X86ISelLowering.cpp revision 6fa2f9c63688ff240d58c80bc0e433bb27a53c85
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the interfaces that X86 uses to lower LLVM code into a 11// selection DAG. 12// 13//===----------------------------------------------------------------------===// 14 15#include "X86.h" 16#include "X86InstrBuilder.h" 17#include "X86ISelLowering.h" 18#include "X86MachineFunctionInfo.h" 19#include "X86TargetMachine.h" 20#include "llvm/CallingConv.h" 21#include "llvm/Constants.h" 22#include "llvm/DerivedTypes.h" 23#include "llvm/GlobalVariable.h" 24#include "llvm/Function.h" 25#include "llvm/Intrinsics.h" 26#include "llvm/ADT/BitVector.h" 27#include "llvm/ADT/VectorExtras.h" 28#include "llvm/Analysis/ScalarEvolutionExpressions.h" 29#include "llvm/CodeGen/CallingConvLower.h" 30#include "llvm/CodeGen/MachineFrameInfo.h" 31#include "llvm/CodeGen/MachineFunction.h" 32#include "llvm/CodeGen/MachineInstrBuilder.h" 33#include "llvm/CodeGen/MachineModuleInfo.h" 34#include "llvm/CodeGen/MachineRegisterInfo.h" 35#include "llvm/CodeGen/PseudoSourceValue.h" 36#include "llvm/CodeGen/SelectionDAG.h" 37#include "llvm/Support/MathExtras.h" 38#include "llvm/Support/Debug.h" 39#include "llvm/Target/TargetOptions.h" 40#include "llvm/ADT/SmallSet.h" 41#include "llvm/ADT/StringExtras.h" 42#include "llvm/ParamAttrsList.h" 43using namespace llvm; 44 45X86TargetLowering::X86TargetLowering(TargetMachine &TM) 46 : TargetLowering(TM) { 47 Subtarget = &TM.getSubtarget<X86Subtarget>(); 48 X86ScalarSSEf64 = Subtarget->hasSSE2(); 49 X86ScalarSSEf32 = Subtarget->hasSSE1(); 50 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP; 51 52 bool Fast = false; 53 54 RegInfo = TM.getRegisterInfo(); 55 56 // Set up the TargetLowering object. 57 58 // X86 is weird, it always uses i8 for shift amounts and setcc results. 59 setShiftAmountType(MVT::i8); 60 setSetCCResultType(MVT::i8); 61 setSetCCResultContents(ZeroOrOneSetCCResult); 62 setSchedulingPreference(SchedulingForRegPressure); 63 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0 64 setStackPointerRegisterToSaveRestore(X86StackPtr); 65 66 if (Subtarget->isTargetDarwin()) { 67 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. 68 setUseUnderscoreSetJmp(false); 69 setUseUnderscoreLongJmp(false); 70 } else if (Subtarget->isTargetMingw()) { 71 // MS runtime is weird: it exports _setjmp, but longjmp! 72 setUseUnderscoreSetJmp(true); 73 setUseUnderscoreLongJmp(false); 74 } else { 75 setUseUnderscoreSetJmp(true); 76 setUseUnderscoreLongJmp(true); 77 } 78 79 // Set up the register classes. 80 addRegisterClass(MVT::i8, X86::GR8RegisterClass); 81 addRegisterClass(MVT::i16, X86::GR16RegisterClass); 82 addRegisterClass(MVT::i32, X86::GR32RegisterClass); 83 if (Subtarget->is64Bit()) 84 addRegisterClass(MVT::i64, X86::GR64RegisterClass); 85 86 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote); 87 88 // We don't accept any truncstore of integer registers. 89 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 90 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 91 setTruncStoreAction(MVT::i64, MVT::i8 , Expand); 92 setTruncStoreAction(MVT::i32, MVT::i16, Expand); 93 setTruncStoreAction(MVT::i32, MVT::i8 , Expand); 94 setTruncStoreAction(MVT::i16, MVT::i8, Expand); 95 96 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this 97 // operation. 98 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); 99 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); 100 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); 101 102 if (Subtarget->is64Bit()) { 103 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand); 104 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); 105 } else { 106 if (X86ScalarSSEf64) 107 // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP. 108 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand); 109 else 110 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); 111 } 112 113 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have 114 // this operation. 115 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); 116 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); 117 // SSE has no i16 to fp conversion, only i32 118 if (X86ScalarSSEf32) { 119 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); 120 // f32 and f64 cases are Legal, f80 case is not 121 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); 122 } else { 123 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); 124 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); 125 } 126 127 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64 128 // are Legal, f80 is custom lowered. 129 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); 130 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); 131 132 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have 133 // this operation. 134 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); 135 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); 136 137 if (X86ScalarSSEf32) { 138 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); 139 // f32 and f64 cases are Legal, f80 case is not 140 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); 141 } else { 142 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); 143 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); 144 } 145 146 // Handle FP_TO_UINT by promoting the destination to a larger signed 147 // conversion. 148 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); 149 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); 150 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); 151 152 if (Subtarget->is64Bit()) { 153 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand); 154 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); 155 } else { 156 if (X86ScalarSSEf32 && !Subtarget->hasSSE3()) 157 // Expand FP_TO_UINT into a select. 158 // FIXME: We would like to use a Custom expander here eventually to do 159 // the optimal thing for SSE vs. the default expansion in the legalizer. 160 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); 161 else 162 // With SSE3 we can use fisttpll to convert to a signed i64. 163 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); 164 } 165 166 // TODO: when we have SSE, these could be more efficient, by using movd/movq. 167 if (!X86ScalarSSEf64) { 168 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand); 169 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand); 170 } 171 172 // Scalar integer divide and remainder are lowered to use operations that 173 // produce two results, to match the available instructions. This exposes 174 // the two-result form to trivial CSE, which is able to combine x/y and x%y 175 // into a single instruction. 176 // 177 // Scalar integer multiply-high is also lowered to use two-result 178 // operations, to match the available instructions. However, plain multiply 179 // (low) operations are left as Legal, as there are single-result 180 // instructions for this in x86. Using the two-result multiply instructions 181 // when both high and low results are needed must be arranged by dagcombine. 182 setOperationAction(ISD::MULHS , MVT::i8 , Expand); 183 setOperationAction(ISD::MULHU , MVT::i8 , Expand); 184 setOperationAction(ISD::SDIV , MVT::i8 , Expand); 185 setOperationAction(ISD::UDIV , MVT::i8 , Expand); 186 setOperationAction(ISD::SREM , MVT::i8 , Expand); 187 setOperationAction(ISD::UREM , MVT::i8 , Expand); 188 setOperationAction(ISD::MULHS , MVT::i16 , Expand); 189 setOperationAction(ISD::MULHU , MVT::i16 , Expand); 190 setOperationAction(ISD::SDIV , MVT::i16 , Expand); 191 setOperationAction(ISD::UDIV , MVT::i16 , Expand); 192 setOperationAction(ISD::SREM , MVT::i16 , Expand); 193 setOperationAction(ISD::UREM , MVT::i16 , Expand); 194 setOperationAction(ISD::MULHS , MVT::i32 , Expand); 195 setOperationAction(ISD::MULHU , MVT::i32 , Expand); 196 setOperationAction(ISD::SDIV , MVT::i32 , Expand); 197 setOperationAction(ISD::UDIV , MVT::i32 , Expand); 198 setOperationAction(ISD::SREM , MVT::i32 , Expand); 199 setOperationAction(ISD::UREM , MVT::i32 , Expand); 200 setOperationAction(ISD::MULHS , MVT::i64 , Expand); 201 setOperationAction(ISD::MULHU , MVT::i64 , Expand); 202 setOperationAction(ISD::SDIV , MVT::i64 , Expand); 203 setOperationAction(ISD::UDIV , MVT::i64 , Expand); 204 setOperationAction(ISD::SREM , MVT::i64 , Expand); 205 setOperationAction(ISD::UREM , MVT::i64 , Expand); 206 207 setOperationAction(ISD::BR_JT , MVT::Other, Expand); 208 setOperationAction(ISD::BRCOND , MVT::Other, Custom); 209 setOperationAction(ISD::BR_CC , MVT::Other, Expand); 210 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand); 211 setOperationAction(ISD::MEMMOVE , MVT::Other, Expand); 212 if (Subtarget->is64Bit()) 213 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); 214 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal); 215 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); 216 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); 217 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); 218 setOperationAction(ISD::FREM , MVT::f32 , Expand); 219 setOperationAction(ISD::FREM , MVT::f64 , Expand); 220 setOperationAction(ISD::FREM , MVT::f80 , Expand); 221 setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom); 222 223 setOperationAction(ISD::CTPOP , MVT::i8 , Expand); 224 setOperationAction(ISD::CTTZ , MVT::i8 , Custom); 225 setOperationAction(ISD::CTLZ , MVT::i8 , Custom); 226 setOperationAction(ISD::CTPOP , MVT::i16 , Expand); 227 setOperationAction(ISD::CTTZ , MVT::i16 , Custom); 228 setOperationAction(ISD::CTLZ , MVT::i16 , Custom); 229 setOperationAction(ISD::CTPOP , MVT::i32 , Expand); 230 setOperationAction(ISD::CTTZ , MVT::i32 , Custom); 231 setOperationAction(ISD::CTLZ , MVT::i32 , Custom); 232 if (Subtarget->is64Bit()) { 233 setOperationAction(ISD::CTPOP , MVT::i64 , Expand); 234 setOperationAction(ISD::CTTZ , MVT::i64 , Custom); 235 setOperationAction(ISD::CTLZ , MVT::i64 , Custom); 236 } 237 238 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); 239 setOperationAction(ISD::BSWAP , MVT::i16 , Expand); 240 241 // These should be promoted to a larger select which is supported. 242 setOperationAction(ISD::SELECT , MVT::i1 , Promote); 243 setOperationAction(ISD::SELECT , MVT::i8 , Promote); 244 // X86 wants to expand cmov itself. 245 setOperationAction(ISD::SELECT , MVT::i16 , Custom); 246 setOperationAction(ISD::SELECT , MVT::i32 , Custom); 247 setOperationAction(ISD::SELECT , MVT::f32 , Custom); 248 setOperationAction(ISD::SELECT , MVT::f64 , Custom); 249 setOperationAction(ISD::SELECT , MVT::f80 , Custom); 250 setOperationAction(ISD::SETCC , MVT::i8 , Custom); 251 setOperationAction(ISD::SETCC , MVT::i16 , Custom); 252 setOperationAction(ISD::SETCC , MVT::i32 , Custom); 253 setOperationAction(ISD::SETCC , MVT::f32 , Custom); 254 setOperationAction(ISD::SETCC , MVT::f64 , Custom); 255 setOperationAction(ISD::SETCC , MVT::f80 , Custom); 256 if (Subtarget->is64Bit()) { 257 setOperationAction(ISD::SELECT , MVT::i64 , Custom); 258 setOperationAction(ISD::SETCC , MVT::i64 , Custom); 259 } 260 // X86 ret instruction may pop stack. 261 setOperationAction(ISD::RET , MVT::Other, Custom); 262 if (!Subtarget->is64Bit()) 263 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom); 264 265 // Darwin ABI issue. 266 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); 267 setOperationAction(ISD::JumpTable , MVT::i32 , Custom); 268 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); 269 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom); 270 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom); 271 if (Subtarget->is64Bit()) { 272 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom); 273 setOperationAction(ISD::JumpTable , MVT::i64 , Custom); 274 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom); 275 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom); 276 } 277 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) 278 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); 279 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); 280 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); 281 if (Subtarget->is64Bit()) { 282 setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom); 283 setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom); 284 setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom); 285 } 286 // X86 wants to expand memset / memcpy itself. 287 setOperationAction(ISD::MEMSET , MVT::Other, Custom); 288 setOperationAction(ISD::MEMCPY , MVT::Other, Custom); 289 290 if (!Subtarget->hasSSE1()) 291 setOperationAction(ISD::PREFETCH , MVT::Other, Expand); 292 293 if (!Subtarget->hasSSE2()) 294 setOperationAction(ISD::MEMBARRIER , MVT::Other, Expand); 295 296 setOperationAction(ISD::ATOMIC_LCS , MVT::i8, Custom); 297 setOperationAction(ISD::ATOMIC_LCS , MVT::i16, Custom); 298 setOperationAction(ISD::ATOMIC_LCS , MVT::i32, Custom); 299 setOperationAction(ISD::ATOMIC_LCS , MVT::i64, Custom); 300 301 // Use the default ISD::LOCATION, ISD::DECLARE expansion. 302 setOperationAction(ISD::LOCATION, MVT::Other, Expand); 303 // FIXME - use subtarget debug flags 304 if (!Subtarget->isTargetDarwin() && 305 !Subtarget->isTargetELF() && 306 !Subtarget->isTargetCygMing()) 307 setOperationAction(ISD::LABEL, MVT::Other, Expand); 308 309 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); 310 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); 311 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); 312 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); 313 if (Subtarget->is64Bit()) { 314 // FIXME: Verify 315 setExceptionPointerRegister(X86::RAX); 316 setExceptionSelectorRegister(X86::RDX); 317 } else { 318 setExceptionPointerRegister(X86::EAX); 319 setExceptionSelectorRegister(X86::EDX); 320 } 321 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); 322 323 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom); 324 325 setOperationAction(ISD::TRAP, MVT::Other, Legal); 326 327 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 328 setOperationAction(ISD::VASTART , MVT::Other, Custom); 329 setOperationAction(ISD::VAARG , MVT::Other, Expand); 330 setOperationAction(ISD::VAEND , MVT::Other, Expand); 331 if (Subtarget->is64Bit()) 332 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 333 else 334 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 335 336 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 337 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 338 if (Subtarget->is64Bit()) 339 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); 340 if (Subtarget->isTargetCygMing()) 341 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 342 else 343 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 344 345 if (X86ScalarSSEf64) { 346 // f32 and f64 use SSE. 347 // Set up the FP register classes. 348 addRegisterClass(MVT::f32, X86::FR32RegisterClass); 349 addRegisterClass(MVT::f64, X86::FR64RegisterClass); 350 351 // Use ANDPD to simulate FABS. 352 setOperationAction(ISD::FABS , MVT::f64, Custom); 353 setOperationAction(ISD::FABS , MVT::f32, Custom); 354 355 // Use XORP to simulate FNEG. 356 setOperationAction(ISD::FNEG , MVT::f64, Custom); 357 setOperationAction(ISD::FNEG , MVT::f32, Custom); 358 359 // Use ANDPD and ORPD to simulate FCOPYSIGN. 360 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); 361 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 362 363 // We don't support sin/cos/fmod 364 setOperationAction(ISD::FSIN , MVT::f64, Expand); 365 setOperationAction(ISD::FCOS , MVT::f64, Expand); 366 setOperationAction(ISD::FSIN , MVT::f32, Expand); 367 setOperationAction(ISD::FCOS , MVT::f32, Expand); 368 369 // Expand FP immediates into loads from the stack, except for the special 370 // cases we handle. 371 addLegalFPImmediate(APFloat(+0.0)); // xorpd 372 addLegalFPImmediate(APFloat(+0.0f)); // xorps 373 374 // Floating truncations from f80 and extensions to f80 go through memory. 375 // If optimizing, we lie about this though and handle it in 376 // InstructionSelectPreprocess so that dagcombine2 can hack on these. 377 if (Fast) { 378 setConvertAction(MVT::f32, MVT::f80, Expand); 379 setConvertAction(MVT::f64, MVT::f80, Expand); 380 setConvertAction(MVT::f80, MVT::f32, Expand); 381 setConvertAction(MVT::f80, MVT::f64, Expand); 382 } 383 } else if (X86ScalarSSEf32) { 384 // Use SSE for f32, x87 for f64. 385 // Set up the FP register classes. 386 addRegisterClass(MVT::f32, X86::FR32RegisterClass); 387 addRegisterClass(MVT::f64, X86::RFP64RegisterClass); 388 389 // Use ANDPS to simulate FABS. 390 setOperationAction(ISD::FABS , MVT::f32, Custom); 391 392 // Use XORP to simulate FNEG. 393 setOperationAction(ISD::FNEG , MVT::f32, Custom); 394 395 setOperationAction(ISD::UNDEF, MVT::f64, Expand); 396 397 // Use ANDPS and ORPS to simulate FCOPYSIGN. 398 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 399 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 400 401 // We don't support sin/cos/fmod 402 setOperationAction(ISD::FSIN , MVT::f32, Expand); 403 setOperationAction(ISD::FCOS , MVT::f32, Expand); 404 405 // Special cases we handle for FP constants. 406 addLegalFPImmediate(APFloat(+0.0f)); // xorps 407 addLegalFPImmediate(APFloat(+0.0)); // FLD0 408 addLegalFPImmediate(APFloat(+1.0)); // FLD1 409 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS 410 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS 411 412 // SSE <-> X87 conversions go through memory. If optimizing, we lie about 413 // this though and handle it in InstructionSelectPreprocess so that 414 // dagcombine2 can hack on these. 415 if (Fast) { 416 setConvertAction(MVT::f32, MVT::f64, Expand); 417 setConvertAction(MVT::f32, MVT::f80, Expand); 418 setConvertAction(MVT::f80, MVT::f32, Expand); 419 setConvertAction(MVT::f64, MVT::f32, Expand); 420 // And x87->x87 truncations also. 421 setConvertAction(MVT::f80, MVT::f64, Expand); 422 } 423 424 if (!UnsafeFPMath) { 425 setOperationAction(ISD::FSIN , MVT::f64 , Expand); 426 setOperationAction(ISD::FCOS , MVT::f64 , Expand); 427 } 428 } else { 429 // f32 and f64 in x87. 430 // Set up the FP register classes. 431 addRegisterClass(MVT::f64, X86::RFP64RegisterClass); 432 addRegisterClass(MVT::f32, X86::RFP32RegisterClass); 433 434 setOperationAction(ISD::UNDEF, MVT::f64, Expand); 435 setOperationAction(ISD::UNDEF, MVT::f32, Expand); 436 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 437 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 438 439 // Floating truncations go through memory. If optimizing, we lie about 440 // this though and handle it in InstructionSelectPreprocess so that 441 // dagcombine2 can hack on these. 442 if (Fast) { 443 setConvertAction(MVT::f80, MVT::f32, Expand); 444 setConvertAction(MVT::f64, MVT::f32, Expand); 445 setConvertAction(MVT::f80, MVT::f64, Expand); 446 } 447 448 if (!UnsafeFPMath) { 449 setOperationAction(ISD::FSIN , MVT::f64 , Expand); 450 setOperationAction(ISD::FCOS , MVT::f64 , Expand); 451 } 452 addLegalFPImmediate(APFloat(+0.0)); // FLD0 453 addLegalFPImmediate(APFloat(+1.0)); // FLD1 454 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS 455 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS 456 addLegalFPImmediate(APFloat(+0.0f)); // FLD0 457 addLegalFPImmediate(APFloat(+1.0f)); // FLD1 458 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS 459 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS 460 } 461 462 // Long double always uses X87. 463 addRegisterClass(MVT::f80, X86::RFP80RegisterClass); 464 setOperationAction(ISD::UNDEF, MVT::f80, Expand); 465 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); 466 { 467 APFloat TmpFlt(+0.0); 468 TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven); 469 addLegalFPImmediate(TmpFlt); // FLD0 470 TmpFlt.changeSign(); 471 addLegalFPImmediate(TmpFlt); // FLD0/FCHS 472 APFloat TmpFlt2(+1.0); 473 TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven); 474 addLegalFPImmediate(TmpFlt2); // FLD1 475 TmpFlt2.changeSign(); 476 addLegalFPImmediate(TmpFlt2); // FLD1/FCHS 477 } 478 479 if (!UnsafeFPMath) { 480 setOperationAction(ISD::FSIN , MVT::f80 , Expand); 481 setOperationAction(ISD::FCOS , MVT::f80 , Expand); 482 } 483 484 // Always use a library call for pow. 485 setOperationAction(ISD::FPOW , MVT::f32 , Expand); 486 setOperationAction(ISD::FPOW , MVT::f64 , Expand); 487 setOperationAction(ISD::FPOW , MVT::f80 , Expand); 488 489 // First set operation action for all vector types to expand. Then we 490 // will selectively turn on ones that can be effectively codegen'd. 491 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 492 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { 493 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand); 494 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand); 495 setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand); 496 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand); 497 setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand); 498 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand); 499 setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand); 500 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand); 501 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand); 502 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand); 503 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand); 504 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand); 505 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand); 506 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand); 507 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand); 508 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand); 509 setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand); 510 setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand); 511 setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand); 512 setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand); 513 setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand); 514 setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand); 515 setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand); 516 setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand); 517 setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand); 518 setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand); 519 setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand); 520 setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand); 521 setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand); 522 setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand); 523 setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand); 524 setOperationAction(ISD::SHL, (MVT::ValueType)VT, Expand); 525 setOperationAction(ISD::SRA, (MVT::ValueType)VT, Expand); 526 setOperationAction(ISD::SRL, (MVT::ValueType)VT, Expand); 527 setOperationAction(ISD::ROTL, (MVT::ValueType)VT, Expand); 528 setOperationAction(ISD::ROTR, (MVT::ValueType)VT, Expand); 529 setOperationAction(ISD::BSWAP, (MVT::ValueType)VT, Expand); 530 } 531 532 if (Subtarget->hasMMX()) { 533 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass); 534 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass); 535 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass); 536 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass); 537 538 // FIXME: add MMX packed arithmetics 539 540 setOperationAction(ISD::ADD, MVT::v8i8, Legal); 541 setOperationAction(ISD::ADD, MVT::v4i16, Legal); 542 setOperationAction(ISD::ADD, MVT::v2i32, Legal); 543 setOperationAction(ISD::ADD, MVT::v1i64, Legal); 544 545 setOperationAction(ISD::SUB, MVT::v8i8, Legal); 546 setOperationAction(ISD::SUB, MVT::v4i16, Legal); 547 setOperationAction(ISD::SUB, MVT::v2i32, Legal); 548 setOperationAction(ISD::SUB, MVT::v1i64, Legal); 549 550 setOperationAction(ISD::MULHS, MVT::v4i16, Legal); 551 setOperationAction(ISD::MUL, MVT::v4i16, Legal); 552 553 setOperationAction(ISD::AND, MVT::v8i8, Promote); 554 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64); 555 setOperationAction(ISD::AND, MVT::v4i16, Promote); 556 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64); 557 setOperationAction(ISD::AND, MVT::v2i32, Promote); 558 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64); 559 setOperationAction(ISD::AND, MVT::v1i64, Legal); 560 561 setOperationAction(ISD::OR, MVT::v8i8, Promote); 562 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64); 563 setOperationAction(ISD::OR, MVT::v4i16, Promote); 564 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64); 565 setOperationAction(ISD::OR, MVT::v2i32, Promote); 566 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64); 567 setOperationAction(ISD::OR, MVT::v1i64, Legal); 568 569 setOperationAction(ISD::XOR, MVT::v8i8, Promote); 570 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64); 571 setOperationAction(ISD::XOR, MVT::v4i16, Promote); 572 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64); 573 setOperationAction(ISD::XOR, MVT::v2i32, Promote); 574 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64); 575 setOperationAction(ISD::XOR, MVT::v1i64, Legal); 576 577 setOperationAction(ISD::LOAD, MVT::v8i8, Promote); 578 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64); 579 setOperationAction(ISD::LOAD, MVT::v4i16, Promote); 580 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64); 581 setOperationAction(ISD::LOAD, MVT::v2i32, Promote); 582 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64); 583 setOperationAction(ISD::LOAD, MVT::v1i64, Legal); 584 585 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom); 586 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); 587 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom); 588 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom); 589 590 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); 591 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); 592 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom); 593 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom); 594 595 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom); 596 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom); 597 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom); 598 } 599 600 if (Subtarget->hasSSE1()) { 601 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass); 602 603 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 604 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 605 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 606 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 607 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 608 setOperationAction(ISD::FNEG, MVT::v4f32, Custom); 609 setOperationAction(ISD::LOAD, MVT::v4f32, Legal); 610 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 611 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); 612 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 613 setOperationAction(ISD::SELECT, MVT::v4f32, Custom); 614 } 615 616 if (Subtarget->hasSSE2()) { 617 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass); 618 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass); 619 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass); 620 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass); 621 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass); 622 623 setOperationAction(ISD::ADD, MVT::v16i8, Legal); 624 setOperationAction(ISD::ADD, MVT::v8i16, Legal); 625 setOperationAction(ISD::ADD, MVT::v4i32, Legal); 626 setOperationAction(ISD::ADD, MVT::v2i64, Legal); 627 setOperationAction(ISD::SUB, MVT::v16i8, Legal); 628 setOperationAction(ISD::SUB, MVT::v8i16, Legal); 629 setOperationAction(ISD::SUB, MVT::v4i32, Legal); 630 setOperationAction(ISD::SUB, MVT::v2i64, Legal); 631 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 632 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 633 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 634 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 635 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 636 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 637 setOperationAction(ISD::FNEG, MVT::v2f64, Custom); 638 639 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom); 640 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom); 641 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 642 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 643 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 644 645 // Custom lower build_vector, vector_shuffle, and extract_vector_elt. 646 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) { 647 // Do not attempt to custom lower non-power-of-2 vectors 648 if (!isPowerOf2_32(MVT::getVectorNumElements(VT))) 649 continue; 650 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom); 651 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom); 652 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom); 653 } 654 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 655 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 656 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); 657 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); 658 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 659 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 660 if (Subtarget->is64Bit()) { 661 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); 662 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); 663 } 664 665 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. 666 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) { 667 setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote); 668 AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64); 669 setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote); 670 AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64); 671 setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote); 672 AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64); 673 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote); 674 AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64); 675 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote); 676 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64); 677 } 678 679 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 680 681 // Custom lower v2i64 and v2f64 selects. 682 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 683 setOperationAction(ISD::LOAD, MVT::v2i64, Legal); 684 setOperationAction(ISD::SELECT, MVT::v2f64, Custom); 685 setOperationAction(ISD::SELECT, MVT::v2i64, Custom); 686 } 687 688 if (Subtarget->hasSSE41()) { 689 // FIXME: Do we need to handle scalar-to-vector here? 690 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 691 692 // i8 and i16 vectors are custom , because the source register and source 693 // source memory operand types are not the same width. f32 vectors are 694 // custom since the immediate controlling the insert encodes additional 695 // information. 696 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 697 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 698 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal); 699 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 700 701 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom); 702 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom); 703 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 704 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 705 706 if (Subtarget->is64Bit()) { 707 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); 708 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 709 } 710 } 711 712 // We want to custom lower some of our intrinsics. 713 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 714 715 // We have target-specific dag combine patterns for the following nodes: 716 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 717 setTargetDAGCombine(ISD::SELECT); 718 setTargetDAGCombine(ISD::STORE); 719 720 computeRegisterProperties(); 721 722 // FIXME: These should be based on subtarget info. Plus, the values should 723 // be smaller when we are in optimizing for size mode. 724 maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores 725 maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores 726 maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores 727 allowUnalignedMemoryAccesses = true; // x86 supports it! 728 setPrefLoopAlignment(16); 729} 730 731/// getMaxByValAlign - Helper for getByValTypeAlignment to determine 732/// the desired ByVal argument alignment. 733static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) { 734 if (MaxAlign == 16) 735 return; 736 if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) { 737 if (VTy->getBitWidth() == 128) 738 MaxAlign = 16; 739 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 740 unsigned EltAlign = 0; 741 getMaxByValAlign(ATy->getElementType(), EltAlign); 742 if (EltAlign > MaxAlign) 743 MaxAlign = EltAlign; 744 } else if (const StructType *STy = dyn_cast<StructType>(Ty)) { 745 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 746 unsigned EltAlign = 0; 747 getMaxByValAlign(STy->getElementType(i), EltAlign); 748 if (EltAlign > MaxAlign) 749 MaxAlign = EltAlign; 750 if (MaxAlign == 16) 751 break; 752 } 753 } 754 return; 755} 756 757/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 758/// function arguments in the caller parameter area. For X86, aggregates 759/// that contain SSE vectors are placed at 16-byte boundaries while the rest 760/// are at 4-byte boundaries. 761unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const { 762 if (Subtarget->is64Bit()) 763 return getTargetData()->getABITypeAlignment(Ty); 764 unsigned Align = 4; 765 if (Subtarget->hasSSE1()) 766 getMaxByValAlign(Ty, Align); 767 return Align; 768} 769 770/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC 771/// jumptable. 772SDOperand X86TargetLowering::getPICJumpTableRelocBase(SDOperand Table, 773 SelectionDAG &DAG) const { 774 if (usesGlobalOffsetTable()) 775 return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy()); 776 if (!Subtarget->isPICStyleRIPRel()) 777 return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()); 778 return Table; 779} 780 781//===----------------------------------------------------------------------===// 782// Return Value Calling Convention Implementation 783//===----------------------------------------------------------------------===// 784 785#include "X86GenCallingConv.inc" 786 787/// GetPossiblePreceedingTailCall - Get preceeding X86ISD::TAILCALL node if it 788/// exists skip possible ISD:TokenFactor. 789static SDOperand GetPossiblePreceedingTailCall(SDOperand Chain) { 790 if (Chain.getOpcode() == X86ISD::TAILCALL) { 791 return Chain; 792 } else if (Chain.getOpcode() == ISD::TokenFactor) { 793 if (Chain.getNumOperands() && 794 Chain.getOperand(0).getOpcode() == X86ISD::TAILCALL) 795 return Chain.getOperand(0); 796 } 797 return Chain; 798} 799 800/// LowerRET - Lower an ISD::RET node. 801SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) { 802 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args"); 803 804 SmallVector<CCValAssign, 16> RVLocs; 805 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv(); 806 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 807 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs); 808 CCInfo.AnalyzeReturn(Op.Val, RetCC_X86); 809 810 // If this is the first return lowered for this function, add the regs to the 811 // liveout set for the function. 812 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 813 for (unsigned i = 0; i != RVLocs.size(); ++i) 814 if (RVLocs[i].isRegLoc()) 815 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 816 } 817 SDOperand Chain = Op.getOperand(0); 818 819 // Handle tail call return. 820 Chain = GetPossiblePreceedingTailCall(Chain); 821 if (Chain.getOpcode() == X86ISD::TAILCALL) { 822 SDOperand TailCall = Chain; 823 SDOperand TargetAddress = TailCall.getOperand(1); 824 SDOperand StackAdjustment = TailCall.getOperand(2); 825 assert(((TargetAddress.getOpcode() == ISD::Register && 826 (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX || 827 cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) || 828 TargetAddress.getOpcode() == ISD::TargetExternalSymbol || 829 TargetAddress.getOpcode() == ISD::TargetGlobalAddress) && 830 "Expecting an global address, external symbol, or register"); 831 assert(StackAdjustment.getOpcode() == ISD::Constant && 832 "Expecting a const value"); 833 834 SmallVector<SDOperand,8> Operands; 835 Operands.push_back(Chain.getOperand(0)); 836 Operands.push_back(TargetAddress); 837 Operands.push_back(StackAdjustment); 838 // Copy registers used by the call. Last operand is a flag so it is not 839 // copied. 840 for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) { 841 Operands.push_back(Chain.getOperand(i)); 842 } 843 return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0], 844 Operands.size()); 845 } 846 847 // Regular return. 848 SDOperand Flag; 849 850 // Copy the result values into the output registers. 851 if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() || 852 RVLocs[0].getLocReg() != X86::ST0) { 853 for (unsigned i = 0; i != RVLocs.size(); ++i) { 854 CCValAssign &VA = RVLocs[i]; 855 assert(VA.isRegLoc() && "Can only return in registers!"); 856 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), 857 Flag); 858 Flag = Chain.getValue(1); 859 } 860 } else { 861 // We need to handle a destination of ST0 specially, because it isn't really 862 // a register. 863 SDOperand Value = Op.getOperand(1); 864 865 // an XMM register onto the fp-stack. Do this with an FP_EXTEND to f80. 866 // This will get legalized into a load/store if it can't get optimized away. 867 if (isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) 868 Value = DAG.getNode(ISD::FP_EXTEND, MVT::f80, Value); 869 870 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 871 SDOperand Ops[] = { Chain, Value }; 872 Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2); 873 Flag = Chain.getValue(1); 874 } 875 876 SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16); 877 if (Flag.Val) 878 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag); 879 else 880 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop); 881} 882 883 884/// LowerCallResult - Lower the result values of an ISD::CALL into the 885/// appropriate copies out of appropriate physical registers. This assumes that 886/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call 887/// being lowered. The returns a SDNode with the same number of values as the 888/// ISD::CALL. 889SDNode *X86TargetLowering:: 890LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall, 891 unsigned CallingConv, SelectionDAG &DAG) { 892 893 // Assign locations to each value returned by this call. 894 SmallVector<CCValAssign, 16> RVLocs; 895 bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0; 896 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs); 897 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86); 898 899 SmallVector<SDOperand, 8> ResultVals; 900 901 // Copy all of the result registers out of their specified physreg. 902 if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) { 903 for (unsigned i = 0; i != RVLocs.size(); ++i) { 904 Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(), 905 RVLocs[i].getValVT(), InFlag).getValue(1); 906 InFlag = Chain.getValue(2); 907 ResultVals.push_back(Chain.getValue(0)); 908 } 909 } else { 910 // Copies from the FP stack are special, as ST0 isn't a valid register 911 // before the fp stackifier runs. 912 913 // Copy ST0 into an RFP register with FP_GET_RESULT. If this will end up 914 // in an SSE register, copy it out as F80 and do a truncate, otherwise use 915 // the specified value type. 916 MVT::ValueType GetResultTy = RVLocs[0].getValVT(); 917 if (isScalarFPTypeInSSEReg(GetResultTy)) 918 GetResultTy = MVT::f80; 919 SDVTList Tys = DAG.getVTList(GetResultTy, MVT::Other, MVT::Flag); 920 SDOperand GROps[] = { Chain, InFlag }; 921 SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_ST0, Tys, GROps, 2); 922 Chain = RetVal.getValue(1); 923 InFlag = RetVal.getValue(2); 924 925 // If we want the result in an SSE register, use an FP_TRUNCATE to get it 926 // there. 927 if (GetResultTy != RVLocs[0].getValVT()) 928 RetVal = DAG.getNode(ISD::FP_ROUND, RVLocs[0].getValVT(), RetVal, 929 // This truncation won't change the value. 930 DAG.getIntPtrConstant(1)); 931 932 ResultVals.push_back(RetVal); 933 } 934 935 // Merge everything together with a MERGE_VALUES node. 936 ResultVals.push_back(Chain); 937 return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(), 938 &ResultVals[0], ResultVals.size()).Val; 939} 940 941/// LowerCallResultToTwo64BitRegs - Lower the result values of an x86-64 942/// ISD::CALL where the results are known to be in two 64-bit registers, 943/// e.g. XMM0 and XMM1. This simplify store the two values back to the 944/// fixed stack slot allocated for StructRet. 945SDNode *X86TargetLowering:: 946LowerCallResultToTwo64BitRegs(SDOperand Chain, SDOperand InFlag, 947 SDNode *TheCall, unsigned Reg1, unsigned Reg2, 948 MVT::ValueType VT, SelectionDAG &DAG) { 949 SDOperand RetVal1 = DAG.getCopyFromReg(Chain, Reg1, VT, InFlag); 950 Chain = RetVal1.getValue(1); 951 InFlag = RetVal1.getValue(2); 952 SDOperand RetVal2 = DAG.getCopyFromReg(Chain, Reg2, VT, InFlag); 953 Chain = RetVal2.getValue(1); 954 InFlag = RetVal2.getValue(2); 955 SDOperand FIN = TheCall->getOperand(5); 956 Chain = DAG.getStore(Chain, RetVal1, FIN, NULL, 0); 957 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8)); 958 Chain = DAG.getStore(Chain, RetVal2, FIN, NULL, 0); 959 return Chain.Val; 960} 961 962/// LowerCallResultToTwoX87Regs - Lower the result values of an x86-64 ISD::CALL 963/// where the results are known to be in ST0 and ST1. 964SDNode *X86TargetLowering:: 965LowerCallResultToTwoX87Regs(SDOperand Chain, SDOperand InFlag, 966 SDNode *TheCall, SelectionDAG &DAG) { 967 SmallVector<SDOperand, 8> ResultVals; 968 const MVT::ValueType VTs[] = { MVT::f80, MVT::f80, MVT::Other, MVT::Flag }; 969 SDVTList Tys = DAG.getVTList(VTs, 4); 970 SDOperand Ops[] = { Chain, InFlag }; 971 SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_ST0_ST1, Tys, Ops, 2); 972 Chain = RetVal.getValue(2); 973 SDOperand FIN = TheCall->getOperand(5); 974 Chain = DAG.getStore(Chain, RetVal.getValue(1), FIN, NULL, 0); 975 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(16)); 976 Chain = DAG.getStore(Chain, RetVal, FIN, NULL, 0); 977 return Chain.Val; 978} 979 980//===----------------------------------------------------------------------===// 981// C & StdCall & Fast Calling Convention implementation 982//===----------------------------------------------------------------------===// 983// StdCall calling convention seems to be standard for many Windows' API 984// routines and around. It differs from C calling convention just a little: 985// callee should clean up the stack, not caller. Symbols should be also 986// decorated in some fancy way :) It doesn't support any vector arguments. 987// For info on fast calling convention see Fast Calling Convention (tail call) 988// implementation LowerX86_32FastCCCallTo. 989 990/// AddLiveIn - This helper function adds the specified physical register to the 991/// MachineFunction as a live in value. It also creates a corresponding virtual 992/// register for it. 993static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg, 994 const TargetRegisterClass *RC) { 995 assert(RC->contains(PReg) && "Not the correct regclass!"); 996 unsigned VReg = MF.getRegInfo().createVirtualRegister(RC); 997 MF.getRegInfo().addLiveIn(PReg, VReg); 998 return VReg; 999} 1000 1001/// CallIsStructReturn - Determines whether a CALL node uses struct return 1002/// semantics. 1003static bool CallIsStructReturn(SDOperand Op) { 1004 unsigned NumOps = (Op.getNumOperands() - 5) / 2; 1005 if (!NumOps) 1006 return false; 1007 1008 ConstantSDNode *Flags = cast<ConstantSDNode>(Op.getOperand(6)); 1009 return Flags->getValue() & ISD::ParamFlags::StructReturn; 1010} 1011 1012/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct 1013/// return semantics. 1014static bool ArgsAreStructReturn(SDOperand Op) { 1015 unsigned NumArgs = Op.Val->getNumValues() - 1; 1016 if (!NumArgs) 1017 return false; 1018 1019 ConstantSDNode *Flags = cast<ConstantSDNode>(Op.getOperand(3)); 1020 return Flags->getValue() & ISD::ParamFlags::StructReturn; 1021} 1022 1023/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires the 1024/// callee to pop its own arguments. Callee pop is necessary to support tail 1025/// calls. 1026bool X86TargetLowering::IsCalleePop(SDOperand Op) { 1027 bool IsVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; 1028 if (IsVarArg) 1029 return false; 1030 1031 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) { 1032 default: 1033 return false; 1034 case CallingConv::X86_StdCall: 1035 return !Subtarget->is64Bit(); 1036 case CallingConv::X86_FastCall: 1037 return !Subtarget->is64Bit(); 1038 case CallingConv::Fast: 1039 return PerformTailCallOpt; 1040 } 1041} 1042 1043/// CCAssignFnForNode - Selects the correct CCAssignFn for a CALL or 1044/// FORMAL_ARGUMENTS node. 1045CCAssignFn *X86TargetLowering::CCAssignFnForNode(SDOperand Op) const { 1046 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); 1047 1048 if (Subtarget->is64Bit()) { 1049 if (CC == CallingConv::Fast && PerformTailCallOpt) 1050 return CC_X86_64_TailCall; 1051 else 1052 return CC_X86_64_C; 1053 } 1054 1055 if (CC == CallingConv::X86_FastCall) 1056 return CC_X86_32_FastCall; 1057 else if (CC == CallingConv::Fast && PerformTailCallOpt) 1058 return CC_X86_32_TailCall; 1059 else 1060 return CC_X86_32_C; 1061} 1062 1063/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to 1064/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node. 1065NameDecorationStyle 1066X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDOperand Op) { 1067 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); 1068 if (CC == CallingConv::X86_FastCall) 1069 return FastCall; 1070 else if (CC == CallingConv::X86_StdCall) 1071 return StdCall; 1072 return None; 1073} 1074 1075/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could 1076/// possibly be overwritten when lowering the outgoing arguments in a tail 1077/// call. Currently the implementation of this call is very conservative and 1078/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with 1079/// virtual registers would be overwritten by direct lowering. 1080static bool IsPossiblyOverwrittenArgumentOfTailCall(SDOperand Op, 1081 MachineFrameInfo * MFI) { 1082 RegisterSDNode * OpReg = NULL; 1083 FrameIndexSDNode * FrameIdxNode = NULL; 1084 int FrameIdx = 0; 1085 if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS || 1086 (Op.getOpcode()== ISD::CopyFromReg && 1087 (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) && 1088 (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) || 1089 (Op.getOpcode() == ISD::LOAD && 1090 (FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op.getOperand(1))) && 1091 (MFI->isFixedObjectIndex((FrameIdx = FrameIdxNode->getIndex()))) && 1092 (MFI->getObjectOffset(FrameIdx) >= 0))) 1093 return true; 1094 return false; 1095} 1096 1097/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer 1098/// in a register before calling. 1099bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) { 1100 return !IsTailCall && !Is64Bit && 1101 getTargetMachine().getRelocationModel() == Reloc::PIC_ && 1102 Subtarget->isPICStyleGOT(); 1103} 1104 1105 1106/// CallRequiresFnAddressInReg - Check whether the call requires the function 1107/// address to be loaded in a register. 1108bool 1109X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) { 1110 return !Is64Bit && IsTailCall && 1111 getTargetMachine().getRelocationModel() == Reloc::PIC_ && 1112 Subtarget->isPICStyleGOT(); 1113} 1114 1115/// CopyTailCallClobberedArgumentsToVRegs - Create virtual registers for all 1116/// arguments to force loading and guarantee that arguments sourcing from 1117/// incomming parameters are not overwriting each other. 1118static SDOperand 1119CopyTailCallClobberedArgumentsToVRegs(SDOperand Chain, 1120 SmallVector<std::pair<unsigned, SDOperand>, 8> &TailCallClobberedVRegs, 1121 SelectionDAG &DAG, 1122 MachineFunction &MF, 1123 const TargetLowering * TL) { 1124 1125 SDOperand InFlag; 1126 for (unsigned i = 0, e = TailCallClobberedVRegs.size(); i != e; i++) { 1127 SDOperand Arg = TailCallClobberedVRegs[i].second; 1128 unsigned Idx = TailCallClobberedVRegs[i].first; 1129 unsigned VReg = 1130 MF.getRegInfo(). 1131 createVirtualRegister(TL->getRegClassFor(Arg.getValueType())); 1132 Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag); 1133 InFlag = Chain.getValue(1); 1134 Arg = DAG.getCopyFromReg(Chain, VReg, Arg.getValueType(), InFlag); 1135 TailCallClobberedVRegs[i] = std::make_pair(Idx, Arg); 1136 Chain = Arg.getValue(1); 1137 InFlag = Arg.getValue(2); 1138 } 1139 return Chain; 1140} 1141 1142/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 1143/// by "Src" to address "Dst" with size and alignment information specified by 1144/// the specific parameter attribute. The copy will be passed as a byval function 1145/// parameter. 1146static SDOperand 1147CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain, 1148 unsigned Flags, SelectionDAG &DAG) { 1149 unsigned Align = 1 << 1150 ((Flags & ISD::ParamFlags::ByValAlign) >> ISD::ParamFlags::ByValAlignOffs); 1151 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >> 1152 ISD::ParamFlags::ByValSizeOffs; 1153 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32); 1154 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32); 1155 SDOperand AlwaysInline = DAG.getConstant(1, MVT::i32); 1156 return DAG.getMemcpy(Chain, Dst, Src, SizeNode, AlignNode, AlwaysInline); 1157} 1158 1159SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG, 1160 const CCValAssign &VA, 1161 MachineFrameInfo *MFI, 1162 unsigned CC, 1163 SDOperand Root, unsigned i) { 1164 // Create the nodes corresponding to a load from this parameter slot. 1165 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue(); 1166 bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt; 1167 bool isByVal = Flags & ISD::ParamFlags::ByVal; 1168 bool isImmutable = !AlwaysUseMutable && !isByVal; 1169 1170 // FIXME: For now, all byval parameter objects are marked mutable. This can be 1171 // changed with more analysis. 1172 // In case of tail call optimization mark all arguments mutable. Since they 1173 // could be overwritten by lowering of arguments in case of a tail call. 1174 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8, 1175 VA.getLocMemOffset(), isImmutable); 1176 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy()); 1177 if (isByVal) 1178 return FIN; 1179 return DAG.getLoad(VA.getValVT(), Root, FIN, 1180 PseudoSourceValue::getFixedStack(), FI); 1181} 1182 1183SDOperand 1184X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) { 1185 MachineFunction &MF = DAG.getMachineFunction(); 1186 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 1187 1188 const Function* Fn = MF.getFunction(); 1189 if (Fn->hasExternalLinkage() && 1190 Subtarget->isTargetCygMing() && 1191 Fn->getName() == "main") 1192 FuncInfo->setForceFramePointer(true); 1193 1194 // Decorate the function name. 1195 FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op)); 1196 1197 MachineFrameInfo *MFI = MF.getFrameInfo(); 1198 SDOperand Root = Op.getOperand(0); 1199 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; 1200 unsigned CC = MF.getFunction()->getCallingConv(); 1201 bool Is64Bit = Subtarget->is64Bit(); 1202 1203 assert(!(isVarArg && CC == CallingConv::Fast) && 1204 "Var args not supported with calling convention fastcc"); 1205 1206 // Assign locations to all of the incoming arguments. 1207 SmallVector<CCValAssign, 16> ArgLocs; 1208 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); 1209 CCInfo.AnalyzeFormalArguments(Op.Val, CCAssignFnForNode(Op)); 1210 1211 SmallVector<SDOperand, 8> ArgValues; 1212 unsigned LastVal = ~0U; 1213 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1214 CCValAssign &VA = ArgLocs[i]; 1215 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later 1216 // places. 1217 assert(VA.getValNo() != LastVal && 1218 "Don't support value assigned to multiple locs yet"); 1219 LastVal = VA.getValNo(); 1220 1221 if (VA.isRegLoc()) { 1222 MVT::ValueType RegVT = VA.getLocVT(); 1223 TargetRegisterClass *RC; 1224 if (RegVT == MVT::i32) 1225 RC = X86::GR32RegisterClass; 1226 else if (Is64Bit && RegVT == MVT::i64) 1227 RC = X86::GR64RegisterClass; 1228 else if (RegVT == MVT::f32) 1229 RC = X86::FR32RegisterClass; 1230 else if (RegVT == MVT::f64) 1231 RC = X86::FR64RegisterClass; 1232 else { 1233 assert(MVT::isVector(RegVT)); 1234 if (Is64Bit && MVT::getSizeInBits(RegVT) == 64) { 1235 RC = X86::GR64RegisterClass; // MMX values are passed in GPRs. 1236 RegVT = MVT::i64; 1237 } else 1238 RC = X86::VR128RegisterClass; 1239 } 1240 1241 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC); 1242 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT); 1243 1244 // If this is an 8 or 16-bit value, it is really passed promoted to 32 1245 // bits. Insert an assert[sz]ext to capture this, then truncate to the 1246 // right size. 1247 if (VA.getLocInfo() == CCValAssign::SExt) 1248 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue, 1249 DAG.getValueType(VA.getValVT())); 1250 else if (VA.getLocInfo() == CCValAssign::ZExt) 1251 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue, 1252 DAG.getValueType(VA.getValVT())); 1253 1254 if (VA.getLocInfo() != CCValAssign::Full) 1255 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue); 1256 1257 // Handle MMX values passed in GPRs. 1258 if (Is64Bit && RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass && 1259 MVT::getSizeInBits(RegVT) == 64) 1260 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue); 1261 1262 ArgValues.push_back(ArgValue); 1263 } else { 1264 assert(VA.isMemLoc()); 1265 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i)); 1266 } 1267 } 1268 1269 unsigned StackSize = CCInfo.getNextStackOffset(); 1270 // align stack specially for tail calls 1271 if (CC == CallingConv::Fast) 1272 StackSize = GetAlignedArgumentStackSize(StackSize, DAG); 1273 1274 // If the function takes variable number of arguments, make a frame index for 1275 // the start of the first vararg value... for expansion of llvm.va_start. 1276 if (isVarArg) { 1277 if (Is64Bit || CC != CallingConv::X86_FastCall) { 1278 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize); 1279 } 1280 if (Is64Bit) { 1281 static const unsigned GPR64ArgRegs[] = { 1282 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 1283 }; 1284 static const unsigned XMMArgRegs[] = { 1285 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 1286 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 1287 }; 1288 1289 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6); 1290 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); 1291 1292 // For X86-64, if there are vararg parameters that are passed via 1293 // registers, then we must store them to their spots on the stack so they 1294 // may be loaded by deferencing the result of va_next. 1295 VarArgsGPOffset = NumIntRegs * 8; 1296 VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16; 1297 RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16); 1298 1299 // Store the integer parameter registers. 1300 SmallVector<SDOperand, 8> MemOps; 1301 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); 1302 SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN, 1303 DAG.getIntPtrConstant(VarArgsGPOffset)); 1304 for (; NumIntRegs != 6; ++NumIntRegs) { 1305 unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs], 1306 X86::GR64RegisterClass); 1307 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64); 1308 SDOperand Store = 1309 DAG.getStore(Val.getValue(1), Val, FIN, 1310 PseudoSourceValue::getFixedStack(), 1311 RegSaveFrameIndex); 1312 MemOps.push_back(Store); 1313 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, 1314 DAG.getIntPtrConstant(8)); 1315 } 1316 1317 // Now store the XMM (fp + vector) parameter registers. 1318 FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN, 1319 DAG.getIntPtrConstant(VarArgsFPOffset)); 1320 for (; NumXMMRegs != 8; ++NumXMMRegs) { 1321 unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], 1322 X86::VR128RegisterClass); 1323 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32); 1324 SDOperand Store = 1325 DAG.getStore(Val.getValue(1), Val, FIN, 1326 PseudoSourceValue::getFixedStack(), 1327 RegSaveFrameIndex); 1328 MemOps.push_back(Store); 1329 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, 1330 DAG.getIntPtrConstant(16)); 1331 } 1332 if (!MemOps.empty()) 1333 Root = DAG.getNode(ISD::TokenFactor, MVT::Other, 1334 &MemOps[0], MemOps.size()); 1335 } 1336 } 1337 1338 // Make sure the instruction takes 8n+4 bytes to make sure the start of the 1339 // arguments and the arguments after the retaddr has been pushed are 1340 // aligned. 1341 if (!Is64Bit && CC == CallingConv::X86_FastCall && 1342 !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() && 1343 (StackSize & 7) == 0) 1344 StackSize += 4; 1345 1346 ArgValues.push_back(Root); 1347 1348 // Some CCs need callee pop. 1349 if (IsCalleePop(Op)) { 1350 BytesToPopOnReturn = StackSize; // Callee pops everything. 1351 BytesCallerReserves = 0; 1352 } else { 1353 BytesToPopOnReturn = 0; // Callee pops nothing. 1354 // If this is an sret function, the return should pop the hidden pointer. 1355 if (!Is64Bit && ArgsAreStructReturn(Op)) 1356 BytesToPopOnReturn = 4; 1357 BytesCallerReserves = StackSize; 1358 } 1359 1360 if (!Is64Bit) { 1361 RegSaveFrameIndex = 0xAAAAAAA; // RegSaveFrameIndex is X86-64 only. 1362 if (CC == CallingConv::X86_FastCall) 1363 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs. 1364 } 1365 1366 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn); 1367 1368 // Return the new list of results. 1369 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), 1370 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo); 1371} 1372 1373SDOperand 1374X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG, 1375 const SDOperand &StackPtr, 1376 const CCValAssign &VA, 1377 SDOperand Chain, 1378 SDOperand Arg) { 1379 unsigned LocMemOffset = VA.getLocMemOffset(); 1380 SDOperand PtrOff = DAG.getIntPtrConstant(LocMemOffset); 1381 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); 1382 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo()); 1383 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue(); 1384 if (Flags & ISD::ParamFlags::ByVal) { 1385 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG); 1386 } 1387 return DAG.getStore(Chain, Arg, PtrOff, 1388 PseudoSourceValue::getStack(), LocMemOffset); 1389} 1390 1391/// ClassifyX86_64SRetCallReturn - Classify how to implement a x86-64 1392/// struct return call to the specified function. X86-64 ABI specifies 1393/// some SRet calls are actually returned in registers. Since current 1394/// LLVM cannot represent multi-value calls, they are represent as 1395/// calls where the results are passed in a hidden struct provided by 1396/// the caller. This function examines the type of the struct to 1397/// determine the correct way to implement the call. 1398X86::X86_64SRet 1399X86TargetLowering::ClassifyX86_64SRetCallReturn(const Function *Fn) { 1400 // FIXME: Disabled for now. 1401 return X86::InMemory; 1402 1403 const PointerType *PTy = cast<PointerType>(Fn->arg_begin()->getType()); 1404 const Type *RTy = PTy->getElementType(); 1405 unsigned Size = getTargetData()->getABITypeSize(RTy); 1406 if (Size != 16 && Size != 32) 1407 return X86::InMemory; 1408 1409 if (Size == 32) { 1410 const StructType *STy = dyn_cast<StructType>(RTy); 1411 if (!STy) return X86::InMemory; 1412 if (STy->getNumElements() == 2 && 1413 STy->getElementType(0) == Type::X86_FP80Ty && 1414 STy->getElementType(1) == Type::X86_FP80Ty) 1415 return X86::InX87; 1416 } 1417 1418 bool AllFP = true; 1419 for (Type::subtype_iterator I = RTy->subtype_begin(), E = RTy->subtype_end(); 1420 I != E; ++I) { 1421 const Type *STy = I->get(); 1422 if (!STy->isFPOrFPVector()) { 1423 AllFP = false; 1424 break; 1425 } 1426 } 1427 1428 if (AllFP) 1429 return X86::InSSE; 1430 return X86::InGPR64; 1431} 1432 1433void X86TargetLowering::X86_64AnalyzeSRetCallOperands(SDNode *TheCall, 1434 CCAssignFn *Fn, 1435 CCState &CCInfo) { 1436 unsigned NumOps = (TheCall->getNumOperands() - 5) / 2; 1437 for (unsigned i = 1; i != NumOps; ++i) { 1438 MVT::ValueType ArgVT = TheCall->getOperand(5+2*i).getValueType(); 1439 SDOperand FlagOp = TheCall->getOperand(5+2*i+1); 1440 unsigned ArgFlags =cast<ConstantSDNode>(FlagOp)->getValue(); 1441 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo)) { 1442 cerr << "Call operand #" << i << " has unhandled type " 1443 << MVT::getValueTypeString(ArgVT) << "\n"; 1444 abort(); 1445 } 1446 } 1447} 1448 1449SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) { 1450 MachineFunction &MF = DAG.getMachineFunction(); 1451 MachineFrameInfo * MFI = MF.getFrameInfo(); 1452 SDOperand Chain = Op.getOperand(0); 1453 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); 1454 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; 1455 bool IsTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0 1456 && CC == CallingConv::Fast && PerformTailCallOpt; 1457 SDOperand Callee = Op.getOperand(4); 1458 bool Is64Bit = Subtarget->is64Bit(); 1459 bool IsStructRet = CallIsStructReturn(Op); 1460 1461 assert(!(isVarArg && CC == CallingConv::Fast) && 1462 "Var args not supported with calling convention fastcc"); 1463 1464 // Analyze operands of the call, assigning locations to each operand. 1465 SmallVector<CCValAssign, 16> ArgLocs; 1466 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); 1467 CCAssignFn *CCFn = CCAssignFnForNode(Op); 1468 1469 X86::X86_64SRet SRetMethod = X86::InMemory; 1470 if (Is64Bit && IsStructRet) 1471 // FIXME: We can't figure out type of the sret structure for indirect 1472 // calls. We need to copy more information from CallSite to the ISD::CALL 1473 // node. 1474 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1475 SRetMethod = 1476 ClassifyX86_64SRetCallReturn(dyn_cast<Function>(G->getGlobal())); 1477 1478 // UGLY HACK! For x86-64, some 128-bit aggregates are returns in a pair of 1479 // registers. Unfortunately, llvm does not support i128 yet so we pretend it's 1480 // a sret call. 1481 if (SRetMethod != X86::InMemory) 1482 X86_64AnalyzeSRetCallOperands(Op.Val, CCFn, CCInfo); 1483 else 1484 CCInfo.AnalyzeCallOperands(Op.Val, CCFn); 1485 1486 // Get a count of how many bytes are to be pushed on the stack. 1487 unsigned NumBytes = CCInfo.getNextStackOffset(); 1488 if (CC == CallingConv::Fast) 1489 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); 1490 1491 // Make sure the instruction takes 8n+4 bytes to make sure the start of the 1492 // arguments and the arguments after the retaddr has been pushed are aligned. 1493 if (!Is64Bit && CC == CallingConv::X86_FastCall && 1494 !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() && 1495 (NumBytes & 7) == 0) 1496 NumBytes += 4; 1497 1498 int FPDiff = 0; 1499 if (IsTailCall) { 1500 // Lower arguments at fp - stackoffset + fpdiff. 1501 unsigned NumBytesCallerPushed = 1502 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn(); 1503 FPDiff = NumBytesCallerPushed - NumBytes; 1504 1505 // Set the delta of movement of the returnaddr stackslot. 1506 // But only set if delta is greater than previous delta. 1507 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta())) 1508 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff); 1509 } 1510 1511 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes)); 1512 1513 SDOperand RetAddrFrIdx; 1514 if (IsTailCall) { 1515 // Adjust the Return address stack slot. 1516 if (FPDiff) { 1517 MVT::ValueType VT = Is64Bit ? MVT::i64 : MVT::i32; 1518 RetAddrFrIdx = getReturnAddressFrameIndex(DAG); 1519 // Load the "old" Return address. 1520 RetAddrFrIdx = 1521 DAG.getLoad(VT, Chain,RetAddrFrIdx, NULL, 0); 1522 Chain = SDOperand(RetAddrFrIdx.Val, 1); 1523 } 1524 } 1525 1526 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass; 1527 SmallVector<std::pair<unsigned, SDOperand>, 8> TailCallClobberedVRegs; 1528 SmallVector<SDOperand, 8> MemOpChains; 1529 1530 SDOperand StackPtr; 1531 1532 // Walk the register/memloc assignments, inserting copies/loads. For tail 1533 // calls, remember all arguments for later special lowering. 1534 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1535 CCValAssign &VA = ArgLocs[i]; 1536 SDOperand Arg = Op.getOperand(5+2*VA.getValNo()); 1537 1538 // Promote the value if needed. 1539 switch (VA.getLocInfo()) { 1540 default: assert(0 && "Unknown loc info!"); 1541 case CCValAssign::Full: break; 1542 case CCValAssign::SExt: 1543 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg); 1544 break; 1545 case CCValAssign::ZExt: 1546 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg); 1547 break; 1548 case CCValAssign::AExt: 1549 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg); 1550 break; 1551 } 1552 1553 if (VA.isRegLoc()) { 1554 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 1555 } else { 1556 if (!IsTailCall) { 1557 assert(VA.isMemLoc()); 1558 if (StackPtr.Val == 0) 1559 StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy()); 1560 1561 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain, 1562 Arg)); 1563 } else if (IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) { 1564 TailCallClobberedVRegs.push_back(std::make_pair(i,Arg)); 1565 } 1566 } 1567 } 1568 1569 if (!MemOpChains.empty()) 1570 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, 1571 &MemOpChains[0], MemOpChains.size()); 1572 1573 // Build a sequence of copy-to-reg nodes chained together with token chain 1574 // and flag operands which copy the outgoing args into registers. 1575 SDOperand InFlag; 1576 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1577 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, 1578 InFlag); 1579 InFlag = Chain.getValue(1); 1580 } 1581 1582 // ELF / PIC requires GOT in the EBX register before function calls via PLT 1583 // GOT pointer. 1584 if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) { 1585 Chain = DAG.getCopyToReg(Chain, X86::EBX, 1586 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), 1587 InFlag); 1588 InFlag = Chain.getValue(1); 1589 } 1590 // If we are tail calling and generating PIC/GOT style code load the address 1591 // of the callee into ecx. The value in ecx is used as target of the tail 1592 // jump. This is done to circumvent the ebx/callee-saved problem for tail 1593 // calls on PIC/GOT architectures. Normally we would just put the address of 1594 // GOT into ebx and then call target@PLT. But for tail callss ebx would be 1595 // restored (since ebx is callee saved) before jumping to the target@PLT. 1596 if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) { 1597 // Note: The actual moving to ecx is done further down. 1598 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 1599 if (G && !G->getGlobal()->hasHiddenVisibility() && 1600 !G->getGlobal()->hasProtectedVisibility()) 1601 Callee = LowerGlobalAddress(Callee, DAG); 1602 else if (isa<ExternalSymbolSDNode>(Callee)) 1603 Callee = LowerExternalSymbol(Callee,DAG); 1604 } 1605 1606 if (Is64Bit && isVarArg) { 1607 // From AMD64 ABI document: 1608 // For calls that may call functions that use varargs or stdargs 1609 // (prototype-less calls or calls to functions containing ellipsis (...) in 1610 // the declaration) %al is used as hidden argument to specify the number 1611 // of SSE registers used. The contents of %al do not need to match exactly 1612 // the number of registers, but must be an ubound on the number of SSE 1613 // registers used and is in the range 0 - 8 inclusive. 1614 1615 // Count the number of XMM registers allocated. 1616 static const unsigned XMMArgRegs[] = { 1617 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 1618 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 1619 }; 1620 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); 1621 1622 Chain = DAG.getCopyToReg(Chain, X86::AL, 1623 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag); 1624 InFlag = Chain.getValue(1); 1625 } 1626 1627 1628 // For tail calls lower the arguments to the 'real' stack slot. 1629 if (IsTailCall) { 1630 SmallVector<SDOperand, 8> MemOpChains2; 1631 SDOperand FIN; 1632 int FI = 0; 1633 // Do not flag preceeding copytoreg stuff together with the following stuff. 1634 InFlag = SDOperand(); 1635 1636 Chain = CopyTailCallClobberedArgumentsToVRegs(Chain, TailCallClobberedVRegs, 1637 DAG, MF, this); 1638 1639 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1640 CCValAssign &VA = ArgLocs[i]; 1641 if (!VA.isRegLoc()) { 1642 assert(VA.isMemLoc()); 1643 SDOperand Arg = Op.getOperand(5+2*VA.getValNo()); 1644 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo()); 1645 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue(); 1646 // Create frame index. 1647 int32_t Offset = VA.getLocMemOffset()+FPDiff; 1648 uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8; 1649 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset); 1650 FIN = DAG.getFrameIndex(FI, MVT::i32); 1651 1652 // Find virtual register for this argument. 1653 bool Found=false; 1654 for (unsigned idx=0, e= TailCallClobberedVRegs.size(); idx < e; idx++) 1655 if (TailCallClobberedVRegs[idx].first==i) { 1656 Arg = TailCallClobberedVRegs[idx].second; 1657 Found=true; 1658 break; 1659 } 1660 assert(IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)==false || 1661 (Found==true && "No corresponding Argument was found")); 1662 1663 if (Flags & ISD::ParamFlags::ByVal) { 1664 // Copy relative to framepointer. 1665 MemOpChains2.push_back(CreateCopyOfByValArgument(Arg, FIN, Chain, 1666 Flags, DAG)); 1667 } else { 1668 // Store relative to framepointer. 1669 MemOpChains2.push_back( 1670 DAG.getStore(Chain, Arg, FIN, 1671 PseudoSourceValue::getFixedStack(), FI)); 1672 } 1673 } 1674 } 1675 1676 if (!MemOpChains2.empty()) 1677 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, 1678 &MemOpChains2[0], MemOpChains2.size()); 1679 1680 // Store the return address to the appropriate stack slot. 1681 if (FPDiff) { 1682 // Calculate the new stack slot for the return address. 1683 int SlotSize = Is64Bit ? 8 : 4; 1684 int NewReturnAddrFI = 1685 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize); 1686 MVT::ValueType VT = Is64Bit ? MVT::i64 : MVT::i32; 1687 SDOperand NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT); 1688 Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx, 1689 PseudoSourceValue::getFixedStack(), NewReturnAddrFI); 1690 } 1691 } 1692 1693 // If the callee is a GlobalAddress node (quite common, every direct call is) 1694 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1695 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1696 // We should use extra load for direct calls to dllimported functions in 1697 // non-JIT mode. 1698 if ((IsTailCall || !Is64Bit || 1699 getTargetMachine().getCodeModel() != CodeModel::Large) 1700 && !Subtarget->GVRequiresExtraLoad(G->getGlobal(), 1701 getTargetMachine(), true)) 1702 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); 1703 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1704 if (IsTailCall || !Is64Bit || 1705 getTargetMachine().getCodeModel() != CodeModel::Large) 1706 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); 1707 } else if (IsTailCall) { 1708 unsigned Opc = Is64Bit ? X86::R9 : X86::ECX; 1709 1710 Chain = DAG.getCopyToReg(Chain, 1711 DAG.getRegister(Opc, getPointerTy()), 1712 Callee,InFlag); 1713 Callee = DAG.getRegister(Opc, getPointerTy()); 1714 // Add register as live out. 1715 DAG.getMachineFunction().getRegInfo().addLiveOut(Opc); 1716 } 1717 1718 // Returns a chain & a flag for retval copy to use. 1719 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); 1720 SmallVector<SDOperand, 8> Ops; 1721 1722 if (IsTailCall) { 1723 Ops.push_back(Chain); 1724 Ops.push_back(DAG.getIntPtrConstant(NumBytes)); 1725 Ops.push_back(DAG.getIntPtrConstant(0)); 1726 if (InFlag.Val) 1727 Ops.push_back(InFlag); 1728 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size()); 1729 InFlag = Chain.getValue(1); 1730 1731 // Returns a chain & a flag for retval copy to use. 1732 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); 1733 Ops.clear(); 1734 } 1735 1736 Ops.push_back(Chain); 1737 Ops.push_back(Callee); 1738 1739 if (IsTailCall) 1740 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32)); 1741 1742 // Add an implicit use GOT pointer in EBX. 1743 if (!IsTailCall && !Is64Bit && 1744 getTargetMachine().getRelocationModel() == Reloc::PIC_ && 1745 Subtarget->isPICStyleGOT()) 1746 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy())); 1747 1748 // Add argument registers to the end of the list so that they are known live 1749 // into the call. 1750 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1751 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1752 RegsToPass[i].second.getValueType())); 1753 1754 if (InFlag.Val) 1755 Ops.push_back(InFlag); 1756 1757 if (IsTailCall) { 1758 assert(InFlag.Val && 1759 "Flag must be set. Depend on flag being set in LowerRET"); 1760 Chain = DAG.getNode(X86ISD::TAILCALL, 1761 Op.Val->getVTList(), &Ops[0], Ops.size()); 1762 1763 return SDOperand(Chain.Val, Op.ResNo); 1764 } 1765 1766 Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size()); 1767 InFlag = Chain.getValue(1); 1768 1769 // Create the CALLSEQ_END node. 1770 unsigned NumBytesForCalleeToPush; 1771 if (IsCalleePop(Op)) 1772 NumBytesForCalleeToPush = NumBytes; // Callee pops everything 1773 else if (!Is64Bit && IsStructRet) 1774 // If this is is a call to a struct-return function, the callee 1775 // pops the hidden struct pointer, so we have to push it back. 1776 // This is common for Darwin/X86, Linux & Mingw32 targets. 1777 NumBytesForCalleeToPush = 4; 1778 else 1779 NumBytesForCalleeToPush = 0; // Callee pops nothing. 1780 1781 // Returns a flag for retval copy to use. 1782 Chain = DAG.getCALLSEQ_END(Chain, 1783 DAG.getIntPtrConstant(NumBytes), 1784 DAG.getIntPtrConstant(NumBytesForCalleeToPush), 1785 InFlag); 1786 InFlag = Chain.getValue(1); 1787 1788 // Handle result values, copying them out of physregs into vregs that we 1789 // return. 1790 switch (SRetMethod) { 1791 default: 1792 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo); 1793 case X86::InGPR64: 1794 return SDOperand(LowerCallResultToTwo64BitRegs(Chain, InFlag, Op.Val, 1795 X86::RAX, X86::RDX, 1796 MVT::i64, DAG), Op.ResNo); 1797 case X86::InSSE: 1798 return SDOperand(LowerCallResultToTwo64BitRegs(Chain, InFlag, Op.Val, 1799 X86::XMM0, X86::XMM1, 1800 MVT::f64, DAG), Op.ResNo); 1801 case X86::InX87: 1802 return SDOperand(LowerCallResultToTwoX87Regs(Chain, InFlag, Op.Val, DAG), 1803 Op.ResNo); 1804 } 1805} 1806 1807 1808//===----------------------------------------------------------------------===// 1809// Fast Calling Convention (tail call) implementation 1810//===----------------------------------------------------------------------===// 1811 1812// Like std call, callee cleans arguments, convention except that ECX is 1813// reserved for storing the tail called function address. Only 2 registers are 1814// free for argument passing (inreg). Tail call optimization is performed 1815// provided: 1816// * tailcallopt is enabled 1817// * caller/callee are fastcc 1818// On X86_64 architecture with GOT-style position independent code only local 1819// (within module) calls are supported at the moment. 1820// To keep the stack aligned according to platform abi the function 1821// GetAlignedArgumentStackSize ensures that argument delta is always multiples 1822// of stack alignment. (Dynamic linkers need this - darwin's dyld for example) 1823// If a tail called function callee has more arguments than the caller the 1824// caller needs to make sure that there is room to move the RETADDR to. This is 1825// achieved by reserving an area the size of the argument delta right after the 1826// original REtADDR, but before the saved framepointer or the spilled registers 1827// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) 1828// stack layout: 1829// arg1 1830// arg2 1831// RETADDR 1832// [ new RETADDR 1833// move area ] 1834// (possible EBP) 1835// ESI 1836// EDI 1837// local1 .. 1838 1839/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned 1840/// for a 16 byte align requirement. 1841unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, 1842 SelectionDAG& DAG) { 1843 if (PerformTailCallOpt) { 1844 MachineFunction &MF = DAG.getMachineFunction(); 1845 const TargetMachine &TM = MF.getTarget(); 1846 const TargetFrameInfo &TFI = *TM.getFrameInfo(); 1847 unsigned StackAlignment = TFI.getStackAlignment(); 1848 uint64_t AlignMask = StackAlignment - 1; 1849 int64_t Offset = StackSize; 1850 unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4; 1851 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { 1852 // Number smaller than 12 so just add the difference. 1853 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); 1854 } else { 1855 // Mask out lower bits, add stackalignment once plus the 12 bytes. 1856 Offset = ((~AlignMask) & Offset) + StackAlignment + 1857 (StackAlignment-SlotSize); 1858 } 1859 StackSize = Offset; 1860 } 1861 return StackSize; 1862} 1863 1864/// IsEligibleForTailCallElimination - Check to see whether the next instruction 1865/// following the call is a return. A function is eligible if caller/callee 1866/// calling conventions match, currently only fastcc supports tail calls, and 1867/// the function CALL is immediatly followed by a RET. 1868bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call, 1869 SDOperand Ret, 1870 SelectionDAG& DAG) const { 1871 if (!PerformTailCallOpt) 1872 return false; 1873 1874 // Check whether CALL node immediatly preceeds the RET node and whether the 1875 // return uses the result of the node or is a void return. 1876 unsigned NumOps = Ret.getNumOperands(); 1877 if ((NumOps == 1 && 1878 (Ret.getOperand(0) == SDOperand(Call.Val,1) || 1879 Ret.getOperand(0) == SDOperand(Call.Val,0))) || 1880 (NumOps > 1 && 1881 Ret.getOperand(0) == SDOperand(Call.Val,Call.Val->getNumValues()-1) && 1882 Ret.getOperand(1) == SDOperand(Call.Val,0))) { 1883 MachineFunction &MF = DAG.getMachineFunction(); 1884 unsigned CallerCC = MF.getFunction()->getCallingConv(); 1885 unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue(); 1886 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 1887 SDOperand Callee = Call.getOperand(4); 1888 // On x86/32Bit PIC/GOT tail calls are supported. 1889 if (getTargetMachine().getRelocationModel() != Reloc::PIC_ || 1890 !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit()) 1891 return true; 1892 1893 // Can only do local tail calls (in same module, hidden or protected) on 1894 // x86_64 PIC/GOT at the moment. 1895 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1896 return G->getGlobal()->hasHiddenVisibility() 1897 || G->getGlobal()->hasProtectedVisibility(); 1898 } 1899 } 1900 1901 return false; 1902} 1903 1904//===----------------------------------------------------------------------===// 1905// Other Lowering Hooks 1906//===----------------------------------------------------------------------===// 1907 1908 1909SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { 1910 MachineFunction &MF = DAG.getMachineFunction(); 1911 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 1912 int ReturnAddrIndex = FuncInfo->getRAIndex(); 1913 1914 if (ReturnAddrIndex == 0) { 1915 // Set up a frame object for the return address. 1916 if (Subtarget->is64Bit()) 1917 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8); 1918 else 1919 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4); 1920 1921 FuncInfo->setRAIndex(ReturnAddrIndex); 1922 } 1923 1924 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); 1925} 1926 1927 1928 1929/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86 1930/// specific condition code. It returns a false if it cannot do a direct 1931/// translation. X86CC is the translated CondCode. LHS/RHS are modified as 1932/// needed. 1933static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP, 1934 unsigned &X86CC, SDOperand &LHS, SDOperand &RHS, 1935 SelectionDAG &DAG) { 1936 X86CC = X86::COND_INVALID; 1937 if (!isFP) { 1938 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 1939 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { 1940 // X > -1 -> X == 0, jump !sign. 1941 RHS = DAG.getConstant(0, RHS.getValueType()); 1942 X86CC = X86::COND_NS; 1943 return true; 1944 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { 1945 // X < 0 -> X == 0, jump on sign. 1946 X86CC = X86::COND_S; 1947 return true; 1948 } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) { 1949 // X < 1 -> X <= 0 1950 RHS = DAG.getConstant(0, RHS.getValueType()); 1951 X86CC = X86::COND_LE; 1952 return true; 1953 } 1954 } 1955 1956 switch (SetCCOpcode) { 1957 default: break; 1958 case ISD::SETEQ: X86CC = X86::COND_E; break; 1959 case ISD::SETGT: X86CC = X86::COND_G; break; 1960 case ISD::SETGE: X86CC = X86::COND_GE; break; 1961 case ISD::SETLT: X86CC = X86::COND_L; break; 1962 case ISD::SETLE: X86CC = X86::COND_LE; break; 1963 case ISD::SETNE: X86CC = X86::COND_NE; break; 1964 case ISD::SETULT: X86CC = X86::COND_B; break; 1965 case ISD::SETUGT: X86CC = X86::COND_A; break; 1966 case ISD::SETULE: X86CC = X86::COND_BE; break; 1967 case ISD::SETUGE: X86CC = X86::COND_AE; break; 1968 } 1969 } else { 1970 // On a floating point condition, the flags are set as follows: 1971 // ZF PF CF op 1972 // 0 | 0 | 0 | X > Y 1973 // 0 | 0 | 1 | X < Y 1974 // 1 | 0 | 0 | X == Y 1975 // 1 | 1 | 1 | unordered 1976 bool Flip = false; 1977 switch (SetCCOpcode) { 1978 default: break; 1979 case ISD::SETUEQ: 1980 case ISD::SETEQ: X86CC = X86::COND_E; break; 1981 case ISD::SETOLT: Flip = true; // Fallthrough 1982 case ISD::SETOGT: 1983 case ISD::SETGT: X86CC = X86::COND_A; break; 1984 case ISD::SETOLE: Flip = true; // Fallthrough 1985 case ISD::SETOGE: 1986 case ISD::SETGE: X86CC = X86::COND_AE; break; 1987 case ISD::SETUGT: Flip = true; // Fallthrough 1988 case ISD::SETULT: 1989 case ISD::SETLT: X86CC = X86::COND_B; break; 1990 case ISD::SETUGE: Flip = true; // Fallthrough 1991 case ISD::SETULE: 1992 case ISD::SETLE: X86CC = X86::COND_BE; break; 1993 case ISD::SETONE: 1994 case ISD::SETNE: X86CC = X86::COND_NE; break; 1995 case ISD::SETUO: X86CC = X86::COND_P; break; 1996 case ISD::SETO: X86CC = X86::COND_NP; break; 1997 } 1998 if (Flip) 1999 std::swap(LHS, RHS); 2000 } 2001 2002 return X86CC != X86::COND_INVALID; 2003} 2004 2005/// hasFPCMov - is there a floating point cmov for the specific X86 condition 2006/// code. Current x86 isa includes the following FP cmov instructions: 2007/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. 2008static bool hasFPCMov(unsigned X86CC) { 2009 switch (X86CC) { 2010 default: 2011 return false; 2012 case X86::COND_B: 2013 case X86::COND_BE: 2014 case X86::COND_E: 2015 case X86::COND_P: 2016 case X86::COND_A: 2017 case X86::COND_AE: 2018 case X86::COND_NE: 2019 case X86::COND_NP: 2020 return true; 2021 } 2022} 2023 2024/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return 2025/// true if Op is undef or if its value falls within the specified range (L, H]. 2026static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) { 2027 if (Op.getOpcode() == ISD::UNDEF) 2028 return true; 2029 2030 unsigned Val = cast<ConstantSDNode>(Op)->getValue(); 2031 return (Val >= Low && Val < Hi); 2032} 2033 2034/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return 2035/// true if Op is undef or if its value equal to the specified value. 2036static bool isUndefOrEqual(SDOperand Op, unsigned Val) { 2037 if (Op.getOpcode() == ISD::UNDEF) 2038 return true; 2039 return cast<ConstantSDNode>(Op)->getValue() == Val; 2040} 2041 2042/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand 2043/// specifies a shuffle of elements that is suitable for input to PSHUFD. 2044bool X86::isPSHUFDMask(SDNode *N) { 2045 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2046 2047 if (N->getNumOperands() != 2 && N->getNumOperands() != 4) 2048 return false; 2049 2050 // Check if the value doesn't reference the second vector. 2051 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2052 SDOperand Arg = N->getOperand(i); 2053 if (Arg.getOpcode() == ISD::UNDEF) continue; 2054 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2055 if (cast<ConstantSDNode>(Arg)->getValue() >= e) 2056 return false; 2057 } 2058 2059 return true; 2060} 2061 2062/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand 2063/// specifies a shuffle of elements that is suitable for input to PSHUFHW. 2064bool X86::isPSHUFHWMask(SDNode *N) { 2065 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2066 2067 if (N->getNumOperands() != 8) 2068 return false; 2069 2070 // Lower quadword copied in order. 2071 for (unsigned i = 0; i != 4; ++i) { 2072 SDOperand Arg = N->getOperand(i); 2073 if (Arg.getOpcode() == ISD::UNDEF) continue; 2074 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2075 if (cast<ConstantSDNode>(Arg)->getValue() != i) 2076 return false; 2077 } 2078 2079 // Upper quadword shuffled. 2080 for (unsigned i = 4; i != 8; ++i) { 2081 SDOperand Arg = N->getOperand(i); 2082 if (Arg.getOpcode() == ISD::UNDEF) continue; 2083 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2084 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2085 if (Val < 4 || Val > 7) 2086 return false; 2087 } 2088 2089 return true; 2090} 2091 2092/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand 2093/// specifies a shuffle of elements that is suitable for input to PSHUFLW. 2094bool X86::isPSHUFLWMask(SDNode *N) { 2095 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2096 2097 if (N->getNumOperands() != 8) 2098 return false; 2099 2100 // Upper quadword copied in order. 2101 for (unsigned i = 4; i != 8; ++i) 2102 if (!isUndefOrEqual(N->getOperand(i), i)) 2103 return false; 2104 2105 // Lower quadword shuffled. 2106 for (unsigned i = 0; i != 4; ++i) 2107 if (!isUndefOrInRange(N->getOperand(i), 0, 4)) 2108 return false; 2109 2110 return true; 2111} 2112 2113/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand 2114/// specifies a shuffle of elements that is suitable for input to SHUFP*. 2115static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) { 2116 if (NumElems != 2 && NumElems != 4) return false; 2117 2118 unsigned Half = NumElems / 2; 2119 for (unsigned i = 0; i < Half; ++i) 2120 if (!isUndefOrInRange(Elems[i], 0, NumElems)) 2121 return false; 2122 for (unsigned i = Half; i < NumElems; ++i) 2123 if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2)) 2124 return false; 2125 2126 return true; 2127} 2128 2129bool X86::isSHUFPMask(SDNode *N) { 2130 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2131 return ::isSHUFPMask(N->op_begin(), N->getNumOperands()); 2132} 2133 2134/// isCommutedSHUFP - Returns true if the shuffle mask is exactly 2135/// the reverse of what x86 shuffles want. x86 shuffles requires the lower 2136/// half elements to come from vector 1 (which would equal the dest.) and 2137/// the upper half to come from vector 2. 2138static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) { 2139 if (NumOps != 2 && NumOps != 4) return false; 2140 2141 unsigned Half = NumOps / 2; 2142 for (unsigned i = 0; i < Half; ++i) 2143 if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2)) 2144 return false; 2145 for (unsigned i = Half; i < NumOps; ++i) 2146 if (!isUndefOrInRange(Ops[i], 0, NumOps)) 2147 return false; 2148 return true; 2149} 2150 2151static bool isCommutedSHUFP(SDNode *N) { 2152 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2153 return isCommutedSHUFP(N->op_begin(), N->getNumOperands()); 2154} 2155 2156/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand 2157/// specifies a shuffle of elements that is suitable for input to MOVHLPS. 2158bool X86::isMOVHLPSMask(SDNode *N) { 2159 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2160 2161 if (N->getNumOperands() != 4) 2162 return false; 2163 2164 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 2165 return isUndefOrEqual(N->getOperand(0), 6) && 2166 isUndefOrEqual(N->getOperand(1), 7) && 2167 isUndefOrEqual(N->getOperand(2), 2) && 2168 isUndefOrEqual(N->getOperand(3), 3); 2169} 2170 2171/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form 2172/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, 2173/// <2, 3, 2, 3> 2174bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) { 2175 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2176 2177 if (N->getNumOperands() != 4) 2178 return false; 2179 2180 // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3 2181 return isUndefOrEqual(N->getOperand(0), 2) && 2182 isUndefOrEqual(N->getOperand(1), 3) && 2183 isUndefOrEqual(N->getOperand(2), 2) && 2184 isUndefOrEqual(N->getOperand(3), 3); 2185} 2186 2187/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand 2188/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. 2189bool X86::isMOVLPMask(SDNode *N) { 2190 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2191 2192 unsigned NumElems = N->getNumOperands(); 2193 if (NumElems != 2 && NumElems != 4) 2194 return false; 2195 2196 for (unsigned i = 0; i < NumElems/2; ++i) 2197 if (!isUndefOrEqual(N->getOperand(i), i + NumElems)) 2198 return false; 2199 2200 for (unsigned i = NumElems/2; i < NumElems; ++i) 2201 if (!isUndefOrEqual(N->getOperand(i), i)) 2202 return false; 2203 2204 return true; 2205} 2206 2207/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand 2208/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D} 2209/// and MOVLHPS. 2210bool X86::isMOVHPMask(SDNode *N) { 2211 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2212 2213 unsigned NumElems = N->getNumOperands(); 2214 if (NumElems != 2 && NumElems != 4) 2215 return false; 2216 2217 for (unsigned i = 0; i < NumElems/2; ++i) 2218 if (!isUndefOrEqual(N->getOperand(i), i)) 2219 return false; 2220 2221 for (unsigned i = 0; i < NumElems/2; ++i) { 2222 SDOperand Arg = N->getOperand(i + NumElems/2); 2223 if (!isUndefOrEqual(Arg, i + NumElems)) 2224 return false; 2225 } 2226 2227 return true; 2228} 2229 2230/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand 2231/// specifies a shuffle of elements that is suitable for input to UNPCKL. 2232bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts, 2233 bool V2IsSplat = false) { 2234 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) 2235 return false; 2236 2237 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) { 2238 SDOperand BitI = Elts[i]; 2239 SDOperand BitI1 = Elts[i+1]; 2240 if (!isUndefOrEqual(BitI, j)) 2241 return false; 2242 if (V2IsSplat) { 2243 if (isUndefOrEqual(BitI1, NumElts)) 2244 return false; 2245 } else { 2246 if (!isUndefOrEqual(BitI1, j + NumElts)) 2247 return false; 2248 } 2249 } 2250 2251 return true; 2252} 2253 2254bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) { 2255 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2256 return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat); 2257} 2258 2259/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand 2260/// specifies a shuffle of elements that is suitable for input to UNPCKH. 2261bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts, 2262 bool V2IsSplat = false) { 2263 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) 2264 return false; 2265 2266 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) { 2267 SDOperand BitI = Elts[i]; 2268 SDOperand BitI1 = Elts[i+1]; 2269 if (!isUndefOrEqual(BitI, j + NumElts/2)) 2270 return false; 2271 if (V2IsSplat) { 2272 if (isUndefOrEqual(BitI1, NumElts)) 2273 return false; 2274 } else { 2275 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts)) 2276 return false; 2277 } 2278 } 2279 2280 return true; 2281} 2282 2283bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) { 2284 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2285 return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat); 2286} 2287 2288/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form 2289/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, 2290/// <0, 0, 1, 1> 2291bool X86::isUNPCKL_v_undef_Mask(SDNode *N) { 2292 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2293 2294 unsigned NumElems = N->getNumOperands(); 2295 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) 2296 return false; 2297 2298 for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { 2299 SDOperand BitI = N->getOperand(i); 2300 SDOperand BitI1 = N->getOperand(i+1); 2301 2302 if (!isUndefOrEqual(BitI, j)) 2303 return false; 2304 if (!isUndefOrEqual(BitI1, j)) 2305 return false; 2306 } 2307 2308 return true; 2309} 2310 2311/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form 2312/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, 2313/// <2, 2, 3, 3> 2314bool X86::isUNPCKH_v_undef_Mask(SDNode *N) { 2315 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2316 2317 unsigned NumElems = N->getNumOperands(); 2318 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) 2319 return false; 2320 2321 for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) { 2322 SDOperand BitI = N->getOperand(i); 2323 SDOperand BitI1 = N->getOperand(i + 1); 2324 2325 if (!isUndefOrEqual(BitI, j)) 2326 return false; 2327 if (!isUndefOrEqual(BitI1, j)) 2328 return false; 2329 } 2330 2331 return true; 2332} 2333 2334/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand 2335/// specifies a shuffle of elements that is suitable for input to MOVSS, 2336/// MOVSD, and MOVD, i.e. setting the lowest element. 2337static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) { 2338 if (NumElts != 2 && NumElts != 4) 2339 return false; 2340 2341 if (!isUndefOrEqual(Elts[0], NumElts)) 2342 return false; 2343 2344 for (unsigned i = 1; i < NumElts; ++i) { 2345 if (!isUndefOrEqual(Elts[i], i)) 2346 return false; 2347 } 2348 2349 return true; 2350} 2351 2352bool X86::isMOVLMask(SDNode *N) { 2353 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2354 return ::isMOVLMask(N->op_begin(), N->getNumOperands()); 2355} 2356 2357/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse 2358/// of what x86 movss want. X86 movs requires the lowest element to be lowest 2359/// element of vector 2 and the other elements to come from vector 1 in order. 2360static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps, 2361 bool V2IsSplat = false, 2362 bool V2IsUndef = false) { 2363 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16) 2364 return false; 2365 2366 if (!isUndefOrEqual(Ops[0], 0)) 2367 return false; 2368 2369 for (unsigned i = 1; i < NumOps; ++i) { 2370 SDOperand Arg = Ops[i]; 2371 if (!(isUndefOrEqual(Arg, i+NumOps) || 2372 (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) || 2373 (V2IsSplat && isUndefOrEqual(Arg, NumOps)))) 2374 return false; 2375 } 2376 2377 return true; 2378} 2379 2380static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false, 2381 bool V2IsUndef = false) { 2382 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2383 return isCommutedMOVL(N->op_begin(), N->getNumOperands(), 2384 V2IsSplat, V2IsUndef); 2385} 2386 2387/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand 2388/// specifies a shuffle of elements that is suitable for input to MOVSHDUP. 2389bool X86::isMOVSHDUPMask(SDNode *N) { 2390 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2391 2392 if (N->getNumOperands() != 4) 2393 return false; 2394 2395 // Expect 1, 1, 3, 3 2396 for (unsigned i = 0; i < 2; ++i) { 2397 SDOperand Arg = N->getOperand(i); 2398 if (Arg.getOpcode() == ISD::UNDEF) continue; 2399 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2400 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2401 if (Val != 1) return false; 2402 } 2403 2404 bool HasHi = false; 2405 for (unsigned i = 2; i < 4; ++i) { 2406 SDOperand Arg = N->getOperand(i); 2407 if (Arg.getOpcode() == ISD::UNDEF) continue; 2408 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2409 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2410 if (Val != 3) return false; 2411 HasHi = true; 2412 } 2413 2414 // Don't use movshdup if it can be done with a shufps. 2415 return HasHi; 2416} 2417 2418/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand 2419/// specifies a shuffle of elements that is suitable for input to MOVSLDUP. 2420bool X86::isMOVSLDUPMask(SDNode *N) { 2421 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2422 2423 if (N->getNumOperands() != 4) 2424 return false; 2425 2426 // Expect 0, 0, 2, 2 2427 for (unsigned i = 0; i < 2; ++i) { 2428 SDOperand Arg = N->getOperand(i); 2429 if (Arg.getOpcode() == ISD::UNDEF) continue; 2430 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2431 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2432 if (Val != 0) return false; 2433 } 2434 2435 bool HasHi = false; 2436 for (unsigned i = 2; i < 4; ++i) { 2437 SDOperand Arg = N->getOperand(i); 2438 if (Arg.getOpcode() == ISD::UNDEF) continue; 2439 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2440 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2441 if (Val != 2) return false; 2442 HasHi = true; 2443 } 2444 2445 // Don't use movshdup if it can be done with a shufps. 2446 return HasHi; 2447} 2448 2449/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand 2450/// specifies a identity operation on the LHS or RHS. 2451static bool isIdentityMask(SDNode *N, bool RHS = false) { 2452 unsigned NumElems = N->getNumOperands(); 2453 for (unsigned i = 0; i < NumElems; ++i) 2454 if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0))) 2455 return false; 2456 return true; 2457} 2458 2459/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies 2460/// a splat of a single element. 2461static bool isSplatMask(SDNode *N) { 2462 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2463 2464 // This is a splat operation if each element of the permute is the same, and 2465 // if the value doesn't reference the second vector. 2466 unsigned NumElems = N->getNumOperands(); 2467 SDOperand ElementBase; 2468 unsigned i = 0; 2469 for (; i != NumElems; ++i) { 2470 SDOperand Elt = N->getOperand(i); 2471 if (isa<ConstantSDNode>(Elt)) { 2472 ElementBase = Elt; 2473 break; 2474 } 2475 } 2476 2477 if (!ElementBase.Val) 2478 return false; 2479 2480 for (; i != NumElems; ++i) { 2481 SDOperand Arg = N->getOperand(i); 2482 if (Arg.getOpcode() == ISD::UNDEF) continue; 2483 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2484 if (Arg != ElementBase) return false; 2485 } 2486 2487 // Make sure it is a splat of the first vector operand. 2488 return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems; 2489} 2490 2491/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies 2492/// a splat of a single element and it's a 2 or 4 element mask. 2493bool X86::isSplatMask(SDNode *N) { 2494 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2495 2496 // We can only splat 64-bit, and 32-bit quantities with a single instruction. 2497 if (N->getNumOperands() != 4 && N->getNumOperands() != 2) 2498 return false; 2499 return ::isSplatMask(N); 2500} 2501 2502/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand 2503/// specifies a splat of zero element. 2504bool X86::isSplatLoMask(SDNode *N) { 2505 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2506 2507 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i) 2508 if (!isUndefOrEqual(N->getOperand(i), 0)) 2509 return false; 2510 return true; 2511} 2512 2513/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle 2514/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP* 2515/// instructions. 2516unsigned X86::getShuffleSHUFImmediate(SDNode *N) { 2517 unsigned NumOperands = N->getNumOperands(); 2518 unsigned Shift = (NumOperands == 4) ? 2 : 1; 2519 unsigned Mask = 0; 2520 for (unsigned i = 0; i < NumOperands; ++i) { 2521 unsigned Val = 0; 2522 SDOperand Arg = N->getOperand(NumOperands-i-1); 2523 if (Arg.getOpcode() != ISD::UNDEF) 2524 Val = cast<ConstantSDNode>(Arg)->getValue(); 2525 if (Val >= NumOperands) Val -= NumOperands; 2526 Mask |= Val; 2527 if (i != NumOperands - 1) 2528 Mask <<= Shift; 2529 } 2530 2531 return Mask; 2532} 2533 2534/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle 2535/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW 2536/// instructions. 2537unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) { 2538 unsigned Mask = 0; 2539 // 8 nodes, but we only care about the last 4. 2540 for (unsigned i = 7; i >= 4; --i) { 2541 unsigned Val = 0; 2542 SDOperand Arg = N->getOperand(i); 2543 if (Arg.getOpcode() != ISD::UNDEF) 2544 Val = cast<ConstantSDNode>(Arg)->getValue(); 2545 Mask |= (Val - 4); 2546 if (i != 4) 2547 Mask <<= 2; 2548 } 2549 2550 return Mask; 2551} 2552 2553/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle 2554/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW 2555/// instructions. 2556unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) { 2557 unsigned Mask = 0; 2558 // 8 nodes, but we only care about the first 4. 2559 for (int i = 3; i >= 0; --i) { 2560 unsigned Val = 0; 2561 SDOperand Arg = N->getOperand(i); 2562 if (Arg.getOpcode() != ISD::UNDEF) 2563 Val = cast<ConstantSDNode>(Arg)->getValue(); 2564 Mask |= Val; 2565 if (i != 0) 2566 Mask <<= 2; 2567 } 2568 2569 return Mask; 2570} 2571 2572/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand 2573/// specifies a 8 element shuffle that can be broken into a pair of 2574/// PSHUFHW and PSHUFLW. 2575static bool isPSHUFHW_PSHUFLWMask(SDNode *N) { 2576 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2577 2578 if (N->getNumOperands() != 8) 2579 return false; 2580 2581 // Lower quadword shuffled. 2582 for (unsigned i = 0; i != 4; ++i) { 2583 SDOperand Arg = N->getOperand(i); 2584 if (Arg.getOpcode() == ISD::UNDEF) continue; 2585 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2586 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2587 if (Val >= 4) 2588 return false; 2589 } 2590 2591 // Upper quadword shuffled. 2592 for (unsigned i = 4; i != 8; ++i) { 2593 SDOperand Arg = N->getOperand(i); 2594 if (Arg.getOpcode() == ISD::UNDEF) continue; 2595 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2596 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2597 if (Val < 4 || Val > 7) 2598 return false; 2599 } 2600 2601 return true; 2602} 2603 2604/// CommuteVectorShuffle - Swap vector_shuffle operands as well as 2605/// values in ther permute mask. 2606static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1, 2607 SDOperand &V2, SDOperand &Mask, 2608 SelectionDAG &DAG) { 2609 MVT::ValueType VT = Op.getValueType(); 2610 MVT::ValueType MaskVT = Mask.getValueType(); 2611 MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT); 2612 unsigned NumElems = Mask.getNumOperands(); 2613 SmallVector<SDOperand, 8> MaskVec; 2614 2615 for (unsigned i = 0; i != NumElems; ++i) { 2616 SDOperand Arg = Mask.getOperand(i); 2617 if (Arg.getOpcode() == ISD::UNDEF) { 2618 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 2619 continue; 2620 } 2621 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2622 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2623 if (Val < NumElems) 2624 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT)); 2625 else 2626 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT)); 2627 } 2628 2629 std::swap(V1, V2); 2630 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems); 2631 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); 2632} 2633 2634/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming 2635/// the two vector operands have swapped position. 2636static 2637SDOperand CommuteVectorShuffleMask(SDOperand Mask, SelectionDAG &DAG) { 2638 MVT::ValueType MaskVT = Mask.getValueType(); 2639 MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT); 2640 unsigned NumElems = Mask.getNumOperands(); 2641 SmallVector<SDOperand, 8> MaskVec; 2642 for (unsigned i = 0; i != NumElems; ++i) { 2643 SDOperand Arg = Mask.getOperand(i); 2644 if (Arg.getOpcode() == ISD::UNDEF) { 2645 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 2646 continue; 2647 } 2648 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2649 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2650 if (Val < NumElems) 2651 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT)); 2652 else 2653 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT)); 2654 } 2655 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems); 2656} 2657 2658 2659/// ShouldXformToMOVHLPS - Return true if the node should be transformed to 2660/// match movhlps. The lower half elements should come from upper half of 2661/// V1 (and in order), and the upper half elements should come from the upper 2662/// half of V2 (and in order). 2663static bool ShouldXformToMOVHLPS(SDNode *Mask) { 2664 unsigned NumElems = Mask->getNumOperands(); 2665 if (NumElems != 4) 2666 return false; 2667 for (unsigned i = 0, e = 2; i != e; ++i) 2668 if (!isUndefOrEqual(Mask->getOperand(i), i+2)) 2669 return false; 2670 for (unsigned i = 2; i != 4; ++i) 2671 if (!isUndefOrEqual(Mask->getOperand(i), i+4)) 2672 return false; 2673 return true; 2674} 2675 2676/// isScalarLoadToVector - Returns true if the node is a scalar load that 2677/// is promoted to a vector. 2678static inline bool isScalarLoadToVector(SDNode *N) { 2679 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) { 2680 N = N->getOperand(0).Val; 2681 return ISD::isNON_EXTLoad(N); 2682 } 2683 return false; 2684} 2685 2686/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to 2687/// match movlp{s|d}. The lower half elements should come from lower half of 2688/// V1 (and in order), and the upper half elements should come from the upper 2689/// half of V2 (and in order). And since V1 will become the source of the 2690/// MOVLP, it must be either a vector load or a scalar load to vector. 2691static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) { 2692 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1)) 2693 return false; 2694 // Is V2 is a vector load, don't do this transformation. We will try to use 2695 // load folding shufps op. 2696 if (ISD::isNON_EXTLoad(V2)) 2697 return false; 2698 2699 unsigned NumElems = Mask->getNumOperands(); 2700 if (NumElems != 2 && NumElems != 4) 2701 return false; 2702 for (unsigned i = 0, e = NumElems/2; i != e; ++i) 2703 if (!isUndefOrEqual(Mask->getOperand(i), i)) 2704 return false; 2705 for (unsigned i = NumElems/2; i != NumElems; ++i) 2706 if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems)) 2707 return false; 2708 return true; 2709} 2710 2711/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are 2712/// all the same. 2713static bool isSplatVector(SDNode *N) { 2714 if (N->getOpcode() != ISD::BUILD_VECTOR) 2715 return false; 2716 2717 SDOperand SplatValue = N->getOperand(0); 2718 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 2719 if (N->getOperand(i) != SplatValue) 2720 return false; 2721 return true; 2722} 2723 2724/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved 2725/// to an undef. 2726static bool isUndefShuffle(SDNode *N) { 2727 if (N->getOpcode() != ISD::VECTOR_SHUFFLE) 2728 return false; 2729 2730 SDOperand V1 = N->getOperand(0); 2731 SDOperand V2 = N->getOperand(1); 2732 SDOperand Mask = N->getOperand(2); 2733 unsigned NumElems = Mask.getNumOperands(); 2734 for (unsigned i = 0; i != NumElems; ++i) { 2735 SDOperand Arg = Mask.getOperand(i); 2736 if (Arg.getOpcode() != ISD::UNDEF) { 2737 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2738 if (Val < NumElems && V1.getOpcode() != ISD::UNDEF) 2739 return false; 2740 else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF) 2741 return false; 2742 } 2743 } 2744 return true; 2745} 2746 2747/// isZeroNode - Returns true if Elt is a constant zero or a floating point 2748/// constant +0.0. 2749static inline bool isZeroNode(SDOperand Elt) { 2750 return ((isa<ConstantSDNode>(Elt) && 2751 cast<ConstantSDNode>(Elt)->getValue() == 0) || 2752 (isa<ConstantFPSDNode>(Elt) && 2753 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero())); 2754} 2755 2756/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved 2757/// to an zero vector. 2758static bool isZeroShuffle(SDNode *N) { 2759 if (N->getOpcode() != ISD::VECTOR_SHUFFLE) 2760 return false; 2761 2762 SDOperand V1 = N->getOperand(0); 2763 SDOperand V2 = N->getOperand(1); 2764 SDOperand Mask = N->getOperand(2); 2765 unsigned NumElems = Mask.getNumOperands(); 2766 for (unsigned i = 0; i != NumElems; ++i) { 2767 SDOperand Arg = Mask.getOperand(i); 2768 if (Arg.getOpcode() == ISD::UNDEF) 2769 continue; 2770 2771 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue(); 2772 if (Idx < NumElems) { 2773 unsigned Opc = V1.Val->getOpcode(); 2774 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.Val)) 2775 continue; 2776 if (Opc != ISD::BUILD_VECTOR || 2777 !isZeroNode(V1.Val->getOperand(Idx))) 2778 return false; 2779 } else if (Idx >= NumElems) { 2780 unsigned Opc = V2.Val->getOpcode(); 2781 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.Val)) 2782 continue; 2783 if (Opc != ISD::BUILD_VECTOR || 2784 !isZeroNode(V2.Val->getOperand(Idx - NumElems))) 2785 return false; 2786 } 2787 } 2788 return true; 2789} 2790 2791/// getZeroVector - Returns a vector of specified type with all zero elements. 2792/// 2793static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) { 2794 assert(MVT::isVector(VT) && "Expected a vector type"); 2795 2796 // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest 2797 // type. This ensures they get CSE'd. 2798 SDOperand Cst = DAG.getTargetConstant(0, MVT::i32); 2799 SDOperand Vec; 2800 if (MVT::getSizeInBits(VT) == 64) // MMX 2801 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst); 2802 else // SSE 2803 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst); 2804 return DAG.getNode(ISD::BIT_CONVERT, VT, Vec); 2805} 2806 2807/// getOnesVector - Returns a vector of specified type with all bits set. 2808/// 2809static SDOperand getOnesVector(MVT::ValueType VT, SelectionDAG &DAG) { 2810 assert(MVT::isVector(VT) && "Expected a vector type"); 2811 2812 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest 2813 // type. This ensures they get CSE'd. 2814 SDOperand Cst = DAG.getTargetConstant(~0U, MVT::i32); 2815 SDOperand Vec; 2816 if (MVT::getSizeInBits(VT) == 64) // MMX 2817 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst); 2818 else // SSE 2819 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst); 2820 return DAG.getNode(ISD::BIT_CONVERT, VT, Vec); 2821} 2822 2823 2824/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements 2825/// that point to V2 points to its first element. 2826static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) { 2827 assert(Mask.getOpcode() == ISD::BUILD_VECTOR); 2828 2829 bool Changed = false; 2830 SmallVector<SDOperand, 8> MaskVec; 2831 unsigned NumElems = Mask.getNumOperands(); 2832 for (unsigned i = 0; i != NumElems; ++i) { 2833 SDOperand Arg = Mask.getOperand(i); 2834 if (Arg.getOpcode() != ISD::UNDEF) { 2835 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2836 if (Val > NumElems) { 2837 Arg = DAG.getConstant(NumElems, Arg.getValueType()); 2838 Changed = true; 2839 } 2840 } 2841 MaskVec.push_back(Arg); 2842 } 2843 2844 if (Changed) 2845 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(), 2846 &MaskVec[0], MaskVec.size()); 2847 return Mask; 2848} 2849 2850/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd 2851/// operation of specified width. 2852static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) { 2853 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); 2854 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT); 2855 2856 SmallVector<SDOperand, 8> MaskVec; 2857 MaskVec.push_back(DAG.getConstant(NumElems, BaseVT)); 2858 for (unsigned i = 1; i != NumElems; ++i) 2859 MaskVec.push_back(DAG.getConstant(i, BaseVT)); 2860 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); 2861} 2862 2863/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation 2864/// of specified width. 2865static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) { 2866 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); 2867 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT); 2868 SmallVector<SDOperand, 8> MaskVec; 2869 for (unsigned i = 0, e = NumElems/2; i != e; ++i) { 2870 MaskVec.push_back(DAG.getConstant(i, BaseVT)); 2871 MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT)); 2872 } 2873 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); 2874} 2875 2876/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation 2877/// of specified width. 2878static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) { 2879 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); 2880 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT); 2881 unsigned Half = NumElems/2; 2882 SmallVector<SDOperand, 8> MaskVec; 2883 for (unsigned i = 0; i != Half; ++i) { 2884 MaskVec.push_back(DAG.getConstant(i + Half, BaseVT)); 2885 MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT)); 2886 } 2887 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); 2888} 2889 2890/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps 2891/// element #0 of a vector with the specified index, leaving the rest of the 2892/// elements in place. 2893static SDOperand getSwapEltZeroMask(unsigned NumElems, unsigned DestElt, 2894 SelectionDAG &DAG) { 2895 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); 2896 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT); 2897 SmallVector<SDOperand, 8> MaskVec; 2898 // Element #0 of the result gets the elt we are replacing. 2899 MaskVec.push_back(DAG.getConstant(DestElt, BaseVT)); 2900 for (unsigned i = 1; i != NumElems; ++i) 2901 MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT)); 2902 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); 2903} 2904 2905/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32. 2906/// 2907static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) { 2908 SDOperand V1 = Op.getOperand(0); 2909 SDOperand Mask = Op.getOperand(2); 2910 MVT::ValueType VT = Op.getValueType(); 2911 unsigned NumElems = Mask.getNumOperands(); 2912 Mask = getUnpacklMask(NumElems, DAG); 2913 while (NumElems != 4) { 2914 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask); 2915 NumElems >>= 1; 2916 } 2917 V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1); 2918 2919 Mask = getZeroVector(MVT::v4i32, DAG); 2920 SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1, 2921 DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask); 2922 return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle); 2923} 2924 2925/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified 2926/// vector of zero or undef vector. This produces a shuffle where the low 2927/// element of V2 is swizzled into the zero/undef vector, landing at element 2928/// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3). 2929static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, unsigned Idx, 2930 bool isZero, SelectionDAG &DAG) { 2931 MVT::ValueType VT = V2.getValueType(); 2932 SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT); 2933 unsigned NumElems = MVT::getVectorNumElements(V2.getValueType()); 2934 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); 2935 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT); 2936 SmallVector<SDOperand, 16> MaskVec; 2937 for (unsigned i = 0; i != NumElems; ++i) 2938 if (i == Idx) // If this is the insertion idx, put the low elt of V2 here. 2939 MaskVec.push_back(DAG.getConstant(NumElems, EVT)); 2940 else 2941 MaskVec.push_back(DAG.getConstant(i, EVT)); 2942 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 2943 &MaskVec[0], MaskVec.size()); 2944 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); 2945} 2946 2947/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. 2948/// 2949static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros, 2950 unsigned NumNonZero, unsigned NumZero, 2951 SelectionDAG &DAG, TargetLowering &TLI) { 2952 if (NumNonZero > 8) 2953 return SDOperand(); 2954 2955 SDOperand V(0, 0); 2956 bool First = true; 2957 for (unsigned i = 0; i < 16; ++i) { 2958 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; 2959 if (ThisIsNonZero && First) { 2960 if (NumZero) 2961 V = getZeroVector(MVT::v8i16, DAG); 2962 else 2963 V = DAG.getNode(ISD::UNDEF, MVT::v8i16); 2964 First = false; 2965 } 2966 2967 if ((i & 1) != 0) { 2968 SDOperand ThisElt(0, 0), LastElt(0, 0); 2969 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; 2970 if (LastIsNonZero) { 2971 LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1)); 2972 } 2973 if (ThisIsNonZero) { 2974 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i)); 2975 ThisElt = DAG.getNode(ISD::SHL, MVT::i16, 2976 ThisElt, DAG.getConstant(8, MVT::i8)); 2977 if (LastIsNonZero) 2978 ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt); 2979 } else 2980 ThisElt = LastElt; 2981 2982 if (ThisElt.Val) 2983 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt, 2984 DAG.getIntPtrConstant(i/2)); 2985 } 2986 } 2987 2988 return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V); 2989} 2990 2991/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16. 2992/// 2993static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros, 2994 unsigned NumNonZero, unsigned NumZero, 2995 SelectionDAG &DAG, TargetLowering &TLI) { 2996 if (NumNonZero > 4) 2997 return SDOperand(); 2998 2999 SDOperand V(0, 0); 3000 bool First = true; 3001 for (unsigned i = 0; i < 8; ++i) { 3002 bool isNonZero = (NonZeros & (1 << i)) != 0; 3003 if (isNonZero) { 3004 if (First) { 3005 if (NumZero) 3006 V = getZeroVector(MVT::v8i16, DAG); 3007 else 3008 V = DAG.getNode(ISD::UNDEF, MVT::v8i16); 3009 First = false; 3010 } 3011 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i), 3012 DAG.getIntPtrConstant(i)); 3013 } 3014 } 3015 3016 return V; 3017} 3018 3019SDOperand 3020X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) { 3021 // All zero's are handled with pxor, all one's are handled with pcmpeqd. 3022 if (ISD::isBuildVectorAllZeros(Op.Val) || ISD::isBuildVectorAllOnes(Op.Val)) { 3023 // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to 3024 // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are 3025 // eliminated on x86-32 hosts. 3026 if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32) 3027 return Op; 3028 3029 if (ISD::isBuildVectorAllOnes(Op.Val)) 3030 return getOnesVector(Op.getValueType(), DAG); 3031 return getZeroVector(Op.getValueType(), DAG); 3032 } 3033 3034 MVT::ValueType VT = Op.getValueType(); 3035 MVT::ValueType EVT = MVT::getVectorElementType(VT); 3036 unsigned EVTBits = MVT::getSizeInBits(EVT); 3037 3038 unsigned NumElems = Op.getNumOperands(); 3039 unsigned NumZero = 0; 3040 unsigned NumNonZero = 0; 3041 unsigned NonZeros = 0; 3042 bool IsAllConstants = true; 3043 SmallSet<SDOperand, 8> Values; 3044 for (unsigned i = 0; i < NumElems; ++i) { 3045 SDOperand Elt = Op.getOperand(i); 3046 if (Elt.getOpcode() == ISD::UNDEF) 3047 continue; 3048 Values.insert(Elt); 3049 if (Elt.getOpcode() != ISD::Constant && 3050 Elt.getOpcode() != ISD::ConstantFP) 3051 IsAllConstants = false; 3052 if (isZeroNode(Elt)) 3053 NumZero++; 3054 else { 3055 NonZeros |= (1 << i); 3056 NumNonZero++; 3057 } 3058 } 3059 3060 if (NumNonZero == 0) { 3061 // All undef vector. Return an UNDEF. All zero vectors were handled above. 3062 return DAG.getNode(ISD::UNDEF, VT); 3063 } 3064 3065 // Special case for single non-zero, non-undef, element. 3066 if (NumNonZero == 1 && NumElems <= 4) { 3067 unsigned Idx = CountTrailingZeros_32(NonZeros); 3068 SDOperand Item = Op.getOperand(Idx); 3069 3070 // If this is an insertion of an i64 value on x86-32, and if the top bits of 3071 // the value are obviously zero, truncate the value to i32 and do the 3072 // insertion that way. Only do this if the value is non-constant or if the 3073 // value is a constant being inserted into element 0. It is cheaper to do 3074 // a constant pool load than it is to do a movd + shuffle. 3075 if (EVT == MVT::i64 && !Subtarget->is64Bit() && 3076 (!IsAllConstants || Idx == 0)) { 3077 if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) { 3078 // Handle MMX and SSE both. 3079 MVT::ValueType VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32; 3080 MVT::ValueType VecElts = VT == MVT::v2i64 ? 4 : 2; 3081 3082 // Truncate the value (which may itself be a constant) to i32, and 3083 // convert it to a vector with movd (S2V+shuffle to zero extend). 3084 Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item); 3085 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item); 3086 Item = getShuffleVectorZeroOrUndef(Item, 0, true, DAG); 3087 3088 // Now we have our 32-bit value zero extended in the low element of 3089 // a vector. If Idx != 0, swizzle it into place. 3090 if (Idx != 0) { 3091 SDOperand Ops[] = { 3092 Item, DAG.getNode(ISD::UNDEF, Item.getValueType()), 3093 getSwapEltZeroMask(VecElts, Idx, DAG) 3094 }; 3095 Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3); 3096 } 3097 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item); 3098 } 3099 } 3100 3101 // If we have a constant or non-constant insertion into the low element of 3102 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into 3103 // the rest of the elements. This will be matched as movd/movq/movss/movsd 3104 // depending on what the source datatype is. Because we can only get here 3105 // when NumElems <= 4, this only needs to handle i32/f32/i64/f64. 3106 if (Idx == 0 && 3107 // Don't do this for i64 values on x86-32. 3108 (EVT != MVT::i64 || Subtarget->is64Bit())) { 3109 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item); 3110 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. 3111 return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, DAG); 3112 } 3113 3114 if (IsAllConstants) // Otherwise, it's better to do a constpool load. 3115 return SDOperand(); 3116 3117 // Otherwise, if this is a vector with i32 or f32 elements, and the element 3118 // is a non-constant being inserted into an element other than the low one, 3119 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka 3120 // movd/movss) to move this into the low element, then shuffle it into 3121 // place. 3122 if (EVTBits == 32) { 3123 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item); 3124 3125 // Turn it into a shuffle of zero and zero-extended scalar to vector. 3126 Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, DAG); 3127 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); 3128 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT); 3129 SmallVector<SDOperand, 8> MaskVec; 3130 for (unsigned i = 0; i < NumElems; i++) 3131 MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT)); 3132 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3133 &MaskVec[0], MaskVec.size()); 3134 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item, 3135 DAG.getNode(ISD::UNDEF, VT), Mask); 3136 } 3137 } 3138 3139 // Splat is obviously ok. Let legalizer expand it to a shuffle. 3140 if (Values.size() == 1) 3141 return SDOperand(); 3142 3143 // A vector full of immediates; various special cases are already 3144 // handled, so this is best done with a single constant-pool load. 3145 if (IsAllConstants) 3146 return SDOperand(); 3147 3148 // Let legalizer expand 2-wide build_vectors. 3149 if (EVTBits == 64) 3150 return SDOperand(); 3151 3152 // If element VT is < 32 bits, convert it to inserts into a zero vector. 3153 if (EVTBits == 8 && NumElems == 16) { 3154 SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG, 3155 *this); 3156 if (V.Val) return V; 3157 } 3158 3159 if (EVTBits == 16 && NumElems == 8) { 3160 SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG, 3161 *this); 3162 if (V.Val) return V; 3163 } 3164 3165 // If element VT is == 32 bits, turn it into a number of shuffles. 3166 SmallVector<SDOperand, 8> V; 3167 V.resize(NumElems); 3168 if (NumElems == 4 && NumZero > 0) { 3169 for (unsigned i = 0; i < 4; ++i) { 3170 bool isZero = !(NonZeros & (1 << i)); 3171 if (isZero) 3172 V[i] = getZeroVector(VT, DAG); 3173 else 3174 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); 3175 } 3176 3177 for (unsigned i = 0; i < 2; ++i) { 3178 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { 3179 default: break; 3180 case 0: 3181 V[i] = V[i*2]; // Must be a zero vector. 3182 break; 3183 case 1: 3184 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2], 3185 getMOVLMask(NumElems, DAG)); 3186 break; 3187 case 2: 3188 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], 3189 getMOVLMask(NumElems, DAG)); 3190 break; 3191 case 3: 3192 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], 3193 getUnpacklMask(NumElems, DAG)); 3194 break; 3195 } 3196 } 3197 3198 // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd) 3199 // clears the upper bits. 3200 // FIXME: we can do the same for v4f32 case when we know both parts of 3201 // the lower half come from scalar_to_vector (loadf32). We should do 3202 // that in post legalizer dag combiner with target specific hooks. 3203 if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0) 3204 return V[0]; 3205 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); 3206 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT); 3207 SmallVector<SDOperand, 8> MaskVec; 3208 bool Reverse = (NonZeros & 0x3) == 2; 3209 for (unsigned i = 0; i < 2; ++i) 3210 if (Reverse) 3211 MaskVec.push_back(DAG.getConstant(1-i, EVT)); 3212 else 3213 MaskVec.push_back(DAG.getConstant(i, EVT)); 3214 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2; 3215 for (unsigned i = 0; i < 2; ++i) 3216 if (Reverse) 3217 MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT)); 3218 else 3219 MaskVec.push_back(DAG.getConstant(i+NumElems, EVT)); 3220 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3221 &MaskVec[0], MaskVec.size()); 3222 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask); 3223 } 3224 3225 if (Values.size() > 2) { 3226 // Expand into a number of unpckl*. 3227 // e.g. for v4f32 3228 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0> 3229 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1> 3230 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0> 3231 SDOperand UnpckMask = getUnpacklMask(NumElems, DAG); 3232 for (unsigned i = 0; i < NumElems; ++i) 3233 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); 3234 NumElems >>= 1; 3235 while (NumElems != 0) { 3236 for (unsigned i = 0; i < NumElems; ++i) 3237 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems], 3238 UnpckMask); 3239 NumElems >>= 1; 3240 } 3241 return V[0]; 3242 } 3243 3244 return SDOperand(); 3245} 3246 3247static 3248SDOperand LowerVECTOR_SHUFFLEv8i16(SDOperand V1, SDOperand V2, 3249 SDOperand PermMask, SelectionDAG &DAG, 3250 TargetLowering &TLI) { 3251 SDOperand NewV; 3252 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(8); 3253 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT); 3254 MVT::ValueType PtrVT = TLI.getPointerTy(); 3255 SmallVector<SDOperand, 8> MaskElts(PermMask.Val->op_begin(), 3256 PermMask.Val->op_end()); 3257 3258 // First record which half of which vector the low elements come from. 3259 SmallVector<unsigned, 4> LowQuad(4); 3260 for (unsigned i = 0; i < 4; ++i) { 3261 SDOperand Elt = MaskElts[i]; 3262 if (Elt.getOpcode() == ISD::UNDEF) 3263 continue; 3264 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); 3265 int QuadIdx = EltIdx / 4; 3266 ++LowQuad[QuadIdx]; 3267 } 3268 int BestLowQuad = -1; 3269 unsigned MaxQuad = 1; 3270 for (unsigned i = 0; i < 4; ++i) { 3271 if (LowQuad[i] > MaxQuad) { 3272 BestLowQuad = i; 3273 MaxQuad = LowQuad[i]; 3274 } 3275 } 3276 3277 // Record which half of which vector the high elements come from. 3278 SmallVector<unsigned, 4> HighQuad(4); 3279 for (unsigned i = 4; i < 8; ++i) { 3280 SDOperand Elt = MaskElts[i]; 3281 if (Elt.getOpcode() == ISD::UNDEF) 3282 continue; 3283 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); 3284 int QuadIdx = EltIdx / 4; 3285 ++HighQuad[QuadIdx]; 3286 } 3287 int BestHighQuad = -1; 3288 MaxQuad = 1; 3289 for (unsigned i = 0; i < 4; ++i) { 3290 if (HighQuad[i] > MaxQuad) { 3291 BestHighQuad = i; 3292 MaxQuad = HighQuad[i]; 3293 } 3294 } 3295 3296 // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it. 3297 if (BestLowQuad != -1 || BestHighQuad != -1) { 3298 // First sort the 4 chunks in order using shufpd. 3299 SmallVector<SDOperand, 8> MaskVec; 3300 if (BestLowQuad != -1) 3301 MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32)); 3302 else 3303 MaskVec.push_back(DAG.getConstant(0, MVT::i32)); 3304 if (BestHighQuad != -1) 3305 MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32)); 3306 else 3307 MaskVec.push_back(DAG.getConstant(1, MVT::i32)); 3308 SDOperand Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2); 3309 NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64, 3310 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1), 3311 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask); 3312 NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV); 3313 3314 // Now sort high and low parts separately. 3315 BitVector InOrder(8); 3316 if (BestLowQuad != -1) { 3317 // Sort lower half in order using PSHUFLW. 3318 MaskVec.clear(); 3319 bool AnyOutOrder = false; 3320 for (unsigned i = 0; i != 4; ++i) { 3321 SDOperand Elt = MaskElts[i]; 3322 if (Elt.getOpcode() == ISD::UNDEF) { 3323 MaskVec.push_back(Elt); 3324 InOrder.set(i); 3325 } else { 3326 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); 3327 if (EltIdx != i) 3328 AnyOutOrder = true; 3329 MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT)); 3330 // If this element is in the right place after this shuffle, then 3331 // remember it. 3332 if ((int)(EltIdx / 4) == BestLowQuad) 3333 InOrder.set(i); 3334 } 3335 } 3336 if (AnyOutOrder) { 3337 for (unsigned i = 4; i != 8; ++i) 3338 MaskVec.push_back(DAG.getConstant(i, MaskEVT)); 3339 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8); 3340 NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask); 3341 } 3342 } 3343 3344 if (BestHighQuad != -1) { 3345 // Sort high half in order using PSHUFHW if possible. 3346 MaskVec.clear(); 3347 for (unsigned i = 0; i != 4; ++i) 3348 MaskVec.push_back(DAG.getConstant(i, MaskEVT)); 3349 bool AnyOutOrder = false; 3350 for (unsigned i = 4; i != 8; ++i) { 3351 SDOperand Elt = MaskElts[i]; 3352 if (Elt.getOpcode() == ISD::UNDEF) { 3353 MaskVec.push_back(Elt); 3354 InOrder.set(i); 3355 } else { 3356 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); 3357 if (EltIdx != i) 3358 AnyOutOrder = true; 3359 MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT)); 3360 // If this element is in the right place after this shuffle, then 3361 // remember it. 3362 if ((int)(EltIdx / 4) == BestHighQuad) 3363 InOrder.set(i); 3364 } 3365 } 3366 if (AnyOutOrder) { 3367 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8); 3368 NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask); 3369 } 3370 } 3371 3372 // The other elements are put in the right place using pextrw and pinsrw. 3373 for (unsigned i = 0; i != 8; ++i) { 3374 if (InOrder[i]) 3375 continue; 3376 SDOperand Elt = MaskElts[i]; 3377 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); 3378 if (EltIdx == i) 3379 continue; 3380 SDOperand ExtOp = (EltIdx < 8) 3381 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1, 3382 DAG.getConstant(EltIdx, PtrVT)) 3383 : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2, 3384 DAG.getConstant(EltIdx - 8, PtrVT)); 3385 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp, 3386 DAG.getConstant(i, PtrVT)); 3387 } 3388 return NewV; 3389 } 3390 3391 // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use 3392 ///as few as possible. 3393 // First, let's find out how many elements are already in the right order. 3394 unsigned V1InOrder = 0; 3395 unsigned V1FromV1 = 0; 3396 unsigned V2InOrder = 0; 3397 unsigned V2FromV2 = 0; 3398 SmallVector<SDOperand, 8> V1Elts; 3399 SmallVector<SDOperand, 8> V2Elts; 3400 for (unsigned i = 0; i < 8; ++i) { 3401 SDOperand Elt = MaskElts[i]; 3402 if (Elt.getOpcode() == ISD::UNDEF) { 3403 V1Elts.push_back(Elt); 3404 V2Elts.push_back(Elt); 3405 ++V1InOrder; 3406 ++V2InOrder; 3407 continue; 3408 } 3409 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); 3410 if (EltIdx == i) { 3411 V1Elts.push_back(Elt); 3412 V2Elts.push_back(DAG.getConstant(i+8, MaskEVT)); 3413 ++V1InOrder; 3414 } else if (EltIdx == i+8) { 3415 V1Elts.push_back(Elt); 3416 V2Elts.push_back(DAG.getConstant(i, MaskEVT)); 3417 ++V2InOrder; 3418 } else if (EltIdx < 8) { 3419 V1Elts.push_back(Elt); 3420 ++V1FromV1; 3421 } else { 3422 V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT)); 3423 ++V2FromV2; 3424 } 3425 } 3426 3427 if (V2InOrder > V1InOrder) { 3428 PermMask = CommuteVectorShuffleMask(PermMask, DAG); 3429 std::swap(V1, V2); 3430 std::swap(V1Elts, V2Elts); 3431 std::swap(V1FromV1, V2FromV2); 3432 } 3433 3434 if ((V1FromV1 + V1InOrder) != 8) { 3435 // Some elements are from V2. 3436 if (V1FromV1) { 3437 // If there are elements that are from V1 but out of place, 3438 // then first sort them in place 3439 SmallVector<SDOperand, 8> MaskVec; 3440 for (unsigned i = 0; i < 8; ++i) { 3441 SDOperand Elt = V1Elts[i]; 3442 if (Elt.getOpcode() == ISD::UNDEF) { 3443 MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); 3444 continue; 3445 } 3446 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); 3447 if (EltIdx >= 8) 3448 MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); 3449 else 3450 MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT)); 3451 } 3452 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8); 3453 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask); 3454 } 3455 3456 NewV = V1; 3457 for (unsigned i = 0; i < 8; ++i) { 3458 SDOperand Elt = V1Elts[i]; 3459 if (Elt.getOpcode() == ISD::UNDEF) 3460 continue; 3461 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); 3462 if (EltIdx < 8) 3463 continue; 3464 SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2, 3465 DAG.getConstant(EltIdx - 8, PtrVT)); 3466 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp, 3467 DAG.getConstant(i, PtrVT)); 3468 } 3469 return NewV; 3470 } else { 3471 // All elements are from V1. 3472 NewV = V1; 3473 for (unsigned i = 0; i < 8; ++i) { 3474 SDOperand Elt = V1Elts[i]; 3475 if (Elt.getOpcode() == ISD::UNDEF) 3476 continue; 3477 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); 3478 SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1, 3479 DAG.getConstant(EltIdx, PtrVT)); 3480 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp, 3481 DAG.getConstant(i, PtrVT)); 3482 } 3483 return NewV; 3484 } 3485} 3486 3487/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide 3488/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be 3489/// done when every pair / quad of shuffle mask elements point to elements in 3490/// the right sequence. e.g. 3491/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15> 3492static 3493SDOperand RewriteAsNarrowerShuffle(SDOperand V1, SDOperand V2, 3494 MVT::ValueType VT, 3495 SDOperand PermMask, SelectionDAG &DAG, 3496 TargetLowering &TLI) { 3497 unsigned NumElems = PermMask.getNumOperands(); 3498 unsigned NewWidth = (NumElems == 4) ? 2 : 4; 3499 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NewWidth); 3500 MVT::ValueType NewVT = MaskVT; 3501 switch (VT) { 3502 case MVT::v4f32: NewVT = MVT::v2f64; break; 3503 case MVT::v4i32: NewVT = MVT::v2i64; break; 3504 case MVT::v8i16: NewVT = MVT::v4i32; break; 3505 case MVT::v16i8: NewVT = MVT::v4i32; break; 3506 default: assert(false && "Unexpected!"); 3507 } 3508 3509 if (NewWidth == 2) { 3510 if (MVT::isInteger(VT)) 3511 NewVT = MVT::v2i64; 3512 else 3513 NewVT = MVT::v2f64; 3514 } 3515 unsigned Scale = NumElems / NewWidth; 3516 SmallVector<SDOperand, 8> MaskVec; 3517 for (unsigned i = 0; i < NumElems; i += Scale) { 3518 unsigned StartIdx = ~0U; 3519 for (unsigned j = 0; j < Scale; ++j) { 3520 SDOperand Elt = PermMask.getOperand(i+j); 3521 if (Elt.getOpcode() == ISD::UNDEF) 3522 continue; 3523 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); 3524 if (StartIdx == ~0U) 3525 StartIdx = EltIdx - (EltIdx % Scale); 3526 if (EltIdx != StartIdx + j) 3527 return SDOperand(); 3528 } 3529 if (StartIdx == ~0U) 3530 MaskVec.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); 3531 else 3532 MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MVT::i32)); 3533 } 3534 3535 V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1); 3536 V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2); 3537 return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2, 3538 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3539 &MaskVec[0], MaskVec.size())); 3540} 3541 3542SDOperand 3543X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) { 3544 SDOperand V1 = Op.getOperand(0); 3545 SDOperand V2 = Op.getOperand(1); 3546 SDOperand PermMask = Op.getOperand(2); 3547 MVT::ValueType VT = Op.getValueType(); 3548 unsigned NumElems = PermMask.getNumOperands(); 3549 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; 3550 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; 3551 bool V1IsSplat = false; 3552 bool V2IsSplat = false; 3553 3554 if (isUndefShuffle(Op.Val)) 3555 return DAG.getNode(ISD::UNDEF, VT); 3556 3557 if (isZeroShuffle(Op.Val)) 3558 return getZeroVector(VT, DAG); 3559 3560 if (isIdentityMask(PermMask.Val)) 3561 return V1; 3562 else if (isIdentityMask(PermMask.Val, true)) 3563 return V2; 3564 3565 if (isSplatMask(PermMask.Val)) { 3566 if (NumElems <= 4) return Op; 3567 // Promote it to a v4i32 splat. 3568 return PromoteSplat(Op, DAG); 3569 } 3570 3571 // If the shuffle can be profitably rewritten as a narrower shuffle, then 3572 // do it! 3573 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 3574 SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this); 3575 if (NewOp.Val) 3576 return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG)); 3577 } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) { 3578 // FIXME: Figure out a cleaner way to do this. 3579 // Try to make use of movq to zero out the top part. 3580 if (ISD::isBuildVectorAllZeros(V2.Val)) { 3581 SDOperand NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this); 3582 if (NewOp.Val) { 3583 SDOperand NewV1 = NewOp.getOperand(0); 3584 SDOperand NewV2 = NewOp.getOperand(1); 3585 SDOperand NewMask = NewOp.getOperand(2); 3586 if (isCommutedMOVL(NewMask.Val, true, false)) { 3587 NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG); 3588 NewOp = DAG.getNode(ISD::VECTOR_SHUFFLE, NewOp.getValueType(), 3589 NewV1, NewV2, getMOVLMask(2, DAG)); 3590 return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG)); 3591 } 3592 } 3593 } else if (ISD::isBuildVectorAllZeros(V1.Val)) { 3594 SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this); 3595 if (NewOp.Val && X86::isMOVLMask(NewOp.getOperand(2).Val)) 3596 return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG)); 3597 } 3598 } 3599 3600 if (X86::isMOVLMask(PermMask.Val)) 3601 return (V1IsUndef) ? V2 : Op; 3602 3603 if (X86::isMOVSHDUPMask(PermMask.Val) || 3604 X86::isMOVSLDUPMask(PermMask.Val) || 3605 X86::isMOVHLPSMask(PermMask.Val) || 3606 X86::isMOVHPMask(PermMask.Val) || 3607 X86::isMOVLPMask(PermMask.Val)) 3608 return Op; 3609 3610 if (ShouldXformToMOVHLPS(PermMask.Val) || 3611 ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val)) 3612 return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); 3613 3614 bool Commuted = false; 3615 // FIXME: This should also accept a bitcast of a splat? Be careful, not 3616 // 1,1,1,1 -> v8i16 though. 3617 V1IsSplat = isSplatVector(V1.Val); 3618 V2IsSplat = isSplatVector(V2.Val); 3619 3620 // Canonicalize the splat or undef, if present, to be on the RHS. 3621 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) { 3622 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); 3623 std::swap(V1IsSplat, V2IsSplat); 3624 std::swap(V1IsUndef, V2IsUndef); 3625 Commuted = true; 3626 } 3627 3628 // FIXME: Figure out a cleaner way to do this. 3629 if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) { 3630 if (V2IsUndef) return V1; 3631 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); 3632 if (V2IsSplat) { 3633 // V2 is a splat, so the mask may be malformed. That is, it may point 3634 // to any V2 element. The instruction selectior won't like this. Get 3635 // a corrected mask and commute to form a proper MOVS{S|D}. 3636 SDOperand NewMask = getMOVLMask(NumElems, DAG); 3637 if (NewMask.Val != PermMask.Val) 3638 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); 3639 } 3640 return Op; 3641 } 3642 3643 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) || 3644 X86::isUNPCKH_v_undef_Mask(PermMask.Val) || 3645 X86::isUNPCKLMask(PermMask.Val) || 3646 X86::isUNPCKHMask(PermMask.Val)) 3647 return Op; 3648 3649 if (V2IsSplat) { 3650 // Normalize mask so all entries that point to V2 points to its first 3651 // element then try to match unpck{h|l} again. If match, return a 3652 // new vector_shuffle with the corrected mask. 3653 SDOperand NewMask = NormalizeMask(PermMask, DAG); 3654 if (NewMask.Val != PermMask.Val) { 3655 if (X86::isUNPCKLMask(PermMask.Val, true)) { 3656 SDOperand NewMask = getUnpacklMask(NumElems, DAG); 3657 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); 3658 } else if (X86::isUNPCKHMask(PermMask.Val, true)) { 3659 SDOperand NewMask = getUnpackhMask(NumElems, DAG); 3660 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); 3661 } 3662 } 3663 } 3664 3665 // Normalize the node to match x86 shuffle ops if needed 3666 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val)) 3667 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); 3668 3669 if (Commuted) { 3670 // Commute is back and try unpck* again. 3671 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); 3672 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) || 3673 X86::isUNPCKH_v_undef_Mask(PermMask.Val) || 3674 X86::isUNPCKLMask(PermMask.Val) || 3675 X86::isUNPCKHMask(PermMask.Val)) 3676 return Op; 3677 } 3678 3679 // If VT is integer, try PSHUF* first, then SHUFP*. 3680 if (MVT::isInteger(VT)) { 3681 // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically 3682 // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented. 3683 if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) && 3684 X86::isPSHUFDMask(PermMask.Val)) || 3685 X86::isPSHUFHWMask(PermMask.Val) || 3686 X86::isPSHUFLWMask(PermMask.Val)) { 3687 if (V2.getOpcode() != ISD::UNDEF) 3688 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, 3689 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask); 3690 return Op; 3691 } 3692 3693 if (X86::isSHUFPMask(PermMask.Val) && 3694 MVT::getSizeInBits(VT) != 64) // Don't do this for MMX. 3695 return Op; 3696 } else { 3697 // Floating point cases in the other order. 3698 if (X86::isSHUFPMask(PermMask.Val)) 3699 return Op; 3700 if (X86::isPSHUFDMask(PermMask.Val) || 3701 X86::isPSHUFHWMask(PermMask.Val) || 3702 X86::isPSHUFLWMask(PermMask.Val)) { 3703 if (V2.getOpcode() != ISD::UNDEF) 3704 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, 3705 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask); 3706 return Op; 3707 } 3708 } 3709 3710 // Handle v8i16 specifically since SSE can do byte extraction and insertion. 3711 if (VT == MVT::v8i16) { 3712 SDOperand NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this); 3713 if (NewOp.Val) 3714 return NewOp; 3715 } 3716 3717 // Handle all 4 wide cases with a number of shuffles. 3718 if (NumElems == 4 && MVT::getSizeInBits(VT) != 64) { 3719 // Don't do this for MMX. 3720 MVT::ValueType MaskVT = PermMask.getValueType(); 3721 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT); 3722 SmallVector<std::pair<int, int>, 8> Locs; 3723 Locs.reserve(NumElems); 3724 SmallVector<SDOperand, 8> Mask1(NumElems, 3725 DAG.getNode(ISD::UNDEF, MaskEVT)); 3726 SmallVector<SDOperand, 8> Mask2(NumElems, 3727 DAG.getNode(ISD::UNDEF, MaskEVT)); 3728 unsigned NumHi = 0; 3729 unsigned NumLo = 0; 3730 // If no more than two elements come from either vector. This can be 3731 // implemented with two shuffles. First shuffle gather the elements. 3732 // The second shuffle, which takes the first shuffle as both of its 3733 // vector operands, put the elements into the right order. 3734 for (unsigned i = 0; i != NumElems; ++i) { 3735 SDOperand Elt = PermMask.getOperand(i); 3736 if (Elt.getOpcode() == ISD::UNDEF) { 3737 Locs[i] = std::make_pair(-1, -1); 3738 } else { 3739 unsigned Val = cast<ConstantSDNode>(Elt)->getValue(); 3740 if (Val < NumElems) { 3741 Locs[i] = std::make_pair(0, NumLo); 3742 Mask1[NumLo] = Elt; 3743 NumLo++; 3744 } else { 3745 Locs[i] = std::make_pair(1, NumHi); 3746 if (2+NumHi < NumElems) 3747 Mask1[2+NumHi] = Elt; 3748 NumHi++; 3749 } 3750 } 3751 } 3752 if (NumLo <= 2 && NumHi <= 2) { 3753 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, 3754 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3755 &Mask1[0], Mask1.size())); 3756 for (unsigned i = 0; i != NumElems; ++i) { 3757 if (Locs[i].first == -1) 3758 continue; 3759 else { 3760 unsigned Idx = (i < NumElems/2) ? 0 : NumElems; 3761 Idx += Locs[i].first * (NumElems/2) + Locs[i].second; 3762 Mask2[i] = DAG.getConstant(Idx, MaskEVT); 3763 } 3764 } 3765 3766 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, 3767 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3768 &Mask2[0], Mask2.size())); 3769 } 3770 3771 // Break it into (shuffle shuffle_hi, shuffle_lo). 3772 Locs.clear(); 3773 SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); 3774 SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); 3775 SmallVector<SDOperand,8> *MaskPtr = &LoMask; 3776 unsigned MaskIdx = 0; 3777 unsigned LoIdx = 0; 3778 unsigned HiIdx = NumElems/2; 3779 for (unsigned i = 0; i != NumElems; ++i) { 3780 if (i == NumElems/2) { 3781 MaskPtr = &HiMask; 3782 MaskIdx = 1; 3783 LoIdx = 0; 3784 HiIdx = NumElems/2; 3785 } 3786 SDOperand Elt = PermMask.getOperand(i); 3787 if (Elt.getOpcode() == ISD::UNDEF) { 3788 Locs[i] = std::make_pair(-1, -1); 3789 } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) { 3790 Locs[i] = std::make_pair(MaskIdx, LoIdx); 3791 (*MaskPtr)[LoIdx] = Elt; 3792 LoIdx++; 3793 } else { 3794 Locs[i] = std::make_pair(MaskIdx, HiIdx); 3795 (*MaskPtr)[HiIdx] = Elt; 3796 HiIdx++; 3797 } 3798 } 3799 3800 SDOperand LoShuffle = 3801 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, 3802 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3803 &LoMask[0], LoMask.size())); 3804 SDOperand HiShuffle = 3805 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, 3806 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3807 &HiMask[0], HiMask.size())); 3808 SmallVector<SDOperand, 8> MaskOps; 3809 for (unsigned i = 0; i != NumElems; ++i) { 3810 if (Locs[i].first == -1) { 3811 MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); 3812 } else { 3813 unsigned Idx = Locs[i].first * NumElems + Locs[i].second; 3814 MaskOps.push_back(DAG.getConstant(Idx, MaskEVT)); 3815 } 3816 } 3817 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle, 3818 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3819 &MaskOps[0], MaskOps.size())); 3820 } 3821 3822 return SDOperand(); 3823} 3824 3825SDOperand 3826X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDOperand Op, 3827 SelectionDAG &DAG) { 3828 MVT::ValueType VT = Op.getValueType(); 3829 if (MVT::getSizeInBits(VT) == 8) { 3830 SDOperand Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32, 3831 Op.getOperand(0), Op.getOperand(1)); 3832 SDOperand Assert = DAG.getNode(ISD::AssertZext, MVT::i32, Extract, 3833 DAG.getValueType(VT)); 3834 return DAG.getNode(ISD::TRUNCATE, VT, Assert); 3835 } else if (MVT::getSizeInBits(VT) == 16) { 3836 SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32, 3837 Op.getOperand(0), Op.getOperand(1)); 3838 SDOperand Assert = DAG.getNode(ISD::AssertZext, MVT::i32, Extract, 3839 DAG.getValueType(VT)); 3840 return DAG.getNode(ISD::TRUNCATE, VT, Assert); 3841 } 3842 return SDOperand(); 3843} 3844 3845 3846SDOperand 3847X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) { 3848 if (!isa<ConstantSDNode>(Op.getOperand(1))) 3849 return SDOperand(); 3850 3851 if (Subtarget->hasSSE41()) 3852 return LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG); 3853 3854 MVT::ValueType VT = Op.getValueType(); 3855 // TODO: handle v16i8. 3856 if (MVT::getSizeInBits(VT) == 16) { 3857 SDOperand Vec = Op.getOperand(0); 3858 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); 3859 if (Idx == 0) 3860 return DAG.getNode(ISD::TRUNCATE, MVT::i16, 3861 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, 3862 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec), 3863 Op.getOperand(1))); 3864 // Transform it so it match pextrw which produces a 32-bit result. 3865 MVT::ValueType EVT = (MVT::ValueType)(VT+1); 3866 SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT, 3867 Op.getOperand(0), Op.getOperand(1)); 3868 SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract, 3869 DAG.getValueType(VT)); 3870 return DAG.getNode(ISD::TRUNCATE, VT, Assert); 3871 } else if (MVT::getSizeInBits(VT) == 32) { 3872 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); 3873 if (Idx == 0) 3874 return Op; 3875 // SHUFPS the element to the lowest double word, then movss. 3876 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); 3877 SmallVector<SDOperand, 8> IdxVec; 3878 IdxVec. 3879 push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT))); 3880 IdxVec. 3881 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT))); 3882 IdxVec. 3883 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT))); 3884 IdxVec. 3885 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT))); 3886 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3887 &IdxVec[0], IdxVec.size()); 3888 SDOperand Vec = Op.getOperand(0); 3889 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), 3890 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask); 3891 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, 3892 DAG.getIntPtrConstant(0)); 3893 } else if (MVT::getSizeInBits(VT) == 64) { 3894 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b 3895 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught 3896 // to match extract_elt for f64. 3897 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); 3898 if (Idx == 0) 3899 return Op; 3900 3901 // UNPCKHPD the element to the lowest double word, then movsd. 3902 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored 3903 // to a f64mem, the whole operation is folded into a single MOVHPDmr. 3904 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); 3905 SmallVector<SDOperand, 8> IdxVec; 3906 IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT))); 3907 IdxVec. 3908 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT))); 3909 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3910 &IdxVec[0], IdxVec.size()); 3911 SDOperand Vec = Op.getOperand(0); 3912 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), 3913 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask); 3914 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, 3915 DAG.getIntPtrConstant(0)); 3916 } 3917 3918 return SDOperand(); 3919} 3920 3921SDOperand 3922X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDOperand Op, SelectionDAG &DAG){ 3923 MVT::ValueType VT = Op.getValueType(); 3924 MVT::ValueType EVT = MVT::getVectorElementType(VT); 3925 3926 SDOperand N0 = Op.getOperand(0); 3927 SDOperand N1 = Op.getOperand(1); 3928 SDOperand N2 = Op.getOperand(2); 3929 3930 if ((MVT::getSizeInBits(EVT) == 8) || (MVT::getSizeInBits(EVT) == 16)) { 3931 unsigned Opc = (MVT::getSizeInBits(EVT) == 8) ? X86ISD::PINSRB 3932 : X86ISD::PINSRW; 3933 // Transform it so it match pinsr{b,w} which expects a GR32 as its second 3934 // argument. 3935 if (N1.getValueType() != MVT::i32) 3936 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1); 3937 if (N2.getValueType() != MVT::i32) 3938 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue()); 3939 return DAG.getNode(Opc, VT, N0, N1, N2); 3940 } else if (EVT == MVT::f32) { 3941 // Bits [7:6] of the constant are the source select. This will always be 3942 // zero here. The DAG Combiner may combine an extract_elt index into these 3943 // bits. For example (insert (extract, 3), 2) could be matched by putting 3944 // the '3' into bits [7:6] of X86ISD::INSERTPS. 3945 // Bits [5:4] of the constant are the destination select. This is the 3946 // value of the incoming immediate. 3947 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may 3948 // combine either bitwise AND or insert of float 0.0 to set these bits. 3949 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue() << 4); 3950 return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2); 3951 } 3952 return SDOperand(); 3953} 3954 3955SDOperand 3956X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) { 3957 MVT::ValueType VT = Op.getValueType(); 3958 MVT::ValueType EVT = MVT::getVectorElementType(VT); 3959 3960 if (Subtarget->hasSSE41()) 3961 return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG); 3962 3963 if (EVT == MVT::i8) 3964 return SDOperand(); 3965 3966 SDOperand N0 = Op.getOperand(0); 3967 SDOperand N1 = Op.getOperand(1); 3968 SDOperand N2 = Op.getOperand(2); 3969 3970 if (MVT::getSizeInBits(EVT) == 16) { 3971 // Transform it so it match pinsrw which expects a 16-bit value in a GR32 3972 // as its second argument. 3973 if (N1.getValueType() != MVT::i32) 3974 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1); 3975 if (N2.getValueType() != MVT::i32) 3976 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue()); 3977 return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2); 3978 } 3979 return SDOperand(); 3980} 3981 3982SDOperand 3983X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) { 3984 SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0)); 3985 MVT::ValueType VT = MVT::v2i32; 3986 switch (Op.getValueType()) { 3987 default: break; 3988 case MVT::v16i8: 3989 case MVT::v8i16: 3990 VT = MVT::v4i32; 3991 break; 3992 } 3993 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), 3994 DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt)); 3995} 3996 3997// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as 3998// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is 3999// one of the above mentioned nodes. It has to be wrapped because otherwise 4000// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only 4001// be used to form addressing mode. These wrapped nodes will be selected 4002// into MOV32ri. 4003SDOperand 4004X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) { 4005 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 4006 SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(), 4007 getPointerTy(), 4008 CP->getAlignment()); 4009 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); 4010 // With PIC, the address is actually $g + Offset. 4011 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && 4012 !Subtarget->isPICStyleRIPRel()) { 4013 Result = DAG.getNode(ISD::ADD, getPointerTy(), 4014 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), 4015 Result); 4016 } 4017 4018 return Result; 4019} 4020 4021SDOperand 4022X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) { 4023 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 4024 SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy()); 4025 // If it's a debug information descriptor, don't mess with it. 4026 if (DAG.isVerifiedDebugInfoDesc(Op)) 4027 return Result; 4028 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); 4029 // With PIC, the address is actually $g + Offset. 4030 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && 4031 !Subtarget->isPICStyleRIPRel()) { 4032 Result = DAG.getNode(ISD::ADD, getPointerTy(), 4033 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), 4034 Result); 4035 } 4036 4037 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to 4038 // load the value at address GV, not the value of GV itself. This means that 4039 // the GlobalAddress must be in the base or index register of the address, not 4040 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call 4041 // The same applies for external symbols during PIC codegen 4042 if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false)) 4043 Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, 4044 PseudoSourceValue::getGOT(), 0); 4045 4046 return Result; 4047} 4048 4049// Lower ISD::GlobalTLSAddress using the "general dynamic" model 4050static SDOperand 4051LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, 4052 const MVT::ValueType PtrVT) { 4053 SDOperand InFlag; 4054 SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX, 4055 DAG.getNode(X86ISD::GlobalBaseReg, 4056 PtrVT), InFlag); 4057 InFlag = Chain.getValue(1); 4058 4059 // emit leal symbol@TLSGD(,%ebx,1), %eax 4060 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag); 4061 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), 4062 GA->getValueType(0), 4063 GA->getOffset()); 4064 SDOperand Ops[] = { Chain, TGA, InFlag }; 4065 SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3); 4066 InFlag = Result.getValue(2); 4067 Chain = Result.getValue(1); 4068 4069 // call ___tls_get_addr. This function receives its argument in 4070 // the register EAX. 4071 Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag); 4072 InFlag = Chain.getValue(1); 4073 4074 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); 4075 SDOperand Ops1[] = { Chain, 4076 DAG.getTargetExternalSymbol("___tls_get_addr", 4077 PtrVT), 4078 DAG.getRegister(X86::EAX, PtrVT), 4079 DAG.getRegister(X86::EBX, PtrVT), 4080 InFlag }; 4081 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5); 4082 InFlag = Chain.getValue(1); 4083 4084 return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag); 4085} 4086 4087// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or 4088// "local exec" model. 4089static SDOperand 4090LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, 4091 const MVT::ValueType PtrVT) { 4092 // Get the Thread Pointer 4093 SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT); 4094 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial 4095 // exec) 4096 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), 4097 GA->getValueType(0), 4098 GA->getOffset()); 4099 SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA); 4100 4101 if (GA->getGlobal()->isDeclaration()) // initial exec TLS model 4102 Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, 4103 PseudoSourceValue::getGOT(), 0); 4104 4105 // The address of the thread local variable is the add of the thread 4106 // pointer with the offset of the variable. 4107 return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset); 4108} 4109 4110SDOperand 4111X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) { 4112 // TODO: implement the "local dynamic" model 4113 // TODO: implement the "initial exec"model for pic executables 4114 assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() && 4115 "TLS not implemented for non-ELF and 64-bit targets"); 4116 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 4117 // If the relocation model is PIC, use the "General Dynamic" TLS Model, 4118 // otherwise use the "Local Exec"TLS Model 4119 if (getTargetMachine().getRelocationModel() == Reloc::PIC_) 4120 return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy()); 4121 else 4122 return LowerToTLSExecModel(GA, DAG, getPointerTy()); 4123} 4124 4125SDOperand 4126X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) { 4127 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 4128 SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy()); 4129 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); 4130 // With PIC, the address is actually $g + Offset. 4131 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && 4132 !Subtarget->isPICStyleRIPRel()) { 4133 Result = DAG.getNode(ISD::ADD, getPointerTy(), 4134 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), 4135 Result); 4136 } 4137 4138 return Result; 4139} 4140 4141SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) { 4142 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 4143 SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy()); 4144 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); 4145 // With PIC, the address is actually $g + Offset. 4146 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && 4147 !Subtarget->isPICStyleRIPRel()) { 4148 Result = DAG.getNode(ISD::ADD, getPointerTy(), 4149 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), 4150 Result); 4151 } 4152 4153 return Result; 4154} 4155 4156/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and 4157/// take a 2 x i32 value to shift plus a shift amount. 4158SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) { 4159 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 4160 MVT::ValueType VT = Op.getValueType(); 4161 unsigned VTBits = MVT::getSizeInBits(VT); 4162 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; 4163 SDOperand ShOpLo = Op.getOperand(0); 4164 SDOperand ShOpHi = Op.getOperand(1); 4165 SDOperand ShAmt = Op.getOperand(2); 4166 SDOperand Tmp1 = isSRA ? 4167 DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) : 4168 DAG.getConstant(0, VT); 4169 4170 SDOperand Tmp2, Tmp3; 4171 if (Op.getOpcode() == ISD::SHL_PARTS) { 4172 Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt); 4173 Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt); 4174 } else { 4175 Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt); 4176 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt); 4177 } 4178 4179 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag); 4180 SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt, 4181 DAG.getConstant(VTBits, MVT::i8)); 4182 SDOperand Cond = DAG.getNode(X86ISD::CMP, VT, 4183 AndNode, DAG.getConstant(0, MVT::i8)); 4184 4185 SDOperand Hi, Lo; 4186 SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8); 4187 VTs = DAG.getNodeValueTypes(VT, MVT::Flag); 4188 SmallVector<SDOperand, 4> Ops; 4189 if (Op.getOpcode() == ISD::SHL_PARTS) { 4190 Ops.push_back(Tmp2); 4191 Ops.push_back(Tmp3); 4192 Ops.push_back(CC); 4193 Ops.push_back(Cond); 4194 Hi = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size()); 4195 4196 Ops.clear(); 4197 Ops.push_back(Tmp3); 4198 Ops.push_back(Tmp1); 4199 Ops.push_back(CC); 4200 Ops.push_back(Cond); 4201 Lo = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size()); 4202 } else { 4203 Ops.push_back(Tmp2); 4204 Ops.push_back(Tmp3); 4205 Ops.push_back(CC); 4206 Ops.push_back(Cond); 4207 Lo = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size()); 4208 4209 Ops.clear(); 4210 Ops.push_back(Tmp3); 4211 Ops.push_back(Tmp1); 4212 Ops.push_back(CC); 4213 Ops.push_back(Cond); 4214 Hi = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size()); 4215 } 4216 4217 VTs = DAG.getNodeValueTypes(VT, VT); 4218 Ops.clear(); 4219 Ops.push_back(Lo); 4220 Ops.push_back(Hi); 4221 return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size()); 4222} 4223 4224SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) { 4225 MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); 4226 assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 && 4227 "Unknown SINT_TO_FP to lower!"); 4228 4229 // These are really Legal; caller falls through into that case. 4230 if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType())) 4231 return SDOperand(); 4232 if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 && 4233 Subtarget->is64Bit()) 4234 return SDOperand(); 4235 4236 unsigned Size = MVT::getSizeInBits(SrcVT)/8; 4237 MachineFunction &MF = DAG.getMachineFunction(); 4238 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); 4239 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 4240 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0), 4241 StackSlot, 4242 PseudoSourceValue::getFixedStack(), 4243 SSFI); 4244 4245 // Build the FILD 4246 SDVTList Tys; 4247 bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); 4248 if (useSSE) 4249 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag); 4250 else 4251 Tys = DAG.getVTList(Op.getValueType(), MVT::Other); 4252 SmallVector<SDOperand, 8> Ops; 4253 Ops.push_back(Chain); 4254 Ops.push_back(StackSlot); 4255 Ops.push_back(DAG.getValueType(SrcVT)); 4256 SDOperand Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, 4257 Tys, &Ops[0], Ops.size()); 4258 4259 if (useSSE) { 4260 Chain = Result.getValue(1); 4261 SDOperand InFlag = Result.getValue(2); 4262 4263 // FIXME: Currently the FST is flagged to the FILD_FLAG. This 4264 // shouldn't be necessary except that RFP cannot be live across 4265 // multiple blocks. When stackifier is fixed, they can be uncoupled. 4266 MachineFunction &MF = DAG.getMachineFunction(); 4267 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); 4268 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 4269 Tys = DAG.getVTList(MVT::Other); 4270 SmallVector<SDOperand, 8> Ops; 4271 Ops.push_back(Chain); 4272 Ops.push_back(Result); 4273 Ops.push_back(StackSlot); 4274 Ops.push_back(DAG.getValueType(Op.getValueType())); 4275 Ops.push_back(InFlag); 4276 Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size()); 4277 Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, 4278 PseudoSourceValue::getFixedStack(), SSFI); 4279 } 4280 4281 return Result; 4282} 4283 4284std::pair<SDOperand,SDOperand> X86TargetLowering:: 4285FP_TO_SINTHelper(SDOperand Op, SelectionDAG &DAG) { 4286 assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 && 4287 "Unknown FP_TO_SINT to lower!"); 4288 4289 // These are really Legal. 4290 if (Op.getValueType() == MVT::i32 && 4291 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) 4292 return std::make_pair(SDOperand(), SDOperand()); 4293 if (Subtarget->is64Bit() && 4294 Op.getValueType() == MVT::i64 && 4295 Op.getOperand(0).getValueType() != MVT::f80) 4296 return std::make_pair(SDOperand(), SDOperand()); 4297 4298 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary 4299 // stack slot. 4300 MachineFunction &MF = DAG.getMachineFunction(); 4301 unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8; 4302 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); 4303 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 4304 unsigned Opc; 4305 switch (Op.getValueType()) { 4306 default: assert(0 && "Invalid FP_TO_SINT to lower!"); 4307 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; 4308 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; 4309 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; 4310 } 4311 4312 SDOperand Chain = DAG.getEntryNode(); 4313 SDOperand Value = Op.getOperand(0); 4314 if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) { 4315 assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!"); 4316 Chain = DAG.getStore(Chain, Value, StackSlot, 4317 PseudoSourceValue::getFixedStack(), SSFI); 4318 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); 4319 SDOperand Ops[] = { 4320 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType()) 4321 }; 4322 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3); 4323 Chain = Value.getValue(1); 4324 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); 4325 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 4326 } 4327 4328 // Build the FP_TO_INT*_IN_MEM 4329 SDOperand Ops[] = { Chain, Value, StackSlot }; 4330 SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3); 4331 4332 return std::make_pair(FIST, StackSlot); 4333} 4334 4335SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) { 4336 std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(Op, DAG); 4337 SDOperand FIST = Vals.first, StackSlot = Vals.second; 4338 if (FIST.Val == 0) return SDOperand(); 4339 4340 // Load the result. 4341 return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0); 4342} 4343 4344SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) { 4345 std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(SDOperand(N, 0), DAG); 4346 SDOperand FIST = Vals.first, StackSlot = Vals.second; 4347 if (FIST.Val == 0) return 0; 4348 4349 // Return an i64 load from the stack slot. 4350 SDOperand Res = DAG.getLoad(MVT::i64, FIST, StackSlot, NULL, 0); 4351 4352 // Use a MERGE_VALUES node to drop the chain result value. 4353 return DAG.getNode(ISD::MERGE_VALUES, MVT::i64, Res).Val; 4354} 4355 4356SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) { 4357 MVT::ValueType VT = Op.getValueType(); 4358 MVT::ValueType EltVT = VT; 4359 if (MVT::isVector(VT)) 4360 EltVT = MVT::getVectorElementType(VT); 4361 const Type *OpNTy = MVT::getTypeForValueType(EltVT); 4362 std::vector<Constant*> CV; 4363 if (EltVT == MVT::f64) { 4364 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63)))); 4365 CV.push_back(C); 4366 CV.push_back(C); 4367 } else { 4368 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31)))); 4369 CV.push_back(C); 4370 CV.push_back(C); 4371 CV.push_back(C); 4372 CV.push_back(C); 4373 } 4374 Constant *C = ConstantVector::get(CV); 4375 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); 4376 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 4377 PseudoSourceValue::getConstantPool(), 0, 4378 false, 16); 4379 return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask); 4380} 4381 4382SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) { 4383 MVT::ValueType VT = Op.getValueType(); 4384 MVT::ValueType EltVT = VT; 4385 unsigned EltNum = 1; 4386 if (MVT::isVector(VT)) { 4387 EltVT = MVT::getVectorElementType(VT); 4388 EltNum = MVT::getVectorNumElements(VT); 4389 } 4390 const Type *OpNTy = MVT::getTypeForValueType(EltVT); 4391 std::vector<Constant*> CV; 4392 if (EltVT == MVT::f64) { 4393 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63))); 4394 CV.push_back(C); 4395 CV.push_back(C); 4396 } else { 4397 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31))); 4398 CV.push_back(C); 4399 CV.push_back(C); 4400 CV.push_back(C); 4401 CV.push_back(C); 4402 } 4403 Constant *C = ConstantVector::get(CV); 4404 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); 4405 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 4406 PseudoSourceValue::getConstantPool(), 0, 4407 false, 16); 4408 if (MVT::isVector(VT)) { 4409 return DAG.getNode(ISD::BIT_CONVERT, VT, 4410 DAG.getNode(ISD::XOR, MVT::v2i64, 4411 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)), 4412 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask))); 4413 } else { 4414 return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask); 4415 } 4416} 4417 4418SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) { 4419 SDOperand Op0 = Op.getOperand(0); 4420 SDOperand Op1 = Op.getOperand(1); 4421 MVT::ValueType VT = Op.getValueType(); 4422 MVT::ValueType SrcVT = Op1.getValueType(); 4423 const Type *SrcTy = MVT::getTypeForValueType(SrcVT); 4424 4425 // If second operand is smaller, extend it first. 4426 if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) { 4427 Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1); 4428 SrcVT = VT; 4429 SrcTy = MVT::getTypeForValueType(SrcVT); 4430 } 4431 // And if it is bigger, shrink it first. 4432 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) { 4433 Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1)); 4434 SrcVT = VT; 4435 SrcTy = MVT::getTypeForValueType(SrcVT); 4436 } 4437 4438 // At this point the operands and the result should have the same 4439 // type, and that won't be f80 since that is not custom lowered. 4440 4441 // First get the sign bit of second operand. 4442 std::vector<Constant*> CV; 4443 if (SrcVT == MVT::f64) { 4444 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63)))); 4445 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0)))); 4446 } else { 4447 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31)))); 4448 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0)))); 4449 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0)))); 4450 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0)))); 4451 } 4452 Constant *C = ConstantVector::get(CV); 4453 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); 4454 SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, 4455 PseudoSourceValue::getConstantPool(), 0, 4456 false, 16); 4457 SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1); 4458 4459 // Shift sign bit right or left if the two operands have different types. 4460 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) { 4461 // Op0 is MVT::f32, Op1 is MVT::f64. 4462 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit); 4463 SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit, 4464 DAG.getConstant(32, MVT::i32)); 4465 SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit); 4466 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit, 4467 DAG.getIntPtrConstant(0)); 4468 } 4469 4470 // Clear first operand sign bit. 4471 CV.clear(); 4472 if (VT == MVT::f64) { 4473 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63))))); 4474 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0)))); 4475 } else { 4476 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31))))); 4477 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0)))); 4478 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0)))); 4479 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0)))); 4480 } 4481 C = ConstantVector::get(CV); 4482 CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); 4483 SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 4484 PseudoSourceValue::getConstantPool(), 0, 4485 false, 16); 4486 SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2); 4487 4488 // Or the value with the sign bit. 4489 return DAG.getNode(X86ISD::FOR, VT, Val, SignBit); 4490} 4491 4492SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) { 4493 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); 4494 SDOperand Cond; 4495 SDOperand Op0 = Op.getOperand(0); 4496 SDOperand Op1 = Op.getOperand(1); 4497 SDOperand CC = Op.getOperand(2); 4498 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); 4499 bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType()); 4500 unsigned X86CC; 4501 4502 if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC, 4503 Op0, Op1, DAG)) { 4504 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1); 4505 return DAG.getNode(X86ISD::SETCC, MVT::i8, 4506 DAG.getConstant(X86CC, MVT::i8), Cond); 4507 } 4508 4509 assert(isFP && "Illegal integer SetCC!"); 4510 4511 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1); 4512 switch (SetCCOpcode) { 4513 default: assert(false && "Illegal floating point SetCC!"); 4514 case ISD::SETOEQ: { // !PF & ZF 4515 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8, 4516 DAG.getConstant(X86::COND_NP, MVT::i8), Cond); 4517 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, 4518 DAG.getConstant(X86::COND_E, MVT::i8), Cond); 4519 return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2); 4520 } 4521 case ISD::SETUNE: { // PF | !ZF 4522 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8, 4523 DAG.getConstant(X86::COND_P, MVT::i8), Cond); 4524 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, 4525 DAG.getConstant(X86::COND_NE, MVT::i8), Cond); 4526 return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2); 4527 } 4528 } 4529} 4530 4531 4532SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) { 4533 bool addTest = true; 4534 SDOperand Cond = Op.getOperand(0); 4535 SDOperand CC; 4536 4537 if (Cond.getOpcode() == ISD::SETCC) 4538 Cond = LowerSETCC(Cond, DAG); 4539 4540 // If condition flag is set by a X86ISD::CMP, then use it as the condition 4541 // setting operand in place of the X86ISD::SETCC. 4542 if (Cond.getOpcode() == X86ISD::SETCC) { 4543 CC = Cond.getOperand(0); 4544 4545 SDOperand Cmp = Cond.getOperand(1); 4546 unsigned Opc = Cmp.getOpcode(); 4547 MVT::ValueType VT = Op.getValueType(); 4548 4549 bool IllegalFPCMov = false; 4550 if (MVT::isFloatingPoint(VT) && !MVT::isVector(VT) && 4551 !isScalarFPTypeInSSEReg(VT)) // FPStack? 4552 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended()); 4553 4554 if ((Opc == X86ISD::CMP || 4555 Opc == X86ISD::COMI || 4556 Opc == X86ISD::UCOMI) && !IllegalFPCMov) { 4557 Cond = Cmp; 4558 addTest = false; 4559 } 4560 } 4561 4562 if (addTest) { 4563 CC = DAG.getConstant(X86::COND_NE, MVT::i8); 4564 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8)); 4565 } 4566 4567 const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(), 4568 MVT::Flag); 4569 SmallVector<SDOperand, 4> Ops; 4570 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if 4571 // condition is true. 4572 Ops.push_back(Op.getOperand(2)); 4573 Ops.push_back(Op.getOperand(1)); 4574 Ops.push_back(CC); 4575 Ops.push_back(Cond); 4576 return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size()); 4577} 4578 4579SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) { 4580 bool addTest = true; 4581 SDOperand Chain = Op.getOperand(0); 4582 SDOperand Cond = Op.getOperand(1); 4583 SDOperand Dest = Op.getOperand(2); 4584 SDOperand CC; 4585 4586 if (Cond.getOpcode() == ISD::SETCC) 4587 Cond = LowerSETCC(Cond, DAG); 4588 4589 // If condition flag is set by a X86ISD::CMP, then use it as the condition 4590 // setting operand in place of the X86ISD::SETCC. 4591 if (Cond.getOpcode() == X86ISD::SETCC) { 4592 CC = Cond.getOperand(0); 4593 4594 SDOperand Cmp = Cond.getOperand(1); 4595 unsigned Opc = Cmp.getOpcode(); 4596 if (Opc == X86ISD::CMP || 4597 Opc == X86ISD::COMI || 4598 Opc == X86ISD::UCOMI) { 4599 Cond = Cmp; 4600 addTest = false; 4601 } 4602 } 4603 4604 if (addTest) { 4605 CC = DAG.getConstant(X86::COND_NE, MVT::i8); 4606 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8)); 4607 } 4608 return DAG.getNode(X86ISD::BRCOND, Op.getValueType(), 4609 Chain, Op.getOperand(2), CC, Cond); 4610} 4611 4612 4613// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. 4614// Calls to _alloca is needed to probe the stack when allocating more than 4k 4615// bytes in one go. Touching the stack at 4K increments is necessary to ensure 4616// that the guard pages used by the OS virtual memory manager are allocated in 4617// correct sequence. 4618SDOperand 4619X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op, 4620 SelectionDAG &DAG) { 4621 assert(Subtarget->isTargetCygMing() && 4622 "This should be used only on Cygwin/Mingw targets"); 4623 4624 // Get the inputs. 4625 SDOperand Chain = Op.getOperand(0); 4626 SDOperand Size = Op.getOperand(1); 4627 // FIXME: Ensure alignment here 4628 4629 SDOperand Flag; 4630 4631 MVT::ValueType IntPtr = getPointerTy(); 4632 MVT::ValueType SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32; 4633 4634 Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag); 4635 Flag = Chain.getValue(1); 4636 4637 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); 4638 SDOperand Ops[] = { Chain, 4639 DAG.getTargetExternalSymbol("_alloca", IntPtr), 4640 DAG.getRegister(X86::EAX, IntPtr), 4641 Flag }; 4642 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4); 4643 Flag = Chain.getValue(1); 4644 4645 Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1); 4646 4647 std::vector<MVT::ValueType> Tys; 4648 Tys.push_back(SPTy); 4649 Tys.push_back(MVT::Other); 4650 SDOperand Ops1[2] = { Chain.getValue(0), Chain }; 4651 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2); 4652} 4653 4654SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) { 4655 SDOperand InFlag(0, 0); 4656 SDOperand Chain = Op.getOperand(0); 4657 unsigned Align = 4658 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue(); 4659 if (Align == 0) Align = 1; 4660 4661 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3)); 4662 // If not DWORD aligned or size is more than the threshold, call memset. 4663 // The libc version is likely to be faster for these cases. It can use the 4664 // address value and run time information about the CPU. 4665 if ((Align & 3) != 0 || 4666 (I && I->getValue() > Subtarget->getMaxInlineSizeThreshold())) { 4667 MVT::ValueType IntPtr = getPointerTy(); 4668 const Type *IntPtrTy = getTargetData()->getIntPtrType(); 4669 TargetLowering::ArgListTy Args; 4670 TargetLowering::ArgListEntry Entry; 4671 Entry.Node = Op.getOperand(1); 4672 Entry.Ty = IntPtrTy; 4673 Args.push_back(Entry); 4674 // Extend the unsigned i8 argument to be an int value for the call. 4675 Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2)); 4676 Entry.Ty = IntPtrTy; 4677 Args.push_back(Entry); 4678 Entry.Node = Op.getOperand(3); 4679 Args.push_back(Entry); 4680 std::pair<SDOperand,SDOperand> CallResult = 4681 LowerCallTo(Chain, Type::VoidTy, false, false, false, CallingConv::C, 4682 false, DAG.getExternalSymbol("memset", IntPtr), Args, DAG); 4683 return CallResult.second; 4684 } 4685 4686 MVT::ValueType AVT; 4687 SDOperand Count; 4688 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4689 unsigned BytesLeft = 0; 4690 bool TwoRepStos = false; 4691 if (ValC) { 4692 unsigned ValReg; 4693 uint64_t Val = ValC->getValue() & 255; 4694 4695 // If the value is a constant, then we can potentially use larger sets. 4696 switch (Align & 3) { 4697 case 2: // WORD aligned 4698 AVT = MVT::i16; 4699 ValReg = X86::AX; 4700 Val = (Val << 8) | Val; 4701 break; 4702 case 0: // DWORD aligned 4703 AVT = MVT::i32; 4704 ValReg = X86::EAX; 4705 Val = (Val << 8) | Val; 4706 Val = (Val << 16) | Val; 4707 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned 4708 AVT = MVT::i64; 4709 ValReg = X86::RAX; 4710 Val = (Val << 32) | Val; 4711 } 4712 break; 4713 default: // Byte aligned 4714 AVT = MVT::i8; 4715 ValReg = X86::AL; 4716 Count = Op.getOperand(3); 4717 break; 4718 } 4719 4720 if (AVT > MVT::i8) { 4721 if (I) { 4722 unsigned UBytes = MVT::getSizeInBits(AVT) / 8; 4723 Count = DAG.getIntPtrConstant(I->getValue() / UBytes); 4724 BytesLeft = I->getValue() % UBytes; 4725 } else { 4726 assert(AVT >= MVT::i32 && 4727 "Do not use rep;stos if not at least DWORD aligned"); 4728 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(), 4729 Op.getOperand(3), DAG.getConstant(2, MVT::i8)); 4730 TwoRepStos = true; 4731 } 4732 } 4733 4734 Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT), 4735 InFlag); 4736 InFlag = Chain.getValue(1); 4737 } else { 4738 AVT = MVT::i8; 4739 Count = Op.getOperand(3); 4740 Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag); 4741 InFlag = Chain.getValue(1); 4742 } 4743 4744 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX, 4745 Count, InFlag); 4746 InFlag = Chain.getValue(1); 4747 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI, 4748 Op.getOperand(1), InFlag); 4749 InFlag = Chain.getValue(1); 4750 4751 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 4752 SmallVector<SDOperand, 8> Ops; 4753 Ops.push_back(Chain); 4754 Ops.push_back(DAG.getValueType(AVT)); 4755 Ops.push_back(InFlag); 4756 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size()); 4757 4758 if (TwoRepStos) { 4759 InFlag = Chain.getValue(1); 4760 Count = Op.getOperand(3); 4761 MVT::ValueType CVT = Count.getValueType(); 4762 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count, 4763 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT)); 4764 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX, 4765 Left, InFlag); 4766 InFlag = Chain.getValue(1); 4767 Tys = DAG.getVTList(MVT::Other, MVT::Flag); 4768 Ops.clear(); 4769 Ops.push_back(Chain); 4770 Ops.push_back(DAG.getValueType(MVT::i8)); 4771 Ops.push_back(InFlag); 4772 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size()); 4773 } else if (BytesLeft) { 4774 // Issue stores for the last 1 - 7 bytes. 4775 SDOperand Value; 4776 unsigned Val = ValC->getValue() & 255; 4777 unsigned Offset = I->getValue() - BytesLeft; 4778 SDOperand DstAddr = Op.getOperand(1); 4779 MVT::ValueType AddrVT = DstAddr.getValueType(); 4780 if (BytesLeft >= 4) { 4781 Val = (Val << 8) | Val; 4782 Val = (Val << 16) | Val; 4783 Value = DAG.getConstant(Val, MVT::i32); 4784 Chain = DAG.getStore(Chain, Value, 4785 DAG.getNode(ISD::ADD, AddrVT, DstAddr, 4786 DAG.getConstant(Offset, AddrVT)), 4787 NULL, 0); 4788 BytesLeft -= 4; 4789 Offset += 4; 4790 } 4791 if (BytesLeft >= 2) { 4792 Value = DAG.getConstant((Val << 8) | Val, MVT::i16); 4793 Chain = DAG.getStore(Chain, Value, 4794 DAG.getNode(ISD::ADD, AddrVT, DstAddr, 4795 DAG.getConstant(Offset, AddrVT)), 4796 NULL, 0); 4797 BytesLeft -= 2; 4798 Offset += 2; 4799 } 4800 if (BytesLeft == 1) { 4801 Value = DAG.getConstant(Val, MVT::i8); 4802 Chain = DAG.getStore(Chain, Value, 4803 DAG.getNode(ISD::ADD, AddrVT, DstAddr, 4804 DAG.getConstant(Offset, AddrVT)), 4805 NULL, 0); 4806 } 4807 } 4808 4809 return Chain; 4810} 4811 4812SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain, 4813 SDOperand Dest, 4814 SDOperand Source, 4815 unsigned Size, 4816 unsigned Align, 4817 SelectionDAG &DAG) { 4818 MVT::ValueType AVT; 4819 unsigned BytesLeft = 0; 4820 switch (Align & 3) { 4821 case 2: // WORD aligned 4822 AVT = MVT::i16; 4823 break; 4824 case 0: // DWORD aligned 4825 AVT = MVT::i32; 4826 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned 4827 AVT = MVT::i64; 4828 break; 4829 default: // Byte aligned 4830 AVT = MVT::i8; 4831 break; 4832 } 4833 4834 unsigned UBytes = MVT::getSizeInBits(AVT) / 8; 4835 SDOperand Count = DAG.getIntPtrConstant(Size / UBytes); 4836 BytesLeft = Size % UBytes; 4837 4838 SDOperand InFlag(0, 0); 4839 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX, 4840 Count, InFlag); 4841 InFlag = Chain.getValue(1); 4842 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI, 4843 Dest, InFlag); 4844 InFlag = Chain.getValue(1); 4845 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI, 4846 Source, InFlag); 4847 InFlag = Chain.getValue(1); 4848 4849 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 4850 SmallVector<SDOperand, 8> Ops; 4851 Ops.push_back(Chain); 4852 Ops.push_back(DAG.getValueType(AVT)); 4853 Ops.push_back(InFlag); 4854 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size()); 4855 4856 if (BytesLeft) { 4857 // Issue loads and stores for the last 1 - 7 bytes. 4858 unsigned Offset = Size - BytesLeft; 4859 SDOperand DstAddr = Dest; 4860 MVT::ValueType DstVT = DstAddr.getValueType(); 4861 SDOperand SrcAddr = Source; 4862 MVT::ValueType SrcVT = SrcAddr.getValueType(); 4863 SDOperand Value; 4864 if (BytesLeft >= 4) { 4865 Value = DAG.getLoad(MVT::i32, Chain, 4866 DAG.getNode(ISD::ADD, SrcVT, SrcAddr, 4867 DAG.getConstant(Offset, SrcVT)), 4868 NULL, 0); 4869 Chain = Value.getValue(1); 4870 Chain = DAG.getStore(Chain, Value, 4871 DAG.getNode(ISD::ADD, DstVT, DstAddr, 4872 DAG.getConstant(Offset, DstVT)), 4873 NULL, 0); 4874 BytesLeft -= 4; 4875 Offset += 4; 4876 } 4877 if (BytesLeft >= 2) { 4878 Value = DAG.getLoad(MVT::i16, Chain, 4879 DAG.getNode(ISD::ADD, SrcVT, SrcAddr, 4880 DAG.getConstant(Offset, SrcVT)), 4881 NULL, 0); 4882 Chain = Value.getValue(1); 4883 Chain = DAG.getStore(Chain, Value, 4884 DAG.getNode(ISD::ADD, DstVT, DstAddr, 4885 DAG.getConstant(Offset, DstVT)), 4886 NULL, 0); 4887 BytesLeft -= 2; 4888 Offset += 2; 4889 } 4890 4891 if (BytesLeft == 1) { 4892 Value = DAG.getLoad(MVT::i8, Chain, 4893 DAG.getNode(ISD::ADD, SrcVT, SrcAddr, 4894 DAG.getConstant(Offset, SrcVT)), 4895 NULL, 0); 4896 Chain = Value.getValue(1); 4897 Chain = DAG.getStore(Chain, Value, 4898 DAG.getNode(ISD::ADD, DstVT, DstAddr, 4899 DAG.getConstant(Offset, DstVT)), 4900 NULL, 0); 4901 } 4902 } 4903 4904 return Chain; 4905} 4906 4907/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain 4908SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){ 4909 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 4910 SDOperand TheChain = N->getOperand(0); 4911 SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1); 4912 if (Subtarget->is64Bit()) { 4913 SDOperand rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1)); 4914 SDOperand rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX, 4915 MVT::i64, rax.getValue(2)); 4916 SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx, 4917 DAG.getConstant(32, MVT::i8)); 4918 SDOperand Ops[] = { 4919 DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1) 4920 }; 4921 4922 Tys = DAG.getVTList(MVT::i64, MVT::Other); 4923 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val; 4924 } 4925 4926 SDOperand eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1)); 4927 SDOperand edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX, 4928 MVT::i32, eax.getValue(2)); 4929 // Use a buildpair to merge the two 32-bit values into a 64-bit one. 4930 SDOperand Ops[] = { eax, edx }; 4931 Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2); 4932 4933 // Use a MERGE_VALUES to return the value and chain. 4934 Ops[1] = edx.getValue(1); 4935 Tys = DAG.getVTList(MVT::i64, MVT::Other); 4936 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val; 4937} 4938 4939SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) { 4940 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 4941 4942 if (!Subtarget->is64Bit()) { 4943 // vastart just stores the address of the VarArgsFrameIndex slot into the 4944 // memory location argument. 4945 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); 4946 return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0); 4947 } 4948 4949 // __va_list_tag: 4950 // gp_offset (0 - 6 * 8) 4951 // fp_offset (48 - 48 + 8 * 16) 4952 // overflow_arg_area (point to parameters coming in memory). 4953 // reg_save_area 4954 SmallVector<SDOperand, 8> MemOps; 4955 SDOperand FIN = Op.getOperand(1); 4956 // Store gp_offset 4957 SDOperand Store = DAG.getStore(Op.getOperand(0), 4958 DAG.getConstant(VarArgsGPOffset, MVT::i32), 4959 FIN, SV, 0); 4960 MemOps.push_back(Store); 4961 4962 // Store fp_offset 4963 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4)); 4964 Store = DAG.getStore(Op.getOperand(0), 4965 DAG.getConstant(VarArgsFPOffset, MVT::i32), 4966 FIN, SV, 0); 4967 MemOps.push_back(Store); 4968 4969 // Store ptr to overflow_arg_area 4970 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4)); 4971 SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); 4972 Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0); 4973 MemOps.push_back(Store); 4974 4975 // Store ptr to reg_save_area. 4976 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8)); 4977 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); 4978 Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0); 4979 MemOps.push_back(Store); 4980 return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size()); 4981} 4982 4983SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) { 4984 // X86-64 va_list is a struct { i32, i32, i8*, i8* }. 4985 SDOperand Chain = Op.getOperand(0); 4986 SDOperand DstPtr = Op.getOperand(1); 4987 SDOperand SrcPtr = Op.getOperand(2); 4988 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 4989 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 4990 4991 SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr, SrcSV, 0); 4992 Chain = SrcPtr.getValue(1); 4993 for (unsigned i = 0; i < 3; ++i) { 4994 SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr, SrcSV, 0); 4995 Chain = Val.getValue(1); 4996 Chain = DAG.getStore(Chain, Val, DstPtr, DstSV, 0); 4997 if (i == 2) 4998 break; 4999 SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr, 5000 DAG.getIntPtrConstant(8)); 5001 DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr, 5002 DAG.getIntPtrConstant(8)); 5003 } 5004 return Chain; 5005} 5006 5007SDOperand 5008X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) { 5009 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue(); 5010 switch (IntNo) { 5011 default: return SDOperand(); // Don't custom lower most intrinsics. 5012 // Comparison intrinsics. 5013 case Intrinsic::x86_sse_comieq_ss: 5014 case Intrinsic::x86_sse_comilt_ss: 5015 case Intrinsic::x86_sse_comile_ss: 5016 case Intrinsic::x86_sse_comigt_ss: 5017 case Intrinsic::x86_sse_comige_ss: 5018 case Intrinsic::x86_sse_comineq_ss: 5019 case Intrinsic::x86_sse_ucomieq_ss: 5020 case Intrinsic::x86_sse_ucomilt_ss: 5021 case Intrinsic::x86_sse_ucomile_ss: 5022 case Intrinsic::x86_sse_ucomigt_ss: 5023 case Intrinsic::x86_sse_ucomige_ss: 5024 case Intrinsic::x86_sse_ucomineq_ss: 5025 case Intrinsic::x86_sse2_comieq_sd: 5026 case Intrinsic::x86_sse2_comilt_sd: 5027 case Intrinsic::x86_sse2_comile_sd: 5028 case Intrinsic::x86_sse2_comigt_sd: 5029 case Intrinsic::x86_sse2_comige_sd: 5030 case Intrinsic::x86_sse2_comineq_sd: 5031 case Intrinsic::x86_sse2_ucomieq_sd: 5032 case Intrinsic::x86_sse2_ucomilt_sd: 5033 case Intrinsic::x86_sse2_ucomile_sd: 5034 case Intrinsic::x86_sse2_ucomigt_sd: 5035 case Intrinsic::x86_sse2_ucomige_sd: 5036 case Intrinsic::x86_sse2_ucomineq_sd: { 5037 unsigned Opc = 0; 5038 ISD::CondCode CC = ISD::SETCC_INVALID; 5039 switch (IntNo) { 5040 default: break; 5041 case Intrinsic::x86_sse_comieq_ss: 5042 case Intrinsic::x86_sse2_comieq_sd: 5043 Opc = X86ISD::COMI; 5044 CC = ISD::SETEQ; 5045 break; 5046 case Intrinsic::x86_sse_comilt_ss: 5047 case Intrinsic::x86_sse2_comilt_sd: 5048 Opc = X86ISD::COMI; 5049 CC = ISD::SETLT; 5050 break; 5051 case Intrinsic::x86_sse_comile_ss: 5052 case Intrinsic::x86_sse2_comile_sd: 5053 Opc = X86ISD::COMI; 5054 CC = ISD::SETLE; 5055 break; 5056 case Intrinsic::x86_sse_comigt_ss: 5057 case Intrinsic::x86_sse2_comigt_sd: 5058 Opc = X86ISD::COMI; 5059 CC = ISD::SETGT; 5060 break; 5061 case Intrinsic::x86_sse_comige_ss: 5062 case Intrinsic::x86_sse2_comige_sd: 5063 Opc = X86ISD::COMI; 5064 CC = ISD::SETGE; 5065 break; 5066 case Intrinsic::x86_sse_comineq_ss: 5067 case Intrinsic::x86_sse2_comineq_sd: 5068 Opc = X86ISD::COMI; 5069 CC = ISD::SETNE; 5070 break; 5071 case Intrinsic::x86_sse_ucomieq_ss: 5072 case Intrinsic::x86_sse2_ucomieq_sd: 5073 Opc = X86ISD::UCOMI; 5074 CC = ISD::SETEQ; 5075 break; 5076 case Intrinsic::x86_sse_ucomilt_ss: 5077 case Intrinsic::x86_sse2_ucomilt_sd: 5078 Opc = X86ISD::UCOMI; 5079 CC = ISD::SETLT; 5080 break; 5081 case Intrinsic::x86_sse_ucomile_ss: 5082 case Intrinsic::x86_sse2_ucomile_sd: 5083 Opc = X86ISD::UCOMI; 5084 CC = ISD::SETLE; 5085 break; 5086 case Intrinsic::x86_sse_ucomigt_ss: 5087 case Intrinsic::x86_sse2_ucomigt_sd: 5088 Opc = X86ISD::UCOMI; 5089 CC = ISD::SETGT; 5090 break; 5091 case Intrinsic::x86_sse_ucomige_ss: 5092 case Intrinsic::x86_sse2_ucomige_sd: 5093 Opc = X86ISD::UCOMI; 5094 CC = ISD::SETGE; 5095 break; 5096 case Intrinsic::x86_sse_ucomineq_ss: 5097 case Intrinsic::x86_sse2_ucomineq_sd: 5098 Opc = X86ISD::UCOMI; 5099 CC = ISD::SETNE; 5100 break; 5101 } 5102 5103 unsigned X86CC; 5104 SDOperand LHS = Op.getOperand(1); 5105 SDOperand RHS = Op.getOperand(2); 5106 translateX86CC(CC, true, X86CC, LHS, RHS, DAG); 5107 5108 SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS); 5109 SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8, 5110 DAG.getConstant(X86CC, MVT::i8), Cond); 5111 return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC); 5112 } 5113 } 5114} 5115 5116SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) { 5117 // Depths > 0 not supported yet! 5118 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0) 5119 return SDOperand(); 5120 5121 // Just load the return address 5122 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); 5123 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0); 5124} 5125 5126SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) { 5127 // Depths > 0 not supported yet! 5128 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0) 5129 return SDOperand(); 5130 5131 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); 5132 return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI, 5133 DAG.getIntPtrConstant(4)); 5134} 5135 5136SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op, 5137 SelectionDAG &DAG) { 5138 // Is not yet supported on x86-64 5139 if (Subtarget->is64Bit()) 5140 return SDOperand(); 5141 5142 return DAG.getIntPtrConstant(8); 5143} 5144 5145SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG) 5146{ 5147 assert(!Subtarget->is64Bit() && 5148 "Lowering of eh_return builtin is not supported yet on x86-64"); 5149 5150 MachineFunction &MF = DAG.getMachineFunction(); 5151 SDOperand Chain = Op.getOperand(0); 5152 SDOperand Offset = Op.getOperand(1); 5153 SDOperand Handler = Op.getOperand(2); 5154 5155 SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF), 5156 getPointerTy()); 5157 5158 SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame, 5159 DAG.getIntPtrConstant(-4UL)); 5160 StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset); 5161 Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0); 5162 Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr); 5163 MF.getRegInfo().addLiveOut(X86::ECX); 5164 5165 return DAG.getNode(X86ISD::EH_RETURN, MVT::Other, 5166 Chain, DAG.getRegister(X86::ECX, getPointerTy())); 5167} 5168 5169SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op, 5170 SelectionDAG &DAG) { 5171 SDOperand Root = Op.getOperand(0); 5172 SDOperand Trmp = Op.getOperand(1); // trampoline 5173 SDOperand FPtr = Op.getOperand(2); // nested function 5174 SDOperand Nest = Op.getOperand(3); // 'nest' parameter value 5175 5176 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 5177 5178 const X86InstrInfo *TII = 5179 ((X86TargetMachine&)getTargetMachine()).getInstrInfo(); 5180 5181 if (Subtarget->is64Bit()) { 5182 SDOperand OutChains[6]; 5183 5184 // Large code-model. 5185 5186 const unsigned char JMP64r = TII->getBaseOpcodeFor(X86::JMP64r); 5187 const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri); 5188 5189 const unsigned char N86R10 = 5190 ((const X86RegisterInfo*)RegInfo)->getX86RegNum(X86::R10); 5191 const unsigned char N86R11 = 5192 ((const X86RegisterInfo*)RegInfo)->getX86RegNum(X86::R11); 5193 5194 const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix 5195 5196 // Load the pointer to the nested function into R11. 5197 unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 5198 SDOperand Addr = Trmp; 5199 OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr, 5200 TrmpAddr, 0); 5201 5202 Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64)); 5203 OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2); 5204 5205 // Load the 'nest' parameter value into R10. 5206 // R10 is specified in X86CallingConv.td 5207 OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 5208 Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64)); 5209 OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr, 5210 TrmpAddr, 10); 5211 5212 Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64)); 5213 OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2); 5214 5215 // Jump to the nested function. 5216 OpCode = (JMP64r << 8) | REX_WB; // jmpq *... 5217 Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64)); 5218 OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr, 5219 TrmpAddr, 20); 5220 5221 unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 5222 Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64)); 5223 OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr, 5224 TrmpAddr, 22); 5225 5226 SDOperand Ops[] = 5227 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) }; 5228 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2); 5229 } else { 5230 const Function *Func = 5231 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue()); 5232 unsigned CC = Func->getCallingConv(); 5233 unsigned NestReg; 5234 5235 switch (CC) { 5236 default: 5237 assert(0 && "Unsupported calling convention"); 5238 case CallingConv::C: 5239 case CallingConv::X86_StdCall: { 5240 // Pass 'nest' parameter in ECX. 5241 // Must be kept in sync with X86CallingConv.td 5242 NestReg = X86::ECX; 5243 5244 // Check that ECX wasn't needed by an 'inreg' parameter. 5245 const FunctionType *FTy = Func->getFunctionType(); 5246 const ParamAttrsList *Attrs = Func->getParamAttrs(); 5247 5248 if (Attrs && !Func->isVarArg()) { 5249 unsigned InRegCount = 0; 5250 unsigned Idx = 1; 5251 5252 for (FunctionType::param_iterator I = FTy->param_begin(), 5253 E = FTy->param_end(); I != E; ++I, ++Idx) 5254 if (Attrs->paramHasAttr(Idx, ParamAttr::InReg)) 5255 // FIXME: should only count parameters that are lowered to integers. 5256 InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32; 5257 5258 if (InRegCount > 2) { 5259 cerr << "Nest register in use - reduce number of inreg parameters!\n"; 5260 abort(); 5261 } 5262 } 5263 break; 5264 } 5265 case CallingConv::X86_FastCall: 5266 // Pass 'nest' parameter in EAX. 5267 // Must be kept in sync with X86CallingConv.td 5268 NestReg = X86::EAX; 5269 break; 5270 } 5271 5272 SDOperand OutChains[4]; 5273 SDOperand Addr, Disp; 5274 5275 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32)); 5276 Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr); 5277 5278 const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri); 5279 const unsigned char N86Reg = 5280 ((const X86RegisterInfo*)RegInfo)->getX86RegNum(NestReg); 5281 OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8), 5282 Trmp, TrmpAddr, 0); 5283 5284 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32)); 5285 OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1); 5286 5287 const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP); 5288 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32)); 5289 OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr, 5290 TrmpAddr, 5, false, 1); 5291 5292 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32)); 5293 OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1); 5294 5295 SDOperand Ops[] = 5296 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) }; 5297 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2); 5298 } 5299} 5300 5301SDOperand X86TargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) { 5302 /* 5303 The rounding mode is in bits 11:10 of FPSR, and has the following 5304 settings: 5305 00 Round to nearest 5306 01 Round to -inf 5307 10 Round to +inf 5308 11 Round to 0 5309 5310 FLT_ROUNDS, on the other hand, expects the following: 5311 -1 Undefined 5312 0 Round to 0 5313 1 Round to nearest 5314 2 Round to +inf 5315 3 Round to -inf 5316 5317 To perform the conversion, we do: 5318 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) 5319 */ 5320 5321 MachineFunction &MF = DAG.getMachineFunction(); 5322 const TargetMachine &TM = MF.getTarget(); 5323 const TargetFrameInfo &TFI = *TM.getFrameInfo(); 5324 unsigned StackAlignment = TFI.getStackAlignment(); 5325 MVT::ValueType VT = Op.getValueType(); 5326 5327 // Save FP Control Word to stack slot 5328 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment); 5329 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 5330 5331 SDOperand Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other, 5332 DAG.getEntryNode(), StackSlot); 5333 5334 // Load FP Control Word from stack slot 5335 SDOperand CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0); 5336 5337 // Transform as necessary 5338 SDOperand CWD1 = 5339 DAG.getNode(ISD::SRL, MVT::i16, 5340 DAG.getNode(ISD::AND, MVT::i16, 5341 CWD, DAG.getConstant(0x800, MVT::i16)), 5342 DAG.getConstant(11, MVT::i8)); 5343 SDOperand CWD2 = 5344 DAG.getNode(ISD::SRL, MVT::i16, 5345 DAG.getNode(ISD::AND, MVT::i16, 5346 CWD, DAG.getConstant(0x400, MVT::i16)), 5347 DAG.getConstant(9, MVT::i8)); 5348 5349 SDOperand RetVal = 5350 DAG.getNode(ISD::AND, MVT::i16, 5351 DAG.getNode(ISD::ADD, MVT::i16, 5352 DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2), 5353 DAG.getConstant(1, MVT::i16)), 5354 DAG.getConstant(3, MVT::i16)); 5355 5356 5357 return DAG.getNode((MVT::getSizeInBits(VT) < 16 ? 5358 ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal); 5359} 5360 5361SDOperand X86TargetLowering::LowerCTLZ(SDOperand Op, SelectionDAG &DAG) { 5362 MVT::ValueType VT = Op.getValueType(); 5363 MVT::ValueType OpVT = VT; 5364 unsigned NumBits = MVT::getSizeInBits(VT); 5365 5366 Op = Op.getOperand(0); 5367 if (VT == MVT::i8) { 5368 // Zero extend to i32 since there is not an i8 bsr. 5369 OpVT = MVT::i32; 5370 Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op); 5371 } 5372 5373 // Issue a bsr (scan bits in reverse) which also sets EFLAGS. 5374 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); 5375 Op = DAG.getNode(X86ISD::BSR, VTs, Op); 5376 5377 // If src is zero (i.e. bsr sets ZF), returns NumBits. 5378 SmallVector<SDOperand, 4> Ops; 5379 Ops.push_back(Op); 5380 Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT)); 5381 Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8)); 5382 Ops.push_back(Op.getValue(1)); 5383 Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4); 5384 5385 // Finally xor with NumBits-1. 5386 Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); 5387 5388 if (VT == MVT::i8) 5389 Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op); 5390 return Op; 5391} 5392 5393SDOperand X86TargetLowering::LowerCTTZ(SDOperand Op, SelectionDAG &DAG) { 5394 MVT::ValueType VT = Op.getValueType(); 5395 MVT::ValueType OpVT = VT; 5396 unsigned NumBits = MVT::getSizeInBits(VT); 5397 5398 Op = Op.getOperand(0); 5399 if (VT == MVT::i8) { 5400 OpVT = MVT::i32; 5401 Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op); 5402 } 5403 5404 // Issue a bsf (scan bits forward) which also sets EFLAGS. 5405 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); 5406 Op = DAG.getNode(X86ISD::BSF, VTs, Op); 5407 5408 // If src is zero (i.e. bsf sets ZF), returns NumBits. 5409 SmallVector<SDOperand, 4> Ops; 5410 Ops.push_back(Op); 5411 Ops.push_back(DAG.getConstant(NumBits, OpVT)); 5412 Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8)); 5413 Ops.push_back(Op.getValue(1)); 5414 Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4); 5415 5416 if (VT == MVT::i8) 5417 Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op); 5418 return Op; 5419} 5420 5421SDOperand X86TargetLowering::LowerLCS(SDOperand Op, SelectionDAG &DAG) { 5422 MVT::ValueType T = cast<AtomicSDNode>(Op.Val)->getVT(); 5423 unsigned Reg = 0; 5424 unsigned size = 0; 5425 switch(T) { 5426 case MVT::i8: Reg = X86::AL; size = 1; break; 5427 case MVT::i16: Reg = X86::AX; size = 2; break; 5428 case MVT::i32: Reg = X86::EAX; size = 4; break; 5429 case MVT::i64: 5430 if (Subtarget->is64Bit()) { 5431 Reg = X86::RAX; size = 8; 5432 } else //Should go away when LowerType stuff lands 5433 return SDOperand(ExpandATOMIC_LCS(Op.Val, DAG), 0); 5434 break; 5435 }; 5436 SDOperand cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg, 5437 Op.getOperand(3), SDOperand()); 5438 SDOperand Ops[] = { cpIn.getValue(0), 5439 Op.getOperand(1), 5440 Op.getOperand(2), 5441 DAG.getTargetConstant(size, MVT::i8), 5442 cpIn.getValue(1) }; 5443 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 5444 SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5); 5445 SDOperand cpOut = 5446 DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1)); 5447 return cpOut; 5448} 5449 5450SDNode* X86TargetLowering::ExpandATOMIC_LCS(SDNode* Op, SelectionDAG &DAG) { 5451 MVT::ValueType T = cast<AtomicSDNode>(Op)->getVT(); 5452 assert (T == MVT::i64 && "Only know how to expand i64 CAS"); 5453 SDOperand cpInL, cpInH; 5454 cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3), 5455 DAG.getConstant(0, MVT::i32)); 5456 cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3), 5457 DAG.getConstant(1, MVT::i32)); 5458 cpInL = DAG.getCopyToReg(Op->getOperand(0), X86::EAX, 5459 cpInL, SDOperand()); 5460 cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX, 5461 cpInH, cpInL.getValue(1)); 5462 SDOperand swapInL, swapInH; 5463 swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2), 5464 DAG.getConstant(0, MVT::i32)); 5465 swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2), 5466 DAG.getConstant(1, MVT::i32)); 5467 swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX, 5468 swapInL, cpInH.getValue(1)); 5469 swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX, 5470 swapInH, swapInL.getValue(1)); 5471 SDOperand Ops[] = { swapInH.getValue(0), 5472 Op->getOperand(1), 5473 swapInH.getValue(1)}; 5474 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 5475 SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3); 5476 SDOperand cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32, 5477 Result.getValue(1)); 5478 SDOperand cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32, 5479 cpOutL.getValue(2)); 5480 SDOperand OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; 5481 SDOperand ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2); 5482 Tys = DAG.getVTList(MVT::i64, MVT::Other); 5483 return DAG.getNode(ISD::MERGE_VALUES, Tys, ResultVal, cpOutH.getValue(1)).Val; 5484} 5485 5486/// LowerOperation - Provide custom lowering hooks for some operations. 5487/// 5488SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { 5489 switch (Op.getOpcode()) { 5490 default: assert(0 && "Should not custom lower this!"); 5491 case ISD::ATOMIC_LCS: return LowerLCS(Op,DAG); 5492 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 5493 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 5494 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 5495 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 5496 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 5497 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 5498 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 5499 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 5500 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); 5501 case ISD::SHL_PARTS: 5502 case ISD::SRA_PARTS: 5503 case ISD::SRL_PARTS: return LowerShift(Op, DAG); 5504 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 5505 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 5506 case ISD::FABS: return LowerFABS(Op, DAG); 5507 case ISD::FNEG: return LowerFNEG(Op, DAG); 5508 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); 5509 case ISD::SETCC: return LowerSETCC(Op, DAG); 5510 case ISD::SELECT: return LowerSELECT(Op, DAG); 5511 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 5512 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 5513 case ISD::CALL: return LowerCALL(Op, DAG); 5514 case ISD::RET: return LowerRET(Op, DAG); 5515 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG); 5516 case ISD::MEMSET: return LowerMEMSET(Op, DAG); 5517 case ISD::MEMCPY: return LowerMEMCPY(Op, DAG); 5518 case ISD::VASTART: return LowerVASTART(Op, DAG); 5519 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 5520 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 5521 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 5522 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 5523 case ISD::FRAME_TO_ARGS_OFFSET: 5524 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); 5525 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 5526 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); 5527 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG); 5528 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 5529 case ISD::CTLZ: return LowerCTLZ(Op, DAG); 5530 case ISD::CTTZ: return LowerCTTZ(Op, DAG); 5531 5532 // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands. 5533 case ISD::READCYCLECOUNTER: 5534 return SDOperand(ExpandREADCYCLECOUNTER(Op.Val, DAG), 0); 5535 } 5536} 5537 5538/// ExpandOperation - Provide custom lowering hooks for expanding operations. 5539SDNode *X86TargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) { 5540 switch (N->getOpcode()) { 5541 default: assert(0 && "Should not custom lower this!"); 5542 case ISD::FP_TO_SINT: return ExpandFP_TO_SINT(N, DAG); 5543 case ISD::READCYCLECOUNTER: return ExpandREADCYCLECOUNTER(N, DAG); 5544 case ISD::ATOMIC_LCS: return ExpandATOMIC_LCS(N, DAG); 5545 } 5546} 5547 5548const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { 5549 switch (Opcode) { 5550 default: return NULL; 5551 case X86ISD::BSF: return "X86ISD::BSF"; 5552 case X86ISD::BSR: return "X86ISD::BSR"; 5553 case X86ISD::SHLD: return "X86ISD::SHLD"; 5554 case X86ISD::SHRD: return "X86ISD::SHRD"; 5555 case X86ISD::FAND: return "X86ISD::FAND"; 5556 case X86ISD::FOR: return "X86ISD::FOR"; 5557 case X86ISD::FXOR: return "X86ISD::FXOR"; 5558 case X86ISD::FSRL: return "X86ISD::FSRL"; 5559 case X86ISD::FILD: return "X86ISD::FILD"; 5560 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; 5561 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; 5562 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; 5563 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; 5564 case X86ISD::FLD: return "X86ISD::FLD"; 5565 case X86ISD::FST: return "X86ISD::FST"; 5566 case X86ISD::FP_GET_ST0: return "X86ISD::FP_GET_ST0"; 5567 case X86ISD::FP_GET_ST0_ST1: return "X86ISD::FP_GET_ST0_ST1"; 5568 case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT"; 5569 case X86ISD::CALL: return "X86ISD::CALL"; 5570 case X86ISD::TAILCALL: return "X86ISD::TAILCALL"; 5571 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; 5572 case X86ISD::CMP: return "X86ISD::CMP"; 5573 case X86ISD::COMI: return "X86ISD::COMI"; 5574 case X86ISD::UCOMI: return "X86ISD::UCOMI"; 5575 case X86ISD::SETCC: return "X86ISD::SETCC"; 5576 case X86ISD::CMOV: return "X86ISD::CMOV"; 5577 case X86ISD::BRCOND: return "X86ISD::BRCOND"; 5578 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; 5579 case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; 5580 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; 5581 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; 5582 case X86ISD::Wrapper: return "X86ISD::Wrapper"; 5583 case X86ISD::PEXTRB: return "X86ISD::PEXTRB"; 5584 case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; 5585 case X86ISD::INSERTPS: return "X86ISD::INSERTPS"; 5586 case X86ISD::PINSRB: return "X86ISD::PINSRB"; 5587 case X86ISD::PINSRW: return "X86ISD::PINSRW"; 5588 case X86ISD::FMAX: return "X86ISD::FMAX"; 5589 case X86ISD::FMIN: return "X86ISD::FMIN"; 5590 case X86ISD::FRSQRT: return "X86ISD::FRSQRT"; 5591 case X86ISD::FRCP: return "X86ISD::FRCP"; 5592 case X86ISD::TLSADDR: return "X86ISD::TLSADDR"; 5593 case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER"; 5594 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN"; 5595 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN"; 5596 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m"; 5597 case X86ISD::LCMPXCHG_DAG: return "x86ISD::LCMPXCHG_DAG"; 5598 case X86ISD::LCMPXCHG8_DAG: return "x86ISD::LCMPXCHG8_DAG"; 5599 } 5600} 5601 5602// isLegalAddressingMode - Return true if the addressing mode represented 5603// by AM is legal for this target, for a load/store of the specified type. 5604bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, 5605 const Type *Ty) const { 5606 // X86 supports extremely general addressing modes. 5607 5608 // X86 allows a sign-extended 32-bit immediate field as a displacement. 5609 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1) 5610 return false; 5611 5612 if (AM.BaseGV) { 5613 // We can only fold this if we don't need an extra load. 5614 if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false)) 5615 return false; 5616 5617 // X86-64 only supports addr of globals in small code model. 5618 if (Subtarget->is64Bit()) { 5619 if (getTargetMachine().getCodeModel() != CodeModel::Small) 5620 return false; 5621 // If lower 4G is not available, then we must use rip-relative addressing. 5622 if (AM.BaseOffs || AM.Scale > 1) 5623 return false; 5624 } 5625 } 5626 5627 switch (AM.Scale) { 5628 case 0: 5629 case 1: 5630 case 2: 5631 case 4: 5632 case 8: 5633 // These scales always work. 5634 break; 5635 case 3: 5636 case 5: 5637 case 9: 5638 // These scales are formed with basereg+scalereg. Only accept if there is 5639 // no basereg yet. 5640 if (AM.HasBaseReg) 5641 return false; 5642 break; 5643 default: // Other stuff never works. 5644 return false; 5645 } 5646 5647 return true; 5648} 5649 5650 5651bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const { 5652 if (!Ty1->isInteger() || !Ty2->isInteger()) 5653 return false; 5654 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 5655 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 5656 if (NumBits1 <= NumBits2) 5657 return false; 5658 return Subtarget->is64Bit() || NumBits1 < 64; 5659} 5660 5661bool X86TargetLowering::isTruncateFree(MVT::ValueType VT1, 5662 MVT::ValueType VT2) const { 5663 if (!MVT::isInteger(VT1) || !MVT::isInteger(VT2)) 5664 return false; 5665 unsigned NumBits1 = MVT::getSizeInBits(VT1); 5666 unsigned NumBits2 = MVT::getSizeInBits(VT2); 5667 if (NumBits1 <= NumBits2) 5668 return false; 5669 return Subtarget->is64Bit() || NumBits1 < 64; 5670} 5671 5672/// isShuffleMaskLegal - Targets can use this to indicate that they only 5673/// support *some* VECTOR_SHUFFLE operations, those with specific masks. 5674/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values 5675/// are assumed to be legal. 5676bool 5677X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const { 5678 // Only do shuffles on 128-bit vector types for now. 5679 if (MVT::getSizeInBits(VT) == 64) return false; 5680 return (Mask.Val->getNumOperands() <= 4 || 5681 isIdentityMask(Mask.Val) || 5682 isIdentityMask(Mask.Val, true) || 5683 isSplatMask(Mask.Val) || 5684 isPSHUFHW_PSHUFLWMask(Mask.Val) || 5685 X86::isUNPCKLMask(Mask.Val) || 5686 X86::isUNPCKHMask(Mask.Val) || 5687 X86::isUNPCKL_v_undef_Mask(Mask.Val) || 5688 X86::isUNPCKH_v_undef_Mask(Mask.Val)); 5689} 5690 5691bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps, 5692 MVT::ValueType EVT, 5693 SelectionDAG &DAG) const { 5694 unsigned NumElts = BVOps.size(); 5695 // Only do shuffles on 128-bit vector types for now. 5696 if (MVT::getSizeInBits(EVT) * NumElts == 64) return false; 5697 if (NumElts == 2) return true; 5698 if (NumElts == 4) { 5699 return (isMOVLMask(&BVOps[0], 4) || 5700 isCommutedMOVL(&BVOps[0], 4, true) || 5701 isSHUFPMask(&BVOps[0], 4) || 5702 isCommutedSHUFP(&BVOps[0], 4)); 5703 } 5704 return false; 5705} 5706 5707//===----------------------------------------------------------------------===// 5708// X86 Scheduler Hooks 5709//===----------------------------------------------------------------------===// 5710 5711MachineBasicBlock * 5712X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 5713 MachineBasicBlock *BB) { 5714 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 5715 switch (MI->getOpcode()) { 5716 default: assert(false && "Unexpected instr type to insert"); 5717 case X86::CMOV_FR32: 5718 case X86::CMOV_FR64: 5719 case X86::CMOV_V4F32: 5720 case X86::CMOV_V2F64: 5721 case X86::CMOV_V2I64: { 5722 // To "insert" a SELECT_CC instruction, we actually have to insert the 5723 // diamond control-flow pattern. The incoming instruction knows the 5724 // destination vreg to set, the condition code register to branch on, the 5725 // true/false values to select between, and a branch opcode to use. 5726 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 5727 ilist<MachineBasicBlock>::iterator It = BB; 5728 ++It; 5729 5730 // thisMBB: 5731 // ... 5732 // TrueVal = ... 5733 // cmpTY ccX, r1, r2 5734 // bCC copy1MBB 5735 // fallthrough --> copy0MBB 5736 MachineBasicBlock *thisMBB = BB; 5737 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); 5738 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); 5739 unsigned Opc = 5740 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); 5741 BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB); 5742 MachineFunction *F = BB->getParent(); 5743 F->getBasicBlockList().insert(It, copy0MBB); 5744 F->getBasicBlockList().insert(It, sinkMBB); 5745 // Update machine-CFG edges by first adding all successors of the current 5746 // block to the new block which will contain the Phi node for the select. 5747 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), 5748 e = BB->succ_end(); i != e; ++i) 5749 sinkMBB->addSuccessor(*i); 5750 // Next, remove all successors of the current block, and add the true 5751 // and fallthrough blocks as its successors. 5752 while(!BB->succ_empty()) 5753 BB->removeSuccessor(BB->succ_begin()); 5754 BB->addSuccessor(copy0MBB); 5755 BB->addSuccessor(sinkMBB); 5756 5757 // copy0MBB: 5758 // %FalseValue = ... 5759 // # fallthrough to sinkMBB 5760 BB = copy0MBB; 5761 5762 // Update machine-CFG edges 5763 BB->addSuccessor(sinkMBB); 5764 5765 // sinkMBB: 5766 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 5767 // ... 5768 BB = sinkMBB; 5769 BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg()) 5770 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) 5771 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 5772 5773 delete MI; // The pseudo instruction is gone now. 5774 return BB; 5775 } 5776 5777 case X86::FP32_TO_INT16_IN_MEM: 5778 case X86::FP32_TO_INT32_IN_MEM: 5779 case X86::FP32_TO_INT64_IN_MEM: 5780 case X86::FP64_TO_INT16_IN_MEM: 5781 case X86::FP64_TO_INT32_IN_MEM: 5782 case X86::FP64_TO_INT64_IN_MEM: 5783 case X86::FP80_TO_INT16_IN_MEM: 5784 case X86::FP80_TO_INT32_IN_MEM: 5785 case X86::FP80_TO_INT64_IN_MEM: { 5786 // Change the floating point control register to use "round towards zero" 5787 // mode when truncating to an integer value. 5788 MachineFunction *F = BB->getParent(); 5789 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); 5790 addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx); 5791 5792 // Load the old value of the high byte of the control word... 5793 unsigned OldCW = 5794 F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass); 5795 addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx); 5796 5797 // Set the high part to be round to zero... 5798 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx) 5799 .addImm(0xC7F); 5800 5801 // Reload the modified control word now... 5802 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx); 5803 5804 // Restore the memory image of control word to original value 5805 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx) 5806 .addReg(OldCW); 5807 5808 // Get the X86 opcode to use. 5809 unsigned Opc; 5810 switch (MI->getOpcode()) { 5811 default: assert(0 && "illegal opcode!"); 5812 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; 5813 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; 5814 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; 5815 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; 5816 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; 5817 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; 5818 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; 5819 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; 5820 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; 5821 } 5822 5823 X86AddressMode AM; 5824 MachineOperand &Op = MI->getOperand(0); 5825 if (Op.isRegister()) { 5826 AM.BaseType = X86AddressMode::RegBase; 5827 AM.Base.Reg = Op.getReg(); 5828 } else { 5829 AM.BaseType = X86AddressMode::FrameIndexBase; 5830 AM.Base.FrameIndex = Op.getIndex(); 5831 } 5832 Op = MI->getOperand(1); 5833 if (Op.isImmediate()) 5834 AM.Scale = Op.getImm(); 5835 Op = MI->getOperand(2); 5836 if (Op.isImmediate()) 5837 AM.IndexReg = Op.getImm(); 5838 Op = MI->getOperand(3); 5839 if (Op.isGlobalAddress()) { 5840 AM.GV = Op.getGlobal(); 5841 } else { 5842 AM.Disp = Op.getImm(); 5843 } 5844 addFullAddress(BuildMI(BB, TII->get(Opc)), AM) 5845 .addReg(MI->getOperand(4).getReg()); 5846 5847 // Reload the original control word now. 5848 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx); 5849 5850 delete MI; // The pseudo instruction is gone now. 5851 return BB; 5852 } 5853 } 5854} 5855 5856//===----------------------------------------------------------------------===// 5857// X86 Optimization Hooks 5858//===----------------------------------------------------------------------===// 5859 5860void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, 5861 const APInt &Mask, 5862 APInt &KnownZero, 5863 APInt &KnownOne, 5864 const SelectionDAG &DAG, 5865 unsigned Depth) const { 5866 unsigned Opc = Op.getOpcode(); 5867 assert((Opc >= ISD::BUILTIN_OP_END || 5868 Opc == ISD::INTRINSIC_WO_CHAIN || 5869 Opc == ISD::INTRINSIC_W_CHAIN || 5870 Opc == ISD::INTRINSIC_VOID) && 5871 "Should use MaskedValueIsZero if you don't know whether Op" 5872 " is a target node!"); 5873 5874 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything. 5875 switch (Opc) { 5876 default: break; 5877 case X86ISD::SETCC: 5878 KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(), 5879 Mask.getBitWidth() - 1); 5880 break; 5881 } 5882} 5883 5884/// getShuffleScalarElt - Returns the scalar element that will make up the ith 5885/// element of the result of the vector shuffle. 5886static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) { 5887 MVT::ValueType VT = N->getValueType(0); 5888 SDOperand PermMask = N->getOperand(2); 5889 unsigned NumElems = PermMask.getNumOperands(); 5890 SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1); 5891 i %= NumElems; 5892 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) { 5893 return (i == 0) 5894 ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT)); 5895 } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) { 5896 SDOperand Idx = PermMask.getOperand(i); 5897 if (Idx.getOpcode() == ISD::UNDEF) 5898 return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT)); 5899 return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG); 5900 } 5901 return SDOperand(); 5902} 5903 5904/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the 5905/// node is a GlobalAddress + an offset. 5906static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) { 5907 unsigned Opc = N->getOpcode(); 5908 if (Opc == X86ISD::Wrapper) { 5909 if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) { 5910 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal(); 5911 return true; 5912 } 5913 } else if (Opc == ISD::ADD) { 5914 SDOperand N1 = N->getOperand(0); 5915 SDOperand N2 = N->getOperand(1); 5916 if (isGAPlusOffset(N1.Val, GA, Offset)) { 5917 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); 5918 if (V) { 5919 Offset += V->getSignExtended(); 5920 return true; 5921 } 5922 } else if (isGAPlusOffset(N2.Val, GA, Offset)) { 5923 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); 5924 if (V) { 5925 Offset += V->getSignExtended(); 5926 return true; 5927 } 5928 } 5929 } 5930 return false; 5931} 5932 5933/// isConsecutiveLoad - Returns true if N is loading from an address of Base 5934/// + Dist * Size. 5935static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size, 5936 MachineFrameInfo *MFI) { 5937 if (N->getOperand(0).Val != Base->getOperand(0).Val) 5938 return false; 5939 5940 SDOperand Loc = N->getOperand(1); 5941 SDOperand BaseLoc = Base->getOperand(1); 5942 if (Loc.getOpcode() == ISD::FrameIndex) { 5943 if (BaseLoc.getOpcode() != ISD::FrameIndex) 5944 return false; 5945 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 5946 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 5947 int FS = MFI->getObjectSize(FI); 5948 int BFS = MFI->getObjectSize(BFI); 5949 if (FS != BFS || FS != Size) return false; 5950 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size); 5951 } else { 5952 GlobalValue *GV1 = NULL; 5953 GlobalValue *GV2 = NULL; 5954 int64_t Offset1 = 0; 5955 int64_t Offset2 = 0; 5956 bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1); 5957 bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2); 5958 if (isGA1 && isGA2 && GV1 == GV2) 5959 return Offset1 == (Offset2 + Dist*Size); 5960 } 5961 5962 return false; 5963} 5964 5965static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI, 5966 const X86Subtarget *Subtarget) { 5967 GlobalValue *GV; 5968 int64_t Offset = 0; 5969 if (isGAPlusOffset(Base, GV, Offset)) 5970 return (GV->getAlignment() >= 16 && (Offset % 16) == 0); 5971 // DAG combine handles the stack object case. 5972 return false; 5973} 5974 5975 5976/// PerformShuffleCombine - Combine a vector_shuffle that is equal to 5977/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load 5978/// if the load addresses are consecutive, non-overlapping, and in the right 5979/// order. 5980static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, 5981 const X86Subtarget *Subtarget) { 5982 MachineFunction &MF = DAG.getMachineFunction(); 5983 MachineFrameInfo *MFI = MF.getFrameInfo(); 5984 MVT::ValueType VT = N->getValueType(0); 5985 MVT::ValueType EVT = MVT::getVectorElementType(VT); 5986 SDOperand PermMask = N->getOperand(2); 5987 int NumElems = (int)PermMask.getNumOperands(); 5988 SDNode *Base = NULL; 5989 for (int i = 0; i < NumElems; ++i) { 5990 SDOperand Idx = PermMask.getOperand(i); 5991 if (Idx.getOpcode() == ISD::UNDEF) { 5992 if (!Base) return SDOperand(); 5993 } else { 5994 SDOperand Arg = 5995 getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG); 5996 if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val)) 5997 return SDOperand(); 5998 if (!Base) 5999 Base = Arg.Val; 6000 else if (!isConsecutiveLoad(Arg.Val, Base, 6001 i, MVT::getSizeInBits(EVT)/8,MFI)) 6002 return SDOperand(); 6003 } 6004 } 6005 6006 bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget); 6007 LoadSDNode *LD = cast<LoadSDNode>(Base); 6008 if (isAlign16) { 6009 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(), 6010 LD->getSrcValueOffset(), LD->isVolatile()); 6011 } else { 6012 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(), 6013 LD->getSrcValueOffset(), LD->isVolatile(), 6014 LD->getAlignment()); 6015 } 6016} 6017 6018/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes. 6019static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, 6020 const X86Subtarget *Subtarget) { 6021 SDOperand Cond = N->getOperand(0); 6022 6023 // If we have SSE[12] support, try to form min/max nodes. 6024 if (Subtarget->hasSSE2() && 6025 (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) { 6026 if (Cond.getOpcode() == ISD::SETCC) { 6027 // Get the LHS/RHS of the select. 6028 SDOperand LHS = N->getOperand(1); 6029 SDOperand RHS = N->getOperand(2); 6030 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 6031 6032 unsigned Opcode = 0; 6033 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) { 6034 switch (CC) { 6035 default: break; 6036 case ISD::SETOLE: // (X <= Y) ? X : Y -> min 6037 case ISD::SETULE: 6038 case ISD::SETLE: 6039 if (!UnsafeFPMath) break; 6040 // FALL THROUGH. 6041 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min 6042 case ISD::SETLT: 6043 Opcode = X86ISD::FMIN; 6044 break; 6045 6046 case ISD::SETOGT: // (X > Y) ? X : Y -> max 6047 case ISD::SETUGT: 6048 case ISD::SETGT: 6049 if (!UnsafeFPMath) break; 6050 // FALL THROUGH. 6051 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max 6052 case ISD::SETGE: 6053 Opcode = X86ISD::FMAX; 6054 break; 6055 } 6056 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) { 6057 switch (CC) { 6058 default: break; 6059 case ISD::SETOGT: // (X > Y) ? Y : X -> min 6060 case ISD::SETUGT: 6061 case ISD::SETGT: 6062 if (!UnsafeFPMath) break; 6063 // FALL THROUGH. 6064 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min 6065 case ISD::SETGE: 6066 Opcode = X86ISD::FMIN; 6067 break; 6068 6069 case ISD::SETOLE: // (X <= Y) ? Y : X -> max 6070 case ISD::SETULE: 6071 case ISD::SETLE: 6072 if (!UnsafeFPMath) break; 6073 // FALL THROUGH. 6074 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max 6075 case ISD::SETLT: 6076 Opcode = X86ISD::FMAX; 6077 break; 6078 } 6079 } 6080 6081 if (Opcode) 6082 return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS); 6083 } 6084 6085 } 6086 6087 return SDOperand(); 6088} 6089 6090/// PerformSTORECombine - Do target-specific dag combines on STORE nodes. 6091static SDOperand PerformSTORECombine(StoreSDNode *St, SelectionDAG &DAG, 6092 const X86Subtarget *Subtarget) { 6093 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering 6094 // the FP state in cases where an emms may be missing. 6095 // A preferable solution to the general problem is to figure out the right 6096 // places to insert EMMS. This qualifies as a quick hack. 6097 if (MVT::isVector(St->getValue().getValueType()) && 6098 MVT::getSizeInBits(St->getValue().getValueType()) == 64 && 6099 isa<LoadSDNode>(St->getValue()) && 6100 !cast<LoadSDNode>(St->getValue())->isVolatile() && 6101 St->getChain().hasOneUse() && !St->isVolatile()) { 6102 SDNode* LdVal = St->getValue().Val; 6103 LoadSDNode *Ld = 0; 6104 int TokenFactorIndex = -1; 6105 SmallVector<SDOperand, 8> Ops; 6106 SDNode* ChainVal = St->getChain().Val; 6107 // Must be a store of a load. We currently handle two cases: the load 6108 // is a direct child, and it's under an intervening TokenFactor. It is 6109 // possible to dig deeper under nested TokenFactors. 6110 if (ChainVal == LdVal) 6111 Ld = cast<LoadSDNode>(St->getChain()); 6112 else if (St->getValue().hasOneUse() && 6113 ChainVal->getOpcode() == ISD::TokenFactor) { 6114 for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) { 6115 if (ChainVal->getOperand(i).Val == LdVal) { 6116 TokenFactorIndex = i; 6117 Ld = cast<LoadSDNode>(St->getValue()); 6118 } else 6119 Ops.push_back(ChainVal->getOperand(i)); 6120 } 6121 } 6122 if (Ld) { 6123 // If we are a 64-bit capable x86, lower to a single movq load/store pair. 6124 if (Subtarget->is64Bit()) { 6125 SDOperand NewLd = DAG.getLoad(MVT::i64, Ld->getChain(), 6126 Ld->getBasePtr(), Ld->getSrcValue(), 6127 Ld->getSrcValueOffset(), Ld->isVolatile(), 6128 Ld->getAlignment()); 6129 SDOperand NewChain = NewLd.getValue(1); 6130 if (TokenFactorIndex != -1) { 6131 Ops.push_back(NewLd); 6132 NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], 6133 Ops.size()); 6134 } 6135 return DAG.getStore(NewChain, NewLd, St->getBasePtr(), 6136 St->getSrcValue(), St->getSrcValueOffset(), 6137 St->isVolatile(), St->getAlignment()); 6138 } 6139 6140 // Otherwise, lower to two 32-bit copies. 6141 SDOperand LoAddr = Ld->getBasePtr(); 6142 SDOperand HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr, 6143 DAG.getConstant(MVT::i32, 4)); 6144 6145 SDOperand LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr, 6146 Ld->getSrcValue(), Ld->getSrcValueOffset(), 6147 Ld->isVolatile(), Ld->getAlignment()); 6148 SDOperand HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr, 6149 Ld->getSrcValue(), Ld->getSrcValueOffset()+4, 6150 Ld->isVolatile(), 6151 MinAlign(Ld->getAlignment(), 4)); 6152 6153 SDOperand NewChain = LoLd.getValue(1); 6154 if (TokenFactorIndex != -1) { 6155 Ops.push_back(LoLd); 6156 Ops.push_back(HiLd); 6157 NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], 6158 Ops.size()); 6159 } 6160 6161 LoAddr = St->getBasePtr(); 6162 HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr, 6163 DAG.getConstant(MVT::i32, 4)); 6164 6165 SDOperand LoSt = DAG.getStore(NewChain, LoLd, LoAddr, 6166 St->getSrcValue(), St->getSrcValueOffset(), 6167 St->isVolatile(), St->getAlignment()); 6168 SDOperand HiSt = DAG.getStore(NewChain, HiLd, HiAddr, 6169 St->getSrcValue(), St->getSrcValueOffset()+4, 6170 St->isVolatile(), 6171 MinAlign(St->getAlignment(), 4)); 6172 return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt); 6173 } 6174 } 6175 return SDOperand(); 6176} 6177 6178/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and 6179/// X86ISD::FXOR nodes. 6180static SDOperand PerformFORCombine(SDNode *N, SelectionDAG &DAG) { 6181 assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); 6182 // F[X]OR(0.0, x) -> x 6183 // F[X]OR(x, 0.0) -> x 6184 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 6185 if (C->getValueAPF().isPosZero()) 6186 return N->getOperand(1); 6187 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) 6188 if (C->getValueAPF().isPosZero()) 6189 return N->getOperand(0); 6190 return SDOperand(); 6191} 6192 6193/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes. 6194static SDOperand PerformFANDCombine(SDNode *N, SelectionDAG &DAG) { 6195 // FAND(0.0, x) -> 0.0 6196 // FAND(x, 0.0) -> 0.0 6197 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 6198 if (C->getValueAPF().isPosZero()) 6199 return N->getOperand(0); 6200 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) 6201 if (C->getValueAPF().isPosZero()) 6202 return N->getOperand(1); 6203 return SDOperand(); 6204} 6205 6206 6207SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N, 6208 DAGCombinerInfo &DCI) const { 6209 SelectionDAG &DAG = DCI.DAG; 6210 switch (N->getOpcode()) { 6211 default: break; 6212 case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, Subtarget); 6213 case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget); 6214 case ISD::STORE: 6215 return PerformSTORECombine(cast<StoreSDNode>(N), DAG, Subtarget); 6216 case X86ISD::FXOR: 6217 case X86ISD::FOR: return PerformFORCombine(N, DAG); 6218 case X86ISD::FAND: return PerformFANDCombine(N, DAG); 6219 } 6220 6221 return SDOperand(); 6222} 6223 6224//===----------------------------------------------------------------------===// 6225// X86 Inline Assembly Support 6226//===----------------------------------------------------------------------===// 6227 6228/// getConstraintType - Given a constraint letter, return the type of 6229/// constraint it is for this target. 6230X86TargetLowering::ConstraintType 6231X86TargetLowering::getConstraintType(const std::string &Constraint) const { 6232 if (Constraint.size() == 1) { 6233 switch (Constraint[0]) { 6234 case 'A': 6235 case 'r': 6236 case 'R': 6237 case 'l': 6238 case 'q': 6239 case 'Q': 6240 case 'x': 6241 case 'Y': 6242 return C_RegisterClass; 6243 default: 6244 break; 6245 } 6246 } 6247 return TargetLowering::getConstraintType(Constraint); 6248} 6249 6250/// LowerXConstraint - try to replace an X constraint, which matches anything, 6251/// with another that has more specific requirements based on the type of the 6252/// corresponding operand. 6253void X86TargetLowering::lowerXConstraint(MVT::ValueType ConstraintVT, 6254 std::string& s) const { 6255 if (MVT::isFloatingPoint(ConstraintVT)) { 6256 if (Subtarget->hasSSE2()) 6257 s = "Y"; 6258 else if (Subtarget->hasSSE1()) 6259 s = "x"; 6260 else 6261 s = "f"; 6262 } else 6263 return TargetLowering::lowerXConstraint(ConstraintVT, s); 6264} 6265 6266/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 6267/// vector. If it is invalid, don't add anything to Ops. 6268void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op, 6269 char Constraint, 6270 std::vector<SDOperand>&Ops, 6271 SelectionDAG &DAG) { 6272 SDOperand Result(0, 0); 6273 6274 switch (Constraint) { 6275 default: break; 6276 case 'I': 6277 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 6278 if (C->getValue() <= 31) { 6279 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType()); 6280 break; 6281 } 6282 } 6283 return; 6284 case 'N': 6285 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 6286 if (C->getValue() <= 255) { 6287 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType()); 6288 break; 6289 } 6290 } 6291 return; 6292 case 'i': { 6293 // Literal immediates are always ok. 6294 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) { 6295 Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType()); 6296 break; 6297 } 6298 6299 // If we are in non-pic codegen mode, we allow the address of a global (with 6300 // an optional displacement) to be used with 'i'. 6301 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 6302 int64_t Offset = 0; 6303 6304 // Match either (GA) or (GA+C) 6305 if (GA) { 6306 Offset = GA->getOffset(); 6307 } else if (Op.getOpcode() == ISD::ADD) { 6308 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 6309 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 6310 if (C && GA) { 6311 Offset = GA->getOffset()+C->getValue(); 6312 } else { 6313 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 6314 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 6315 if (C && GA) 6316 Offset = GA->getOffset()+C->getValue(); 6317 else 6318 C = 0, GA = 0; 6319 } 6320 } 6321 6322 if (GA) { 6323 // If addressing this global requires a load (e.g. in PIC mode), we can't 6324 // match. 6325 if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(), 6326 false)) 6327 return; 6328 6329 Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0), 6330 Offset); 6331 Result = Op; 6332 break; 6333 } 6334 6335 // Otherwise, not valid for this mode. 6336 return; 6337 } 6338 } 6339 6340 if (Result.Val) { 6341 Ops.push_back(Result); 6342 return; 6343 } 6344 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 6345} 6346 6347std::vector<unsigned> X86TargetLowering:: 6348getRegClassForInlineAsmConstraint(const std::string &Constraint, 6349 MVT::ValueType VT) const { 6350 if (Constraint.size() == 1) { 6351 // FIXME: not handling fp-stack yet! 6352 switch (Constraint[0]) { // GCC X86 Constraint Letters 6353 default: break; // Unknown constraint letter 6354 case 'A': // EAX/EDX 6355 if (VT == MVT::i32 || VT == MVT::i64) 6356 return make_vector<unsigned>(X86::EAX, X86::EDX, 0); 6357 break; 6358 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode) 6359 case 'Q': // Q_REGS 6360 if (VT == MVT::i32) 6361 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0); 6362 else if (VT == MVT::i16) 6363 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0); 6364 else if (VT == MVT::i8) 6365 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0); 6366 else if (VT == MVT::i64) 6367 return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0); 6368 break; 6369 } 6370 } 6371 6372 return std::vector<unsigned>(); 6373} 6374 6375std::pair<unsigned, const TargetRegisterClass*> 6376X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, 6377 MVT::ValueType VT) const { 6378 // First, see if this is a constraint that directly corresponds to an LLVM 6379 // register class. 6380 if (Constraint.size() == 1) { 6381 // GCC Constraint Letters 6382 switch (Constraint[0]) { 6383 default: break; 6384 case 'r': // GENERAL_REGS 6385 case 'R': // LEGACY_REGS 6386 case 'l': // INDEX_REGS 6387 if (VT == MVT::i64 && Subtarget->is64Bit()) 6388 return std::make_pair(0U, X86::GR64RegisterClass); 6389 if (VT == MVT::i32) 6390 return std::make_pair(0U, X86::GR32RegisterClass); 6391 else if (VT == MVT::i16) 6392 return std::make_pair(0U, X86::GR16RegisterClass); 6393 else if (VT == MVT::i8) 6394 return std::make_pair(0U, X86::GR8RegisterClass); 6395 break; 6396 case 'y': // MMX_REGS if MMX allowed. 6397 if (!Subtarget->hasMMX()) break; 6398 return std::make_pair(0U, X86::VR64RegisterClass); 6399 break; 6400 case 'Y': // SSE_REGS if SSE2 allowed 6401 if (!Subtarget->hasSSE2()) break; 6402 // FALL THROUGH. 6403 case 'x': // SSE_REGS if SSE1 allowed 6404 if (!Subtarget->hasSSE1()) break; 6405 6406 switch (VT) { 6407 default: break; 6408 // Scalar SSE types. 6409 case MVT::f32: 6410 case MVT::i32: 6411 return std::make_pair(0U, X86::FR32RegisterClass); 6412 case MVT::f64: 6413 case MVT::i64: 6414 return std::make_pair(0U, X86::FR64RegisterClass); 6415 // Vector types. 6416 case MVT::v16i8: 6417 case MVT::v8i16: 6418 case MVT::v4i32: 6419 case MVT::v2i64: 6420 case MVT::v4f32: 6421 case MVT::v2f64: 6422 return std::make_pair(0U, X86::VR128RegisterClass); 6423 } 6424 break; 6425 } 6426 } 6427 6428 // Use the default implementation in TargetLowering to convert the register 6429 // constraint into a member of a register class. 6430 std::pair<unsigned, const TargetRegisterClass*> Res; 6431 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 6432 6433 // Not found as a standard register? 6434 if (Res.second == 0) { 6435 // GCC calls "st(0)" just plain "st". 6436 if (StringsEqualNoCase("{st}", Constraint)) { 6437 Res.first = X86::ST0; 6438 Res.second = X86::RFP80RegisterClass; 6439 } 6440 6441 return Res; 6442 } 6443 6444 // Otherwise, check to see if this is a register class of the wrong value 6445 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to 6446 // turn into {ax},{dx}. 6447 if (Res.second->hasType(VT)) 6448 return Res; // Correct type already, nothing to do. 6449 6450 // All of the single-register GCC register classes map their values onto 6451 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we 6452 // really want an 8-bit or 32-bit register, map to the appropriate register 6453 // class and return the appropriate register. 6454 if (Res.second != X86::GR16RegisterClass) 6455 return Res; 6456 6457 if (VT == MVT::i8) { 6458 unsigned DestReg = 0; 6459 switch (Res.first) { 6460 default: break; 6461 case X86::AX: DestReg = X86::AL; break; 6462 case X86::DX: DestReg = X86::DL; break; 6463 case X86::CX: DestReg = X86::CL; break; 6464 case X86::BX: DestReg = X86::BL; break; 6465 } 6466 if (DestReg) { 6467 Res.first = DestReg; 6468 Res.second = Res.second = X86::GR8RegisterClass; 6469 } 6470 } else if (VT == MVT::i32) { 6471 unsigned DestReg = 0; 6472 switch (Res.first) { 6473 default: break; 6474 case X86::AX: DestReg = X86::EAX; break; 6475 case X86::DX: DestReg = X86::EDX; break; 6476 case X86::CX: DestReg = X86::ECX; break; 6477 case X86::BX: DestReg = X86::EBX; break; 6478 case X86::SI: DestReg = X86::ESI; break; 6479 case X86::DI: DestReg = X86::EDI; break; 6480 case X86::BP: DestReg = X86::EBP; break; 6481 case X86::SP: DestReg = X86::ESP; break; 6482 } 6483 if (DestReg) { 6484 Res.first = DestReg; 6485 Res.second = Res.second = X86::GR32RegisterClass; 6486 } 6487 } else if (VT == MVT::i64) { 6488 unsigned DestReg = 0; 6489 switch (Res.first) { 6490 default: break; 6491 case X86::AX: DestReg = X86::RAX; break; 6492 case X86::DX: DestReg = X86::RDX; break; 6493 case X86::CX: DestReg = X86::RCX; break; 6494 case X86::BX: DestReg = X86::RBX; break; 6495 case X86::SI: DestReg = X86::RSI; break; 6496 case X86::DI: DestReg = X86::RDI; break; 6497 case X86::BP: DestReg = X86::RBP; break; 6498 case X86::SP: DestReg = X86::RSP; break; 6499 } 6500 if (DestReg) { 6501 Res.first = DestReg; 6502 Res.second = Res.second = X86::GR64RegisterClass; 6503 } 6504 } 6505 6506 return Res; 6507} 6508