(false);
224  } else {
225    setUseUnderscoreSetJmp(true);
226    setUseUnderscoreLongJmp(true);
227  }
228
229  // Set up the register classes.
230  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
231  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
232  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
233  if (Subtarget->is64Bit())
234    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
235
236  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
237
238  // We don't accept any truncstore of integer registers.
239  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
240  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
241  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
242  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
243  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
244  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
245
246  // SETOEQ and SETUNE require checking two conditions.
247  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
248  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
249  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
250  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
251  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
252  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
253
254  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
255  // operation.
256  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
257  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
258  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
259
260  if (Subtarget->is64Bit()) {
261    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
262    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
263  } else if (!TM.Options.UseSoftFloat) {
264    // We have an algorithm for SSE2->double, and we turn this into a
265    // 64-bit FILD followed by conditional FADD for other targets.
266    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
267    // We have an algorithm for SSE2, and we turn this into a 64-bit
268    // FILD for other targets.
269    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
270  }
271
272  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
273  // this operation.
274  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
275  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
276
277  if (!TM.Options.UseSoftFloat) {
278    // SSE has no i16 to fp conversion, only i32
279    if (X86ScalarSSEf32) {
280      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
281      // f32 and f64 cases are Legal, f80 case is not
282      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
283    } else {
284      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
285      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
286    }
287  } else {
288    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
289    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
290  }
291
292  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
293  // are Legal, f80 is custom lowered.
294  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
295  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
296
297  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
298  // this operation.
299  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
300  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
301
302  if (X86ScalarSSEf32) {
303    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
304    // f32 and f64 cases are Legal, f80 case is not
305    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
306  } else {
307    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
308    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
309  }
310
311  // Handle FP_TO_UINT by promoting the destination to a larger signed
312  // conversion.
313  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
314  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
315  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
316
317  if (Subtarget->is64Bit()) {
318    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
319    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
320  } else if (!TM.Options.UseSoftFloat) {
321    // Since AVX is a superset of SSE3, only check for SSE here.
322    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
323      // Expand FP_TO_UINT into a select.
324      // FIXME: We would like to use a Custom expander here eventually to do
325      // the optimal thing for SSE vs. the default expansion in the legalizer.
326      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
327    else
328      // With SSE3 we can use fisttpll to convert to a signed i64; without
329      // SSE, we're stuck with a fistpll.
330      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
331  }
332
333  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
334  if (!X86ScalarSSEf64) {
335    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
336    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
337    if (Subtarget->is64Bit()) {
338      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
339      // Without SSE, i64->f64 goes through memory.
340      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
341    }
342  }
343
344  // Scalar integer divide and remainder are lowered to use operations that
345  // produce two results, to match the available instructions. This exposes
346  // the two-result form to trivial CSE, which is able to combine x/y and x%y
347  // into a single instruction.
348  //
349  // Scalar integer multiply-high is also lowered to use two-result
350  // operations, to match the available instructions. However, plain multiply
351  // (low) operations are left as Legal, as there are single-result
352  // instructions for this in x86. Using the two-result multiply instructions
353  // when both high and low results are needed must be arranged by dagcombine.
354  for (unsigned i = 0, e = 4; i != e; ++i) {
355    MVT VT = IntVTs[i];
356    setOperationAction(ISD::MULHS, VT, Expand);
357    setOperationAction(ISD::MULHU, VT, Expand);
358    setOperationAction(ISD::SDIV, VT, Expand);
359    setOperationAction(ISD::UDIV, VT, Expand);
360    setOperationAction(ISD::SREM, VT, Expand);
361    setOperationAction(ISD::UREM, VT, Expand);
362
363    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
364    setOperationAction(ISD::ADDC, VT, Custom);
365    setOperationAction(ISD::ADDE, VT, Custom);
366    setOperationAction(ISD::SUBC, VT, Custom);
367    setOperationAction(ISD::SUBE, VT, Custom);
368  }
369
370  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
371  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
372  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
373  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
374  if (Subtarget->is64Bit())
375    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
376  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
377  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
378  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
379  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
380  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
381  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
382  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
383  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
384
385  // Promote the i8 variants and force them on up to i32 which has a shorter
386  // encoding.
387  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
388  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
389  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
390  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
391  if (Subtarget->hasBMI()) {
392    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
393    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
394    if (Subtarget->is64Bit())
395      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
396  } else {
397    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
398    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
399    if (Subtarget->is64Bit())
400      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
401  }
402
403  if (Subtarget->hasLZCNT()) {
404    // When promoting the i8 variants, force them to i32 for a shorter
405    // encoding.
406    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
407    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
408    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
409    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
410    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
411    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
412    if (Subtarget->is64Bit())
413      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
414  } else {
415    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
416    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
417    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
418    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
419    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
420    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
421    if (Subtarget->is64Bit()) {
422      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
423      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
424    }
425  }
426
427  if (Subtarget->hasPOPCNT()) {
428    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
429  } else {
430    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
431    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
432    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
433    if (Subtarget->is64Bit())
434      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
435  }
436
437  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
438  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
439
440  // These should be promoted to a larger select which is supported.
441  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
442  // X86 wants to expand cmov itself.
443  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
444  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
445  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
446  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
447  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
448  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
450  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
451  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
452  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
453  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
454  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
455  if (Subtarget->is64Bit()) {
456    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
457    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
458  }
459  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
460
461  // Darwin ABI issue.
462  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
463  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
464  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
465  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
466  if (Subtarget->is64Bit())
467    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
468  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
469  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
470  if (Subtarget->is64Bit()) {
471    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
472    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
473    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
474    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
475    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
476  }
477  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
478  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
479  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
480  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
481  if (Subtarget->is64Bit()) {
482    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
483    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
484    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
485  }
486
487  if (Subtarget->hasSSE1())
488    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
489
490  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
491  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
492
493  // On X86 and X86-64, atomic operations are lowered to locked instructions.
494  // Locked instructions, in turn, have implicit fence semantics (all memory
495  // operations are flushed before issuing the locked instruction, and they
496  // are not buffered), so we can fold away the common pattern of
497  // fence-atomic-fence.
498  setShouldFoldAtomicFences(true);
499
500  // Expand certain atomics
501  for (unsigned i = 0, e = 4; i != e; ++i) {
502    MVT VT = IntVTs[i];
503    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
505    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
506  }
507
508  if (!Subtarget->is64Bit()) {
509    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
511    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
512    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
513    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
514    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
515    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
516    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
517  }
518
519  if (Subtarget->hasCmpxchg16b()) {
520    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
521  }
522
523  // FIXME - use subtarget debug flags
524  if (!Subtarget->isTargetDarwin() &&
525      !Subtarget->isTargetELF() &&
526      !Subtarget->isTargetCygMing()) {
527    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
528  }
529
530  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
531  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
532  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
533  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
534  if (Subtarget->is64Bit()) {
535    setExceptionPointerRegister(X86::RAX);
536    setExceptionSelectorRegister(X86::RDX);
537  } else {
538    setExceptionPointerRegister(X86::EAX);
539    setExceptionSelectorRegister(X86::EDX);
540  }
541  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
542  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
543
544  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
545  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
546
547  setOperationAction(ISD::TRAP, MVT::Other, Legal);
548
549  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
550  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
551  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
552  if (Subtarget->is64Bit()) {
553    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
554    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
555  } else {
556    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
557    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
558  }
559
560  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
561  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
562
563  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
564    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
565                       MVT::i64 : MVT::i32, Custom);
566  else if (TM.Options.EnableSegmentedStacks)
567    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
568                       MVT::i64 : MVT::i32, Custom);
569  else
570    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
571                       MVT::i64 : MVT::i32, Expand);
572
573  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
574    // f32 and f64 use SSE.
575    // Set up the FP register classes.
576    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
577    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
578
579    // Use ANDPD to simulate FABS.
580    setOperationAction(ISD::FABS , MVT::f64, Custom);
581    setOperationAction(ISD::FABS , MVT::f32, Custom);
582
583    // Use XORP to simulate FNEG.
584    setOperationAction(ISD::FNEG , MVT::f64, Custom);
585    setOperationAction(ISD::FNEG , MVT::f32, Custom);
586
587    // Use ANDPD and ORPD to simulate FCOPYSIGN.
588    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
589    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
590
591    // Lower this to FGETSIGNx86 plus an AND.
592    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
593    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
594
595    // We don't support sin/cos/fmod
596    setOperationAction(ISD::FSIN , MVT::f64, Expand);
597    setOperationAction(ISD::FCOS , MVT::f64, Expand);
598    setOperationAction(ISD::FSIN , MVT::f32, Expand);
599    setOperationAction(ISD::FCOS , MVT::f32, Expand);
600
601    // Expand FP immediates into loads from the stack, except for the special
602    // cases we handle.
603    addLegalFPImmediate(APFloat(+0.0)); // xorpd
604    addLegalFPImmediate(APFloat(+0.0f)); // xorps
605  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
606    // Use SSE for f32, x87 for f64.
607    // Set up the FP register classes.
608    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
609    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
610
611    // Use ANDPS to simulate FABS.
612    setOperationAction(ISD::FABS , MVT::f32, Custom);
613
614    // Use XORP to simulate FNEG.
615    setOperationAction(ISD::FNEG , MVT::f32, Custom);
616
617    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
618
619    // Use ANDPS and ORPS to simulate FCOPYSIGN.
620    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
621    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
622
623    // We don't support sin/cos/fmod
624    setOperationAction(ISD::FSIN , MVT::f32, Expand);
625    setOperationAction(ISD::FCOS , MVT::f32, Expand);
626
627    // Special cases we handle for FP constants.
628    addLegalFPImmediate(APFloat(+0.0f)); // xorps
629    addLegalFPImmediate(APFloat(+0.0)); // FLD0
630    addLegalFPImmediate(APFloat(+1.0)); // FLD1
631    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
632    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
633
634    if (!TM.Options.UnsafeFPMath) {
635      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
636      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
637    }
638  } else if (!TM.Options.UseSoftFloat) {
639    // f32 and f64 in x87.
640    // Set up the FP register classes.
641    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
642    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
643
644    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
645    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
646    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
647    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
648
649    if (!TM.Options.UnsafeFPMath) {
650      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
651      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
652    }
653    addLegalFPImmediate(APFloat(+0.0)); // FLD0
654    addLegalFPImmediate(APFloat(+1.0)); // FLD1
655    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
656    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
657    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
658    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
659    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
660    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
661  }
662
663  // We don't support FMA.
664  setOperationAction(ISD::FMA, MVT::f64, Expand);
665  setOperationAction(ISD::FMA, MVT::f32, Expand);
666
667  // Long double always uses X87.
668  if (!TM.Options.UseSoftFloat) {
669    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
670    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
671    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
672    {
673      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
674      addLegalFPImmediate(TmpFlt);  // FLD0
675      TmpFlt.changeSign();
676      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
677
678      bool ignored;
679      APFloat TmpFlt2(+1.0);
680      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
681                      &ignored);
682      addLegalFPImmediate(TmpFlt2);  // FLD1
683      TmpFlt2.changeSign();
684      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
685    }
686
687    if (!TM.Options.UnsafeFPMath) {
688      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
689      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
690    }
691
692    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
693    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
694    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
695    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
696    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
697    setOperationAction(ISD::FMA, MVT::f80, Expand);
698  }
699
700  // Always use a library call for pow.
701  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
702  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
703  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
704
705  setOperationAction(ISD::FLOG, MVT::f80, Expand);
706  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
707  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
708  setOperationAction(ISD::FEXP, MVT::f80, Expand);
709  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
710
711  // First set operation action for all vector types to either promote
712  // (for widening) or expand (for scalarization). Then we will selectively
713  // turn on ones that can be effectively codegen'd.
714  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
715       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
716    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
731    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
733    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
734    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
767    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
768    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
769    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
770    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
771    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
772    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
773    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
774         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
775      setTruncStoreAction((MVT::SimpleValueType)VT,
776                          (MVT::SimpleValueType)InnerVT, Expand);
777    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
778    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
779    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
780  }
781
782  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
783  // with -msoft-float, disable use of MMX as well.
784  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
785    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
786    // No operations on x86mmx supported, everything uses intrinsics.
787  }
788
789  // MMX-sized vectors (other than x86mmx) are expected to be expanded
790  // into smaller operations.
791  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
792  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
793  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
794  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
795  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
796  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
797  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
798  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
799  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
800  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
801  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
802  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
803  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
804  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
805  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
806  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
807  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
808  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
809  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
810  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
811  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
812  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
813  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
814  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
815  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
816  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
817  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
818  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
819  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
820
821  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
822    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
823
824    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
825    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
826    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
827    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
828    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
829    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
830    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
831    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
832    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
833    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
834    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
835    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
836  }
837
838  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
839    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
840
841    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
842    // registers cannot be used even for integer operations.
843    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
844    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
845    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
846    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
847
848    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
849    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
850    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
851    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
852    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
853    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
854    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
855    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
856    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
857    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
858    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
859    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
860    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
861    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
862    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
863    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
864
865    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
866    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
867    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
868    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
869
870    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
871    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
872    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
873    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
874    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
875
876    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
877    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
878    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
879    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
880    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
881
882    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
883    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
884      EVT VT = (MVT::SimpleValueType)i;
885      // Do not attempt to custom lower non-power-of-2 vectors
886      if (!isPowerOf2_32(VT.getVectorNumElements()))
887        continue;
888      // Do not attempt to custom lower non-128-bit vectors
889      if (!VT.is128BitVector())
890        continue;
891      setOperationAction(ISD::BUILD_VECTOR,
892                         VT.getSimpleVT().SimpleTy, Custom);
893      setOperationAction(ISD::VECTOR_SHUFFLE,
894                         VT.getSimpleVT().SimpleTy, Custom);
895      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
896                         VT.getSimpleVT().SimpleTy, Custom);
897    }
898
899    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
900    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
901    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
902    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
903    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
904    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
905
906    if (Subtarget->is64Bit()) {
907      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
908      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
909    }
910
911    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
912    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
913      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
914      EVT VT = SVT;
915
916      // Do not attempt to promote non-128-bit vectors
917      if (!VT.is128BitVector())
918        continue;
919
920      setOperationAction(ISD::AND,    SVT, Promote);
921      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
922      setOperationAction(ISD::OR,     SVT, Promote);
923      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
924      setOperationAction(ISD::XOR,    SVT, Promote);
925      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
926      setOperationAction(ISD::LOAD,   SVT, Promote);
927      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
928      setOperationAction(ISD::SELECT, SVT, Promote);
929      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
930    }
931
932    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
933
934    // Custom lower v2i64 and v2f64 selects.
935    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
936    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
937    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
938    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
939
940    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
941    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
942  }
943
944  if (Subtarget->hasSSE41()) {
945    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
946    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
947    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
948    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
949    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
950    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
951    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
952    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
953    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
954    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
955
956    // FIXME: Do we need to handle scalar-to-vector here?
957    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
958
959    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
960    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
961    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
962    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
963    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
964
965    // i8 and i16 vectors are custom , because the source register and source
966    // source memory operand types are not the same width.  f32 vectors are
967    // custom since the immediate controlling the insert encodes additional
968    // information.
969    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
970    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
971    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
972    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
973
974    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
975    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
976    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
977    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
978
979    // FIXME: these should be Legal but thats only for the case where
980    // the index is constant.  For now custom expand to deal with that.
981    if (Subtarget->is64Bit()) {
982      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
983      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
984    }
985  }
986
987  if (Subtarget->hasSSE2()) {
988    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
989    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
990
991    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
992    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
993
994    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
995    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
996
997    if (Subtarget->hasAVX2()) {
998      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
999      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
1000
1001      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
1002      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
1003
1004      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1005    } else {
1006      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1007      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1008
1009      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1010      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1011
1012      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1013    }
1014  }
1015
1016  if (Subtarget->hasSSE42())
1017    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1018
1019  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1020    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
1021    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1022    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
1023    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
1024    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
1025    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
1026
1027    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1028    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1029    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1030
1031    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1032    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1033    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1034    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1035    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1036    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1037
1038    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1039    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1040    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1041    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1042    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1043    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1044
1045    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1046    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1047    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1048
1049    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1050    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1051    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1052    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1053    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1054    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1055
1056    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1057    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1058
1059    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1060    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1061
1062    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1063    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1064
1065    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1066    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1067    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1068    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1069
1070    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1071    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1072    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1073
1074    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1075    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1076    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1077    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1078
1079    if (Subtarget->hasAVX2()) {
1080      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1081      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1082      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1083      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1084
1085      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1086      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1087      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1088      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1089
1090      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1091      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1092      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1093      // Don't lower v32i8 because there is no 128-bit byte mul
1094
1095      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1096
1097      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1098      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1099
1100      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1101      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1102
1103      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1104    } else {
1105      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1106      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1107      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1108      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1109
1110      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1111      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1112      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1113      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1114
1115      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1116      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1117      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1118      // Don't lower v32i8 because there is no 128-bit byte mul
1119
1120      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1121      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1122
1123      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1124      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1125
1126      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1127    }
1128
1129    // Custom lower several nodes for 256-bit types.
1130    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1131                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1132      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1133      EVT VT = SVT;
1134
1135      // Extract subvector is special because the value type
1136      // (result) is 128-bit but the source is 256-bit wide.
1137      if (VT.is128BitVector())
1138        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1139
1140      // Do not attempt to custom lower other non-256-bit vectors
1141      if (!VT.is256BitVector())
1142        continue;
1143
1144      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1145      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1146      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1147      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1148      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1149      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1150    }
1151
1152    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1153    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1154      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1155      EVT VT = SVT;
1156
1157      // Do not attempt to promote non-256-bit vectors
1158      if (!VT.is256BitVector())
1159        continue;
1160
1161      setOperationAction(ISD::AND,    SVT, Promote);
1162      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1163      setOperationAction(ISD::OR,     SVT, Promote);
1164      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1165      setOperationAction(ISD::XOR,    SVT, Promote);
1166      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1167      setOperationAction(ISD::LOAD,   SVT, Promote);
1168      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1169      setOperationAction(ISD::SELECT, SVT, Promote);
1170      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1171    }
1172  }
1173
1174  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1175  // of this type with custom code.
1176  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1177         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1178    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1179                       Custom);
1180  }
1181
1182  // We want to custom lower some of our intrinsics.
1183  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1184
1185
1186  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1187  // handle type legalization for these operations here.
1188  //
1189  // FIXME: We really should do custom legalization for addition and
1190  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1191  // than generic legalization for 64-bit multiplication-with-overflow, though.
1192  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1193    // Add/Sub/Mul with overflow operations are custom lowered.
1194    MVT VT = IntVTs[i];
1195    setOperationAction(ISD::SADDO, VT, Custom);
1196    setOperationAction(ISD::UADDO, VT, Custom);
1197    setOperationAction(ISD::SSUBO, VT, Custom);
1198    setOperationAction(ISD::USUBO, VT, Custom);
1199    setOperationAction(ISD::SMULO, VT, Custom);
1200    setOperationAction(ISD::UMULO, VT, Custom);
1201  }
1202
1203  // There are no 8-bit 3-address imul/mul instructions
1204  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1205  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1206
1207  if (!Subtarget->is64Bit()) {
1208    // These libcalls are not available in 32-bit.
1209    setLibcallName(RTLIB::SHL_I128, 0);
1210    setLibcallName(RTLIB::SRL_I128, 0);
1211    setLibcallName(RTLIB::SRA_I128, 0);
1212  }
1213
1214  // We have target-specific dag combine patterns for the following nodes:
1215  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1216  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1217  setTargetDAGCombine(ISD::VSELECT);
1218  setTargetDAGCombine(ISD::SELECT);
1219  setTargetDAGCombine(ISD::SHL);
1220  setTargetDAGCombine(ISD::SRA);
1221  setTargetDAGCombine(ISD::SRL);
1222  setTargetDAGCombine(ISD::OR);
1223  setTargetDAGCombine(ISD::AND);
1224  setTargetDAGCombine(ISD::ADD);
1225  setTargetDAGCombine(ISD::FADD);
1226  setTargetDAGCombine(ISD::FSUB);
1227  setTargetDAGCombine(ISD::SUB);
1228  setTargetDAGCombine(ISD::LOAD);
1229  setTargetDAGCombine(ISD::STORE);
1230  setTargetDAGCombine(ISD::ZERO_EXTEND);
1231  setTargetDAGCombine(ISD::SINT_TO_FP);
1232  if (Subtarget->is64Bit())
1233    setTargetDAGCombine(ISD::MUL);
1234  if (Subtarget->hasBMI())
1235    setTargetDAGCombine(ISD::XOR);
1236
1237  computeRegisterProperties();
1238
1239  // On Darwin, -Os means optimize for size without hurting performance,
1240  // do not reduce the limit.
1241  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1242  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1243  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1244  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1245  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1246  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1247  setPrefLoopAlignment(4); // 2^4 bytes.
1248  benefitFromCodePlacementOpt = true;
1249
1250  setPrefFunctionAlignment(4); // 2^4 bytes.
1251}
1252
1253
1254EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1255  if (!VT.isVector()) return MVT::i8;
1256  return VT.changeVectorElementTypeToInteger();
1257}
1258
1259
1260/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1261/// the desired ByVal argument alignment.
1262static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1263  if (MaxAlign == 16)
1264    return;
1265  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1266    if (VTy->getBitWidth() == 128)
1267      MaxAlign = 16;
1268  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1269    unsigned EltAlign = 0;
1270    getMaxByValAlign(ATy->getElementType(), EltAlign);
1271    if (EltAlign > MaxAlign)
1272      MaxAlign = EltAlign;
1273  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1274    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1275      unsigned EltAlign = 0;
1276      getMaxByValAlign(STy->getElementType(i), EltAlign);
1277      if (EltAlign > MaxAlign)
1278        MaxAlign = EltAlign;
1279      if (MaxAlign == 16)
1280        break;
1281    }
1282  }
1283  return;
1284}
1285
1286/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1287/// function arguments in the caller parameter area. For X86, aggregates
1288/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1289/// are at 4-byte boundaries.
1290unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1291  if (Subtarget->is64Bit()) {
1292    // Max of 8 and alignment of type.
1293    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1294    if (TyAlign > 8)
1295      return TyAlign;
1296    return 8;
1297  }
1298
1299  unsigned Align = 4;
1300  if (Subtarget->hasSSE1())
1301    getMaxByValAlign(Ty, Align);
1302  return Align;
1303}
1304
1305/// getOptimalMemOpType - Returns the target specific optimal type for load
1306/// and store operations as a result of memset, memcpy, and memmove
1307/// lowering. If DstAlign is zero that means it's safe to destination
1308/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1309/// means there isn't a need to check it against alignment requirement,
1310/// probably because the source does not need to be loaded. If
1311/// 'IsZeroVal' is true, that means it's safe to return a
1312/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1313/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1314/// constant so it does not need to be loaded.
1315/// It returns EVT::Other if the type should be determined using generic
1316/// target-independent logic.
1317EVT
1318X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1319                                       unsigned DstAlign, unsigned SrcAlign,
1320                                       bool IsZeroVal,
1321                                       bool MemcpyStrSrc,
1322                                       MachineFunction &MF) const {
1323  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1324  // linux.  This is because the stack realignment code can't handle certain
1325  // cases like PR2962.  This should be removed when PR2962 is fixed.
1326  const Function *F = MF.getFunction();
1327  if (IsZeroVal &&
1328      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1329    if (Size >= 16 &&
1330        (Subtarget->isUnalignedMemAccessFast() ||
1331         ((DstAlign == 0 || DstAlign >= 16) &&
1332          (SrcAlign == 0 || SrcAlign >= 16))) &&
1333        Subtarget->getStackAlignment() >= 16) {
1334      if (Subtarget->getStackAlignment() >= 32) {
1335        if (Subtarget->hasAVX2())
1336          return MVT::v8i32;
1337        if (Subtarget->hasAVX())
1338          return MVT::v8f32;
1339      }
1340      if (Subtarget->hasSSE2())
1341        return MVT::v4i32;
1342      if (Subtarget->hasSSE1())
1343        return MVT::v4f32;
1344    } else if (!MemcpyStrSrc && Size >= 8 &&
1345               !Subtarget->is64Bit() &&
1346               Subtarget->getStackAlignment() >= 8 &&
1347               Subtarget->hasSSE2()) {
1348      // Do not use f64 to lower memcpy if source is string constant. It's
1349      // better to use i32 to avoid the loads.
1350      return MVT::f64;
1351    }
1352  }
1353  if (Subtarget->is64Bit() && Size >= 8)
1354    return MVT::i64;
1355  return MVT::i32;
1356}
1357
1358/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1359/// current function.  The returned value is a member of the
1360/// MachineJumpTableInfo::JTEntryKind enum.
1361unsigned X86TargetLowering::getJumpTableEncoding() const {
1362  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1363  // symbol.
1364  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1365      Subtarget->isPICStyleGOT())
1366    return MachineJumpTableInfo::EK_Custom32;
1367
1368  // Otherwise, use the normal jump table encoding heuristics.
1369  return TargetLowering::getJumpTableEncoding();
1370}
1371
1372const MCExpr *
1373X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1374                                             const MachineBasicBlock *MBB,
1375                                             unsigned uid,MCContext &Ctx) const{
1376  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1377         Subtarget->isPICStyleGOT());
1378  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1379  // entries.
1380  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1381                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1382}
1383
1384/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1385/// jumptable.
1386SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1387                                                    SelectionDAG &DAG) const {
1388  if (!Subtarget->is64Bit())
1389    // This doesn't have DebugLoc associated with it, but is not really the
1390    // same as a Register.
1391    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1392  return Table;
1393}
1394
1395/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1396/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1397/// MCExpr.
1398const MCExpr *X86TargetLowering::
1399getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1400                             MCContext &Ctx) const {
1401  // X86-64 uses RIP relative addressing based on the jump table label.
1402  if (Subtarget->isPICStyleRIPRel())
1403    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1404
1405  // Otherwise, the reference is relative to the PIC base.
1406  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1407}
1408
1409// FIXME: Why this routine is here? Move to RegInfo!
1410std::pair<const TargetRegisterClass*, uint8_t>
1411X86TargetLowering::findRepresentativeClass(EVT VT) const{
1412  const TargetRegisterClass *RRC = 0;
1413  uint8_t Cost = 1;
1414  switch (VT.getSimpleVT().SimpleTy) {
1415  default:
1416    return TargetLowering::findRepresentativeClass(VT);
1417  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1418    RRC = (Subtarget->is64Bit()
1419           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1420    break;
1421  case MVT::x86mmx:
1422    RRC = X86::VR64RegisterClass;
1423    break;
1424  case MVT::f32: case MVT::f64:
1425  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1426  case MVT::v4f32: case MVT::v2f64:
1427  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1428  case MVT::v4f64:
1429    RRC = X86::VR128RegisterClass;
1430    break;
1431  }
1432  return std::make_pair(RRC, Cost);
1433}
1434
1435bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1436                                               unsigned &Offset) const {
1437  if (!Subtarget->isTargetLinux())
1438    return false;
1439
1440  if (Subtarget->is64Bit()) {
1441    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1442    Offset = 0x28;
1443    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1444      AddressSpace = 256;
1445    else
1446      AddressSpace = 257;
1447  } else {
1448    // %gs:0x14 on i386
1449    Offset = 0x14;
1450    AddressSpace = 256;
1451  }
1452  return true;
1453}
1454
1455
1456//===----------------------------------------------------------------------===//
1457//               Return Value Calling Convention Implementation
1458//===----------------------------------------------------------------------===//
1459
1460#include "X86GenCallingConv.inc"
1461
1462bool
1463X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1464				  MachineFunction &MF, bool isVarArg,
1465                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1466                        LLVMContext &Context) const {
1467  SmallVector<CCValAssign, 16> RVLocs;
1468  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1469                 RVLocs, Context);
1470  return CCInfo.CheckReturn(Outs, RetCC_X86);
1471}
1472
1473SDValue
1474X86TargetLowering::LowerReturn(SDValue Chain,
1475                               CallingConv::ID CallConv, bool isVarArg,
1476                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1477                               const SmallVectorImpl<SDValue> &OutVals,
1478                               DebugLoc dl, SelectionDAG &DAG) const {
1479  MachineFunction &MF = DAG.getMachineFunction();
1480  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1481
1482  SmallVector<CCValAssign, 16> RVLocs;
1483  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1484                 RVLocs, *DAG.getContext());
1485  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1486
1487  // Add the regs to the liveout set for the function.
1488  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1489  for (unsigned i = 0; i != RVLocs.size(); ++i)
1490    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1491      MRI.addLiveOut(RVLocs[i].getLocReg());
1492
1493  SDValue Flag;
1494
1495  SmallVector<SDValue, 6> RetOps;
1496  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1497  // Operand #1 = Bytes To Pop
1498  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1499                   MVT::i16));
1500
1501  // Copy the result values into the output registers.
1502  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1503    CCValAssign &VA = RVLocs[i];
1504    assert(VA.isRegLoc() && "Can only return in registers!");
1505    SDValue ValToCopy = OutVals[i];
1506    EVT ValVT = ValToCopy.getValueType();
1507
1508    // If this is x86-64, and we disabled SSE, we can't return FP values,
1509    // or SSE or MMX vectors.
1510    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1511         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1512          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1513      report_fatal_error("SSE register return with SSE disabled");
1514    }
1515    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1516    // llvm-gcc has never done it right and no one has noticed, so this
1517    // should be OK for now.
1518    if (ValVT == MVT::f64 &&
1519        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1520      report_fatal_error("SSE2 register return with SSE2 disabled");
1521
1522    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1523    // the RET instruction and handled by the FP Stackifier.
1524    if (VA.getLocReg() == X86::ST0 ||
1525        VA.getLocReg() == X86::ST1) {
1526      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1527      // change the value to the FP stack register class.
1528      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1529        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1530      RetOps.push_back(ValToCopy);
1531      // Don't emit a copytoreg.
1532      continue;
1533    }
1534
1535    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1536    // which is returned in RAX / RDX.
1537    if (Subtarget->is64Bit()) {
1538      if (ValVT == MVT::x86mmx) {
1539        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1540          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1541          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1542                                  ValToCopy);
1543          // If we don't have SSE2 available, convert to v4f32 so the generated
1544          // register is legal.
1545          if (!Subtarget->hasSSE2())
1546            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1547        }
1548      }
1549    }
1550
1551    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1552    Flag = Chain.getValue(1);
1553  }
1554
1555  // The x86-64 ABI for returning structs by value requires that we copy
1556  // the sret argument into %rax for the return. We saved the argument into
1557  // a virtual register in the entry block, so now we copy the value out
1558  // and into %rax.
1559  if (Subtarget->is64Bit() &&
1560      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1561    MachineFunction &MF = DAG.getMachineFunction();
1562    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1563    unsigned Reg = FuncInfo->getSRetReturnReg();
1564    assert(Reg &&
1565           "SRetReturnReg should have been set in LowerFormalArguments().");
1566    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1567
1568    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1569    Flag = Chain.getValue(1);
1570
1571    // RAX now acts like a return value.
1572    MRI.addLiveOut(X86::RAX);
1573  }
1574
1575  RetOps[0] = Chain;  // Update chain.
1576
1577  // Add the flag if we have it.
1578  if (Flag.getNode())
1579    RetOps.push_back(Flag);
1580
1581  return DAG.getNode(X86ISD::RET_FLAG, dl,
1582                     MVT::Other, &RetOps[0], RetOps.size());
1583}
1584
1585bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1586  if (N->getNumValues() != 1)
1587    return false;
1588  if (!N->hasNUsesOfValue(1, 0))
1589    return false;
1590
1591  SDNode *Copy = *N->use_begin();
1592  if (Copy->getOpcode() != ISD::CopyToReg &&
1593      Copy->getOpcode() != ISD::FP_EXTEND)
1594    return false;
1595
1596  bool HasRet = false;
1597  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1598       UI != UE; ++UI) {
1599    if (UI->getOpcode() != X86ISD::RET_FLAG)
1600      return false;
1601    HasRet = true;
1602  }
1603
1604  return HasRet;
1605}
1606
1607EVT
1608X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1609                                            ISD::NodeType ExtendKind) const {
1610  MVT ReturnMVT;
1611  // TODO: Is this also valid on 32-bit?
1612  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1613    ReturnMVT = MVT::i8;
1614  else
1615    ReturnMVT = MVT::i32;
1616
1617  EVT MinVT = getRegisterType(Context, ReturnMVT);
1618  return VT.bitsLT(MinVT) ? MinVT : VT;
1619}
1620
1621/// LowerCallResult - Lower the result values of a call into the
1622/// appropriate copies out of appropriate physical registers.
1623///
1624SDValue
1625X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1626                                   CallingConv::ID CallConv, bool isVarArg,
1627                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1628                                   DebugLoc dl, SelectionDAG &DAG,
1629                                   SmallVectorImpl<SDValue> &InVals) const {
1630
1631  // Assign locations to each value returned by this call.
1632  SmallVector<CCValAssign, 16> RVLocs;
1633  bool Is64Bit = Subtarget->is64Bit();
1634  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1635		 getTargetMachine(), RVLocs, *DAG.getContext());
1636  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1637
1638  // Copy all of the result registers out of their specified physreg.
1639  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1640    CCValAssign &VA = RVLocs[i];
1641    EVT CopyVT = VA.getValVT();
1642
1643    // If this is x86-64, and we disabled SSE, we can't return FP values
1644    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1645        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1646      report_fatal_error("SSE register return with SSE disabled");
1647    }
1648
1649    SDValue Val;
1650
1651    // If this is a call to a function that returns an fp value on the floating
1652    // point stack, we must guarantee the the value is popped from the stack, so
1653    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1654    // if the return value is not used. We use the FpPOP_RETVAL instruction
1655    // instead.
1656    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1657      // If we prefer to use the value in xmm registers, copy it out as f80 and
1658      // use a truncate to move it from fp stack reg to xmm reg.
1659      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1660      SDValue Ops[] = { Chain, InFlag };
1661      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1662                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1663      Val = Chain.getValue(0);
1664
1665      // Round the f80 to the right size, which also moves it to the appropriate
1666      // xmm register.
1667      if (CopyVT != VA.getValVT())
1668        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1669                          // This truncation won't change the value.
1670                          DAG.getIntPtrConstant(1));
1671    } else {
1672      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1673                                 CopyVT, InFlag).getValue(1);
1674      Val = Chain.getValue(0);
1675    }
1676    InFlag = Chain.getValue(2);
1677    InVals.push_back(Val);
1678  }
1679
1680  return Chain;
1681}
1682
1683
1684//===----------------------------------------------------------------------===//
1685//                C & StdCall & Fast Calling Convention implementation
1686//===----------------------------------------------------------------------===//
1687//  StdCall calling convention seems to be standard for many Windows' API
1688//  routines and around. It differs from C calling convention just a little:
1689//  callee should clean up the stack, not caller. Symbols should be also
1690//  decorated in some fancy way :) It doesn't support any vector arguments.
1691//  For info on fast calling convention see Fast Calling Convention (tail call)
1692//  implementation LowerX86_32FastCCCallTo.
1693
1694/// CallIsStructReturn - Determines whether a call uses struct return
1695/// semantics.
1696static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1697  if (Outs.empty())
1698    return false;
1699
1700  return Outs[0].Flags.isSRet();
1701}
1702
1703/// ArgsAreStructReturn - Determines whether a function uses struct
1704/// return semantics.
1705static bool
1706ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1707  if (Ins.empty())
1708    return false;
1709
1710  return Ins[0].Flags.isSRet();
1711}
1712
1713/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1714/// by "Src" to address "Dst" with size and alignment information specified by
1715/// the specific parameter attribute. The copy will be passed as a byval
1716/// function parameter.
1717static SDValue
1718CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1719                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1720                          DebugLoc dl) {
1721  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1722
1723  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1724                       /*isVolatile*/false, /*AlwaysInline=*/true,
1725                       MachinePointerInfo(), MachinePointerInfo());
1726}
1727
1728/// IsTailCallConvention - Return true if the calling convention is one that
1729/// supports tail call optimization.
1730static bool IsTailCallConvention(CallingConv::ID CC) {
1731  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1732}
1733
1734bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1735  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1736    return false;
1737
1738  CallSite CS(CI);
1739  CallingConv::ID CalleeCC = CS.getCallingConv();
1740  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1741    return false;
1742
1743  return true;
1744}
1745
1746/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1747/// a tailcall target by changing its ABI.
1748static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1749                                   bool GuaranteedTailCallOpt) {
1750  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1751}
1752
1753SDValue
1754X86TargetLowering::LowerMemArgument(SDValue Chain,
1755                                    CallingConv::ID CallConv,
1756                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1757                                    DebugLoc dl, SelectionDAG &DAG,
1758                                    const CCValAssign &VA,
1759                                    MachineFrameInfo *MFI,
1760                                    unsigned i) const {
1761  // Create the nodes corresponding to a load from this parameter slot.
1762  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1763  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1764                              getTargetMachine().Options.GuaranteedTailCallOpt);
1765  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1766  EVT ValVT;
1767
1768  // If value is passed by pointer we have address passed instead of the value
1769  // itself.
1770  if (VA.getLocInfo() == CCValAssign::Indirect)
1771    ValVT = VA.getLocVT();
1772  else
1773    ValVT = VA.getValVT();
1774
1775  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1776  // changed with more analysis.
1777  // In case of tail call optimization mark all arguments mutable. Since they
1778  // could be overwritten by lowering of arguments in case of a tail call.
1779  if (Flags.isByVal()) {
1780    unsigned Bytes = Flags.getByValSize();
1781    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1782    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1783    return DAG.getFrameIndex(FI, getPointerTy());
1784  } else {
1785    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1786                                    VA.getLocMemOffset(), isImmutable);
1787    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1788    return DAG.getLoad(ValVT, dl, Chain, FIN,
1789                       MachinePointerInfo::getFixedStack(FI),
1790                       false, false, false, 0);
1791  }
1792}
1793
1794SDValue
1795X86TargetLowering::LowerFormalArguments(SDValue Chain,
1796                                        CallingConv::ID CallConv,
1797                                        bool isVarArg,
1798                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1799                                        DebugLoc dl,
1800                                        SelectionDAG &DAG,
1801                                        SmallVectorImpl<SDValue> &InVals)
1802                                          const {
1803  MachineFunction &MF = DAG.getMachineFunction();
1804  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1805
1806  const Function* Fn = MF.getFunction();
1807  if (Fn->hasExternalLinkage() &&
1808      Subtarget->isTargetCygMing() &&
1809      Fn->getName() == "main")
1810    FuncInfo->setForceFramePointer(true);
1811
1812  MachineFrameInfo *MFI = MF.getFrameInfo();
1813  bool Is64Bit = Subtarget->is64Bit();
1814  bool IsWindows = Subtarget->isTargetWindows();
1815  bool IsWin64 = Subtarget->isTargetWin64();
1816
1817  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1818         "Var args not supported with calling convention fastcc or ghc");
1819
1820  // Assign locations to all of the incoming arguments.
1821  SmallVector<CCValAssign, 16> ArgLocs;
1822  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1823                 ArgLocs, *DAG.getContext());
1824
1825  // Allocate shadow area for Win64
1826  if (IsWin64) {
1827    CCInfo.AllocateStack(32, 8);
1828  }
1829
1830  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1831
1832  unsigned LastVal = ~0U;
1833  SDValue ArgValue;
1834  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1835    CCValAssign &VA = ArgLocs[i];
1836    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1837    // places.
1838    assert(VA.getValNo() != LastVal &&
1839           "Don't support value assigned to multiple locs yet");
1840    (void)LastVal;
1841    LastVal = VA.getValNo();
1842
1843    if (VA.isRegLoc()) {
1844      EVT RegVT = VA.getLocVT();
1845      TargetRegisterClass *RC = NULL;
1846      if (RegVT == MVT::i32)
1847        RC = X86::GR32RegisterClass;
1848      else if (Is64Bit && RegVT == MVT::i64)
1849        RC = X86::GR64RegisterClass;
1850      else if (RegVT == MVT::f32)
1851        RC = X86::FR32RegisterClass;
1852      else if (RegVT == MVT::f64)
1853        RC = X86::FR64RegisterClass;
1854      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1855        RC = X86::VR256RegisterClass;
1856      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1857        RC = X86::VR128RegisterClass;
1858      else if (RegVT == MVT::x86mmx)
1859        RC = X86::VR64RegisterClass;
1860      else
1861        llvm_unreachable("Unknown argument type!");
1862
1863      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1864      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1865
1866      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1867      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1868      // right size.
1869      if (VA.getLocInfo() == CCValAssign::SExt)
1870        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1871                               DAG.getValueType(VA.getValVT()));
1872      else if (VA.getLocInfo() == CCValAssign::ZExt)
1873        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1874                               DAG.getValueType(VA.getValVT()));
1875      else if (VA.getLocInfo() == CCValAssign::BCvt)
1876        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1877
1878      if (VA.isExtInLoc()) {
1879        // Handle MMX values passed in XMM regs.
1880        if (RegVT.isVector()) {
1881          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1882                                 ArgValue);
1883        } else
1884          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1885      }
1886    } else {
1887      assert(VA.isMemLoc());
1888      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1889    }
1890
1891    // If value is passed via pointer - do a load.
1892    if (VA.getLocInfo() == CCValAssign::Indirect)
1893      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1894                             MachinePointerInfo(), false, false, false, 0);
1895
1896    InVals.push_back(ArgValue);
1897  }
1898
1899  // The x86-64 ABI for returning structs by value requires that we copy
1900  // the sret argument into %rax for the return. Save the argument into
1901  // a virtual register so that we can access it from the return points.
1902  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1903    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1904    unsigned Reg = FuncInfo->getSRetReturnReg();
1905    if (!Reg) {
1906      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1907      FuncInfo->setSRetReturnReg(Reg);
1908    }
1909    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1910    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1911  }
1912
1913  unsigned StackSize = CCInfo.getNextStackOffset();
1914  // Align stack specially for tail calls.
1915  if (FuncIsMadeTailCallSafe(CallConv,
1916                             MF.getTarget().Options.GuaranteedTailCallOpt))
1917    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1918
1919  // If the function takes variable number of arguments, make a frame index for
1920  // the start of the first vararg value... for expansion of llvm.va_start.
1921  if (isVarArg) {
1922    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1923                    CallConv != CallingConv::X86_ThisCall)) {
1924      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1925    }
1926    if (Is64Bit) {
1927      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1928
1929      // FIXME: We should really autogenerate these arrays
1930      static const unsigned GPR64ArgRegsWin64[] = {
1931        X86::RCX, X86::RDX, X86::R8,  X86::R9
1932      };
1933      static const unsigned GPR64ArgRegs64Bit[] = {
1934        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1935      };
1936      static const unsigned XMMArgRegs64Bit[] = {
1937        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1938        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1939      };
1940      const unsigned *GPR64ArgRegs;
1941      unsigned NumXMMRegs = 0;
1942
1943      if (IsWin64) {
1944        // The XMM registers which might contain var arg parameters are shadowed
1945        // in their paired GPR.  So we only need to save the GPR to their home
1946        // slots.
1947        TotalNumIntRegs = 4;
1948        GPR64ArgRegs = GPR64ArgRegsWin64;
1949      } else {
1950        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1951        GPR64ArgRegs = GPR64ArgRegs64Bit;
1952
1953        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1954                                                TotalNumXMMRegs);
1955      }
1956      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1957                                                       TotalNumIntRegs);
1958
1959      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1960      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1961             "SSE register cannot be used when SSE is disabled!");
1962      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1963               NoImplicitFloatOps) &&
1964             "SSE register cannot be used when SSE is disabled!");
1965      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1966          !Subtarget->hasSSE1())
1967        // Kernel mode asks for SSE to be disabled, so don't push them
1968        // on the stack.
1969        TotalNumXMMRegs = 0;
1970
1971      if (IsWin64) {
1972        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1973        // Get to the caller-allocated home save location.  Add 8 to account
1974        // for the return address.
1975        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1976        FuncInfo->setRegSaveFrameIndex(
1977          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1978        // Fixup to set vararg frame on shadow area (4 x i64).
1979        if (NumIntRegs < 4)
1980          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1981      } else {
1982        // For X86-64, if there are vararg parameters that are passed via
1983        // registers, then we must store them to their spots on the stack so
1984        // they may be loaded by deferencing the result of va_next.
1985        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1986        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1987        FuncInfo->setRegSaveFrameIndex(
1988          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1989                               false));
1990      }
1991
1992      // Store the integer parameter registers.
1993      SmallVector<SDValue, 8> MemOps;
1994      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1995                                        getPointerTy());
1996      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1997      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1998        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1999                                  DAG.getIntPtrConstant(Offset));
2000        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2001                                     X86::GR64RegisterClass);
2002        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2003        SDValue Store =
2004          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2005                       MachinePointerInfo::getFixedStack(
2006                         FuncInfo->getRegSaveFrameIndex(), Offset),
2007                       false, false, 0);
2008        MemOps.push_back(Store);
2009        Offset += 8;
2010      }
2011
2012      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2013        // Now store the XMM (fp + vector) parameter registers.
2014        SmallVector<SDValue, 11> SaveXMMOps;
2015        SaveXMMOps.push_back(Chain);
2016
2017        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2018        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2019        SaveXMMOps.push_back(ALVal);
2020
2021        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2022                               FuncInfo->getRegSaveFrameIndex()));
2023        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2024                               FuncInfo->getVarArgsFPOffset()));
2025
2026        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2027          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2028                                       X86::VR128RegisterClass);
2029          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2030          SaveXMMOps.push_back(Val);
2031        }
2032        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2033                                     MVT::Other,
2034                                     &SaveXMMOps[0], SaveXMMOps.size()));
2035      }
2036
2037      if (!MemOps.empty())
2038        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2039                            &MemOps[0], MemOps.size());
2040    }
2041  }
2042
2043  // Some CCs need callee pop.
2044  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2045                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2046    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2047  } else {
2048    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2049    // If this is an sret function, the return should pop the hidden pointer.
2050    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2051        ArgsAreStructReturn(Ins))
2052      FuncInfo->setBytesToPopOnReturn(4);
2053  }
2054
2055  if (!Is64Bit) {
2056    // RegSaveFrameIndex is X86-64 only.
2057    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2058    if (CallConv == CallingConv::X86_FastCall ||
2059        CallConv == CallingConv::X86_ThisCall)
2060      // fastcc functions can't have varargs.
2061      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2062  }
2063
2064  FuncInfo->setArgumentStackSize(StackSize);
2065
2066  return Chain;
2067}
2068
2069SDValue
2070X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2071                                    SDValue StackPtr, SDValue Arg,
2072                                    DebugLoc dl, SelectionDAG &DAG,
2073                                    const CCValAssign &VA,
2074                                    ISD::ArgFlagsTy Flags) const {
2075  unsigned LocMemOffset = VA.getLocMemOffset();
2076  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2077  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2078  if (Flags.isByVal())
2079    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2080
2081  return DAG.getStore(Chain, dl, Arg, PtrOff,
2082                      MachinePointerInfo::getStack(LocMemOffset),
2083                      false, false, 0);
2084}
2085
2086/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2087/// optimization is performed and it is required.
2088SDValue
2089X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2090                                           SDValue &OutRetAddr, SDValue Chain,
2091                                           bool IsTailCall, bool Is64Bit,
2092                                           int FPDiff, DebugLoc dl) const {
2093  // Adjust the Return address stack slot.
2094  EVT VT = getPointerTy();
2095  OutRetAddr = getReturnAddressFrameIndex(DAG);
2096
2097  // Load the "old" Return address.
2098  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2099                           false, false, false, 0);
2100  return SDValue(OutRetAddr.getNode(), 1);
2101}
2102
2103/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2104/// optimization is performed and it is required (FPDiff!=0).
2105static SDValue
2106EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2107                         SDValue Chain, SDValue RetAddrFrIdx,
2108                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2109  // Store the return address to the appropriate stack slot.
2110  if (!FPDiff) return Chain;
2111  // Calculate the new stack slot for the return address.
2112  int SlotSize = Is64Bit ? 8 : 4;
2113  int NewReturnAddrFI =
2114    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2115  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2116  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2117  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2118                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2119                       false, false, 0);
2120  return Chain;
2121}
2122
2123SDValue
2124X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2125                             CallingConv::ID CallConv, bool isVarArg,
2126                             bool &isTailCall,
2127                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2128                             const SmallVectorImpl<SDValue> &OutVals,
2129                             const SmallVectorImpl<ISD::InputArg> &Ins,
2130                             DebugLoc dl, SelectionDAG &DAG,
2131                             SmallVectorImpl<SDValue> &InVals) const {
2132  MachineFunction &MF = DAG.getMachineFunction();
2133  bool Is64Bit        = Subtarget->is64Bit();
2134  bool IsWin64        = Subtarget->isTargetWin64();
2135  bool IsWindows      = Subtarget->isTargetWindows();
2136  bool IsStructRet    = CallIsStructReturn(Outs);
2137  bool IsSibcall      = false;
2138
2139  if (MF.getTarget().Options.DisableTailCalls)
2140    isTailCall = false;
2141
2142  if (isTailCall) {
2143    // Check if it's really possible to do a tail call.
2144    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2145                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2146                                                   Outs, OutVals, Ins, DAG);
2147
2148    // Sibcalls are automatically detected tailcalls which do not require
2149    // ABI changes.
2150    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2151      IsSibcall = true;
2152
2153    if (isTailCall)
2154      ++NumTailCalls;
2155  }
2156
2157  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2158         "Var args not supported with calling convention fastcc or ghc");
2159
2160  // Analyze operands of the call, assigning locations to each operand.
2161  SmallVector<CCValAssign, 16> ArgLocs;
2162  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2163                 ArgLocs, *DAG.getContext());
2164
2165  // Allocate shadow area for Win64
2166  if (IsWin64) {
2167    CCInfo.AllocateStack(32, 8);
2168  }
2169
2170  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2171
2172  // Get a count of how many bytes are to be pushed on the stack.
2173  unsigned NumBytes = CCInfo.getNextStackOffset();
2174  if (IsSibcall)
2175    // This is a sibcall. The memory operands are available in caller's
2176    // own caller's stack.
2177    NumBytes = 0;
2178  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2179           IsTailCallConvention(CallConv))
2180    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2181
2182  int FPDiff = 0;
2183  if (isTailCall && !IsSibcall) {
2184    // Lower arguments at fp - stackoffset + fpdiff.
2185    unsigned NumBytesCallerPushed =
2186      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2187    FPDiff = NumBytesCallerPushed - NumBytes;
2188
2189    // Set the delta of movement of the returnaddr stackslot.
2190    // But only set if delta is greater than previous delta.
2191    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2192      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2193  }
2194
2195  if (!IsSibcall)
2196    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2197
2198  SDValue RetAddrFrIdx;
2199  // Load return address for tail calls.
2200  if (isTailCall && FPDiff)
2201    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2202                                    Is64Bit, FPDiff, dl);
2203
2204  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2205  SmallVector<SDValue, 8> MemOpChains;
2206  SDValue StackPtr;
2207
2208  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2209  // of tail call optimization arguments are handle later.
2210  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2211    CCValAssign &VA = ArgLocs[i];
2212    EVT RegVT = VA.getLocVT();
2213    SDValue Arg = OutVals[i];
2214    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2215    bool isByVal = Flags.isByVal();
2216
2217    // Promote the value if needed.
2218    switch (VA.getLocInfo()) {
2219    default: llvm_unreachable("Unknown loc info!");
2220    case CCValAssign::Full: break;
2221    case CCValAssign::SExt:
2222      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2223      break;
2224    case CCValAssign::ZExt:
2225      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2226      break;
2227    case CCValAssign::AExt:
2228      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2229        // Special case: passing MMX values in XMM registers.
2230        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2231        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2232        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2233      } else
2234        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2235      break;
2236    case CCValAssign::BCvt:
2237      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2238      break;
2239    case CCValAssign::Indirect: {
2240      // Store the argument.
2241      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2242      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2243      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2244                           MachinePointerInfo::getFixedStack(FI),
2245                           false, false, 0);
2246      Arg = SpillSlot;
2247      break;
2248    }
2249    }
2250
2251    if (VA.isRegLoc()) {
2252      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2253      if (isVarArg && IsWin64) {
2254        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2255        // shadow reg if callee is a varargs function.
2256        unsigned ShadowReg = 0;
2257        switch (VA.getLocReg()) {
2258        case X86::XMM0: ShadowReg = X86::RCX; break;
2259        case X86::XMM1: ShadowReg = X86::RDX; break;
2260        case X86::XMM2: ShadowReg = X86::R8; break;
2261        case X86::XMM3: ShadowReg = X86::R9; break;
2262        }
2263        if (ShadowReg)
2264          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2265      }
2266    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2267      assert(VA.isMemLoc());
2268      if (StackPtr.getNode() == 0)
2269        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2270      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2271                                             dl, DAG, VA, Flags));
2272    }
2273  }
2274
2275  if (!MemOpChains.empty())
2276    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2277                        &MemOpChains[0], MemOpChains.size());
2278
2279  // Build a sequence of copy-to-reg nodes chained together with token chain
2280  // and flag operands which copy the outgoing args into registers.
2281  SDValue InFlag;
2282  // Tail call byval lowering might overwrite argument registers so in case of
2283  // tail call optimization the copies to registers are lowered later.
2284  if (!isTailCall)
2285    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2286      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2287                               RegsToPass[i].second, InFlag);
2288      InFlag = Chain.getValue(1);
2289    }
2290
2291  if (Subtarget->isPICStyleGOT()) {
2292    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2293    // GOT pointer.
2294    if (!isTailCall) {
2295      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2296                               DAG.getNode(X86ISD::GlobalBaseReg,
2297                                           DebugLoc(), getPointerTy()),
2298                               InFlag);
2299      InFlag = Chain.getValue(1);
2300    } else {
2301      // If we are tail calling and generating PIC/GOT style code load the
2302      // address of the callee into ECX. The value in ecx is used as target of
2303      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2304      // for tail calls on PIC/GOT architectures. Normally we would just put the
2305      // address of GOT into ebx and then call target@PLT. But for tail calls
2306      // ebx would be restored (since ebx is callee saved) before jumping to the
2307      // target@PLT.
2308
2309      // Note: The actual moving to ECX is done further down.
2310      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2311      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2312          !G->getGlobal()->hasProtectedVisibility())
2313        Callee = LowerGlobalAddress(Callee, DAG);
2314      else if (isa<ExternalSymbolSDNode>(Callee))
2315        Callee = LowerExternalSymbol(Callee, DAG);
2316    }
2317  }
2318
2319  if (Is64Bit && isVarArg && !IsWin64) {
2320    // From AMD64 ABI document:
2321    // For calls that may call functions that use varargs or stdargs
2322    // (prototype-less calls or calls to functions containing ellipsis (...) in
2323    // the declaration) %al is used as hidden argument to specify the number
2324    // of SSE registers used. The contents of %al do not need to match exactly
2325    // the number of registers, but must be an ubound on the number of SSE
2326    // registers used and is in the range 0 - 8 inclusive.
2327
2328    // Count the number of XMM registers allocated.
2329    static const unsigned XMMArgRegs[] = {
2330      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2331      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2332    };
2333    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2334    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2335           && "SSE registers cannot be used when SSE is disabled");
2336
2337    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2338                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2339    InFlag = Chain.getValue(1);
2340  }
2341
2342
2343  // For tail calls lower the arguments to the 'real' stack slot.
2344  if (isTailCall) {
2345    // Force all the incoming stack arguments to be loaded from the stack
2346    // before any new outgoing arguments are stored to the stack, because the
2347    // outgoing stack slots may alias the incoming argument stack slots, and
2348    // the alias isn't otherwise explicit. This is slightly more conservative
2349    // than necessary, because it means that each store effectively depends
2350    // on every argument instead of just those arguments it would clobber.
2351    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2352
2353    SmallVector<SDValue, 8> MemOpChains2;
2354    SDValue FIN;
2355    int FI = 0;
2356    // Do not flag preceding copytoreg stuff together with the following stuff.
2357    InFlag = SDValue();
2358    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2359      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2360        CCValAssign &VA = ArgLocs[i];
2361        if (VA.isRegLoc())
2362          continue;
2363        assert(VA.isMemLoc());
2364        SDValue Arg = OutVals[i];
2365        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2366        // Create frame index.
2367        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2368        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2369        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2370        FIN = DAG.getFrameIndex(FI, getPointerTy());
2371
2372        if (Flags.isByVal()) {
2373          // Copy relative to framepointer.
2374          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2375          if (StackPtr.getNode() == 0)
2376            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2377                                          getPointerTy());
2378          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2379
2380          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2381                                                           ArgChain,
2382                                                           Flags, DAG, dl));
2383        } else {
2384          // Store relative to framepointer.
2385          MemOpChains2.push_back(
2386            DAG.getStore(ArgChain, dl, Arg, FIN,
2387                         MachinePointerInfo::getFixedStack(FI),
2388                         false, false, 0));
2389        }
2390      }
2391    }
2392
2393    if (!MemOpChains2.empty())
2394      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2395                          &MemOpChains2[0], MemOpChains2.size());
2396
2397    // Copy arguments to their registers.
2398    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2399      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2400                               RegsToPass[i].second, InFlag);
2401      InFlag = Chain.getValue(1);
2402    }
2403    InFlag =SDValue();
2404
2405    // Store the return address to the appropriate stack slot.
2406    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2407                                     FPDiff, dl);
2408  }
2409
2410  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2411    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2412    // In the 64-bit large code model, we have to make all calls
2413    // through a register, since the call instruction's 32-bit
2414    // pc-relative offset may not be large enough to hold the whole
2415    // address.
2416  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2417    // If the callee is a GlobalAddress node (quite common, every direct call
2418    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2419    // it.
2420
2421    // We should use extra load for direct calls to dllimported functions in
2422    // non-JIT mode.
2423    const GlobalValue *GV = G->getGlobal();
2424    if (!GV->hasDLLImportLinkage()) {
2425      unsigned char OpFlags = 0;
2426      bool ExtraLoad = false;
2427      unsigned WrapperKind = ISD::DELETED_NODE;
2428
2429      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2430      // external symbols most go through the PLT in PIC mode.  If the symbol
2431      // has hidden or protected visibility, or if it is static or local, then
2432      // we don't need to use the PLT - we can directly call it.
2433      if (Subtarget->isTargetELF() &&
2434          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2435          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2436        OpFlags = X86II::MO_PLT;
2437      } else if (Subtarget->isPICStyleStubAny() &&
2438                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2439                 (!Subtarget->getTargetTriple().isMacOSX() ||
2440                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2441        // PC-relative references to external symbols should go through $stub,
2442        // unless we're building with the leopard linker or later, which
2443        // automatically synthesizes these stubs.
2444        OpFlags = X86II::MO_DARWIN_STUB;
2445      } else if (Subtarget->isPICStyleRIPRel() &&
2446                 isa<Function>(GV) &&
2447                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2448        // If the function is marked as non-lazy, generate an indirect call
2449        // which loads from the GOT directly. This avoids runtime overhead
2450        // at the cost of eager binding (and one extra byte of encoding).
2451        OpFlags = X86II::MO_GOTPCREL;
2452        WrapperKind = X86ISD::WrapperRIP;
2453        ExtraLoad = true;
2454      }
2455
2456      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2457                                          G->getOffset(), OpFlags);
2458
2459      // Add a wrapper if needed.
2460      if (WrapperKind != ISD::DELETED_NODE)
2461        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2462      // Add extra indirection if needed.
2463      if (ExtraLoad)
2464        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2465                             MachinePointerInfo::getGOT(),
2466                             false, false, false, 0);
2467    }
2468  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2469    unsigned char OpFlags = 0;
2470
2471    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2472    // external symbols should go through the PLT.
2473    if (Subtarget->isTargetELF() &&
2474        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2475      OpFlags = X86II::MO_PLT;
2476    } else if (Subtarget->isPICStyleStubAny() &&
2477               (!Subtarget->getTargetTriple().isMacOSX() ||
2478                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2479      // PC-relative references to external symbols should go through $stub,
2480      // unless we're building with the leopard linker or later, which
2481      // automatically synthesizes these stubs.
2482      OpFlags = X86II::MO_DARWIN_STUB;
2483    }
2484
2485    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2486                                         OpFlags);
2487  }
2488
2489  // Returns a chain & a flag for retval copy to use.
2490  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2491  SmallVector<SDValue, 8> Ops;
2492
2493  if (!IsSibcall && isTailCall) {
2494    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2495                           DAG.getIntPtrConstant(0, true), InFlag);
2496    InFlag = Chain.getValue(1);
2497  }
2498
2499  Ops.push_back(Chain);
2500  Ops.push_back(Callee);
2501
2502  if (isTailCall)
2503    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2504
2505  // Add argument registers to the end of the list so that they are known live
2506  // into the call.
2507  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2508    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2509                                  RegsToPass[i].second.getValueType()));
2510
2511  // Add an implicit use GOT pointer in EBX.
2512  if (!isTailCall && Subtarget->isPICStyleGOT())
2513    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2514
2515  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2516  if (Is64Bit && isVarArg && !IsWin64)
2517    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2518
2519  // Experimental: Add a register mask operand representing the call-preserved
2520  // registers.
2521  if (UseRegMask) {
2522    const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2523    const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2524    Ops.push_back(DAG.getRegisterMask(Mask));
2525  }
2526
2527  if (InFlag.getNode())
2528    Ops.push_back(InFlag);
2529
2530  if (isTailCall) {
2531    // We used to do:
2532    //// If this is the first return lowered for this function, add the regs
2533    //// to the liveout set for the function.
2534    // This isn't right, although it's probably harmless on x86; liveouts
2535    // should be computed from returns not tail calls.  Consider a void
2536    // function making a tail call to a function returning int.
2537    return DAG.getNode(X86ISD::TC_RETURN, dl,
2538                       NodeTys, &Ops[0], Ops.size());
2539  }
2540
2541  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2542  InFlag = Chain.getValue(1);
2543
2544  // Create the CALLSEQ_END node.
2545  unsigned NumBytesForCalleeToPush;
2546  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2547                       getTargetMachine().Options.GuaranteedTailCallOpt))
2548    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2549  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2550           IsStructRet)
2551    // If this is a call to a struct-return function, the callee
2552    // pops the hidden struct pointer, so we have to push it back.
2553    // This is common for Darwin/X86, Linux & Mingw32 targets.
2554    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2555    NumBytesForCalleeToPush = 4;
2556  else
2557    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2558
2559  // Returns a flag for retval copy to use.
2560  if (!IsSibcall) {
2561    Chain = DAG.getCALLSEQ_END(Chain,
2562                               DAG.getIntPtrConstant(NumBytes, true),
2563                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2564                                                     true),
2565                               InFlag);
2566    InFlag = Chain.getValue(1);
2567  }
2568
2569  // Handle result values, copying them out of physregs into vregs that we
2570  // return.
2571  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2572                         Ins, dl, DAG, InVals);
2573}
2574
2575
2576//===----------------------------------------------------------------------===//
2577//                Fast Calling Convention (tail call) implementation
2578//===----------------------------------------------------------------------===//
2579
2580//  Like std call, callee cleans arguments, convention except that ECX is
2581//  reserved for storing the tail called function address. Only 2 registers are
2582//  free for argument passing (inreg). Tail call optimization is performed
2583//  provided:
2584//                * tailcallopt is enabled
2585//                * caller/callee are fastcc
2586//  On X86_64 architecture with GOT-style position independent code only local
2587//  (within module) calls are supported at the moment.
2588//  To keep the stack aligned according to platform abi the function
2589//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2590//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2591//  If a tail called function callee has more arguments than the caller the
2592//  caller needs to make sure that there is room to move the RETADDR to. This is
2593//  achieved by reserving an area the size of the argument delta right after the
2594//  original REtADDR, but before the saved framepointer or the spilled registers
2595//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2596//  stack layout:
2597//    arg1
2598//    arg2
2599//    RETADDR
2600//    [ new RETADDR
2601//      move area ]
2602//    (possible EBP)
2603//    ESI
2604//    EDI
2605//    local1 ..
2606
2607/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2608/// for a 16 byte align requirement.
2609unsigned
2610X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2611                                               SelectionDAG& DAG) const {
2612  MachineFunction &MF = DAG.getMachineFunction();
2613  const TargetMachine &TM = MF.getTarget();
2614  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2615  unsigned StackAlignment = TFI.getStackAlignment();
2616  uint64_t AlignMask = StackAlignment - 1;
2617  int64_t Offset = StackSize;
2618  uint64_t SlotSize = TD->getPointerSize();
2619  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2620    // Number smaller than 12 so just add the difference.
2621    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2622  } else {
2623    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2624    Offset = ((~AlignMask) & Offset) + StackAlignment +
2625      (StackAlignment-SlotSize);
2626  }
2627  return Offset;
2628}
2629
2630/// MatchingStackOffset - Return true if the given stack call argument is
2631/// already available in the same position (relatively) of the caller's
2632/// incoming argument stack.
2633static
2634bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2635                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2636                         const X86InstrInfo *TII) {
2637  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2638  int FI = INT_MAX;
2639  if (Arg.getOpcode() == ISD::CopyFromReg) {
2640    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2641    if (!TargetRegisterInfo::isVirtualRegister(VR))
2642      return false;
2643    MachineInstr *Def = MRI->getVRegDef(VR);
2644    if (!Def)
2645      return false;
2646    if (!Flags.isByVal()) {
2647      if (!TII->isLoadFromStackSlot(Def, FI))
2648        return false;
2649    } else {
2650      unsigned Opcode = Def->getOpcode();
2651      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2652          Def->getOperand(1).isFI()) {
2653        FI = Def->getOperand(1).getIndex();
2654        Bytes = Flags.getByValSize();
2655      } else
2656        return false;
2657    }
2658  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2659    if (Flags.isByVal())
2660      // ByVal argument is passed in as a pointer but it's now being
2661      // dereferenced. e.g.
2662      // define @foo(%struct.X* %A) {
2663      //   tail call @bar(%struct.X* byval %A)
2664      // }
2665      return false;
2666    SDValue Ptr = Ld->getBasePtr();
2667    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2668    if (!FINode)
2669      return false;
2670    FI = FINode->getIndex();
2671  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2672    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2673    FI = FINode->getIndex();
2674    Bytes = Flags.getByValSize();
2675  } else
2676    return false;
2677
2678  assert(FI != INT_MAX);
2679  if (!MFI->isFixedObjectIndex(FI))
2680    return false;
2681  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2682}
2683
2684/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2685/// for tail call optimization. Targets which want to do tail call
2686/// optimization should implement this function.
2687bool
2688X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2689                                                     CallingConv::ID CalleeCC,
2690                                                     bool isVarArg,
2691                                                     bool isCalleeStructRet,
2692                                                     bool isCallerStructRet,
2693                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2694                                    const SmallVectorImpl<SDValue> &OutVals,
2695                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2696                                                     SelectionDAG& DAG) const {
2697  if (!IsTailCallConvention(CalleeCC) &&
2698      CalleeCC != CallingConv::C)
2699    return false;
2700
2701  // If -tailcallopt is specified, make fastcc functions tail-callable.
2702  const MachineFunction &MF = DAG.getMachineFunction();
2703  const Function *CallerF = DAG.getMachineFunction().getFunction();
2704  CallingConv::ID CallerCC = CallerF->getCallingConv();
2705  bool CCMatch = CallerCC == CalleeCC;
2706
2707  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2708    if (IsTailCallConvention(CalleeCC) && CCMatch)
2709      return true;
2710    return false;
2711  }
2712
2713  // Look for obvious safe cases to perform tail call optimization that do not
2714  // require ABI changes. This is what gcc calls sibcall.
2715
2716  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2717  // emit a special epilogue.
2718  if (RegInfo->needsStackRealignment(MF))
2719    return false;
2720
2721  // Also avoid sibcall optimization if either caller or callee uses struct
2722  // return semantics.
2723  if (isCalleeStructRet || isCallerStructRet)
2724    return false;
2725
2726  // An stdcall caller is expected to clean up its arguments; the callee
2727  // isn't going to do that.
2728  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2729    return false;
2730
2731  // Do not sibcall optimize vararg calls unless all arguments are passed via
2732  // registers.
2733  if (isVarArg && !Outs.empty()) {
2734
2735    // Optimizing for varargs on Win64 is unlikely to be safe without
2736    // additional testing.
2737    if (Subtarget->isTargetWin64())
2738      return false;
2739
2740    SmallVector<CCValAssign, 16> ArgLocs;
2741    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2742		   getTargetMachine(), ArgLocs, *DAG.getContext());
2743
2744    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2745    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2746      if (!ArgLocs[i].isRegLoc())
2747        return false;
2748  }
2749
2750  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2751  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2752  // this into a sibcall.
2753  bool Unused = false;
2754  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2755    if (!Ins[i].Used) {
2756      Unused = true;
2757      break;
2758    }
2759  }
2760  if (Unused) {
2761    SmallVector<CCValAssign, 16> RVLocs;
2762    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2763		   getTargetMachine(), RVLocs, *DAG.getContext());
2764    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2765    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2766      CCValAssign &VA = RVLocs[i];
2767      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2768        return false;
2769    }
2770  }
2771
2772  // If the calling conventions do not match, then we'd better make sure the
2773  // results are returned in the same way as what the caller expects.
2774  if (!CCMatch) {
2775    SmallVector<CCValAssign, 16> RVLocs1;
2776    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2777		    getTargetMachine(), RVLocs1, *DAG.getContext());
2778    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2779
2780    SmallVector<CCValAssign, 16> RVLocs2;
2781    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2782		    getTargetMachine(), RVLocs2, *DAG.getContext());
2783    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2784
2785    if (RVLocs1.size() != RVLocs2.size())
2786      return false;
2787    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2788      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2789        return false;
2790      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2791        return false;
2792      if (RVLocs1[i].isRegLoc()) {
2793        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2794          return false;
2795      } else {
2796        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2797          return false;
2798      }
2799    }
2800  }
2801
2802  // If the callee takes no arguments then go on to check the results of the
2803  // call.
2804  if (!Outs.empty()) {
2805    // Check if stack adjustment is needed. For now, do not do this if any
2806    // argument is passed on the stack.
2807    SmallVector<CCValAssign, 16> ArgLocs;
2808    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2809		   getTargetMachine(), ArgLocs, *DAG.getContext());
2810
2811    // Allocate shadow area for Win64
2812    if (Subtarget->isTargetWin64()) {
2813      CCInfo.AllocateStack(32, 8);
2814    }
2815
2816    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2817    if (CCInfo.getNextStackOffset()) {
2818      MachineFunction &MF = DAG.getMachineFunction();
2819      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2820        return false;
2821
2822      // Check if the arguments are already laid out in the right way as
2823      // the caller's fixed stack objects.
2824      MachineFrameInfo *MFI = MF.getFrameInfo();
2825      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2826      const X86InstrInfo *TII =
2827        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2828      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2829        CCValAssign &VA = ArgLocs[i];
2830        SDValue Arg = OutVals[i];
2831        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2832        if (VA.getLocInfo() == CCValAssign::Indirect)
2833          return false;
2834        if (!VA.isRegLoc()) {
2835          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2836                                   MFI, MRI, TII))
2837            return false;
2838        }
2839      }
2840    }
2841
2842    // If the tailcall address may be in a register, then make sure it's
2843    // possible to register allocate for it. In 32-bit, the call address can
2844    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2845    // callee-saved registers are restored. These happen to be the same
2846    // registers used to pass 'inreg' arguments so watch out for those.
2847    if (!Subtarget->is64Bit() &&
2848        !isa<GlobalAddressSDNode>(Callee) &&
2849        !isa<ExternalSymbolSDNode>(Callee)) {
2850      unsigned NumInRegs = 0;
2851      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2852        CCValAssign &VA = ArgLocs[i];
2853        if (!VA.isRegLoc())
2854          continue;
2855        unsigned Reg = VA.getLocReg();
2856        switch (Reg) {
2857        default: break;
2858        case X86::EAX: case X86::EDX: case X86::ECX:
2859          if (++NumInRegs == 3)
2860            return false;
2861          break;
2862        }
2863      }
2864    }
2865  }
2866
2867  return true;
2868}
2869
2870FastISel *
2871X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2872  return X86::createFastISel(funcInfo);
2873}
2874
2875
2876//===----------------------------------------------------------------------===//
2877//                           Other Lowering Hooks
2878//===----------------------------------------------------------------------===//
2879
2880static bool MayFoldLoad(SDValue Op) {
2881  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2882}
2883
2884static bool MayFoldIntoStore(SDValue Op) {
2885  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2886}
2887
2888static bool isTargetShuffle(unsigned Opcode) {
2889  switch(Opcode) {
2890  default: return false;
2891  case X86ISD::PSHUFD:
2892  case X86ISD::PSHUFHW:
2893  case X86ISD::PSHUFLW:
2894  case X86ISD::SHUFP:
2895  case X86ISD::PALIGN:
2896  case X86ISD::MOVLHPS:
2897  case X86ISD::MOVLHPD:
2898  case X86ISD::MOVHLPS:
2899  case X86ISD::MOVLPS:
2900  case X86ISD::MOVLPD:
2901  case X86ISD::MOVSHDUP:
2902  case X86ISD::MOVSLDUP:
2903  case X86ISD::MOVDDUP:
2904  case X86ISD::MOVSS:
2905  case X86ISD::MOVSD:
2906  case X86ISD::UNPCKL:
2907  case X86ISD::UNPCKH:
2908  case X86ISD::VPERMILP:
2909  case X86ISD::VPERM2X128:
2910    return true;
2911  }
2912}
2913
2914static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2915                                               SDValue V1, SelectionDAG &DAG) {
2916  switch(Opc) {
2917  default: llvm_unreachable("Unknown x86 shuffle node");
2918  case X86ISD::MOVSHDUP:
2919  case X86ISD::MOVSLDUP:
2920  case X86ISD::MOVDDUP:
2921    return DAG.getNode(Opc, dl, VT, V1);
2922  }
2923}
2924
2925static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2926                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2927  switch(Opc) {
2928  default: llvm_unreachable("Unknown x86 shuffle node");
2929  case X86ISD::PSHUFD:
2930  case X86ISD::PSHUFHW:
2931  case X86ISD::PSHUFLW:
2932  case X86ISD::VPERMILP:
2933    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2934  }
2935}
2936
2937static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2938               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2939  switch(Opc) {
2940  default: llvm_unreachable("Unknown x86 shuffle node");
2941  case X86ISD::PALIGN:
2942  case X86ISD::SHUFP:
2943  case X86ISD::VPERM2X128:
2944    return DAG.getNode(Opc, dl, VT, V1, V2,
2945                       DAG.getConstant(TargetMask, MVT::i8));
2946  }
2947}
2948
2949static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2950                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2951  switch(Opc) {
2952  default: llvm_unreachable("Unknown x86 shuffle node");
2953  case X86ISD::MOVLHPS:
2954  case X86ISD::MOVLHPD:
2955  case X86ISD::MOVHLPS:
2956  case X86ISD::MOVLPS:
2957  case X86ISD::MOVLPD:
2958  case X86ISD::MOVSS:
2959  case X86ISD::MOVSD:
2960  case X86ISD::UNPCKL:
2961  case X86ISD::UNPCKH:
2962    return DAG.getNode(Opc, dl, VT, V1, V2);
2963  }
2964}
2965
2966SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2967  MachineFunction &MF = DAG.getMachineFunction();
2968  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2969  int ReturnAddrIndex = FuncInfo->getRAIndex();
2970
2971  if (ReturnAddrIndex == 0) {
2972    // Set up a frame object for the return address.
2973    uint64_t SlotSize = TD->getPointerSize();
2974    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2975                                                           false);
2976    FuncInfo->setRAIndex(ReturnAddrIndex);
2977  }
2978
2979  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2980}
2981
2982
2983bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2984                                       bool hasSymbolicDisplacement) {
2985  // Offset should fit into 32 bit immediate field.
2986  if (!isInt<32>(Offset))
2987    return false;
2988
2989  // If we don't have a symbolic displacement - we don't have any extra
2990  // restrictions.
2991  if (!hasSymbolicDisplacement)
2992    return true;
2993
2994  // FIXME: Some tweaks might be needed for medium code model.
2995  if (M != CodeModel::Small && M != CodeModel::Kernel)
2996    return false;
2997
2998  // For small code model we assume that latest object is 16MB before end of 31
2999  // bits boundary. We may also accept pretty large negative constants knowing
3000  // that all objects are in the positive half of address space.
3001  if (M == CodeModel::Small && Offset < 16*1024*1024)
3002    return true;
3003
3004  // For kernel code model we know that all object resist in the negative half
3005  // of 32bits address space. We may not accept negative offsets, since they may
3006  // be just off and we may accept pretty large positive ones.
3007  if (M == CodeModel::Kernel && Offset > 0)
3008    return true;
3009
3010  return false;
3011}
3012
3013/// isCalleePop - Determines whether the callee is required to pop its
3014/// own arguments. Callee pop is necessary to support tail calls.
3015bool X86::isCalleePop(CallingConv::ID CallingConv,
3016                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3017  if (IsVarArg)
3018    return false;
3019
3020  switch (CallingConv) {
3021  default:
3022    return false;
3023  case CallingConv::X86_StdCall:
3024    return !is64Bit;
3025  case CallingConv::X86_FastCall:
3026    return !is64Bit;
3027  case CallingConv::X86_ThisCall:
3028    return !is64Bit;
3029  case CallingConv::Fast:
3030    return TailCallOpt;
3031  case CallingConv::GHC:
3032    return TailCallOpt;
3033  }
3034}
3035
3036/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3037/// specific condition code, returning the condition code and the LHS/RHS of the
3038/// comparison to make.
3039static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3040                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3041  if (!isFP) {
3042    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3043      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3044        // X > -1   -> X == 0, jump !sign.
3045        RHS = DAG.getConstant(0, RHS.getValueType());
3046        return X86::COND_NS;
3047      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3048        // X < 0   -> X == 0, jump on sign.
3049        return X86::COND_S;
3050      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3051        // X < 1   -> X <= 0
3052        RHS = DAG.getConstant(0, RHS.getValueType());
3053        return X86::COND_LE;
3054      }
3055    }
3056
3057    switch (SetCCOpcode) {
3058    default: llvm_unreachable("Invalid integer condition!");
3059    case ISD::SETEQ:  return X86::COND_E;
3060    case ISD::SETGT:  return X86::COND_G;
3061    case ISD::SETGE:  return X86::COND_GE;
3062    case ISD::SETLT:  return X86::COND_L;
3063    case ISD::SETLE:  return X86::COND_LE;
3064    case ISD::SETNE:  return X86::COND_NE;
3065    case ISD::SETULT: return X86::COND_B;
3066    case ISD::SETUGT: return X86::COND_A;
3067    case ISD::SETULE: return X86::COND_BE;
3068    case ISD::SETUGE: return X86::COND_AE;
3069    }
3070  }
3071
3072  // First determine if it is required or is profitable to flip the operands.
3073
3074  // If LHS is a foldable load, but RHS is not, flip the condition.
3075  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3076      !ISD::isNON_EXTLoad(RHS.getNode())) {
3077    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3078    std::swap(LHS, RHS);
3079  }
3080
3081  switch (SetCCOpcode) {
3082  default: break;
3083  case ISD::SETOLT:
3084  case ISD::SETOLE:
3085  case ISD::SETUGT:
3086  case ISD::SETUGE:
3087    std::swap(LHS, RHS);
3088    break;
3089  }
3090
3091  // On a floating point condition, the flags are set as follows:
3092  // ZF  PF  CF   op
3093  //  0 | 0 | 0 | X > Y
3094  //  0 | 0 | 1 | X < Y
3095  //  1 | 0 | 0 | X == Y
3096  //  1 | 1 | 1 | unordered
3097  switch (SetCCOpcode) {
3098  default: llvm_unreachable("Condcode should be pre-legalized away");
3099  case ISD::SETUEQ:
3100  case ISD::SETEQ:   return X86::COND_E;
3101  case ISD::SETOLT:              // flipped
3102  case ISD::SETOGT:
3103  case ISD::SETGT:   return X86::COND_A;
3104  case ISD::SETOLE:              // flipped
3105  case ISD::SETOGE:
3106  case ISD::SETGE:   return X86::COND_AE;
3107  case ISD::SETUGT:              // flipped
3108  case ISD::SETULT:
3109  case ISD::SETLT:   return X86::COND_B;
3110  case ISD::SETUGE:              // flipped
3111  case ISD::SETULE:
3112  case ISD::SETLE:   return X86::COND_BE;
3113  case ISD::SETONE:
3114  case ISD::SETNE:   return X86::COND_NE;
3115  case ISD::SETUO:   return X86::COND_P;
3116  case ISD::SETO:    return X86::COND_NP;
3117  case ISD::SETOEQ:
3118  case ISD::SETUNE:  return X86::COND_INVALID;
3119  }
3120}
3121
3122/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3123/// code. Current x86 isa includes the following FP cmov instructions:
3124/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3125static bool hasFPCMov(unsigned X86CC) {
3126  switch (X86CC) {
3127  default:
3128    return false;
3129  case X86::COND_B:
3130  case X86::COND_BE:
3131  case X86::COND_E:
3132  case X86::COND_P:
3133  case X86::COND_A:
3134  case X86::COND_AE:
3135  case X86::COND_NE:
3136  case X86::COND_NP:
3137    return true;
3138  }
3139}
3140
3141/// isFPImmLegal - Returns true if the target can instruction select the
3142/// specified FP immediate natively. If false, the legalizer will
3143/// materialize the FP immediate as a load from a constant pool.
3144bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3145  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3146    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3147      return true;
3148  }
3149  return false;
3150}
3151
3152/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3153/// the specified range (L, H].
3154static bool isUndefOrInRange(int Val, int Low, int Hi) {
3155  return (Val < 0) || (Val >= Low && Val < Hi);
3156}
3157
3158/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3159/// specified value.
3160static bool isUndefOrEqual(int Val, int CmpVal) {
3161  if (Val < 0 || Val == CmpVal)
3162    return true;
3163  return false;
3164}
3165
3166/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3167/// from position Pos and ending in Pos+Size, falls within the specified
3168/// sequential range (L, L+Pos]. or is undef.
3169static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3170                                       int Pos, int Size, int Low) {
3171  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3172    if (!isUndefOrEqual(Mask[i], Low))
3173      return false;
3174  return true;
3175}
3176
3177/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3178/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3179/// the second operand.
3180static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3181  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3182    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3183  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3184    return (Mask[0] < 2 && Mask[1] < 2);
3185  return false;
3186}
3187
3188bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3189  return ::isPSHUFDMask(N->getMask(), N->getValueType(0));
3190}
3191
3192/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3193/// is suitable for input to PSHUFHW.
3194static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
3195  if (VT != MVT::v8i16)
3196    return false;
3197
3198  // Lower quadword copied in order or undef.
3199  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3200    return false;
3201
3202  // Upper quadword shuffled.
3203  for (unsigned i = 4; i != 8; ++i)
3204    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3205      return false;
3206
3207  return true;
3208}
3209
3210bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3211  return ::isPSHUFHWMask(N->getMask(), N->getValueType(0));
3212}
3213
3214/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3215/// is suitable for input to PSHUFLW.
3216static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
3217  if (VT != MVT::v8i16)
3218    return false;
3219
3220  // Upper quadword copied in order.
3221  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3222    return false;
3223
3224  // Lower quadword shuffled.
3225  for (unsigned i = 0; i != 4; ++i)
3226    if (Mask[i] >= 4)
3227      return false;
3228
3229  return true;
3230}
3231
3232bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3233  return ::isPSHUFLWMask(N->getMask(), N->getValueType(0));
3234}
3235
3236/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3237/// is suitable for input to PALIGNR.
3238static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3239                          const X86Subtarget *Subtarget) {
3240  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3241      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3242    return false;
3243
3244  unsigned NumElts = VT.getVectorNumElements();
3245  unsigned NumLanes = VT.getSizeInBits()/128;
3246  unsigned NumLaneElts = NumElts/NumLanes;
3247
3248  // Do not handle 64-bit element shuffles with palignr.
3249  if (NumLaneElts == 2)
3250    return false;
3251
3252  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3253    unsigned i;
3254    for (i = 0; i != NumLaneElts; ++i) {
3255      if (Mask[i+l] >= 0)
3256        break;
3257    }
3258
3259    // Lane is all undef, go to next lane
3260    if (i == NumLaneElts)
3261      continue;
3262
3263    int Start = Mask[i+l];
3264
3265    // Make sure its in this lane in one of the sources
3266    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3267        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3268      return false;
3269
3270    // If not lane 0, then we must match lane 0
3271    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3272      return false;
3273
3274    // Correct second source to be contiguous with first source
3275    if (Start >= (int)NumElts)
3276      Start -= NumElts - NumLaneElts;
3277
3278    // Make sure we're shifting in the right direction.
3279    if (Start <= (int)(i+l))
3280      return false;
3281
3282    Start -= i;
3283
3284    // Check the rest of the elements to see if they are consecutive.
3285    for (++i; i != NumLaneElts; ++i) {
3286      int Idx = Mask[i+l];
3287
3288      // Make sure its in this lane
3289      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3290          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3291        return false;
3292
3293      // If not lane 0, then we must match lane 0
3294      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3295        return false;
3296
3297      if (Idx >= (int)NumElts)
3298        Idx -= NumElts - NumLaneElts;
3299
3300      if (!isUndefOrEqual(Idx, Start+i))
3301        return false;
3302
3303    }
3304  }
3305
3306  return true;
3307}
3308
3309/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3310/// the two vector operands have swapped position.
3311static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3312                                     unsigned NumElems) {
3313  for (unsigned i = 0; i != NumElems; ++i) {
3314    int idx = Mask[i];
3315    if (idx < 0)
3316      continue;
3317    else if (idx < (int)NumElems)
3318      Mask[i] = idx + NumElems;
3319    else
3320      Mask[i] = idx - NumElems;
3321  }
3322}
3323
3324/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3325/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3326/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3327/// reverse of what x86 shuffles want.
3328static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3329                        bool Commuted = false) {
3330  if (!HasAVX && VT.getSizeInBits() == 256)
3331    return false;
3332
3333  unsigned NumElems = VT.getVectorNumElements();
3334  unsigned NumLanes = VT.getSizeInBits()/128;
3335  unsigned NumLaneElems = NumElems/NumLanes;
3336
3337  if (NumLaneElems != 2 && NumLaneElems != 4)
3338    return false;
3339
3340  // VSHUFPSY divides the resulting vector into 4 chunks.
3341  // The sources are also splitted into 4 chunks, and each destination
3342  // chunk must come from a different source chunk.
3343  //
3344  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3345  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3346  //
3347  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3348  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3349  //
3350  // VSHUFPDY divides the resulting vector into 4 chunks.
3351  // The sources are also splitted into 4 chunks, and each destination
3352  // chunk must come from a different source chunk.
3353  //
3354  //  SRC1 =>      X3       X2       X1       X0
3355  //  SRC2 =>      Y3       Y2       Y1       Y0
3356  //
3357  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3358  //
3359  unsigned HalfLaneElems = NumLaneElems/2;
3360  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3361    for (unsigned i = 0; i != NumLaneElems; ++i) {
3362      int Idx = Mask[i+l];
3363      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3364      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3365        return false;
3366      // For VSHUFPSY, the mask of the second half must be the same as the
3367      // first but with the appropriate offsets. This works in the same way as
3368      // VPERMILPS works with masks.
3369      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3370        continue;
3371      if (!isUndefOrEqual(Idx, Mask[i]+l))
3372        return false;
3373    }
3374  }
3375
3376  return true;
3377}
3378
3379bool X86::isSHUFPMask(ShuffleVectorSDNode *N, bool HasAVX) {
3380  return ::isSHUFPMask(N->getMask(), N->getValueType(0), HasAVX);
3381}
3382
3383/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3384/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3385bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3386  EVT VT = N->getValueType(0);
3387  unsigned NumElems = VT.getVectorNumElements();
3388
3389  if (VT.getSizeInBits() != 128)
3390    return false;
3391
3392  if (NumElems != 4)
3393    return false;
3394
3395  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3396  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3397         isUndefOrEqual(N->getMaskElt(1), 7) &&
3398         isUndefOrEqual(N->getMaskElt(2), 2) &&
3399         isUndefOrEqual(N->getMaskElt(3), 3);
3400}
3401
3402/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3403/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3404/// <2, 3, 2, 3>
3405bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3406  EVT VT = N->getValueType(0);
3407  unsigned NumElems = VT.getVectorNumElements();
3408
3409  if (VT.getSizeInBits() != 128)
3410    return false;
3411
3412  if (NumElems != 4)
3413    return false;
3414
3415  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3416         isUndefOrEqual(N->getMaskElt(1), 3) &&
3417         isUndefOrEqual(N->getMaskElt(2), 2) &&
3418         isUndefOrEqual(N->getMaskElt(3), 3);
3419}
3420
3421/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3422/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3423bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3424  EVT VT = N->getValueType(0);
3425
3426  if (VT.getSizeInBits() != 128)
3427    return false;
3428
3429  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3430
3431  if (NumElems != 2 && NumElems != 4)
3432    return false;
3433
3434  for (unsigned i = 0; i < NumElems/2; ++i)
3435    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3436      return false;
3437
3438  for (unsigned i = NumElems/2; i < NumElems; ++i)
3439    if (!isUndefOrEqual(N->getMaskElt(i), i))
3440      return false;
3441
3442  return true;
3443}
3444
3445/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3446/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3447bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3448  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3449
3450  if ((NumElems != 2 && NumElems != 4)
3451      || N->getValueType(0).getSizeInBits() > 128)
3452    return false;
3453
3454  for (unsigned i = 0; i < NumElems/2; ++i)
3455    if (!isUndefOrEqual(N->getMaskElt(i), i))
3456      return false;
3457
3458  for (unsigned i = 0; i < NumElems/2; ++i)
3459    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3460      return false;
3461
3462  return true;
3463}
3464
3465/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3466/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3467static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3468                         bool HasAVX2, bool V2IsSplat = false) {
3469  unsigned NumElts = VT.getVectorNumElements();
3470
3471  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3472         "Unsupported vector type for unpckh");
3473
3474  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3475      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3476    return false;
3477
3478  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3479  // independently on 128-bit lanes.
3480  unsigned NumLanes = VT.getSizeInBits()/128;
3481  unsigned NumLaneElts = NumElts/NumLanes;
3482
3483  for (unsigned l = 0; l != NumLanes; ++l) {
3484    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3485         i != (l+1)*NumLaneElts;
3486         i += 2, ++j) {
3487      int BitI  = Mask[i];
3488      int BitI1 = Mask[i+1];
3489      if (!isUndefOrEqual(BitI, j))
3490        return false;
3491      if (V2IsSplat) {
3492        if (!isUndefOrEqual(BitI1, NumElts))
3493          return false;
3494      } else {
3495        if (!isUndefOrEqual(BitI1, j + NumElts))
3496          return false;
3497      }
3498    }
3499  }
3500
3501  return true;
3502}
3503
3504bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3505  return ::isUNPCKLMask(N->getMask(), N->getValueType(0), HasAVX2, V2IsSplat);
3506}
3507
3508/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3509/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3510static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3511                         bool HasAVX2, bool V2IsSplat = false) {
3512  unsigned NumElts = VT.getVectorNumElements();
3513
3514  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3515         "Unsupported vector type for unpckh");
3516
3517  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3518      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3519    return false;
3520
3521  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3522  // independently on 128-bit lanes.
3523  unsigned NumLanes = VT.getSizeInBits()/128;
3524  unsigned NumLaneElts = NumElts/NumLanes;
3525
3526  for (unsigned l = 0; l != NumLanes; ++l) {
3527    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3528         i != (l+1)*NumLaneElts; i += 2, ++j) {
3529      int BitI  = Mask[i];
3530      int BitI1 = Mask[i+1];
3531      if (!isUndefOrEqual(BitI, j))
3532        return false;
3533      if (V2IsSplat) {
3534        if (isUndefOrEqual(BitI1, NumElts))
3535          return false;
3536      } else {
3537        if (!isUndefOrEqual(BitI1, j+NumElts))
3538          return false;
3539      }
3540    }
3541  }
3542  return true;
3543}
3544
3545bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3546  return ::isUNPCKHMask(N->getMask(), N->getValueType(0), HasAVX2, V2IsSplat);
3547}
3548
3549/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3550/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3551/// <0, 0, 1, 1>
3552static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3553                                  bool HasAVX2) {
3554  unsigned NumElts = VT.getVectorNumElements();
3555
3556  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3557         "Unsupported vector type for unpckh");
3558
3559  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3560      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3561    return false;
3562
3563  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3564  // FIXME: Need a better way to get rid of this, there's no latency difference
3565  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3566  // the former later. We should also remove the "_undef" special mask.
3567  if (NumElts == 4 && VT.getSizeInBits() == 256)
3568    return false;
3569
3570  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3571  // independently on 128-bit lanes.
3572  unsigned NumLanes = VT.getSizeInBits()/128;
3573  unsigned NumLaneElts = NumElts/NumLanes;
3574
3575  for (unsigned l = 0; l != NumLanes; ++l) {
3576    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3577         i != (l+1)*NumLaneElts;
3578         i += 2, ++j) {
3579      int BitI  = Mask[i];
3580      int BitI1 = Mask[i+1];
3581
3582      if (!isUndefOrEqual(BitI, j))
3583        return false;
3584      if (!isUndefOrEqual(BitI1, j))
3585        return false;
3586    }
3587  }
3588
3589  return true;
3590}
3591
3592bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3593  return ::isUNPCKL_v_undef_Mask(N->getMask(), N->getValueType(0), HasAVX2);
3594}
3595
3596/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3597/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3598/// <2, 2, 3, 3>
3599static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3600  unsigned NumElts = VT.getVectorNumElements();
3601
3602  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3603         "Unsupported vector type for unpckh");
3604
3605  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3606      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3607    return false;
3608
3609  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3610  // independently on 128-bit lanes.
3611  unsigned NumLanes = VT.getSizeInBits()/128;
3612  unsigned NumLaneElts = NumElts/NumLanes;
3613
3614  for (unsigned l = 0; l != NumLanes; ++l) {
3615    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3616         i != (l+1)*NumLaneElts; i += 2, ++j) {
3617      int BitI  = Mask[i];
3618      int BitI1 = Mask[i+1];
3619      if (!isUndefOrEqual(BitI, j))
3620        return false;
3621      if (!isUndefOrEqual(BitI1, j))
3622        return false;
3623    }
3624  }
3625  return true;
3626}
3627
3628bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3629  return ::isUNPCKH_v_undef_Mask(N->getMask(), N->getValueType(0), HasAVX2);
3630}
3631
3632/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3633/// specifies a shuffle of elements that is suitable for input to MOVSS,
3634/// MOVSD, and MOVD, i.e. setting the lowest element.
3635static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3636  if (VT.getVectorElementType().getSizeInBits() < 32)
3637    return false;
3638  if (VT.getSizeInBits() == 256)
3639    return false;
3640
3641  unsigned NumElts = VT.getVectorNumElements();
3642
3643  if (!isUndefOrEqual(Mask[0], NumElts))
3644    return false;
3645
3646  for (unsigned i = 1; i != NumElts; ++i)
3647    if (!isUndefOrEqual(Mask[i], i))
3648      return false;
3649
3650  return true;
3651}
3652
3653bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3654  return ::isMOVLMask(N->getMask(), N->getValueType(0));
3655}
3656
3657/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3658/// as permutations between 128-bit chunks or halves. As an example: this
3659/// shuffle bellow:
3660///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3661/// The first half comes from the second half of V1 and the second half from the
3662/// the second half of V2.
3663static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3664  if (!HasAVX || VT.getSizeInBits() != 256)
3665    return false;
3666
3667  // The shuffle result is divided into half A and half B. In total the two
3668  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3669  // B must come from C, D, E or F.
3670  unsigned HalfSize = VT.getVectorNumElements()/2;
3671  bool MatchA = false, MatchB = false;
3672
3673  // Check if A comes from one of C, D, E, F.
3674  for (unsigned Half = 0; Half != 4; ++Half) {
3675    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3676      MatchA = true;
3677      break;
3678    }
3679  }
3680
3681  // Check if B comes from one of C, D, E, F.
3682  for (unsigned Half = 0; Half != 4; ++Half) {
3683    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3684      MatchB = true;
3685      break;
3686    }
3687  }
3688
3689  return MatchA && MatchB;
3690}
3691
3692/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3693/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3694static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3695  EVT VT = SVOp->getValueType(0);
3696
3697  unsigned HalfSize = VT.getVectorNumElements()/2;
3698
3699  unsigned FstHalf = 0, SndHalf = 0;
3700  for (unsigned i = 0; i < HalfSize; ++i) {
3701    if (SVOp->getMaskElt(i) > 0) {
3702      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3703      break;
3704    }
3705  }
3706  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3707    if (SVOp->getMaskElt(i) > 0) {
3708      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3709      break;
3710    }
3711  }
3712
3713  return (FstHalf | (SndHalf << 4));
3714}
3715
3716/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3717/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3718/// Note that VPERMIL mask matching is different depending whether theunderlying
3719/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3720/// to the same elements of the low, but to the higher half of the source.
3721/// In VPERMILPD the two lanes could be shuffled independently of each other
3722/// with the same restriction that lanes can't be crossed.
3723static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3724  if (!HasAVX)
3725    return false;
3726
3727  unsigned NumElts = VT.getVectorNumElements();
3728  // Only match 256-bit with 32/64-bit types
3729  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3730    return false;
3731
3732  unsigned NumLanes = VT.getSizeInBits()/128;
3733  unsigned LaneSize = NumElts/NumLanes;
3734  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3735    for (unsigned i = 0; i != LaneSize; ++i) {
3736      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3737        return false;
3738      if (NumElts != 8 || l == 0)
3739        continue;
3740      // VPERMILPS handling
3741      if (Mask[i] < 0)
3742        continue;
3743      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3744        return false;
3745    }
3746  }
3747
3748  return true;
3749}
3750
3751/// getShuffleVPERMILPImmediate - Return the appropriate immediate to shuffle
3752/// the specified VECTOR_MASK mask with VPERMILPS/D* instructions.
3753static unsigned getShuffleVPERMILPImmediate(ShuffleVectorSDNode *SVOp) {
3754  EVT VT = SVOp->getValueType(0);
3755
3756  unsigned NumElts = VT.getVectorNumElements();
3757  unsigned NumLanes = VT.getSizeInBits()/128;
3758  unsigned LaneSize = NumElts/NumLanes;
3759
3760  // Although the mask is equal for both lanes do it twice to get the cases
3761  // where a mask will match because the same mask element is undef on the
3762  // first half but valid on the second. This would get pathological cases
3763  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3764  unsigned Shift = (LaneSize == 4) ? 2 : 1;
3765  unsigned Mask = 0;
3766  for (unsigned i = 0; i != NumElts; ++i) {
3767    int MaskElt = SVOp->getMaskElt(i);
3768    if (MaskElt < 0)
3769      continue;
3770    MaskElt %= LaneSize;
3771    unsigned Shamt = i;
3772    // VPERMILPSY, the mask of the first half must be equal to the second one
3773    if (NumElts == 8) Shamt %= LaneSize;
3774    Mask |= MaskElt << (Shamt*Shift);
3775  }
3776
3777  return Mask;
3778}
3779
3780/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3781/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3782/// element of vector 2 and the other elements to come from vector 1 in order.
3783static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3784                               bool V2IsSplat = false, bool V2IsUndef = false) {
3785  unsigned NumOps = VT.getVectorNumElements();
3786  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3787    return false;
3788
3789  if (!isUndefOrEqual(Mask[0], 0))
3790    return false;
3791
3792  for (unsigned i = 1; i != NumOps; ++i)
3793    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3794          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3795          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3796      return false;
3797
3798  return true;
3799}
3800
3801static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3802                           bool V2IsUndef = false) {
3803  return isCommutedMOVLMask(N->getMask(), N->getValueType(0),
3804                            V2IsSplat, V2IsUndef);
3805}
3806
3807/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3808/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3809/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3810bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3811                         const X86Subtarget *Subtarget) {
3812  if (!Subtarget->hasSSE3())
3813    return false;
3814
3815  // The second vector must be undef
3816  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3817    return false;
3818
3819  EVT VT = N->getValueType(0);
3820  unsigned NumElems = VT.getVectorNumElements();
3821
3822  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3823      (VT.getSizeInBits() == 256 && NumElems != 8))
3824    return false;
3825
3826  // "i+1" is the value the indexed mask element must have
3827  for (unsigned i = 0; i < NumElems; i += 2)
3828    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3829        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3830      return false;
3831
3832  return true;
3833}
3834
3835/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3836/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3837/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3838bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3839                         const X86Subtarget *Subtarget) {
3840  if (!Subtarget->hasSSE3())
3841    return false;
3842
3843  // The second vector must be undef
3844  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3845    return false;
3846
3847  EVT VT = N->getValueType(0);
3848  unsigned NumElems = VT.getVectorNumElements();
3849
3850  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3851      (VT.getSizeInBits() == 256 && NumElems != 8))
3852    return false;
3853
3854  // "i" is the value the indexed mask element must have
3855  for (unsigned i = 0; i != NumElems; i += 2)
3856    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3857        !isUndefOrEqual(N->getMaskElt(i+1), i))
3858      return false;
3859
3860  return true;
3861}
3862
3863/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3864/// specifies a shuffle of elements that is suitable for input to 256-bit
3865/// version of MOVDDUP.
3866static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3867  unsigned NumElts = VT.getVectorNumElements();
3868
3869  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3870    return false;
3871
3872  for (unsigned i = 0; i != NumElts/2; ++i)
3873    if (!isUndefOrEqual(Mask[i], 0))
3874      return false;
3875  for (unsigned i = NumElts/2; i != NumElts; ++i)
3876    if (!isUndefOrEqual(Mask[i], NumElts/2))
3877      return false;
3878  return true;
3879}
3880
3881/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3882/// specifies a shuffle of elements that is suitable for input to 128-bit
3883/// version of MOVDDUP.
3884bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3885  EVT VT = N->getValueType(0);
3886
3887  if (VT.getSizeInBits() != 128)
3888    return false;
3889
3890  unsigned e = VT.getVectorNumElements() / 2;
3891  for (unsigned i = 0; i != e; ++i)
3892    if (!isUndefOrEqual(N->getMaskElt(i), i))
3893      return false;
3894  for (unsigned i = 0; i != e; ++i)
3895    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3896      return false;
3897  return true;
3898}
3899
3900/// isVEXTRACTF128Index - Return true if the specified
3901/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3902/// suitable for input to VEXTRACTF128.
3903bool X86::isVEXTRACTF128Index(SDNode *N) {
3904  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3905    return false;
3906
3907  // The index should be aligned on a 128-bit boundary.
3908  uint64_t Index =
3909    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3910
3911  unsigned VL = N->getValueType(0).getVectorNumElements();
3912  unsigned VBits = N->getValueType(0).getSizeInBits();
3913  unsigned ElSize = VBits / VL;
3914  bool Result = (Index * ElSize) % 128 == 0;
3915
3916  return Result;
3917}
3918
3919/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3920/// operand specifies a subvector insert that is suitable for input to
3921/// VINSERTF128.
3922bool X86::isVINSERTF128Index(SDNode *N) {
3923  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3924    return false;
3925
3926  // The index should be aligned on a 128-bit boundary.
3927  uint64_t Index =
3928    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3929
3930  unsigned VL = N->getValueType(0).getVectorNumElements();
3931  unsigned VBits = N->getValueType(0).getSizeInBits();
3932  unsigned ElSize = VBits / VL;
3933  bool Result = (Index * ElSize) % 128 == 0;
3934
3935  return Result;
3936}
3937
3938/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3939/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3940/// Handles 128-bit and 256-bit.
3941unsigned X86::getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3942  EVT VT = N->getValueType(0);
3943
3944  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3945         "Unsupported vector type for PSHUF/SHUFP");
3946
3947  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3948  // independently on 128-bit lanes.
3949  unsigned NumElts = VT.getVectorNumElements();
3950  unsigned NumLanes = VT.getSizeInBits()/128;
3951  unsigned NumLaneElts = NumElts/NumLanes;
3952
3953  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3954         "Only supports 2 or 4 elements per lane");
3955
3956  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3957  unsigned Mask = 0;
3958  for (unsigned i = 0; i != NumElts; ++i) {
3959    int Elt = N->getMaskElt(i);
3960    if (Elt < 0) continue;
3961    Elt %= NumLaneElts;
3962    unsigned ShAmt = i << Shift;
3963    if (ShAmt >= 8) ShAmt -= 8;
3964    Mask |= Elt << ShAmt;
3965  }
3966
3967  return Mask;
3968}
3969
3970/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3971/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3972unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3973  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3974  unsigned Mask = 0;
3975  // 8 nodes, but we only care about the last 4.
3976  for (unsigned i = 7; i >= 4; --i) {
3977    int Val = SVOp->getMaskElt(i);
3978    if (Val >= 0)
3979      Mask |= (Val - 4);
3980    if (i != 4)
3981      Mask <<= 2;
3982  }
3983  return Mask;
3984}
3985
3986/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3987/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3988unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3989  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3990  unsigned Mask = 0;
3991  // 8 nodes, but we only care about the first 4.
3992  for (int i = 3; i >= 0; --i) {
3993    int Val = SVOp->getMaskElt(i);
3994    if (Val >= 0)
3995      Mask |= Val;
3996    if (i != 0)
3997      Mask <<= 2;
3998  }
3999  return Mask;
4000}
4001
4002/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4003/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4004static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4005  EVT VT = SVOp->getValueType(0);
4006  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4007
4008  unsigned NumElts = VT.getVectorNumElements();
4009  unsigned NumLanes = VT.getSizeInBits()/128;
4010  unsigned NumLaneElts = NumElts/NumLanes;
4011
4012  int Val = 0;
4013  unsigned i;
4014  for (i = 0; i != NumElts; ++i) {
4015    Val = SVOp->getMaskElt(i);
4016    if (Val >= 0)
4017      break;
4018  }
4019  if (Val >= (int)NumElts)
4020    Val -= NumElts - NumLaneElts;
4021
4022  assert(Val - i > 0 && "PALIGNR imm should be positive");
4023  return (Val - i) * EltSize;
4024}
4025
4026/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4027/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4028/// instructions.
4029unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4030  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4031    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4032
4033  uint64_t Index =
4034    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4035
4036  EVT VecVT = N->getOperand(0).getValueType();
4037  EVT ElVT = VecVT.getVectorElementType();
4038
4039  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4040  return Index / NumElemsPerChunk;
4041}
4042
4043/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4044/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4045/// instructions.
4046unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4047  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4048    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4049
4050  uint64_t Index =
4051    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4052
4053  EVT VecVT = N->getValueType(0);
4054  EVT ElVT = VecVT.getVectorElementType();
4055
4056  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4057  return Index / NumElemsPerChunk;
4058}
4059
4060/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4061/// constant +0.0.
4062bool X86::isZeroNode(SDValue Elt) {
4063  return ((isa<ConstantSDNode>(Elt) &&
4064           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4065          (isa<ConstantFPSDNode>(Elt) &&
4066           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4067}
4068
4069/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4070/// their permute mask.
4071static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4072                                    SelectionDAG &DAG) {
4073  EVT VT = SVOp->getValueType(0);
4074  unsigned NumElems = VT.getVectorNumElements();
4075  SmallVector<int, 8> MaskVec;
4076
4077  for (unsigned i = 0; i != NumElems; ++i) {
4078    int idx = SVOp->getMaskElt(i);
4079    if (idx < 0)
4080      MaskVec.push_back(idx);
4081    else if (idx < (int)NumElems)
4082      MaskVec.push_back(idx + NumElems);
4083    else
4084      MaskVec.push_back(idx - NumElems);
4085  }
4086  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4087                              SVOp->getOperand(0), &MaskVec[0]);
4088}
4089
4090/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4091/// match movhlps. The lower half elements should come from upper half of
4092/// V1 (and in order), and the upper half elements should come from the upper
4093/// half of V2 (and in order).
4094static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4095  EVT VT = Op->getValueType(0);
4096  if (VT.getSizeInBits() != 128)
4097    return false;
4098  if (VT.getVectorNumElements() != 4)
4099    return false;
4100  for (unsigned i = 0, e = 2; i != e; ++i)
4101    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4102      return false;
4103  for (unsigned i = 2; i != 4; ++i)
4104    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4105      return false;
4106  return true;
4107}
4108
4109/// isScalarLoadToVector - Returns true if the node is a scalar load that
4110/// is promoted to a vector. It also returns the LoadSDNode by reference if
4111/// required.
4112static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4113  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4114    return false;
4115  N = N->getOperand(0).getNode();
4116  if (!ISD::isNON_EXTLoad(N))
4117    return false;
4118  if (LD)
4119    *LD = cast<LoadSDNode>(N);
4120  return true;
4121}
4122
4123// Test whether the given value is a vector value which will be legalized
4124// into a load.
4125static bool WillBeConstantPoolLoad(SDNode *N) {
4126  if (N->getOpcode() != ISD::BUILD_VECTOR)
4127    return false;
4128
4129  // Check for any non-constant elements.
4130  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4131    switch (N->getOperand(i).getNode()->getOpcode()) {
4132    case ISD::UNDEF:
4133    case ISD::ConstantFP:
4134    case ISD::Constant:
4135      break;
4136    default:
4137      return false;
4138    }
4139
4140  // Vectors of all-zeros and all-ones are materialized with special
4141  // instructions rather than being loaded.
4142  return !ISD::isBuildVectorAllZeros(N) &&
4143         !ISD::isBuildVectorAllOnes(N);
4144}
4145
4146/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4147/// match movlp{s|d}. The lower half elements should come from lower half of
4148/// V1 (and in order), and the upper half elements should come from the upper
4149/// half of V2 (and in order). And since V1 will become the source of the
4150/// MOVLP, it must be either a vector load or a scalar load to vector.
4151static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4152                               ShuffleVectorSDNode *Op) {
4153  EVT VT = Op->getValueType(0);
4154  if (VT.getSizeInBits() != 128)
4155    return false;
4156
4157  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4158    return false;
4159  // Is V2 is a vector load, don't do this transformation. We will try to use
4160  // load folding shufps op.
4161  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4162    return false;
4163
4164  unsigned NumElems = VT.getVectorNumElements();
4165
4166  if (NumElems != 2 && NumElems != 4)
4167    return false;
4168  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4169    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4170      return false;
4171  for (unsigned i = NumElems/2; i != NumElems; ++i)
4172    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4173      return false;
4174  return true;
4175}
4176
4177/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4178/// all the same.
4179static bool isSplatVector(SDNode *N) {
4180  if (N->getOpcode() != ISD::BUILD_VECTOR)
4181    return false;
4182
4183  SDValue SplatValue = N->getOperand(0);
4184  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4185    if (N->getOperand(i) != SplatValue)
4186      return false;
4187  return true;
4188}
4189
4190/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4191/// to an zero vector.
4192/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4193static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4194  SDValue V1 = N->getOperand(0);
4195  SDValue V2 = N->getOperand(1);
4196  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4197  for (unsigned i = 0; i != NumElems; ++i) {
4198    int Idx = N->getMaskElt(i);
4199    if (Idx >= (int)NumElems) {
4200      unsigned Opc = V2.getOpcode();
4201      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4202        continue;
4203      if (Opc != ISD::BUILD_VECTOR ||
4204          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4205        return false;
4206    } else if (Idx >= 0) {
4207      unsigned Opc = V1.getOpcode();
4208      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4209        continue;
4210      if (Opc != ISD::BUILD_VECTOR ||
4211          !X86::isZeroNode(V1.getOperand(Idx)))
4212        return false;
4213    }
4214  }
4215  return true;
4216}
4217
4218/// getZeroVector - Returns a vector of specified type with all zero elements.
4219///
4220static SDValue getZeroVector(EVT VT, bool HasSSE2, bool HasAVX2,
4221                             SelectionDAG &DAG, DebugLoc dl) {
4222  assert(VT.isVector() && "Expected a vector type");
4223
4224  // Always build SSE zero vectors as <4 x i32> bitcasted
4225  // to their dest type. This ensures they get CSE'd.
4226  SDValue Vec;
4227  if (VT.getSizeInBits() == 128) {  // SSE
4228    if (HasSSE2) {  // SSE2
4229      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4230      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4231    } else { // SSE1
4232      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4233      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4234    }
4235  } else if (VT.getSizeInBits() == 256) { // AVX
4236    if (HasAVX2) { // AVX2
4237      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4238      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4239      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4240    } else {
4241      // 256-bit logic and arithmetic instructions in AVX are all
4242      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4243      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4244      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4245      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4246    }
4247  }
4248  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4249}
4250
4251/// getOnesVector - Returns a vector of specified type with all bits set.
4252/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4253/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4254/// Then bitcast to their original type, ensuring they get CSE'd.
4255static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4256                             DebugLoc dl) {
4257  assert(VT.isVector() && "Expected a vector type");
4258  assert((VT.is128BitVector() || VT.is256BitVector())
4259         && "Expected a 128-bit or 256-bit vector type");
4260
4261  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4262  SDValue Vec;
4263  if (VT.getSizeInBits() == 256) {
4264    if (HasAVX2) { // AVX2
4265      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4266      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4267    } else { // AVX
4268      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4269      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4270                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4271      Vec = Insert128BitVector(InsV, Vec,
4272                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4273    }
4274  } else {
4275    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4276  }
4277
4278  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4279}
4280
4281/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4282/// that point to V2 points to its first element.
4283static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4284  EVT VT = SVOp->getValueType(0);
4285  unsigned NumElems = VT.getVectorNumElements();
4286
4287  bool Changed = false;
4288  SmallVector<int, 8> MaskVec(SVOp->getMask().begin(), SVOp->getMask().end());
4289
4290  for (unsigned i = 0; i != NumElems; ++i) {
4291    if (MaskVec[i] > (int)NumElems) {
4292      MaskVec[i] = NumElems;
4293      Changed = true;
4294    }
4295  }
4296  if (Changed)
4297    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4298                                SVOp->getOperand(1), &MaskVec[0]);
4299  return SDValue(SVOp, 0);
4300}
4301
4302/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4303/// operation of specified width.
4304static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4305                       SDValue V2) {
4306  unsigned NumElems = VT.getVectorNumElements();
4307  SmallVector<int, 8> Mask;
4308  Mask.push_back(NumElems);
4309  for (unsigned i = 1; i != NumElems; ++i)
4310    Mask.push_back(i);
4311  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4312}
4313
4314/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4315static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4316                          SDValue V2) {
4317  unsigned NumElems = VT.getVectorNumElements();
4318  SmallVector<int, 8> Mask;
4319  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4320    Mask.push_back(i);
4321    Mask.push_back(i + NumElems);
4322  }
4323  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4324}
4325
4326/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4327static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4328                          SDValue V2) {
4329  unsigned NumElems = VT.getVectorNumElements();
4330  unsigned Half = NumElems/2;
4331  SmallVector<int, 8> Mask;
4332  for (unsigned i = 0; i != Half; ++i) {
4333    Mask.push_back(i + Half);
4334    Mask.push_back(i + NumElems + Half);
4335  }
4336  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4337}
4338
4339// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4340// a generic shuffle instruction because the target has no such instructions.
4341// Generate shuffles which repeat i16 and i8 several times until they can be
4342// represented by v4f32 and then be manipulated by target suported shuffles.
4343static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4344  EVT VT = V.getValueType();
4345  int NumElems = VT.getVectorNumElements();
4346  DebugLoc dl = V.getDebugLoc();
4347
4348  while (NumElems > 4) {
4349    if (EltNo < NumElems/2) {
4350      V = getUnpackl(DAG, dl, VT, V, V);
4351    } else {
4352      V = getUnpackh(DAG, dl, VT, V, V);
4353      EltNo -= NumElems/2;
4354    }
4355    NumElems >>= 1;
4356  }
4357  return V;
4358}
4359
4360/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4361static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4362  EVT VT = V.getValueType();
4363  DebugLoc dl = V.getDebugLoc();
4364  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4365         && "Vector size not supported");
4366
4367  if (VT.getSizeInBits() == 128) {
4368    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4369    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4370    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4371                             &SplatMask[0]);
4372  } else {
4373    // To use VPERMILPS to splat scalars, the second half of indicies must
4374    // refer to the higher part, which is a duplication of the lower one,
4375    // because VPERMILPS can only handle in-lane permutations.
4376    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4377                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4378
4379    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4380    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4381                             &SplatMask[0]);
4382  }
4383
4384  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4385}
4386
4387/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4388static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4389  EVT SrcVT = SV->getValueType(0);
4390  SDValue V1 = SV->getOperand(0);
4391  DebugLoc dl = SV->getDebugLoc();
4392
4393  int EltNo = SV->getSplatIndex();
4394  int NumElems = SrcVT.getVectorNumElements();
4395  unsigned Size = SrcVT.getSizeInBits();
4396
4397  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4398          "Unknown how to promote splat for type");
4399
4400  // Extract the 128-bit part containing the splat element and update
4401  // the splat element index when it refers to the higher register.
4402  if (Size == 256) {
4403    unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4404    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4405    if (Idx > 0)
4406      EltNo -= NumElems/2;
4407  }
4408
4409  // All i16 and i8 vector types can't be used directly by a generic shuffle
4410  // instruction because the target has no such instruction. Generate shuffles
4411  // which repeat i16 and i8 several times until they fit in i32, and then can
4412  // be manipulated by target suported shuffles.
4413  EVT EltVT = SrcVT.getVectorElementType();
4414  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4415    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4416
4417  // Recreate the 256-bit vector and place the same 128-bit vector
4418  // into the low and high part. This is necessary because we want
4419  // to use VPERM* to shuffle the vectors
4420  if (Size == 256) {
4421    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4422                         DAG.getConstant(0, MVT::i32), DAG, dl);
4423    V1 = Insert128BitVector(InsV, V1,
4424               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4425  }
4426
4427  return getLegalSplat(DAG, V1, EltNo);
4428}
4429
4430/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4431/// vector of zero or undef vector.  This produces a shuffle where the low
4432/// element of V2 is swizzled into the zero/undef vector, landing at element
4433/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4434static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4435                                           bool IsZero,
4436                                           const X86Subtarget *Subtarget,
4437                                           SelectionDAG &DAG) {
4438  EVT VT = V2.getValueType();
4439  SDValue V1 = IsZero
4440    ? getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(), DAG,
4441                    V2.getDebugLoc()) : DAG.getUNDEF(VT);
4442  unsigned NumElems = VT.getVectorNumElements();
4443  SmallVector<int, 16> MaskVec;
4444  for (unsigned i = 0; i != NumElems; ++i)
4445    // If this is the insertion idx, put the low elt of V2 here.
4446    MaskVec.push_back(i == Idx ? NumElems : i);
4447  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4448}
4449
4450/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4451/// element of the result of the vector shuffle.
4452static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4453                                   unsigned Depth) {
4454  if (Depth == 6)
4455    return SDValue();  // Limit search depth.
4456
4457  SDValue V = SDValue(N, 0);
4458  EVT VT = V.getValueType();
4459  unsigned Opcode = V.getOpcode();
4460
4461  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4462  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4463    Index = SV->getMaskElt(Index);
4464
4465    if (Index < 0)
4466      return DAG.getUNDEF(VT.getVectorElementType());
4467
4468    int NumElems = VT.getVectorNumElements();
4469    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4470    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4471  }
4472
4473  // Recurse into target specific vector shuffles to find scalars.
4474  if (isTargetShuffle(Opcode)) {
4475    int NumElems = VT.getVectorNumElements();
4476    SmallVector<unsigned, 16> ShuffleMask;
4477    SDValue ImmN;
4478
4479    switch(Opcode) {
4480    case X86ISD::SHUFP:
4481      ImmN = N->getOperand(N->getNumOperands()-1);
4482      DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4483                      ShuffleMask);
4484      break;
4485    case X86ISD::UNPCKH:
4486      DecodeUNPCKHMask(VT, ShuffleMask);
4487      break;
4488    case X86ISD::UNPCKL:
4489      DecodeUNPCKLMask(VT, ShuffleMask);
4490      break;
4491    case X86ISD::MOVHLPS:
4492      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4493      break;
4494    case X86ISD::MOVLHPS:
4495      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4496      break;
4497    case X86ISD::PSHUFD:
4498      ImmN = N->getOperand(N->getNumOperands()-1);
4499      DecodePSHUFMask(NumElems,
4500                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4501                      ShuffleMask);
4502      break;
4503    case X86ISD::PSHUFHW:
4504      ImmN = N->getOperand(N->getNumOperands()-1);
4505      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4506                        ShuffleMask);
4507      break;
4508    case X86ISD::PSHUFLW:
4509      ImmN = N->getOperand(N->getNumOperands()-1);
4510      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4511                        ShuffleMask);
4512      break;
4513    case X86ISD::MOVSS:
4514    case X86ISD::MOVSD: {
4515      // The index 0 always comes from the first element of the second source,
4516      // this is why MOVSS and MOVSD are used in the first place. The other
4517      // elements come from the other positions of the first source vector.
4518      unsigned OpNum = (Index == 0) ? 1 : 0;
4519      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4520                                 Depth+1);
4521    }
4522    case X86ISD::VPERMILP:
4523      ImmN = N->getOperand(N->getNumOperands()-1);
4524      DecodeVPERMILPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4525                        ShuffleMask);
4526      break;
4527    case X86ISD::VPERM2X128:
4528      ImmN = N->getOperand(N->getNumOperands()-1);
4529      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4530                           ShuffleMask);
4531      break;
4532    case X86ISD::MOVDDUP:
4533    case X86ISD::MOVLHPD:
4534    case X86ISD::MOVLPD:
4535    case X86ISD::MOVLPS:
4536    case X86ISD::MOVSHDUP:
4537    case X86ISD::MOVSLDUP:
4538    case X86ISD::PALIGN:
4539      return SDValue(); // Not yet implemented.
4540    default:
4541      assert(0 && "unknown target shuffle node");
4542      return SDValue();
4543    }
4544
4545    Index = ShuffleMask[Index];
4546    if (Index < 0)
4547      return DAG.getUNDEF(VT.getVectorElementType());
4548
4549    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4550    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4551                               Depth+1);
4552  }
4553
4554  // Actual nodes that may contain scalar elements
4555  if (Opcode == ISD::BITCAST) {
4556    V = V.getOperand(0);
4557    EVT SrcVT = V.getValueType();
4558    unsigned NumElems = VT.getVectorNumElements();
4559
4560    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4561      return SDValue();
4562  }
4563
4564  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4565    return (Index == 0) ? V.getOperand(0)
4566                          : DAG.getUNDEF(VT.getVectorElementType());
4567
4568  if (V.getOpcode() == ISD::BUILD_VECTOR)
4569    return V.getOperand(Index);
4570
4571  return SDValue();
4572}
4573
4574/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4575/// shuffle operation which come from a consecutively from a zero. The
4576/// search can start in two different directions, from left or right.
4577static
4578unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4579                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4580  int i = 0;
4581
4582  while (i < NumElems) {
4583    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4584    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4585    if (!(Elt.getNode() &&
4586         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4587      break;
4588    ++i;
4589  }
4590
4591  return i;
4592}
4593
4594/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4595/// MaskE correspond consecutively to elements from one of the vector operands,
4596/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4597static
4598bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4599                              int OpIdx, int NumElems, unsigned &OpNum) {
4600  bool SeenV1 = false;
4601  bool SeenV2 = false;
4602
4603  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4604    int Idx = SVOp->getMaskElt(i);
4605    // Ignore undef indicies
4606    if (Idx < 0)
4607      continue;
4608
4609    if (Idx < NumElems)
4610      SeenV1 = true;
4611    else
4612      SeenV2 = true;
4613
4614    // Only accept consecutive elements from the same vector
4615    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4616      return false;
4617  }
4618
4619  OpNum = SeenV1 ? 0 : 1;
4620  return true;
4621}
4622
4623/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4624/// logical left shift of a vector.
4625static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4626                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4627  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4628  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4629              false /* check zeros from right */, DAG);
4630  unsigned OpSrc;
4631
4632  if (!NumZeros)
4633    return false;
4634
4635  // Considering the elements in the mask that are not consecutive zeros,
4636  // check if they consecutively come from only one of the source vectors.
4637  //
4638  //               V1 = {X, A, B, C}     0
4639  //                         \  \  \    /
4640  //   vector_shuffle V1, V2 <1, 2, 3, X>
4641  //
4642  if (!isShuffleMaskConsecutive(SVOp,
4643            0,                   // Mask Start Index
4644            NumElems-NumZeros-1, // Mask End Index
4645            NumZeros,            // Where to start looking in the src vector
4646            NumElems,            // Number of elements in vector
4647            OpSrc))              // Which source operand ?
4648    return false;
4649
4650  isLeft = false;
4651  ShAmt = NumZeros;
4652  ShVal = SVOp->getOperand(OpSrc);
4653  return true;
4654}
4655
4656/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4657/// logical left shift of a vector.
4658static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4659                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4660  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4661  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4662              true /* check zeros from left */, DAG);
4663  unsigned OpSrc;
4664
4665  if (!NumZeros)
4666    return false;
4667
4668  // Considering the elements in the mask that are not consecutive zeros,
4669  // check if they consecutively come from only one of the source vectors.
4670  //
4671  //                           0    { A, B, X, X } = V2
4672  //                          / \    /  /
4673  //   vector_shuffle V1, V2 <X, X, 4, 5>
4674  //
4675  if (!isShuffleMaskConsecutive(SVOp,
4676            NumZeros,     // Mask Start Index
4677            NumElems-1,   // Mask End Index
4678            0,            // Where to start looking in the src vector
4679            NumElems,     // Number of elements in vector
4680            OpSrc))       // Which source operand ?
4681    return false;
4682
4683  isLeft = true;
4684  ShAmt = NumZeros;
4685  ShVal = SVOp->getOperand(OpSrc);
4686  return true;
4687}
4688
4689/// isVectorShift - Returns true if the shuffle can be implemented as a
4690/// logical left or right shift of a vector.
4691static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4692                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4693  // Although the logic below support any bitwidth size, there are no
4694  // shift instructions which handle more than 128-bit vectors.
4695  if (SVOp->getValueType(0).getSizeInBits() > 128)
4696    return false;
4697
4698  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4699      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4700    return true;
4701
4702  return false;
4703}
4704
4705/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4706///
4707static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4708                                       unsigned NumNonZero, unsigned NumZero,
4709                                       SelectionDAG &DAG,
4710                                       const TargetLowering &TLI) {
4711  if (NumNonZero > 8)
4712    return SDValue();
4713
4714  DebugLoc dl = Op.getDebugLoc();
4715  SDValue V(0, 0);
4716  bool First = true;
4717  for (unsigned i = 0; i < 16; ++i) {
4718    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4719    if (ThisIsNonZero && First) {
4720      if (NumZero)
4721        V = getZeroVector(MVT::v8i16, /*HasSSE2*/ true, /*HasAVX2*/ false,
4722                          DAG, dl);
4723      else
4724        V = DAG.getUNDEF(MVT::v8i16);
4725      First = false;
4726    }
4727
4728    if ((i & 1) != 0) {
4729      SDValue ThisElt(0, 0), LastElt(0, 0);
4730      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4731      if (LastIsNonZero) {
4732        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4733                              MVT::i16, Op.getOperand(i-1));
4734      }
4735      if (ThisIsNonZero) {
4736        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4737        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4738                              ThisElt, DAG.getConstant(8, MVT::i8));
4739        if (LastIsNonZero)
4740          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4741      } else
4742        ThisElt = LastElt;
4743
4744      if (ThisElt.getNode())
4745        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4746                        DAG.getIntPtrConstant(i/2));
4747    }
4748  }
4749
4750  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4751}
4752
4753/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4754///
4755static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4756                                     unsigned NumNonZero, unsigned NumZero,
4757                                     SelectionDAG &DAG,
4758                                     const TargetLowering &TLI) {
4759  if (NumNonZero > 4)
4760    return SDValue();
4761
4762  DebugLoc dl = Op.getDebugLoc();
4763  SDValue V(0, 0);
4764  bool First = true;
4765  for (unsigned i = 0; i < 8; ++i) {
4766    bool isNonZero = (NonZeros & (1 << i)) != 0;
4767    if (isNonZero) {
4768      if (First) {
4769        if (NumZero)
4770          V = getZeroVector(MVT::v8i16, /*HasSSE2*/ true, /*HasAVX2*/ false,
4771                            DAG, dl);
4772        else
4773          V = DAG.getUNDEF(MVT::v8i16);
4774        First = false;
4775      }
4776      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4777                      MVT::v8i16, V, Op.getOperand(i),
4778                      DAG.getIntPtrConstant(i));
4779    }
4780  }
4781
4782  return V;
4783}
4784
4785/// getVShift - Return a vector logical shift node.
4786///
4787static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4788                         unsigned NumBits, SelectionDAG &DAG,
4789                         const TargetLowering &TLI, DebugLoc dl) {
4790  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4791  EVT ShVT = MVT::v2i64;
4792  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4793  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4794  return DAG.getNode(ISD::BITCAST, dl, VT,
4795                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4796                             DAG.getConstant(NumBits,
4797                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4798}
4799
4800SDValue
4801X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4802                                          SelectionDAG &DAG) const {
4803
4804  // Check if the scalar load can be widened into a vector load. And if
4805  // the address is "base + cst" see if the cst can be "absorbed" into
4806  // the shuffle mask.
4807  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4808    SDValue Ptr = LD->getBasePtr();
4809    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4810      return SDValue();
4811    EVT PVT = LD->getValueType(0);
4812    if (PVT != MVT::i32 && PVT != MVT::f32)
4813      return SDValue();
4814
4815    int FI = -1;
4816    int64_t Offset = 0;
4817    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4818      FI = FINode->getIndex();
4819      Offset = 0;
4820    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4821               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4822      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4823      Offset = Ptr.getConstantOperandVal(1);
4824      Ptr = Ptr.getOperand(0);
4825    } else {
4826      return SDValue();
4827    }
4828
4829    // FIXME: 256-bit vector instructions don't require a strict alignment,
4830    // improve this code to support it better.
4831    unsigned RequiredAlign = VT.getSizeInBits()/8;
4832    SDValue Chain = LD->getChain();
4833    // Make sure the stack object alignment is at least 16 or 32.
4834    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4835    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4836      if (MFI->isFixedObjectIndex(FI)) {
4837        // Can't change the alignment. FIXME: It's possible to compute
4838        // the exact stack offset and reference FI + adjust offset instead.
4839        // If someone *really* cares about this. That's the way to implement it.
4840        return SDValue();
4841      } else {
4842        MFI->setObjectAlignment(FI, RequiredAlign);
4843      }
4844    }
4845
4846    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4847    // Ptr + (Offset & ~15).
4848    if (Offset < 0)
4849      return SDValue();
4850    if ((Offset % RequiredAlign) & 3)
4851      return SDValue();
4852    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4853    if (StartOffset)
4854      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4855                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4856
4857    int EltNo = (Offset - StartOffset) >> 2;
4858    int NumElems = VT.getVectorNumElements();
4859
4860    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4861    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4862    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4863                             LD->getPointerInfo().getWithOffset(StartOffset),
4864                             false, false, false, 0);
4865
4866    // Canonicalize it to a v4i32 or v8i32 shuffle.
4867    SmallVector<int, 8> Mask;
4868    for (int i = 0; i < NumElems; ++i)
4869      Mask.push_back(EltNo);
4870
4871    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4872    return DAG.getNode(ISD::BITCAST, dl, NVT,
4873                       DAG.getVectorShuffle(CanonVT, dl, V1,
4874                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4875  }
4876
4877  return SDValue();
4878}
4879
4880/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4881/// vector of type 'VT', see if the elements can be replaced by a single large
4882/// load which has the same value as a build_vector whose operands are 'elts'.
4883///
4884/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4885///
4886/// FIXME: we'd also like to handle the case where the last elements are zero
4887/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4888/// There's even a handy isZeroNode for that purpose.
4889static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4890                                        DebugLoc &DL, SelectionDAG &DAG) {
4891  EVT EltVT = VT.getVectorElementType();
4892  unsigned NumElems = Elts.size();
4893
4894  LoadSDNode *LDBase = NULL;
4895  unsigned LastLoadedElt = -1U;
4896
4897  // For each element in the initializer, see if we've found a load or an undef.
4898  // If we don't find an initial load element, or later load elements are
4899  // non-consecutive, bail out.
4900  for (unsigned i = 0; i < NumElems; ++i) {
4901    SDValue Elt = Elts[i];
4902
4903    if (!Elt.getNode() ||
4904        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4905      return SDValue();
4906    if (!LDBase) {
4907      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4908        return SDValue();
4909      LDBase = cast<LoadSDNode>(Elt.getNode());
4910      LastLoadedElt = i;
4911      continue;
4912    }
4913    if (Elt.getOpcode() == ISD::UNDEF)
4914      continue;
4915
4916    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4917    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4918      return SDValue();
4919    LastLoadedElt = i;
4920  }
4921
4922  // If we have found an entire vector of loads and undefs, then return a large
4923  // load of the entire vector width starting at the base pointer.  If we found
4924  // consecutive loads for the low half, generate a vzext_load node.
4925  if (LastLoadedElt == NumElems - 1) {
4926    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4927      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4928                         LDBase->getPointerInfo(),
4929                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4930                         LDBase->isInvariant(), 0);
4931    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4932                       LDBase->getPointerInfo(),
4933                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4934                       LDBase->isInvariant(), LDBase->getAlignment());
4935  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4936             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4937    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4938    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4939    SDValue ResNode =
4940        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4941                                LDBase->getPointerInfo(),
4942                                LDBase->getAlignment(),
4943                                false/*isVolatile*/, true/*ReadMem*/,
4944                                false/*WriteMem*/);
4945    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4946  }
4947  return SDValue();
4948}
4949
4950/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
4951/// a vbroadcast node. We support two patterns:
4952/// 1. A splat BUILD_VECTOR which uses a single scalar load.
4953/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4954/// a scalar load.
4955/// The scalar load node is returned when a pattern is found,
4956/// or SDValue() otherwise.
4957static SDValue isVectorBroadcast(SDValue &Op, const X86Subtarget *Subtarget) {
4958  if (!Subtarget->hasAVX())
4959    return SDValue();
4960
4961  EVT VT = Op.getValueType();
4962  SDValue V = Op;
4963
4964  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
4965    V = V.getOperand(0);
4966
4967  //A suspected load to be broadcasted.
4968  SDValue Ld;
4969
4970  switch (V.getOpcode()) {
4971    default:
4972      // Unknown pattern found.
4973      return SDValue();
4974
4975    case ISD::BUILD_VECTOR: {
4976      // The BUILD_VECTOR node must be a splat.
4977      if (!isSplatVector(V.getNode()))
4978        return SDValue();
4979
4980      Ld = V.getOperand(0);
4981
4982      // The suspected load node has several users. Make sure that all
4983      // of its users are from the BUILD_VECTOR node.
4984      if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4985        return SDValue();
4986      break;
4987    }
4988
4989    case ISD::VECTOR_SHUFFLE: {
4990      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4991
4992      // Shuffles must have a splat mask where the first element is
4993      // broadcasted.
4994      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4995        return SDValue();
4996
4997      SDValue Sc = Op.getOperand(0);
4998      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4999        return SDValue();
5000
5001      Ld = Sc.getOperand(0);
5002
5003      // The scalar_to_vector node and the suspected
5004      // load node must have exactly one user.
5005      if (!Sc.hasOneUse() || !Ld.hasOneUse())
5006        return SDValue();
5007      break;
5008    }
5009  }
5010
5011  // The scalar source must be a normal load.
5012  if (!ISD::isNormalLoad(Ld.getNode()))
5013    return SDValue();
5014
5015  bool Is256 = VT.getSizeInBits() == 256;
5016  bool Is128 = VT.getSizeInBits() == 128;
5017  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5018
5019  // VBroadcast to YMM
5020  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
5021    return Ld;
5022
5023  // VBroadcast to XMM
5024  if (Is128 && (ScalarSize == 32))
5025    return Ld;
5026
5027  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5028  // double since there is vbroadcastsd xmm
5029  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5030    // VBroadcast to YMM
5031    if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
5032      return Ld;
5033
5034    // VBroadcast to XMM
5035    if (Is128 && (ScalarSize ==  8 || ScalarSize == 16 || ScalarSize == 64))
5036      return Ld;
5037  }
5038
5039  // Unsupported broadcast.
5040  return SDValue();
5041}
5042
5043SDValue
5044X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5045  DebugLoc dl = Op.getDebugLoc();
5046
5047  EVT VT = Op.getValueType();
5048  EVT ExtVT = VT.getVectorElementType();
5049  unsigned NumElems = Op.getNumOperands();
5050
5051  // Vectors containing all zeros can be matched by pxor and xorps later
5052  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5053    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5054    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5055    if (Op.getValueType() == MVT::v4i32 ||
5056        Op.getValueType() == MVT::v8i32)
5057      return Op;
5058
5059    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(),
5060                         Subtarget->hasAVX2(), DAG, dl);
5061  }
5062
5063  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5064  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5065  // vpcmpeqd on 256-bit vectors.
5066  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5067    if (Op.getValueType() == MVT::v4i32 ||
5068        (Op.getValueType() == MVT::v8i32 && Subtarget->hasAVX2()))
5069      return Op;
5070
5071    return getOnesVector(Op.getValueType(), Subtarget->hasAVX2(), DAG, dl);
5072  }
5073
5074  SDValue LD = isVectorBroadcast(Op, Subtarget);
5075  if (LD.getNode())
5076    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
5077
5078  unsigned EVTBits = ExtVT.getSizeInBits();
5079
5080  unsigned NumZero  = 0;
5081  unsigned NumNonZero = 0;
5082  unsigned NonZeros = 0;
5083  bool IsAllConstants = true;
5084  SmallSet<SDValue, 8> Values;
5085  for (unsigned i = 0; i < NumElems; ++i) {
5086    SDValue Elt = Op.getOperand(i);
5087    if (Elt.getOpcode() == ISD::UNDEF)
5088      continue;
5089    Values.insert(Elt);
5090    if (Elt.getOpcode() != ISD::Constant &&
5091        Elt.getOpcode() != ISD::ConstantFP)
5092      IsAllConstants = false;
5093    if (X86::isZeroNode(Elt))
5094      NumZero++;
5095    else {
5096      NonZeros |= (1 << i);
5097      NumNonZero++;
5098    }
5099  }
5100
5101  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5102  if (NumNonZero == 0)
5103    return DAG.getUNDEF(VT);
5104
5105  // Special case for single non-zero, non-undef, element.
5106  if (NumNonZero == 1) {
5107    unsigned Idx = CountTrailingZeros_32(NonZeros);
5108    SDValue Item = Op.getOperand(Idx);
5109
5110    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5111    // the value are obviously zero, truncate the value to i32 and do the
5112    // insertion that way.  Only do this if the value is non-constant or if the
5113    // value is a constant being inserted into element 0.  It is cheaper to do
5114    // a constant pool load than it is to do a movd + shuffle.
5115    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5116        (!IsAllConstants || Idx == 0)) {
5117      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5118        // Handle SSE only.
5119        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5120        EVT VecVT = MVT::v4i32;
5121        unsigned VecElts = 4;
5122
5123        // Truncate the value (which may itself be a constant) to i32, and
5124        // convert it to a vector with movd (S2V+shuffle to zero extend).
5125        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5126        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5127        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5128
5129        // Now we have our 32-bit value zero extended in the low element of
5130        // a vector.  If Idx != 0, swizzle it into place.
5131        if (Idx != 0) {
5132          SmallVector<int, 4> Mask;
5133          Mask.push_back(Idx);
5134          for (unsigned i = 1; i != VecElts; ++i)
5135            Mask.push_back(i);
5136          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5137                                      DAG.getUNDEF(Item.getValueType()),
5138                                      &Mask[0]);
5139        }
5140        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5141      }
5142    }
5143
5144    // If we have a constant or non-constant insertion into the low element of
5145    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5146    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5147    // depending on what the source datatype is.
5148    if (Idx == 0) {
5149      if (NumZero == 0)
5150        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5151
5152      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5153          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5154        if (VT.getSizeInBits() == 256) {
5155          SDValue ZeroVec = getZeroVector(VT, Subtarget->hasSSE2(),
5156                                          Subtarget->hasAVX2(), DAG, dl);
5157          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5158                             Item, DAG.getIntPtrConstant(0));
5159        }
5160        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5161        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5162        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5163        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5164      }
5165
5166      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5167        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5168        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5169        if (VT.getSizeInBits() == 256) {
5170          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget->hasSSE2(),
5171                                          Subtarget->hasAVX2(), DAG, dl);
5172          Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5173                                    DAG, dl);
5174        } else {
5175          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5176          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5177        }
5178        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5179      }
5180    }
5181
5182    // Is it a vector logical left shift?
5183    if (NumElems == 2 && Idx == 1 &&
5184        X86::isZeroNode(Op.getOperand(0)) &&
5185        !X86::isZeroNode(Op.getOperand(1))) {
5186      unsigned NumBits = VT.getSizeInBits();
5187      return getVShift(true, VT,
5188                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5189                                   VT, Op.getOperand(1)),
5190                       NumBits/2, DAG, *this, dl);
5191    }
5192
5193    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5194      return SDValue();
5195
5196    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5197    // is a non-constant being inserted into an element other than the low one,
5198    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5199    // movd/movss) to move this into the low element, then shuffle it into
5200    // place.
5201    if (EVTBits == 32) {
5202      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5203
5204      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5205      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5206      SmallVector<int, 8> MaskVec;
5207      for (unsigned i = 0; i < NumElems; i++)
5208        MaskVec.push_back(i == Idx ? 0 : 1);
5209      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5210    }
5211  }
5212
5213  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5214  if (Values.size() == 1) {
5215    if (EVTBits == 32) {
5216      // Instead of a shuffle like this:
5217      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5218      // Check if it's possible to issue this instead.
5219      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5220      unsigned Idx = CountTrailingZeros_32(NonZeros);
5221      SDValue Item = Op.getOperand(Idx);
5222      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5223        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5224    }
5225    return SDValue();
5226  }
5227
5228  // A vector full of immediates; various special cases are already
5229  // handled, so this is best done with a single constant-pool load.
5230  if (IsAllConstants)
5231    return SDValue();
5232
5233  // For AVX-length vectors, build the individual 128-bit pieces and use
5234  // shuffles to put them in place.
5235  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5236    SmallVector<SDValue, 32> V;
5237    for (unsigned i = 0; i < NumElems; ++i)
5238      V.push_back(Op.getOperand(i));
5239
5240    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5241
5242    // Build both the lower and upper subvector.
5243    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5244    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5245                                NumElems/2);
5246
5247    // Recreate the wider vector with the lower and upper part.
5248    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5249                                DAG.getConstant(0, MVT::i32), DAG, dl);
5250    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5251                              DAG, dl);
5252  }
5253
5254  // Let legalizer expand 2-wide build_vectors.
5255  if (EVTBits == 64) {
5256    if (NumNonZero == 1) {
5257      // One half is zero or undef.
5258      unsigned Idx = CountTrailingZeros_32(NonZeros);
5259      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5260                                 Op.getOperand(Idx));
5261      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5262    }
5263    return SDValue();
5264  }
5265
5266  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5267  if (EVTBits == 8 && NumElems == 16) {
5268    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5269                                        *this);
5270    if (V.getNode()) return V;
5271  }
5272
5273  if (EVTBits == 16 && NumElems == 8) {
5274    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5275                                      *this);
5276    if (V.getNode()) return V;
5277  }
5278
5279  // If element VT is == 32 bits, turn it into a number of shuffles.
5280  SmallVector<SDValue, 8> V;
5281  V.resize(NumElems);
5282  if (NumElems == 4 && NumZero > 0) {
5283    for (unsigned i = 0; i < 4; ++i) {
5284      bool isZero = !(NonZeros & (1 << i));
5285      if (isZero)
5286        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(),
5287                             DAG, dl);
5288      else
5289        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5290    }
5291
5292    for (unsigned i = 0; i < 2; ++i) {
5293      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5294        default: break;
5295        case 0:
5296          V[i] = V[i*2];  // Must be a zero vector.
5297          break;
5298        case 1:
5299          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5300          break;
5301        case 2:
5302          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5303          break;
5304        case 3:
5305          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5306          break;
5307      }
5308    }
5309
5310    SmallVector<int, 8> MaskVec;
5311    bool Reverse = (NonZeros & 0x3) == 2;
5312    for (unsigned i = 0; i < 2; ++i)
5313      MaskVec.push_back(Reverse ? 1-i : i);
5314    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5315    for (unsigned i = 0; i < 2; ++i)
5316      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5317    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5318  }
5319
5320  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5321    // Check for a build vector of consecutive loads.
5322    for (unsigned i = 0; i < NumElems; ++i)
5323      V[i] = Op.getOperand(i);
5324
5325    // Check for elements which are consecutive loads.
5326    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5327    if (LD.getNode())
5328      return LD;
5329
5330    // For SSE 4.1, use insertps to put the high elements into the low element.
5331    if (getSubtarget()->hasSSE41()) {
5332      SDValue Result;
5333      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5334        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5335      else
5336        Result = DAG.getUNDEF(VT);
5337
5338      for (unsigned i = 1; i < NumElems; ++i) {
5339        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5340        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5341                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5342      }
5343      return Result;
5344    }
5345
5346    // Otherwise, expand into a number of unpckl*, start by extending each of
5347    // our (non-undef) elements to the full vector width with the element in the
5348    // bottom slot of the vector (which generates no code for SSE).
5349    for (unsigned i = 0; i < NumElems; ++i) {
5350      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5351        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5352      else
5353        V[i] = DAG.getUNDEF(VT);
5354    }
5355
5356    // Next, we iteratively mix elements, e.g. for v4f32:
5357    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5358    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5359    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5360    unsigned EltStride = NumElems >> 1;
5361    while (EltStride != 0) {
5362      for (unsigned i = 0; i < EltStride; ++i) {
5363        // If V[i+EltStride] is undef and this is the first round of mixing,
5364        // then it is safe to just drop this shuffle: V[i] is already in the
5365        // right place, the one element (since it's the first round) being
5366        // inserted as undef can be dropped.  This isn't safe for successive
5367        // rounds because they will permute elements within both vectors.
5368        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5369            EltStride == NumElems/2)
5370          continue;
5371
5372        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5373      }
5374      EltStride >>= 1;
5375    }
5376    return V[0];
5377  }
5378  return SDValue();
5379}
5380
5381// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5382// them in a MMX register.  This is better than doing a stack convert.
5383static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5384  DebugLoc dl = Op.getDebugLoc();
5385  EVT ResVT = Op.getValueType();
5386
5387  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5388         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5389  int Mask[2];
5390  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5391  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5392  InVec = Op.getOperand(1);
5393  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5394    unsigned NumElts = ResVT.getVectorNumElements();
5395    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5396    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5397                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5398  } else {
5399    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5400    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5401    Mask[0] = 0; Mask[1] = 2;
5402    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5403  }
5404  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5405}
5406
5407// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5408// to create 256-bit vectors from two other 128-bit ones.
5409static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5410  DebugLoc dl = Op.getDebugLoc();
5411  EVT ResVT = Op.getValueType();
5412
5413  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5414
5415  SDValue V1 = Op.getOperand(0);
5416  SDValue V2 = Op.getOperand(1);
5417  unsigned NumElems = ResVT.getVectorNumElements();
5418
5419  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5420                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5421  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5422                            DAG, dl);
5423}
5424
5425SDValue
5426X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5427  EVT ResVT = Op.getValueType();
5428
5429  assert(Op.getNumOperands() == 2);
5430  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5431         "Unsupported CONCAT_VECTORS for value type");
5432
5433  // We support concatenate two MMX registers and place them in a MMX register.
5434  // This is better than doing a stack convert.
5435  if (ResVT.is128BitVector())
5436    return LowerMMXCONCAT_VECTORS(Op, DAG);
5437
5438  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5439  // from two other 128-bit ones.
5440  return LowerAVXCONCAT_VECTORS(Op, DAG);
5441}
5442
5443// v8i16 shuffles - Prefer shuffles in the following order:
5444// 1. [all]   pshuflw, pshufhw, optional move
5445// 2. [ssse3] 1 x pshufb
5446// 3. [ssse3] 2 x pshufb + 1 x por
5447// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5448SDValue
5449X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5450                                            SelectionDAG &DAG) const {
5451  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5452  SDValue V1 = SVOp->getOperand(0);
5453  SDValue V2 = SVOp->getOperand(1);
5454  DebugLoc dl = SVOp->getDebugLoc();
5455  SmallVector<int, 8> MaskVals;
5456
5457  // Determine if more than 1 of the words in each of the low and high quadwords
5458  // of the result come from the same quadword of one of the two inputs.  Undef
5459  // mask values count as coming from any quadword, for better codegen.
5460  unsigned LoQuad[] = { 0, 0, 0, 0 };
5461  unsigned HiQuad[] = { 0, 0, 0, 0 };
5462  BitVector InputQuads(4);
5463  for (unsigned i = 0; i < 8; ++i) {
5464    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5465    int EltIdx = SVOp->getMaskElt(i);
5466    MaskVals.push_back(EltIdx);
5467    if (EltIdx < 0) {
5468      ++Quad[0];
5469      ++Quad[1];
5470      ++Quad[2];
5471      ++Quad[3];
5472      continue;
5473    }
5474    ++Quad[EltIdx / 4];
5475    InputQuads.set(EltIdx / 4);
5476  }
5477
5478  int BestLoQuad = -1;
5479  unsigned MaxQuad = 1;
5480  for (unsigned i = 0; i < 4; ++i) {
5481    if (LoQuad[i] > MaxQuad) {
5482      BestLoQuad = i;
5483      MaxQuad = LoQuad[i];
5484    }
5485  }
5486
5487  int BestHiQuad = -1;
5488  MaxQuad = 1;
5489  for (unsigned i = 0; i < 4; ++i) {
5490    if (HiQuad[i] > MaxQuad) {
5491      BestHiQuad = i;
5492      MaxQuad = HiQuad[i];
5493    }
5494  }
5495
5496  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5497  // of the two input vectors, shuffle them into one input vector so only a
5498  // single pshufb instruction is necessary. If There are more than 2 input
5499  // quads, disable the next transformation since it does not help SSSE3.
5500  bool V1Used = InputQuads[0] || InputQuads[1];
5501  bool V2Used = InputQuads[2] || InputQuads[3];
5502  if (Subtarget->hasSSSE3()) {
5503    if (InputQuads.count() == 2 && V1Used && V2Used) {
5504      BestLoQuad = InputQuads.find_first();
5505      BestHiQuad = InputQuads.find_next(BestLoQuad);
5506    }
5507    if (InputQuads.count() > 2) {
5508      BestLoQuad = -1;
5509      BestHiQuad = -1;
5510    }
5511  }
5512
5513  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5514  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5515  // words from all 4 input quadwords.
5516  SDValue NewV;
5517  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5518    SmallVector<int, 8> MaskV;
5519    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5520    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5521    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5522                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5523                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5524    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5525
5526    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5527    // source words for the shuffle, to aid later transformations.
5528    bool AllWordsInNewV = true;
5529    bool InOrder[2] = { true, true };
5530    for (unsigned i = 0; i != 8; ++i) {
5531      int idx = MaskVals[i];
5532      if (idx != (int)i)
5533        InOrder[i/4] = false;
5534      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5535        continue;
5536      AllWordsInNewV = false;
5537      break;
5538    }
5539
5540    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5541    if (AllWordsInNewV) {
5542      for (int i = 0; i != 8; ++i) {
5543        int idx = MaskVals[i];
5544        if (idx < 0)
5545          continue;
5546        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5547        if ((idx != i) && idx < 4)
5548          pshufhw = false;
5549        if ((idx != i) && idx > 3)
5550          pshuflw = false;
5551      }
5552      V1 = NewV;
5553      V2Used = false;
5554      BestLoQuad = 0;
5555      BestHiQuad = 1;
5556    }
5557
5558    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5559    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5560    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5561      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5562      unsigned TargetMask = 0;
5563      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5564                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5565      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5566                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5567      V1 = NewV.getOperand(0);
5568      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5569    }
5570  }
5571
5572  // If we have SSSE3, and all words of the result are from 1 input vector,
5573  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5574  // is present, fall back to case 4.
5575  if (Subtarget->hasSSSE3()) {
5576    SmallVector<SDValue,16> pshufbMask;
5577
5578    // If we have elements from both input vectors, set the high bit of the
5579    // shuffle mask element to zero out elements that come from V2 in the V1
5580    // mask, and elements that come from V1 in the V2 mask, so that the two
5581    // results can be OR'd together.
5582    bool TwoInputs = V1Used && V2Used;
5583    for (unsigned i = 0; i != 8; ++i) {
5584      int EltIdx = MaskVals[i] * 2;
5585      if (TwoInputs && (EltIdx >= 16)) {
5586        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5587        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5588        continue;
5589      }
5590      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5591      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5592    }
5593    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5594    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5595                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5596                                 MVT::v16i8, &pshufbMask[0], 16));
5597    if (!TwoInputs)
5598      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5599
5600    // Calculate the shuffle mask for the second input, shuffle it, and
5601    // OR it with the first shuffled input.
5602    pshufbMask.clear();
5603    for (unsigned i = 0; i != 8; ++i) {
5604      int EltIdx = MaskVals[i] * 2;
5605      if (EltIdx < 16) {
5606        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5607        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5608        continue;
5609      }
5610      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5611      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5612    }
5613    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5614    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5615                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5616                                 MVT::v16i8, &pshufbMask[0], 16));
5617    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5618    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5619  }
5620
5621  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5622  // and update MaskVals with new element order.
5623  BitVector InOrder(8);
5624  if (BestLoQuad >= 0) {
5625    SmallVector<int, 8> MaskV;
5626    for (int i = 0; i != 4; ++i) {
5627      int idx = MaskVals[i];
5628      if (idx < 0) {
5629        MaskV.push_back(-1);
5630        InOrder.set(i);
5631      } else if ((idx / 4) == BestLoQuad) {
5632        MaskV.push_back(idx & 3);
5633        InOrder.set(i);
5634      } else {
5635        MaskV.push_back(-1);
5636      }
5637    }
5638    for (unsigned i = 4; i != 8; ++i)
5639      MaskV.push_back(i);
5640    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5641                                &MaskV[0]);
5642
5643    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5644      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5645                               NewV.getOperand(0),
5646                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5647                               DAG);
5648  }
5649
5650  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5651  // and update MaskVals with the new element order.
5652  if (BestHiQuad >= 0) {
5653    SmallVector<int, 8> MaskV;
5654    for (unsigned i = 0; i != 4; ++i)
5655      MaskV.push_back(i);
5656    for (unsigned i = 4; i != 8; ++i) {
5657      int idx = MaskVals[i];
5658      if (idx < 0) {
5659        MaskV.push_back(-1);
5660        InOrder.set(i);
5661      } else if ((idx / 4) == BestHiQuad) {
5662        MaskV.push_back((idx & 3) + 4);
5663        InOrder.set(i);
5664      } else {
5665        MaskV.push_back(-1);
5666      }
5667    }
5668    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5669                                &MaskV[0]);
5670
5671    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5672      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5673                              NewV.getOperand(0),
5674                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5675                              DAG);
5676  }
5677
5678  // In case BestHi & BestLo were both -1, which means each quadword has a word
5679  // from each of the four input quadwords, calculate the InOrder bitvector now
5680  // before falling through to the insert/extract cleanup.
5681  if (BestLoQuad == -1 && BestHiQuad == -1) {
5682    NewV = V1;
5683    for (int i = 0; i != 8; ++i)
5684      if (MaskVals[i] < 0 || MaskVals[i] == i)
5685        InOrder.set(i);
5686  }
5687
5688  // The other elements are put in the right place using pextrw and pinsrw.
5689  for (unsigned i = 0; i != 8; ++i) {
5690    if (InOrder[i])
5691      continue;
5692    int EltIdx = MaskVals[i];
5693    if (EltIdx < 0)
5694      continue;
5695    SDValue ExtOp = (EltIdx < 8)
5696    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5697                  DAG.getIntPtrConstant(EltIdx))
5698    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5699                  DAG.getIntPtrConstant(EltIdx - 8));
5700    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5701                       DAG.getIntPtrConstant(i));
5702  }
5703  return NewV;
5704}
5705
5706// v16i8 shuffles - Prefer shuffles in the following order:
5707// 1. [ssse3] 1 x pshufb
5708// 2. [ssse3] 2 x pshufb + 1 x por
5709// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5710static
5711SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5712                                 SelectionDAG &DAG,
5713                                 const X86TargetLowering &TLI) {
5714  SDValue V1 = SVOp->getOperand(0);
5715  SDValue V2 = SVOp->getOperand(1);
5716  DebugLoc dl = SVOp->getDebugLoc();
5717  ArrayRef<int> MaskVals = SVOp->getMask();
5718
5719  // If we have SSSE3, case 1 is generated when all result bytes come from
5720  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5721  // present, fall back to case 3.
5722  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5723  bool V1Only = true;
5724  bool V2Only = true;
5725  for (unsigned i = 0; i < 16; ++i) {
5726    int EltIdx = MaskVals[i];
5727    if (EltIdx < 0)
5728      continue;
5729    if (EltIdx < 16)
5730      V2Only = false;
5731    else
5732      V1Only = false;
5733  }
5734
5735  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5736  if (TLI.getSubtarget()->hasSSSE3()) {
5737    SmallVector<SDValue,16> pshufbMask;
5738
5739    // If all result elements are from one input vector, then only translate
5740    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5741    //
5742    // Otherwise, we have elements from both input vectors, and must zero out
5743    // elements that come from V2 in the first mask, and V1 in the second mask
5744    // so that we can OR them together.
5745    bool TwoInputs = !(V1Only || V2Only);
5746    for (unsigned i = 0; i != 16; ++i) {
5747      int EltIdx = MaskVals[i];
5748      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5749        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5750        continue;
5751      }
5752      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5753    }
5754    // If all the elements are from V2, assign it to V1 and return after
5755    // building the first pshufb.
5756    if (V2Only)
5757      V1 = V2;
5758    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5759                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5760                                 MVT::v16i8, &pshufbMask[0], 16));
5761    if (!TwoInputs)
5762      return V1;
5763
5764    // Calculate the shuffle mask for the second input, shuffle it, and
5765    // OR it with the first shuffled input.
5766    pshufbMask.clear();
5767    for (unsigned i = 0; i != 16; ++i) {
5768      int EltIdx = MaskVals[i];
5769      if (EltIdx < 16) {
5770        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5771        continue;
5772      }
5773      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5774    }
5775    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5776                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5777                                 MVT::v16i8, &pshufbMask[0], 16));
5778    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5779  }
5780
5781  // No SSSE3 - Calculate in place words and then fix all out of place words
5782  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5783  // the 16 different words that comprise the two doublequadword input vectors.
5784  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5785  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5786  SDValue NewV = V2Only ? V2 : V1;
5787  for (int i = 0; i != 8; ++i) {
5788    int Elt0 = MaskVals[i*2];
5789    int Elt1 = MaskVals[i*2+1];
5790
5791    // This word of the result is all undef, skip it.
5792    if (Elt0 < 0 && Elt1 < 0)
5793      continue;
5794
5795    // This word of the result is already in the correct place, skip it.
5796    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5797      continue;
5798    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5799      continue;
5800
5801    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5802    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5803    SDValue InsElt;
5804
5805    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5806    // using a single extract together, load it and store it.
5807    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5808      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5809                           DAG.getIntPtrConstant(Elt1 / 2));
5810      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5811                        DAG.getIntPtrConstant(i));
5812      continue;
5813    }
5814
5815    // If Elt1 is defined, extract it from the appropriate source.  If the
5816    // source byte is not also odd, shift the extracted word left 8 bits
5817    // otherwise clear the bottom 8 bits if we need to do an or.
5818    if (Elt1 >= 0) {
5819      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5820                           DAG.getIntPtrConstant(Elt1 / 2));
5821      if ((Elt1 & 1) == 0)
5822        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5823                             DAG.getConstant(8,
5824                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5825      else if (Elt0 >= 0)
5826        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5827                             DAG.getConstant(0xFF00, MVT::i16));
5828    }
5829    // If Elt0 is defined, extract it from the appropriate source.  If the
5830    // source byte is not also even, shift the extracted word right 8 bits. If
5831    // Elt1 was also defined, OR the extracted values together before
5832    // inserting them in the result.
5833    if (Elt0 >= 0) {
5834      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5835                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5836      if ((Elt0 & 1) != 0)
5837        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5838                              DAG.getConstant(8,
5839                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5840      else if (Elt1 >= 0)
5841        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5842                             DAG.getConstant(0x00FF, MVT::i16));
5843      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5844                         : InsElt0;
5845    }
5846    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5847                       DAG.getIntPtrConstant(i));
5848  }
5849  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5850}
5851
5852/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5853/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5854/// done when every pair / quad of shuffle mask elements point to elements in
5855/// the right sequence. e.g.
5856/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5857static
5858SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5859                                 SelectionDAG &DAG, DebugLoc dl) {
5860  EVT VT = SVOp->getValueType(0);
5861  SDValue V1 = SVOp->getOperand(0);
5862  SDValue V2 = SVOp->getOperand(1);
5863  unsigned NumElems = VT.getVectorNumElements();
5864  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5865  EVT NewVT;
5866  switch (VT.getSimpleVT().SimpleTy) {
5867  default: assert(false && "Unexpected!");
5868  case MVT::v4f32: NewVT = MVT::v2f64; break;
5869  case MVT::v4i32: NewVT = MVT::v2i64; break;
5870  case MVT::v8i16: NewVT = MVT::v4i32; break;
5871  case MVT::v16i8: NewVT = MVT::v4i32; break;
5872  }
5873
5874  int Scale = NumElems / NewWidth;
5875  SmallVector<int, 8> MaskVec;
5876  for (unsigned i = 0; i < NumElems; i += Scale) {
5877    int StartIdx = -1;
5878    for (int j = 0; j < Scale; ++j) {
5879      int EltIdx = SVOp->getMaskElt(i+j);
5880      if (EltIdx < 0)
5881        continue;
5882      if (StartIdx == -1)
5883        StartIdx = EltIdx - (EltIdx % Scale);
5884      if (EltIdx != StartIdx + j)
5885        return SDValue();
5886    }
5887    if (StartIdx == -1)
5888      MaskVec.push_back(-1);
5889    else
5890      MaskVec.push_back(StartIdx / Scale);
5891  }
5892
5893  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5894  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5895  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5896}
5897
5898/// getVZextMovL - Return a zero-extending vector move low node.
5899///
5900static SDValue getVZextMovL(EVT VT, EVT OpVT,
5901                            SDValue SrcOp, SelectionDAG &DAG,
5902                            const X86Subtarget *Subtarget, DebugLoc dl) {
5903  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5904    LoadSDNode *LD = NULL;
5905    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5906      LD = dyn_cast<LoadSDNode>(SrcOp);
5907    if (!LD) {
5908      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5909      // instead.
5910      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5911      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5912          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5913          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5914          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5915        // PR2108
5916        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5917        return DAG.getNode(ISD::BITCAST, dl, VT,
5918                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5919                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5920                                                   OpVT,
5921                                                   SrcOp.getOperand(0)
5922                                                          .getOperand(0))));
5923      }
5924    }
5925  }
5926
5927  return DAG.getNode(ISD::BITCAST, dl, VT,
5928                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5929                                 DAG.getNode(ISD::BITCAST, dl,
5930                                             OpVT, SrcOp)));
5931}
5932
5933/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5934/// which could not be matched by any known target speficic shuffle
5935static SDValue
5936LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5937  EVT VT = SVOp->getValueType(0);
5938
5939  unsigned NumElems = VT.getVectorNumElements();
5940  unsigned NumLaneElems = NumElems / 2;
5941
5942  int MinRange[2][2] = { { static_cast<int>(NumElems),
5943                           static_cast<int>(NumElems) },
5944                         { static_cast<int>(NumElems),
5945                           static_cast<int>(NumElems) } };
5946  int MaxRange[2][2] = { { -1, -1 }, { -1, -1 } };
5947
5948  // Collect used ranges for each source in each lane
5949  for (unsigned l = 0; l < 2; ++l) {
5950    unsigned LaneStart = l*NumLaneElems;
5951    for (unsigned i = 0; i != NumLaneElems; ++i) {
5952      int Idx = SVOp->getMaskElt(i+LaneStart);
5953      if (Idx < 0)
5954        continue;
5955
5956      int Input = 0;
5957      if (Idx >= (int)NumElems) {
5958        Idx -= NumElems;
5959        Input = 1;
5960      }
5961
5962      if (Idx > MaxRange[l][Input])
5963        MaxRange[l][Input] = Idx;
5964      if (Idx < MinRange[l][Input])
5965        MinRange[l][Input] = Idx;
5966    }
5967  }
5968
5969  // Make sure each range is 128-bits
5970  int ExtractIdx[2][2] = { { -1, -1 }, { -1, -1 } };
5971  for (unsigned l = 0; l < 2; ++l) {
5972    for (unsigned Input = 0; Input < 2; ++Input) {
5973      if (MinRange[l][Input] == (int)NumElems && MaxRange[l][Input] < 0)
5974        continue;
5975
5976      if (MinRange[l][Input] >= 0 && MaxRange[l][Input] < (int)NumLaneElems)
5977        ExtractIdx[l][Input] = 0;
5978      else if (MinRange[l][Input] >= (int)NumLaneElems &&
5979               MaxRange[l][Input] < (int)NumElems)
5980        ExtractIdx[l][Input] = NumLaneElems;
5981      else
5982        return SDValue();
5983    }
5984  }
5985
5986  DebugLoc dl = SVOp->getDebugLoc();
5987  MVT EltVT = VT.getVectorElementType().getSimpleVT();
5988  EVT NVT = MVT::getVectorVT(EltVT, NumElems/2);
5989
5990  SDValue Ops[2][2];
5991  for (unsigned l = 0; l < 2; ++l) {
5992    for (unsigned Input = 0; Input < 2; ++Input) {
5993      if (ExtractIdx[l][Input] >= 0)
5994        Ops[l][Input] = Extract128BitVector(SVOp->getOperand(Input),
5995                                DAG.getConstant(ExtractIdx[l][Input], MVT::i32),
5996                                                DAG, dl);
5997      else
5998        Ops[l][Input] = DAG.getUNDEF(NVT);
5999    }
6000  }
6001
6002  // Generate 128-bit shuffles
6003  SmallVector<int, 16> Mask1, Mask2;
6004  for (unsigned i = 0; i != NumLaneElems; ++i) {
6005    int Elt = SVOp->getMaskElt(i);
6006    if (Elt >= (int)NumElems) {
6007      Elt %= NumLaneElems;
6008      Elt += NumLaneElems;
6009    } else if (Elt >= 0) {
6010      Elt %= NumLaneElems;
6011    }
6012    Mask1.push_back(Elt);
6013  }
6014  for (unsigned i = NumLaneElems; i != NumElems; ++i) {
6015    int Elt = SVOp->getMaskElt(i);
6016    if (Elt >= (int)NumElems) {
6017      Elt %= NumLaneElems;
6018      Elt += NumLaneElems;
6019    } else if (Elt >= 0) {
6020      Elt %= NumLaneElems;
6021    }
6022    Mask2.push_back(Elt);
6023  }
6024
6025  SDValue Shuf1 = DAG.getVectorShuffle(NVT, dl, Ops[0][0], Ops[0][1], &Mask1[0]);
6026  SDValue Shuf2 = DAG.getVectorShuffle(NVT, dl, Ops[1][0], Ops[1][1], &Mask2[0]);
6027
6028  // Concatenate the result back
6029  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Shuf1,
6030                                 DAG.getConstant(0, MVT::i32), DAG, dl);
6031  return Insert128BitVector(V, Shuf2, DAG.getConstant(NumElems/2, MVT::i32),
6032                            DAG, dl);
6033}
6034
6035/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6036/// 4 elements, and match them with several different shuffle types.
6037static SDValue
6038LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6039  SDValue V1 = SVOp->getOperand(0);
6040  SDValue V2 = SVOp->getOperand(1);
6041  DebugLoc dl = SVOp->getDebugLoc();
6042  EVT VT = SVOp->getValueType(0);
6043
6044  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6045
6046  SmallVector<std::pair<int, int>, 8> Locs;
6047  Locs.resize(4);
6048  SmallVector<int, 8> Mask1(4U, -1);
6049  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6050
6051  unsigned NumHi = 0;
6052  unsigned NumLo = 0;
6053  for (unsigned i = 0; i != 4; ++i) {
6054    int Idx = PermMask[i];
6055    if (Idx < 0) {
6056      Locs[i] = std::make_pair(-1, -1);
6057    } else {
6058      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6059      if (Idx < 4) {
6060        Locs[i] = std::make_pair(0, NumLo);
6061        Mask1[NumLo] = Idx;
6062        NumLo++;
6063      } else {
6064        Locs[i] = std::make_pair(1, NumHi);
6065        if (2+NumHi < 4)
6066          Mask1[2+NumHi] = Idx;
6067        NumHi++;
6068      }
6069    }
6070  }
6071
6072  if (NumLo <= 2 && NumHi <= 2) {
6073    // If no more than two elements come from either vector. This can be
6074    // implemented with two shuffles. First shuffle gather the elements.
6075    // The second shuffle, which takes the first shuffle as both of its
6076    // vector operands, put the elements into the right order.
6077    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6078
6079    SmallVector<int, 8> Mask2(4U, -1);
6080
6081    for (unsigned i = 0; i != 4; ++i) {
6082      if (Locs[i].first == -1)
6083        continue;
6084      else {
6085        unsigned Idx = (i < 2) ? 0 : 4;
6086        Idx += Locs[i].first * 2 + Locs[i].second;
6087        Mask2[i] = Idx;
6088      }
6089    }
6090
6091    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6092  } else if (NumLo == 3 || NumHi == 3) {
6093    // Otherwise, we must have three elements from one vector, call it X, and
6094    // one element from the other, call it Y.  First, use a shufps to build an
6095    // intermediate vector with the one element from Y and the element from X
6096    // that will be in the same half in the final destination (the indexes don't
6097    // matter). Then, use a shufps to build the final vector, taking the half
6098    // containing the element from Y from the intermediate, and the other half
6099    // from X.
6100    if (NumHi == 3) {
6101      // Normalize it so the 3 elements come from V1.
6102      CommuteVectorShuffleMask(PermMask, 4);
6103      std::swap(V1, V2);
6104    }
6105
6106    // Find the element from V2.
6107    unsigned HiIndex;
6108    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6109      int Val = PermMask[HiIndex];
6110      if (Val < 0)
6111        continue;
6112      if (Val >= 4)
6113        break;
6114    }
6115
6116    Mask1[0] = PermMask[HiIndex];
6117    Mask1[1] = -1;
6118    Mask1[2] = PermMask[HiIndex^1];
6119    Mask1[3] = -1;
6120    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6121
6122    if (HiIndex >= 2) {
6123      Mask1[0] = PermMask[0];
6124      Mask1[1] = PermMask[1];
6125      Mask1[2] = HiIndex & 1 ? 6 : 4;
6126      Mask1[3] = HiIndex & 1 ? 4 : 6;
6127      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6128    } else {
6129      Mask1[0] = HiIndex & 1 ? 2 : 0;
6130      Mask1[1] = HiIndex & 1 ? 0 : 2;
6131      Mask1[2] = PermMask[2];
6132      Mask1[3] = PermMask[3];
6133      if (Mask1[2] >= 0)
6134        Mask1[2] += 4;
6135      if (Mask1[3] >= 0)
6136        Mask1[3] += 4;
6137      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6138    }
6139  }
6140
6141  // Break it into (shuffle shuffle_hi, shuffle_lo).
6142  Locs.clear();
6143  Locs.resize(4);
6144  SmallVector<int,8> LoMask(4U, -1);
6145  SmallVector<int,8> HiMask(4U, -1);
6146
6147  SmallVector<int,8> *MaskPtr = &LoMask;
6148  unsigned MaskIdx = 0;
6149  unsigned LoIdx = 0;
6150  unsigned HiIdx = 2;
6151  for (unsigned i = 0; i != 4; ++i) {
6152    if (i == 2) {
6153      MaskPtr = &HiMask;
6154      MaskIdx = 1;
6155      LoIdx = 0;
6156      HiIdx = 2;
6157    }
6158    int Idx = PermMask[i];
6159    if (Idx < 0) {
6160      Locs[i] = std::make_pair(-1, -1);
6161    } else if (Idx < 4) {
6162      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6163      (*MaskPtr)[LoIdx] = Idx;
6164      LoIdx++;
6165    } else {
6166      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6167      (*MaskPtr)[HiIdx] = Idx;
6168      HiIdx++;
6169    }
6170  }
6171
6172  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6173  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6174  SmallVector<int, 8> MaskOps;
6175  for (unsigned i = 0; i != 4; ++i) {
6176    if (Locs[i].first == -1) {
6177      MaskOps.push_back(-1);
6178    } else {
6179      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6180      MaskOps.push_back(Idx);
6181    }
6182  }
6183  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6184}
6185
6186static bool MayFoldVectorLoad(SDValue V) {
6187  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6188    V = V.getOperand(0);
6189  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6190    V = V.getOperand(0);
6191  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6192      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6193    // BUILD_VECTOR (load), undef
6194    V = V.getOperand(0);
6195  if (MayFoldLoad(V))
6196    return true;
6197  return false;
6198}
6199
6200// FIXME: the version above should always be used. Since there's
6201// a bug where several vector shuffles can't be folded because the
6202// DAG is not updated during lowering and a node claims to have two
6203// uses while it only has one, use this version, and let isel match
6204// another instruction if the load really happens to have more than
6205// one use. Remove this version after this bug get fixed.
6206// rdar://8434668, PR8156
6207static bool RelaxedMayFoldVectorLoad(SDValue V) {
6208  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6209    V = V.getOperand(0);
6210  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6211    V = V.getOperand(0);
6212  if (ISD::isNormalLoad(V.getNode()))
6213    return true;
6214  return false;
6215}
6216
6217/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6218/// a vector extract, and if both can be later optimized into a single load.
6219/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6220/// here because otherwise a target specific shuffle node is going to be
6221/// emitted for this shuffle, and the optimization not done.
6222/// FIXME: This is probably not the best approach, but fix the problem
6223/// until the right path is decided.
6224static
6225bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6226                                         const TargetLowering &TLI) {
6227  EVT VT = V.getValueType();
6228  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6229
6230  // Be sure that the vector shuffle is present in a pattern like this:
6231  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6232  if (!V.hasOneUse())
6233    return false;
6234
6235  SDNode *N = *V.getNode()->use_begin();
6236  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6237    return false;
6238
6239  SDValue EltNo = N->getOperand(1);
6240  if (!isa<ConstantSDNode>(EltNo))
6241    return false;
6242
6243  // If the bit convert changed the number of elements, it is unsafe
6244  // to examine the mask.
6245  bool HasShuffleIntoBitcast = false;
6246  if (V.getOpcode() == ISD::BITCAST) {
6247    EVT SrcVT = V.getOperand(0).getValueType();
6248    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6249      return false;
6250    V = V.getOperand(0);
6251    HasShuffleIntoBitcast = true;
6252  }
6253
6254  // Select the input vector, guarding against out of range extract vector.
6255  unsigned NumElems = VT.getVectorNumElements();
6256  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6257  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6258  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6259
6260  // If we are accessing the upper part of a YMM register
6261  // then the EXTRACT_VECTOR_ELT is likely to be legalized to a sequence of
6262  // EXTRACT_SUBVECTOR + EXTRACT_VECTOR_ELT, which are not detected at this point
6263  // because the legalization of N did not happen yet.
6264  if (Idx >= (int)NumElems/2 && VT.getSizeInBits() == 256)
6265    return false;
6266
6267  // Skip one more bit_convert if necessary
6268  if (V.getOpcode() == ISD::BITCAST)
6269    V = V.getOperand(0);
6270
6271  if (!ISD::isNormalLoad(V.getNode()))
6272    return false;
6273
6274  // Is the original load suitable?
6275  LoadSDNode *LN0 = cast<LoadSDNode>(V);
6276
6277  if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
6278    return false;
6279
6280  if (!HasShuffleIntoBitcast)
6281    return true;
6282
6283  // If there's a bitcast before the shuffle, check if the load type and
6284  // alignment is valid.
6285  unsigned Align = LN0->getAlignment();
6286  unsigned NewAlign =
6287    TLI.getTargetData()->getABITypeAlignment(
6288                                  VT.getTypeForEVT(*DAG.getContext()));
6289
6290  if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6291    return false;
6292
6293  return true;
6294}
6295
6296static
6297SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6298  EVT VT = Op.getValueType();
6299
6300  // Canonizalize to v2f64.
6301  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6302  return DAG.getNode(ISD::BITCAST, dl, VT,
6303                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6304                                          V1, DAG));
6305}
6306
6307static
6308SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6309                        bool HasSSE2) {
6310  SDValue V1 = Op.getOperand(0);
6311  SDValue V2 = Op.getOperand(1);
6312  EVT VT = Op.getValueType();
6313
6314  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6315
6316  if (HasSSE2 && VT == MVT::v2f64)
6317    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6318
6319  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6320  return DAG.getNode(ISD::BITCAST, dl, VT,
6321                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6322                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6323                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6324}
6325
6326static
6327SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6328  SDValue V1 = Op.getOperand(0);
6329  SDValue V2 = Op.getOperand(1);
6330  EVT VT = Op.getValueType();
6331
6332  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6333         "unsupported shuffle type");
6334
6335  if (V2.getOpcode() == ISD::UNDEF)
6336    V2 = V1;
6337
6338  // v4i32 or v4f32
6339  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6340}
6341
6342static
6343SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6344  SDValue V1 = Op.getOperand(0);
6345  SDValue V2 = Op.getOperand(1);
6346  EVT VT = Op.getValueType();
6347  unsigned NumElems = VT.getVectorNumElements();
6348
6349  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6350  // operand of these instructions is only memory, so check if there's a
6351  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6352  // same masks.
6353  bool CanFoldLoad = false;
6354
6355  // Trivial case, when V2 comes from a load.
6356  if (MayFoldVectorLoad(V2))
6357    CanFoldLoad = true;
6358
6359  // When V1 is a load, it can be folded later into a store in isel, example:
6360  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6361  //    turns into:
6362  //  (MOVLPSmr addr:$src1, VR128:$src2)
6363  // So, recognize this potential and also use MOVLPS or MOVLPD
6364  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6365    CanFoldLoad = true;
6366
6367  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6368  if (CanFoldLoad) {
6369    if (HasSSE2 && NumElems == 2)
6370      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6371
6372    if (NumElems == 4)
6373      // If we don't care about the second element, procede to use movss.
6374      if (SVOp->getMaskElt(1) != -1)
6375        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6376  }
6377
6378  // movl and movlp will both match v2i64, but v2i64 is never matched by
6379  // movl earlier because we make it strict to avoid messing with the movlp load
6380  // folding logic (see the code above getMOVLP call). Match it here then,
6381  // this is horrible, but will stay like this until we move all shuffle
6382  // matching to x86 specific nodes. Note that for the 1st condition all
6383  // types are matched with movsd.
6384  if (HasSSE2) {
6385    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6386    // as to remove this logic from here, as much as possible
6387    if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6388      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6389    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6390  }
6391
6392  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6393
6394  // Invert the operand order and use SHUFPS to match it.
6395  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6396                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6397}
6398
6399static
6400SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6401                               const TargetLowering &TLI,
6402                               const X86Subtarget *Subtarget) {
6403  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6404  EVT VT = Op.getValueType();
6405  DebugLoc dl = Op.getDebugLoc();
6406  SDValue V1 = Op.getOperand(0);
6407  SDValue V2 = Op.getOperand(1);
6408
6409  if (isZeroShuffle(SVOp))
6410    return getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(),
6411                         DAG, dl);
6412
6413  // Handle splat operations
6414  if (SVOp->isSplat()) {
6415    unsigned NumElem = VT.getVectorNumElements();
6416    int Size = VT.getSizeInBits();
6417    // Special case, this is the only place now where it's allowed to return
6418    // a vector_shuffle operation without using a target specific node, because
6419    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6420    // this be moved to DAGCombine instead?
6421    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6422      return Op;
6423
6424    // Use vbroadcast whenever the splat comes from a foldable load
6425    SDValue LD = isVectorBroadcast(Op, Subtarget);
6426    if (LD.getNode())
6427      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6428
6429    // Handle splats by matching through known shuffle masks
6430    if ((Size == 128 && NumElem <= 4) ||
6431        (Size == 256 && NumElem < 8))
6432      return SDValue();
6433
6434    // All remaning splats are promoted to target supported vector shuffles.
6435    return PromoteSplat(SVOp, DAG);
6436  }
6437
6438  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6439  // do it!
6440  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6441    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6442    if (NewOp.getNode())
6443      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6444  } else if ((VT == MVT::v4i32 ||
6445             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6446    // FIXME: Figure out a cleaner way to do this.
6447    // Try to make use of movq to zero out the top part.
6448    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6449      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6450      if (NewOp.getNode()) {
6451        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6452          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6453                              DAG, Subtarget, dl);
6454      }
6455    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6456      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6457      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6458        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6459                            DAG, Subtarget, dl);
6460    }
6461  }
6462  return SDValue();
6463}
6464
6465SDValue
6466X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6467  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6468  SDValue V1 = Op.getOperand(0);
6469  SDValue V2 = Op.getOperand(1);
6470  EVT VT = Op.getValueType();
6471  DebugLoc dl = Op.getDebugLoc();
6472  unsigned NumElems = VT.getVectorNumElements();
6473  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6474  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6475  bool V1IsSplat = false;
6476  bool V2IsSplat = false;
6477  bool HasSSE2 = Subtarget->hasSSE2();
6478  bool HasAVX    = Subtarget->hasAVX();
6479  bool HasAVX2   = Subtarget->hasAVX2();
6480  MachineFunction &MF = DAG.getMachineFunction();
6481  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6482
6483  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6484
6485  if (V1IsUndef && V2IsUndef)
6486    return DAG.getUNDEF(VT);
6487
6488  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6489
6490  // Vector shuffle lowering takes 3 steps:
6491  //
6492  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6493  //    narrowing and commutation of operands should be handled.
6494  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6495  //    shuffle nodes.
6496  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6497  //    so the shuffle can be broken into other shuffles and the legalizer can
6498  //    try the lowering again.
6499  //
6500  // The general idea is that no vector_shuffle operation should be left to
6501  // be matched during isel, all of them must be converted to a target specific
6502  // node here.
6503
6504  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6505  // narrowing and commutation of operands should be handled. The actual code
6506  // doesn't include all of those, work in progress...
6507  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6508  if (NewOp.getNode())
6509    return NewOp;
6510
6511  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6512  // unpckh_undef). Only use pshufd if speed is more important than size.
6513  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp, HasAVX2))
6514    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6515  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp, HasAVX2))
6516    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6517
6518  if (X86::isMOVDDUPMask(SVOp) && Subtarget->hasSSE3() &&
6519      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6520    return getMOVDDup(Op, dl, V1, DAG);
6521
6522  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6523    return getMOVHighToLow(Op, dl, DAG);
6524
6525  // Use to match splats
6526  if (HasSSE2 && X86::isUNPCKHMask(SVOp, HasAVX2) && V2IsUndef &&
6527      (VT == MVT::v2f64 || VT == MVT::v2i64))
6528    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6529
6530  if (X86::isPSHUFDMask(SVOp)) {
6531    // The actual implementation will match the mask in the if above and then
6532    // during isel it can match several different instructions, not only pshufd
6533    // as its name says, sad but true, emulate the behavior for now...
6534    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6535        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6536
6537    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6538
6539    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6540      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6541
6542    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6543                                TargetMask, DAG);
6544  }
6545
6546  // Check if this can be converted into a logical shift.
6547  bool isLeft = false;
6548  unsigned ShAmt = 0;
6549  SDValue ShVal;
6550  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6551  if (isShift && ShVal.hasOneUse()) {
6552    // If the shifted value has multiple uses, it may be cheaper to use
6553    // v_set0 + movlhps or movhlps, etc.
6554    EVT EltVT = VT.getVectorElementType();
6555    ShAmt *= EltVT.getSizeInBits();
6556    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6557  }
6558
6559  if (X86::isMOVLMask(SVOp)) {
6560    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6561      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6562    if (!X86::isMOVLPMask(SVOp)) {
6563      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6564        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6565
6566      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6567        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6568    }
6569  }
6570
6571  // FIXME: fold these into legal mask.
6572  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp, HasAVX2))
6573    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6574
6575  if (X86::isMOVHLPSMask(SVOp))
6576    return getMOVHighToLow(Op, dl, DAG);
6577
6578  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6579    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6580
6581  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6582    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6583
6584  if (X86::isMOVLPMask(SVOp))
6585    return getMOVLP(Op, dl, DAG, HasSSE2);
6586
6587  if (ShouldXformToMOVHLPS(SVOp) ||
6588      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6589    return CommuteVectorShuffle(SVOp, DAG);
6590
6591  if (isShift) {
6592    // No better options. Use a vshl / vsrl.
6593    EVT EltVT = VT.getVectorElementType();
6594    ShAmt *= EltVT.getSizeInBits();
6595    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6596  }
6597
6598  bool Commuted = false;
6599  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6600  // 1,1,1,1 -> v8i16 though.
6601  V1IsSplat = isSplatVector(V1.getNode());
6602  V2IsSplat = isSplatVector(V2.getNode());
6603
6604  // Canonicalize the splat or undef, if present, to be on the RHS.
6605  if (V1IsSplat && !V2IsSplat) {
6606    Op = CommuteVectorShuffle(SVOp, DAG);
6607    SVOp = cast<ShuffleVectorSDNode>(Op);
6608    V1 = SVOp->getOperand(0);
6609    V2 = SVOp->getOperand(1);
6610    std::swap(V1IsSplat, V2IsSplat);
6611    Commuted = true;
6612  }
6613
6614  ArrayRef<int> M = SVOp->getMask();
6615
6616  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6617    // Shuffling low element of v1 into undef, just return v1.
6618    if (V2IsUndef)
6619      return V1;
6620    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6621    // the instruction selector will not match, so get a canonical MOVL with
6622    // swapped operands to undo the commute.
6623    return getMOVL(DAG, dl, VT, V2, V1);
6624  }
6625
6626  if (isUNPCKLMask(M, VT, HasAVX2))
6627    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6628
6629  if (isUNPCKHMask(M, VT, HasAVX2))
6630    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6631
6632  if (V2IsSplat) {
6633    // Normalize mask so all entries that point to V2 points to its first
6634    // element then try to match unpck{h|l} again. If match, return a
6635    // new vector_shuffle with the corrected mask.
6636    SDValue NewMask = NormalizeMask(SVOp, DAG);
6637    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6638    if (NSVOp != SVOp) {
6639      if (X86::isUNPCKLMask(NSVOp, HasAVX2, true)) {
6640        return NewMask;
6641      } else if (X86::isUNPCKHMask(NSVOp, HasAVX2, true)) {
6642        return NewMask;
6643      }
6644    }
6645  }
6646
6647  if (Commuted) {
6648    // Commute is back and try unpck* again.
6649    // FIXME: this seems wrong.
6650    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6651    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6652
6653    if (X86::isUNPCKLMask(NewSVOp, HasAVX2))
6654      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V2, V1, DAG);
6655
6656    if (X86::isUNPCKHMask(NewSVOp, HasAVX2))
6657      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V2, V1, DAG);
6658  }
6659
6660  // Normalize the node to match x86 shuffle ops if needed
6661  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6662    return CommuteVectorShuffle(SVOp, DAG);
6663
6664  // The checks below are all present in isShuffleMaskLegal, but they are
6665  // inlined here right now to enable us to directly emit target specific
6666  // nodes, and remove one by one until they don't return Op anymore.
6667
6668  if (isPALIGNRMask(M, VT, Subtarget))
6669    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6670                                getShufflePALIGNRImmediate(SVOp),
6671                                DAG);
6672
6673  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6674      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6675    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6676      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6677  }
6678
6679  if (isPSHUFHWMask(M, VT))
6680    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6681                                X86::getShufflePSHUFHWImmediate(SVOp),
6682                                DAG);
6683
6684  if (isPSHUFLWMask(M, VT))
6685    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6686                                X86::getShufflePSHUFLWImmediate(SVOp),
6687                                DAG);
6688
6689  if (isSHUFPMask(M, VT, HasAVX))
6690    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6691                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6692
6693  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6694    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6695  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6696    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6697
6698  //===--------------------------------------------------------------------===//
6699  // Generate target specific nodes for 128 or 256-bit shuffles only
6700  // supported in the AVX instruction set.
6701  //
6702
6703  // Handle VMOVDDUPY permutations
6704  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6705    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6706
6707  // Handle VPERMILPS/D* permutations
6708  if (isVPERMILPMask(M, VT, HasAVX))
6709    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6710                                getShuffleVPERMILPImmediate(SVOp), DAG);
6711
6712  // Handle VPERM2F128/VPERM2I128 permutations
6713  if (isVPERM2X128Mask(M, VT, HasAVX))
6714    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6715                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6716
6717  //===--------------------------------------------------------------------===//
6718  // Since no target specific shuffle was selected for this generic one,
6719  // lower it into other known shuffles. FIXME: this isn't true yet, but
6720  // this is the plan.
6721  //
6722
6723  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6724  if (VT == MVT::v8i16) {
6725    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6726    if (NewOp.getNode())
6727      return NewOp;
6728  }
6729
6730  if (VT == MVT::v16i8) {
6731    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6732    if (NewOp.getNode())
6733      return NewOp;
6734  }
6735
6736  // Handle all 128-bit wide vectors with 4 elements, and match them with
6737  // several different shuffle types.
6738  if (NumElems == 4 && VT.getSizeInBits() == 128)
6739    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6740
6741  // Handle general 256-bit shuffles
6742  if (VT.is256BitVector())
6743    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6744
6745  return SDValue();
6746}
6747
6748SDValue
6749X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6750                                                SelectionDAG &DAG) const {
6751  EVT VT = Op.getValueType();
6752  DebugLoc dl = Op.getDebugLoc();
6753
6754  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6755    return SDValue();
6756
6757  if (VT.getSizeInBits() == 8) {
6758    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6759                                    Op.getOperand(0), Op.getOperand(1));
6760    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6761                                    DAG.getValueType(VT));
6762    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6763  } else if (VT.getSizeInBits() == 16) {
6764    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6765    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6766    if (Idx == 0)
6767      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6768                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6769                                     DAG.getNode(ISD::BITCAST, dl,
6770                                                 MVT::v4i32,
6771                                                 Op.getOperand(0)),
6772                                     Op.getOperand(1)));
6773    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6774                                    Op.getOperand(0), Op.getOperand(1));
6775    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6776                                    DAG.getValueType(VT));
6777    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6778  } else if (VT == MVT::f32) {
6779    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6780    // the result back to FR32 register. It's only worth matching if the
6781    // result has a single use which is a store or a bitcast to i32.  And in
6782    // the case of a store, it's not worth it if the index is a constant 0,
6783    // because a MOVSSmr can be used instead, which is smaller and faster.
6784    if (!Op.hasOneUse())
6785      return SDValue();
6786    SDNode *User = *Op.getNode()->use_begin();
6787    if ((User->getOpcode() != ISD::STORE ||
6788         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6789          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6790        (User->getOpcode() != ISD::BITCAST ||
6791         User->getValueType(0) != MVT::i32))
6792      return SDValue();
6793    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6794                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6795                                              Op.getOperand(0)),
6796                                              Op.getOperand(1));
6797    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6798  } else if (VT == MVT::i32 || VT == MVT::i64) {
6799    // ExtractPS/pextrq works with constant index.
6800    if (isa<ConstantSDNode>(Op.getOperand(1)))
6801      return Op;
6802  }
6803  return SDValue();
6804}
6805
6806
6807SDValue
6808X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6809                                           SelectionDAG &DAG) const {
6810  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6811    return SDValue();
6812
6813  SDValue Vec = Op.getOperand(0);
6814  EVT VecVT = Vec.getValueType();
6815
6816  // If this is a 256-bit vector result, first extract the 128-bit vector and
6817  // then extract the element from the 128-bit vector.
6818  if (VecVT.getSizeInBits() == 256) {
6819    DebugLoc dl = Op.getNode()->getDebugLoc();
6820    unsigned NumElems = VecVT.getVectorNumElements();
6821    SDValue Idx = Op.getOperand(1);
6822    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6823
6824    // Get the 128-bit vector.
6825    bool Upper = IdxVal >= NumElems/2;
6826    Vec = Extract128BitVector(Vec,
6827                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6828
6829    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6830                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6831  }
6832
6833  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6834
6835  if (Subtarget->hasSSE41()) {
6836    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6837    if (Res.getNode())
6838      return Res;
6839  }
6840
6841  EVT VT = Op.getValueType();
6842  DebugLoc dl = Op.getDebugLoc();
6843  // TODO: handle v16i8.
6844  if (VT.getSizeInBits() == 16) {
6845    SDValue Vec = Op.getOperand(0);
6846    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6847    if (Idx == 0)
6848      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6849                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6850                                     DAG.getNode(ISD::BITCAST, dl,
6851                                                 MVT::v4i32, Vec),
6852                                     Op.getOperand(1)));
6853    // Transform it so it match pextrw which produces a 32-bit result.
6854    EVT EltVT = MVT::i32;
6855    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6856                                    Op.getOperand(0), Op.getOperand(1));
6857    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6858                                    DAG.getValueType(VT));
6859    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6860  } else if (VT.getSizeInBits() == 32) {
6861    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6862    if (Idx == 0)
6863      return Op;
6864
6865    // SHUFPS the element to the lowest double word, then movss.
6866    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6867    EVT VVT = Op.getOperand(0).getValueType();
6868    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6869                                       DAG.getUNDEF(VVT), Mask);
6870    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6871                       DAG.getIntPtrConstant(0));
6872  } else if (VT.getSizeInBits() == 64) {
6873    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6874    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6875    //        to match extract_elt for f64.
6876    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6877    if (Idx == 0)
6878      return Op;
6879
6880    // UNPCKHPD the element to the lowest double word, then movsd.
6881    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6882    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6883    int Mask[2] = { 1, -1 };
6884    EVT VVT = Op.getOperand(0).getValueType();
6885    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6886                                       DAG.getUNDEF(VVT), Mask);
6887    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6888                       DAG.getIntPtrConstant(0));
6889  }
6890
6891  return SDValue();
6892}
6893
6894SDValue
6895X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6896                                               SelectionDAG &DAG) const {
6897  EVT VT = Op.getValueType();
6898  EVT EltVT = VT.getVectorElementType();
6899  DebugLoc dl = Op.getDebugLoc();
6900
6901  SDValue N0 = Op.getOperand(0);
6902  SDValue N1 = Op.getOperand(1);
6903  SDValue N2 = Op.getOperand(2);
6904
6905  if (VT.getSizeInBits() == 256)
6906    return SDValue();
6907
6908  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6909      isa<ConstantSDNode>(N2)) {
6910    unsigned Opc;
6911    if (VT == MVT::v8i16)
6912      Opc = X86ISD::PINSRW;
6913    else if (VT == MVT::v16i8)
6914      Opc = X86ISD::PINSRB;
6915    else
6916      Opc = X86ISD::PINSRB;
6917
6918    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6919    // argument.
6920    if (N1.getValueType() != MVT::i32)
6921      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6922    if (N2.getValueType() != MVT::i32)
6923      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6924    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6925  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6926    // Bits [7:6] of the constant are the source select.  This will always be
6927    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6928    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6929    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6930    // Bits [5:4] of the constant are the destination select.  This is the
6931    //  value of the incoming immediate.
6932    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6933    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6934    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6935    // Create this as a scalar to vector..
6936    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6937    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6938  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6939             isa<ConstantSDNode>(N2)) {
6940    // PINSR* works with constant index.
6941    return Op;
6942  }
6943  return SDValue();
6944}
6945
6946SDValue
6947X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6948  EVT VT = Op.getValueType();
6949  EVT EltVT = VT.getVectorElementType();
6950
6951  DebugLoc dl = Op.getDebugLoc();
6952  SDValue N0 = Op.getOperand(0);
6953  SDValue N1 = Op.getOperand(1);
6954  SDValue N2 = Op.getOperand(2);
6955
6956  // If this is a 256-bit vector result, first extract the 128-bit vector,
6957  // insert the element into the extracted half and then place it back.
6958  if (VT.getSizeInBits() == 256) {
6959    if (!isa<ConstantSDNode>(N2))
6960      return SDValue();
6961
6962    // Get the desired 128-bit vector half.
6963    unsigned NumElems = VT.getVectorNumElements();
6964    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6965    bool Upper = IdxVal >= NumElems/2;
6966    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6967    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6968
6969    // Insert the element into the desired half.
6970    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6971                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6972
6973    // Insert the changed part back to the 256-bit vector
6974    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6975  }
6976
6977  if (Subtarget->hasSSE41())
6978    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6979
6980  if (EltVT == MVT::i8)
6981    return SDValue();
6982
6983  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6984    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6985    // as its second argument.
6986    if (N1.getValueType() != MVT::i32)
6987      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6988    if (N2.getValueType() != MVT::i32)
6989      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6990    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6991  }
6992  return SDValue();
6993}
6994
6995SDValue
6996X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6997  LLVMContext *Context = DAG.getContext();
6998  DebugLoc dl = Op.getDebugLoc();
6999  EVT OpVT = Op.getValueType();
7000
7001  // If this is a 256-bit vector result, first insert into a 128-bit
7002  // vector and then insert into the 256-bit vector.
7003  if (OpVT.getSizeInBits() > 128) {
7004    // Insert into a 128-bit vector.
7005    EVT VT128 = EVT::getVectorVT(*Context,
7006                                 OpVT.getVectorElementType(),
7007                                 OpVT.getVectorNumElements() / 2);
7008
7009    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7010
7011    // Insert the 128-bit vector.
7012    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7013                              DAG.getConstant(0, MVT::i32),
7014                              DAG, dl);
7015  }
7016
7017  if (Op.getValueType() == MVT::v1i64 &&
7018      Op.getOperand(0).getValueType() == MVT::i64)
7019    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7020
7021  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7022  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7023         "Expected an SSE type!");
7024  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7025                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7026}
7027
7028// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7029// a simple subregister reference or explicit instructions to grab
7030// upper bits of a vector.
7031SDValue
7032X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7033  if (Subtarget->hasAVX()) {
7034    DebugLoc dl = Op.getNode()->getDebugLoc();
7035    SDValue Vec = Op.getNode()->getOperand(0);
7036    SDValue Idx = Op.getNode()->getOperand(1);
7037
7038    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7039        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7040        return Extract128BitVector(Vec, Idx, DAG, dl);
7041    }
7042  }
7043  return SDValue();
7044}
7045
7046// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7047// simple superregister reference or explicit instructions to insert
7048// the upper bits of a vector.
7049SDValue
7050X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7051  if (Subtarget->hasAVX()) {
7052    DebugLoc dl = Op.getNode()->getDebugLoc();
7053    SDValue Vec = Op.getNode()->getOperand(0);
7054    SDValue SubVec = Op.getNode()->getOperand(1);
7055    SDValue Idx = Op.getNode()->getOperand(2);
7056
7057    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7058        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7059      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7060    }
7061  }
7062  return SDValue();
7063}
7064
7065// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7066// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7067// one of the above mentioned nodes. It has to be wrapped because otherwise
7068// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7069// be used to form addressing mode. These wrapped nodes will be selected
7070// into MOV32ri.
7071SDValue
7072X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7073  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7074
7075  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7076  // global base reg.
7077  unsigned char OpFlag = 0;
7078  unsigned WrapperKind = X86ISD::Wrapper;
7079  CodeModel::Model M = getTargetMachine().getCodeModel();
7080
7081  if (Subtarget->isPICStyleRIPRel() &&
7082      (M == CodeModel::Small || M == CodeModel::Kernel))
7083    WrapperKind = X86ISD::WrapperRIP;
7084  else if (Subtarget->isPICStyleGOT())
7085    OpFlag = X86II::MO_GOTOFF;
7086  else if (Subtarget->isPICStyleStubPIC())
7087    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7088
7089  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7090                                             CP->getAlignment(),
7091                                             CP->getOffset(), OpFlag);
7092  DebugLoc DL = CP->getDebugLoc();
7093  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7094  // With PIC, the address is actually $g + Offset.
7095  if (OpFlag) {
7096    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7097                         DAG.getNode(X86ISD::GlobalBaseReg,
7098                                     DebugLoc(), getPointerTy()),
7099                         Result);
7100  }
7101
7102  return Result;
7103}
7104
7105SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7106  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7107
7108  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7109  // global base reg.
7110  unsigned char OpFlag = 0;
7111  unsigned WrapperKind = X86ISD::Wrapper;
7112  CodeModel::Model M = getTargetMachine().getCodeModel();
7113
7114  if (Subtarget->isPICStyleRIPRel() &&
7115      (M == CodeModel::Small || M == CodeModel::Kernel))
7116    WrapperKind = X86ISD::WrapperRIP;
7117  else if (Subtarget->isPICStyleGOT())
7118    OpFlag = X86II::MO_GOTOFF;
7119  else if (Subtarget->isPICStyleStubPIC())
7120    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7121
7122  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7123                                          OpFlag);
7124  DebugLoc DL = JT->getDebugLoc();
7125  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7126
7127  // With PIC, the address is actually $g + Offset.
7128  if (OpFlag)
7129    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7130                         DAG.getNode(X86ISD::GlobalBaseReg,
7131                                     DebugLoc(), getPointerTy()),
7132                         Result);
7133
7134  return Result;
7135}
7136
7137SDValue
7138X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7139  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7140
7141  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7142  // global base reg.
7143  unsigned char OpFlag = 0;
7144  unsigned WrapperKind = X86ISD::Wrapper;
7145  CodeModel::Model M = getTargetMachine().getCodeModel();
7146
7147  if (Subtarget->isPICStyleRIPRel() &&
7148      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7149    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7150      OpFlag = X86II::MO_GOTPCREL;
7151    WrapperKind = X86ISD::WrapperRIP;
7152  } else if (Subtarget->isPICStyleGOT()) {
7153    OpFlag = X86II::MO_GOT;
7154  } else if (Subtarget->isPICStyleStubPIC()) {
7155    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7156  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7157    OpFlag = X86II::MO_DARWIN_NONLAZY;
7158  }
7159
7160  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7161
7162  DebugLoc DL = Op.getDebugLoc();
7163  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7164
7165
7166  // With PIC, the address is actually $g + Offset.
7167  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7168      !Subtarget->is64Bit()) {
7169    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7170                         DAG.getNode(X86ISD::GlobalBaseReg,
7171                                     DebugLoc(), getPointerTy()),
7172                         Result);
7173  }
7174
7175  // For symbols that require a load from a stub to get the address, emit the
7176  // load.
7177  if (isGlobalStubReference(OpFlag))
7178    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7179                         MachinePointerInfo::getGOT(), false, false, false, 0);
7180
7181  return Result;
7182}
7183
7184SDValue
7185X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7186  // Create the TargetBlockAddressAddress node.
7187  unsigned char OpFlags =
7188    Subtarget->ClassifyBlockAddressReference();
7189  CodeModel::Model M = getTargetMachine().getCodeModel();
7190  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7191  DebugLoc dl = Op.getDebugLoc();
7192  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7193                                       /*isTarget=*/true, OpFlags);
7194
7195  if (Subtarget->isPICStyleRIPRel() &&
7196      (M == CodeModel::Small || M == CodeModel::Kernel))
7197    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7198  else
7199    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7200
7201  // With PIC, the address is actually $g + Offset.
7202  if (isGlobalRelativeToPICBase(OpFlags)) {
7203    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7204                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7205                         Result);
7206  }
7207
7208  return Result;
7209}
7210
7211SDValue
7212X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7213                                      int64_t Offset,
7214                                      SelectionDAG &DAG) const {
7215  // Create the TargetGlobalAddress node, folding in the constant
7216  // offset if it is legal.
7217  unsigned char OpFlags =
7218    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7219  CodeModel::Model M = getTargetMachine().getCodeModel();
7220  SDValue Result;
7221  if (OpFlags == X86II::MO_NO_FLAG &&
7222      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7223    // A direct static reference to a global.
7224    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7225    Offset = 0;
7226  } else {
7227    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7228  }
7229
7230  if (Subtarget->isPICStyleRIPRel() &&
7231      (M == CodeModel::Small || M == CodeModel::Kernel))
7232    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7233  else
7234    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7235
7236  // With PIC, the address is actually $g + Offset.
7237  if (isGlobalRelativeToPICBase(OpFlags)) {
7238    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7239                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7240                         Result);
7241  }
7242
7243  // For globals that require a load from a stub to get the address, emit the
7244  // load.
7245  if (isGlobalStubReference(OpFlags))
7246    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7247                         MachinePointerInfo::getGOT(), false, false, false, 0);
7248
7249  // If there was a non-zero offset that we didn't fold, create an explicit
7250  // addition for it.
7251  if (Offset != 0)
7252    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7253                         DAG.getConstant(Offset, getPointerTy()));
7254
7255  return Result;
7256}
7257
7258SDValue
7259X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7260  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7261  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7262  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7263}
7264
7265static SDValue
7266GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7267           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7268           unsigned char OperandFlags) {
7269  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7270  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7271  DebugLoc dl = GA->getDebugLoc();
7272  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7273                                           GA->getValueType(0),
7274                                           GA->getOffset(),
7275                                           OperandFlags);
7276  if (InFlag) {
7277    SDValue Ops[] = { Chain,  TGA, *InFlag };
7278    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7279  } else {
7280    SDValue Ops[]  = { Chain, TGA };
7281    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7282  }
7283
7284  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7285  MFI->setAdjustsStack(true);
7286
7287  SDValue Flag = Chain.getValue(1);
7288  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7289}
7290
7291// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7292static SDValue
7293LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7294                                const EVT PtrVT) {
7295  SDValue InFlag;
7296  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7297  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7298                                     DAG.getNode(X86ISD::GlobalBaseReg,
7299                                                 DebugLoc(), PtrVT), InFlag);
7300  InFlag = Chain.getValue(1);
7301
7302  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7303}
7304
7305// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7306static SDValue
7307LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7308                                const EVT PtrVT) {
7309  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7310                    X86::RAX, X86II::MO_TLSGD);
7311}
7312
7313// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7314// "local exec" model.
7315static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7316                                   const EVT PtrVT, TLSModel::Model model,
7317                                   bool is64Bit) {
7318  DebugLoc dl = GA->getDebugLoc();
7319
7320  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7321  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7322                                                         is64Bit ? 257 : 256));
7323
7324  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7325                                      DAG.getIntPtrConstant(0),
7326                                      MachinePointerInfo(Ptr),
7327                                      false, false, false, 0);
7328
7329  unsigned char OperandFlags = 0;
7330  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7331  // initialexec.
7332  unsigned WrapperKind = X86ISD::Wrapper;
7333  if (model == TLSModel::LocalExec) {
7334    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7335  } else if (is64Bit) {
7336    assert(model == TLSModel::InitialExec);
7337    OperandFlags = X86II::MO_GOTTPOFF;
7338    WrapperKind = X86ISD::WrapperRIP;
7339  } else {
7340    assert(model == TLSModel::InitialExec);
7341    OperandFlags = X86II::MO_INDNTPOFF;
7342  }
7343
7344  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7345  // exec)
7346  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7347                                           GA->getValueType(0),
7348                                           GA->getOffset(), OperandFlags);
7349  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7350
7351  if (model == TLSModel::InitialExec)
7352    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7353                         MachinePointerInfo::getGOT(), false, false, false, 0);
7354
7355  // The address of the thread local variable is the add of the thread
7356  // pointer with the offset of the variable.
7357  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7358}
7359
7360SDValue
7361X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7362
7363  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7364  const GlobalValue *GV = GA->getGlobal();
7365
7366  if (Subtarget->isTargetELF()) {
7367    // TODO: implement the "local dynamic" model
7368    // TODO: implement the "initial exec"model for pic executables
7369
7370    // If GV is an alias then use the aliasee for determining
7371    // thread-localness.
7372    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7373      GV = GA->resolveAliasedGlobal(false);
7374
7375    TLSModel::Model model
7376      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7377
7378    switch (model) {
7379      case TLSModel::GeneralDynamic:
7380      case TLSModel::LocalDynamic: // not implemented
7381        if (Subtarget->is64Bit())
7382          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7383        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7384
7385      case TLSModel::InitialExec:
7386      case TLSModel::LocalExec:
7387        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7388                                   Subtarget->is64Bit());
7389    }
7390  } else if (Subtarget->isTargetDarwin()) {
7391    // Darwin only has one model of TLS.  Lower to that.
7392    unsigned char OpFlag = 0;
7393    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7394                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7395
7396    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7397    // global base reg.
7398    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7399                  !Subtarget->is64Bit();
7400    if (PIC32)
7401      OpFlag = X86II::MO_TLVP_PIC_BASE;
7402    else
7403      OpFlag = X86II::MO_TLVP;
7404    DebugLoc DL = Op.getDebugLoc();
7405    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7406                                                GA->getValueType(0),
7407                                                GA->getOffset(), OpFlag);
7408    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7409
7410    // With PIC32, the address is actually $g + Offset.
7411    if (PIC32)
7412      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7413                           DAG.getNode(X86ISD::GlobalBaseReg,
7414                                       DebugLoc(), getPointerTy()),
7415                           Offset);
7416
7417    // Lowering the machine isd will make sure everything is in the right
7418    // location.
7419    SDValue Chain = DAG.getEntryNode();
7420    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7421    SDValue Args[] = { Chain, Offset };
7422    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7423
7424    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7425    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7426    MFI->setAdjustsStack(true);
7427
7428    // And our return value (tls address) is in the standard call return value
7429    // location.
7430    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7431    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7432                              Chain.getValue(1));
7433  }
7434
7435  llvm_unreachable("TLS not implemented for this target.");
7436}
7437
7438
7439/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7440/// and take a 2 x i32 value to shift plus a shift amount.
7441SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7442  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7443  EVT VT = Op.getValueType();
7444  unsigned VTBits = VT.getSizeInBits();
7445  DebugLoc dl = Op.getDebugLoc();
7446  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7447  SDValue ShOpLo = Op.getOperand(0);
7448  SDValue ShOpHi = Op.getOperand(1);
7449  SDValue ShAmt  = Op.getOperand(2);
7450  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7451                                     DAG.getConstant(VTBits - 1, MVT::i8))
7452                       : DAG.getConstant(0, VT);
7453
7454  SDValue Tmp2, Tmp3;
7455  if (Op.getOpcode() == ISD::SHL_PARTS) {
7456    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7457    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7458  } else {
7459    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7460    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7461  }
7462
7463  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7464                                DAG.getConstant(VTBits, MVT::i8));
7465  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7466                             AndNode, DAG.getConstant(0, MVT::i8));
7467
7468  SDValue Hi, Lo;
7469  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7470  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7471  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7472
7473  if (Op.getOpcode() == ISD::SHL_PARTS) {
7474    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7475    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7476  } else {
7477    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7478    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7479  }
7480
7481  SDValue Ops[2] = { Lo, Hi };
7482  return DAG.getMergeValues(Ops, 2, dl);
7483}
7484
7485SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7486                                           SelectionDAG &DAG) const {
7487  EVT SrcVT = Op.getOperand(0).getValueType();
7488
7489  if (SrcVT.isVector())
7490    return SDValue();
7491
7492  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7493         "Unknown SINT_TO_FP to lower!");
7494
7495  // These are really Legal; return the operand so the caller accepts it as
7496  // Legal.
7497  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7498    return Op;
7499  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7500      Subtarget->is64Bit()) {
7501    return Op;
7502  }
7503
7504  DebugLoc dl = Op.getDebugLoc();
7505  unsigned Size = SrcVT.getSizeInBits()/8;
7506  MachineFunction &MF = DAG.getMachineFunction();
7507  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7508  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7509  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7510                               StackSlot,
7511                               MachinePointerInfo::getFixedStack(SSFI),
7512                               false, false, 0);
7513  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7514}
7515
7516SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7517                                     SDValue StackSlot,
7518                                     SelectionDAG &DAG) const {
7519  // Build the FILD
7520  DebugLoc DL = Op.getDebugLoc();
7521  SDVTList Tys;
7522  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7523  if (useSSE)
7524    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7525  else
7526    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7527
7528  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7529
7530  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7531  MachineMemOperand *MMO;
7532  if (FI) {
7533    int SSFI = FI->getIndex();
7534    MMO =
7535      DAG.getMachineFunction()
7536      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7537                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7538  } else {
7539    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7540    StackSlot = StackSlot.getOperand(1);
7541  }
7542  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7543  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7544                                           X86ISD::FILD, DL,
7545                                           Tys, Ops, array_lengthof(Ops),
7546                                           SrcVT, MMO);
7547
7548  if (useSSE) {
7549    Chain = Result.getValue(1);
7550    SDValue InFlag = Result.getValue(2);
7551
7552    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7553    // shouldn't be necessary except that RFP cannot be live across
7554    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7555    MachineFunction &MF = DAG.getMachineFunction();
7556    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7557    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7558    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7559    Tys = DAG.getVTList(MVT::Other);
7560    SDValue Ops[] = {
7561      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7562    };
7563    MachineMemOperand *MMO =
7564      DAG.getMachineFunction()
7565      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7566                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7567
7568    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7569                                    Ops, array_lengthof(Ops),
7570                                    Op.getValueType(), MMO);
7571    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7572                         MachinePointerInfo::getFixedStack(SSFI),
7573                         false, false, false, 0);
7574  }
7575
7576  return Result;
7577}
7578
7579// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7580SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7581                                               SelectionDAG &DAG) const {
7582  // This algorithm is not obvious. Here it is what we're trying to output:
7583  /*
7584     movq       %rax,  %xmm0
7585     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7586     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7587     #ifdef __SSE3__
7588       haddpd   %xmm0, %xmm0
7589     #else
7590       pshufd   $0x4e, %xmm0, %xmm1
7591       addpd    %xmm1, %xmm0
7592     #endif
7593  */
7594
7595  DebugLoc dl = Op.getDebugLoc();
7596  LLVMContext *Context = DAG.getContext();
7597
7598  // Build some magic constants.
7599  SmallVector<Constant*,4> CV0;
7600  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7601  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7602  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7603  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7604  Constant *C0 = ConstantVector::get(CV0);
7605  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7606
7607  SmallVector<Constant*,2> CV1;
7608  CV1.push_back(
7609    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7610  CV1.push_back(
7611    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7612  Constant *C1 = ConstantVector::get(CV1);
7613  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7614
7615  // Load the 64-bit value into an XMM register.
7616  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7617                            Op.getOperand(0));
7618  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7619                              MachinePointerInfo::getConstantPool(),
7620                              false, false, false, 16);
7621  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7622                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7623                              CLod0);
7624
7625  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7626                              MachinePointerInfo::getConstantPool(),
7627                              false, false, false, 16);
7628  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7629  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7630  SDValue Result;
7631
7632  if (Subtarget->hasSSE3()) {
7633    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7634    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7635  } else {
7636    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7637    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7638                                           S2F, 0x4E, DAG);
7639    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7640                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7641                         Sub);
7642  }
7643
7644  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7645                     DAG.getIntPtrConstant(0));
7646}
7647
7648// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7649SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7650                                               SelectionDAG &DAG) const {
7651  DebugLoc dl = Op.getDebugLoc();
7652  // FP constant to bias correct the final result.
7653  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7654                                   MVT::f64);
7655
7656  // Load the 32-bit value into an XMM register.
7657  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7658                             Op.getOperand(0));
7659
7660  // Zero out the upper parts of the register.
7661  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7662
7663  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7664                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7665                     DAG.getIntPtrConstant(0));
7666
7667  // Or the load with the bias.
7668  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7669                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7670                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7671                                                   MVT::v2f64, Load)),
7672                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7673                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7674                                                   MVT::v2f64, Bias)));
7675  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7676                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7677                   DAG.getIntPtrConstant(0));
7678
7679  // Subtract the bias.
7680  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7681
7682  // Handle final rounding.
7683  EVT DestVT = Op.getValueType();
7684
7685  if (DestVT.bitsLT(MVT::f64)) {
7686    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7687                       DAG.getIntPtrConstant(0));
7688  } else if (DestVT.bitsGT(MVT::f64)) {
7689    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7690  }
7691
7692  // Handle final rounding.
7693  return Sub;
7694}
7695
7696SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7697                                           SelectionDAG &DAG) const {
7698  SDValue N0 = Op.getOperand(0);
7699  DebugLoc dl = Op.getDebugLoc();
7700
7701  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7702  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7703  // the optimization here.
7704  if (DAG.SignBitIsZero(N0))
7705    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7706
7707  EVT SrcVT = N0.getValueType();
7708  EVT DstVT = Op.getValueType();
7709  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7710    return LowerUINT_TO_FP_i64(Op, DAG);
7711  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7712    return LowerUINT_TO_FP_i32(Op, DAG);
7713  else if (Subtarget->is64Bit() &&
7714           SrcVT == MVT::i64 && DstVT == MVT::f32)
7715    return SDValue();
7716
7717  // Make a 64-bit buffer, and use it to build an FILD.
7718  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7719  if (SrcVT == MVT::i32) {
7720    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7721    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7722                                     getPointerTy(), StackSlot, WordOff);
7723    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7724                                  StackSlot, MachinePointerInfo(),
7725                                  false, false, 0);
7726    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7727                                  OffsetSlot, MachinePointerInfo(),
7728                                  false, false, 0);
7729    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7730    return Fild;
7731  }
7732
7733  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7734  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7735                               StackSlot, MachinePointerInfo(),
7736                               false, false, 0);
7737  // For i64 source, we need to add the appropriate power of 2 if the input
7738  // was negative.  This is the same as the optimization in
7739  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7740  // we must be careful to do the computation in x87 extended precision, not
7741  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7742  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7743  MachineMemOperand *MMO =
7744    DAG.getMachineFunction()
7745    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7746                          MachineMemOperand::MOLoad, 8, 8);
7747
7748  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7749  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7750  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7751                                         MVT::i64, MMO);
7752
7753  APInt FF(32, 0x5F800000ULL);
7754
7755  // Check whether the sign bit is set.
7756  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7757                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7758                                 ISD::SETLT);
7759
7760  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7761  SDValue FudgePtr = DAG.getConstantPool(
7762                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7763                                         getPointerTy());
7764
7765  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7766  SDValue Zero = DAG.getIntPtrConstant(0);
7767  SDValue Four = DAG.getIntPtrConstant(4);
7768  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7769                               Zero, Four);
7770  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7771
7772  // Load the value out, extending it from f32 to f80.
7773  // FIXME: Avoid the extend by constructing the right constant pool?
7774  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7775                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7776                                 MVT::f32, false, false, 4);
7777  // Extend everything to 80 bits to force it to be done on x87.
7778  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7779  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7780}
7781
7782std::pair<SDValue,SDValue> X86TargetLowering::
7783FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7784  DebugLoc DL = Op.getDebugLoc();
7785
7786  EVT DstTy = Op.getValueType();
7787
7788  if (!IsSigned) {
7789    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7790    DstTy = MVT::i64;
7791  }
7792
7793  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7794         DstTy.getSimpleVT() >= MVT::i16 &&
7795         "Unknown FP_TO_SINT to lower!");
7796
7797  // These are really Legal.
7798  if (DstTy == MVT::i32 &&
7799      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7800    return std::make_pair(SDValue(), SDValue());
7801  if (Subtarget->is64Bit() &&
7802      DstTy == MVT::i64 &&
7803      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7804    return std::make_pair(SDValue(), SDValue());
7805
7806  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7807  // stack slot.
7808  MachineFunction &MF = DAG.getMachineFunction();
7809  unsigned MemSize = DstTy.getSizeInBits()/8;
7810  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7811  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7812
7813
7814
7815  unsigned Opc;
7816  switch (DstTy.getSimpleVT().SimpleTy) {
7817  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7818  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7819  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7820  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7821  }
7822
7823  SDValue Chain = DAG.getEntryNode();
7824  SDValue Value = Op.getOperand(0);
7825  EVT TheVT = Op.getOperand(0).getValueType();
7826  if (isScalarFPTypeInSSEReg(TheVT)) {
7827    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7828    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7829                         MachinePointerInfo::getFixedStack(SSFI),
7830                         false, false, 0);
7831    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7832    SDValue Ops[] = {
7833      Chain, StackSlot, DAG.getValueType(TheVT)
7834    };
7835
7836    MachineMemOperand *MMO =
7837      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7838                              MachineMemOperand::MOLoad, MemSize, MemSize);
7839    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7840                                    DstTy, MMO);
7841    Chain = Value.getValue(1);
7842    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7843    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7844  }
7845
7846  MachineMemOperand *MMO =
7847    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7848                            MachineMemOperand::MOStore, MemSize, MemSize);
7849
7850  // Build the FP_TO_INT*_IN_MEM
7851  SDValue Ops[] = { Chain, Value, StackSlot };
7852  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7853                                         Ops, 3, DstTy, MMO);
7854
7855  return std::make_pair(FIST, StackSlot);
7856}
7857
7858SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7859                                           SelectionDAG &DAG) const {
7860  if (Op.getValueType().isVector())
7861    return SDValue();
7862
7863  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7864  SDValue FIST = Vals.first, StackSlot = Vals.second;
7865  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7866  if (FIST.getNode() == 0) return Op;
7867
7868  // Load the result.
7869  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7870                     FIST, StackSlot, MachinePointerInfo(),
7871                     false, false, false, 0);
7872}
7873
7874SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7875                                           SelectionDAG &DAG) const {
7876  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7877  SDValue FIST = Vals.first, StackSlot = Vals.second;
7878  assert(FIST.getNode() && "Unexpected failure");
7879
7880  // Load the result.
7881  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7882                     FIST, StackSlot, MachinePointerInfo(),
7883                     false, false, false, 0);
7884}
7885
7886SDValue X86TargetLowering::LowerFABS(SDValue Op,
7887                                     SelectionDAG &DAG) const {
7888  LLVMContext *Context = DAG.getContext();
7889  DebugLoc dl = Op.getDebugLoc();
7890  EVT VT = Op.getValueType();
7891  EVT EltVT = VT;
7892  if (VT.isVector())
7893    EltVT = VT.getVectorElementType();
7894  SmallVector<Constant*,4> CV;
7895  if (EltVT == MVT::f64) {
7896    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7897    CV.assign(2, C);
7898  } else {
7899    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7900    CV.assign(4, C);
7901  }
7902  Constant *C = ConstantVector::get(CV);
7903  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7904  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7905                             MachinePointerInfo::getConstantPool(),
7906                             false, false, false, 16);
7907  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7908}
7909
7910SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7911  LLVMContext *Context = DAG.getContext();
7912  DebugLoc dl = Op.getDebugLoc();
7913  EVT VT = Op.getValueType();
7914  EVT EltVT = VT;
7915  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7916  if (VT.isVector()) {
7917    EltVT = VT.getVectorElementType();
7918    NumElts = VT.getVectorNumElements();
7919  }
7920  SmallVector<Constant*,8> CV;
7921  if (EltVT == MVT::f64) {
7922    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7923    CV.assign(NumElts, C);
7924  } else {
7925    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7926    CV.assign(NumElts, C);
7927  }
7928  Constant *C = ConstantVector::get(CV);
7929  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7930  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7931                             MachinePointerInfo::getConstantPool(),
7932                             false, false, false, 16);
7933  if (VT.isVector()) {
7934    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7935    return DAG.getNode(ISD::BITCAST, dl, VT,
7936                       DAG.getNode(ISD::XOR, dl, XORVT,
7937                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7938                                Op.getOperand(0)),
7939                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7940  } else {
7941    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7942  }
7943}
7944
7945SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7946  LLVMContext *Context = DAG.getContext();
7947  SDValue Op0 = Op.getOperand(0);
7948  SDValue Op1 = Op.getOperand(1);
7949  DebugLoc dl = Op.getDebugLoc();
7950  EVT VT = Op.getValueType();
7951  EVT SrcVT = Op1.getValueType();
7952
7953  // If second operand is smaller, extend it first.
7954  if (SrcVT.bitsLT(VT)) {
7955    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7956    SrcVT = VT;
7957  }
7958  // And if it is bigger, shrink it first.
7959  if (SrcVT.bitsGT(VT)) {
7960    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7961    SrcVT = VT;
7962  }
7963
7964  // At this point the operands and the result should have the same
7965  // type, and that won't be f80 since that is not custom lowered.
7966
7967  // First get the sign bit of second operand.
7968  SmallVector<Constant*,4> CV;
7969  if (SrcVT == MVT::f64) {
7970    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7971    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7972  } else {
7973    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7974    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7975    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7976    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7977  }
7978  Constant *C = ConstantVector::get(CV);
7979  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7980  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7981                              MachinePointerInfo::getConstantPool(),
7982                              false, false, false, 16);
7983  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7984
7985  // Shift sign bit right or left if the two operands have different types.
7986  if (SrcVT.bitsGT(VT)) {
7987    // Op0 is MVT::f32, Op1 is MVT::f64.
7988    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7989    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7990                          DAG.getConstant(32, MVT::i32));
7991    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7992    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7993                          DAG.getIntPtrConstant(0));
7994  }
7995
7996  // Clear first operand sign bit.
7997  CV.clear();
7998  if (VT == MVT::f64) {
7999    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8000    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8001  } else {
8002    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8003    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8004    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8005    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8006  }
8007  C = ConstantVector::get(CV);
8008  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8009  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8010                              MachinePointerInfo::getConstantPool(),
8011                              false, false, false, 16);
8012  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8013
8014  // Or the value with the sign bit.
8015  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8016}
8017
8018SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8019  SDValue N0 = Op.getOperand(0);
8020  DebugLoc dl = Op.getDebugLoc();
8021  EVT VT = Op.getValueType();
8022
8023  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8024  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8025                                  DAG.getConstant(1, VT));
8026  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8027}
8028
8029/// Emit nodes that will be selected as "test Op0,Op0", or something
8030/// equivalent.
8031SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8032                                    SelectionDAG &DAG) const {
8033  DebugLoc dl = Op.getDebugLoc();
8034
8035  // CF and OF aren't always set the way we want. Determine which
8036  // of these we need.
8037  bool NeedCF = false;
8038  bool NeedOF = false;
8039  switch (X86CC) {
8040  default: break;
8041  case X86::COND_A: case X86::COND_AE:
8042  case X86::COND_B: case X86::COND_BE:
8043    NeedCF = true;
8044    break;
8045  case X86::COND_G: case X86::COND_GE:
8046  case X86::COND_L: case X86::COND_LE:
8047  case X86::COND_O: case X86::COND_NO:
8048    NeedOF = true;
8049    break;
8050  }
8051
8052  // See if we can use the EFLAGS value from the operand instead of
8053  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8054  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8055  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8056    // Emit a CMP with 0, which is the TEST pattern.
8057    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8058                       DAG.getConstant(0, Op.getValueType()));
8059
8060  unsigned Opcode = 0;
8061  unsigned NumOperands = 0;
8062  switch (Op.getNode()->getOpcode()) {
8063  case ISD::ADD:
8064    // Due to an isel shortcoming, be conservative if this add is likely to be
8065    // selected as part of a load-modify-store instruction. When the root node
8066    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8067    // uses of other nodes in the match, such as the ADD in this case. This
8068    // leads to the ADD being left around and reselected, with the result being
8069    // two adds in the output.  Alas, even if none our users are stores, that
8070    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8071    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8072    // climbing the DAG back to the root, and it doesn't seem to be worth the
8073    // effort.
8074    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8075         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8076      if (UI->getOpcode() != ISD::CopyToReg &&
8077          UI->getOpcode() != ISD::SETCC &&
8078          UI->getOpcode() != ISD::STORE)
8079        goto default_case;
8080
8081    if (ConstantSDNode *C =
8082        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8083      // An add of one will be selected as an INC.
8084      if (C->getAPIntValue() == 1) {
8085        Opcode = X86ISD::INC;
8086        NumOperands = 1;
8087        break;
8088      }
8089
8090      // An add of negative one (subtract of one) will be selected as a DEC.
8091      if (C->getAPIntValue().isAllOnesValue()) {
8092        Opcode = X86ISD::DEC;
8093        NumOperands = 1;
8094        break;
8095      }
8096    }
8097
8098    // Otherwise use a regular EFLAGS-setting add.
8099    Opcode = X86ISD::ADD;
8100    NumOperands = 2;
8101    break;
8102  case ISD::AND: {
8103    // If the primary and result isn't used, don't bother using X86ISD::AND,
8104    // because a TEST instruction will be better.
8105    bool NonFlagUse = false;
8106    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8107           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8108      SDNode *User = *UI;
8109      unsigned UOpNo = UI.getOperandNo();
8110      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8111        // Look pass truncate.
8112        UOpNo = User->use_begin().getOperandNo();
8113        User = *User->use_begin();
8114      }
8115
8116      if (User->getOpcode() != ISD::BRCOND &&
8117          User->getOpcode() != ISD::SETCC &&
8118          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8119        NonFlagUse = true;
8120        break;
8121      }
8122    }
8123
8124    if (!NonFlagUse)
8125      break;
8126  }
8127    // FALL THROUGH
8128  case ISD::SUB:
8129  case ISD::OR:
8130  case ISD::XOR:
8131    // Due to the ISEL shortcoming noted above, be conservative if this op is
8132    // likely to be selected as part of a load-modify-store instruction.
8133    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8134           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8135      if (UI->getOpcode() == ISD::STORE)
8136        goto default_case;
8137
8138    // Otherwise use a regular EFLAGS-setting instruction.
8139    switch (Op.getNode()->getOpcode()) {
8140    default: llvm_unreachable("unexpected operator!");
8141    case ISD::SUB: Opcode = X86ISD::SUB; break;
8142    case ISD::OR:  Opcode = X86ISD::OR;  break;
8143    case ISD::XOR: Opcode = X86ISD::XOR; break;
8144    case ISD::AND: Opcode = X86ISD::AND; break;
8145    }
8146
8147    NumOperands = 2;
8148    break;
8149  case X86ISD::ADD:
8150  case X86ISD::SUB:
8151  case X86ISD::INC:
8152  case X86ISD::DEC:
8153  case X86ISD::OR:
8154  case X86ISD::XOR:
8155  case X86ISD::AND:
8156    return SDValue(Op.getNode(), 1);
8157  default:
8158  default_case:
8159    break;
8160  }
8161
8162  if (Opcode == 0)
8163    // Emit a CMP with 0, which is the TEST pattern.
8164    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8165                       DAG.getConstant(0, Op.getValueType()));
8166
8167  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8168  SmallVector<SDValue, 4> Ops;
8169  for (unsigned i = 0; i != NumOperands; ++i)
8170    Ops.push_back(Op.getOperand(i));
8171
8172  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8173  DAG.ReplaceAllUsesWith(Op, New);
8174  return SDValue(New.getNode(), 1);
8175}
8176
8177/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8178/// equivalent.
8179SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8180                                   SelectionDAG &DAG) const {
8181  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8182    if (C->getAPIntValue() == 0)
8183      return EmitTest(Op0, X86CC, DAG);
8184
8185  DebugLoc dl = Op0.getDebugLoc();
8186  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8187}
8188
8189/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8190/// if it's possible.
8191SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8192                                     DebugLoc dl, SelectionDAG &DAG) const {
8193  SDValue Op0 = And.getOperand(0);
8194  SDValue Op1 = And.getOperand(1);
8195  if (Op0.getOpcode() == ISD::TRUNCATE)
8196    Op0 = Op0.getOperand(0);
8197  if (Op1.getOpcode() == ISD::TRUNCATE)
8198    Op1 = Op1.getOperand(0);
8199
8200  SDValue LHS, RHS;
8201  if (Op1.getOpcode() == ISD::SHL)
8202    std::swap(Op0, Op1);
8203  if (Op0.getOpcode() == ISD::SHL) {
8204    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8205      if (And00C->getZExtValue() == 1) {
8206        // If we looked past a truncate, check that it's only truncating away
8207        // known zeros.
8208        unsigned BitWidth = Op0.getValueSizeInBits();
8209        unsigned AndBitWidth = And.getValueSizeInBits();
8210        if (BitWidth > AndBitWidth) {
8211          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8212          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8213          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8214            return SDValue();
8215        }
8216        LHS = Op1;
8217        RHS = Op0.getOperand(1);
8218      }
8219  } else if (Op1.getOpcode() == ISD::Constant) {
8220    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8221    uint64_t AndRHSVal = AndRHS->getZExtValue();
8222    SDValue AndLHS = Op0;
8223
8224    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8225      LHS = AndLHS.getOperand(0);
8226      RHS = AndLHS.getOperand(1);
8227    }
8228
8229    // Use BT if the immediate can't be encoded in a TEST instruction.
8230    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8231      LHS = AndLHS;
8232      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8233    }
8234  }
8235
8236  if (LHS.getNode()) {
8237    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8238    // instruction.  Since the shift amount is in-range-or-undefined, we know
8239    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8240    // the encoding for the i16 version is larger than the i32 version.
8241    // Also promote i16 to i32 for performance / code size reason.
8242    if (LHS.getValueType() == MVT::i8 ||
8243        LHS.getValueType() == MVT::i16)
8244      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8245
8246    // If the operand types disagree, extend the shift amount to match.  Since
8247    // BT ignores high bits (like shifts) we can use anyextend.
8248    if (LHS.getValueType() != RHS.getValueType())
8249      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8250
8251    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8252    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8253    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8254                       DAG.getConstant(Cond, MVT::i8), BT);
8255  }
8256
8257  return SDValue();
8258}
8259
8260SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8261
8262  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8263
8264  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8265  SDValue Op0 = Op.getOperand(0);
8266  SDValue Op1 = Op.getOperand(1);
8267  DebugLoc dl = Op.getDebugLoc();
8268  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8269
8270  // Optimize to BT if possible.
8271  // Lower (X & (1 << N)) == 0 to BT(X, N).
8272  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8273  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8274  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8275      Op1.getOpcode() == ISD::Constant &&
8276      cast<ConstantSDNode>(Op1)->isNullValue() &&
8277      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8278    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8279    if (NewSetCC.getNode())
8280      return NewSetCC;
8281  }
8282
8283  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8284  // these.
8285  if (Op1.getOpcode() == ISD::Constant &&
8286      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8287       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8288      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8289
8290    // If the input is a setcc, then reuse the input setcc or use a new one with
8291    // the inverted condition.
8292    if (Op0.getOpcode() == X86ISD::SETCC) {
8293      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8294      bool Invert = (CC == ISD::SETNE) ^
8295        cast<ConstantSDNode>(Op1)->isNullValue();
8296      if (!Invert) return Op0;
8297
8298      CCode = X86::GetOppositeBranchCondition(CCode);
8299      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8300                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8301    }
8302  }
8303
8304  bool isFP = Op1.getValueType().isFloatingPoint();
8305  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8306  if (X86CC == X86::COND_INVALID)
8307    return SDValue();
8308
8309  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8310  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8311                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8312}
8313
8314// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8315// ones, and then concatenate the result back.
8316static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8317  EVT VT = Op.getValueType();
8318
8319  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8320         "Unsupported value type for operation");
8321
8322  int NumElems = VT.getVectorNumElements();
8323  DebugLoc dl = Op.getDebugLoc();
8324  SDValue CC = Op.getOperand(2);
8325  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8326  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8327
8328  // Extract the LHS vectors
8329  SDValue LHS = Op.getOperand(0);
8330  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8331  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8332
8333  // Extract the RHS vectors
8334  SDValue RHS = Op.getOperand(1);
8335  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8336  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8337
8338  // Issue the operation on the smaller types and concatenate the result back
8339  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8340  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8341  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8342                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8343                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8344}
8345
8346
8347SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8348  SDValue Cond;
8349  SDValue Op0 = Op.getOperand(0);
8350  SDValue Op1 = Op.getOperand(1);
8351  SDValue CC = Op.getOperand(2);
8352  EVT VT = Op.getValueType();
8353  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8354  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8355  DebugLoc dl = Op.getDebugLoc();
8356
8357  if (isFP) {
8358    unsigned SSECC = 8;
8359    EVT EltVT = Op0.getValueType().getVectorElementType();
8360    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8361
8362    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8363    bool Swap = false;
8364
8365    // SSE Condition code mapping:
8366    //  0 - EQ
8367    //  1 - LT
8368    //  2 - LE
8369    //  3 - UNORD
8370    //  4 - NEQ
8371    //  5 - NLT
8372    //  6 - NLE
8373    //  7 - ORD
8374    switch (SetCCOpcode) {
8375    default: break;
8376    case ISD::SETOEQ:
8377    case ISD::SETEQ:  SSECC = 0; break;
8378    case ISD::SETOGT:
8379    case ISD::SETGT: Swap = true; // Fallthrough
8380    case ISD::SETLT:
8381    case ISD::SETOLT: SSECC = 1; break;
8382    case ISD::SETOGE:
8383    case ISD::SETGE: Swap = true; // Fallthrough
8384    case ISD::SETLE:
8385    case ISD::SETOLE: SSECC = 2; break;
8386    case ISD::SETUO:  SSECC = 3; break;
8387    case ISD::SETUNE:
8388    case ISD::SETNE:  SSECC = 4; break;
8389    case ISD::SETULE: Swap = true;
8390    case ISD::SETUGE: SSECC = 5; break;
8391    case ISD::SETULT: Swap = true;
8392    case ISD::SETUGT: SSECC = 6; break;
8393    case ISD::SETO:   SSECC = 7; break;
8394    }
8395    if (Swap)
8396      std::swap(Op0, Op1);
8397
8398    // In the two special cases we can't handle, emit two comparisons.
8399    if (SSECC == 8) {
8400      if (SetCCOpcode == ISD::SETUEQ) {
8401        SDValue UNORD, EQ;
8402        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8403        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8404        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8405      } else if (SetCCOpcode == ISD::SETONE) {
8406        SDValue ORD, NEQ;
8407        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8408        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8409        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8410      }
8411      llvm_unreachable("Illegal FP comparison");
8412    }
8413    // Handle all other FP comparisons here.
8414    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8415  }
8416
8417  // Break 256-bit integer vector compare into smaller ones.
8418  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8419    return Lower256IntVSETCC(Op, DAG);
8420
8421  // We are handling one of the integer comparisons here.  Since SSE only has
8422  // GT and EQ comparisons for integer, swapping operands and multiple
8423  // operations may be required for some comparisons.
8424  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8425  bool Swap = false, Invert = false, FlipSigns = false;
8426
8427  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
8428  default: break;
8429  case MVT::i8:   EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8430  case MVT::i16:  EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8431  case MVT::i32:  EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8432  case MVT::i64:  EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8433  }
8434
8435  switch (SetCCOpcode) {
8436  default: break;
8437  case ISD::SETNE:  Invert = true;
8438  case ISD::SETEQ:  Opc = EQOpc; break;
8439  case ISD::SETLT:  Swap = true;
8440  case ISD::SETGT:  Opc = GTOpc; break;
8441  case ISD::SETGE:  Swap = true;
8442  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8443  case ISD::SETULT: Swap = true;
8444  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8445  case ISD::SETUGE: Swap = true;
8446  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8447  }
8448  if (Swap)
8449    std::swap(Op0, Op1);
8450
8451  // Check that the operation in question is available (most are plain SSE2,
8452  // but PCMPGTQ and PCMPEQQ have different requirements).
8453  if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42())
8454    return SDValue();
8455  if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41())
8456    return SDValue();
8457
8458  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8459  // bits of the inputs before performing those operations.
8460  if (FlipSigns) {
8461    EVT EltVT = VT.getVectorElementType();
8462    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8463                                      EltVT);
8464    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8465    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8466                                    SignBits.size());
8467    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8468    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8469  }
8470
8471  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8472
8473  // If the logical-not of the result is required, perform that now.
8474  if (Invert)
8475    Result = DAG.getNOT(dl, Result, VT);
8476
8477  return Result;
8478}
8479
8480// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8481static bool isX86LogicalCmp(SDValue Op) {
8482  unsigned Opc = Op.getNode()->getOpcode();
8483  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8484    return true;
8485  if (Op.getResNo() == 1 &&
8486      (Opc == X86ISD::ADD ||
8487       Opc == X86ISD::SUB ||
8488       Opc == X86ISD::ADC ||
8489       Opc == X86ISD::SBB ||
8490       Opc == X86ISD::SMUL ||
8491       Opc == X86ISD::UMUL ||
8492       Opc == X86ISD::INC ||
8493       Opc == X86ISD::DEC ||
8494       Opc == X86ISD::OR ||
8495       Opc == X86ISD::XOR ||
8496       Opc == X86ISD::AND))
8497    return true;
8498
8499  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8500    return true;
8501
8502  return false;
8503}
8504
8505static bool isZero(SDValue V) {
8506  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8507  return C && C->isNullValue();
8508}
8509
8510static bool isAllOnes(SDValue V) {
8511  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8512  return C && C->isAllOnesValue();
8513}
8514
8515SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8516  bool addTest = true;
8517  SDValue Cond  = Op.getOperand(0);
8518  SDValue Op1 = Op.getOperand(1);
8519  SDValue Op2 = Op.getOperand(2);
8520  DebugLoc DL = Op.getDebugLoc();
8521  SDValue CC;
8522
8523  if (Cond.getOpcode() == ISD::SETCC) {
8524    SDValue NewCond = LowerSETCC(Cond, DAG);
8525    if (NewCond.getNode())
8526      Cond = NewCond;
8527  }
8528
8529  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8530  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8531  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8532  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8533  if (Cond.getOpcode() == X86ISD::SETCC &&
8534      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8535      isZero(Cond.getOperand(1).getOperand(1))) {
8536    SDValue Cmp = Cond.getOperand(1);
8537
8538    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8539
8540    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8541        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8542      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8543
8544      SDValue CmpOp0 = Cmp.getOperand(0);
8545      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8546                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8547
8548      SDValue Res =   // Res = 0 or -1.
8549        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8550                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8551
8552      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8553        Res = DAG.getNOT(DL, Res, Res.getValueType());
8554
8555      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8556      if (N2C == 0 || !N2C->isNullValue())
8557        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8558      return Res;
8559    }
8560  }
8561
8562  // Look past (and (setcc_carry (cmp ...)), 1).
8563  if (Cond.getOpcode() == ISD::AND &&
8564      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8565    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8566    if (C && C->getAPIntValue() == 1)
8567      Cond = Cond.getOperand(0);
8568  }
8569
8570  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8571  // setting operand in place of the X86ISD::SETCC.
8572  unsigned CondOpcode = Cond.getOpcode();
8573  if (CondOpcode == X86ISD::SETCC ||
8574      CondOpcode == X86ISD::SETCC_CARRY) {
8575    CC = Cond.getOperand(0);
8576
8577    SDValue Cmp = Cond.getOperand(1);
8578    unsigned Opc = Cmp.getOpcode();
8579    EVT VT = Op.getValueType();
8580
8581    bool IllegalFPCMov = false;
8582    if (VT.isFloatingPoint() && !VT.isVector() &&
8583        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8584      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8585
8586    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8587        Opc == X86ISD::BT) { // FIXME
8588      Cond = Cmp;
8589      addTest = false;
8590    }
8591  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8592             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8593             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8594              Cond.getOperand(0).getValueType() != MVT::i8)) {
8595    SDValue LHS = Cond.getOperand(0);
8596    SDValue RHS = Cond.getOperand(1);
8597    unsigned X86Opcode;
8598    unsigned X86Cond;
8599    SDVTList VTs;
8600    switch (CondOpcode) {
8601    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8602    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8603    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8604    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8605    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8606    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8607    default: llvm_unreachable("unexpected overflowing operator");
8608    }
8609    if (CondOpcode == ISD::UMULO)
8610      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8611                          MVT::i32);
8612    else
8613      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8614
8615    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8616
8617    if (CondOpcode == ISD::UMULO)
8618      Cond = X86Op.getValue(2);
8619    else
8620      Cond = X86Op.getValue(1);
8621
8622    CC = DAG.getConstant(X86Cond, MVT::i8);
8623    addTest = false;
8624  }
8625
8626  if (addTest) {
8627    // Look pass the truncate.
8628    if (Cond.getOpcode() == ISD::TRUNCATE)
8629      Cond = Cond.getOperand(0);
8630
8631    // We know the result of AND is compared against zero. Try to match
8632    // it to BT.
8633    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8634      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8635      if (NewSetCC.getNode()) {
8636        CC = NewSetCC.getOperand(0);
8637        Cond = NewSetCC.getOperand(1);
8638        addTest = false;
8639      }
8640    }
8641  }
8642
8643  if (addTest) {
8644    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8645    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8646  }
8647
8648  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8649  // a <  b ?  0 : -1 -> RES = setcc_carry
8650  // a >= b ? -1 :  0 -> RES = setcc_carry
8651  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8652  if (Cond.getOpcode() == X86ISD::CMP) {
8653    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8654
8655    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8656        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8657      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8658                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8659      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8660        return DAG.getNOT(DL, Res, Res.getValueType());
8661      return Res;
8662    }
8663  }
8664
8665  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8666  // condition is true.
8667  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8668  SDValue Ops[] = { Op2, Op1, CC, Cond };
8669  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8670}
8671
8672// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8673// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8674// from the AND / OR.
8675static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8676  Opc = Op.getOpcode();
8677  if (Opc != ISD::OR && Opc != ISD::AND)
8678    return false;
8679  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8680          Op.getOperand(0).hasOneUse() &&
8681          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8682          Op.getOperand(1).hasOneUse());
8683}
8684
8685// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8686// 1 and that the SETCC node has a single use.
8687static bool isXor1OfSetCC(SDValue Op) {
8688  if (Op.getOpcode() != ISD::XOR)
8689    return false;
8690  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8691  if (N1C && N1C->getAPIntValue() == 1) {
8692    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8693      Op.getOperand(0).hasOneUse();
8694  }
8695  return false;
8696}
8697
8698SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8699  bool addTest = true;
8700  SDValue Chain = Op.getOperand(0);
8701  SDValue Cond  = Op.getOperand(1);
8702  SDValue Dest  = Op.getOperand(2);
8703  DebugLoc dl = Op.getDebugLoc();
8704  SDValue CC;
8705  bool Inverted = false;
8706
8707  if (Cond.getOpcode() == ISD::SETCC) {
8708    // Check for setcc([su]{add,sub,mul}o == 0).
8709    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8710        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8711        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8712        Cond.getOperand(0).getResNo() == 1 &&
8713        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8714         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8715         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8716         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8717         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8718         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8719      Inverted = true;
8720      Cond = Cond.getOperand(0);
8721    } else {
8722      SDValue NewCond = LowerSETCC(Cond, DAG);
8723      if (NewCond.getNode())
8724        Cond = NewCond;
8725    }
8726  }
8727#if 0
8728  // FIXME: LowerXALUO doesn't handle these!!
8729  else if (Cond.getOpcode() == X86ISD::ADD  ||
8730           Cond.getOpcode() == X86ISD::SUB  ||
8731           Cond.getOpcode() == X86ISD::SMUL ||
8732           Cond.getOpcode() == X86ISD::UMUL)
8733    Cond = LowerXALUO(Cond, DAG);
8734#endif
8735
8736  // Look pass (and (setcc_carry (cmp ...)), 1).
8737  if (Cond.getOpcode() == ISD::AND &&
8738      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8739    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8740    if (C && C->getAPIntValue() == 1)
8741      Cond = Cond.getOperand(0);
8742  }
8743
8744  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8745  // setting operand in place of the X86ISD::SETCC.
8746  unsigned CondOpcode = Cond.getOpcode();
8747  if (CondOpcode == X86ISD::SETCC ||
8748      CondOpcode == X86ISD::SETCC_CARRY) {
8749    CC = Cond.getOperand(0);
8750
8751    SDValue Cmp = Cond.getOperand(1);
8752    unsigned Opc = Cmp.getOpcode();
8753    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8754    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8755      Cond = Cmp;
8756      addTest = false;
8757    } else {
8758      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8759      default: break;
8760      case X86::COND_O:
8761      case X86::COND_B:
8762        // These can only come from an arithmetic instruction with overflow,
8763        // e.g. SADDO, UADDO.
8764        Cond = Cond.getNode()->getOperand(1);
8765        addTest = false;
8766        break;
8767      }
8768    }
8769  }
8770  CondOpcode = Cond.getOpcode();
8771  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8772      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8773      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8774       Cond.getOperand(0).getValueType() != MVT::i8)) {
8775    SDValue LHS = Cond.getOperand(0);
8776    SDValue RHS = Cond.getOperand(1);
8777    unsigned X86Opcode;
8778    unsigned X86Cond;
8779    SDVTList VTs;
8780    switch (CondOpcode) {
8781    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8782    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8783    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8784    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8785    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8786    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8787    default: llvm_unreachable("unexpected overflowing operator");
8788    }
8789    if (Inverted)
8790      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8791    if (CondOpcode == ISD::UMULO)
8792      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8793                          MVT::i32);
8794    else
8795      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8796
8797    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8798
8799    if (CondOpcode == ISD::UMULO)
8800      Cond = X86Op.getValue(2);
8801    else
8802      Cond = X86Op.getValue(1);
8803
8804    CC = DAG.getConstant(X86Cond, MVT::i8);
8805    addTest = false;
8806  } else {
8807    unsigned CondOpc;
8808    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8809      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8810      if (CondOpc == ISD::OR) {
8811        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8812        // two branches instead of an explicit OR instruction with a
8813        // separate test.
8814        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8815            isX86LogicalCmp(Cmp)) {
8816          CC = Cond.getOperand(0).getOperand(0);
8817          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8818                              Chain, Dest, CC, Cmp);
8819          CC = Cond.getOperand(1).getOperand(0);
8820          Cond = Cmp;
8821          addTest = false;
8822        }
8823      } else { // ISD::AND
8824        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8825        // two branches instead of an explicit AND instruction with a
8826        // separate test. However, we only do this if this block doesn't
8827        // have a fall-through edge, because this requires an explicit
8828        // jmp when the condition is false.
8829        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8830            isX86LogicalCmp(Cmp) &&
8831            Op.getNode()->hasOneUse()) {
8832          X86::CondCode CCode =
8833            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8834          CCode = X86::GetOppositeBranchCondition(CCode);
8835          CC = DAG.getConstant(CCode, MVT::i8);
8836          SDNode *User = *Op.getNode()->use_begin();
8837          // Look for an unconditional branch following this conditional branch.
8838          // We need this because we need to reverse the successors in order
8839          // to implement FCMP_OEQ.
8840          if (User->getOpcode() == ISD::BR) {
8841            SDValue FalseBB = User->getOperand(1);
8842            SDNode *NewBR =
8843              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8844            assert(NewBR == User);
8845            (void)NewBR;
8846            Dest = FalseBB;
8847
8848            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8849                                Chain, Dest, CC, Cmp);
8850            X86::CondCode CCode =
8851              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8852            CCode = X86::GetOppositeBranchCondition(CCode);
8853            CC = DAG.getConstant(CCode, MVT::i8);
8854            Cond = Cmp;
8855            addTest = false;
8856          }
8857        }
8858      }
8859    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8860      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8861      // It should be transformed during dag combiner except when the condition
8862      // is set by a arithmetics with overflow node.
8863      X86::CondCode CCode =
8864        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8865      CCode = X86::GetOppositeBranchCondition(CCode);
8866      CC = DAG.getConstant(CCode, MVT::i8);
8867      Cond = Cond.getOperand(0).getOperand(1);
8868      addTest = false;
8869    } else if (Cond.getOpcode() == ISD::SETCC &&
8870               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8871      // For FCMP_OEQ, we can emit
8872      // two branches instead of an explicit AND instruction with a
8873      // separate test. However, we only do this if this block doesn't
8874      // have a fall-through edge, because this requires an explicit
8875      // jmp when the condition is false.
8876      if (Op.getNode()->hasOneUse()) {
8877        SDNode *User = *Op.getNode()->use_begin();
8878        // Look for an unconditional branch following this conditional branch.
8879        // We need this because we need to reverse the successors in order
8880        // to implement FCMP_OEQ.
8881        if (User->getOpcode() == ISD::BR) {
8882          SDValue FalseBB = User->getOperand(1);
8883          SDNode *NewBR =
8884            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8885          assert(NewBR == User);
8886          (void)NewBR;
8887          Dest = FalseBB;
8888
8889          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8890                                    Cond.getOperand(0), Cond.getOperand(1));
8891          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8892          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8893                              Chain, Dest, CC, Cmp);
8894          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8895          Cond = Cmp;
8896          addTest = false;
8897        }
8898      }
8899    } else if (Cond.getOpcode() == ISD::SETCC &&
8900               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8901      // For FCMP_UNE, we can emit
8902      // two branches instead of an explicit AND instruction with a
8903      // separate test. However, we only do this if this block doesn't
8904      // have a fall-through edge, because this requires an explicit
8905      // jmp when the condition is false.
8906      if (Op.getNode()->hasOneUse()) {
8907        SDNode *User = *Op.getNode()->use_begin();
8908        // Look for an unconditional branch following this conditional branch.
8909        // We need this because we need to reverse the successors in order
8910        // to implement FCMP_UNE.
8911        if (User->getOpcode() == ISD::BR) {
8912          SDValue FalseBB = User->getOperand(1);
8913          SDNode *NewBR =
8914            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8915          assert(NewBR == User);
8916          (void)NewBR;
8917
8918          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8919                                    Cond.getOperand(0), Cond.getOperand(1));
8920          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8921          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8922                              Chain, Dest, CC, Cmp);
8923          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8924          Cond = Cmp;
8925          addTest = false;
8926          Dest = FalseBB;
8927        }
8928      }
8929    }
8930  }
8931
8932  if (addTest) {
8933    // Look pass the truncate.
8934    if (Cond.getOpcode() == ISD::TRUNCATE)
8935      Cond = Cond.getOperand(0);
8936
8937    // We know the result of AND is compared against zero. Try to match
8938    // it to BT.
8939    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8940      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8941      if (NewSetCC.getNode()) {
8942        CC = NewSetCC.getOperand(0);
8943        Cond = NewSetCC.getOperand(1);
8944        addTest = false;
8945      }
8946    }
8947  }
8948
8949  if (addTest) {
8950    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8951    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8952  }
8953  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8954                     Chain, Dest, CC, Cond);
8955}
8956
8957
8958// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8959// Calls to _alloca is needed to probe the stack when allocating more than 4k
8960// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8961// that the guard pages used by the OS virtual memory manager are allocated in
8962// correct sequence.
8963SDValue
8964X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8965                                           SelectionDAG &DAG) const {
8966  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8967          getTargetMachine().Options.EnableSegmentedStacks) &&
8968         "This should be used only on Windows targets or when segmented stacks "
8969         "are being used");
8970  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8971  DebugLoc dl = Op.getDebugLoc();
8972
8973  // Get the inputs.
8974  SDValue Chain = Op.getOperand(0);
8975  SDValue Size  = Op.getOperand(1);
8976  // FIXME: Ensure alignment here
8977
8978  bool Is64Bit = Subtarget->is64Bit();
8979  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8980
8981  if (getTargetMachine().Options.EnableSegmentedStacks) {
8982    MachineFunction &MF = DAG.getMachineFunction();
8983    MachineRegisterInfo &MRI = MF.getRegInfo();
8984
8985    if (Is64Bit) {
8986      // The 64 bit implementation of segmented stacks needs to clobber both r10
8987      // r11. This makes it impossible to use it along with nested parameters.
8988      const Function *F = MF.getFunction();
8989
8990      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8991           I != E; I++)
8992        if (I->hasNestAttr())
8993          report_fatal_error("Cannot use segmented stacks with functions that "
8994                             "have nested arguments.");
8995    }
8996
8997    const TargetRegisterClass *AddrRegClass =
8998      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8999    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9000    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9001    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9002                                DAG.getRegister(Vreg, SPTy));
9003    SDValue Ops1[2] = { Value, Chain };
9004    return DAG.getMergeValues(Ops1, 2, dl);
9005  } else {
9006    SDValue Flag;
9007    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9008
9009    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9010    Flag = Chain.getValue(1);
9011    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9012
9013    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9014    Flag = Chain.getValue(1);
9015
9016    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9017
9018    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9019    return DAG.getMergeValues(Ops1, 2, dl);
9020  }
9021}
9022
9023SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9024  MachineFunction &MF = DAG.getMachineFunction();
9025  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9026
9027  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9028  DebugLoc DL = Op.getDebugLoc();
9029
9030  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9031    // vastart just stores the address of the VarArgsFrameIndex slot into the
9032    // memory location argument.
9033    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9034                                   getPointerTy());
9035    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9036                        MachinePointerInfo(SV), false, false, 0);
9037  }
9038
9039  // __va_list_tag:
9040  //   gp_offset         (0 - 6 * 8)
9041  //   fp_offset         (48 - 48 + 8 * 16)
9042  //   overflow_arg_area (point to parameters coming in memory).
9043  //   reg_save_area
9044  SmallVector<SDValue, 8> MemOps;
9045  SDValue FIN = Op.getOperand(1);
9046  // Store gp_offset
9047  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9048                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9049                                               MVT::i32),
9050                               FIN, MachinePointerInfo(SV), false, false, 0);
9051  MemOps.push_back(Store);
9052
9053  // Store fp_offset
9054  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9055                    FIN, DAG.getIntPtrConstant(4));
9056  Store = DAG.getStore(Op.getOperand(0), DL,
9057                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9058                                       MVT::i32),
9059                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9060  MemOps.push_back(Store);
9061
9062  // Store ptr to overflow_arg_area
9063  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9064                    FIN, DAG.getIntPtrConstant(4));
9065  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9066                                    getPointerTy());
9067  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9068                       MachinePointerInfo(SV, 8),
9069                       false, false, 0);
9070  MemOps.push_back(Store);
9071
9072  // Store ptr to reg_save_area.
9073  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9074                    FIN, DAG.getIntPtrConstant(8));
9075  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9076                                    getPointerTy());
9077  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9078                       MachinePointerInfo(SV, 16), false, false, 0);
9079  MemOps.push_back(Store);
9080  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9081                     &MemOps[0], MemOps.size());
9082}
9083
9084SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9085  assert(Subtarget->is64Bit() &&
9086         "LowerVAARG only handles 64-bit va_arg!");
9087  assert((Subtarget->isTargetLinux() ||
9088          Subtarget->isTargetDarwin()) &&
9089          "Unhandled target in LowerVAARG");
9090  assert(Op.getNode()->getNumOperands() == 4);
9091  SDValue Chain = Op.getOperand(0);
9092  SDValue SrcPtr = Op.getOperand(1);
9093  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9094  unsigned Align = Op.getConstantOperandVal(3);
9095  DebugLoc dl = Op.getDebugLoc();
9096
9097  EVT ArgVT = Op.getNode()->getValueType(0);
9098  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9099  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9100  uint8_t ArgMode;
9101
9102  // Decide which area this value should be read from.
9103  // TODO: Implement the AMD64 ABI in its entirety. This simple
9104  // selection mechanism works only for the basic types.
9105  if (ArgVT == MVT::f80) {
9106    llvm_unreachable("va_arg for f80 not yet implemented");
9107  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9108    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9109  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9110    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9111  } else {
9112    llvm_unreachable("Unhandled argument type in LowerVAARG");
9113  }
9114
9115  if (ArgMode == 2) {
9116    // Sanity Check: Make sure using fp_offset makes sense.
9117    assert(!getTargetMachine().Options.UseSoftFloat &&
9118           !(DAG.getMachineFunction()
9119                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9120           Subtarget->hasSSE1());
9121  }
9122
9123  // Insert VAARG_64 node into the DAG
9124  // VAARG_64 returns two values: Variable Argument Address, Chain
9125  SmallVector<SDValue, 11> InstOps;
9126  InstOps.push_back(Chain);
9127  InstOps.push_back(SrcPtr);
9128  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9129  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9130  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9131  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9132  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9133                                          VTs, &InstOps[0], InstOps.size(),
9134                                          MVT::i64,
9135                                          MachinePointerInfo(SV),
9136                                          /*Align=*/0,
9137                                          /*Volatile=*/false,
9138                                          /*ReadMem=*/true,
9139                                          /*WriteMem=*/true);
9140  Chain = VAARG.getValue(1);
9141
9142  // Load the next argument and return it
9143  return DAG.getLoad(ArgVT, dl,
9144                     Chain,
9145                     VAARG,
9146                     MachinePointerInfo(),
9147                     false, false, false, 0);
9148}
9149
9150SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9151  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9152  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9153  SDValue Chain = Op.getOperand(0);
9154  SDValue DstPtr = Op.getOperand(1);
9155  SDValue SrcPtr = Op.getOperand(2);
9156  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9157  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9158  DebugLoc DL = Op.getDebugLoc();
9159
9160  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9161                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9162                       false,
9163                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9164}
9165
9166SDValue
9167X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9168  DebugLoc dl = Op.getDebugLoc();
9169  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9170  switch (IntNo) {
9171  default: return SDValue();    // Don't custom lower most intrinsics.
9172  // Comparison intrinsics.
9173  case Intrinsic::x86_sse_comieq_ss:
9174  case Intrinsic::x86_sse_comilt_ss:
9175  case Intrinsic::x86_sse_comile_ss:
9176  case Intrinsic::x86_sse_comigt_ss:
9177  case Intrinsic::x86_sse_comige_ss:
9178  case Intrinsic::x86_sse_comineq_ss:
9179  case Intrinsic::x86_sse_ucomieq_ss:
9180  case Intrinsic::x86_sse_ucomilt_ss:
9181  case Intrinsic::x86_sse_ucomile_ss:
9182  case Intrinsic::x86_sse_ucomigt_ss:
9183  case Intrinsic::x86_sse_ucomige_ss:
9184  case Intrinsic::x86_sse_ucomineq_ss:
9185  case Intrinsic::x86_sse2_comieq_sd:
9186  case Intrinsic::x86_sse2_comilt_sd:
9187  case Intrinsic::x86_sse2_comile_sd:
9188  case Intrinsic::x86_sse2_comigt_sd:
9189  case Intrinsic::x86_sse2_comige_sd:
9190  case Intrinsic::x86_sse2_comineq_sd:
9191  case Intrinsic::x86_sse2_ucomieq_sd:
9192  case Intrinsic::x86_sse2_ucomilt_sd:
9193  case Intrinsic::x86_sse2_ucomile_sd:
9194  case Intrinsic::x86_sse2_ucomigt_sd:
9195  case Intrinsic::x86_sse2_ucomige_sd:
9196  case Intrinsic::x86_sse2_ucomineq_sd: {
9197    unsigned Opc = 0;
9198    ISD::CondCode CC = ISD::SETCC_INVALID;
9199    switch (IntNo) {
9200    default: break;
9201    case Intrinsic::x86_sse_comieq_ss:
9202    case Intrinsic::x86_sse2_comieq_sd:
9203      Opc = X86ISD::COMI;
9204      CC = ISD::SETEQ;
9205      break;
9206    case Intrinsic::x86_sse_comilt_ss:
9207    case Intrinsic::x86_sse2_comilt_sd:
9208      Opc = X86ISD::COMI;
9209      CC = ISD::SETLT;
9210      break;
9211    case Intrinsic::x86_sse_comile_ss:
9212    case Intrinsic::x86_sse2_comile_sd:
9213      Opc = X86ISD::COMI;
9214      CC = ISD::SETLE;
9215      break;
9216    case Intrinsic::x86_sse_comigt_ss:
9217    case Intrinsic::x86_sse2_comigt_sd:
9218      Opc = X86ISD::COMI;
9219      CC = ISD::SETGT;
9220      break;
9221    case Intrinsic::x86_sse_comige_ss:
9222    case Intrinsic::x86_sse2_comige_sd:
9223      Opc = X86ISD::COMI;
9224      CC = ISD::SETGE;
9225      break;
9226    case Intrinsic::x86_sse_comineq_ss:
9227    case Intrinsic::x86_sse2_comineq_sd:
9228      Opc = X86ISD::COMI;
9229      CC = ISD::SETNE;
9230      break;
9231    case Intrinsic::x86_sse_ucomieq_ss:
9232    case Intrinsic::x86_sse2_ucomieq_sd:
9233      Opc = X86ISD::UCOMI;
9234      CC = ISD::SETEQ;
9235      break;
9236    case Intrinsic::x86_sse_ucomilt_ss:
9237    case Intrinsic::x86_sse2_ucomilt_sd:
9238      Opc = X86ISD::UCOMI;
9239      CC = ISD::SETLT;
9240      break;
9241    case Intrinsic::x86_sse_ucomile_ss:
9242    case Intrinsic::x86_sse2_ucomile_sd:
9243      Opc = X86ISD::UCOMI;
9244      CC = ISD::SETLE;
9245      break;
9246    case Intrinsic::x86_sse_ucomigt_ss:
9247    case Intrinsic::x86_sse2_ucomigt_sd:
9248      Opc = X86ISD::UCOMI;
9249      CC = ISD::SETGT;
9250      break;
9251    case Intrinsic::x86_sse_ucomige_ss:
9252    case Intrinsic::x86_sse2_ucomige_sd:
9253      Opc = X86ISD::UCOMI;
9254      CC = ISD::SETGE;
9255      break;
9256    case Intrinsic::x86_sse_ucomineq_ss:
9257    case Intrinsic::x86_sse2_ucomineq_sd:
9258      Opc = X86ISD::UCOMI;
9259      CC = ISD::SETNE;
9260      break;
9261    }
9262
9263    SDValue LHS = Op.getOperand(1);
9264    SDValue RHS = Op.getOperand(2);
9265    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9266    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9267    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9268    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9269                                DAG.getConstant(X86CC, MVT::i8), Cond);
9270    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9271  }
9272  // Arithmetic intrinsics.
9273  case Intrinsic::x86_sse3_hadd_ps:
9274  case Intrinsic::x86_sse3_hadd_pd:
9275  case Intrinsic::x86_avx_hadd_ps_256:
9276  case Intrinsic::x86_avx_hadd_pd_256:
9277    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9278                       Op.getOperand(1), Op.getOperand(2));
9279  case Intrinsic::x86_sse3_hsub_ps:
9280  case Intrinsic::x86_sse3_hsub_pd:
9281  case Intrinsic::x86_avx_hsub_ps_256:
9282  case Intrinsic::x86_avx_hsub_pd_256:
9283    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9284                       Op.getOperand(1), Op.getOperand(2));
9285  case Intrinsic::x86_avx2_psllv_d:
9286  case Intrinsic::x86_avx2_psllv_q:
9287  case Intrinsic::x86_avx2_psllv_d_256:
9288  case Intrinsic::x86_avx2_psllv_q_256:
9289    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9290                      Op.getOperand(1), Op.getOperand(2));
9291  case Intrinsic::x86_avx2_psrlv_d:
9292  case Intrinsic::x86_avx2_psrlv_q:
9293  case Intrinsic::x86_avx2_psrlv_d_256:
9294  case Intrinsic::x86_avx2_psrlv_q_256:
9295    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9296                      Op.getOperand(1), Op.getOperand(2));
9297  case Intrinsic::x86_avx2_psrav_d:
9298  case Intrinsic::x86_avx2_psrav_d_256:
9299    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9300                      Op.getOperand(1), Op.getOperand(2));
9301
9302  // ptest and testp intrinsics. The intrinsic these come from are designed to
9303  // return an integer value, not just an instruction so lower it to the ptest
9304  // or testp pattern and a setcc for the result.
9305  case Intrinsic::x86_sse41_ptestz:
9306  case Intrinsic::x86_sse41_ptestc:
9307  case Intrinsic::x86_sse41_ptestnzc:
9308  case Intrinsic::x86_avx_ptestz_256:
9309  case Intrinsic::x86_avx_ptestc_256:
9310  case Intrinsic::x86_avx_ptestnzc_256:
9311  case Intrinsic::x86_avx_vtestz_ps:
9312  case Intrinsic::x86_avx_vtestc_ps:
9313  case Intrinsic::x86_avx_vtestnzc_ps:
9314  case Intrinsic::x86_avx_vtestz_pd:
9315  case Intrinsic::x86_avx_vtestc_pd:
9316  case Intrinsic::x86_avx_vtestnzc_pd:
9317  case Intrinsic::x86_avx_vtestz_ps_256:
9318  case Intrinsic::x86_avx_vtestc_ps_256:
9319  case Intrinsic::x86_avx_vtestnzc_ps_256:
9320  case Intrinsic::x86_avx_vtestz_pd_256:
9321  case Intrinsic::x86_avx_vtestc_pd_256:
9322  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9323    bool IsTestPacked = false;
9324    unsigned X86CC = 0;
9325    switch (IntNo) {
9326    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9327    case Intrinsic::x86_avx_vtestz_ps:
9328    case Intrinsic::x86_avx_vtestz_pd:
9329    case Intrinsic::x86_avx_vtestz_ps_256:
9330    case Intrinsic::x86_avx_vtestz_pd_256:
9331      IsTestPacked = true; // Fallthrough
9332    case Intrinsic::x86_sse41_ptestz:
9333    case Intrinsic::x86_avx_ptestz_256:
9334      // ZF = 1
9335      X86CC = X86::COND_E;
9336      break;
9337    case Intrinsic::x86_avx_vtestc_ps:
9338    case Intrinsic::x86_avx_vtestc_pd:
9339    case Intrinsic::x86_avx_vtestc_ps_256:
9340    case Intrinsic::x86_avx_vtestc_pd_256:
9341      IsTestPacked = true; // Fallthrough
9342    case Intrinsic::x86_sse41_ptestc:
9343    case Intrinsic::x86_avx_ptestc_256:
9344      // CF = 1
9345      X86CC = X86::COND_B;
9346      break;
9347    case Intrinsic::x86_avx_vtestnzc_ps:
9348    case Intrinsic::x86_avx_vtestnzc_pd:
9349    case Intrinsic::x86_avx_vtestnzc_ps_256:
9350    case Intrinsic::x86_avx_vtestnzc_pd_256:
9351      IsTestPacked = true; // Fallthrough
9352    case Intrinsic::x86_sse41_ptestnzc:
9353    case Intrinsic::x86_avx_ptestnzc_256:
9354      // ZF and CF = 0
9355      X86CC = X86::COND_A;
9356      break;
9357    }
9358
9359    SDValue LHS = Op.getOperand(1);
9360    SDValue RHS = Op.getOperand(2);
9361    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9362    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9363    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9364    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9365    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9366  }
9367
9368  // Fix vector shift instructions where the last operand is a non-immediate
9369  // i32 value.
9370  case Intrinsic::x86_avx2_pslli_w:
9371  case Intrinsic::x86_avx2_pslli_d:
9372  case Intrinsic::x86_avx2_pslli_q:
9373  case Intrinsic::x86_avx2_psrli_w:
9374  case Intrinsic::x86_avx2_psrli_d:
9375  case Intrinsic::x86_avx2_psrli_q:
9376  case Intrinsic::x86_avx2_psrai_w:
9377  case Intrinsic::x86_avx2_psrai_d:
9378  case Intrinsic::x86_sse2_pslli_w:
9379  case Intrinsic::x86_sse2_pslli_d:
9380  case Intrinsic::x86_sse2_pslli_q:
9381  case Intrinsic::x86_sse2_psrli_w:
9382  case Intrinsic::x86_sse2_psrli_d:
9383  case Intrinsic::x86_sse2_psrli_q:
9384  case Intrinsic::x86_sse2_psrai_w:
9385  case Intrinsic::x86_sse2_psrai_d:
9386  case Intrinsic::x86_mmx_pslli_w:
9387  case Intrinsic::x86_mmx_pslli_d:
9388  case Intrinsic::x86_mmx_pslli_q:
9389  case Intrinsic::x86_mmx_psrli_w:
9390  case Intrinsic::x86_mmx_psrli_d:
9391  case Intrinsic::x86_mmx_psrli_q:
9392  case Intrinsic::x86_mmx_psrai_w:
9393  case Intrinsic::x86_mmx_psrai_d: {
9394    SDValue ShAmt = Op.getOperand(2);
9395    if (isa<ConstantSDNode>(ShAmt))
9396      return SDValue();
9397
9398    unsigned NewIntNo = 0;
9399    EVT ShAmtVT = MVT::v4i32;
9400    switch (IntNo) {
9401    case Intrinsic::x86_sse2_pslli_w:
9402      NewIntNo = Intrinsic::x86_sse2_psll_w;
9403      break;
9404    case Intrinsic::x86_sse2_pslli_d:
9405      NewIntNo = Intrinsic::x86_sse2_psll_d;
9406      break;
9407    case Intrinsic::x86_sse2_pslli_q:
9408      NewIntNo = Intrinsic::x86_sse2_psll_q;
9409      break;
9410    case Intrinsic::x86_sse2_psrli_w:
9411      NewIntNo = Intrinsic::x86_sse2_psrl_w;
9412      break;
9413    case Intrinsic::x86_sse2_psrli_d:
9414      NewIntNo = Intrinsic::x86_sse2_psrl_d;
9415      break;
9416    case Intrinsic::x86_sse2_psrli_q:
9417      NewIntNo = Intrinsic::x86_sse2_psrl_q;
9418      break;
9419    case Intrinsic::x86_sse2_psrai_w:
9420      NewIntNo = Intrinsic::x86_sse2_psra_w;
9421      break;
9422    case Intrinsic::x86_sse2_psrai_d:
9423      NewIntNo = Intrinsic::x86_sse2_psra_d;
9424      break;
9425    case Intrinsic::x86_avx2_pslli_w:
9426      NewIntNo = Intrinsic::x86_avx2_psll_w;
9427      break;
9428    case Intrinsic::x86_avx2_pslli_d:
9429      NewIntNo = Intrinsic::x86_avx2_psll_d;
9430      break;
9431    case Intrinsic::x86_avx2_pslli_q:
9432      NewIntNo = Intrinsic::x86_avx2_psll_q;
9433      break;
9434    case Intrinsic::x86_avx2_psrli_w:
9435      NewIntNo = Intrinsic::x86_avx2_psrl_w;
9436      break;
9437    case Intrinsic::x86_avx2_psrli_d:
9438      NewIntNo = Intrinsic::x86_avx2_psrl_d;
9439      break;
9440    case Intrinsic::x86_avx2_psrli_q:
9441      NewIntNo = Intrinsic::x86_avx2_psrl_q;
9442      break;
9443    case Intrinsic::x86_avx2_psrai_w:
9444      NewIntNo = Intrinsic::x86_avx2_psra_w;
9445      break;
9446    case Intrinsic::x86_avx2_psrai_d:
9447      NewIntNo = Intrinsic::x86_avx2_psra_d;
9448      break;
9449    default: {
9450      ShAmtVT = MVT::v2i32;
9451      switch (IntNo) {
9452      case Intrinsic::x86_mmx_pslli_w:
9453        NewIntNo = Intrinsic::x86_mmx_psll_w;
9454        break;
9455      case Intrinsic::x86_mmx_pslli_d:
9456        NewIntNo = Intrinsic::x86_mmx_psll_d;
9457        break;
9458      case Intrinsic::x86_mmx_pslli_q:
9459        NewIntNo = Intrinsic::x86_mmx_psll_q;
9460        break;
9461      case Intrinsic::x86_mmx_psrli_w:
9462        NewIntNo = Intrinsic::x86_mmx_psrl_w;
9463        break;
9464      case Intrinsic::x86_mmx_psrli_d:
9465        NewIntNo = Intrinsic::x86_mmx_psrl_d;
9466        break;
9467      case Intrinsic::x86_mmx_psrli_q:
9468        NewIntNo = Intrinsic::x86_mmx_psrl_q;
9469        break;
9470      case Intrinsic::x86_mmx_psrai_w:
9471        NewIntNo = Intrinsic::x86_mmx_psra_w;
9472        break;
9473      case Intrinsic::x86_mmx_psrai_d:
9474        NewIntNo = Intrinsic::x86_mmx_psra_d;
9475        break;
9476      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9477      }
9478      break;
9479    }
9480    }
9481
9482    // The vector shift intrinsics with scalars uses 32b shift amounts but
9483    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9484    // to be zero.
9485    SDValue ShOps[4];
9486    ShOps[0] = ShAmt;
9487    ShOps[1] = DAG.getConstant(0, MVT::i32);
9488    if (ShAmtVT == MVT::v4i32) {
9489      ShOps[2] = DAG.getUNDEF(MVT::i32);
9490      ShOps[3] = DAG.getUNDEF(MVT::i32);
9491      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9492    } else {
9493      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9494// FIXME this must be lowered to get rid of the invalid type.
9495    }
9496
9497    EVT VT = Op.getValueType();
9498    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9499    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9500                       DAG.getConstant(NewIntNo, MVT::i32),
9501                       Op.getOperand(1), ShAmt);
9502  }
9503  }
9504}
9505
9506SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9507                                           SelectionDAG &DAG) const {
9508  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9509  MFI->setReturnAddressIsTaken(true);
9510
9511  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9512  DebugLoc dl = Op.getDebugLoc();
9513
9514  if (Depth > 0) {
9515    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9516    SDValue Offset =
9517      DAG.getConstant(TD->getPointerSize(),
9518                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9519    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9520                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9521                                   FrameAddr, Offset),
9522                       MachinePointerInfo(), false, false, false, 0);
9523  }
9524
9525  // Just load the return address.
9526  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9527  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9528                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9529}
9530
9531SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9532  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9533  MFI->setFrameAddressIsTaken(true);
9534
9535  EVT VT = Op.getValueType();
9536  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9537  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9538  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9539  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9540  while (Depth--)
9541    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9542                            MachinePointerInfo(),
9543                            false, false, false, 0);
9544  return FrameAddr;
9545}
9546
9547SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9548                                                     SelectionDAG &DAG) const {
9549  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9550}
9551
9552SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9553  MachineFunction &MF = DAG.getMachineFunction();
9554  SDValue Chain     = Op.getOperand(0);
9555  SDValue Offset    = Op.getOperand(1);
9556  SDValue Handler   = Op.getOperand(2);
9557  DebugLoc dl       = Op.getDebugLoc();
9558
9559  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9560                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9561                                     getPointerTy());
9562  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9563
9564  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9565                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9566  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9567  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9568                       false, false, 0);
9569  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9570  MF.getRegInfo().addLiveOut(StoreAddrReg);
9571
9572  return DAG.getNode(X86ISD::EH_RETURN, dl,
9573                     MVT::Other,
9574                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9575}
9576
9577SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9578                                                  SelectionDAG &DAG) const {
9579  return Op.getOperand(0);
9580}
9581
9582SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9583                                                SelectionDAG &DAG) const {
9584  SDValue Root = Op.getOperand(0);
9585  SDValue Trmp = Op.getOperand(1); // trampoline
9586  SDValue FPtr = Op.getOperand(2); // nested function
9587  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9588  DebugLoc dl  = Op.getDebugLoc();
9589
9590  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9591
9592  if (Subtarget->is64Bit()) {
9593    SDValue OutChains[6];
9594
9595    // Large code-model.
9596    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9597    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9598
9599    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9600    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9601
9602    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9603
9604    // Load the pointer to the nested function into R11.
9605    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9606    SDValue Addr = Trmp;
9607    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9608                                Addr, MachinePointerInfo(TrmpAddr),
9609                                false, false, 0);
9610
9611    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9612                       DAG.getConstant(2, MVT::i64));
9613    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9614                                MachinePointerInfo(TrmpAddr, 2),
9615                                false, false, 2);
9616
9617    // Load the 'nest' parameter value into R10.
9618    // R10 is specified in X86CallingConv.td
9619    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9620    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9621                       DAG.getConstant(10, MVT::i64));
9622    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9623                                Addr, MachinePointerInfo(TrmpAddr, 10),
9624                                false, false, 0);
9625
9626    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9627                       DAG.getConstant(12, MVT::i64));
9628    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9629                                MachinePointerInfo(TrmpAddr, 12),
9630                                false, false, 2);
9631
9632    // Jump to the nested function.
9633    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9634    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9635                       DAG.getConstant(20, MVT::i64));
9636    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9637                                Addr, MachinePointerInfo(TrmpAddr, 20),
9638                                false, false, 0);
9639
9640    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9641    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9642                       DAG.getConstant(22, MVT::i64));
9643    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9644                                MachinePointerInfo(TrmpAddr, 22),
9645                                false, false, 0);
9646
9647    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9648  } else {
9649    const Function *Func =
9650      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9651    CallingConv::ID CC = Func->getCallingConv();
9652    unsigned NestReg;
9653
9654    switch (CC) {
9655    default:
9656      llvm_unreachable("Unsupported calling convention");
9657    case CallingConv::C:
9658    case CallingConv::X86_StdCall: {
9659      // Pass 'nest' parameter in ECX.
9660      // Must be kept in sync with X86CallingConv.td
9661      NestReg = X86::ECX;
9662
9663      // Check that ECX wasn't needed by an 'inreg' parameter.
9664      FunctionType *FTy = Func->getFunctionType();
9665      const AttrListPtr &Attrs = Func->getAttributes();
9666
9667      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9668        unsigned InRegCount = 0;
9669        unsigned Idx = 1;
9670
9671        for (FunctionType::param_iterator I = FTy->param_begin(),
9672             E = FTy->param_end(); I != E; ++I, ++Idx)
9673          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9674            // FIXME: should only count parameters that are lowered to integers.
9675            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9676
9677        if (InRegCount > 2) {
9678          report_fatal_error("Nest register in use - reduce number of inreg"
9679                             " parameters!");
9680        }
9681      }
9682      break;
9683    }
9684    case CallingConv::X86_FastCall:
9685    case CallingConv::X86_ThisCall:
9686    case CallingConv::Fast:
9687      // Pass 'nest' parameter in EAX.
9688      // Must be kept in sync with X86CallingConv.td
9689      NestReg = X86::EAX;
9690      break;
9691    }
9692
9693    SDValue OutChains[4];
9694    SDValue Addr, Disp;
9695
9696    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9697                       DAG.getConstant(10, MVT::i32));
9698    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9699
9700    // This is storing the opcode for MOV32ri.
9701    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9702    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9703    OutChains[0] = DAG.getStore(Root, dl,
9704                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9705                                Trmp, MachinePointerInfo(TrmpAddr),
9706                                false, false, 0);
9707
9708    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9709                       DAG.getConstant(1, MVT::i32));
9710    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9711                                MachinePointerInfo(TrmpAddr, 1),
9712                                false, false, 1);
9713
9714    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9715    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9716                       DAG.getConstant(5, MVT::i32));
9717    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9718                                MachinePointerInfo(TrmpAddr, 5),
9719                                false, false, 1);
9720
9721    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9722                       DAG.getConstant(6, MVT::i32));
9723    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9724                                MachinePointerInfo(TrmpAddr, 6),
9725                                false, false, 1);
9726
9727    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9728  }
9729}
9730
9731SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9732                                            SelectionDAG &DAG) const {
9733  /*
9734   The rounding mode is in bits 11:10 of FPSR, and has the following
9735   settings:
9736     00 Round to nearest
9737     01 Round to -inf
9738     10 Round to +inf
9739     11 Round to 0
9740
9741  FLT_ROUNDS, on the other hand, expects the following:
9742    -1 Undefined
9743     0 Round to 0
9744     1 Round to nearest
9745     2 Round to +inf
9746     3 Round to -inf
9747
9748  To perform the conversion, we do:
9749    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9750  */
9751
9752  MachineFunction &MF = DAG.getMachineFunction();
9753  const TargetMachine &TM = MF.getTarget();
9754  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9755  unsigned StackAlignment = TFI.getStackAlignment();
9756  EVT VT = Op.getValueType();
9757  DebugLoc DL = Op.getDebugLoc();
9758
9759  // Save FP Control Word to stack slot
9760  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9761  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9762
9763
9764  MachineMemOperand *MMO =
9765   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9766                           MachineMemOperand::MOStore, 2, 2);
9767
9768  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9769  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9770                                          DAG.getVTList(MVT::Other),
9771                                          Ops, 2, MVT::i16, MMO);
9772
9773  // Load FP Control Word from stack slot
9774  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9775                            MachinePointerInfo(), false, false, false, 0);
9776
9777  // Transform as necessary
9778  SDValue CWD1 =
9779    DAG.getNode(ISD::SRL, DL, MVT::i16,
9780                DAG.getNode(ISD::AND, DL, MVT::i16,
9781                            CWD, DAG.getConstant(0x800, MVT::i16)),
9782                DAG.getConstant(11, MVT::i8));
9783  SDValue CWD2 =
9784    DAG.getNode(ISD::SRL, DL, MVT::i16,
9785                DAG.getNode(ISD::AND, DL, MVT::i16,
9786                            CWD, DAG.getConstant(0x400, MVT::i16)),
9787                DAG.getConstant(9, MVT::i8));
9788
9789  SDValue RetVal =
9790    DAG.getNode(ISD::AND, DL, MVT::i16,
9791                DAG.getNode(ISD::ADD, DL, MVT::i16,
9792                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9793                            DAG.getConstant(1, MVT::i16)),
9794                DAG.getConstant(3, MVT::i16));
9795
9796
9797  return DAG.getNode((VT.getSizeInBits() < 16 ?
9798                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9799}
9800
9801SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9802  EVT VT = Op.getValueType();
9803  EVT OpVT = VT;
9804  unsigned NumBits = VT.getSizeInBits();
9805  DebugLoc dl = Op.getDebugLoc();
9806
9807  Op = Op.getOperand(0);
9808  if (VT == MVT::i8) {
9809    // Zero extend to i32 since there is not an i8 bsr.
9810    OpVT = MVT::i32;
9811    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9812  }
9813
9814  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9815  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9816  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9817
9818  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9819  SDValue Ops[] = {
9820    Op,
9821    DAG.getConstant(NumBits+NumBits-1, OpVT),
9822    DAG.getConstant(X86::COND_E, MVT::i8),
9823    Op.getValue(1)
9824  };
9825  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9826
9827  // Finally xor with NumBits-1.
9828  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9829
9830  if (VT == MVT::i8)
9831    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9832  return Op;
9833}
9834
9835SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
9836                                                SelectionDAG &DAG) const {
9837  EVT VT = Op.getValueType();
9838  EVT OpVT = VT;
9839  unsigned NumBits = VT.getSizeInBits();
9840  DebugLoc dl = Op.getDebugLoc();
9841
9842  Op = Op.getOperand(0);
9843  if (VT == MVT::i8) {
9844    // Zero extend to i32 since there is not an i8 bsr.
9845    OpVT = MVT::i32;
9846    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9847  }
9848
9849  // Issue a bsr (scan bits in reverse).
9850  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9851  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9852
9853  // And xor with NumBits-1.
9854  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9855
9856  if (VT == MVT::i8)
9857    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9858  return Op;
9859}
9860
9861SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9862  EVT VT = Op.getValueType();
9863  unsigned NumBits = VT.getSizeInBits();
9864  DebugLoc dl = Op.getDebugLoc();
9865  Op = Op.getOperand(0);
9866
9867  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9868  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9869  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9870
9871  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9872  SDValue Ops[] = {
9873    Op,
9874    DAG.getConstant(NumBits, VT),
9875    DAG.getConstant(X86::COND_E, MVT::i8),
9876    Op.getValue(1)
9877  };
9878  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
9879}
9880
9881// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9882// ones, and then concatenate the result back.
9883static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9884  EVT VT = Op.getValueType();
9885
9886  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9887         "Unsupported value type for operation");
9888
9889  int NumElems = VT.getVectorNumElements();
9890  DebugLoc dl = Op.getDebugLoc();
9891  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9892  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9893
9894  // Extract the LHS vectors
9895  SDValue LHS = Op.getOperand(0);
9896  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9897  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9898
9899  // Extract the RHS vectors
9900  SDValue RHS = Op.getOperand(1);
9901  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9902  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9903
9904  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9905  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9906
9907  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9908                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9909                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9910}
9911
9912SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9913  assert(Op.getValueType().getSizeInBits() == 256 &&
9914         Op.getValueType().isInteger() &&
9915         "Only handle AVX 256-bit vector integer operation");
9916  return Lower256IntArith(Op, DAG);
9917}
9918
9919SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9920  assert(Op.getValueType().getSizeInBits() == 256 &&
9921         Op.getValueType().isInteger() &&
9922         "Only handle AVX 256-bit vector integer operation");
9923  return Lower256IntArith(Op, DAG);
9924}
9925
9926SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9927  EVT VT = Op.getValueType();
9928
9929  // Decompose 256-bit ops into smaller 128-bit ops.
9930  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
9931    return Lower256IntArith(Op, DAG);
9932
9933  DebugLoc dl = Op.getDebugLoc();
9934
9935  SDValue A = Op.getOperand(0);
9936  SDValue B = Op.getOperand(1);
9937
9938  if (VT == MVT::v4i64) {
9939    assert(Subtarget->hasAVX2() && "Lowering v4i64 multiply requires AVX2");
9940
9941    //  ulong2 Ahi = __builtin_ia32_psrlqi256( a, 32);
9942    //  ulong2 Bhi = __builtin_ia32_psrlqi256( b, 32);
9943    //  ulong2 AloBlo = __builtin_ia32_pmuludq256( a, b );
9944    //  ulong2 AloBhi = __builtin_ia32_pmuludq256( a, Bhi );
9945    //  ulong2 AhiBlo = __builtin_ia32_pmuludq256( Ahi, b );
9946    //
9947    //  AloBhi = __builtin_ia32_psllqi256( AloBhi, 32 );
9948    //  AhiBlo = __builtin_ia32_psllqi256( AhiBlo, 32 );
9949    //  return AloBlo + AloBhi + AhiBlo;
9950
9951    SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9952                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9953                         A, DAG.getConstant(32, MVT::i32));
9954    SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9955                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9956                         B, DAG.getConstant(32, MVT::i32));
9957    SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9958                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9959                         A, B);
9960    SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9961                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9962                         A, Bhi);
9963    SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9964                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9965                         Ahi, B);
9966    AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9967                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
9968                         AloBhi, DAG.getConstant(32, MVT::i32));
9969    AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9970                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
9971                         AhiBlo, DAG.getConstant(32, MVT::i32));
9972    SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9973    Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9974    return Res;
9975  }
9976
9977  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9978
9979  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9980  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9981  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9982  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9983  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9984  //
9985  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9986  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9987  //  return AloBlo + AloBhi + AhiBlo;
9988
9989  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9990                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9991                       A, DAG.getConstant(32, MVT::i32));
9992  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9993                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9994                       B, DAG.getConstant(32, MVT::i32));
9995  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9996                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9997                       A, B);
9998  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9999                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10000                       A, Bhi);
10001  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10002                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10003                       Ahi, B);
10004  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10005                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10006                       AloBhi, DAG.getConstant(32, MVT::i32));
10007  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10008                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10009                       AhiBlo, DAG.getConstant(32, MVT::i32));
10010  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10011  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10012  return Res;
10013}
10014
10015SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10016
10017  EVT VT = Op.getValueType();
10018  DebugLoc dl = Op.getDebugLoc();
10019  SDValue R = Op.getOperand(0);
10020  SDValue Amt = Op.getOperand(1);
10021  LLVMContext *Context = DAG.getContext();
10022
10023  if (!Subtarget->hasSSE2())
10024    return SDValue();
10025
10026  // Optimize shl/srl/sra with constant shift amount.
10027  if (isSplatVector(Amt.getNode())) {
10028    SDValue SclrAmt = Amt->getOperand(0);
10029    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10030      uint64_t ShiftAmt = C->getZExtValue();
10031
10032      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SHL) {
10033        // Make a large shift.
10034        SDValue SHL =
10035          DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10036                      DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10037                      R, DAG.getConstant(ShiftAmt, MVT::i32));
10038        // Zero out the rightmost bits.
10039        SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10040                                                       MVT::i8));
10041        return DAG.getNode(ISD::AND, dl, VT, SHL,
10042                           DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10043      }
10044
10045      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
10046       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10047                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10048                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10049
10050      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
10051       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10052                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10053                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10054
10055      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
10056       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10057                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10058                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10059
10060      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRL) {
10061        // Make a large shift.
10062        SDValue SRL =
10063          DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10064                      DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10065                      R, DAG.getConstant(ShiftAmt, MVT::i32));
10066        // Zero out the leftmost bits.
10067        SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10068                                                       MVT::i8));
10069        return DAG.getNode(ISD::AND, dl, VT, SRL,
10070                           DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10071      }
10072
10073      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
10074       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10075                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10076                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10077
10078      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
10079       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10080                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10081                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10082
10083      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
10084       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10085                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10086                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10087
10088      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
10089       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10090                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10091                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10092
10093      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
10094       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10095                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10096                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10097
10098      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRA) {
10099        if (ShiftAmt == 7) {
10100          // R s>> 7  ===  R s< 0
10101          SDValue Zeros = getZeroVector(VT, /* HasSSE2 */true,
10102                                        /* HasAVX2 */false, DAG, dl);
10103          return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10104        }
10105
10106        // R s>> a === ((R u>> a) ^ m) - m
10107        SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10108        SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10109                                                       MVT::i8));
10110        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10111        Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10112        Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10113        return Res;
10114      }
10115
10116      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10117        if (Op.getOpcode() == ISD::SHL) {
10118          // Make a large shift.
10119          SDValue SHL =
10120            DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10121                        DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
10122                        R, DAG.getConstant(ShiftAmt, MVT::i32));
10123          // Zero out the rightmost bits.
10124          SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10125                                                         MVT::i8));
10126          return DAG.getNode(ISD::AND, dl, VT, SHL,
10127                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10128        }
10129        if (Op.getOpcode() == ISD::SRL) {
10130          // Make a large shift.
10131          SDValue SRL =
10132            DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10133                        DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
10134                        R, DAG.getConstant(ShiftAmt, MVT::i32));
10135          // Zero out the leftmost bits.
10136          SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10137                                                         MVT::i8));
10138          return DAG.getNode(ISD::AND, dl, VT, SRL,
10139                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10140        }
10141        if (Op.getOpcode() == ISD::SRA) {
10142          if (ShiftAmt == 7) {
10143            // R s>> 7  ===  R s< 0
10144            SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */,
10145                                          true /* HasAVX2 */, DAG, dl);
10146            return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10147          }
10148
10149          // R s>> a === ((R u>> a) ^ m) - m
10150          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10151          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10152                                                         MVT::i8));
10153          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10154          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10155          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10156          return Res;
10157        }
10158      }
10159    }
10160  }
10161
10162  // Lower SHL with variable shift amount.
10163  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10164    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10165                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10166                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
10167
10168    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
10169
10170    std::vector<Constant*> CV(4, CI);
10171    Constant *C = ConstantVector::get(CV);
10172    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10173    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10174                                 MachinePointerInfo::getConstantPool(),
10175                                 false, false, false, 16);
10176
10177    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10178    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10179    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10180    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10181  }
10182  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10183    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10184
10185    // a = a << 5;
10186    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10187                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10188                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
10189
10190    // Turn 'a' into a mask suitable for VSELECT
10191    SDValue VSelM = DAG.getConstant(0x80, VT);
10192    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10193    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10194                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10195                        OpVSel, VSelM);
10196
10197    SDValue CM1 = DAG.getConstant(0x0f, VT);
10198    SDValue CM2 = DAG.getConstant(0x3f, VT);
10199
10200    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10201    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10202    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10203                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10204                    DAG.getConstant(4, MVT::i32));
10205    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10206
10207    // a += a
10208    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10209    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10210    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10211                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10212                        OpVSel, VSelM);
10213
10214    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10215    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10216    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10217                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10218                    DAG.getConstant(2, MVT::i32));
10219    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10220
10221    // a += a
10222    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10223    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10224    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10225                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10226                        OpVSel, VSelM);
10227
10228    // return VSELECT(r, r+r, a);
10229    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10230                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10231    return R;
10232  }
10233
10234  // Decompose 256-bit shifts into smaller 128-bit shifts.
10235  if (VT.getSizeInBits() == 256) {
10236    int NumElems = VT.getVectorNumElements();
10237    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10238    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10239
10240    // Extract the two vectors
10241    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10242    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10243                                     DAG, dl);
10244
10245    // Recreate the shift amount vectors
10246    SDValue Amt1, Amt2;
10247    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10248      // Constant shift amount
10249      SmallVector<SDValue, 4> Amt1Csts;
10250      SmallVector<SDValue, 4> Amt2Csts;
10251      for (int i = 0; i < NumElems/2; ++i)
10252        Amt1Csts.push_back(Amt->getOperand(i));
10253      for (int i = NumElems/2; i < NumElems; ++i)
10254        Amt2Csts.push_back(Amt->getOperand(i));
10255
10256      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10257                                 &Amt1Csts[0], NumElems/2);
10258      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10259                                 &Amt2Csts[0], NumElems/2);
10260    } else {
10261      // Variable shift amount
10262      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10263      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10264                                 DAG, dl);
10265    }
10266
10267    // Issue new vector shifts for the smaller types
10268    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10269    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10270
10271    // Concatenate the result back
10272    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10273  }
10274
10275  return SDValue();
10276}
10277
10278SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10279  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10280  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10281  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10282  // has only one use.
10283  SDNode *N = Op.getNode();
10284  SDValue LHS = N->getOperand(0);
10285  SDValue RHS = N->getOperand(1);
10286  unsigned BaseOp = 0;
10287  unsigned Cond = 0;
10288  DebugLoc DL = Op.getDebugLoc();
10289  switch (Op.getOpcode()) {
10290  default: llvm_unreachable("Unknown ovf instruction!");
10291  case ISD::SADDO:
10292    // A subtract of one will be selected as a INC. Note that INC doesn't
10293    // set CF, so we can't do this for UADDO.
10294    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10295      if (C->isOne()) {
10296        BaseOp = X86ISD::INC;
10297        Cond = X86::COND_O;
10298        break;
10299      }
10300    BaseOp = X86ISD::ADD;
10301    Cond = X86::COND_O;
10302    break;
10303  case ISD::UADDO:
10304    BaseOp = X86ISD::ADD;
10305    Cond = X86::COND_B;
10306    break;
10307  case ISD::SSUBO:
10308    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10309    // set CF, so we can't do this for USUBO.
10310    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10311      if (C->isOne()) {
10312        BaseOp = X86ISD::DEC;
10313        Cond = X86::COND_O;
10314        break;
10315      }
10316    BaseOp = X86ISD::SUB;
10317    Cond = X86::COND_O;
10318    break;
10319  case ISD::USUBO:
10320    BaseOp = X86ISD::SUB;
10321    Cond = X86::COND_B;
10322    break;
10323  case ISD::SMULO:
10324    BaseOp = X86ISD::SMUL;
10325    Cond = X86::COND_O;
10326    break;
10327  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10328    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10329                                 MVT::i32);
10330    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10331
10332    SDValue SetCC =
10333      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10334                  DAG.getConstant(X86::COND_O, MVT::i32),
10335                  SDValue(Sum.getNode(), 2));
10336
10337    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10338  }
10339  }
10340
10341  // Also sets EFLAGS.
10342  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10343  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10344
10345  SDValue SetCC =
10346    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10347                DAG.getConstant(Cond, MVT::i32),
10348                SDValue(Sum.getNode(), 1));
10349
10350  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10351}
10352
10353SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10354                                                  SelectionDAG &DAG) const {
10355  DebugLoc dl = Op.getDebugLoc();
10356  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10357  EVT VT = Op.getValueType();
10358
10359  if (Subtarget->hasSSE2() && VT.isVector()) {
10360    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10361                        ExtraVT.getScalarType().getSizeInBits();
10362    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10363
10364    unsigned SHLIntrinsicsID = 0;
10365    unsigned SRAIntrinsicsID = 0;
10366    switch (VT.getSimpleVT().SimpleTy) {
10367      default:
10368        return SDValue();
10369      case MVT::v4i32:
10370        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10371        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10372        break;
10373      case MVT::v8i16:
10374        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10375        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10376        break;
10377      case MVT::v8i32:
10378      case MVT::v16i16:
10379        if (!Subtarget->hasAVX())
10380          return SDValue();
10381        if (!Subtarget->hasAVX2()) {
10382          // needs to be split
10383          int NumElems = VT.getVectorNumElements();
10384          SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10385          SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10386
10387          // Extract the LHS vectors
10388          SDValue LHS = Op.getOperand(0);
10389          SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10390          SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10391
10392          MVT EltVT = VT.getVectorElementType().getSimpleVT();
10393          EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10394
10395          EVT ExtraEltVT = ExtraVT.getVectorElementType();
10396          int ExtraNumElems = ExtraVT.getVectorNumElements();
10397          ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10398                                     ExtraNumElems/2);
10399          SDValue Extra = DAG.getValueType(ExtraVT);
10400
10401          LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10402          LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10403
10404          return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10405        }
10406        if (VT == MVT::v8i32) {
10407          SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_d;
10408          SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_d;
10409        } else {
10410          SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_w;
10411          SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_w;
10412        }
10413    }
10414
10415    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10416                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10417                         Op.getOperand(0), ShAmt);
10418
10419    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10420                       DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10421                       Tmp1, ShAmt);
10422  }
10423
10424  return SDValue();
10425}
10426
10427
10428SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10429  DebugLoc dl = Op.getDebugLoc();
10430
10431  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10432  // There isn't any reason to disable it if the target processor supports it.
10433  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10434    SDValue Chain = Op.getOperand(0);
10435    SDValue Zero = DAG.getConstant(0, MVT::i32);
10436    SDValue Ops[] = {
10437      DAG.getRegister(X86::ESP, MVT::i32), // Base
10438      DAG.getTargetConstant(1, MVT::i8),   // Scale
10439      DAG.getRegister(0, MVT::i32),        // Index
10440      DAG.getTargetConstant(0, MVT::i32),  // Disp
10441      DAG.getRegister(0, MVT::i32),        // Segment.
10442      Zero,
10443      Chain
10444    };
10445    SDNode *Res =
10446      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10447                          array_lengthof(Ops));
10448    return SDValue(Res, 0);
10449  }
10450
10451  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10452  if (!isDev)
10453    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10454
10455  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10456  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10457  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10458  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10459
10460  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10461  if (!Op1 && !Op2 && !Op3 && Op4)
10462    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10463
10464  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10465  if (Op1 && !Op2 && !Op3 && !Op4)
10466    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10467
10468  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10469  //           (MFENCE)>;
10470  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10471}
10472
10473SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10474                                             SelectionDAG &DAG) const {
10475  DebugLoc dl = Op.getDebugLoc();
10476  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10477    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10478  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10479    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10480
10481  // The only fence that needs an instruction is a sequentially-consistent
10482  // cross-thread fence.
10483  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10484    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10485    // no-sse2). There isn't any reason to disable it if the target processor
10486    // supports it.
10487    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10488      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10489
10490    SDValue Chain = Op.getOperand(0);
10491    SDValue Zero = DAG.getConstant(0, MVT::i32);
10492    SDValue Ops[] = {
10493      DAG.getRegister(X86::ESP, MVT::i32), // Base
10494      DAG.getTargetConstant(1, MVT::i8),   // Scale
10495      DAG.getRegister(0, MVT::i32),        // Index
10496      DAG.getTargetConstant(0, MVT::i32),  // Disp
10497      DAG.getRegister(0, MVT::i32),        // Segment.
10498      Zero,
10499      Chain
10500    };
10501    SDNode *Res =
10502      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10503                         array_lengthof(Ops));
10504    return SDValue(Res, 0);
10505  }
10506
10507  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10508  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10509}
10510
10511
10512SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10513  EVT T = Op.getValueType();
10514  DebugLoc DL = Op.getDebugLoc();
10515  unsigned Reg = 0;
10516  unsigned size = 0;
10517  switch(T.getSimpleVT().SimpleTy) {
10518  default:
10519    assert(false && "Invalid value type!");
10520  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10521  case MVT::i16: Reg = X86::AX;  size = 2; break;
10522  case MVT::i32: Reg = X86::EAX; size = 4; break;
10523  case MVT::i64:
10524    assert(Subtarget->is64Bit() && "Node not type legal!");
10525    Reg = X86::RAX; size = 8;
10526    break;
10527  }
10528  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10529                                    Op.getOperand(2), SDValue());
10530  SDValue Ops[] = { cpIn.getValue(0),
10531                    Op.getOperand(1),
10532                    Op.getOperand(3),
10533                    DAG.getTargetConstant(size, MVT::i8),
10534                    cpIn.getValue(1) };
10535  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10536  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10537  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10538                                           Ops, 5, T, MMO);
10539  SDValue cpOut =
10540    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10541  return cpOut;
10542}
10543
10544SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10545                                                 SelectionDAG &DAG) const {
10546  assert(Subtarget->is64Bit() && "Result not type legalized?");
10547  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10548  SDValue TheChain = Op.getOperand(0);
10549  DebugLoc dl = Op.getDebugLoc();
10550  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10551  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10552  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10553                                   rax.getValue(2));
10554  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10555                            DAG.getConstant(32, MVT::i8));
10556  SDValue Ops[] = {
10557    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10558    rdx.getValue(1)
10559  };
10560  return DAG.getMergeValues(Ops, 2, dl);
10561}
10562
10563SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10564                                            SelectionDAG &DAG) const {
10565  EVT SrcVT = Op.getOperand(0).getValueType();
10566  EVT DstVT = Op.getValueType();
10567  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10568         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10569  assert((DstVT == MVT::i64 ||
10570          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10571         "Unexpected custom BITCAST");
10572  // i64 <=> MMX conversions are Legal.
10573  if (SrcVT==MVT::i64 && DstVT.isVector())
10574    return Op;
10575  if (DstVT==MVT::i64 && SrcVT.isVector())
10576    return Op;
10577  // MMX <=> MMX conversions are Legal.
10578  if (SrcVT.isVector() && DstVT.isVector())
10579    return Op;
10580  // All other conversions need to be expanded.
10581  return SDValue();
10582}
10583
10584SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10585  SDNode *Node = Op.getNode();
10586  DebugLoc dl = Node->getDebugLoc();
10587  EVT T = Node->getValueType(0);
10588  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10589                              DAG.getConstant(0, T), Node->getOperand(2));
10590  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10591                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10592                       Node->getOperand(0),
10593                       Node->getOperand(1), negOp,
10594                       cast<AtomicSDNode>(Node)->getSrcValue(),
10595                       cast<AtomicSDNode>(Node)->getAlignment(),
10596                       cast<AtomicSDNode>(Node)->getOrdering(),
10597                       cast<AtomicSDNode>(Node)->getSynchScope());
10598}
10599
10600static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10601  SDNode *Node = Op.getNode();
10602  DebugLoc dl = Node->getDebugLoc();
10603  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10604
10605  // Convert seq_cst store -> xchg
10606  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10607  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10608  //        (The only way to get a 16-byte store is cmpxchg16b)
10609  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10610  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10611      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10612    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10613                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10614                                 Node->getOperand(0),
10615                                 Node->getOperand(1), Node->getOperand(2),
10616                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10617                                 cast<AtomicSDNode>(Node)->getOrdering(),
10618                                 cast<AtomicSDNode>(Node)->getSynchScope());
10619    return Swap.getValue(1);
10620  }
10621  // Other atomic stores have a simple pattern.
10622  return Op;
10623}
10624
10625static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10626  EVT VT = Op.getNode()->getValueType(0);
10627
10628  // Let legalize expand this if it isn't a legal type yet.
10629  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10630    return SDValue();
10631
10632  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10633
10634  unsigned Opc;
10635  bool ExtraOp = false;
10636  switch (Op.getOpcode()) {
10637  default: assert(0 && "Invalid code");
10638  case ISD::ADDC: Opc = X86ISD::ADD; break;
10639  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10640  case ISD::SUBC: Opc = X86ISD::SUB; break;
10641  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10642  }
10643
10644  if (!ExtraOp)
10645    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10646                       Op.getOperand(1));
10647  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10648                     Op.getOperand(1), Op.getOperand(2));
10649}
10650
10651/// LowerOperation - Provide custom lowering hooks for some operations.
10652///
10653SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10654  switch (Op.getOpcode()) {
10655  default: llvm_unreachable("Should not custom lower this!");
10656  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10657  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10658  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10659  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10660  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10661  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10662  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10663  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10664  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10665  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10666  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10667  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10668  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10669  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10670  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10671  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10672  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10673  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10674  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10675  case ISD::SHL_PARTS:
10676  case ISD::SRA_PARTS:
10677  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10678  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10679  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10680  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10681  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10682  case ISD::FABS:               return LowerFABS(Op, DAG);
10683  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10684  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10685  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10686  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10687  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10688  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10689  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10690  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10691  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10692  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10693  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10694  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10695  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10696  case ISD::FRAME_TO_ARGS_OFFSET:
10697                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10698  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10699  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10700  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10701  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10702  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10703  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10704  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10705  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10706  case ISD::MUL:                return LowerMUL(Op, DAG);
10707  case ISD::SRA:
10708  case ISD::SRL:
10709  case ISD::SHL:                return LowerShift(Op, DAG);
10710  case ISD::SADDO:
10711  case ISD::UADDO:
10712  case ISD::SSUBO:
10713  case ISD::USUBO:
10714  case ISD::SMULO:
10715  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10716  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10717  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10718  case ISD::ADDC:
10719  case ISD::ADDE:
10720  case ISD::SUBC:
10721  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10722  case ISD::ADD:                return LowerADD(Op, DAG);
10723  case ISD::SUB:                return LowerSUB(Op, DAG);
10724  }
10725}
10726
10727static void ReplaceATOMIC_LOAD(SDNode *Node,
10728                                  SmallVectorImpl<SDValue> &Results,
10729                                  SelectionDAG &DAG) {
10730  DebugLoc dl = Node->getDebugLoc();
10731  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10732
10733  // Convert wide load -> cmpxchg8b/cmpxchg16b
10734  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10735  //        (The only way to get a 16-byte load is cmpxchg16b)
10736  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10737  SDValue Zero = DAG.getConstant(0, VT);
10738  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10739                               Node->getOperand(0),
10740                               Node->getOperand(1), Zero, Zero,
10741                               cast<AtomicSDNode>(Node)->getMemOperand(),
10742                               cast<AtomicSDNode>(Node)->getOrdering(),
10743                               cast<AtomicSDNode>(Node)->getSynchScope());
10744  Results.push_back(Swap.getValue(0));
10745  Results.push_back(Swap.getValue(1));
10746}
10747
10748void X86TargetLowering::
10749ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10750                        SelectionDAG &DAG, unsigned NewOp) const {
10751  DebugLoc dl = Node->getDebugLoc();
10752  assert (Node->getValueType(0) == MVT::i64 &&
10753          "Only know how to expand i64 atomics");
10754
10755  SDValue Chain = Node->getOperand(0);
10756  SDValue In1 = Node->getOperand(1);
10757  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10758                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10759  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10760                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10761  SDValue Ops[] = { Chain, In1, In2L, In2H };
10762  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10763  SDValue Result =
10764    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10765                            cast<MemSDNode>(Node)->getMemOperand());
10766  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10767  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10768  Results.push_back(Result.getValue(2));
10769}
10770
10771/// ReplaceNodeResults - Replace a node with an illegal result type
10772/// with a new node built out of custom code.
10773void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10774                                           SmallVectorImpl<SDValue>&Results,
10775                                           SelectionDAG &DAG) const {
10776  DebugLoc dl = N->getDebugLoc();
10777  switch (N->getOpcode()) {
10778  default:
10779    assert(false && "Do not know how to custom type legalize this operation!");
10780    return;
10781  case ISD::SIGN_EXTEND_INREG:
10782  case ISD::ADDC:
10783  case ISD::ADDE:
10784  case ISD::SUBC:
10785  case ISD::SUBE:
10786    // We don't want to expand or promote these.
10787    return;
10788  case ISD::FP_TO_SINT: {
10789    std::pair<SDValue,SDValue> Vals =
10790        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10791    SDValue FIST = Vals.first, StackSlot = Vals.second;
10792    if (FIST.getNode() != 0) {
10793      EVT VT = N->getValueType(0);
10794      // Return a load from the stack slot.
10795      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10796                                    MachinePointerInfo(),
10797                                    false, false, false, 0));
10798    }
10799    return;
10800  }
10801  case ISD::READCYCLECOUNTER: {
10802    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10803    SDValue TheChain = N->getOperand(0);
10804    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10805    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10806                                     rd.getValue(1));
10807    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10808                                     eax.getValue(2));
10809    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10810    SDValue Ops[] = { eax, edx };
10811    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10812    Results.push_back(edx.getValue(1));
10813    return;
10814  }
10815  case ISD::ATOMIC_CMP_SWAP: {
10816    EVT T = N->getValueType(0);
10817    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10818    bool Regs64bit = T == MVT::i128;
10819    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10820    SDValue cpInL, cpInH;
10821    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10822                        DAG.getConstant(0, HalfT));
10823    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10824                        DAG.getConstant(1, HalfT));
10825    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10826                             Regs64bit ? X86::RAX : X86::EAX,
10827                             cpInL, SDValue());
10828    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10829                             Regs64bit ? X86::RDX : X86::EDX,
10830                             cpInH, cpInL.getValue(1));
10831    SDValue swapInL, swapInH;
10832    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10833                          DAG.getConstant(0, HalfT));
10834    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10835                          DAG.getConstant(1, HalfT));
10836    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10837                               Regs64bit ? X86::RBX : X86::EBX,
10838                               swapInL, cpInH.getValue(1));
10839    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10840                               Regs64bit ? X86::RCX : X86::ECX,
10841                               swapInH, swapInL.getValue(1));
10842    SDValue Ops[] = { swapInH.getValue(0),
10843                      N->getOperand(1),
10844                      swapInH.getValue(1) };
10845    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10846    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10847    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10848                                  X86ISD::LCMPXCHG8_DAG;
10849    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10850                                             Ops, 3, T, MMO);
10851    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10852                                        Regs64bit ? X86::RAX : X86::EAX,
10853                                        HalfT, Result.getValue(1));
10854    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10855                                        Regs64bit ? X86::RDX : X86::EDX,
10856                                        HalfT, cpOutL.getValue(2));
10857    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10858    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10859    Results.push_back(cpOutH.getValue(1));
10860    return;
10861  }
10862  case ISD::ATOMIC_LOAD_ADD:
10863    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10864    return;
10865  case ISD::ATOMIC_LOAD_AND:
10866    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10867    return;
10868  case ISD::ATOMIC_LOAD_NAND:
10869    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10870    return;
10871  case ISD::ATOMIC_LOAD_OR:
10872    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10873    return;
10874  case ISD::ATOMIC_LOAD_SUB:
10875    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10876    return;
10877  case ISD::ATOMIC_LOAD_XOR:
10878    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10879    return;
10880  case ISD::ATOMIC_SWAP:
10881    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10882    return;
10883  case ISD::ATOMIC_LOAD:
10884    ReplaceATOMIC_LOAD(N, Results, DAG);
10885  }
10886}
10887
10888const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10889  switch (Opcode) {
10890  default: return NULL;
10891  case X86ISD::BSF:                return "X86ISD::BSF";
10892  case X86ISD::BSR:                return "X86ISD::BSR";
10893  case X86ISD::SHLD:               return "X86ISD::SHLD";
10894  case X86ISD::SHRD:               return "X86ISD::SHRD";
10895  case X86ISD::FAND:               return "X86ISD::FAND";
10896  case X86ISD::FOR:                return "X86ISD::FOR";
10897  case X86ISD::FXOR:               return "X86ISD::FXOR";
10898  case X86ISD::FSRL:               return "X86ISD::FSRL";
10899  case X86ISD::FILD:               return "X86ISD::FILD";
10900  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10901  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10902  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10903  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10904  case X86ISD::FLD:                return "X86ISD::FLD";
10905  case X86ISD::FST:                return "X86ISD::FST";
10906  case X86ISD::CALL:               return "X86ISD::CALL";
10907  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10908  case X86ISD::BT:                 return "X86ISD::BT";
10909  case X86ISD::CMP:                return "X86ISD::CMP";
10910  case X86ISD::COMI:               return "X86ISD::COMI";
10911  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10912  case X86ISD::SETCC:              return "X86ISD::SETCC";
10913  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10914  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10915  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10916  case X86ISD::CMOV:               return "X86ISD::CMOV";
10917  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10918  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10919  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10920  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10921  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10922  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10923  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10924  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10925  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10926  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10927  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10928  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10929  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10930  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10931  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
10932  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
10933  case X86ISD::HADD:               return "X86ISD::HADD";
10934  case X86ISD::HSUB:               return "X86ISD::HSUB";
10935  case X86ISD::FHADD:              return "X86ISD::FHADD";
10936  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
10937  case X86ISD::FMAX:               return "X86ISD::FMAX";
10938  case X86ISD::FMIN:               return "X86ISD::FMIN";
10939  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10940  case X86ISD::FRCP:               return "X86ISD::FRCP";
10941  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
10942  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
10943  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
10944  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
10945  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
10946  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
10947  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
10948  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
10949  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
10950  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
10951  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
10952  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
10953  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
10954  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
10955  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
10956  case X86ISD::VSHL:               return "X86ISD::VSHL";
10957  case X86ISD::VSRL:               return "X86ISD::VSRL";
10958  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
10959  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
10960  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
10961  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
10962  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
10963  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
10964  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
10965  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
10966  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
10967  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
10968  case X86ISD::ADD:                return "X86ISD::ADD";
10969  case X86ISD::SUB:                return "X86ISD::SUB";
10970  case X86ISD::ADC:                return "X86ISD::ADC";
10971  case X86ISD::SBB:                return "X86ISD::SBB";
10972  case X86ISD::SMUL:               return "X86ISD::SMUL";
10973  case X86ISD::UMUL:               return "X86ISD::UMUL";
10974  case X86ISD::INC:                return "X86ISD::INC";
10975  case X86ISD::DEC:                return "X86ISD::DEC";
10976  case X86ISD::OR:                 return "X86ISD::OR";
10977  case X86ISD::XOR:                return "X86ISD::XOR";
10978  case X86ISD::AND:                return "X86ISD::AND";
10979  case X86ISD::ANDN:               return "X86ISD::ANDN";
10980  case X86ISD::BLSI:               return "X86ISD::BLSI";
10981  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
10982  case X86ISD::BLSR:               return "X86ISD::BLSR";
10983  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
10984  case X86ISD::PTEST:              return "X86ISD::PTEST";
10985  case X86ISD::TESTP:              return "X86ISD::TESTP";
10986  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
10987  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
10988  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
10989  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10990  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
10991  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10992  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10993  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10994  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
10995  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
10996  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
10997  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
10998  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
10999  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11000  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11001  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11002  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11003  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11004  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11005  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11006  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11007  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11008  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11009  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11010  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11011  }
11012}
11013
11014// isLegalAddressingMode - Return true if the addressing mode represented
11015// by AM is legal for this target, for a load/store of the specified type.
11016bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11017                                              Type *Ty) const {
11018  // X86 supports extremely general addressing modes.
11019  CodeModel::Model M = getTargetMachine().getCodeModel();
11020  Reloc::Model R = getTargetMachine().getRelocationModel();
11021
11022  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11023  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11024    return false;
11025
11026  if (AM.BaseGV) {
11027    unsigned GVFlags =
11028      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11029
11030    // If a reference to this global requires an extra load, we can't fold it.
11031    if (isGlobalStubReference(GVFlags))
11032      return false;
11033
11034    // If BaseGV requires a register for the PIC base, we cannot also have a
11035    // BaseReg specified.
11036    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11037      return false;
11038
11039    // If lower 4G is not available, then we must use rip-relative addressing.
11040    if ((M != CodeModel::Small || R != Reloc::Static) &&
11041        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11042      return false;
11043  }
11044
11045  switch (AM.Scale) {
11046  case 0:
11047  case 1:
11048  case 2:
11049  case 4:
11050  case 8:
11051    // These scales always work.
11052    break;
11053  case 3:
11054  case 5:
11055  case 9:
11056    // These scales are formed with basereg+scalereg.  Only accept if there is
11057    // no basereg yet.
11058    if (AM.HasBaseReg)
11059      return false;
11060    break;
11061  default:  // Other stuff never works.
11062    return false;
11063  }
11064
11065  return true;
11066}
11067
11068
11069bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11070  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11071    return false;
11072  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11073  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11074  if (NumBits1 <= NumBits2)
11075    return false;
11076  return true;
11077}
11078
11079bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11080  if (!VT1.isInteger() || !VT2.isInteger())
11081    return false;
11082  unsigned NumBits1 = VT1.getSizeInBits();
11083  unsigned NumBits2 = VT2.getSizeInBits();
11084  if (NumBits1 <= NumBits2)
11085    return false;
11086  return true;
11087}
11088
11089bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11090  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11091  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11092}
11093
11094bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11095  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11096  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11097}
11098
11099bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11100  // i16 instructions are longer (0x66 prefix) and potentially slower.
11101  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11102}
11103
11104/// isShuffleMaskLegal - Targets can use this to indicate that they only
11105/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11106/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11107/// are assumed to be legal.
11108bool
11109X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11110                                      EVT VT) const {
11111  // Very little shuffling can be done for 64-bit vectors right now.
11112  if (VT.getSizeInBits() == 64)
11113    return false;
11114
11115  // FIXME: pshufb, blends, shifts.
11116  return (VT.getVectorNumElements() == 2 ||
11117          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11118          isMOVLMask(M, VT) ||
11119          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11120          isPSHUFDMask(M, VT) ||
11121          isPSHUFHWMask(M, VT) ||
11122          isPSHUFLWMask(M, VT) ||
11123          isPALIGNRMask(M, VT, Subtarget) ||
11124          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11125          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11126          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11127          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11128}
11129
11130bool
11131X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11132                                          EVT VT) const {
11133  unsigned NumElts = VT.getVectorNumElements();
11134  // FIXME: This collection of masks seems suspect.
11135  if (NumElts == 2)
11136    return true;
11137  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11138    return (isMOVLMask(Mask, VT)  ||
11139            isCommutedMOVLMask(Mask, VT, true) ||
11140            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11141            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11142  }
11143  return false;
11144}
11145
11146//===----------------------------------------------------------------------===//
11147//                           X86 Scheduler Hooks
11148//===----------------------------------------------------------------------===//
11149
11150// private utility function
11151MachineBasicBlock *
11152X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11153                                                       MachineBasicBlock *MBB,
11154                                                       unsigned regOpc,
11155                                                       unsigned immOpc,
11156                                                       unsigned LoadOpc,
11157                                                       unsigned CXchgOpc,
11158                                                       unsigned notOpc,
11159                                                       unsigned EAXreg,
11160                                                       TargetRegisterClass *RC,
11161                                                       bool invSrc) const {
11162  // For the atomic bitwise operator, we generate
11163  //   thisMBB:
11164  //   newMBB:
11165  //     ld  t1 = [bitinstr.addr]
11166  //     op  t2 = t1, [bitinstr.val]
11167  //     mov EAX = t1
11168  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11169  //     bz  newMBB
11170  //     fallthrough -->nextMBB
11171  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11172  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11173  MachineFunction::iterator MBBIter = MBB;
11174  ++MBBIter;
11175
11176  /// First build the CFG
11177  MachineFunction *F = MBB->getParent();
11178  MachineBasicBlock *thisMBB = MBB;
11179  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11180  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11181  F->insert(MBBIter, newMBB);
11182  F->insert(MBBIter, nextMBB);
11183
11184  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11185  nextMBB->splice(nextMBB->begin(), thisMBB,
11186                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11187                  thisMBB->end());
11188  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11189
11190  // Update thisMBB to fall through to newMBB
11191  thisMBB->addSuccessor(newMBB);
11192
11193  // newMBB jumps to itself and fall through to nextMBB
11194  newMBB->addSuccessor(nextMBB);
11195  newMBB->addSuccessor(newMBB);
11196
11197  // Insert instructions into newMBB based on incoming instruction
11198  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11199         "unexpected number of operands");
11200  DebugLoc dl = bInstr->getDebugLoc();
11201  MachineOperand& destOper = bInstr->getOperand(0);
11202  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11203  int numArgs = bInstr->getNumOperands() - 1;
11204  for (int i=0; i < numArgs; ++i)
11205    argOpers[i] = &bInstr->getOperand(i+1);
11206
11207  // x86 address has 4 operands: base, index, scale, and displacement
11208  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11209  int valArgIndx = lastAddrIndx + 1;
11210
11211  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11212  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11213  for (int i=0; i <= lastAddrIndx; ++i)
11214    (*MIB).addOperand(*argOpers[i]);
11215
11216  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11217  if (invSrc) {
11218    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11219  }
11220  else
11221    tt = t1;
11222
11223  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11224  assert((argOpers[valArgIndx]->isReg() ||
11225          argOpers[valArgIndx]->isImm()) &&
11226         "invalid operand");
11227  if (argOpers[valArgIndx]->isReg())
11228    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11229  else
11230    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11231  MIB.addReg(tt);
11232  (*MIB).addOperand(*argOpers[valArgIndx]);
11233
11234  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11235  MIB.addReg(t1);
11236
11237  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11238  for (int i=0; i <= lastAddrIndx; ++i)
11239    (*MIB).addOperand(*argOpers[i]);
11240  MIB.addReg(t2);
11241  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11242  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11243                    bInstr->memoperands_end());
11244
11245  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11246  MIB.addReg(EAXreg);
11247
11248  // insert branch
11249  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11250
11251  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11252  return nextMBB;
11253}
11254
11255// private utility function:  64 bit atomics on 32 bit host.
11256MachineBasicBlock *
11257X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11258                                                       MachineBasicBlock *MBB,
11259                                                       unsigned regOpcL,
11260                                                       unsigned regOpcH,
11261                                                       unsigned immOpcL,
11262                                                       unsigned immOpcH,
11263                                                       bool invSrc) const {
11264  // For the atomic bitwise operator, we generate
11265  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11266  //     ld t1,t2 = [bitinstr.addr]
11267  //   newMBB:
11268  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11269  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11270  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11271  //     mov ECX, EBX <- t5, t6
11272  //     mov EAX, EDX <- t1, t2
11273  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11274  //     mov t3, t4 <- EAX, EDX
11275  //     bz  newMBB
11276  //     result in out1, out2
11277  //     fallthrough -->nextMBB
11278
11279  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11280  const unsigned LoadOpc = X86::MOV32rm;
11281  const unsigned NotOpc = X86::NOT32r;
11282  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11283  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11284  MachineFunction::iterator MBBIter = MBB;
11285  ++MBBIter;
11286
11287  /// First build the CFG
11288  MachineFunction *F = MBB->getParent();
11289  MachineBasicBlock *thisMBB = MBB;
11290  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11291  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11292  F->insert(MBBIter, newMBB);
11293  F->insert(MBBIter, nextMBB);
11294
11295  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11296  nextMBB->splice(nextMBB->begin(), thisMBB,
11297                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11298                  thisMBB->end());
11299  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11300
11301  // Update thisMBB to fall through to newMBB
11302  thisMBB->addSuccessor(newMBB);
11303
11304  // newMBB jumps to itself and fall through to nextMBB
11305  newMBB->addSuccessor(nextMBB);
11306  newMBB->addSuccessor(newMBB);
11307
11308  DebugLoc dl = bInstr->getDebugLoc();
11309  // Insert instructions into newMBB based on incoming instruction
11310  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11311  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11312         "unexpected number of operands");
11313  MachineOperand& dest1Oper = bInstr->getOperand(0);
11314  MachineOperand& dest2Oper = bInstr->getOperand(1);
11315  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11316  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11317    argOpers[i] = &bInstr->getOperand(i+2);
11318
11319    // We use some of the operands multiple times, so conservatively just
11320    // clear any kill flags that might be present.
11321    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11322      argOpers[i]->setIsKill(false);
11323  }
11324
11325  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11326  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11327
11328  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11329  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11330  for (int i=0; i <= lastAddrIndx; ++i)
11331    (*MIB).addOperand(*argOpers[i]);
11332  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11333  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11334  // add 4 to displacement.
11335  for (int i=0; i <= lastAddrIndx-2; ++i)
11336    (*MIB).addOperand(*argOpers[i]);
11337  MachineOperand newOp3 = *(argOpers[3]);
11338  if (newOp3.isImm())
11339    newOp3.setImm(newOp3.getImm()+4);
11340  else
11341    newOp3.setOffset(newOp3.getOffset()+4);
11342  (*MIB).addOperand(newOp3);
11343  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11344
11345  // t3/4 are defined later, at the bottom of the loop
11346  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11347  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11348  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11349    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11350  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11351    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11352
11353  // The subsequent operations should be using the destination registers of
11354  //the PHI instructions.
11355  if (invSrc) {
11356    t1 = F->getRegInfo().createVirtualRegister(RC);
11357    t2 = F->getRegInfo().createVirtualRegister(RC);
11358    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11359    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11360  } else {
11361    t1 = dest1Oper.getReg();
11362    t2 = dest2Oper.getReg();
11363  }
11364
11365  int valArgIndx = lastAddrIndx + 1;
11366  assert((argOpers[valArgIndx]->isReg() ||
11367          argOpers[valArgIndx]->isImm()) &&
11368         "invalid operand");
11369  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11370  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11371  if (argOpers[valArgIndx]->isReg())
11372    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11373  else
11374    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11375  if (regOpcL != X86::MOV32rr)
11376    MIB.addReg(t1);
11377  (*MIB).addOperand(*argOpers[valArgIndx]);
11378  assert(argOpers[valArgIndx + 1]->isReg() ==
11379         argOpers[valArgIndx]->isReg());
11380  assert(argOpers[valArgIndx + 1]->isImm() ==
11381         argOpers[valArgIndx]->isImm());
11382  if (argOpers[valArgIndx + 1]->isReg())
11383    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11384  else
11385    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11386  if (regOpcH != X86::MOV32rr)
11387    MIB.addReg(t2);
11388  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11389
11390  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11391  MIB.addReg(t1);
11392  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11393  MIB.addReg(t2);
11394
11395  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11396  MIB.addReg(t5);
11397  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11398  MIB.addReg(t6);
11399
11400  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11401  for (int i=0; i <= lastAddrIndx; ++i)
11402    (*MIB).addOperand(*argOpers[i]);
11403
11404  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11405  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11406                    bInstr->memoperands_end());
11407
11408  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11409  MIB.addReg(X86::EAX);
11410  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11411  MIB.addReg(X86::EDX);
11412
11413  // insert branch
11414  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11415
11416  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11417  return nextMBB;
11418}
11419
11420// private utility function
11421MachineBasicBlock *
11422X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11423                                                      MachineBasicBlock *MBB,
11424                                                      unsigned cmovOpc) const {
11425  // For the atomic min/max operator, we generate
11426  //   thisMBB:
11427  //   newMBB:
11428  //     ld t1 = [min/max.addr]
11429  //     mov t2 = [min/max.val]
11430  //     cmp  t1, t2
11431  //     cmov[cond] t2 = t1
11432  //     mov EAX = t1
11433  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11434  //     bz   newMBB
11435  //     fallthrough -->nextMBB
11436  //
11437  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11438  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11439  MachineFunction::iterator MBBIter = MBB;
11440  ++MBBIter;
11441
11442  /// First build the CFG
11443  MachineFunction *F = MBB->getParent();
11444  MachineBasicBlock *thisMBB = MBB;
11445  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11446  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11447  F->insert(MBBIter, newMBB);
11448  F->insert(MBBIter, nextMBB);
11449
11450  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11451  nextMBB->splice(nextMBB->begin(), thisMBB,
11452                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11453                  thisMBB->end());
11454  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11455
11456  // Update thisMBB to fall through to newMBB
11457  thisMBB->addSuccessor(newMBB);
11458
11459  // newMBB jumps to newMBB and fall through to nextMBB
11460  newMBB->addSuccessor(nextMBB);
11461  newMBB->addSuccessor(newMBB);
11462
11463  DebugLoc dl = mInstr->getDebugLoc();
11464  // Insert instructions into newMBB based on incoming instruction
11465  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11466         "unexpected number of operands");
11467  MachineOperand& destOper = mInstr->getOperand(0);
11468  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11469  int numArgs = mInstr->getNumOperands() - 1;
11470  for (int i=0; i < numArgs; ++i)
11471    argOpers[i] = &mInstr->getOperand(i+1);
11472
11473  // x86 address has 4 operands: base, index, scale, and displacement
11474  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11475  int valArgIndx = lastAddrIndx + 1;
11476
11477  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11478  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11479  for (int i=0; i <= lastAddrIndx; ++i)
11480    (*MIB).addOperand(*argOpers[i]);
11481
11482  // We only support register and immediate values
11483  assert((argOpers[valArgIndx]->isReg() ||
11484          argOpers[valArgIndx]->isImm()) &&
11485         "invalid operand");
11486
11487  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11488  if (argOpers[valArgIndx]->isReg())
11489    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11490  else
11491    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11492  (*MIB).addOperand(*argOpers[valArgIndx]);
11493
11494  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11495  MIB.addReg(t1);
11496
11497  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11498  MIB.addReg(t1);
11499  MIB.addReg(t2);
11500
11501  // Generate movc
11502  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11503  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11504  MIB.addReg(t2);
11505  MIB.addReg(t1);
11506
11507  // Cmp and exchange if none has modified the memory location
11508  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11509  for (int i=0; i <= lastAddrIndx; ++i)
11510    (*MIB).addOperand(*argOpers[i]);
11511  MIB.addReg(t3);
11512  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11513  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11514                    mInstr->memoperands_end());
11515
11516  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11517  MIB.addReg(X86::EAX);
11518
11519  // insert branch
11520  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11521
11522  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11523  return nextMBB;
11524}
11525
11526// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11527// or XMM0_V32I8 in AVX all of this code can be replaced with that
11528// in the .td file.
11529MachineBasicBlock *
11530X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11531                            unsigned numArgs, bool memArg) const {
11532  assert(Subtarget->hasSSE42() &&
11533         "Target must have SSE4.2 or AVX features enabled");
11534
11535  DebugLoc dl = MI->getDebugLoc();
11536  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11537  unsigned Opc;
11538  if (!Subtarget->hasAVX()) {
11539    if (memArg)
11540      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11541    else
11542      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11543  } else {
11544    if (memArg)
11545      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11546    else
11547      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11548  }
11549
11550  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11551  for (unsigned i = 0; i < numArgs; ++i) {
11552    MachineOperand &Op = MI->getOperand(i+1);
11553    if (!(Op.isReg() && Op.isImplicit()))
11554      MIB.addOperand(Op);
11555  }
11556  BuildMI(*BB, MI, dl,
11557    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11558             MI->getOperand(0).getReg())
11559    .addReg(X86::XMM0);
11560
11561  MI->eraseFromParent();
11562  return BB;
11563}
11564
11565MachineBasicBlock *
11566X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11567  DebugLoc dl = MI->getDebugLoc();
11568  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11569
11570  // Address into RAX/EAX, other two args into ECX, EDX.
11571  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11572  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11573  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11574  for (int i = 0; i < X86::AddrNumOperands; ++i)
11575    MIB.addOperand(MI->getOperand(i));
11576
11577  unsigned ValOps = X86::AddrNumOperands;
11578  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11579    .addReg(MI->getOperand(ValOps).getReg());
11580  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11581    .addReg(MI->getOperand(ValOps+1).getReg());
11582
11583  // The instruction doesn't actually take any operands though.
11584  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11585
11586  MI->eraseFromParent(); // The pseudo is gone now.
11587  return BB;
11588}
11589
11590MachineBasicBlock *
11591X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11592  DebugLoc dl = MI->getDebugLoc();
11593  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11594
11595  // First arg in ECX, the second in EAX.
11596  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11597    .addReg(MI->getOperand(0).getReg());
11598  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11599    .addReg(MI->getOperand(1).getReg());
11600
11601  // The instruction doesn't actually take any operands though.
11602  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11603
11604  MI->eraseFromParent(); // The pseudo is gone now.
11605  return BB;
11606}
11607
11608MachineBasicBlock *
11609X86TargetLowering::EmitVAARG64WithCustomInserter(
11610                   MachineInstr *MI,
11611                   MachineBasicBlock *MBB) const {
11612  // Emit va_arg instruction on X86-64.
11613
11614  // Operands to this pseudo-instruction:
11615  // 0  ) Output        : destination address (reg)
11616  // 1-5) Input         : va_list address (addr, i64mem)
11617  // 6  ) ArgSize       : Size (in bytes) of vararg type
11618  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11619  // 8  ) Align         : Alignment of type
11620  // 9  ) EFLAGS (implicit-def)
11621
11622  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11623  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11624
11625  unsigned DestReg = MI->getOperand(0).getReg();
11626  MachineOperand &Base = MI->getOperand(1);
11627  MachineOperand &Scale = MI->getOperand(2);
11628  MachineOperand &Index = MI->getOperand(3);
11629  MachineOperand &Disp = MI->getOperand(4);
11630  MachineOperand &Segment = MI->getOperand(5);
11631  unsigned ArgSize = MI->getOperand(6).getImm();
11632  unsigned ArgMode = MI->getOperand(7).getImm();
11633  unsigned Align = MI->getOperand(8).getImm();
11634
11635  // Memory Reference
11636  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11637  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11638  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11639
11640  // Machine Information
11641  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11642  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11643  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11644  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11645  DebugLoc DL = MI->getDebugLoc();
11646
11647  // struct va_list {
11648  //   i32   gp_offset
11649  //   i32   fp_offset
11650  //   i64   overflow_area (address)
11651  //   i64   reg_save_area (address)
11652  // }
11653  // sizeof(va_list) = 24
11654  // alignment(va_list) = 8
11655
11656  unsigned TotalNumIntRegs = 6;
11657  unsigned TotalNumXMMRegs = 8;
11658  bool UseGPOffset = (ArgMode == 1);
11659  bool UseFPOffset = (ArgMode == 2);
11660  unsigned MaxOffset = TotalNumIntRegs * 8 +
11661                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11662
11663  /* Align ArgSize to a multiple of 8 */
11664  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11665  bool NeedsAlign = (Align > 8);
11666
11667  MachineBasicBlock *thisMBB = MBB;
11668  MachineBasicBlock *overflowMBB;
11669  MachineBasicBlock *offsetMBB;
11670  MachineBasicBlock *endMBB;
11671
11672  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11673  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11674  unsigned OffsetReg = 0;
11675
11676  if (!UseGPOffset && !UseFPOffset) {
11677    // If we only pull from the overflow region, we don't create a branch.
11678    // We don't need to alter control flow.
11679    OffsetDestReg = 0; // unused
11680    OverflowDestReg = DestReg;
11681
11682    offsetMBB = NULL;
11683    overflowMBB = thisMBB;
11684    endMBB = thisMBB;
11685  } else {
11686    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11687    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11688    // If not, pull from overflow_area. (branch to overflowMBB)
11689    //
11690    //       thisMBB
11691    //         |     .
11692    //         |        .
11693    //     offsetMBB   overflowMBB
11694    //         |        .
11695    //         |     .
11696    //        endMBB
11697
11698    // Registers for the PHI in endMBB
11699    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11700    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11701
11702    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11703    MachineFunction *MF = MBB->getParent();
11704    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11705    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11706    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11707
11708    MachineFunction::iterator MBBIter = MBB;
11709    ++MBBIter;
11710
11711    // Insert the new basic blocks
11712    MF->insert(MBBIter, offsetMBB);
11713    MF->insert(MBBIter, overflowMBB);
11714    MF->insert(MBBIter, endMBB);
11715
11716    // Transfer the remainder of MBB and its successor edges to endMBB.
11717    endMBB->splice(endMBB->begin(), thisMBB,
11718                    llvm::next(MachineBasicBlock::iterator(MI)),
11719                    thisMBB->end());
11720    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11721
11722    // Make offsetMBB and overflowMBB successors of thisMBB
11723    thisMBB->addSuccessor(offsetMBB);
11724    thisMBB->addSuccessor(overflowMBB);
11725
11726    // endMBB is a successor of both offsetMBB and overflowMBB
11727    offsetMBB->addSuccessor(endMBB);
11728    overflowMBB->addSuccessor(endMBB);
11729
11730    // Load the offset value into a register
11731    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11732    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11733      .addOperand(Base)
11734      .addOperand(Scale)
11735      .addOperand(Index)
11736      .addDisp(Disp, UseFPOffset ? 4 : 0)
11737      .addOperand(Segment)
11738      .setMemRefs(MMOBegin, MMOEnd);
11739
11740    // Check if there is enough room left to pull this argument.
11741    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11742      .addReg(OffsetReg)
11743      .addImm(MaxOffset + 8 - ArgSizeA8);
11744
11745    // Branch to "overflowMBB" if offset >= max
11746    // Fall through to "offsetMBB" otherwise
11747    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11748      .addMBB(overflowMBB);
11749  }
11750
11751  // In offsetMBB, emit code to use the reg_save_area.
11752  if (offsetMBB) {
11753    assert(OffsetReg != 0);
11754
11755    // Read the reg_save_area address.
11756    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11757    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11758      .addOperand(Base)
11759      .addOperand(Scale)
11760      .addOperand(Index)
11761      .addDisp(Disp, 16)
11762      .addOperand(Segment)
11763      .setMemRefs(MMOBegin, MMOEnd);
11764
11765    // Zero-extend the offset
11766    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11767      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11768        .addImm(0)
11769        .addReg(OffsetReg)
11770        .addImm(X86::sub_32bit);
11771
11772    // Add the offset to the reg_save_area to get the final address.
11773    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11774      .addReg(OffsetReg64)
11775      .addReg(RegSaveReg);
11776
11777    // Compute the offset for the next argument
11778    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11779    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11780      .addReg(OffsetReg)
11781      .addImm(UseFPOffset ? 16 : 8);
11782
11783    // Store it back into the va_list.
11784    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11785      .addOperand(Base)
11786      .addOperand(Scale)
11787      .addOperand(Index)
11788      .addDisp(Disp, UseFPOffset ? 4 : 0)
11789      .addOperand(Segment)
11790      .addReg(NextOffsetReg)
11791      .setMemRefs(MMOBegin, MMOEnd);
11792
11793    // Jump to endMBB
11794    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11795      .addMBB(endMBB);
11796  }
11797
11798  //
11799  // Emit code to use overflow area
11800  //
11801
11802  // Load the overflow_area address into a register.
11803  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11804  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11805    .addOperand(Base)
11806    .addOperand(Scale)
11807    .addOperand(Index)
11808    .addDisp(Disp, 8)
11809    .addOperand(Segment)
11810    .setMemRefs(MMOBegin, MMOEnd);
11811
11812  // If we need to align it, do so. Otherwise, just copy the address
11813  // to OverflowDestReg.
11814  if (NeedsAlign) {
11815    // Align the overflow address
11816    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11817    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11818
11819    // aligned_addr = (addr + (align-1)) & ~(align-1)
11820    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11821      .addReg(OverflowAddrReg)
11822      .addImm(Align-1);
11823
11824    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11825      .addReg(TmpReg)
11826      .addImm(~(uint64_t)(Align-1));
11827  } else {
11828    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11829      .addReg(OverflowAddrReg);
11830  }
11831
11832  // Compute the next overflow address after this argument.
11833  // (the overflow address should be kept 8-byte aligned)
11834  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11835  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11836    .addReg(OverflowDestReg)
11837    .addImm(ArgSizeA8);
11838
11839  // Store the new overflow address.
11840  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11841    .addOperand(Base)
11842    .addOperand(Scale)
11843    .addOperand(Index)
11844    .addDisp(Disp, 8)
11845    .addOperand(Segment)
11846    .addReg(NextAddrReg)
11847    .setMemRefs(MMOBegin, MMOEnd);
11848
11849  // If we branched, emit the PHI to the front of endMBB.
11850  if (offsetMBB) {
11851    BuildMI(*endMBB, endMBB->begin(), DL,
11852            TII->get(X86::PHI), DestReg)
11853      .addReg(OffsetDestReg).addMBB(offsetMBB)
11854      .addReg(OverflowDestReg).addMBB(overflowMBB);
11855  }
11856
11857  // Erase the pseudo instruction
11858  MI->eraseFromParent();
11859
11860  return endMBB;
11861}
11862
11863MachineBasicBlock *
11864X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11865                                                 MachineInstr *MI,
11866                                                 MachineBasicBlock *MBB) const {
11867  // Emit code to save XMM registers to the stack. The ABI says that the
11868  // number of registers to save is given in %al, so it's theoretically
11869  // possible to do an indirect jump trick to avoid saving all of them,
11870  // however this code takes a simpler approach and just executes all
11871  // of the stores if %al is non-zero. It's less code, and it's probably
11872  // easier on the hardware branch predictor, and stores aren't all that
11873  // expensive anyway.
11874
11875  // Create the new basic blocks. One block contains all the XMM stores,
11876  // and one block is the final destination regardless of whether any
11877  // stores were performed.
11878  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11879  MachineFunction *F = MBB->getParent();
11880  MachineFunction::iterator MBBIter = MBB;
11881  ++MBBIter;
11882  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11883  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11884  F->insert(MBBIter, XMMSaveMBB);
11885  F->insert(MBBIter, EndMBB);
11886
11887  // Transfer the remainder of MBB and its successor edges to EndMBB.
11888  EndMBB->splice(EndMBB->begin(), MBB,
11889                 llvm::next(MachineBasicBlock::iterator(MI)),
11890                 MBB->end());
11891  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11892
11893  // The original block will now fall through to the XMM save block.
11894  MBB->addSuccessor(XMMSaveMBB);
11895  // The XMMSaveMBB will fall through to the end block.
11896  XMMSaveMBB->addSuccessor(EndMBB);
11897
11898  // Now add the instructions.
11899  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11900  DebugLoc DL = MI->getDebugLoc();
11901
11902  unsigned CountReg = MI->getOperand(0).getReg();
11903  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11904  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11905
11906  if (!Subtarget->isTargetWin64()) {
11907    // If %al is 0, branch around the XMM save block.
11908    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11909    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11910    MBB->addSuccessor(EndMBB);
11911  }
11912
11913  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11914  // In the XMM save block, save all the XMM argument registers.
11915  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11916    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11917    MachineMemOperand *MMO =
11918      F->getMachineMemOperand(
11919          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11920        MachineMemOperand::MOStore,
11921        /*Size=*/16, /*Align=*/16);
11922    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11923      .addFrameIndex(RegSaveFrameIndex)
11924      .addImm(/*Scale=*/1)
11925      .addReg(/*IndexReg=*/0)
11926      .addImm(/*Disp=*/Offset)
11927      .addReg(/*Segment=*/0)
11928      .addReg(MI->getOperand(i).getReg())
11929      .addMemOperand(MMO);
11930  }
11931
11932  MI->eraseFromParent();   // The pseudo instruction is gone now.
11933
11934  return EndMBB;
11935}
11936
11937MachineBasicBlock *
11938X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11939                                     MachineBasicBlock *BB) const {
11940  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11941  DebugLoc DL = MI->getDebugLoc();
11942
11943  // To "insert" a SELECT_CC instruction, we actually have to insert the
11944  // diamond control-flow pattern.  The incoming instruction knows the
11945  // destination vreg to set, the condition code register to branch on, the
11946  // true/false values to select between, and a branch opcode to use.
11947  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11948  MachineFunction::iterator It = BB;
11949  ++It;
11950
11951  //  thisMBB:
11952  //  ...
11953  //   TrueVal = ...
11954  //   cmpTY ccX, r1, r2
11955  //   bCC copy1MBB
11956  //   fallthrough --> copy0MBB
11957  MachineBasicBlock *thisMBB = BB;
11958  MachineFunction *F = BB->getParent();
11959  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11960  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11961  F->insert(It, copy0MBB);
11962  F->insert(It, sinkMBB);
11963
11964  // If the EFLAGS register isn't dead in the terminator, then claim that it's
11965  // live into the sink and copy blocks.
11966  if (!MI->killsRegister(X86::EFLAGS)) {
11967    copy0MBB->addLiveIn(X86::EFLAGS);
11968    sinkMBB->addLiveIn(X86::EFLAGS);
11969  }
11970
11971  // Transfer the remainder of BB and its successor edges to sinkMBB.
11972  sinkMBB->splice(sinkMBB->begin(), BB,
11973                  llvm::next(MachineBasicBlock::iterator(MI)),
11974                  BB->end());
11975  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11976
11977  // Add the true and fallthrough blocks as its successors.
11978  BB->addSuccessor(copy0MBB);
11979  BB->addSuccessor(sinkMBB);
11980
11981  // Create the conditional branch instruction.
11982  unsigned Opc =
11983    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11984  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11985
11986  //  copy0MBB:
11987  //   %FalseValue = ...
11988  //   # fallthrough to sinkMBB
11989  copy0MBB->addSuccessor(sinkMBB);
11990
11991  //  sinkMBB:
11992  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11993  //  ...
11994  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11995          TII->get(X86::PHI), MI->getOperand(0).getReg())
11996    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11997    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11998
11999  MI->eraseFromParent();   // The pseudo instruction is gone now.
12000  return sinkMBB;
12001}
12002
12003MachineBasicBlock *
12004X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12005                                        bool Is64Bit) const {
12006  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12007  DebugLoc DL = MI->getDebugLoc();
12008  MachineFunction *MF = BB->getParent();
12009  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12010
12011  assert(getTargetMachine().Options.EnableSegmentedStacks);
12012
12013  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12014  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12015
12016  // BB:
12017  //  ... [Till the alloca]
12018  // If stacklet is not large enough, jump to mallocMBB
12019  //
12020  // bumpMBB:
12021  //  Allocate by subtracting from RSP
12022  //  Jump to continueMBB
12023  //
12024  // mallocMBB:
12025  //  Allocate by call to runtime
12026  //
12027  // continueMBB:
12028  //  ...
12029  //  [rest of original BB]
12030  //
12031
12032  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12033  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12034  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12035
12036  MachineRegisterInfo &MRI = MF->getRegInfo();
12037  const TargetRegisterClass *AddrRegClass =
12038    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12039
12040  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12041    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12042    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12043    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12044    sizeVReg = MI->getOperand(1).getReg(),
12045    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12046
12047  MachineFunction::iterator MBBIter = BB;
12048  ++MBBIter;
12049
12050  MF->insert(MBBIter, bumpMBB);
12051  MF->insert(MBBIter, mallocMBB);
12052  MF->insert(MBBIter, continueMBB);
12053
12054  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12055                      (MachineBasicBlock::iterator(MI)), BB->end());
12056  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12057
12058  // Add code to the main basic block to check if the stack limit has been hit,
12059  // and if so, jump to mallocMBB otherwise to bumpMBB.
12060  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12061  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12062    .addReg(tmpSPVReg).addReg(sizeVReg);
12063  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12064    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12065    .addReg(SPLimitVReg);
12066  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12067
12068  // bumpMBB simply decreases the stack pointer, since we know the current
12069  // stacklet has enough space.
12070  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12071    .addReg(SPLimitVReg);
12072  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12073    .addReg(SPLimitVReg);
12074  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12075
12076  // Calls into a routine in libgcc to allocate more space from the heap.
12077  if (Is64Bit) {
12078    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12079      .addReg(sizeVReg);
12080    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12081    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
12082  } else {
12083    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12084      .addImm(12);
12085    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12086    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12087      .addExternalSymbol("__morestack_allocate_stack_space");
12088  }
12089
12090  if (!Is64Bit)
12091    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12092      .addImm(16);
12093
12094  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12095    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12096  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12097
12098  // Set up the CFG correctly.
12099  BB->addSuccessor(bumpMBB);
12100  BB->addSuccessor(mallocMBB);
12101  mallocMBB->addSuccessor(continueMBB);
12102  bumpMBB->addSuccessor(continueMBB);
12103
12104  // Take care of the PHI nodes.
12105  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12106          MI->getOperand(0).getReg())
12107    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12108    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12109
12110  // Delete the original pseudo instruction.
12111  MI->eraseFromParent();
12112
12113  // And we're done.
12114  return continueMBB;
12115}
12116
12117MachineBasicBlock *
12118X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12119                                          MachineBasicBlock *BB) const {
12120  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12121  DebugLoc DL = MI->getDebugLoc();
12122
12123  assert(!Subtarget->isTargetEnvMacho());
12124
12125  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12126  // non-trivial part is impdef of ESP.
12127
12128  if (Subtarget->isTargetWin64()) {
12129    if (Subtarget->isTargetCygMing()) {
12130      // ___chkstk(Mingw64):
12131      // Clobbers R10, R11, RAX and EFLAGS.
12132      // Updates RSP.
12133      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12134        .addExternalSymbol("___chkstk")
12135        .addReg(X86::RAX, RegState::Implicit)
12136        .addReg(X86::RSP, RegState::Implicit)
12137        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12138        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12139        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12140    } else {
12141      // __chkstk(MSVCRT): does not update stack pointer.
12142      // Clobbers R10, R11 and EFLAGS.
12143      // FIXME: RAX(allocated size) might be reused and not killed.
12144      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12145        .addExternalSymbol("__chkstk")
12146        .addReg(X86::RAX, RegState::Implicit)
12147        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12148      // RAX has the offset to subtracted from RSP.
12149      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12150        .addReg(X86::RSP)
12151        .addReg(X86::RAX);
12152    }
12153  } else {
12154    const char *StackProbeSymbol =
12155      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12156
12157    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12158      .addExternalSymbol(StackProbeSymbol)
12159      .addReg(X86::EAX, RegState::Implicit)
12160      .addReg(X86::ESP, RegState::Implicit)
12161      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12162      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12163      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12164  }
12165
12166  MI->eraseFromParent();   // The pseudo instruction is gone now.
12167  return BB;
12168}
12169
12170MachineBasicBlock *
12171X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12172                                      MachineBasicBlock *BB) const {
12173  // This is pretty easy.  We're taking the value that we received from
12174  // our load from the relocation, sticking it in either RDI (x86-64)
12175  // or EAX and doing an indirect call.  The return value will then
12176  // be in the normal return register.
12177  const X86InstrInfo *TII
12178    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12179  DebugLoc DL = MI->getDebugLoc();
12180  MachineFunction *F = BB->getParent();
12181
12182  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12183  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12184
12185  if (Subtarget->is64Bit()) {
12186    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12187                                      TII->get(X86::MOV64rm), X86::RDI)
12188    .addReg(X86::RIP)
12189    .addImm(0).addReg(0)
12190    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12191                      MI->getOperand(3).getTargetFlags())
12192    .addReg(0);
12193    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12194    addDirectMem(MIB, X86::RDI);
12195  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12196    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12197                                      TII->get(X86::MOV32rm), X86::EAX)
12198    .addReg(0)
12199    .addImm(0).addReg(0)
12200    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12201                      MI->getOperand(3).getTargetFlags())
12202    .addReg(0);
12203    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12204    addDirectMem(MIB, X86::EAX);
12205  } else {
12206    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12207                                      TII->get(X86::MOV32rm), X86::EAX)
12208    .addReg(TII->getGlobalBaseReg(F))
12209    .addImm(0).addReg(0)
12210    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12211                      MI->getOperand(3).getTargetFlags())
12212    .addReg(0);
12213    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12214    addDirectMem(MIB, X86::EAX);
12215  }
12216
12217  MI->eraseFromParent(); // The pseudo instruction is gone now.
12218  return BB;
12219}
12220
12221MachineBasicBlock *
12222X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12223                                               MachineBasicBlock *BB) const {
12224  switch (MI->getOpcode()) {
12225  default: assert(0 && "Unexpected instr type to insert");
12226  case X86::TAILJMPd64:
12227  case X86::TAILJMPr64:
12228  case X86::TAILJMPm64:
12229    assert(0 && "TAILJMP64 would not be touched here.");
12230  case X86::TCRETURNdi64:
12231  case X86::TCRETURNri64:
12232  case X86::TCRETURNmi64:
12233    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
12234    // On AMD64, additional defs should be added before register allocation.
12235    if (!Subtarget->isTargetWin64()) {
12236      MI->addRegisterDefined(X86::RSI);
12237      MI->addRegisterDefined(X86::RDI);
12238      MI->addRegisterDefined(X86::XMM6);
12239      MI->addRegisterDefined(X86::XMM7);
12240      MI->addRegisterDefined(X86::XMM8);
12241      MI->addRegisterDefined(X86::XMM9);
12242      MI->addRegisterDefined(X86::XMM10);
12243      MI->addRegisterDefined(X86::XMM11);
12244      MI->addRegisterDefined(X86::XMM12);
12245      MI->addRegisterDefined(X86::XMM13);
12246      MI->addRegisterDefined(X86::XMM14);
12247      MI->addRegisterDefined(X86::XMM15);
12248    }
12249    return BB;
12250  case X86::WIN_ALLOCA:
12251    return EmitLoweredWinAlloca(MI, BB);
12252  case X86::SEG_ALLOCA_32:
12253    return EmitLoweredSegAlloca(MI, BB, false);
12254  case X86::SEG_ALLOCA_64:
12255    return EmitLoweredSegAlloca(MI, BB, true);
12256  case X86::TLSCall_32:
12257  case X86::TLSCall_64:
12258    return EmitLoweredTLSCall(MI, BB);
12259  case X86::CMOV_GR8:
12260  case X86::CMOV_FR32:
12261  case X86::CMOV_FR64:
12262  case X86::CMOV_V4F32:
12263  case X86::CMOV_V2F64:
12264  case X86::CMOV_V2I64:
12265  case X86::CMOV_V8F32:
12266  case X86::CMOV_V4F64:
12267  case X86::CMOV_V4I64:
12268  case X86::CMOV_GR16:
12269  case X86::CMOV_GR32:
12270  case X86::CMOV_RFP32:
12271  case X86::CMOV_RFP64:
12272  case X86::CMOV_RFP80:
12273    return EmitLoweredSelect(MI, BB);
12274
12275  case X86::FP32_TO_INT16_IN_MEM:
12276  case X86::FP32_TO_INT32_IN_MEM:
12277  case X86::FP32_TO_INT64_IN_MEM:
12278  case X86::FP64_TO_INT16_IN_MEM:
12279  case X86::FP64_TO_INT32_IN_MEM:
12280  case X86::FP64_TO_INT64_IN_MEM:
12281  case X86::FP80_TO_INT16_IN_MEM:
12282  case X86::FP80_TO_INT32_IN_MEM:
12283  case X86::FP80_TO_INT64_IN_MEM: {
12284    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12285    DebugLoc DL = MI->getDebugLoc();
12286
12287    // Change the floating point control register to use "round towards zero"
12288    // mode when truncating to an integer value.
12289    MachineFunction *F = BB->getParent();
12290    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12291    addFrameReference(BuildMI(*BB, MI, DL,
12292                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12293
12294    // Load the old value of the high byte of the control word...
12295    unsigned OldCW =
12296      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12297    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12298                      CWFrameIdx);
12299
12300    // Set the high part to be round to zero...
12301    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12302      .addImm(0xC7F);
12303
12304    // Reload the modified control word now...
12305    addFrameReference(BuildMI(*BB, MI, DL,
12306                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12307
12308    // Restore the memory image of control word to original value
12309    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12310      .addReg(OldCW);
12311
12312    // Get the X86 opcode to use.
12313    unsigned Opc;
12314    switch (MI->getOpcode()) {
12315    default: llvm_unreachable("illegal opcode!");
12316    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12317    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12318    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12319    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12320    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12321    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12322    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12323    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12324    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12325    }
12326
12327    X86AddressMode AM;
12328    MachineOperand &Op = MI->getOperand(0);
12329    if (Op.isReg()) {
12330      AM.BaseType = X86AddressMode::RegBase;
12331      AM.Base.Reg = Op.getReg();
12332    } else {
12333      AM.BaseType = X86AddressMode::FrameIndexBase;
12334      AM.Base.FrameIndex = Op.getIndex();
12335    }
12336    Op = MI->getOperand(1);
12337    if (Op.isImm())
12338      AM.Scale = Op.getImm();
12339    Op = MI->getOperand(2);
12340    if (Op.isImm())
12341      AM.IndexReg = Op.getImm();
12342    Op = MI->getOperand(3);
12343    if (Op.isGlobal()) {
12344      AM.GV = Op.getGlobal();
12345    } else {
12346      AM.Disp = Op.getImm();
12347    }
12348    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12349                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12350
12351    // Reload the original control word now.
12352    addFrameReference(BuildMI(*BB, MI, DL,
12353                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12354
12355    MI->eraseFromParent();   // The pseudo instruction is gone now.
12356    return BB;
12357  }
12358    // String/text processing lowering.
12359  case X86::PCMPISTRM128REG:
12360  case X86::VPCMPISTRM128REG:
12361    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12362  case X86::PCMPISTRM128MEM:
12363  case X86::VPCMPISTRM128MEM:
12364    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12365  case X86::PCMPESTRM128REG:
12366  case X86::VPCMPESTRM128REG:
12367    return EmitPCMP(MI, BB, 5, false /* in mem */);
12368  case X86::PCMPESTRM128MEM:
12369  case X86::VPCMPESTRM128MEM:
12370    return EmitPCMP(MI, BB, 5, true /* in mem */);
12371
12372    // Thread synchronization.
12373  case X86::MONITOR:
12374    return EmitMonitor(MI, BB);
12375  case X86::MWAIT:
12376    return EmitMwait(MI, BB);
12377
12378    // Atomic Lowering.
12379  case X86::ATOMAND32:
12380    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12381                                               X86::AND32ri, X86::MOV32rm,
12382                                               X86::LCMPXCHG32,
12383                                               X86::NOT32r, X86::EAX,
12384                                               X86::GR32RegisterClass);
12385  case X86::ATOMOR32:
12386    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12387                                               X86::OR32ri, X86::MOV32rm,
12388                                               X86::LCMPXCHG32,
12389                                               X86::NOT32r, X86::EAX,
12390                                               X86::GR32RegisterClass);
12391  case X86::ATOMXOR32:
12392    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12393                                               X86::XOR32ri, X86::MOV32rm,
12394                                               X86::LCMPXCHG32,
12395                                               X86::NOT32r, X86::EAX,
12396                                               X86::GR32RegisterClass);
12397  case X86::ATOMNAND32:
12398    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12399                                               X86::AND32ri, X86::MOV32rm,
12400                                               X86::LCMPXCHG32,
12401                                               X86::NOT32r, X86::EAX,
12402                                               X86::GR32RegisterClass, true);
12403  case X86::ATOMMIN32:
12404    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12405  case X86::ATOMMAX32:
12406    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12407  case X86::ATOMUMIN32:
12408    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12409  case X86::ATOMUMAX32:
12410    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12411
12412  case X86::ATOMAND16:
12413    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12414                                               X86::AND16ri, X86::MOV16rm,
12415                                               X86::LCMPXCHG16,
12416                                               X86::NOT16r, X86::AX,
12417                                               X86::GR16RegisterClass);
12418  case X86::ATOMOR16:
12419    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12420                                               X86::OR16ri, X86::MOV16rm,
12421                                               X86::LCMPXCHG16,
12422                                               X86::NOT16r, X86::AX,
12423                                               X86::GR16RegisterClass);
12424  case X86::ATOMXOR16:
12425    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12426                                               X86::XOR16ri, X86::MOV16rm,
12427                                               X86::LCMPXCHG16,
12428                                               X86::NOT16r, X86::AX,
12429                                               X86::GR16RegisterClass);
12430  case X86::ATOMNAND16:
12431    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12432                                               X86::AND16ri, X86::MOV16rm,
12433                                               X86::LCMPXCHG16,
12434                                               X86::NOT16r, X86::AX,
12435                                               X86::GR16RegisterClass, true);
12436  case X86::ATOMMIN16:
12437    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12438  case X86::ATOMMAX16:
12439    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12440  case X86::ATOMUMIN16:
12441    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12442  case X86::ATOMUMAX16:
12443    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12444
12445  case X86::ATOMAND8:
12446    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12447                                               X86::AND8ri, X86::MOV8rm,
12448                                               X86::LCMPXCHG8,
12449                                               X86::NOT8r, X86::AL,
12450                                               X86::GR8RegisterClass);
12451  case X86::ATOMOR8:
12452    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12453                                               X86::OR8ri, X86::MOV8rm,
12454                                               X86::LCMPXCHG8,
12455                                               X86::NOT8r, X86::AL,
12456                                               X86::GR8RegisterClass);
12457  case X86::ATOMXOR8:
12458    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12459                                               X86::XOR8ri, X86::MOV8rm,
12460                                               X86::LCMPXCHG8,
12461                                               X86::NOT8r, X86::AL,
12462                                               X86::GR8RegisterClass);
12463  case X86::ATOMNAND8:
12464    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12465                                               X86::AND8ri, X86::MOV8rm,
12466                                               X86::LCMPXCHG8,
12467                                               X86::NOT8r, X86::AL,
12468                                               X86::GR8RegisterClass, true);
12469  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12470  // This group is for 64-bit host.
12471  case X86::ATOMAND64:
12472    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12473                                               X86::AND64ri32, X86::MOV64rm,
12474                                               X86::LCMPXCHG64,
12475                                               X86::NOT64r, X86::RAX,
12476                                               X86::GR64RegisterClass);
12477  case X86::ATOMOR64:
12478    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12479                                               X86::OR64ri32, X86::MOV64rm,
12480                                               X86::LCMPXCHG64,
12481                                               X86::NOT64r, X86::RAX,
12482                                               X86::GR64RegisterClass);
12483  case X86::ATOMXOR64:
12484    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12485                                               X86::XOR64ri32, X86::MOV64rm,
12486                                               X86::LCMPXCHG64,
12487                                               X86::NOT64r, X86::RAX,
12488                                               X86::GR64RegisterClass);
12489  case X86::ATOMNAND64:
12490    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12491                                               X86::AND64ri32, X86::MOV64rm,
12492                                               X86::LCMPXCHG64,
12493                                               X86::NOT64r, X86::RAX,
12494                                               X86::GR64RegisterClass, true);
12495  case X86::ATOMMIN64:
12496    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12497  case X86::ATOMMAX64:
12498    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12499  case X86::ATOMUMIN64:
12500    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12501  case X86::ATOMUMAX64:
12502    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12503
12504  // This group does 64-bit operations on a 32-bit host.
12505  case X86::ATOMAND6432:
12506    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12507                                               X86::AND32rr, X86::AND32rr,
12508                                               X86::AND32ri, X86::AND32ri,
12509                                               false);
12510  case X86::ATOMOR6432:
12511    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12512                                               X86::OR32rr, X86::OR32rr,
12513                                               X86::OR32ri, X86::OR32ri,
12514                                               false);
12515  case X86::ATOMXOR6432:
12516    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12517                                               X86::XOR32rr, X86::XOR32rr,
12518                                               X86::XOR32ri, X86::XOR32ri,
12519                                               false);
12520  case X86::ATOMNAND6432:
12521    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12522                                               X86::AND32rr, X86::AND32rr,
12523                                               X86::AND32ri, X86::AND32ri,
12524                                               true);
12525  case X86::ATOMADD6432:
12526    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12527                                               X86::ADD32rr, X86::ADC32rr,
12528                                               X86::ADD32ri, X86::ADC32ri,
12529                                               false);
12530  case X86::ATOMSUB6432:
12531    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12532                                               X86::SUB32rr, X86::SBB32rr,
12533                                               X86::SUB32ri, X86::SBB32ri,
12534                                               false);
12535  case X86::ATOMSWAP6432:
12536    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12537                                               X86::MOV32rr, X86::MOV32rr,
12538                                               X86::MOV32ri, X86::MOV32ri,
12539                                               false);
12540  case X86::VASTART_SAVE_XMM_REGS:
12541    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12542
12543  case X86::VAARG_64:
12544    return EmitVAARG64WithCustomInserter(MI, BB);
12545  }
12546}
12547
12548//===----------------------------------------------------------------------===//
12549//                           X86 Optimization Hooks
12550//===----------------------------------------------------------------------===//
12551
12552void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12553                                                       const APInt &Mask,
12554                                                       APInt &KnownZero,
12555                                                       APInt &KnownOne,
12556                                                       const SelectionDAG &DAG,
12557                                                       unsigned Depth) const {
12558  unsigned Opc = Op.getOpcode();
12559  assert((Opc >= ISD::BUILTIN_OP_END ||
12560          Opc == ISD::INTRINSIC_WO_CHAIN ||
12561          Opc == ISD::INTRINSIC_W_CHAIN ||
12562          Opc == ISD::INTRINSIC_VOID) &&
12563         "Should use MaskedValueIsZero if you don't know whether Op"
12564         " is a target node!");
12565
12566  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12567  switch (Opc) {
12568  default: break;
12569  case X86ISD::ADD:
12570  case X86ISD::SUB:
12571  case X86ISD::ADC:
12572  case X86ISD::SBB:
12573  case X86ISD::SMUL:
12574  case X86ISD::UMUL:
12575  case X86ISD::INC:
12576  case X86ISD::DEC:
12577  case X86ISD::OR:
12578  case X86ISD::XOR:
12579  case X86ISD::AND:
12580    // These nodes' second result is a boolean.
12581    if (Op.getResNo() == 0)
12582      break;
12583    // Fallthrough
12584  case X86ISD::SETCC:
12585    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12586                                       Mask.getBitWidth() - 1);
12587    break;
12588  case ISD::INTRINSIC_WO_CHAIN: {
12589    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12590    unsigned NumLoBits = 0;
12591    switch (IntId) {
12592    default: break;
12593    case Intrinsic::x86_sse_movmsk_ps:
12594    case Intrinsic::x86_avx_movmsk_ps_256:
12595    case Intrinsic::x86_sse2_movmsk_pd:
12596    case Intrinsic::x86_avx_movmsk_pd_256:
12597    case Intrinsic::x86_mmx_pmovmskb:
12598    case Intrinsic::x86_sse2_pmovmskb_128:
12599    case Intrinsic::x86_avx2_pmovmskb: {
12600      // High bits of movmskp{s|d}, pmovmskb are known zero.
12601      switch (IntId) {
12602        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12603        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12604        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12605        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12606        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12607        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12608        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12609      }
12610      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12611                                        Mask.getBitWidth() - NumLoBits);
12612      break;
12613    }
12614    }
12615    break;
12616  }
12617  }
12618}
12619
12620unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12621                                                         unsigned Depth) const {
12622  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12623  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12624    return Op.getValueType().getScalarType().getSizeInBits();
12625
12626  // Fallback case.
12627  return 1;
12628}
12629
12630/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12631/// node is a GlobalAddress + offset.
12632bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12633                                       const GlobalValue* &GA,
12634                                       int64_t &Offset) const {
12635  if (N->getOpcode() == X86ISD::Wrapper) {
12636    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12637      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12638      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12639      return true;
12640    }
12641  }
12642  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12643}
12644
12645/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12646/// same as extracting the high 128-bit part of 256-bit vector and then
12647/// inserting the result into the low part of a new 256-bit vector
12648static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12649  EVT VT = SVOp->getValueType(0);
12650  int NumElems = VT.getVectorNumElements();
12651
12652  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12653  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12654    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12655        SVOp->getMaskElt(j) >= 0)
12656      return false;
12657
12658  return true;
12659}
12660
12661/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12662/// same as extracting the low 128-bit part of 256-bit vector and then
12663/// inserting the result into the high part of a new 256-bit vector
12664static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12665  EVT VT = SVOp->getValueType(0);
12666  int NumElems = VT.getVectorNumElements();
12667
12668  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12669  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12670    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12671        SVOp->getMaskElt(j) >= 0)
12672      return false;
12673
12674  return true;
12675}
12676
12677/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12678static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12679                                        TargetLowering::DAGCombinerInfo &DCI,
12680                                        bool HasAVX2) {
12681  DebugLoc dl = N->getDebugLoc();
12682  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12683  SDValue V1 = SVOp->getOperand(0);
12684  SDValue V2 = SVOp->getOperand(1);
12685  EVT VT = SVOp->getValueType(0);
12686  int NumElems = VT.getVectorNumElements();
12687
12688  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12689      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12690    //
12691    //                   0,0,0,...
12692    //                      |
12693    //    V      UNDEF    BUILD_VECTOR    UNDEF
12694    //     \      /           \           /
12695    //  CONCAT_VECTOR         CONCAT_VECTOR
12696    //         \                  /
12697    //          \                /
12698    //          RESULT: V + zero extended
12699    //
12700    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12701        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12702        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12703      return SDValue();
12704
12705    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12706      return SDValue();
12707
12708    // To match the shuffle mask, the first half of the mask should
12709    // be exactly the first vector, and all the rest a splat with the
12710    // first element of the second one.
12711    for (int i = 0; i < NumElems/2; ++i)
12712      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12713          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12714        return SDValue();
12715
12716    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12717    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12718      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12719      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12720      SDValue ResNode =
12721        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12722                                Ld->getMemoryVT(),
12723                                Ld->getPointerInfo(),
12724                                Ld->getAlignment(),
12725                                false/*isVolatile*/, true/*ReadMem*/,
12726                                false/*WriteMem*/);
12727      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12728    }
12729
12730    // Emit a zeroed vector and insert the desired subvector on its
12731    // first half.
12732    SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, HasAVX2, DAG, dl);
12733    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12734                         DAG.getConstant(0, MVT::i32), DAG, dl);
12735    return DCI.CombineTo(N, InsV);
12736  }
12737
12738  //===--------------------------------------------------------------------===//
12739  // Combine some shuffles into subvector extracts and inserts:
12740  //
12741
12742  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12743  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12744    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12745                                    DAG, dl);
12746    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12747                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12748    return DCI.CombineTo(N, InsV);
12749  }
12750
12751  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12752  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12753    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12754    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12755                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12756    return DCI.CombineTo(N, InsV);
12757  }
12758
12759  return SDValue();
12760}
12761
12762/// PerformShuffleCombine - Performs several different shuffle combines.
12763static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12764                                     TargetLowering::DAGCombinerInfo &DCI,
12765                                     const X86Subtarget *Subtarget) {
12766  DebugLoc dl = N->getDebugLoc();
12767  EVT VT = N->getValueType(0);
12768
12769  // Don't create instructions with illegal types after legalize types has run.
12770  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12771  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12772    return SDValue();
12773
12774  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12775  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12776      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12777    return PerformShuffleCombine256(N, DAG, DCI, Subtarget->hasAVX2());
12778
12779  // Only handle 128 wide vector from here on.
12780  if (VT.getSizeInBits() != 128)
12781    return SDValue();
12782
12783  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12784  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12785  // consecutive, non-overlapping, and in the right order.
12786  SmallVector<SDValue, 16> Elts;
12787  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12788    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12789
12790  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12791}
12792
12793/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12794/// generation and convert it from being a bunch of shuffles and extracts
12795/// to a simple store and scalar loads to extract the elements.
12796static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12797                                                const TargetLowering &TLI) {
12798  SDValue InputVector = N->getOperand(0);
12799
12800  // Only operate on vectors of 4 elements, where the alternative shuffling
12801  // gets to be more expensive.
12802  if (InputVector.getValueType() != MVT::v4i32)
12803    return SDValue();
12804
12805  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12806  // single use which is a sign-extend or zero-extend, and all elements are
12807  // used.
12808  SmallVector<SDNode *, 4> Uses;
12809  unsigned ExtractedElements = 0;
12810  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12811       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12812    if (UI.getUse().getResNo() != InputVector.getResNo())
12813      return SDValue();
12814
12815    SDNode *Extract = *UI;
12816    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12817      return SDValue();
12818
12819    if (Extract->getValueType(0) != MVT::i32)
12820      return SDValue();
12821    if (!Extract->hasOneUse())
12822      return SDValue();
12823    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12824        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12825      return SDValue();
12826    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12827      return SDValue();
12828
12829    // Record which element was extracted.
12830    ExtractedElements |=
12831      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12832
12833    Uses.push_back(Extract);
12834  }
12835
12836  // If not all the elements were used, this may not be worthwhile.
12837  if (ExtractedElements != 15)
12838    return SDValue();
12839
12840  // Ok, we've now decided to do the transformation.
12841  DebugLoc dl = InputVector.getDebugLoc();
12842
12843  // Store the value to a temporary stack slot.
12844  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12845  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12846                            MachinePointerInfo(), false, false, 0);
12847
12848  // Replace each use (extract) with a load of the appropriate element.
12849  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12850       UE = Uses.end(); UI != UE; ++UI) {
12851    SDNode *Extract = *UI;
12852
12853    // cOMpute the element's address.
12854    SDValue Idx = Extract->getOperand(1);
12855    unsigned EltSize =
12856        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12857    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12858    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12859
12860    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12861                                     StackPtr, OffsetVal);
12862
12863    // Load the scalar.
12864    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12865                                     ScalarAddr, MachinePointerInfo(),
12866                                     false, false, false, 0);
12867
12868    // Replace the exact with the load.
12869    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12870  }
12871
12872  // The replacement was made in place; don't return anything.
12873  return SDValue();
12874}
12875
12876/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
12877/// nodes.
12878static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12879                                    TargetLowering::DAGCombinerInfo &DCI,
12880                                    const X86Subtarget *Subtarget) {
12881  DebugLoc DL = N->getDebugLoc();
12882  SDValue Cond = N->getOperand(0);
12883  // Get the LHS/RHS of the select.
12884  SDValue LHS = N->getOperand(1);
12885  SDValue RHS = N->getOperand(2);
12886  EVT VT = LHS.getValueType();
12887
12888  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12889  // instructions match the semantics of the common C idiom x<y?x:y but not
12890  // x<=y?x:y, because of how they handle negative zero (which can be
12891  // ignored in unsafe-math mode).
12892  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
12893      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
12894      (Subtarget->hasSSE2() ||
12895       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
12896    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12897
12898    unsigned Opcode = 0;
12899    // Check for x CC y ? x : y.
12900    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12901        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12902      switch (CC) {
12903      default: break;
12904      case ISD::SETULT:
12905        // Converting this to a min would handle NaNs incorrectly, and swapping
12906        // the operands would cause it to handle comparisons between positive
12907        // and negative zero incorrectly.
12908        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12909          if (!DAG.getTarget().Options.UnsafeFPMath &&
12910              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12911            break;
12912          std::swap(LHS, RHS);
12913        }
12914        Opcode = X86ISD::FMIN;
12915        break;
12916      case ISD::SETOLE:
12917        // Converting this to a min would handle comparisons between positive
12918        // and negative zero incorrectly.
12919        if (!DAG.getTarget().Options.UnsafeFPMath &&
12920            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12921          break;
12922        Opcode = X86ISD::FMIN;
12923        break;
12924      case ISD::SETULE:
12925        // Converting this to a min would handle both negative zeros and NaNs
12926        // incorrectly, but we can swap the operands to fix both.
12927        std::swap(LHS, RHS);
12928      case ISD::SETOLT:
12929      case ISD::SETLT:
12930      case ISD::SETLE:
12931        Opcode = X86ISD::FMIN;
12932        break;
12933
12934      case ISD::SETOGE:
12935        // Converting this to a max would handle comparisons between positive
12936        // and negative zero incorrectly.
12937        if (!DAG.getTarget().Options.UnsafeFPMath &&
12938            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12939          break;
12940        Opcode = X86ISD::FMAX;
12941        break;
12942      case ISD::SETUGT:
12943        // Converting this to a max would handle NaNs incorrectly, and swapping
12944        // the operands would cause it to handle comparisons between positive
12945        // and negative zero incorrectly.
12946        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12947          if (!DAG.getTarget().Options.UnsafeFPMath &&
12948              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12949            break;
12950          std::swap(LHS, RHS);
12951        }
12952        Opcode = X86ISD::FMAX;
12953        break;
12954      case ISD::SETUGE:
12955        // Converting this to a max would handle both negative zeros and NaNs
12956        // incorrectly, but we can swap the operands to fix both.
12957        std::swap(LHS, RHS);
12958      case ISD::SETOGT:
12959      case ISD::SETGT:
12960      case ISD::SETGE:
12961        Opcode = X86ISD::FMAX;
12962        break;
12963      }
12964    // Check for x CC y ? y : x -- a min/max with reversed arms.
12965    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12966               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12967      switch (CC) {
12968      default: break;
12969      case ISD::SETOGE:
12970        // Converting this to a min would handle comparisons between positive
12971        // and negative zero incorrectly, and swapping the operands would
12972        // cause it to handle NaNs incorrectly.
12973        if (!DAG.getTarget().Options.UnsafeFPMath &&
12974            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12975          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12976            break;
12977          std::swap(LHS, RHS);
12978        }
12979        Opcode = X86ISD::FMIN;
12980        break;
12981      case ISD::SETUGT:
12982        // Converting this to a min would handle NaNs incorrectly.
12983        if (!DAG.getTarget().Options.UnsafeFPMath &&
12984            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12985          break;
12986        Opcode = X86ISD::FMIN;
12987        break;
12988      case ISD::SETUGE:
12989        // Converting this to a min would handle both negative zeros and NaNs
12990        // incorrectly, but we can swap the operands to fix both.
12991        std::swap(LHS, RHS);
12992      case ISD::SETOGT:
12993      case ISD::SETGT:
12994      case ISD::SETGE:
12995        Opcode = X86ISD::FMIN;
12996        break;
12997
12998      case ISD::SETULT:
12999        // Converting this to a max would handle NaNs incorrectly.
13000        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13001          break;
13002        Opcode = X86ISD::FMAX;
13003        break;
13004      case ISD::SETOLE:
13005        // Converting this to a max would handle comparisons between positive
13006        // and negative zero incorrectly, and swapping the operands would
13007        // cause it to handle NaNs incorrectly.
13008        if (!DAG.getTarget().Options.UnsafeFPMath &&
13009            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13010          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13011            break;
13012          std::swap(LHS, RHS);
13013        }
13014        Opcode = X86ISD::FMAX;
13015        break;
13016      case ISD::SETULE:
13017        // Converting this to a max would handle both negative zeros and NaNs
13018        // incorrectly, but we can swap the operands to fix both.
13019        std::swap(LHS, RHS);
13020      case ISD::SETOLT:
13021      case ISD::SETLT:
13022      case ISD::SETLE:
13023        Opcode = X86ISD::FMAX;
13024        break;
13025      }
13026    }
13027
13028    if (Opcode)
13029      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13030  }
13031
13032  // If this is a select between two integer constants, try to do some
13033  // optimizations.
13034  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13035    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13036      // Don't do this for crazy integer types.
13037      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13038        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13039        // so that TrueC (the true value) is larger than FalseC.
13040        bool NeedsCondInvert = false;
13041
13042        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13043            // Efficiently invertible.
13044            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13045             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13046              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13047          NeedsCondInvert = true;
13048          std::swap(TrueC, FalseC);
13049        }
13050
13051        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13052        if (FalseC->getAPIntValue() == 0 &&
13053            TrueC->getAPIntValue().isPowerOf2()) {
13054          if (NeedsCondInvert) // Invert the condition if needed.
13055            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13056                               DAG.getConstant(1, Cond.getValueType()));
13057
13058          // Zero extend the condition if needed.
13059          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13060
13061          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13062          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13063                             DAG.getConstant(ShAmt, MVT::i8));
13064        }
13065
13066        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13067        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13068          if (NeedsCondInvert) // Invert the condition if needed.
13069            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13070                               DAG.getConstant(1, Cond.getValueType()));
13071
13072          // Zero extend the condition if needed.
13073          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13074                             FalseC->getValueType(0), Cond);
13075          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13076                             SDValue(FalseC, 0));
13077        }
13078
13079        // Optimize cases that will turn into an LEA instruction.  This requires
13080        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13081        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13082          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13083          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13084
13085          bool isFastMultiplier = false;
13086          if (Diff < 10) {
13087            switch ((unsigned char)Diff) {
13088              default: break;
13089              case 1:  // result = add base, cond
13090              case 2:  // result = lea base(    , cond*2)
13091              case 3:  // result = lea base(cond, cond*2)
13092              case 4:  // result = lea base(    , cond*4)
13093              case 5:  // result = lea base(cond, cond*4)
13094              case 8:  // result = lea base(    , cond*8)
13095              case 9:  // result = lea base(cond, cond*8)
13096                isFastMultiplier = true;
13097                break;
13098            }
13099          }
13100
13101          if (isFastMultiplier) {
13102            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13103            if (NeedsCondInvert) // Invert the condition if needed.
13104              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13105                                 DAG.getConstant(1, Cond.getValueType()));
13106
13107            // Zero extend the condition if needed.
13108            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13109                               Cond);
13110            // Scale the condition by the difference.
13111            if (Diff != 1)
13112              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13113                                 DAG.getConstant(Diff, Cond.getValueType()));
13114
13115            // Add the base if non-zero.
13116            if (FalseC->getAPIntValue() != 0)
13117              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13118                                 SDValue(FalseC, 0));
13119            return Cond;
13120          }
13121        }
13122      }
13123  }
13124
13125  // Canonicalize max and min:
13126  // (x > y) ? x : y -> (x >= y) ? x : y
13127  // (x < y) ? x : y -> (x <= y) ? x : y
13128  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13129  // the need for an extra compare
13130  // against zero. e.g.
13131  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13132  // subl   %esi, %edi
13133  // testl  %edi, %edi
13134  // movl   $0, %eax
13135  // cmovgl %edi, %eax
13136  // =>
13137  // xorl   %eax, %eax
13138  // subl   %esi, $edi
13139  // cmovsl %eax, %edi
13140  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13141      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13142      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13143    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13144    switch (CC) {
13145    default: break;
13146    case ISD::SETLT:
13147    case ISD::SETGT: {
13148      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13149      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13150                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13151      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13152    }
13153    }
13154  }
13155
13156  // If we know that this node is legal then we know that it is going to be
13157  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13158  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13159  // to simplify previous instructions.
13160  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13161  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13162      !DCI.isBeforeLegalize() &&
13163      TLI.isOperationLegal(ISD::VSELECT, VT)) {
13164    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13165    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13166    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13167
13168    APInt KnownZero, KnownOne;
13169    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13170                                          DCI.isBeforeLegalizeOps());
13171    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13172        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13173      DCI.CommitTargetLoweringOpt(TLO);
13174  }
13175
13176  return SDValue();
13177}
13178
13179/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13180static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13181                                  TargetLowering::DAGCombinerInfo &DCI) {
13182  DebugLoc DL = N->getDebugLoc();
13183
13184  // If the flag operand isn't dead, don't touch this CMOV.
13185  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13186    return SDValue();
13187
13188  SDValue FalseOp = N->getOperand(0);
13189  SDValue TrueOp = N->getOperand(1);
13190  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13191  SDValue Cond = N->getOperand(3);
13192  if (CC == X86::COND_E || CC == X86::COND_NE) {
13193    switch (Cond.getOpcode()) {
13194    default: break;
13195    case X86ISD::BSR:
13196    case X86ISD::BSF:
13197      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13198      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13199        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13200    }
13201  }
13202
13203  // If this is a select between two integer constants, try to do some
13204  // optimizations.  Note that the operands are ordered the opposite of SELECT
13205  // operands.
13206  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13207    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13208      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13209      // larger than FalseC (the false value).
13210      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13211        CC = X86::GetOppositeBranchCondition(CC);
13212        std::swap(TrueC, FalseC);
13213      }
13214
13215      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13216      // This is efficient for any integer data type (including i8/i16) and
13217      // shift amount.
13218      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13219        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13220                           DAG.getConstant(CC, MVT::i8), Cond);
13221
13222        // Zero extend the condition if needed.
13223        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13224
13225        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13226        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13227                           DAG.getConstant(ShAmt, MVT::i8));
13228        if (N->getNumValues() == 2)  // Dead flag value?
13229          return DCI.CombineTo(N, Cond, SDValue());
13230        return Cond;
13231      }
13232
13233      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13234      // for any integer data type, including i8/i16.
13235      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13236        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13237                           DAG.getConstant(CC, MVT::i8), Cond);
13238
13239        // Zero extend the condition if needed.
13240        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13241                           FalseC->getValueType(0), Cond);
13242        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13243                           SDValue(FalseC, 0));
13244
13245        if (N->getNumValues() == 2)  // Dead flag value?
13246          return DCI.CombineTo(N, Cond, SDValue());
13247        return Cond;
13248      }
13249
13250      // Optimize cases that will turn into an LEA instruction.  This requires
13251      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13252      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13253        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13254        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13255
13256        bool isFastMultiplier = false;
13257        if (Diff < 10) {
13258          switch ((unsigned char)Diff) {
13259          default: break;
13260          case 1:  // result = add base, cond
13261          case 2:  // result = lea base(    , cond*2)
13262          case 3:  // result = lea base(cond, cond*2)
13263          case 4:  // result = lea base(    , cond*4)
13264          case 5:  // result = lea base(cond, cond*4)
13265          case 8:  // result = lea base(    , cond*8)
13266          case 9:  // result = lea base(cond, cond*8)
13267            isFastMultiplier = true;
13268            break;
13269          }
13270        }
13271
13272        if (isFastMultiplier) {
13273          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13274          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13275                             DAG.getConstant(CC, MVT::i8), Cond);
13276          // Zero extend the condition if needed.
13277          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13278                             Cond);
13279          // Scale the condition by the difference.
13280          if (Diff != 1)
13281            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13282                               DAG.getConstant(Diff, Cond.getValueType()));
13283
13284          // Add the base if non-zero.
13285          if (FalseC->getAPIntValue() != 0)
13286            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13287                               SDValue(FalseC, 0));
13288          if (N->getNumValues() == 2)  // Dead flag value?
13289            return DCI.CombineTo(N, Cond, SDValue());
13290          return Cond;
13291        }
13292      }
13293    }
13294  }
13295  return SDValue();
13296}
13297
13298
13299/// PerformMulCombine - Optimize a single multiply with constant into two
13300/// in order to implement it with two cheaper instructions, e.g.
13301/// LEA + SHL, LEA + LEA.
13302static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13303                                 TargetLowering::DAGCombinerInfo &DCI) {
13304  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13305    return SDValue();
13306
13307  EVT VT = N->getValueType(0);
13308  if (VT != MVT::i64)
13309    return SDValue();
13310
13311  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13312  if (!C)
13313    return SDValue();
13314  uint64_t MulAmt = C->getZExtValue();
13315  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13316    return SDValue();
13317
13318  uint64_t MulAmt1 = 0;
13319  uint64_t MulAmt2 = 0;
13320  if ((MulAmt % 9) == 0) {
13321    MulAmt1 = 9;
13322    MulAmt2 = MulAmt / 9;
13323  } else if ((MulAmt % 5) == 0) {
13324    MulAmt1 = 5;
13325    MulAmt2 = MulAmt / 5;
13326  } else if ((MulAmt % 3) == 0) {
13327    MulAmt1 = 3;
13328    MulAmt2 = MulAmt / 3;
13329  }
13330  if (MulAmt2 &&
13331      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13332    DebugLoc DL = N->getDebugLoc();
13333
13334    if (isPowerOf2_64(MulAmt2) &&
13335        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13336      // If second multiplifer is pow2, issue it first. We want the multiply by
13337      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13338      // is an add.
13339      std::swap(MulAmt1, MulAmt2);
13340
13341    SDValue NewMul;
13342    if (isPowerOf2_64(MulAmt1))
13343      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13344                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13345    else
13346      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13347                           DAG.getConstant(MulAmt1, VT));
13348
13349    if (isPowerOf2_64(MulAmt2))
13350      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13351                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13352    else
13353      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13354                           DAG.getConstant(MulAmt2, VT));
13355
13356    // Do not add new nodes to DAG combiner worklist.
13357    DCI.CombineTo(N, NewMul, false);
13358  }
13359  return SDValue();
13360}
13361
13362static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13363  SDValue N0 = N->getOperand(0);
13364  SDValue N1 = N->getOperand(1);
13365  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13366  EVT VT = N0.getValueType();
13367
13368  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13369  // since the result of setcc_c is all zero's or all ones.
13370  if (VT.isInteger() && !VT.isVector() &&
13371      N1C && N0.getOpcode() == ISD::AND &&
13372      N0.getOperand(1).getOpcode() == ISD::Constant) {
13373    SDValue N00 = N0.getOperand(0);
13374    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13375        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13376          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13377         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13378      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13379      APInt ShAmt = N1C->getAPIntValue();
13380      Mask = Mask.shl(ShAmt);
13381      if (Mask != 0)
13382        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13383                           N00, DAG.getConstant(Mask, VT));
13384    }
13385  }
13386
13387
13388  // Hardware support for vector shifts is sparse which makes us scalarize the
13389  // vector operations in many cases. Also, on sandybridge ADD is faster than
13390  // shl.
13391  // (shl V, 1) -> add V,V
13392  if (isSplatVector(N1.getNode())) {
13393    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13394    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13395    // We shift all of the values by one. In many cases we do not have
13396    // hardware support for this operation. This is better expressed as an ADD
13397    // of two values.
13398    if (N1C && (1 == N1C->getZExtValue())) {
13399      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13400    }
13401  }
13402
13403  return SDValue();
13404}
13405
13406/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13407///                       when possible.
13408static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13409                                   const X86Subtarget *Subtarget) {
13410  EVT VT = N->getValueType(0);
13411  if (N->getOpcode() == ISD::SHL) {
13412    SDValue V = PerformSHLCombine(N, DAG);
13413    if (V.getNode()) return V;
13414  }
13415
13416  // On X86 with SSE2 support, we can transform this to a vector shift if
13417  // all elements are shifted by the same amount.  We can't do this in legalize
13418  // because the a constant vector is typically transformed to a constant pool
13419  // so we have no knowledge of the shift amount.
13420  if (!Subtarget->hasSSE2())
13421    return SDValue();
13422
13423  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13424      (!Subtarget->hasAVX2() ||
13425       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13426    return SDValue();
13427
13428  SDValue ShAmtOp = N->getOperand(1);
13429  EVT EltVT = VT.getVectorElementType();
13430  DebugLoc DL = N->getDebugLoc();
13431  SDValue BaseShAmt = SDValue();
13432  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13433    unsigned NumElts = VT.getVectorNumElements();
13434    unsigned i = 0;
13435    for (; i != NumElts; ++i) {
13436      SDValue Arg = ShAmtOp.getOperand(i);
13437      if (Arg.getOpcode() == ISD::UNDEF) continue;
13438      BaseShAmt = Arg;
13439      break;
13440    }
13441    // Handle the case where the build_vector is all undef
13442    // FIXME: Should DAG allow this?
13443    if (i == NumElts)
13444      return SDValue();
13445
13446    for (; i != NumElts; ++i) {
13447      SDValue Arg = ShAmtOp.getOperand(i);
13448      if (Arg.getOpcode() == ISD::UNDEF) continue;
13449      if (Arg != BaseShAmt) {
13450        return SDValue();
13451      }
13452    }
13453  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13454             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13455    SDValue InVec = ShAmtOp.getOperand(0);
13456    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13457      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13458      unsigned i = 0;
13459      for (; i != NumElts; ++i) {
13460        SDValue Arg = InVec.getOperand(i);
13461        if (Arg.getOpcode() == ISD::UNDEF) continue;
13462        BaseShAmt = Arg;
13463        break;
13464      }
13465    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13466       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13467         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13468         if (C->getZExtValue() == SplatIdx)
13469           BaseShAmt = InVec.getOperand(1);
13470       }
13471    }
13472    if (BaseShAmt.getNode() == 0)
13473      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13474                              DAG.getIntPtrConstant(0));
13475  } else
13476    return SDValue();
13477
13478  // The shift amount is an i32.
13479  if (EltVT.bitsGT(MVT::i32))
13480    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13481  else if (EltVT.bitsLT(MVT::i32))
13482    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13483
13484  // The shift amount is identical so we can do a vector shift.
13485  SDValue  ValOp = N->getOperand(0);
13486  switch (N->getOpcode()) {
13487  default:
13488    llvm_unreachable("Unknown shift opcode!");
13489  case ISD::SHL:
13490    if (VT == MVT::v2i64)
13491      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13492                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13493                         ValOp, BaseShAmt);
13494    if (VT == MVT::v4i32)
13495      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13496                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13497                         ValOp, BaseShAmt);
13498    if (VT == MVT::v8i16)
13499      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13500                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13501                         ValOp, BaseShAmt);
13502    if (VT == MVT::v4i64)
13503      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13504                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
13505                         ValOp, BaseShAmt);
13506    if (VT == MVT::v8i32)
13507      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13508                         DAG.getConstant(Intrinsic::x86_avx2_pslli_d, MVT::i32),
13509                         ValOp, BaseShAmt);
13510    if (VT == MVT::v16i16)
13511      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13512                         DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
13513                         ValOp, BaseShAmt);
13514    break;
13515  case ISD::SRA:
13516    if (VT == MVT::v4i32)
13517      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13518                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13519                         ValOp, BaseShAmt);
13520    if (VT == MVT::v8i16)
13521      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13522                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13523                         ValOp, BaseShAmt);
13524    if (VT == MVT::v8i32)
13525      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13526                         DAG.getConstant(Intrinsic::x86_avx2_psrai_d, MVT::i32),
13527                         ValOp, BaseShAmt);
13528    if (VT == MVT::v16i16)
13529      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13530                         DAG.getConstant(Intrinsic::x86_avx2_psrai_w, MVT::i32),
13531                         ValOp, BaseShAmt);
13532    break;
13533  case ISD::SRL:
13534    if (VT == MVT::v2i64)
13535      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13536                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13537                         ValOp, BaseShAmt);
13538    if (VT == MVT::v4i32)
13539      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13540                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13541                         ValOp, BaseShAmt);
13542    if (VT ==  MVT::v8i16)
13543      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13544                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13545                         ValOp, BaseShAmt);
13546    if (VT == MVT::v4i64)
13547      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13548                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
13549                         ValOp, BaseShAmt);
13550    if (VT == MVT::v8i32)
13551      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13552                         DAG.getConstant(Intrinsic::x86_avx2_psrli_d, MVT::i32),
13553                         ValOp, BaseShAmt);
13554    if (VT ==  MVT::v16i16)
13555      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13556                         DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
13557                         ValOp, BaseShAmt);
13558    break;
13559  }
13560  return SDValue();
13561}
13562
13563
13564// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13565// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13566// and friends.  Likewise for OR -> CMPNEQSS.
13567static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13568                            TargetLowering::DAGCombinerInfo &DCI,
13569                            const X86Subtarget *Subtarget) {
13570  unsigned opcode;
13571
13572  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13573  // we're requiring SSE2 for both.
13574  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13575    SDValue N0 = N->getOperand(0);
13576    SDValue N1 = N->getOperand(1);
13577    SDValue CMP0 = N0->getOperand(1);
13578    SDValue CMP1 = N1->getOperand(1);
13579    DebugLoc DL = N->getDebugLoc();
13580
13581    // The SETCCs should both refer to the same CMP.
13582    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13583      return SDValue();
13584
13585    SDValue CMP00 = CMP0->getOperand(0);
13586    SDValue CMP01 = CMP0->getOperand(1);
13587    EVT     VT    = CMP00.getValueType();
13588
13589    if (VT == MVT::f32 || VT == MVT::f64) {
13590      bool ExpectingFlags = false;
13591      // Check for any users that want flags:
13592      for (SDNode::use_iterator UI = N->use_begin(),
13593             UE = N->use_end();
13594           !ExpectingFlags && UI != UE; ++UI)
13595        switch (UI->getOpcode()) {
13596        default:
13597        case ISD::BR_CC:
13598        case ISD::BRCOND:
13599        case ISD::SELECT:
13600          ExpectingFlags = true;
13601          break;
13602        case ISD::CopyToReg:
13603        case ISD::SIGN_EXTEND:
13604        case ISD::ZERO_EXTEND:
13605        case ISD::ANY_EXTEND:
13606          break;
13607        }
13608
13609      if (!ExpectingFlags) {
13610        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13611        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13612
13613        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13614          X86::CondCode tmp = cc0;
13615          cc0 = cc1;
13616          cc1 = tmp;
13617        }
13618
13619        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13620            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13621          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13622          X86ISD::NodeType NTOperator = is64BitFP ?
13623            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13624          // FIXME: need symbolic constants for these magic numbers.
13625          // See X86ATTInstPrinter.cpp:printSSECC().
13626          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13627          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13628                                              DAG.getConstant(x86cc, MVT::i8));
13629          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13630                                              OnesOrZeroesF);
13631          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13632                                      DAG.getConstant(1, MVT::i32));
13633          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13634          return OneBitOfTruth;
13635        }
13636      }
13637    }
13638  }
13639  return SDValue();
13640}
13641
13642/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13643/// so it can be folded inside ANDNP.
13644static bool CanFoldXORWithAllOnes(const SDNode *N) {
13645  EVT VT = N->getValueType(0);
13646
13647  // Match direct AllOnes for 128 and 256-bit vectors
13648  if (ISD::isBuildVectorAllOnes(N))
13649    return true;
13650
13651  // Look through a bit convert.
13652  if (N->getOpcode() == ISD::BITCAST)
13653    N = N->getOperand(0).getNode();
13654
13655  // Sometimes the operand may come from a insert_subvector building a 256-bit
13656  // allones vector
13657  if (VT.getSizeInBits() == 256 &&
13658      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13659    SDValue V1 = N->getOperand(0);
13660    SDValue V2 = N->getOperand(1);
13661
13662    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13663        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13664        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13665        ISD::isBuildVectorAllOnes(V2.getNode()))
13666      return true;
13667  }
13668
13669  return false;
13670}
13671
13672static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13673                                 TargetLowering::DAGCombinerInfo &DCI,
13674                                 const X86Subtarget *Subtarget) {
13675  if (DCI.isBeforeLegalizeOps())
13676    return SDValue();
13677
13678  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13679  if (R.getNode())
13680    return R;
13681
13682  EVT VT = N->getValueType(0);
13683
13684  // Create ANDN, BLSI, and BLSR instructions
13685  // BLSI is X & (-X)
13686  // BLSR is X & (X-1)
13687  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13688    SDValue N0 = N->getOperand(0);
13689    SDValue N1 = N->getOperand(1);
13690    DebugLoc DL = N->getDebugLoc();
13691
13692    // Check LHS for not
13693    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13694      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13695    // Check RHS for not
13696    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13697      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13698
13699    // Check LHS for neg
13700    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13701        isZero(N0.getOperand(0)))
13702      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13703
13704    // Check RHS for neg
13705    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13706        isZero(N1.getOperand(0)))
13707      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13708
13709    // Check LHS for X-1
13710    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13711        isAllOnes(N0.getOperand(1)))
13712      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13713
13714    // Check RHS for X-1
13715    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13716        isAllOnes(N1.getOperand(1)))
13717      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13718
13719    return SDValue();
13720  }
13721
13722  // Want to form ANDNP nodes:
13723  // 1) In the hopes of then easily combining them with OR and AND nodes
13724  //    to form PBLEND/PSIGN.
13725  // 2) To match ANDN packed intrinsics
13726  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13727    return SDValue();
13728
13729  SDValue N0 = N->getOperand(0);
13730  SDValue N1 = N->getOperand(1);
13731  DebugLoc DL = N->getDebugLoc();
13732
13733  // Check LHS for vnot
13734  if (N0.getOpcode() == ISD::XOR &&
13735      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13736      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13737    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13738
13739  // Check RHS for vnot
13740  if (N1.getOpcode() == ISD::XOR &&
13741      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13742      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13743    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13744
13745  return SDValue();
13746}
13747
13748static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13749                                TargetLowering::DAGCombinerInfo &DCI,
13750                                const X86Subtarget *Subtarget) {
13751  if (DCI.isBeforeLegalizeOps())
13752    return SDValue();
13753
13754  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13755  if (R.getNode())
13756    return R;
13757
13758  EVT VT = N->getValueType(0);
13759
13760  SDValue N0 = N->getOperand(0);
13761  SDValue N1 = N->getOperand(1);
13762
13763  // look for psign/blend
13764  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
13765    if (!Subtarget->hasSSSE3() ||
13766        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
13767      return SDValue();
13768
13769    // Canonicalize pandn to RHS
13770    if (N0.getOpcode() == X86ISD::ANDNP)
13771      std::swap(N0, N1);
13772    // or (and (m, y), (pandn m, x))
13773    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13774      SDValue Mask = N1.getOperand(0);
13775      SDValue X    = N1.getOperand(1);
13776      SDValue Y;
13777      if (N0.getOperand(0) == Mask)
13778        Y = N0.getOperand(1);
13779      if (N0.getOperand(1) == Mask)
13780        Y = N0.getOperand(0);
13781
13782      // Check to see if the mask appeared in both the AND and ANDNP and
13783      if (!Y.getNode())
13784        return SDValue();
13785
13786      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13787      if (Mask.getOpcode() != ISD::BITCAST ||
13788          X.getOpcode() != ISD::BITCAST ||
13789          Y.getOpcode() != ISD::BITCAST)
13790        return SDValue();
13791
13792      // Look through mask bitcast.
13793      Mask = Mask.getOperand(0);
13794      EVT MaskVT = Mask.getValueType();
13795
13796      // Validate that the Mask operand is a vector sra node.  The sra node
13797      // will be an intrinsic.
13798      if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13799        return SDValue();
13800
13801      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13802      // there is no psrai.b
13803      switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13804      case Intrinsic::x86_sse2_psrai_w:
13805      case Intrinsic::x86_sse2_psrai_d:
13806      case Intrinsic::x86_avx2_psrai_w:
13807      case Intrinsic::x86_avx2_psrai_d:
13808        break;
13809      default: return SDValue();
13810      }
13811
13812      // Check that the SRA is all signbits.
13813      SDValue SraC = Mask.getOperand(2);
13814      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13815      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13816      if ((SraAmt + 1) != EltBits)
13817        return SDValue();
13818
13819      DebugLoc DL = N->getDebugLoc();
13820
13821      // Now we know we at least have a plendvb with the mask val.  See if
13822      // we can form a psignb/w/d.
13823      // psign = x.type == y.type == mask.type && y = sub(0, x);
13824      X = X.getOperand(0);
13825      Y = Y.getOperand(0);
13826      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13827          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13828          X.getValueType() == MaskVT && X.getValueType() == Y.getValueType() &&
13829          (EltBits == 8 || EltBits == 16 || EltBits == 32)) {
13830        SDValue Sign = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X,
13831                                   Mask.getOperand(1));
13832        return DAG.getNode(ISD::BITCAST, DL, VT, Sign);
13833      }
13834      // PBLENDVB only available on SSE 4.1
13835      if (!Subtarget->hasSSE41())
13836        return SDValue();
13837
13838      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
13839
13840      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
13841      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
13842      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
13843      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
13844      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13845    }
13846  }
13847
13848  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
13849    return SDValue();
13850
13851  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13852  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13853    std::swap(N0, N1);
13854  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13855    return SDValue();
13856  if (!N0.hasOneUse() || !N1.hasOneUse())
13857    return SDValue();
13858
13859  SDValue ShAmt0 = N0.getOperand(1);
13860  if (ShAmt0.getValueType() != MVT::i8)
13861    return SDValue();
13862  SDValue ShAmt1 = N1.getOperand(1);
13863  if (ShAmt1.getValueType() != MVT::i8)
13864    return SDValue();
13865  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13866    ShAmt0 = ShAmt0.getOperand(0);
13867  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13868    ShAmt1 = ShAmt1.getOperand(0);
13869
13870  DebugLoc DL = N->getDebugLoc();
13871  unsigned Opc = X86ISD::SHLD;
13872  SDValue Op0 = N0.getOperand(0);
13873  SDValue Op1 = N1.getOperand(0);
13874  if (ShAmt0.getOpcode() == ISD::SUB) {
13875    Opc = X86ISD::SHRD;
13876    std::swap(Op0, Op1);
13877    std::swap(ShAmt0, ShAmt1);
13878  }
13879
13880  unsigned Bits = VT.getSizeInBits();
13881  if (ShAmt1.getOpcode() == ISD::SUB) {
13882    SDValue Sum = ShAmt1.getOperand(0);
13883    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13884      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13885      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13886        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13887      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13888        return DAG.getNode(Opc, DL, VT,
13889                           Op0, Op1,
13890                           DAG.getNode(ISD::TRUNCATE, DL,
13891                                       MVT::i8, ShAmt0));
13892    }
13893  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13894    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13895    if (ShAmt0C &&
13896        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13897      return DAG.getNode(Opc, DL, VT,
13898                         N0.getOperand(0), N1.getOperand(0),
13899                         DAG.getNode(ISD::TRUNCATE, DL,
13900                                       MVT::i8, ShAmt0));
13901  }
13902
13903  return SDValue();
13904}
13905
13906// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
13907static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
13908                                 TargetLowering::DAGCombinerInfo &DCI,
13909                                 const X86Subtarget *Subtarget) {
13910  if (DCI.isBeforeLegalizeOps())
13911    return SDValue();
13912
13913  EVT VT = N->getValueType(0);
13914
13915  if (VT != MVT::i32 && VT != MVT::i64)
13916    return SDValue();
13917
13918  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
13919
13920  // Create BLSMSK instructions by finding X ^ (X-1)
13921  SDValue N0 = N->getOperand(0);
13922  SDValue N1 = N->getOperand(1);
13923  DebugLoc DL = N->getDebugLoc();
13924
13925  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13926      isAllOnes(N0.getOperand(1)))
13927    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
13928
13929  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13930      isAllOnes(N1.getOperand(1)))
13931    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
13932
13933  return SDValue();
13934}
13935
13936/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
13937static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
13938                                   const X86Subtarget *Subtarget) {
13939  LoadSDNode *Ld = cast<LoadSDNode>(N);
13940  EVT RegVT = Ld->getValueType(0);
13941  EVT MemVT = Ld->getMemoryVT();
13942  DebugLoc dl = Ld->getDebugLoc();
13943  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13944
13945  ISD::LoadExtType Ext = Ld->getExtensionType();
13946
13947  // If this is a vector EXT Load then attempt to optimize it using a
13948  // shuffle. We need SSE4 for the shuffles.
13949  // TODO: It is possible to support ZExt by zeroing the undef values
13950  // during the shuffle phase or after the shuffle.
13951  if (RegVT.isVector() && RegVT.isInteger() &&
13952      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
13953    assert(MemVT != RegVT && "Cannot extend to the same type");
13954    assert(MemVT.isVector() && "Must load a vector from memory");
13955
13956    unsigned NumElems = RegVT.getVectorNumElements();
13957    unsigned RegSz = RegVT.getSizeInBits();
13958    unsigned MemSz = MemVT.getSizeInBits();
13959    assert(RegSz > MemSz && "Register size must be greater than the mem size");
13960    // All sizes must be a power of two
13961    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
13962
13963    // Attempt to load the original value using a single load op.
13964    // Find a scalar type which is equal to the loaded word size.
13965    MVT SclrLoadTy = MVT::i8;
13966    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13967         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13968      MVT Tp = (MVT::SimpleValueType)tp;
13969      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
13970        SclrLoadTy = Tp;
13971        break;
13972      }
13973    }
13974
13975    // Proceed if a load word is found.
13976    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
13977
13978    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
13979      RegSz/SclrLoadTy.getSizeInBits());
13980
13981    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
13982                                  RegSz/MemVT.getScalarType().getSizeInBits());
13983    // Can't shuffle using an illegal type.
13984    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13985
13986    // Perform a single load.
13987    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
13988                                  Ld->getBasePtr(),
13989                                  Ld->getPointerInfo(), Ld->isVolatile(),
13990                                  Ld->isNonTemporal(), Ld->isInvariant(),
13991                                  Ld->getAlignment());
13992
13993    // Insert the word loaded into a vector.
13994    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
13995      LoadUnitVecVT, ScalarLoad);
13996
13997    // Bitcast the loaded value to a vector of the original element type, in
13998    // the size of the target vector type.
13999    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
14000                                    ScalarInVector);
14001    unsigned SizeRatio = RegSz/MemSz;
14002
14003    // Redistribute the loaded elements into the different locations.
14004    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14005    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14006
14007    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14008                                DAG.getUNDEF(SlicedVec.getValueType()),
14009                                ShuffleVec.data());
14010
14011    // Bitcast to the requested type.
14012    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14013    // Replace the original load with the new sequence
14014    // and return the new chain.
14015    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14016    return SDValue(ScalarLoad.getNode(), 1);
14017  }
14018
14019  return SDValue();
14020}
14021
14022/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14023static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14024                                   const X86Subtarget *Subtarget) {
14025  StoreSDNode *St = cast<StoreSDNode>(N);
14026  EVT VT = St->getValue().getValueType();
14027  EVT StVT = St->getMemoryVT();
14028  DebugLoc dl = St->getDebugLoc();
14029  SDValue StoredVal = St->getOperand(1);
14030  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14031
14032  // If we are saving a concatenation of two XMM registers, perform two stores.
14033  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14034  // 128-bit ones. If in the future the cost becomes only one memory access the
14035  // first version would be better.
14036  if (VT.getSizeInBits() == 256 &&
14037    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14038    StoredVal.getNumOperands() == 2) {
14039
14040    SDValue Value0 = StoredVal.getOperand(0);
14041    SDValue Value1 = StoredVal.getOperand(1);
14042
14043    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14044    SDValue Ptr0 = St->getBasePtr();
14045    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14046
14047    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14048                                St->getPointerInfo(), St->isVolatile(),
14049                                St->isNonTemporal(), St->getAlignment());
14050    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14051                                St->getPointerInfo(), St->isVolatile(),
14052                                St->isNonTemporal(), St->getAlignment());
14053    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14054  }
14055
14056  // Optimize trunc store (of multiple scalars) to shuffle and store.
14057  // First, pack all of the elements in one place. Next, store to memory
14058  // in fewer chunks.
14059  if (St->isTruncatingStore() && VT.isVector()) {
14060    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14061    unsigned NumElems = VT.getVectorNumElements();
14062    assert(StVT != VT && "Cannot truncate to the same type");
14063    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14064    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14065
14066    // From, To sizes and ElemCount must be pow of two
14067    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14068    // We are going to use the original vector elt for storing.
14069    // Accumulated smaller vector elements must be a multiple of the store size.
14070    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14071
14072    unsigned SizeRatio  = FromSz / ToSz;
14073
14074    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14075
14076    // Create a type on which we perform the shuffle
14077    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14078            StVT.getScalarType(), NumElems*SizeRatio);
14079
14080    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14081
14082    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14083    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14084    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14085
14086    // Can't shuffle using an illegal type
14087    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14088
14089    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14090                                DAG.getUNDEF(WideVec.getValueType()),
14091                                ShuffleVec.data());
14092    // At this point all of the data is stored at the bottom of the
14093    // register. We now need to save it to mem.
14094
14095    // Find the largest store unit
14096    MVT StoreType = MVT::i8;
14097    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14098         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14099      MVT Tp = (MVT::SimpleValueType)tp;
14100      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14101        StoreType = Tp;
14102    }
14103
14104    // Bitcast the original vector into a vector of store-size units
14105    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14106            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14107    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14108    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14109    SmallVector<SDValue, 8> Chains;
14110    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14111                                        TLI.getPointerTy());
14112    SDValue Ptr = St->getBasePtr();
14113
14114    // Perform one or more big stores into memory.
14115    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14116      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14117                                   StoreType, ShuffWide,
14118                                   DAG.getIntPtrConstant(i));
14119      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14120                                St->getPointerInfo(), St->isVolatile(),
14121                                St->isNonTemporal(), St->getAlignment());
14122      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14123      Chains.push_back(Ch);
14124    }
14125
14126    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14127                               Chains.size());
14128  }
14129
14130
14131  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14132  // the FP state in cases where an emms may be missing.
14133  // A preferable solution to the general problem is to figure out the right
14134  // places to insert EMMS.  This qualifies as a quick hack.
14135
14136  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14137  if (VT.getSizeInBits() != 64)
14138    return SDValue();
14139
14140  const Function *F = DAG.getMachineFunction().getFunction();
14141  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14142  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14143                     && Subtarget->hasSSE2();
14144  if ((VT.isVector() ||
14145       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14146      isa<LoadSDNode>(St->getValue()) &&
14147      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14148      St->getChain().hasOneUse() && !St->isVolatile()) {
14149    SDNode* LdVal = St->getValue().getNode();
14150    LoadSDNode *Ld = 0;
14151    int TokenFactorIndex = -1;
14152    SmallVector<SDValue, 8> Ops;
14153    SDNode* ChainVal = St->getChain().getNode();
14154    // Must be a store of a load.  We currently handle two cases:  the load
14155    // is a direct child, and it's under an intervening TokenFactor.  It is
14156    // possible to dig deeper under nested TokenFactors.
14157    if (ChainVal == LdVal)
14158      Ld = cast<LoadSDNode>(St->getChain());
14159    else if (St->getValue().hasOneUse() &&
14160             ChainVal->getOpcode() == ISD::TokenFactor) {
14161      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
14162        if (ChainVal->getOperand(i).getNode() == LdVal) {
14163          TokenFactorIndex = i;
14164          Ld = cast<LoadSDNode>(St->getValue());
14165        } else
14166          Ops.push_back(ChainVal->getOperand(i));
14167      }
14168    }
14169
14170    if (!Ld || !ISD::isNormalLoad(Ld))
14171      return SDValue();
14172
14173    // If this is not the MMX case, i.e. we are just turning i64 load/store
14174    // into f64 load/store, avoid the transformation if there are multiple
14175    // uses of the loaded value.
14176    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14177      return SDValue();
14178
14179    DebugLoc LdDL = Ld->getDebugLoc();
14180    DebugLoc StDL = N->getDebugLoc();
14181    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14182    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14183    // pair instead.
14184    if (Subtarget->is64Bit() || F64IsLegal) {
14185      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14186      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14187                                  Ld->getPointerInfo(), Ld->isVolatile(),
14188                                  Ld->isNonTemporal(), Ld->isInvariant(),
14189                                  Ld->getAlignment());
14190      SDValue NewChain = NewLd.getValue(1);
14191      if (TokenFactorIndex != -1) {
14192        Ops.push_back(NewChain);
14193        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14194                               Ops.size());
14195      }
14196      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14197                          St->getPointerInfo(),
14198                          St->isVolatile(), St->isNonTemporal(),
14199                          St->getAlignment());
14200    }
14201
14202    // Otherwise, lower to two pairs of 32-bit loads / stores.
14203    SDValue LoAddr = Ld->getBasePtr();
14204    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14205                                 DAG.getConstant(4, MVT::i32));
14206
14207    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14208                               Ld->getPointerInfo(),
14209                               Ld->isVolatile(), Ld->isNonTemporal(),
14210                               Ld->isInvariant(), Ld->getAlignment());
14211    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14212                               Ld->getPointerInfo().getWithOffset(4),
14213                               Ld->isVolatile(), Ld->isNonTemporal(),
14214                               Ld->isInvariant(),
14215                               MinAlign(Ld->getAlignment(), 4));
14216
14217    SDValue NewChain = LoLd.getValue(1);
14218    if (TokenFactorIndex != -1) {
14219      Ops.push_back(LoLd);
14220      Ops.push_back(HiLd);
14221      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14222                             Ops.size());
14223    }
14224
14225    LoAddr = St->getBasePtr();
14226    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14227                         DAG.getConstant(4, MVT::i32));
14228
14229    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14230                                St->getPointerInfo(),
14231                                St->isVolatile(), St->isNonTemporal(),
14232                                St->getAlignment());
14233    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14234                                St->getPointerInfo().getWithOffset(4),
14235                                St->isVolatile(),
14236                                St->isNonTemporal(),
14237                                MinAlign(St->getAlignment(), 4));
14238    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14239  }
14240  return SDValue();
14241}
14242
14243/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14244/// and return the operands for the horizontal operation in LHS and RHS.  A
14245/// horizontal operation performs the binary operation on successive elements
14246/// of its first operand, then on successive elements of its second operand,
14247/// returning the resulting values in a vector.  For example, if
14248///   A = < float a0, float a1, float a2, float a3 >
14249/// and
14250///   B = < float b0, float b1, float b2, float b3 >
14251/// then the result of doing a horizontal operation on A and B is
14252///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14253/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14254/// A horizontal-op B, for some already available A and B, and if so then LHS is
14255/// set to A, RHS to B, and the routine returns 'true'.
14256/// Note that the binary operation should have the property that if one of the
14257/// operands is UNDEF then the result is UNDEF.
14258static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14259  // Look for the following pattern: if
14260  //   A = < float a0, float a1, float a2, float a3 >
14261  //   B = < float b0, float b1, float b2, float b3 >
14262  // and
14263  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14264  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14265  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14266  // which is A horizontal-op B.
14267
14268  // At least one of the operands should be a vector shuffle.
14269  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14270      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14271    return false;
14272
14273  EVT VT = LHS.getValueType();
14274
14275  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14276         "Unsupported vector type for horizontal add/sub");
14277
14278  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14279  // operate independently on 128-bit lanes.
14280  unsigned NumElts = VT.getVectorNumElements();
14281  unsigned NumLanes = VT.getSizeInBits()/128;
14282  unsigned NumLaneElts = NumElts / NumLanes;
14283  assert((NumLaneElts % 2 == 0) &&
14284         "Vector type should have an even number of elements in each lane");
14285  unsigned HalfLaneElts = NumLaneElts/2;
14286
14287  // View LHS in the form
14288  //   LHS = VECTOR_SHUFFLE A, B, LMask
14289  // If LHS is not a shuffle then pretend it is the shuffle
14290  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14291  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14292  // type VT.
14293  SDValue A, B;
14294  SmallVector<int, 16> LMask(NumElts);
14295  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14296    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14297      A = LHS.getOperand(0);
14298    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14299      B = LHS.getOperand(1);
14300    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14301    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14302  } else {
14303    if (LHS.getOpcode() != ISD::UNDEF)
14304      A = LHS;
14305    for (unsigned i = 0; i != NumElts; ++i)
14306      LMask[i] = i;
14307  }
14308
14309  // Likewise, view RHS in the form
14310  //   RHS = VECTOR_SHUFFLE C, D, RMask
14311  SDValue C, D;
14312  SmallVector<int, 16> RMask(NumElts);
14313  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14314    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14315      C = RHS.getOperand(0);
14316    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14317      D = RHS.getOperand(1);
14318    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14319    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14320  } else {
14321    if (RHS.getOpcode() != ISD::UNDEF)
14322      C = RHS;
14323    for (unsigned i = 0; i != NumElts; ++i)
14324      RMask[i] = i;
14325  }
14326
14327  // Check that the shuffles are both shuffling the same vectors.
14328  if (!(A == C && B == D) && !(A == D && B == C))
14329    return false;
14330
14331  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14332  if (!A.getNode() && !B.getNode())
14333    return false;
14334
14335  // If A and B occur in reverse order in RHS, then "swap" them (which means
14336  // rewriting the mask).
14337  if (A != C)
14338    CommuteVectorShuffleMask(RMask, NumElts);
14339
14340  // At this point LHS and RHS are equivalent to
14341  //   LHS = VECTOR_SHUFFLE A, B, LMask
14342  //   RHS = VECTOR_SHUFFLE A, B, RMask
14343  // Check that the masks correspond to performing a horizontal operation.
14344  for (unsigned i = 0; i != NumElts; ++i) {
14345    int LIdx = LMask[i], RIdx = RMask[i];
14346
14347    // Ignore any UNDEF components.
14348    if (LIdx < 0 || RIdx < 0 ||
14349        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14350        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14351      continue;
14352
14353    // Check that successive elements are being operated on.  If not, this is
14354    // not a horizontal operation.
14355    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14356    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14357    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14358    if (!(LIdx == Index && RIdx == Index + 1) &&
14359        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14360      return false;
14361  }
14362
14363  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14364  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14365  return true;
14366}
14367
14368/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14369static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14370                                  const X86Subtarget *Subtarget) {
14371  EVT VT = N->getValueType(0);
14372  SDValue LHS = N->getOperand(0);
14373  SDValue RHS = N->getOperand(1);
14374
14375  // Try to synthesize horizontal adds from adds of shuffles.
14376  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14377       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14378      isHorizontalBinOp(LHS, RHS, true))
14379    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14380  return SDValue();
14381}
14382
14383/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14384static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14385                                  const X86Subtarget *Subtarget) {
14386  EVT VT = N->getValueType(0);
14387  SDValue LHS = N->getOperand(0);
14388  SDValue RHS = N->getOperand(1);
14389
14390  // Try to synthesize horizontal subs from subs of shuffles.
14391  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14392       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14393      isHorizontalBinOp(LHS, RHS, false))
14394    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14395  return SDValue();
14396}
14397
14398/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14399/// X86ISD::FXOR nodes.
14400static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14401  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14402  // F[X]OR(0.0, x) -> x
14403  // F[X]OR(x, 0.0) -> x
14404  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14405    if (C->getValueAPF().isPosZero())
14406      return N->getOperand(1);
14407  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14408    if (C->getValueAPF().isPosZero())
14409      return N->getOperand(0);
14410  return SDValue();
14411}
14412
14413/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14414static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14415  // FAND(0.0, x) -> 0.0
14416  // FAND(x, 0.0) -> 0.0
14417  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14418    if (C->getValueAPF().isPosZero())
14419      return N->getOperand(0);
14420  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14421    if (C->getValueAPF().isPosZero())
14422      return N->getOperand(1);
14423  return SDValue();
14424}
14425
14426static SDValue PerformBTCombine(SDNode *N,
14427                                SelectionDAG &DAG,
14428                                TargetLowering::DAGCombinerInfo &DCI) {
14429  // BT ignores high bits in the bit index operand.
14430  SDValue Op1 = N->getOperand(1);
14431  if (Op1.hasOneUse()) {
14432    unsigned BitWidth = Op1.getValueSizeInBits();
14433    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14434    APInt KnownZero, KnownOne;
14435    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14436                                          !DCI.isBeforeLegalizeOps());
14437    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14438    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14439        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14440      DCI.CommitTargetLoweringOpt(TLO);
14441  }
14442  return SDValue();
14443}
14444
14445static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14446  SDValue Op = N->getOperand(0);
14447  if (Op.getOpcode() == ISD::BITCAST)
14448    Op = Op.getOperand(0);
14449  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14450  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14451      VT.getVectorElementType().getSizeInBits() ==
14452      OpVT.getVectorElementType().getSizeInBits()) {
14453    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14454  }
14455  return SDValue();
14456}
14457
14458static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
14459  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14460  //           (and (i32 x86isd::setcc_carry), 1)
14461  // This eliminates the zext. This transformation is necessary because
14462  // ISD::SETCC is always legalized to i8.
14463  DebugLoc dl = N->getDebugLoc();
14464  SDValue N0 = N->getOperand(0);
14465  EVT VT = N->getValueType(0);
14466  if (N0.getOpcode() == ISD::AND &&
14467      N0.hasOneUse() &&
14468      N0.getOperand(0).hasOneUse()) {
14469    SDValue N00 = N0.getOperand(0);
14470    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14471      return SDValue();
14472    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14473    if (!C || C->getZExtValue() != 1)
14474      return SDValue();
14475    return DAG.getNode(ISD::AND, dl, VT,
14476                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14477                                   N00.getOperand(0), N00.getOperand(1)),
14478                       DAG.getConstant(1, VT));
14479  }
14480
14481  return SDValue();
14482}
14483
14484// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14485static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14486  unsigned X86CC = N->getConstantOperandVal(0);
14487  SDValue EFLAG = N->getOperand(1);
14488  DebugLoc DL = N->getDebugLoc();
14489
14490  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14491  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14492  // cases.
14493  if (X86CC == X86::COND_B)
14494    return DAG.getNode(ISD::AND, DL, MVT::i8,
14495                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14496                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14497                       DAG.getConstant(1, MVT::i8));
14498
14499  return SDValue();
14500}
14501
14502static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14503                                        const X86TargetLowering *XTLI) {
14504  SDValue Op0 = N->getOperand(0);
14505  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14506  // a 32-bit target where SSE doesn't support i64->FP operations.
14507  if (Op0.getOpcode() == ISD::LOAD) {
14508    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14509    EVT VT = Ld->getValueType(0);
14510    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14511        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14512        !XTLI->getSubtarget()->is64Bit() &&
14513        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14514      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14515                                          Ld->getChain(), Op0, DAG);
14516      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14517      return FILDChain;
14518    }
14519  }
14520  return SDValue();
14521}
14522
14523// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14524static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14525                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14526  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14527  // the result is either zero or one (depending on the input carry bit).
14528  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14529  if (X86::isZeroNode(N->getOperand(0)) &&
14530      X86::isZeroNode(N->getOperand(1)) &&
14531      // We don't have a good way to replace an EFLAGS use, so only do this when
14532      // dead right now.
14533      SDValue(N, 1).use_empty()) {
14534    DebugLoc DL = N->getDebugLoc();
14535    EVT VT = N->getValueType(0);
14536    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14537    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14538                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14539                                           DAG.getConstant(X86::COND_B,MVT::i8),
14540                                           N->getOperand(2)),
14541                               DAG.getConstant(1, VT));
14542    return DCI.CombineTo(N, Res1, CarryOut);
14543  }
14544
14545  return SDValue();
14546}
14547
14548// fold (add Y, (sete  X, 0)) -> adc  0, Y
14549//      (add Y, (setne X, 0)) -> sbb -1, Y
14550//      (sub (sete  X, 0), Y) -> sbb  0, Y
14551//      (sub (setne X, 0), Y) -> adc -1, Y
14552static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14553  DebugLoc DL = N->getDebugLoc();
14554
14555  // Look through ZExts.
14556  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14557  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14558    return SDValue();
14559
14560  SDValue SetCC = Ext.getOperand(0);
14561  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14562    return SDValue();
14563
14564  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14565  if (CC != X86::COND_E && CC != X86::COND_NE)
14566    return SDValue();
14567
14568  SDValue Cmp = SetCC.getOperand(1);
14569  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14570      !X86::isZeroNode(Cmp.getOperand(1)) ||
14571      !Cmp.getOperand(0).getValueType().isInteger())
14572    return SDValue();
14573
14574  SDValue CmpOp0 = Cmp.getOperand(0);
14575  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14576                               DAG.getConstant(1, CmpOp0.getValueType()));
14577
14578  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14579  if (CC == X86::COND_NE)
14580    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14581                       DL, OtherVal.getValueType(), OtherVal,
14582                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14583  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14584                     DL, OtherVal.getValueType(), OtherVal,
14585                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14586}
14587
14588/// PerformADDCombine - Do target-specific dag combines on integer adds.
14589static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14590                                 const X86Subtarget *Subtarget) {
14591  EVT VT = N->getValueType(0);
14592  SDValue Op0 = N->getOperand(0);
14593  SDValue Op1 = N->getOperand(1);
14594
14595  // Try to synthesize horizontal adds from adds of shuffles.
14596  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14597       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14598      isHorizontalBinOp(Op0, Op1, true))
14599    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14600
14601  return OptimizeConditionalInDecrement(N, DAG);
14602}
14603
14604static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14605                                 const X86Subtarget *Subtarget) {
14606  SDValue Op0 = N->getOperand(0);
14607  SDValue Op1 = N->getOperand(1);
14608
14609  // X86 can't encode an immediate LHS of a sub. See if we can push the
14610  // negation into a preceding instruction.
14611  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14612    // If the RHS of the sub is a XOR with one use and a constant, invert the
14613    // immediate. Then add one to the LHS of the sub so we can turn
14614    // X-Y -> X+~Y+1, saving one register.
14615    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14616        isa<ConstantSDNode>(Op1.getOperand(1))) {
14617      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14618      EVT VT = Op0.getValueType();
14619      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14620                                   Op1.getOperand(0),
14621                                   DAG.getConstant(~XorC, VT));
14622      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14623                         DAG.getConstant(C->getAPIntValue()+1, VT));
14624    }
14625  }
14626
14627  // Try to synthesize horizontal adds from adds of shuffles.
14628  EVT VT = N->getValueType(0);
14629  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14630       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14631      isHorizontalBinOp(Op0, Op1, true))
14632    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14633
14634  return OptimizeConditionalInDecrement(N, DAG);
14635}
14636
14637SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14638                                             DAGCombinerInfo &DCI) const {
14639  SelectionDAG &DAG = DCI.DAG;
14640  switch (N->getOpcode()) {
14641  default: break;
14642  case ISD::EXTRACT_VECTOR_ELT:
14643    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14644  case ISD::VSELECT:
14645  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
14646  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14647  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
14648  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
14649  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14650  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14651  case ISD::SHL:
14652  case ISD::SRA:
14653  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
14654  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14655  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14656  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
14657  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14658  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14659  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14660  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14661  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14662  case X86ISD::FXOR:
14663  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14664  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14665  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14666  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14667  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
14668  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14669  case X86ISD::SHUFP:       // Handle all target specific shuffles
14670  case X86ISD::PALIGN:
14671  case X86ISD::UNPCKH:
14672  case X86ISD::UNPCKL:
14673  case X86ISD::MOVHLPS:
14674  case X86ISD::MOVLHPS:
14675  case X86ISD::PSHUFD:
14676  case X86ISD::PSHUFHW:
14677  case X86ISD::PSHUFLW:
14678  case X86ISD::MOVSS:
14679  case X86ISD::MOVSD:
14680  case X86ISD::VPERMILP:
14681  case X86ISD::VPERM2X128:
14682  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14683  }
14684
14685  return SDValue();
14686}
14687
14688/// isTypeDesirableForOp - Return true if the target has native support for
14689/// the specified value type and it is 'desirable' to use the type for the
14690/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14691/// instruction encodings are longer and some i16 instructions are slow.
14692bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14693  if (!isTypeLegal(VT))
14694    return false;
14695  if (VT != MVT::i16)
14696    return true;
14697
14698  switch (Opc) {
14699  default:
14700    return true;
14701  case ISD::LOAD:
14702  case ISD::SIGN_EXTEND:
14703  case ISD::ZERO_EXTEND:
14704  case ISD::ANY_EXTEND:
14705  case ISD::SHL:
14706  case ISD::SRL:
14707  case ISD::SUB:
14708  case ISD::ADD:
14709  case ISD::MUL:
14710  case ISD::AND:
14711  case ISD::OR:
14712  case ISD::XOR:
14713    return false;
14714  }
14715}
14716
14717/// IsDesirableToPromoteOp - This method query the target whether it is
14718/// beneficial for dag combiner to promote the specified node. If true, it
14719/// should return the desired promotion type by reference.
14720bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14721  EVT VT = Op.getValueType();
14722  if (VT != MVT::i16)
14723    return false;
14724
14725  bool Promote = false;
14726  bool Commute = false;
14727  switch (Op.getOpcode()) {
14728  default: break;
14729  case ISD::LOAD: {
14730    LoadSDNode *LD = cast<LoadSDNode>(Op);
14731    // If the non-extending load has a single use and it's not live out, then it
14732    // might be folded.
14733    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14734                                                     Op.hasOneUse()*/) {
14735      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14736             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14737        // The only case where we'd want to promote LOAD (rather then it being
14738        // promoted as an operand is when it's only use is liveout.
14739        if (UI->getOpcode() != ISD::CopyToReg)
14740          return false;
14741      }
14742    }
14743    Promote = true;
14744    break;
14745  }
14746  case ISD::SIGN_EXTEND:
14747  case ISD::ZERO_EXTEND:
14748  case ISD::ANY_EXTEND:
14749    Promote = true;
14750    break;
14751  case ISD::SHL:
14752  case ISD::SRL: {
14753    SDValue N0 = Op.getOperand(0);
14754    // Look out for (store (shl (load), x)).
14755    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14756      return false;
14757    Promote = true;
14758    break;
14759  }
14760  case ISD::ADD:
14761  case ISD::MUL:
14762  case ISD::AND:
14763  case ISD::OR:
14764  case ISD::XOR:
14765    Commute = true;
14766    // fallthrough
14767  case ISD::SUB: {
14768    SDValue N0 = Op.getOperand(0);
14769    SDValue N1 = Op.getOperand(1);
14770    if (!Commute && MayFoldLoad(N1))
14771      return false;
14772    // Avoid disabling potential load folding opportunities.
14773    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14774      return false;
14775    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14776      return false;
14777    Promote = true;
14778  }
14779  }
14780
14781  PVT = MVT::i32;
14782  return Promote;
14783}
14784
14785//===----------------------------------------------------------------------===//
14786//                           X86 Inline Assembly Support
14787//===----------------------------------------------------------------------===//
14788
14789namespace {
14790  // Helper to match a string separated by whitespace.
14791  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
14792    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
14793
14794    for (unsigned i = 0, e = args.size(); i != e; ++i) {
14795      StringRef piece(*args[i]);
14796      if (!s.startswith(piece)) // Check if the piece matches.
14797        return false;
14798
14799      s = s.substr(piece.size());
14800      StringRef::size_type pos = s.find_first_not_of(" \t");
14801      if (pos == 0) // We matched a prefix.
14802        return false;
14803
14804      s = s.substr(pos);
14805    }
14806
14807    return s.empty();
14808  }
14809  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
14810}
14811
14812bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14813  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14814
14815  std::string AsmStr = IA->getAsmString();
14816
14817  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14818  if (!Ty || Ty->getBitWidth() % 16 != 0)
14819    return false;
14820
14821  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14822  SmallVector<StringRef, 4> AsmPieces;
14823  SplitString(AsmStr, AsmPieces, ";\n");
14824
14825  switch (AsmPieces.size()) {
14826  default: return false;
14827  case 1:
14828    // FIXME: this should verify that we are targeting a 486 or better.  If not,
14829    // we will turn this bswap into something that will be lowered to logical
14830    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
14831    // lower so don't worry about this.
14832    // bswap $0
14833    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
14834        matchAsm(AsmPieces[0], "bswapl", "$0") ||
14835        matchAsm(AsmPieces[0], "bswapq", "$0") ||
14836        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
14837        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
14838        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
14839      // No need to check constraints, nothing other than the equivalent of
14840      // "=r,0" would be valid here.
14841      return IntrinsicLowering::LowerToByteSwap(CI);
14842    }
14843
14844    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
14845    if (CI->getType()->isIntegerTy(16) &&
14846        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14847        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
14848         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
14849      AsmPieces.clear();
14850      const std::string &ConstraintsStr = IA->getConstraintString();
14851      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14852      std::sort(AsmPieces.begin(), AsmPieces.end());
14853      if (AsmPieces.size() == 4 &&
14854          AsmPieces[0] == "~{cc}" &&
14855          AsmPieces[1] == "~{dirflag}" &&
14856          AsmPieces[2] == "~{flags}" &&
14857          AsmPieces[3] == "~{fpsr}")
14858      return IntrinsicLowering::LowerToByteSwap(CI);
14859    }
14860    break;
14861  case 3:
14862    if (CI->getType()->isIntegerTy(32) &&
14863        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14864        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
14865        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
14866        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
14867      AsmPieces.clear();
14868      const std::string &ConstraintsStr = IA->getConstraintString();
14869      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14870      std::sort(AsmPieces.begin(), AsmPieces.end());
14871      if (AsmPieces.size() == 4 &&
14872          AsmPieces[0] == "~{cc}" &&
14873          AsmPieces[1] == "~{dirflag}" &&
14874          AsmPieces[2] == "~{flags}" &&
14875          AsmPieces[3] == "~{fpsr}")
14876        return IntrinsicLowering::LowerToByteSwap(CI);
14877    }
14878
14879    if (CI->getType()->isIntegerTy(64)) {
14880      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14881      if (Constraints.size() >= 2 &&
14882          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14883          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14884        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
14885        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
14886            matchAsm(AsmPieces[1], "bswap", "%edx") &&
14887            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
14888          return IntrinsicLowering::LowerToByteSwap(CI);
14889      }
14890    }
14891    break;
14892  }
14893  return false;
14894}
14895
14896
14897
14898/// getConstraintType - Given a constraint letter, return the type of
14899/// constraint it is for this target.
14900X86TargetLowering::ConstraintType
14901X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14902  if (Constraint.size() == 1) {
14903    switch (Constraint[0]) {
14904    case 'R':
14905    case 'q':
14906    case 'Q':
14907    case 'f':
14908    case 't':
14909    case 'u':
14910    case 'y':
14911    case 'x':
14912    case 'Y':
14913    case 'l':
14914      return C_RegisterClass;
14915    case 'a':
14916    case 'b':
14917    case 'c':
14918    case 'd':
14919    case 'S':
14920    case 'D':
14921    case 'A':
14922      return C_Register;
14923    case 'I':
14924    case 'J':
14925    case 'K':
14926    case 'L':
14927    case 'M':
14928    case 'N':
14929    case 'G':
14930    case 'C':
14931    case 'e':
14932    case 'Z':
14933      return C_Other;
14934    default:
14935      break;
14936    }
14937  }
14938  return TargetLowering::getConstraintType(Constraint);
14939}
14940
14941/// Examine constraint type and operand type and determine a weight value.
14942/// This object must already have been set up with the operand type
14943/// and the current alternative constraint selected.
14944TargetLowering::ConstraintWeight
14945  X86TargetLowering::getSingleConstraintMatchWeight(
14946    AsmOperandInfo &info, const char *constraint) const {
14947  ConstraintWeight weight = CW_Invalid;
14948  Value *CallOperandVal = info.CallOperandVal;
14949    // If we don't have a value, we can't do a match,
14950    // but allow it at the lowest weight.
14951  if (CallOperandVal == NULL)
14952    return CW_Default;
14953  Type *type = CallOperandVal->getType();
14954  // Look at the constraint type.
14955  switch (*constraint) {
14956  default:
14957    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14958  case 'R':
14959  case 'q':
14960  case 'Q':
14961  case 'a':
14962  case 'b':
14963  case 'c':
14964  case 'd':
14965  case 'S':
14966  case 'D':
14967  case 'A':
14968    if (CallOperandVal->getType()->isIntegerTy())
14969      weight = CW_SpecificReg;
14970    break;
14971  case 'f':
14972  case 't':
14973  case 'u':
14974      if (type->isFloatingPointTy())
14975        weight = CW_SpecificReg;
14976      break;
14977  case 'y':
14978      if (type->isX86_MMXTy() && Subtarget->hasMMX())
14979        weight = CW_SpecificReg;
14980      break;
14981  case 'x':
14982  case 'Y':
14983    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
14984        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
14985      weight = CW_Register;
14986    break;
14987  case 'I':
14988    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14989      if (C->getZExtValue() <= 31)
14990        weight = CW_Constant;
14991    }
14992    break;
14993  case 'J':
14994    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14995      if (C->getZExtValue() <= 63)
14996        weight = CW_Constant;
14997    }
14998    break;
14999  case 'K':
15000    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15001      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15002        weight = CW_Constant;
15003    }
15004    break;
15005  case 'L':
15006    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15007      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15008        weight = CW_Constant;
15009    }
15010    break;
15011  case 'M':
15012    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15013      if (C->getZExtValue() <= 3)
15014        weight = CW_Constant;
15015    }
15016    break;
15017  case 'N':
15018    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15019      if (C->getZExtValue() <= 0xff)
15020        weight = CW_Constant;
15021    }
15022    break;
15023  case 'G':
15024  case 'C':
15025    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15026      weight = CW_Constant;
15027    }
15028    break;
15029  case 'e':
15030    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15031      if ((C->getSExtValue() >= -0x80000000LL) &&
15032          (C->getSExtValue() <= 0x7fffffffLL))
15033        weight = CW_Constant;
15034    }
15035    break;
15036  case 'Z':
15037    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15038      if (C->getZExtValue() <= 0xffffffff)
15039        weight = CW_Constant;
15040    }
15041    break;
15042  }
15043  return weight;
15044}
15045
15046/// LowerXConstraint - try to replace an X constraint, which matches anything,
15047/// with another that has more specific requirements based on the type of the
15048/// corresponding operand.
15049const char *X86TargetLowering::
15050LowerXConstraint(EVT ConstraintVT) const {
15051  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15052  // 'f' like normal targets.
15053  if (ConstraintVT.isFloatingPoint()) {
15054    if (Subtarget->hasSSE2())
15055      return "Y";
15056    if (Subtarget->hasSSE1())
15057      return "x";
15058  }
15059
15060  return TargetLowering::LowerXConstraint(ConstraintVT);
15061}
15062
15063/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15064/// vector.  If it is invalid, don't add anything to Ops.
15065void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15066                                                     std::string &Constraint,
15067                                                     std::vector<SDValue>&Ops,
15068                                                     SelectionDAG &DAG) const {
15069  SDValue Result(0, 0);
15070
15071  // Only support length 1 constraints for now.
15072  if (Constraint.length() > 1) return;
15073
15074  char ConstraintLetter = Constraint[0];
15075  switch (ConstraintLetter) {
15076  default: break;
15077  case 'I':
15078    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15079      if (C->getZExtValue() <= 31) {
15080        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15081        break;
15082      }
15083    }
15084    return;
15085  case 'J':
15086    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15087      if (C->getZExtValue() <= 63) {
15088        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15089        break;
15090      }
15091    }
15092    return;
15093  case 'K':
15094    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15095      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15096        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15097        break;
15098      }
15099    }
15100    return;
15101  case 'N':
15102    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15103      if (C->getZExtValue() <= 255) {
15104        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15105        break;
15106      }
15107    }
15108    return;
15109  case 'e': {
15110    // 32-bit signed value
15111    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15112      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15113                                           C->getSExtValue())) {
15114        // Widen to 64 bits here to get it sign extended.
15115        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15116        break;
15117      }
15118    // FIXME gcc accepts some relocatable values here too, but only in certain
15119    // memory models; it's complicated.
15120    }
15121    return;
15122  }
15123  case 'Z': {
15124    // 32-bit unsigned value
15125    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15126      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15127                                           C->getZExtValue())) {
15128        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15129        break;
15130      }
15131    }
15132    // FIXME gcc accepts some relocatable values here too, but only in certain
15133    // memory models; it's complicated.
15134    return;
15135  }
15136  case 'i': {
15137    // Literal immediates are always ok.
15138    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15139      // Widen to 64 bits here to get it sign extended.
15140      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15141      break;
15142    }
15143
15144    // In any sort of PIC mode addresses need to be computed at runtime by
15145    // adding in a register or some sort of table lookup.  These can't
15146    // be used as immediates.
15147    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15148      return;
15149
15150    // If we are in non-pic codegen mode, we allow the address of a global (with
15151    // an optional displacement) to be used with 'i'.
15152    GlobalAddressSDNode *GA = 0;
15153    int64_t Offset = 0;
15154
15155    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15156    while (1) {
15157      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15158        Offset += GA->getOffset();
15159        break;
15160      } else if (Op.getOpcode() == ISD::ADD) {
15161        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15162          Offset += C->getZExtValue();
15163          Op = Op.getOperand(0);
15164          continue;
15165        }
15166      } else if (Op.getOpcode() == ISD::SUB) {
15167        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15168          Offset += -C->getZExtValue();
15169          Op = Op.getOperand(0);
15170          continue;
15171        }
15172      }
15173
15174      // Otherwise, this isn't something we can handle, reject it.
15175      return;
15176    }
15177
15178    const GlobalValue *GV = GA->getGlobal();
15179    // If we require an extra load to get this address, as in PIC mode, we
15180    // can't accept it.
15181    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15182                                                        getTargetMachine())))
15183      return;
15184
15185    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15186                                        GA->getValueType(0), Offset);
15187    break;
15188  }
15189  }
15190
15191  if (Result.getNode()) {
15192    Ops.push_back(Result);
15193    return;
15194  }
15195  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15196}
15197
15198std::pair<unsigned, const TargetRegisterClass*>
15199X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15200                                                EVT VT) const {
15201  // First, see if this is a constraint that directly corresponds to an LLVM
15202  // register class.
15203  if (Constraint.size() == 1) {
15204    // GCC Constraint Letters
15205    switch (Constraint[0]) {
15206    default: break;
15207      // TODO: Slight differences here in allocation order and leaving
15208      // RIP in the class. Do they matter any more here than they do
15209      // in the normal allocation?
15210    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15211      if (Subtarget->is64Bit()) {
15212	if (VT == MVT::i32 || VT == MVT::f32)
15213	  return std::make_pair(0U, X86::GR32RegisterClass);
15214	else if (VT == MVT::i16)
15215	  return std::make_pair(0U, X86::GR16RegisterClass);
15216	else if (VT == MVT::i8 || VT == MVT::i1)
15217	  return std::make_pair(0U, X86::GR8RegisterClass);
15218	else if (VT == MVT::i64 || VT == MVT::f64)
15219	  return std::make_pair(0U, X86::GR64RegisterClass);
15220	break;
15221      }
15222      // 32-bit fallthrough
15223    case 'Q':   // Q_REGS
15224      if (VT == MVT::i32 || VT == MVT::f32)
15225	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15226      else if (VT == MVT::i16)
15227	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15228      else if (VT == MVT::i8 || VT == MVT::i1)
15229	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15230      else if (VT == MVT::i64)
15231	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15232      break;
15233    case 'r':   // GENERAL_REGS
15234    case 'l':   // INDEX_REGS
15235      if (VT == MVT::i8 || VT == MVT::i1)
15236        return std::make_pair(0U, X86::GR8RegisterClass);
15237      if (VT == MVT::i16)
15238        return std::make_pair(0U, X86::GR16RegisterClass);
15239      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15240        return std::make_pair(0U, X86::GR32RegisterClass);
15241      return std::make_pair(0U, X86::GR64RegisterClass);
15242    case 'R':   // LEGACY_REGS
15243      if (VT == MVT::i8 || VT == MVT::i1)
15244        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15245      if (VT == MVT::i16)
15246        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15247      if (VT == MVT::i32 || !Subtarget->is64Bit())
15248        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15249      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15250    case 'f':  // FP Stack registers.
15251      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15252      // value to the correct fpstack register class.
15253      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15254        return std::make_pair(0U, X86::RFP32RegisterClass);
15255      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15256        return std::make_pair(0U, X86::RFP64RegisterClass);
15257      return std::make_pair(0U, X86::RFP80RegisterClass);
15258    case 'y':   // MMX_REGS if MMX allowed.
15259      if (!Subtarget->hasMMX()) break;
15260      return std::make_pair(0U, X86::VR64RegisterClass);
15261    case 'Y':   // SSE_REGS if SSE2 allowed
15262      if (!Subtarget->hasSSE2()) break;
15263      // FALL THROUGH.
15264    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15265      if (!Subtarget->hasSSE1()) break;
15266
15267      switch (VT.getSimpleVT().SimpleTy) {
15268      default: break;
15269      // Scalar SSE types.
15270      case MVT::f32:
15271      case MVT::i32:
15272        return std::make_pair(0U, X86::FR32RegisterClass);
15273      case MVT::f64:
15274      case MVT::i64:
15275        return std::make_pair(0U, X86::FR64RegisterClass);
15276      // Vector types.
15277      case MVT::v16i8:
15278      case MVT::v8i16:
15279      case MVT::v4i32:
15280      case MVT::v2i64:
15281      case MVT::v4f32:
15282      case MVT::v2f64:
15283        return std::make_pair(0U, X86::VR128RegisterClass);
15284      // AVX types.
15285      case MVT::v32i8:
15286      case MVT::v16i16:
15287      case MVT::v8i32:
15288      case MVT::v4i64:
15289      case MVT::v8f32:
15290      case MVT::v4f64:
15291        return std::make_pair(0U, X86::VR256RegisterClass);
15292
15293      }
15294      break;
15295    }
15296  }
15297
15298  // Use the default implementation in TargetLowering to convert the register
15299  // constraint into a member of a register class.
15300  std::pair<unsigned, const TargetRegisterClass*> Res;
15301  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15302
15303  // Not found as a standard register?
15304  if (Res.second == 0) {
15305    // Map st(0) -> st(7) -> ST0
15306    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15307        tolower(Constraint[1]) == 's' &&
15308        tolower(Constraint[2]) == 't' &&
15309        Constraint[3] == '(' &&
15310        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15311        Constraint[5] == ')' &&
15312        Constraint[6] == '}') {
15313
15314      Res.first = X86::ST0+Constraint[4]-'0';
15315      Res.second = X86::RFP80RegisterClass;
15316      return Res;
15317    }
15318
15319    // GCC allows "st(0)" to be called just plain "st".
15320    if (StringRef("{st}").equals_lower(Constraint)) {
15321      Res.first = X86::ST0;
15322      Res.second = X86::RFP80RegisterClass;
15323      return Res;
15324    }
15325
15326    // flags -> EFLAGS
15327    if (StringRef("{flags}").equals_lower(Constraint)) {
15328      Res.first = X86::EFLAGS;
15329      Res.second = X86::CCRRegisterClass;
15330      return Res;
15331    }
15332
15333    // 'A' means EAX + EDX.
15334    if (Constraint == "A") {
15335      Res.first = X86::EAX;
15336      Res.second = X86::GR32_ADRegisterClass;
15337      return Res;
15338    }
15339    return Res;
15340  }
15341
15342  // Otherwise, check to see if this is a register class of the wrong value
15343  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15344  // turn into {ax},{dx}.
15345  if (Res.second->hasType(VT))
15346    return Res;   // Correct type already, nothing to do.
15347
15348  // All of the single-register GCC register classes map their values onto
15349  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15350  // really want an 8-bit or 32-bit register, map to the appropriate register
15351  // class and return the appropriate register.
15352  if (Res.second == X86::GR16RegisterClass) {
15353    if (VT == MVT::i8) {
15354      unsigned DestReg = 0;
15355      switch (Res.first) {
15356      default: break;
15357      case X86::AX: DestReg = X86::AL; break;
15358      case X86::DX: DestReg = X86::DL; break;
15359      case X86::CX: DestReg = X86::CL; break;
15360      case X86::BX: DestReg = X86::BL; break;
15361      }
15362      if (DestReg) {
15363        Res.first = DestReg;
15364        Res.second = X86::GR8RegisterClass;
15365      }
15366    } else if (VT == MVT::i32) {
15367      unsigned DestReg = 0;
15368      switch (Res.first) {
15369      default: break;
15370      case X86::AX: DestReg = X86::EAX; break;
15371      case X86::DX: DestReg = X86::EDX; break;
15372      case X86::CX: DestReg = X86::ECX; break;
15373      case X86::BX: DestReg = X86::EBX; break;
15374      case X86::SI: DestReg = X86::ESI; break;
15375      case X86::DI: DestReg = X86::EDI; break;
15376      case X86::BP: DestReg = X86::EBP; break;
15377      case X86::SP: DestReg = X86::ESP; break;
15378      }
15379      if (DestReg) {
15380        Res.first = DestReg;
15381        Res.second = X86::GR32RegisterClass;
15382      }
15383    } else if (VT == MVT::i64) {
15384      unsigned DestReg = 0;
15385      switch (Res.first) {
15386      default: break;
15387      case X86::AX: DestReg = X86::RAX; break;
15388      case X86::DX: DestReg = X86::RDX; break;
15389      case X86::CX: DestReg = X86::RCX; break;
15390      case X86::BX: DestReg = X86::RBX; break;
15391      case X86::SI: DestReg = X86::RSI; break;
15392      case X86::DI: DestReg = X86::RDI; break;
15393      case X86::BP: DestReg = X86::RBP; break;
15394      case X86::SP: DestReg = X86::RSP; break;
15395      }
15396      if (DestReg) {
15397        Res.first = DestReg;
15398        Res.second = X86::GR64RegisterClass;
15399      }
15400    }
15401  } else if (Res.second == X86::FR32RegisterClass ||
15402             Res.second == X86::FR64RegisterClass ||
15403             Res.second == X86::VR128RegisterClass) {
15404    // Handle references to XMM physical registers that got mapped into the
15405    // wrong class.  This can happen with constraints like {xmm0} where the
15406    // target independent register mapper will just pick the first match it can
15407    // find, ignoring the required type.
15408    if (VT == MVT::f32)
15409      Res.second = X86::FR32RegisterClass;
15410    else if (VT == MVT::f64)
15411      Res.second = X86::FR64RegisterClass;
15412    else if (X86::VR128RegisterClass->hasType(VT))
15413      Res.second = X86::VR128RegisterClass;
15414  }
15415
15416  return Res;
15417}
15418