X86ISelLowering.cpp revision 983611836cd1edec8d1b8032e0539b6ed80461d6
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86ShuffleDecode.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/PseudoSourceValue.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/Dwarf.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53using namespace llvm;
54using namespace dwarf;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57
58static cl::opt<bool>
59DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
60
61// Forward declarations.
62static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
63                       SDValue V2);
64
65static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
66
67  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
68
69  if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
70    if (is64Bit) return new X8664_MachoTargetObjectFile();
71    return new TargetLoweringObjectFileMachO();
72  } else if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
73    if (is64Bit) return new X8664_ELFTargetObjectFile(TM);
74    return new X8632_ELFTargetObjectFile(TM);
75  } else if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) {
76    return new TargetLoweringObjectFileCOFF();
77  }
78  llvm_unreachable("unknown subtarget type");
79}
80
81X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
82  : TargetLowering(TM, createTLOF(TM)) {
83  Subtarget = &TM.getSubtarget<X86Subtarget>();
84  X86ScalarSSEf64 = Subtarget->hasSSE2();
85  X86ScalarSSEf32 = Subtarget->hasSSE1();
86  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
87
88  RegInfo = TM.getRegisterInfo();
89  TD = getTargetData();
90
91  // Set up the TargetLowering object.
92
93  // X86 is weird, it always uses i8 for shift amounts and setcc results.
94  setShiftAmountType(MVT::i8);
95  setBooleanContents(ZeroOrOneBooleanContent);
96  setSchedulingPreference(Sched::RegPressure);
97  setStackPointerRegisterToSaveRestore(X86StackPtr);
98
99  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
100    // Setup Windows compiler runtime calls.
101    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
102    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
103    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
104    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
105    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
106    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
107    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
108    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
109  }
110
111  if (Subtarget->isTargetDarwin()) {
112    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
113    setUseUnderscoreSetJmp(false);
114    setUseUnderscoreLongJmp(false);
115  } else if (Subtarget->isTargetMingw()) {
116    // MS runtime is weird: it exports _setjmp, but longjmp!
117    setUseUnderscoreSetJmp(true);
118    setUseUnderscoreLongJmp(false);
119  } else {
120    setUseUnderscoreSetJmp(true);
121    setUseUnderscoreLongJmp(true);
122  }
123
124  // Set up the register classes.
125  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
126  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
127  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
128  if (Subtarget->is64Bit())
129    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
130
131  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
132
133  // We don't accept any truncstore of integer registers.
134  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
135  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
136  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
137  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
138  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
139  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
140
141  // SETOEQ and SETUNE require checking two conditions.
142  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
143  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
144  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
145  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
146  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
147  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
148
149  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
150  // operation.
151  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
152  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
153  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
154
155  if (Subtarget->is64Bit()) {
156    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
157    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
158  } else if (!UseSoftFloat) {
159    // We have an algorithm for SSE2->double, and we turn this into a
160    // 64-bit FILD followed by conditional FADD for other targets.
161    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
162    // We have an algorithm for SSE2, and we turn this into a 64-bit
163    // FILD for other targets.
164    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
165  }
166
167  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
168  // this operation.
169  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
170  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
171
172  if (!UseSoftFloat) {
173    // SSE has no i16 to fp conversion, only i32
174    if (X86ScalarSSEf32) {
175      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
176      // f32 and f64 cases are Legal, f80 case is not
177      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
178    } else {
179      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
180      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
181    }
182  } else {
183    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
184    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
185  }
186
187  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
188  // are Legal, f80 is custom lowered.
189  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
190  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
191
192  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
193  // this operation.
194  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
195  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
196
197  if (X86ScalarSSEf32) {
198    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
199    // f32 and f64 cases are Legal, f80 case is not
200    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
201  } else {
202    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
203    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
204  }
205
206  // Handle FP_TO_UINT by promoting the destination to a larger signed
207  // conversion.
208  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
209  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
210  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
211
212  if (Subtarget->is64Bit()) {
213    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
214    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
215  } else if (!UseSoftFloat) {
216    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
217      // Expand FP_TO_UINT into a select.
218      // FIXME: We would like to use a Custom expander here eventually to do
219      // the optimal thing for SSE vs. the default expansion in the legalizer.
220      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
221    else
222      // With SSE3 we can use fisttpll to convert to a signed i64; without
223      // SSE, we're stuck with a fistpll.
224      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
225  }
226
227  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
228  if (!X86ScalarSSEf64) {
229    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
230    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
231    if (Subtarget->is64Bit()) {
232      setOperationAction(ISD::BIT_CONVERT    , MVT::f64  , Expand);
233      // Without SSE, i64->f64 goes through memory.
234      setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Expand);
235    }
236  }
237
238  // Scalar integer divide and remainder are lowered to use operations that
239  // produce two results, to match the available instructions. This exposes
240  // the two-result form to trivial CSE, which is able to combine x/y and x%y
241  // into a single instruction.
242  //
243  // Scalar integer multiply-high is also lowered to use two-result
244  // operations, to match the available instructions. However, plain multiply
245  // (low) operations are left as Legal, as there are single-result
246  // instructions for this in x86. Using the two-result multiply instructions
247  // when both high and low results are needed must be arranged by dagcombine.
248  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
249  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
250  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
251  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
252  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
253  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
254  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
255  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
256  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
257  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
258  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
259  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
260  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
261  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
262  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
263  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
264  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
265  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
266  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
267  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
268  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
269  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
270  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
271  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
272
273  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
274  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
275  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
276  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
277  if (Subtarget->is64Bit())
278    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
279  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
280  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
281  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
282  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
283  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
284  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
285  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
286  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
287
288  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
289  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
290  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
291  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
292  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
293  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
294  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
295  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
296  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
297  if (Subtarget->is64Bit()) {
298    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
299    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
300    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
301  }
302
303  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
304  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
305
306  // These should be promoted to a larger select which is supported.
307  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
308  // X86 wants to expand cmov itself.
309  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
310  setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
311  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
312  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
313  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
314  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
315  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
316  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
317  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
318  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
319  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
320  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
321  if (Subtarget->is64Bit()) {
322    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
323    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
324  }
325  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
326
327  // Darwin ABI issue.
328  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
329  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
330  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
331  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
332  if (Subtarget->is64Bit())
333    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
334  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
335  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
336  if (Subtarget->is64Bit()) {
337    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
338    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
339    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
340    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
341    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
342  }
343  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
344  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
345  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
346  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
347  if (Subtarget->is64Bit()) {
348    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
349    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
350    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
351  }
352
353  if (Subtarget->hasSSE1())
354    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
355
356  // We may not have a libcall for MEMBARRIER so we should lower this.
357  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
358
359  // On X86 and X86-64, atomic operations are lowered to locked instructions.
360  // Locked instructions, in turn, have implicit fence semantics (all memory
361  // operations are flushed before issuing the locked instruction, and they
362  // are not buffered), so we can fold away the common pattern of
363  // fence-atomic-fence.
364  setShouldFoldAtomicFences(true);
365
366  // Expand certain atomics
367  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
368  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
369  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
370  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
371
372  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
373  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
374  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
375  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
376
377  if (!Subtarget->is64Bit()) {
378    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
379    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
380    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
381    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
382    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
383    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
384    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
385  }
386
387  // FIXME - use subtarget debug flags
388  if (!Subtarget->isTargetDarwin() &&
389      !Subtarget->isTargetELF() &&
390      !Subtarget->isTargetCygMing()) {
391    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
392  }
393
394  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
395  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
396  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
397  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
398  if (Subtarget->is64Bit()) {
399    setExceptionPointerRegister(X86::RAX);
400    setExceptionSelectorRegister(X86::RDX);
401  } else {
402    setExceptionPointerRegister(X86::EAX);
403    setExceptionSelectorRegister(X86::EDX);
404  }
405  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
406  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
407
408  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
409
410  setOperationAction(ISD::TRAP, MVT::Other, Legal);
411
412  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
413  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
414  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
415  if (Subtarget->is64Bit()) {
416    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
417    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
418  } else {
419    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
420    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
421  }
422
423  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
424  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
425  if (Subtarget->is64Bit())
426    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
427  if (Subtarget->isTargetCygMing() || Subtarget->isTargetWindows())
428    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
429  else
430    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
431
432  if (!UseSoftFloat && X86ScalarSSEf64) {
433    // f32 and f64 use SSE.
434    // Set up the FP register classes.
435    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
436    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
437
438    // Use ANDPD to simulate FABS.
439    setOperationAction(ISD::FABS , MVT::f64, Custom);
440    setOperationAction(ISD::FABS , MVT::f32, Custom);
441
442    // Use XORP to simulate FNEG.
443    setOperationAction(ISD::FNEG , MVT::f64, Custom);
444    setOperationAction(ISD::FNEG , MVT::f32, Custom);
445
446    // Use ANDPD and ORPD to simulate FCOPYSIGN.
447    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
448    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
449
450    // We don't support sin/cos/fmod
451    setOperationAction(ISD::FSIN , MVT::f64, Expand);
452    setOperationAction(ISD::FCOS , MVT::f64, Expand);
453    setOperationAction(ISD::FSIN , MVT::f32, Expand);
454    setOperationAction(ISD::FCOS , MVT::f32, Expand);
455
456    // Expand FP immediates into loads from the stack, except for the special
457    // cases we handle.
458    addLegalFPImmediate(APFloat(+0.0)); // xorpd
459    addLegalFPImmediate(APFloat(+0.0f)); // xorps
460  } else if (!UseSoftFloat && X86ScalarSSEf32) {
461    // Use SSE for f32, x87 for f64.
462    // Set up the FP register classes.
463    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
464    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
465
466    // Use ANDPS to simulate FABS.
467    setOperationAction(ISD::FABS , MVT::f32, Custom);
468
469    // Use XORP to simulate FNEG.
470    setOperationAction(ISD::FNEG , MVT::f32, Custom);
471
472    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
473
474    // Use ANDPS and ORPS to simulate FCOPYSIGN.
475    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
476    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
477
478    // We don't support sin/cos/fmod
479    setOperationAction(ISD::FSIN , MVT::f32, Expand);
480    setOperationAction(ISD::FCOS , MVT::f32, Expand);
481
482    // Special cases we handle for FP constants.
483    addLegalFPImmediate(APFloat(+0.0f)); // xorps
484    addLegalFPImmediate(APFloat(+0.0)); // FLD0
485    addLegalFPImmediate(APFloat(+1.0)); // FLD1
486    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
487    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
488
489    if (!UnsafeFPMath) {
490      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
491      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
492    }
493  } else if (!UseSoftFloat) {
494    // f32 and f64 in x87.
495    // Set up the FP register classes.
496    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
497    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
498
499    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
500    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
501    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
502    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
503
504    if (!UnsafeFPMath) {
505      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
506      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
507    }
508    addLegalFPImmediate(APFloat(+0.0)); // FLD0
509    addLegalFPImmediate(APFloat(+1.0)); // FLD1
510    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
511    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
512    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
513    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
514    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
515    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
516  }
517
518  // Long double always uses X87.
519  if (!UseSoftFloat) {
520    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
521    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
522    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
523    {
524      bool ignored;
525      APFloat TmpFlt(+0.0);
526      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
527                     &ignored);
528      addLegalFPImmediate(TmpFlt);  // FLD0
529      TmpFlt.changeSign();
530      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
531      APFloat TmpFlt2(+1.0);
532      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
533                      &ignored);
534      addLegalFPImmediate(TmpFlt2);  // FLD1
535      TmpFlt2.changeSign();
536      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
537    }
538
539    if (!UnsafeFPMath) {
540      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
541      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
542    }
543  }
544
545  // Always use a library call for pow.
546  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
547  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
548  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
549
550  setOperationAction(ISD::FLOG, MVT::f80, Expand);
551  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
552  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
553  setOperationAction(ISD::FEXP, MVT::f80, Expand);
554  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
555
556  // First set operation action for all vector types to either promote
557  // (for widening) or expand (for scalarization). Then we will selectively
558  // turn on ones that can be effectively codegen'd.
559  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
560       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
561    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
576    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
577    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
604    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
605    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
606    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
607    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
608    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
609    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
610    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
611    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
612    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
613    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
614    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
615         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
616      setTruncStoreAction((MVT::SimpleValueType)VT,
617                          (MVT::SimpleValueType)InnerVT, Expand);
618    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
619    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
620    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
621  }
622
623  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
624  // with -msoft-float, disable use of MMX as well.
625  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
626    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
627    // No operations on x86mmx supported, everything uses intrinsics.
628  }
629
630  // MMX-sized vectors (other than x86mmx) are expected to be expanded
631  // into smaller operations.
632  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
633  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
634  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
635  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
636  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
637  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
638  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
639  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
640  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
641  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
642  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
643  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
644  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
645  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
646  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
647  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
648  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
649  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
650  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
651  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
652  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
653  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
654  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
655  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
656  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
657  setOperationAction(ISD::BIT_CONVERT,        MVT::v8i8,  Expand);
658  setOperationAction(ISD::BIT_CONVERT,        MVT::v4i16, Expand);
659  setOperationAction(ISD::BIT_CONVERT,        MVT::v2i32, Expand);
660  setOperationAction(ISD::BIT_CONVERT,        MVT::v1i64, Expand);
661
662  if (!UseSoftFloat && Subtarget->hasSSE1()) {
663    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
664
665    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
666    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
667    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
668    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
669    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
670    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
671    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
672    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
673    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
674    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
675    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
676    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
677  }
678
679  if (!UseSoftFloat && Subtarget->hasSSE2()) {
680    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
681
682    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
683    // registers cannot be used even for integer operations.
684    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
685    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
686    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
687    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
688
689    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
690    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
691    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
692    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
693    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
694    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
695    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
696    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
697    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
698    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
699    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
700    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
701    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
702    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
703    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
704    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
705
706    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
707    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
708    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
709    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
710
711    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
712    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
713    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
714    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
715    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
716
717    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
718    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
719    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
720    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
721    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
722
723    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
724    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
725      EVT VT = (MVT::SimpleValueType)i;
726      // Do not attempt to custom lower non-power-of-2 vectors
727      if (!isPowerOf2_32(VT.getVectorNumElements()))
728        continue;
729      // Do not attempt to custom lower non-128-bit vectors
730      if (!VT.is128BitVector())
731        continue;
732      setOperationAction(ISD::BUILD_VECTOR,
733                         VT.getSimpleVT().SimpleTy, Custom);
734      setOperationAction(ISD::VECTOR_SHUFFLE,
735                         VT.getSimpleVT().SimpleTy, Custom);
736      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
737                         VT.getSimpleVT().SimpleTy, Custom);
738    }
739
740    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
741    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
742    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
743    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
744    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
745    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
746
747    if (Subtarget->is64Bit()) {
748      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
749      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
750    }
751
752    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
753    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
754      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
755      EVT VT = SVT;
756
757      // Do not attempt to promote non-128-bit vectors
758      if (!VT.is128BitVector())
759        continue;
760
761      setOperationAction(ISD::AND,    SVT, Promote);
762      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
763      setOperationAction(ISD::OR,     SVT, Promote);
764      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
765      setOperationAction(ISD::XOR,    SVT, Promote);
766      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
767      setOperationAction(ISD::LOAD,   SVT, Promote);
768      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
769      setOperationAction(ISD::SELECT, SVT, Promote);
770      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
771    }
772
773    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
774
775    // Custom lower v2i64 and v2f64 selects.
776    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
777    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
778    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
779    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
780
781    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
782    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
783  }
784
785  if (Subtarget->hasSSE41()) {
786    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
787    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
788    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
789    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
790    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
791    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
792    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
793    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
794    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
795    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
796
797    // FIXME: Do we need to handle scalar-to-vector here?
798    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
799
800    // Can turn SHL into an integer multiply.
801    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
802    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
803
804    // i8 and i16 vectors are custom , because the source register and source
805    // source memory operand types are not the same width.  f32 vectors are
806    // custom since the immediate controlling the insert encodes additional
807    // information.
808    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
809    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
810    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
811    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
812
813    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
814    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
815    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
816    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
817
818    if (Subtarget->is64Bit()) {
819      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
820      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
821    }
822  }
823
824  if (Subtarget->hasSSE42()) {
825    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
826  }
827
828  if (!UseSoftFloat && Subtarget->hasAVX()) {
829    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
830    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
831    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
832    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
833    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
834
835    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
836    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
837    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
838    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
839    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
840    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
841    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
842    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
843    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
844    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
845    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
846    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
847    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
848    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
849    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
850
851    // Operations to consider commented out -v16i16 v32i8
852    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
853    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
854    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
855    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
856    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
857    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
858    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
859    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
860    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
861    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
862    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
863    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
864    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
865    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
866
867    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
868    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
869    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
870    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
871
872    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
873    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
874    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
875    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
876    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
877
878    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
879    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
880    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
881    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
882    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
883    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
884
885#if 0
886    // Not sure we want to do this since there are no 256-bit integer
887    // operations in AVX
888
889    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
890    // This includes 256-bit vectors
891    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
892      EVT VT = (MVT::SimpleValueType)i;
893
894      // Do not attempt to custom lower non-power-of-2 vectors
895      if (!isPowerOf2_32(VT.getVectorNumElements()))
896        continue;
897
898      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
899      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
900      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
901    }
902
903    if (Subtarget->is64Bit()) {
904      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
905      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
906    }
907#endif
908
909#if 0
910    // Not sure we want to do this since there are no 256-bit integer
911    // operations in AVX
912
913    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
914    // Including 256-bit vectors
915    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
916      EVT VT = (MVT::SimpleValueType)i;
917
918      if (!VT.is256BitVector()) {
919        continue;
920      }
921      setOperationAction(ISD::AND,    VT, Promote);
922      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
923      setOperationAction(ISD::OR,     VT, Promote);
924      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
925      setOperationAction(ISD::XOR,    VT, Promote);
926      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
927      setOperationAction(ISD::LOAD,   VT, Promote);
928      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
929      setOperationAction(ISD::SELECT, VT, Promote);
930      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
931    }
932
933    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
934#endif
935  }
936
937  // We want to custom lower some of our intrinsics.
938  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
939
940  // Add/Sub/Mul with overflow operations are custom lowered.
941  setOperationAction(ISD::SADDO, MVT::i32, Custom);
942  setOperationAction(ISD::UADDO, MVT::i32, Custom);
943  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
944  setOperationAction(ISD::USUBO, MVT::i32, Custom);
945  setOperationAction(ISD::SMULO, MVT::i32, Custom);
946
947  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
948  // handle type legalization for these operations here.
949  //
950  // FIXME: We really should do custom legalization for addition and
951  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
952  // than generic legalization for 64-bit multiplication-with-overflow, though.
953  if (Subtarget->is64Bit()) {
954    setOperationAction(ISD::SADDO, MVT::i64, Custom);
955    setOperationAction(ISD::UADDO, MVT::i64, Custom);
956    setOperationAction(ISD::SSUBO, MVT::i64, Custom);
957    setOperationAction(ISD::USUBO, MVT::i64, Custom);
958    setOperationAction(ISD::SMULO, MVT::i64, Custom);
959  }
960
961  if (!Subtarget->is64Bit()) {
962    // These libcalls are not available in 32-bit.
963    setLibcallName(RTLIB::SHL_I128, 0);
964    setLibcallName(RTLIB::SRL_I128, 0);
965    setLibcallName(RTLIB::SRA_I128, 0);
966  }
967
968  // We have target-specific dag combine patterns for the following nodes:
969  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
970  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
971  setTargetDAGCombine(ISD::BUILD_VECTOR);
972  setTargetDAGCombine(ISD::SELECT);
973  setTargetDAGCombine(ISD::SHL);
974  setTargetDAGCombine(ISD::SRA);
975  setTargetDAGCombine(ISD::SRL);
976  setTargetDAGCombine(ISD::OR);
977  setTargetDAGCombine(ISD::STORE);
978  setTargetDAGCombine(ISD::ZERO_EXTEND);
979  if (Subtarget->is64Bit())
980    setTargetDAGCombine(ISD::MUL);
981
982  computeRegisterProperties();
983
984  // FIXME: These should be based on subtarget info. Plus, the values should
985  // be smaller when we are in optimizing for size mode.
986  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
987  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
988  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
989  setPrefLoopAlignment(16);
990  benefitFromCodePlacementOpt = true;
991}
992
993
994MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
995  return MVT::i8;
996}
997
998
999/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1000/// the desired ByVal argument alignment.
1001static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1002  if (MaxAlign == 16)
1003    return;
1004  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1005    if (VTy->getBitWidth() == 128)
1006      MaxAlign = 16;
1007  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1008    unsigned EltAlign = 0;
1009    getMaxByValAlign(ATy->getElementType(), EltAlign);
1010    if (EltAlign > MaxAlign)
1011      MaxAlign = EltAlign;
1012  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1013    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1014      unsigned EltAlign = 0;
1015      getMaxByValAlign(STy->getElementType(i), EltAlign);
1016      if (EltAlign > MaxAlign)
1017        MaxAlign = EltAlign;
1018      if (MaxAlign == 16)
1019        break;
1020    }
1021  }
1022  return;
1023}
1024
1025/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1026/// function arguments in the caller parameter area. For X86, aggregates
1027/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1028/// are at 4-byte boundaries.
1029unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1030  if (Subtarget->is64Bit()) {
1031    // Max of 8 and alignment of type.
1032    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1033    if (TyAlign > 8)
1034      return TyAlign;
1035    return 8;
1036  }
1037
1038  unsigned Align = 4;
1039  if (Subtarget->hasSSE1())
1040    getMaxByValAlign(Ty, Align);
1041  return Align;
1042}
1043
1044/// getOptimalMemOpType - Returns the target specific optimal type for load
1045/// and store operations as a result of memset, memcpy, and memmove
1046/// lowering. If DstAlign is zero that means it's safe to destination
1047/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1048/// means there isn't a need to check it against alignment requirement,
1049/// probably because the source does not need to be loaded. If
1050/// 'NonScalarIntSafe' is true, that means it's safe to return a
1051/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1052/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1053/// constant so it does not need to be loaded.
1054/// It returns EVT::Other if the type should be determined using generic
1055/// target-independent logic.
1056EVT
1057X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1058                                       unsigned DstAlign, unsigned SrcAlign,
1059                                       bool NonScalarIntSafe,
1060                                       bool MemcpyStrSrc,
1061                                       MachineFunction &MF) const {
1062  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1063  // linux.  This is because the stack realignment code can't handle certain
1064  // cases like PR2962.  This should be removed when PR2962 is fixed.
1065  const Function *F = MF.getFunction();
1066  if (NonScalarIntSafe &&
1067      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1068    if (Size >= 16 &&
1069        (Subtarget->isUnalignedMemAccessFast() ||
1070         ((DstAlign == 0 || DstAlign >= 16) &&
1071          (SrcAlign == 0 || SrcAlign >= 16))) &&
1072        Subtarget->getStackAlignment() >= 16) {
1073      if (Subtarget->hasSSE2())
1074        return MVT::v4i32;
1075      if (Subtarget->hasSSE1())
1076        return MVT::v4f32;
1077    } else if (!MemcpyStrSrc && Size >= 8 &&
1078               !Subtarget->is64Bit() &&
1079               Subtarget->getStackAlignment() >= 8 &&
1080               Subtarget->hasSSE2()) {
1081      // Do not use f64 to lower memcpy if source is string constant. It's
1082      // better to use i32 to avoid the loads.
1083      return MVT::f64;
1084    }
1085  }
1086  if (Subtarget->is64Bit() && Size >= 8)
1087    return MVT::i64;
1088  return MVT::i32;
1089}
1090
1091/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1092/// current function.  The returned value is a member of the
1093/// MachineJumpTableInfo::JTEntryKind enum.
1094unsigned X86TargetLowering::getJumpTableEncoding() const {
1095  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1096  // symbol.
1097  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1098      Subtarget->isPICStyleGOT())
1099    return MachineJumpTableInfo::EK_Custom32;
1100
1101  // Otherwise, use the normal jump table encoding heuristics.
1102  return TargetLowering::getJumpTableEncoding();
1103}
1104
1105/// getPICBaseSymbol - Return the X86-32 PIC base.
1106MCSymbol *
1107X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1108                                    MCContext &Ctx) const {
1109  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1110  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1111                               Twine(MF->getFunctionNumber())+"$pb");
1112}
1113
1114
1115const MCExpr *
1116X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1117                                             const MachineBasicBlock *MBB,
1118                                             unsigned uid,MCContext &Ctx) const{
1119  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1120         Subtarget->isPICStyleGOT());
1121  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1122  // entries.
1123  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1124                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1125}
1126
1127/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1128/// jumptable.
1129SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1130                                                    SelectionDAG &DAG) const {
1131  if (!Subtarget->is64Bit())
1132    // This doesn't have DebugLoc associated with it, but is not really the
1133    // same as a Register.
1134    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1135  return Table;
1136}
1137
1138/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1139/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1140/// MCExpr.
1141const MCExpr *X86TargetLowering::
1142getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1143                             MCContext &Ctx) const {
1144  // X86-64 uses RIP relative addressing based on the jump table label.
1145  if (Subtarget->isPICStyleRIPRel())
1146    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1147
1148  // Otherwise, the reference is relative to the PIC base.
1149  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1150}
1151
1152/// getFunctionAlignment - Return the Log2 alignment of this function.
1153unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1154  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1155}
1156
1157std::pair<const TargetRegisterClass*, uint8_t>
1158X86TargetLowering::findRepresentativeClass(EVT VT) const{
1159  const TargetRegisterClass *RRC = 0;
1160  uint8_t Cost = 1;
1161  switch (VT.getSimpleVT().SimpleTy) {
1162  default:
1163    return TargetLowering::findRepresentativeClass(VT);
1164  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1165    RRC = (Subtarget->is64Bit()
1166           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1167    break;
1168  case MVT::x86mmx:
1169    RRC = X86::VR64RegisterClass;
1170    break;
1171  case MVT::f32: case MVT::f64:
1172  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1173  case MVT::v4f32: case MVT::v2f64:
1174  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1175  case MVT::v4f64:
1176    RRC = X86::VR128RegisterClass;
1177    break;
1178  }
1179  return std::make_pair(RRC, Cost);
1180}
1181
1182unsigned
1183X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1184                                       MachineFunction &MF) const {
1185  unsigned FPDiff = RegInfo->hasFP(MF) ? 1 : 0;
1186  switch (RC->getID()) {
1187  default:
1188    return 0;
1189  case X86::GR32RegClassID:
1190    return 4 - FPDiff;
1191  case X86::GR64RegClassID:
1192    return 8 - FPDiff;
1193  case X86::VR128RegClassID:
1194    return Subtarget->is64Bit() ? 10 : 4;
1195  case X86::VR64RegClassID:
1196    return 4;
1197  }
1198}
1199
1200bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1201                                               unsigned &Offset) const {
1202  if (!Subtarget->isTargetLinux())
1203    return false;
1204
1205  if (Subtarget->is64Bit()) {
1206    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1207    Offset = 0x28;
1208    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1209      AddressSpace = 256;
1210    else
1211      AddressSpace = 257;
1212  } else {
1213    // %gs:0x14 on i386
1214    Offset = 0x14;
1215    AddressSpace = 256;
1216  }
1217  return true;
1218}
1219
1220
1221//===----------------------------------------------------------------------===//
1222//               Return Value Calling Convention Implementation
1223//===----------------------------------------------------------------------===//
1224
1225#include "X86GenCallingConv.inc"
1226
1227bool
1228X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1229                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1230                        LLVMContext &Context) const {
1231  SmallVector<CCValAssign, 16> RVLocs;
1232  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1233                 RVLocs, Context);
1234  return CCInfo.CheckReturn(Outs, RetCC_X86);
1235}
1236
1237SDValue
1238X86TargetLowering::LowerReturn(SDValue Chain,
1239                               CallingConv::ID CallConv, bool isVarArg,
1240                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1241                               const SmallVectorImpl<SDValue> &OutVals,
1242                               DebugLoc dl, SelectionDAG &DAG) const {
1243  MachineFunction &MF = DAG.getMachineFunction();
1244  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1245
1246  SmallVector<CCValAssign, 16> RVLocs;
1247  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1248                 RVLocs, *DAG.getContext());
1249  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1250
1251  // Add the regs to the liveout set for the function.
1252  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1253  for (unsigned i = 0; i != RVLocs.size(); ++i)
1254    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1255      MRI.addLiveOut(RVLocs[i].getLocReg());
1256
1257  SDValue Flag;
1258
1259  SmallVector<SDValue, 6> RetOps;
1260  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1261  // Operand #1 = Bytes To Pop
1262  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1263                   MVT::i16));
1264
1265  // Copy the result values into the output registers.
1266  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1267    CCValAssign &VA = RVLocs[i];
1268    assert(VA.isRegLoc() && "Can only return in registers!");
1269    SDValue ValToCopy = OutVals[i];
1270    EVT ValVT = ValToCopy.getValueType();
1271
1272    // If this is x86-64, and we disabled SSE, we can't return FP values,
1273    // or SSE or MMX vectors.
1274    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1275         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1276          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1277      report_fatal_error("SSE register return with SSE disabled");
1278    }
1279    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1280    // llvm-gcc has never done it right and no one has noticed, so this
1281    // should be OK for now.
1282    if (ValVT == MVT::f64 &&
1283        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1284      report_fatal_error("SSE2 register return with SSE2 disabled");
1285
1286    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1287    // the RET instruction and handled by the FP Stackifier.
1288    if (VA.getLocReg() == X86::ST0 ||
1289        VA.getLocReg() == X86::ST1) {
1290      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1291      // change the value to the FP stack register class.
1292      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1293        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1294      RetOps.push_back(ValToCopy);
1295      // Don't emit a copytoreg.
1296      continue;
1297    }
1298
1299    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1300    // which is returned in RAX / RDX.
1301    if (Subtarget->is64Bit()) {
1302      if (ValVT == MVT::x86mmx) {
1303        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1304          ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1305          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1306                                  ValToCopy);
1307          // If we don't have SSE2 available, convert to v4f32 so the generated
1308          // register is legal.
1309          if (!Subtarget->hasSSE2())
1310            ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32,ValToCopy);
1311        }
1312      }
1313    }
1314
1315    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1316    Flag = Chain.getValue(1);
1317  }
1318
1319  // The x86-64 ABI for returning structs by value requires that we copy
1320  // the sret argument into %rax for the return. We saved the argument into
1321  // a virtual register in the entry block, so now we copy the value out
1322  // and into %rax.
1323  if (Subtarget->is64Bit() &&
1324      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1325    MachineFunction &MF = DAG.getMachineFunction();
1326    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1327    unsigned Reg = FuncInfo->getSRetReturnReg();
1328    assert(Reg &&
1329           "SRetReturnReg should have been set in LowerFormalArguments().");
1330    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1331
1332    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1333    Flag = Chain.getValue(1);
1334
1335    // RAX now acts like a return value.
1336    MRI.addLiveOut(X86::RAX);
1337  }
1338
1339  RetOps[0] = Chain;  // Update chain.
1340
1341  // Add the flag if we have it.
1342  if (Flag.getNode())
1343    RetOps.push_back(Flag);
1344
1345  return DAG.getNode(X86ISD::RET_FLAG, dl,
1346                     MVT::Other, &RetOps[0], RetOps.size());
1347}
1348
1349/// LowerCallResult - Lower the result values of a call into the
1350/// appropriate copies out of appropriate physical registers.
1351///
1352SDValue
1353X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1354                                   CallingConv::ID CallConv, bool isVarArg,
1355                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1356                                   DebugLoc dl, SelectionDAG &DAG,
1357                                   SmallVectorImpl<SDValue> &InVals) const {
1358
1359  // Assign locations to each value returned by this call.
1360  SmallVector<CCValAssign, 16> RVLocs;
1361  bool Is64Bit = Subtarget->is64Bit();
1362  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1363                 RVLocs, *DAG.getContext());
1364  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1365
1366  // Copy all of the result registers out of their specified physreg.
1367  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1368    CCValAssign &VA = RVLocs[i];
1369    EVT CopyVT = VA.getValVT();
1370
1371    // If this is x86-64, and we disabled SSE, we can't return FP values
1372    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1373        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1374      report_fatal_error("SSE register return with SSE disabled");
1375    }
1376
1377    SDValue Val;
1378
1379    // If this is a call to a function that returns an fp value on the floating
1380    // point stack, we must guarantee the the value is popped from the stack, so
1381    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1382    // if the return value is not used. We use the FpGET_ST0 instructions
1383    // instead.
1384    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1385      // If we prefer to use the value in xmm registers, copy it out as f80 and
1386      // use a truncate to move it from fp stack reg to xmm reg.
1387      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1388      bool isST0 = VA.getLocReg() == X86::ST0;
1389      unsigned Opc = 0;
1390      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1391      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1392      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1393      SDValue Ops[] = { Chain, InFlag };
1394      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag,
1395                                         Ops, 2), 1);
1396      Val = Chain.getValue(0);
1397
1398      // Round the f80 to the right size, which also moves it to the appropriate
1399      // xmm register.
1400      if (CopyVT != VA.getValVT())
1401        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1402                          // This truncation won't change the value.
1403                          DAG.getIntPtrConstant(1));
1404    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1405      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1406      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1407        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1408                                   MVT::v2i64, InFlag).getValue(1);
1409        Val = Chain.getValue(0);
1410        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1411                          Val, DAG.getConstant(0, MVT::i64));
1412      } else {
1413        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1414                                   MVT::i64, InFlag).getValue(1);
1415        Val = Chain.getValue(0);
1416      }
1417      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1418    } else {
1419      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1420                                 CopyVT, InFlag).getValue(1);
1421      Val = Chain.getValue(0);
1422    }
1423    InFlag = Chain.getValue(2);
1424    InVals.push_back(Val);
1425  }
1426
1427  return Chain;
1428}
1429
1430
1431//===----------------------------------------------------------------------===//
1432//                C & StdCall & Fast Calling Convention implementation
1433//===----------------------------------------------------------------------===//
1434//  StdCall calling convention seems to be standard for many Windows' API
1435//  routines and around. It differs from C calling convention just a little:
1436//  callee should clean up the stack, not caller. Symbols should be also
1437//  decorated in some fancy way :) It doesn't support any vector arguments.
1438//  For info on fast calling convention see Fast Calling Convention (tail call)
1439//  implementation LowerX86_32FastCCCallTo.
1440
1441/// CallIsStructReturn - Determines whether a call uses struct return
1442/// semantics.
1443static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1444  if (Outs.empty())
1445    return false;
1446
1447  return Outs[0].Flags.isSRet();
1448}
1449
1450/// ArgsAreStructReturn - Determines whether a function uses struct
1451/// return semantics.
1452static bool
1453ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1454  if (Ins.empty())
1455    return false;
1456
1457  return Ins[0].Flags.isSRet();
1458}
1459
1460/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1461/// by "Src" to address "Dst" with size and alignment information specified by
1462/// the specific parameter attribute. The copy will be passed as a byval
1463/// function parameter.
1464static SDValue
1465CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1466                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1467                          DebugLoc dl) {
1468  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1469
1470  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1471                       /*isVolatile*/false, /*AlwaysInline=*/true,
1472                       MachinePointerInfo(), MachinePointerInfo());
1473}
1474
1475/// IsTailCallConvention - Return true if the calling convention is one that
1476/// supports tail call optimization.
1477static bool IsTailCallConvention(CallingConv::ID CC) {
1478  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1479}
1480
1481/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1482/// a tailcall target by changing its ABI.
1483static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1484  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1485}
1486
1487SDValue
1488X86TargetLowering::LowerMemArgument(SDValue Chain,
1489                                    CallingConv::ID CallConv,
1490                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1491                                    DebugLoc dl, SelectionDAG &DAG,
1492                                    const CCValAssign &VA,
1493                                    MachineFrameInfo *MFI,
1494                                    unsigned i) const {
1495  // Create the nodes corresponding to a load from this parameter slot.
1496  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1497  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1498  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1499  EVT ValVT;
1500
1501  // If value is passed by pointer we have address passed instead of the value
1502  // itself.
1503  if (VA.getLocInfo() == CCValAssign::Indirect)
1504    ValVT = VA.getLocVT();
1505  else
1506    ValVT = VA.getValVT();
1507
1508  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1509  // changed with more analysis.
1510  // In case of tail call optimization mark all arguments mutable. Since they
1511  // could be overwritten by lowering of arguments in case of a tail call.
1512  if (Flags.isByVal()) {
1513    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1514                                    VA.getLocMemOffset(), isImmutable);
1515    return DAG.getFrameIndex(FI, getPointerTy());
1516  } else {
1517    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1518                                    VA.getLocMemOffset(), isImmutable);
1519    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1520    return DAG.getLoad(ValVT, dl, Chain, FIN,
1521                       MachinePointerInfo::getFixedStack(FI),
1522                       false, false, 0);
1523  }
1524}
1525
1526SDValue
1527X86TargetLowering::LowerFormalArguments(SDValue Chain,
1528                                        CallingConv::ID CallConv,
1529                                        bool isVarArg,
1530                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1531                                        DebugLoc dl,
1532                                        SelectionDAG &DAG,
1533                                        SmallVectorImpl<SDValue> &InVals)
1534                                          const {
1535  MachineFunction &MF = DAG.getMachineFunction();
1536  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1537
1538  const Function* Fn = MF.getFunction();
1539  if (Fn->hasExternalLinkage() &&
1540      Subtarget->isTargetCygMing() &&
1541      Fn->getName() == "main")
1542    FuncInfo->setForceFramePointer(true);
1543
1544  MachineFrameInfo *MFI = MF.getFrameInfo();
1545  bool Is64Bit = Subtarget->is64Bit();
1546  bool IsWin64 = Subtarget->isTargetWin64();
1547
1548  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1549         "Var args not supported with calling convention fastcc or ghc");
1550
1551  // Assign locations to all of the incoming arguments.
1552  SmallVector<CCValAssign, 16> ArgLocs;
1553  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1554                 ArgLocs, *DAG.getContext());
1555  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1556
1557  unsigned LastVal = ~0U;
1558  SDValue ArgValue;
1559  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1560    CCValAssign &VA = ArgLocs[i];
1561    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1562    // places.
1563    assert(VA.getValNo() != LastVal &&
1564           "Don't support value assigned to multiple locs yet");
1565    LastVal = VA.getValNo();
1566
1567    if (VA.isRegLoc()) {
1568      EVT RegVT = VA.getLocVT();
1569      TargetRegisterClass *RC = NULL;
1570      if (RegVT == MVT::i32)
1571        RC = X86::GR32RegisterClass;
1572      else if (Is64Bit && RegVT == MVT::i64)
1573        RC = X86::GR64RegisterClass;
1574      else if (RegVT == MVT::f32)
1575        RC = X86::FR32RegisterClass;
1576      else if (RegVT == MVT::f64)
1577        RC = X86::FR64RegisterClass;
1578      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1579        RC = X86::VR256RegisterClass;
1580      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1581        RC = X86::VR128RegisterClass;
1582      else if (RegVT == MVT::x86mmx)
1583        RC = X86::VR64RegisterClass;
1584      else
1585        llvm_unreachable("Unknown argument type!");
1586
1587      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1588      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1589
1590      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1591      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1592      // right size.
1593      if (VA.getLocInfo() == CCValAssign::SExt)
1594        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1595                               DAG.getValueType(VA.getValVT()));
1596      else if (VA.getLocInfo() == CCValAssign::ZExt)
1597        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1598                               DAG.getValueType(VA.getValVT()));
1599      else if (VA.getLocInfo() == CCValAssign::BCvt)
1600        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1601
1602      if (VA.isExtInLoc()) {
1603        // Handle MMX values passed in XMM regs.
1604        if (RegVT.isVector()) {
1605          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1606                                 ArgValue);
1607        } else
1608          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1609      }
1610    } else {
1611      assert(VA.isMemLoc());
1612      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1613    }
1614
1615    // If value is passed via pointer - do a load.
1616    if (VA.getLocInfo() == CCValAssign::Indirect)
1617      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1618                             MachinePointerInfo(), false, false, 0);
1619
1620    InVals.push_back(ArgValue);
1621  }
1622
1623  // The x86-64 ABI for returning structs by value requires that we copy
1624  // the sret argument into %rax for the return. Save the argument into
1625  // a virtual register so that we can access it from the return points.
1626  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1627    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1628    unsigned Reg = FuncInfo->getSRetReturnReg();
1629    if (!Reg) {
1630      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1631      FuncInfo->setSRetReturnReg(Reg);
1632    }
1633    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1634    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1635  }
1636
1637  unsigned StackSize = CCInfo.getNextStackOffset();
1638  // Align stack specially for tail calls.
1639  if (FuncIsMadeTailCallSafe(CallConv))
1640    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1641
1642  // If the function takes variable number of arguments, make a frame index for
1643  // the start of the first vararg value... for expansion of llvm.va_start.
1644  if (isVarArg) {
1645    if (!IsWin64 && (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1646                    CallConv != CallingConv::X86_ThisCall))) {
1647      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1648    }
1649    if (Is64Bit) {
1650      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1651
1652      // FIXME: We should really autogenerate these arrays
1653      static const unsigned GPR64ArgRegsWin64[] = {
1654        X86::RCX, X86::RDX, X86::R8,  X86::R9
1655      };
1656      static const unsigned GPR64ArgRegs64Bit[] = {
1657        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1658      };
1659      static const unsigned XMMArgRegs64Bit[] = {
1660        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1661        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1662      };
1663      const unsigned *GPR64ArgRegs;
1664      unsigned NumXMMRegs = 0;
1665
1666      if (IsWin64) {
1667        // The XMM registers which might contain var arg parameters are shadowed
1668        // in their paired GPR.  So we only need to save the GPR to their home
1669        // slots.
1670        TotalNumIntRegs = 4;
1671        GPR64ArgRegs = GPR64ArgRegsWin64;
1672      } else {
1673        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1674        GPR64ArgRegs = GPR64ArgRegs64Bit;
1675
1676        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1677      }
1678      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1679                                                       TotalNumIntRegs);
1680
1681      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1682      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1683             "SSE register cannot be used when SSE is disabled!");
1684      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1685             "SSE register cannot be used when SSE is disabled!");
1686      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1687        // Kernel mode asks for SSE to be disabled, so don't push them
1688        // on the stack.
1689        TotalNumXMMRegs = 0;
1690
1691      if (IsWin64) {
1692        const TargetFrameInfo &TFI = *getTargetMachine().getFrameInfo();
1693        // Get to the caller-allocated home save location.  Add 8 to account
1694        // for the return address.
1695        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1696        FuncInfo->setRegSaveFrameIndex(
1697          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1698        FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1699      } else {
1700        // For X86-64, if there are vararg parameters that are passed via
1701        // registers, then we must store them to their spots on the stack so they
1702        // may be loaded by deferencing the result of va_next.
1703        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1704        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1705        FuncInfo->setRegSaveFrameIndex(
1706          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1707                               false));
1708      }
1709
1710      // Store the integer parameter registers.
1711      SmallVector<SDValue, 8> MemOps;
1712      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1713                                        getPointerTy());
1714      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1715      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1716        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1717                                  DAG.getIntPtrConstant(Offset));
1718        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1719                                     X86::GR64RegisterClass);
1720        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1721        SDValue Store =
1722          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1723                       MachinePointerInfo::getFixedStack(
1724                         FuncInfo->getRegSaveFrameIndex(), Offset),
1725                       false, false, 0);
1726        MemOps.push_back(Store);
1727        Offset += 8;
1728      }
1729
1730      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1731        // Now store the XMM (fp + vector) parameter registers.
1732        SmallVector<SDValue, 11> SaveXMMOps;
1733        SaveXMMOps.push_back(Chain);
1734
1735        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1736        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1737        SaveXMMOps.push_back(ALVal);
1738
1739        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1740                               FuncInfo->getRegSaveFrameIndex()));
1741        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1742                               FuncInfo->getVarArgsFPOffset()));
1743
1744        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1745          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1746                                       X86::VR128RegisterClass);
1747          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1748          SaveXMMOps.push_back(Val);
1749        }
1750        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1751                                     MVT::Other,
1752                                     &SaveXMMOps[0], SaveXMMOps.size()));
1753      }
1754
1755      if (!MemOps.empty())
1756        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1757                            &MemOps[0], MemOps.size());
1758    }
1759  }
1760
1761  // Some CCs need callee pop.
1762  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1763    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1764  } else {
1765    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1766    // If this is an sret function, the return should pop the hidden pointer.
1767    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1768      FuncInfo->setBytesToPopOnReturn(4);
1769  }
1770
1771  if (!Is64Bit) {
1772    // RegSaveFrameIndex is X86-64 only.
1773    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1774    if (CallConv == CallingConv::X86_FastCall ||
1775        CallConv == CallingConv::X86_ThisCall)
1776      // fastcc functions can't have varargs.
1777      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1778  }
1779
1780  return Chain;
1781}
1782
1783SDValue
1784X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1785                                    SDValue StackPtr, SDValue Arg,
1786                                    DebugLoc dl, SelectionDAG &DAG,
1787                                    const CCValAssign &VA,
1788                                    ISD::ArgFlagsTy Flags) const {
1789  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1790  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1791  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1792  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1793  if (Flags.isByVal())
1794    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1795
1796  return DAG.getStore(Chain, dl, Arg, PtrOff,
1797                      MachinePointerInfo::getStack(LocMemOffset),
1798                      false, false, 0);
1799}
1800
1801/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1802/// optimization is performed and it is required.
1803SDValue
1804X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1805                                           SDValue &OutRetAddr, SDValue Chain,
1806                                           bool IsTailCall, bool Is64Bit,
1807                                           int FPDiff, DebugLoc dl) const {
1808  // Adjust the Return address stack slot.
1809  EVT VT = getPointerTy();
1810  OutRetAddr = getReturnAddressFrameIndex(DAG);
1811
1812  // Load the "old" Return address.
1813  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1814                           false, false, 0);
1815  return SDValue(OutRetAddr.getNode(), 1);
1816}
1817
1818/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1819/// optimization is performed and it is required (FPDiff!=0).
1820static SDValue
1821EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1822                         SDValue Chain, SDValue RetAddrFrIdx,
1823                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1824  // Store the return address to the appropriate stack slot.
1825  if (!FPDiff) return Chain;
1826  // Calculate the new stack slot for the return address.
1827  int SlotSize = Is64Bit ? 8 : 4;
1828  int NewReturnAddrFI =
1829    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1830  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1831  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1832  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1833                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1834                       false, false, 0);
1835  return Chain;
1836}
1837
1838SDValue
1839X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1840                             CallingConv::ID CallConv, bool isVarArg,
1841                             bool &isTailCall,
1842                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1843                             const SmallVectorImpl<SDValue> &OutVals,
1844                             const SmallVectorImpl<ISD::InputArg> &Ins,
1845                             DebugLoc dl, SelectionDAG &DAG,
1846                             SmallVectorImpl<SDValue> &InVals) const {
1847  MachineFunction &MF = DAG.getMachineFunction();
1848  bool Is64Bit        = Subtarget->is64Bit();
1849  bool IsStructRet    = CallIsStructReturn(Outs);
1850  bool IsSibcall      = false;
1851
1852  if (isTailCall) {
1853    // Check if it's really possible to do a tail call.
1854    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1855                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1856                                                   Outs, OutVals, Ins, DAG);
1857
1858    // Sibcalls are automatically detected tailcalls which do not require
1859    // ABI changes.
1860    if (!GuaranteedTailCallOpt && isTailCall)
1861      IsSibcall = true;
1862
1863    if (isTailCall)
1864      ++NumTailCalls;
1865  }
1866
1867  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1868         "Var args not supported with calling convention fastcc or ghc");
1869
1870  // Analyze operands of the call, assigning locations to each operand.
1871  SmallVector<CCValAssign, 16> ArgLocs;
1872  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1873                 ArgLocs, *DAG.getContext());
1874  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
1875
1876  // Get a count of how many bytes are to be pushed on the stack.
1877  unsigned NumBytes = CCInfo.getNextStackOffset();
1878  if (IsSibcall)
1879    // This is a sibcall. The memory operands are available in caller's
1880    // own caller's stack.
1881    NumBytes = 0;
1882  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1883    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1884
1885  int FPDiff = 0;
1886  if (isTailCall && !IsSibcall) {
1887    // Lower arguments at fp - stackoffset + fpdiff.
1888    unsigned NumBytesCallerPushed =
1889      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1890    FPDiff = NumBytesCallerPushed - NumBytes;
1891
1892    // Set the delta of movement of the returnaddr stackslot.
1893    // But only set if delta is greater than previous delta.
1894    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1895      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1896  }
1897
1898  if (!IsSibcall)
1899    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1900
1901  SDValue RetAddrFrIdx;
1902  // Load return adress for tail calls.
1903  if (isTailCall && FPDiff)
1904    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1905                                    Is64Bit, FPDiff, dl);
1906
1907  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1908  SmallVector<SDValue, 8> MemOpChains;
1909  SDValue StackPtr;
1910
1911  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1912  // of tail call optimization arguments are handle later.
1913  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1914    CCValAssign &VA = ArgLocs[i];
1915    EVT RegVT = VA.getLocVT();
1916    SDValue Arg = OutVals[i];
1917    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1918    bool isByVal = Flags.isByVal();
1919
1920    // Promote the value if needed.
1921    switch (VA.getLocInfo()) {
1922    default: llvm_unreachable("Unknown loc info!");
1923    case CCValAssign::Full: break;
1924    case CCValAssign::SExt:
1925      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1926      break;
1927    case CCValAssign::ZExt:
1928      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1929      break;
1930    case CCValAssign::AExt:
1931      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1932        // Special case: passing MMX values in XMM registers.
1933        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1934        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1935        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1936      } else
1937        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1938      break;
1939    case CCValAssign::BCvt:
1940      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1941      break;
1942    case CCValAssign::Indirect: {
1943      // Store the argument.
1944      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1945      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1946      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1947                           MachinePointerInfo::getFixedStack(FI),
1948                           false, false, 0);
1949      Arg = SpillSlot;
1950      break;
1951    }
1952    }
1953
1954    if (VA.isRegLoc()) {
1955      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1956      if (isVarArg && Subtarget->isTargetWin64()) {
1957        // Win64 ABI requires argument XMM reg to be copied to the corresponding
1958        // shadow reg if callee is a varargs function.
1959        unsigned ShadowReg = 0;
1960        switch (VA.getLocReg()) {
1961        case X86::XMM0: ShadowReg = X86::RCX; break;
1962        case X86::XMM1: ShadowReg = X86::RDX; break;
1963        case X86::XMM2: ShadowReg = X86::R8; break;
1964        case X86::XMM3: ShadowReg = X86::R9; break;
1965        }
1966        if (ShadowReg)
1967          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
1968      }
1969    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1970      assert(VA.isMemLoc());
1971      if (StackPtr.getNode() == 0)
1972        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1973      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1974                                             dl, DAG, VA, Flags));
1975    }
1976  }
1977
1978  if (!MemOpChains.empty())
1979    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1980                        &MemOpChains[0], MemOpChains.size());
1981
1982  // Build a sequence of copy-to-reg nodes chained together with token chain
1983  // and flag operands which copy the outgoing args into registers.
1984  SDValue InFlag;
1985  // Tail call byval lowering might overwrite argument registers so in case of
1986  // tail call optimization the copies to registers are lowered later.
1987  if (!isTailCall)
1988    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1989      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1990                               RegsToPass[i].second, InFlag);
1991      InFlag = Chain.getValue(1);
1992    }
1993
1994  if (Subtarget->isPICStyleGOT()) {
1995    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1996    // GOT pointer.
1997    if (!isTailCall) {
1998      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1999                               DAG.getNode(X86ISD::GlobalBaseReg,
2000                                           DebugLoc(), getPointerTy()),
2001                               InFlag);
2002      InFlag = Chain.getValue(1);
2003    } else {
2004      // If we are tail calling and generating PIC/GOT style code load the
2005      // address of the callee into ECX. The value in ecx is used as target of
2006      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2007      // for tail calls on PIC/GOT architectures. Normally we would just put the
2008      // address of GOT into ebx and then call target@PLT. But for tail calls
2009      // ebx would be restored (since ebx is callee saved) before jumping to the
2010      // target@PLT.
2011
2012      // Note: The actual moving to ECX is done further down.
2013      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2014      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2015          !G->getGlobal()->hasProtectedVisibility())
2016        Callee = LowerGlobalAddress(Callee, DAG);
2017      else if (isa<ExternalSymbolSDNode>(Callee))
2018        Callee = LowerExternalSymbol(Callee, DAG);
2019    }
2020  }
2021
2022  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2023    // From AMD64 ABI document:
2024    // For calls that may call functions that use varargs or stdargs
2025    // (prototype-less calls or calls to functions containing ellipsis (...) in
2026    // the declaration) %al is used as hidden argument to specify the number
2027    // of SSE registers used. The contents of %al do not need to match exactly
2028    // the number of registers, but must be an ubound on the number of SSE
2029    // registers used and is in the range 0 - 8 inclusive.
2030
2031    // Count the number of XMM registers allocated.
2032    static const unsigned XMMArgRegs[] = {
2033      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2034      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2035    };
2036    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2037    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2038           && "SSE registers cannot be used when SSE is disabled");
2039
2040    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2041                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2042    InFlag = Chain.getValue(1);
2043  }
2044
2045
2046  // For tail calls lower the arguments to the 'real' stack slot.
2047  if (isTailCall) {
2048    // Force all the incoming stack arguments to be loaded from the stack
2049    // before any new outgoing arguments are stored to the stack, because the
2050    // outgoing stack slots may alias the incoming argument stack slots, and
2051    // the alias isn't otherwise explicit. This is slightly more conservative
2052    // than necessary, because it means that each store effectively depends
2053    // on every argument instead of just those arguments it would clobber.
2054    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2055
2056    SmallVector<SDValue, 8> MemOpChains2;
2057    SDValue FIN;
2058    int FI = 0;
2059    // Do not flag preceeding copytoreg stuff together with the following stuff.
2060    InFlag = SDValue();
2061    if (GuaranteedTailCallOpt) {
2062      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2063        CCValAssign &VA = ArgLocs[i];
2064        if (VA.isRegLoc())
2065          continue;
2066        assert(VA.isMemLoc());
2067        SDValue Arg = OutVals[i];
2068        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2069        // Create frame index.
2070        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2071        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2072        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2073        FIN = DAG.getFrameIndex(FI, getPointerTy());
2074
2075        if (Flags.isByVal()) {
2076          // Copy relative to framepointer.
2077          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2078          if (StackPtr.getNode() == 0)
2079            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2080                                          getPointerTy());
2081          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2082
2083          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2084                                                           ArgChain,
2085                                                           Flags, DAG, dl));
2086        } else {
2087          // Store relative to framepointer.
2088          MemOpChains2.push_back(
2089            DAG.getStore(ArgChain, dl, Arg, FIN,
2090                         MachinePointerInfo::getFixedStack(FI),
2091                         false, false, 0));
2092        }
2093      }
2094    }
2095
2096    if (!MemOpChains2.empty())
2097      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2098                          &MemOpChains2[0], MemOpChains2.size());
2099
2100    // Copy arguments to their registers.
2101    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2102      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2103                               RegsToPass[i].second, InFlag);
2104      InFlag = Chain.getValue(1);
2105    }
2106    InFlag =SDValue();
2107
2108    // Store the return address to the appropriate stack slot.
2109    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2110                                     FPDiff, dl);
2111  }
2112
2113  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2114    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2115    // In the 64-bit large code model, we have to make all calls
2116    // through a register, since the call instruction's 32-bit
2117    // pc-relative offset may not be large enough to hold the whole
2118    // address.
2119  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2120    // If the callee is a GlobalAddress node (quite common, every direct call
2121    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2122    // it.
2123
2124    // We should use extra load for direct calls to dllimported functions in
2125    // non-JIT mode.
2126    const GlobalValue *GV = G->getGlobal();
2127    if (!GV->hasDLLImportLinkage()) {
2128      unsigned char OpFlags = 0;
2129
2130      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2131      // external symbols most go through the PLT in PIC mode.  If the symbol
2132      // has hidden or protected visibility, or if it is static or local, then
2133      // we don't need to use the PLT - we can directly call it.
2134      if (Subtarget->isTargetELF() &&
2135          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2136          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2137        OpFlags = X86II::MO_PLT;
2138      } else if (Subtarget->isPICStyleStubAny() &&
2139                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2140                 Subtarget->getDarwinVers() < 9) {
2141        // PC-relative references to external symbols should go through $stub,
2142        // unless we're building with the leopard linker or later, which
2143        // automatically synthesizes these stubs.
2144        OpFlags = X86II::MO_DARWIN_STUB;
2145      }
2146
2147      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2148                                          G->getOffset(), OpFlags);
2149    }
2150  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2151    unsigned char OpFlags = 0;
2152
2153    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2154    // symbols should go through the PLT.
2155    if (Subtarget->isTargetELF() &&
2156        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2157      OpFlags = X86II::MO_PLT;
2158    } else if (Subtarget->isPICStyleStubAny() &&
2159               Subtarget->getDarwinVers() < 9) {
2160      // PC-relative references to external symbols should go through $stub,
2161      // unless we're building with the leopard linker or later, which
2162      // automatically synthesizes these stubs.
2163      OpFlags = X86II::MO_DARWIN_STUB;
2164    }
2165
2166    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2167                                         OpFlags);
2168  }
2169
2170  // Returns a chain & a flag for retval copy to use.
2171  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2172  SmallVector<SDValue, 8> Ops;
2173
2174  if (!IsSibcall && isTailCall) {
2175    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2176                           DAG.getIntPtrConstant(0, true), InFlag);
2177    InFlag = Chain.getValue(1);
2178  }
2179
2180  Ops.push_back(Chain);
2181  Ops.push_back(Callee);
2182
2183  if (isTailCall)
2184    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2185
2186  // Add argument registers to the end of the list so that they are known live
2187  // into the call.
2188  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2189    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2190                                  RegsToPass[i].second.getValueType()));
2191
2192  // Add an implicit use GOT pointer in EBX.
2193  if (!isTailCall && Subtarget->isPICStyleGOT())
2194    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2195
2196  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2197  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64())
2198    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2199
2200  if (InFlag.getNode())
2201    Ops.push_back(InFlag);
2202
2203  if (isTailCall) {
2204    // We used to do:
2205    //// If this is the first return lowered for this function, add the regs
2206    //// to the liveout set for the function.
2207    // This isn't right, although it's probably harmless on x86; liveouts
2208    // should be computed from returns not tail calls.  Consider a void
2209    // function making a tail call to a function returning int.
2210    return DAG.getNode(X86ISD::TC_RETURN, dl,
2211                       NodeTys, &Ops[0], Ops.size());
2212  }
2213
2214  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2215  InFlag = Chain.getValue(1);
2216
2217  // Create the CALLSEQ_END node.
2218  unsigned NumBytesForCalleeToPush;
2219  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2220    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2221  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2222    // If this is a call to a struct-return function, the callee
2223    // pops the hidden struct pointer, so we have to push it back.
2224    // This is common for Darwin/X86, Linux & Mingw32 targets.
2225    NumBytesForCalleeToPush = 4;
2226  else
2227    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2228
2229  // Returns a flag for retval copy to use.
2230  if (!IsSibcall) {
2231    Chain = DAG.getCALLSEQ_END(Chain,
2232                               DAG.getIntPtrConstant(NumBytes, true),
2233                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2234                                                     true),
2235                               InFlag);
2236    InFlag = Chain.getValue(1);
2237  }
2238
2239  // Handle result values, copying them out of physregs into vregs that we
2240  // return.
2241  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2242                         Ins, dl, DAG, InVals);
2243}
2244
2245
2246//===----------------------------------------------------------------------===//
2247//                Fast Calling Convention (tail call) implementation
2248//===----------------------------------------------------------------------===//
2249
2250//  Like std call, callee cleans arguments, convention except that ECX is
2251//  reserved for storing the tail called function address. Only 2 registers are
2252//  free for argument passing (inreg). Tail call optimization is performed
2253//  provided:
2254//                * tailcallopt is enabled
2255//                * caller/callee are fastcc
2256//  On X86_64 architecture with GOT-style position independent code only local
2257//  (within module) calls are supported at the moment.
2258//  To keep the stack aligned according to platform abi the function
2259//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2260//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2261//  If a tail called function callee has more arguments than the caller the
2262//  caller needs to make sure that there is room to move the RETADDR to. This is
2263//  achieved by reserving an area the size of the argument delta right after the
2264//  original REtADDR, but before the saved framepointer or the spilled registers
2265//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2266//  stack layout:
2267//    arg1
2268//    arg2
2269//    RETADDR
2270//    [ new RETADDR
2271//      move area ]
2272//    (possible EBP)
2273//    ESI
2274//    EDI
2275//    local1 ..
2276
2277/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2278/// for a 16 byte align requirement.
2279unsigned
2280X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2281                                               SelectionDAG& DAG) const {
2282  MachineFunction &MF = DAG.getMachineFunction();
2283  const TargetMachine &TM = MF.getTarget();
2284  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2285  unsigned StackAlignment = TFI.getStackAlignment();
2286  uint64_t AlignMask = StackAlignment - 1;
2287  int64_t Offset = StackSize;
2288  uint64_t SlotSize = TD->getPointerSize();
2289  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2290    // Number smaller than 12 so just add the difference.
2291    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2292  } else {
2293    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2294    Offset = ((~AlignMask) & Offset) + StackAlignment +
2295      (StackAlignment-SlotSize);
2296  }
2297  return Offset;
2298}
2299
2300/// MatchingStackOffset - Return true if the given stack call argument is
2301/// already available in the same position (relatively) of the caller's
2302/// incoming argument stack.
2303static
2304bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2305                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2306                         const X86InstrInfo *TII) {
2307  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2308  int FI = INT_MAX;
2309  if (Arg.getOpcode() == ISD::CopyFromReg) {
2310    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2311    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2312      return false;
2313    MachineInstr *Def = MRI->getVRegDef(VR);
2314    if (!Def)
2315      return false;
2316    if (!Flags.isByVal()) {
2317      if (!TII->isLoadFromStackSlot(Def, FI))
2318        return false;
2319    } else {
2320      unsigned Opcode = Def->getOpcode();
2321      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2322          Def->getOperand(1).isFI()) {
2323        FI = Def->getOperand(1).getIndex();
2324        Bytes = Flags.getByValSize();
2325      } else
2326        return false;
2327    }
2328  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2329    if (Flags.isByVal())
2330      // ByVal argument is passed in as a pointer but it's now being
2331      // dereferenced. e.g.
2332      // define @foo(%struct.X* %A) {
2333      //   tail call @bar(%struct.X* byval %A)
2334      // }
2335      return false;
2336    SDValue Ptr = Ld->getBasePtr();
2337    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2338    if (!FINode)
2339      return false;
2340    FI = FINode->getIndex();
2341  } else
2342    return false;
2343
2344  assert(FI != INT_MAX);
2345  if (!MFI->isFixedObjectIndex(FI))
2346    return false;
2347  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2348}
2349
2350/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2351/// for tail call optimization. Targets which want to do tail call
2352/// optimization should implement this function.
2353bool
2354X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2355                                                     CallingConv::ID CalleeCC,
2356                                                     bool isVarArg,
2357                                                     bool isCalleeStructRet,
2358                                                     bool isCallerStructRet,
2359                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2360                                    const SmallVectorImpl<SDValue> &OutVals,
2361                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2362                                                     SelectionDAG& DAG) const {
2363  if (!IsTailCallConvention(CalleeCC) &&
2364      CalleeCC != CallingConv::C)
2365    return false;
2366
2367  // If -tailcallopt is specified, make fastcc functions tail-callable.
2368  const MachineFunction &MF = DAG.getMachineFunction();
2369  const Function *CallerF = DAG.getMachineFunction().getFunction();
2370  CallingConv::ID CallerCC = CallerF->getCallingConv();
2371  bool CCMatch = CallerCC == CalleeCC;
2372
2373  if (GuaranteedTailCallOpt) {
2374    if (IsTailCallConvention(CalleeCC) && CCMatch)
2375      return true;
2376    return false;
2377  }
2378
2379  // Look for obvious safe cases to perform tail call optimization that do not
2380  // require ABI changes. This is what gcc calls sibcall.
2381
2382  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2383  // emit a special epilogue.
2384  if (RegInfo->needsStackRealignment(MF))
2385    return false;
2386
2387  // Do not sibcall optimize vararg calls unless the call site is not passing
2388  // any arguments.
2389  if (isVarArg && !Outs.empty())
2390    return false;
2391
2392  // Also avoid sibcall optimization if either caller or callee uses struct
2393  // return semantics.
2394  if (isCalleeStructRet || isCallerStructRet)
2395    return false;
2396
2397  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2398  // Therefore if it's not used by the call it is not safe to optimize this into
2399  // a sibcall.
2400  bool Unused = false;
2401  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2402    if (!Ins[i].Used) {
2403      Unused = true;
2404      break;
2405    }
2406  }
2407  if (Unused) {
2408    SmallVector<CCValAssign, 16> RVLocs;
2409    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2410                   RVLocs, *DAG.getContext());
2411    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2412    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2413      CCValAssign &VA = RVLocs[i];
2414      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2415        return false;
2416    }
2417  }
2418
2419  // If the calling conventions do not match, then we'd better make sure the
2420  // results are returned in the same way as what the caller expects.
2421  if (!CCMatch) {
2422    SmallVector<CCValAssign, 16> RVLocs1;
2423    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2424                    RVLocs1, *DAG.getContext());
2425    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2426
2427    SmallVector<CCValAssign, 16> RVLocs2;
2428    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2429                    RVLocs2, *DAG.getContext());
2430    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2431
2432    if (RVLocs1.size() != RVLocs2.size())
2433      return false;
2434    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2435      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2436        return false;
2437      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2438        return false;
2439      if (RVLocs1[i].isRegLoc()) {
2440        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2441          return false;
2442      } else {
2443        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2444          return false;
2445      }
2446    }
2447  }
2448
2449  // If the callee takes no arguments then go on to check the results of the
2450  // call.
2451  if (!Outs.empty()) {
2452    // Check if stack adjustment is needed. For now, do not do this if any
2453    // argument is passed on the stack.
2454    SmallVector<CCValAssign, 16> ArgLocs;
2455    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2456                   ArgLocs, *DAG.getContext());
2457    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2458    if (CCInfo.getNextStackOffset()) {
2459      MachineFunction &MF = DAG.getMachineFunction();
2460      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2461        return false;
2462      if (Subtarget->isTargetWin64())
2463        // Win64 ABI has additional complications.
2464        return false;
2465
2466      // Check if the arguments are already laid out in the right way as
2467      // the caller's fixed stack objects.
2468      MachineFrameInfo *MFI = MF.getFrameInfo();
2469      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2470      const X86InstrInfo *TII =
2471        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2472      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2473        CCValAssign &VA = ArgLocs[i];
2474        SDValue Arg = OutVals[i];
2475        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2476        if (VA.getLocInfo() == CCValAssign::Indirect)
2477          return false;
2478        if (!VA.isRegLoc()) {
2479          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2480                                   MFI, MRI, TII))
2481            return false;
2482        }
2483      }
2484    }
2485
2486    // If the tailcall address may be in a register, then make sure it's
2487    // possible to register allocate for it. In 32-bit, the call address can
2488    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2489    // callee-saved registers are restored. These happen to be the same
2490    // registers used to pass 'inreg' arguments so watch out for those.
2491    if (!Subtarget->is64Bit() &&
2492        !isa<GlobalAddressSDNode>(Callee) &&
2493        !isa<ExternalSymbolSDNode>(Callee)) {
2494      unsigned NumInRegs = 0;
2495      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2496        CCValAssign &VA = ArgLocs[i];
2497        if (!VA.isRegLoc())
2498          continue;
2499        unsigned Reg = VA.getLocReg();
2500        switch (Reg) {
2501        default: break;
2502        case X86::EAX: case X86::EDX: case X86::ECX:
2503          if (++NumInRegs == 3)
2504            return false;
2505          break;
2506        }
2507      }
2508    }
2509  }
2510
2511  // An stdcall caller is expected to clean up its arguments; the callee
2512  // isn't going to do that.
2513  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2514    return false;
2515
2516  return true;
2517}
2518
2519FastISel *
2520X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2521  return X86::createFastISel(funcInfo);
2522}
2523
2524
2525//===----------------------------------------------------------------------===//
2526//                           Other Lowering Hooks
2527//===----------------------------------------------------------------------===//
2528
2529static bool MayFoldLoad(SDValue Op) {
2530  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2531}
2532
2533static bool MayFoldIntoStore(SDValue Op) {
2534  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2535}
2536
2537static bool isTargetShuffle(unsigned Opcode) {
2538  switch(Opcode) {
2539  default: return false;
2540  case X86ISD::PSHUFD:
2541  case X86ISD::PSHUFHW:
2542  case X86ISD::PSHUFLW:
2543  case X86ISD::SHUFPD:
2544  case X86ISD::PALIGN:
2545  case X86ISD::SHUFPS:
2546  case X86ISD::MOVLHPS:
2547  case X86ISD::MOVLHPD:
2548  case X86ISD::MOVHLPS:
2549  case X86ISD::MOVLPS:
2550  case X86ISD::MOVLPD:
2551  case X86ISD::MOVSHDUP:
2552  case X86ISD::MOVSLDUP:
2553  case X86ISD::MOVDDUP:
2554  case X86ISD::MOVSS:
2555  case X86ISD::MOVSD:
2556  case X86ISD::UNPCKLPS:
2557  case X86ISD::UNPCKLPD:
2558  case X86ISD::PUNPCKLWD:
2559  case X86ISD::PUNPCKLBW:
2560  case X86ISD::PUNPCKLDQ:
2561  case X86ISD::PUNPCKLQDQ:
2562  case X86ISD::UNPCKHPS:
2563  case X86ISD::UNPCKHPD:
2564  case X86ISD::PUNPCKHWD:
2565  case X86ISD::PUNPCKHBW:
2566  case X86ISD::PUNPCKHDQ:
2567  case X86ISD::PUNPCKHQDQ:
2568    return true;
2569  }
2570  return false;
2571}
2572
2573static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2574                                               SDValue V1, SelectionDAG &DAG) {
2575  switch(Opc) {
2576  default: llvm_unreachable("Unknown x86 shuffle node");
2577  case X86ISD::MOVSHDUP:
2578  case X86ISD::MOVSLDUP:
2579  case X86ISD::MOVDDUP:
2580    return DAG.getNode(Opc, dl, VT, V1);
2581  }
2582
2583  return SDValue();
2584}
2585
2586static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2587                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2588  switch(Opc) {
2589  default: llvm_unreachable("Unknown x86 shuffle node");
2590  case X86ISD::PSHUFD:
2591  case X86ISD::PSHUFHW:
2592  case X86ISD::PSHUFLW:
2593    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2594  }
2595
2596  return SDValue();
2597}
2598
2599static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2600               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2601  switch(Opc) {
2602  default: llvm_unreachable("Unknown x86 shuffle node");
2603  case X86ISD::PALIGN:
2604  case X86ISD::SHUFPD:
2605  case X86ISD::SHUFPS:
2606    return DAG.getNode(Opc, dl, VT, V1, V2,
2607                       DAG.getConstant(TargetMask, MVT::i8));
2608  }
2609  return SDValue();
2610}
2611
2612static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2613                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2614  switch(Opc) {
2615  default: llvm_unreachable("Unknown x86 shuffle node");
2616  case X86ISD::MOVLHPS:
2617  case X86ISD::MOVLHPD:
2618  case X86ISD::MOVHLPS:
2619  case X86ISD::MOVLPS:
2620  case X86ISD::MOVLPD:
2621  case X86ISD::MOVSS:
2622  case X86ISD::MOVSD:
2623  case X86ISD::UNPCKLPS:
2624  case X86ISD::UNPCKLPD:
2625  case X86ISD::PUNPCKLWD:
2626  case X86ISD::PUNPCKLBW:
2627  case X86ISD::PUNPCKLDQ:
2628  case X86ISD::PUNPCKLQDQ:
2629  case X86ISD::UNPCKHPS:
2630  case X86ISD::UNPCKHPD:
2631  case X86ISD::PUNPCKHWD:
2632  case X86ISD::PUNPCKHBW:
2633  case X86ISD::PUNPCKHDQ:
2634  case X86ISD::PUNPCKHQDQ:
2635    return DAG.getNode(Opc, dl, VT, V1, V2);
2636  }
2637  return SDValue();
2638}
2639
2640SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2641  MachineFunction &MF = DAG.getMachineFunction();
2642  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2643  int ReturnAddrIndex = FuncInfo->getRAIndex();
2644
2645  if (ReturnAddrIndex == 0) {
2646    // Set up a frame object for the return address.
2647    uint64_t SlotSize = TD->getPointerSize();
2648    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2649                                                           false);
2650    FuncInfo->setRAIndex(ReturnAddrIndex);
2651  }
2652
2653  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2654}
2655
2656
2657bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2658                                       bool hasSymbolicDisplacement) {
2659  // Offset should fit into 32 bit immediate field.
2660  if (!isInt<32>(Offset))
2661    return false;
2662
2663  // If we don't have a symbolic displacement - we don't have any extra
2664  // restrictions.
2665  if (!hasSymbolicDisplacement)
2666    return true;
2667
2668  // FIXME: Some tweaks might be needed for medium code model.
2669  if (M != CodeModel::Small && M != CodeModel::Kernel)
2670    return false;
2671
2672  // For small code model we assume that latest object is 16MB before end of 31
2673  // bits boundary. We may also accept pretty large negative constants knowing
2674  // that all objects are in the positive half of address space.
2675  if (M == CodeModel::Small && Offset < 16*1024*1024)
2676    return true;
2677
2678  // For kernel code model we know that all object resist in the negative half
2679  // of 32bits address space. We may not accept negative offsets, since they may
2680  // be just off and we may accept pretty large positive ones.
2681  if (M == CodeModel::Kernel && Offset > 0)
2682    return true;
2683
2684  return false;
2685}
2686
2687/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2688/// specific condition code, returning the condition code and the LHS/RHS of the
2689/// comparison to make.
2690static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2691                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2692  if (!isFP) {
2693    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2694      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2695        // X > -1   -> X == 0, jump !sign.
2696        RHS = DAG.getConstant(0, RHS.getValueType());
2697        return X86::COND_NS;
2698      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2699        // X < 0   -> X == 0, jump on sign.
2700        return X86::COND_S;
2701      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2702        // X < 1   -> X <= 0
2703        RHS = DAG.getConstant(0, RHS.getValueType());
2704        return X86::COND_LE;
2705      }
2706    }
2707
2708    switch (SetCCOpcode) {
2709    default: llvm_unreachable("Invalid integer condition!");
2710    case ISD::SETEQ:  return X86::COND_E;
2711    case ISD::SETGT:  return X86::COND_G;
2712    case ISD::SETGE:  return X86::COND_GE;
2713    case ISD::SETLT:  return X86::COND_L;
2714    case ISD::SETLE:  return X86::COND_LE;
2715    case ISD::SETNE:  return X86::COND_NE;
2716    case ISD::SETULT: return X86::COND_B;
2717    case ISD::SETUGT: return X86::COND_A;
2718    case ISD::SETULE: return X86::COND_BE;
2719    case ISD::SETUGE: return X86::COND_AE;
2720    }
2721  }
2722
2723  // First determine if it is required or is profitable to flip the operands.
2724
2725  // If LHS is a foldable load, but RHS is not, flip the condition.
2726  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2727      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2728    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2729    std::swap(LHS, RHS);
2730  }
2731
2732  switch (SetCCOpcode) {
2733  default: break;
2734  case ISD::SETOLT:
2735  case ISD::SETOLE:
2736  case ISD::SETUGT:
2737  case ISD::SETUGE:
2738    std::swap(LHS, RHS);
2739    break;
2740  }
2741
2742  // On a floating point condition, the flags are set as follows:
2743  // ZF  PF  CF   op
2744  //  0 | 0 | 0 | X > Y
2745  //  0 | 0 | 1 | X < Y
2746  //  1 | 0 | 0 | X == Y
2747  //  1 | 1 | 1 | unordered
2748  switch (SetCCOpcode) {
2749  default: llvm_unreachable("Condcode should be pre-legalized away");
2750  case ISD::SETUEQ:
2751  case ISD::SETEQ:   return X86::COND_E;
2752  case ISD::SETOLT:              // flipped
2753  case ISD::SETOGT:
2754  case ISD::SETGT:   return X86::COND_A;
2755  case ISD::SETOLE:              // flipped
2756  case ISD::SETOGE:
2757  case ISD::SETGE:   return X86::COND_AE;
2758  case ISD::SETUGT:              // flipped
2759  case ISD::SETULT:
2760  case ISD::SETLT:   return X86::COND_B;
2761  case ISD::SETUGE:              // flipped
2762  case ISD::SETULE:
2763  case ISD::SETLE:   return X86::COND_BE;
2764  case ISD::SETONE:
2765  case ISD::SETNE:   return X86::COND_NE;
2766  case ISD::SETUO:   return X86::COND_P;
2767  case ISD::SETO:    return X86::COND_NP;
2768  case ISD::SETOEQ:
2769  case ISD::SETUNE:  return X86::COND_INVALID;
2770  }
2771}
2772
2773/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2774/// code. Current x86 isa includes the following FP cmov instructions:
2775/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2776static bool hasFPCMov(unsigned X86CC) {
2777  switch (X86CC) {
2778  default:
2779    return false;
2780  case X86::COND_B:
2781  case X86::COND_BE:
2782  case X86::COND_E:
2783  case X86::COND_P:
2784  case X86::COND_A:
2785  case X86::COND_AE:
2786  case X86::COND_NE:
2787  case X86::COND_NP:
2788    return true;
2789  }
2790}
2791
2792/// isFPImmLegal - Returns true if the target can instruction select the
2793/// specified FP immediate natively. If false, the legalizer will
2794/// materialize the FP immediate as a load from a constant pool.
2795bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2796  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2797    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2798      return true;
2799  }
2800  return false;
2801}
2802
2803/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2804/// the specified range (L, H].
2805static bool isUndefOrInRange(int Val, int Low, int Hi) {
2806  return (Val < 0) || (Val >= Low && Val < Hi);
2807}
2808
2809/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2810/// specified value.
2811static bool isUndefOrEqual(int Val, int CmpVal) {
2812  if (Val < 0 || Val == CmpVal)
2813    return true;
2814  return false;
2815}
2816
2817/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2818/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2819/// the second operand.
2820static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2821  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
2822    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2823  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2824    return (Mask[0] < 2 && Mask[1] < 2);
2825  return false;
2826}
2827
2828bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2829  SmallVector<int, 8> M;
2830  N->getMask(M);
2831  return ::isPSHUFDMask(M, N->getValueType(0));
2832}
2833
2834/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2835/// is suitable for input to PSHUFHW.
2836static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2837  if (VT != MVT::v8i16)
2838    return false;
2839
2840  // Lower quadword copied in order or undef.
2841  for (int i = 0; i != 4; ++i)
2842    if (Mask[i] >= 0 && Mask[i] != i)
2843      return false;
2844
2845  // Upper quadword shuffled.
2846  for (int i = 4; i != 8; ++i)
2847    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2848      return false;
2849
2850  return true;
2851}
2852
2853bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2854  SmallVector<int, 8> M;
2855  N->getMask(M);
2856  return ::isPSHUFHWMask(M, N->getValueType(0));
2857}
2858
2859/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2860/// is suitable for input to PSHUFLW.
2861static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2862  if (VT != MVT::v8i16)
2863    return false;
2864
2865  // Upper quadword copied in order.
2866  for (int i = 4; i != 8; ++i)
2867    if (Mask[i] >= 0 && Mask[i] != i)
2868      return false;
2869
2870  // Lower quadword shuffled.
2871  for (int i = 0; i != 4; ++i)
2872    if (Mask[i] >= 4)
2873      return false;
2874
2875  return true;
2876}
2877
2878bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2879  SmallVector<int, 8> M;
2880  N->getMask(M);
2881  return ::isPSHUFLWMask(M, N->getValueType(0));
2882}
2883
2884/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2885/// is suitable for input to PALIGNR.
2886static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2887                          bool hasSSSE3) {
2888  int i, e = VT.getVectorNumElements();
2889
2890  // Do not handle v2i64 / v2f64 shuffles with palignr.
2891  if (e < 4 || !hasSSSE3)
2892    return false;
2893
2894  for (i = 0; i != e; ++i)
2895    if (Mask[i] >= 0)
2896      break;
2897
2898  // All undef, not a palignr.
2899  if (i == e)
2900    return false;
2901
2902  // Determine if it's ok to perform a palignr with only the LHS, since we
2903  // don't have access to the actual shuffle elements to see if RHS is undef.
2904  bool Unary = Mask[i] < (int)e;
2905  bool NeedsUnary = false;
2906
2907  int s = Mask[i] - i;
2908
2909  // Check the rest of the elements to see if they are consecutive.
2910  for (++i; i != e; ++i) {
2911    int m = Mask[i];
2912    if (m < 0)
2913      continue;
2914
2915    Unary = Unary && (m < (int)e);
2916    NeedsUnary = NeedsUnary || (m < s);
2917
2918    if (NeedsUnary && !Unary)
2919      return false;
2920    if (Unary && m != ((s+i) & (e-1)))
2921      return false;
2922    if (!Unary && m != (s+i))
2923      return false;
2924  }
2925  return true;
2926}
2927
2928bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2929  SmallVector<int, 8> M;
2930  N->getMask(M);
2931  return ::isPALIGNRMask(M, N->getValueType(0), true);
2932}
2933
2934/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2935/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2936static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2937  int NumElems = VT.getVectorNumElements();
2938  if (NumElems != 2 && NumElems != 4)
2939    return false;
2940
2941  int Half = NumElems / 2;
2942  for (int i = 0; i < Half; ++i)
2943    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2944      return false;
2945  for (int i = Half; i < NumElems; ++i)
2946    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2947      return false;
2948
2949  return true;
2950}
2951
2952bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2953  SmallVector<int, 8> M;
2954  N->getMask(M);
2955  return ::isSHUFPMask(M, N->getValueType(0));
2956}
2957
2958/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2959/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2960/// half elements to come from vector 1 (which would equal the dest.) and
2961/// the upper half to come from vector 2.
2962static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2963  int NumElems = VT.getVectorNumElements();
2964
2965  if (NumElems != 2 && NumElems != 4)
2966    return false;
2967
2968  int Half = NumElems / 2;
2969  for (int i = 0; i < Half; ++i)
2970    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2971      return false;
2972  for (int i = Half; i < NumElems; ++i)
2973    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2974      return false;
2975  return true;
2976}
2977
2978static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2979  SmallVector<int, 8> M;
2980  N->getMask(M);
2981  return isCommutedSHUFPMask(M, N->getValueType(0));
2982}
2983
2984/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2985/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2986bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2987  if (N->getValueType(0).getVectorNumElements() != 4)
2988    return false;
2989
2990  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2991  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2992         isUndefOrEqual(N->getMaskElt(1), 7) &&
2993         isUndefOrEqual(N->getMaskElt(2), 2) &&
2994         isUndefOrEqual(N->getMaskElt(3), 3);
2995}
2996
2997/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2998/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2999/// <2, 3, 2, 3>
3000bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3001  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3002
3003  if (NumElems != 4)
3004    return false;
3005
3006  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3007  isUndefOrEqual(N->getMaskElt(1), 3) &&
3008  isUndefOrEqual(N->getMaskElt(2), 2) &&
3009  isUndefOrEqual(N->getMaskElt(3), 3);
3010}
3011
3012/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3013/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3014bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3015  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3016
3017  if (NumElems != 2 && NumElems != 4)
3018    return false;
3019
3020  for (unsigned i = 0; i < NumElems/2; ++i)
3021    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3022      return false;
3023
3024  for (unsigned i = NumElems/2; i < NumElems; ++i)
3025    if (!isUndefOrEqual(N->getMaskElt(i), i))
3026      return false;
3027
3028  return true;
3029}
3030
3031/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3032/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3033bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3034  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3035
3036  if (NumElems != 2 && NumElems != 4)
3037    return false;
3038
3039  for (unsigned i = 0; i < NumElems/2; ++i)
3040    if (!isUndefOrEqual(N->getMaskElt(i), i))
3041      return false;
3042
3043  for (unsigned i = 0; i < NumElems/2; ++i)
3044    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3045      return false;
3046
3047  return true;
3048}
3049
3050/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3051/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3052static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3053                         bool V2IsSplat = false) {
3054  int NumElts = VT.getVectorNumElements();
3055  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3056    return false;
3057
3058  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3059    int BitI  = Mask[i];
3060    int BitI1 = Mask[i+1];
3061    if (!isUndefOrEqual(BitI, j))
3062      return false;
3063    if (V2IsSplat) {
3064      if (!isUndefOrEqual(BitI1, NumElts))
3065        return false;
3066    } else {
3067      if (!isUndefOrEqual(BitI1, j + NumElts))
3068        return false;
3069    }
3070  }
3071  return true;
3072}
3073
3074bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3075  SmallVector<int, 8> M;
3076  N->getMask(M);
3077  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3078}
3079
3080/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3081/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3082static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3083                         bool V2IsSplat = false) {
3084  int NumElts = VT.getVectorNumElements();
3085  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3086    return false;
3087
3088  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3089    int BitI  = Mask[i];
3090    int BitI1 = Mask[i+1];
3091    if (!isUndefOrEqual(BitI, j + NumElts/2))
3092      return false;
3093    if (V2IsSplat) {
3094      if (isUndefOrEqual(BitI1, NumElts))
3095        return false;
3096    } else {
3097      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3098        return false;
3099    }
3100  }
3101  return true;
3102}
3103
3104bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3105  SmallVector<int, 8> M;
3106  N->getMask(M);
3107  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3108}
3109
3110/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3111/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3112/// <0, 0, 1, 1>
3113static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3114  int NumElems = VT.getVectorNumElements();
3115  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3116    return false;
3117
3118  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3119    int BitI  = Mask[i];
3120    int BitI1 = Mask[i+1];
3121    if (!isUndefOrEqual(BitI, j))
3122      return false;
3123    if (!isUndefOrEqual(BitI1, j))
3124      return false;
3125  }
3126  return true;
3127}
3128
3129bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3130  SmallVector<int, 8> M;
3131  N->getMask(M);
3132  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3133}
3134
3135/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3136/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3137/// <2, 2, 3, 3>
3138static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3139  int NumElems = VT.getVectorNumElements();
3140  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3141    return false;
3142
3143  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3144    int BitI  = Mask[i];
3145    int BitI1 = Mask[i+1];
3146    if (!isUndefOrEqual(BitI, j))
3147      return false;
3148    if (!isUndefOrEqual(BitI1, j))
3149      return false;
3150  }
3151  return true;
3152}
3153
3154bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3155  SmallVector<int, 8> M;
3156  N->getMask(M);
3157  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3158}
3159
3160/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3161/// specifies a shuffle of elements that is suitable for input to MOVSS,
3162/// MOVSD, and MOVD, i.e. setting the lowest element.
3163static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3164  if (VT.getVectorElementType().getSizeInBits() < 32)
3165    return false;
3166
3167  int NumElts = VT.getVectorNumElements();
3168
3169  if (!isUndefOrEqual(Mask[0], NumElts))
3170    return false;
3171
3172  for (int i = 1; i < NumElts; ++i)
3173    if (!isUndefOrEqual(Mask[i], i))
3174      return false;
3175
3176  return true;
3177}
3178
3179bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3180  SmallVector<int, 8> M;
3181  N->getMask(M);
3182  return ::isMOVLMask(M, N->getValueType(0));
3183}
3184
3185/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3186/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3187/// element of vector 2 and the other elements to come from vector 1 in order.
3188static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3189                               bool V2IsSplat = false, bool V2IsUndef = false) {
3190  int NumOps = VT.getVectorNumElements();
3191  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3192    return false;
3193
3194  if (!isUndefOrEqual(Mask[0], 0))
3195    return false;
3196
3197  for (int i = 1; i < NumOps; ++i)
3198    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3199          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3200          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3201      return false;
3202
3203  return true;
3204}
3205
3206static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3207                           bool V2IsUndef = false) {
3208  SmallVector<int, 8> M;
3209  N->getMask(M);
3210  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3211}
3212
3213/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3214/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3215bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3216  if (N->getValueType(0).getVectorNumElements() != 4)
3217    return false;
3218
3219  // Expect 1, 1, 3, 3
3220  for (unsigned i = 0; i < 2; ++i) {
3221    int Elt = N->getMaskElt(i);
3222    if (Elt >= 0 && Elt != 1)
3223      return false;
3224  }
3225
3226  bool HasHi = false;
3227  for (unsigned i = 2; i < 4; ++i) {
3228    int Elt = N->getMaskElt(i);
3229    if (Elt >= 0 && Elt != 3)
3230      return false;
3231    if (Elt == 3)
3232      HasHi = true;
3233  }
3234  // Don't use movshdup if it can be done with a shufps.
3235  // FIXME: verify that matching u, u, 3, 3 is what we want.
3236  return HasHi;
3237}
3238
3239/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3240/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3241bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3242  if (N->getValueType(0).getVectorNumElements() != 4)
3243    return false;
3244
3245  // Expect 0, 0, 2, 2
3246  for (unsigned i = 0; i < 2; ++i)
3247    if (N->getMaskElt(i) > 0)
3248      return false;
3249
3250  bool HasHi = false;
3251  for (unsigned i = 2; i < 4; ++i) {
3252    int Elt = N->getMaskElt(i);
3253    if (Elt >= 0 && Elt != 2)
3254      return false;
3255    if (Elt == 2)
3256      HasHi = true;
3257  }
3258  // Don't use movsldup if it can be done with a shufps.
3259  return HasHi;
3260}
3261
3262/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3263/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3264bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3265  int e = N->getValueType(0).getVectorNumElements() / 2;
3266
3267  for (int i = 0; i < e; ++i)
3268    if (!isUndefOrEqual(N->getMaskElt(i), i))
3269      return false;
3270  for (int i = 0; i < e; ++i)
3271    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3272      return false;
3273  return true;
3274}
3275
3276/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3277/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3278unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3279  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3280  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3281
3282  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3283  unsigned Mask = 0;
3284  for (int i = 0; i < NumOperands; ++i) {
3285    int Val = SVOp->getMaskElt(NumOperands-i-1);
3286    if (Val < 0) Val = 0;
3287    if (Val >= NumOperands) Val -= NumOperands;
3288    Mask |= Val;
3289    if (i != NumOperands - 1)
3290      Mask <<= Shift;
3291  }
3292  return Mask;
3293}
3294
3295/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3296/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3297unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3298  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3299  unsigned Mask = 0;
3300  // 8 nodes, but we only care about the last 4.
3301  for (unsigned i = 7; i >= 4; --i) {
3302    int Val = SVOp->getMaskElt(i);
3303    if (Val >= 0)
3304      Mask |= (Val - 4);
3305    if (i != 4)
3306      Mask <<= 2;
3307  }
3308  return Mask;
3309}
3310
3311/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3312/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3313unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3314  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3315  unsigned Mask = 0;
3316  // 8 nodes, but we only care about the first 4.
3317  for (int i = 3; i >= 0; --i) {
3318    int Val = SVOp->getMaskElt(i);
3319    if (Val >= 0)
3320      Mask |= Val;
3321    if (i != 0)
3322      Mask <<= 2;
3323  }
3324  return Mask;
3325}
3326
3327/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3328/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3329unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3330  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3331  EVT VVT = N->getValueType(0);
3332  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3333  int Val = 0;
3334
3335  unsigned i, e;
3336  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3337    Val = SVOp->getMaskElt(i);
3338    if (Val >= 0)
3339      break;
3340  }
3341  return (Val - i) * EltSize;
3342}
3343
3344/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3345/// constant +0.0.
3346bool X86::isZeroNode(SDValue Elt) {
3347  return ((isa<ConstantSDNode>(Elt) &&
3348           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3349          (isa<ConstantFPSDNode>(Elt) &&
3350           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3351}
3352
3353/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3354/// their permute mask.
3355static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3356                                    SelectionDAG &DAG) {
3357  EVT VT = SVOp->getValueType(0);
3358  unsigned NumElems = VT.getVectorNumElements();
3359  SmallVector<int, 8> MaskVec;
3360
3361  for (unsigned i = 0; i != NumElems; ++i) {
3362    int idx = SVOp->getMaskElt(i);
3363    if (idx < 0)
3364      MaskVec.push_back(idx);
3365    else if (idx < (int)NumElems)
3366      MaskVec.push_back(idx + NumElems);
3367    else
3368      MaskVec.push_back(idx - NumElems);
3369  }
3370  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3371                              SVOp->getOperand(0), &MaskVec[0]);
3372}
3373
3374/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3375/// the two vector operands have swapped position.
3376static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3377  unsigned NumElems = VT.getVectorNumElements();
3378  for (unsigned i = 0; i != NumElems; ++i) {
3379    int idx = Mask[i];
3380    if (idx < 0)
3381      continue;
3382    else if (idx < (int)NumElems)
3383      Mask[i] = idx + NumElems;
3384    else
3385      Mask[i] = idx - NumElems;
3386  }
3387}
3388
3389/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3390/// match movhlps. The lower half elements should come from upper half of
3391/// V1 (and in order), and the upper half elements should come from the upper
3392/// half of V2 (and in order).
3393static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3394  if (Op->getValueType(0).getVectorNumElements() != 4)
3395    return false;
3396  for (unsigned i = 0, e = 2; i != e; ++i)
3397    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3398      return false;
3399  for (unsigned i = 2; i != 4; ++i)
3400    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3401      return false;
3402  return true;
3403}
3404
3405/// isScalarLoadToVector - Returns true if the node is a scalar load that
3406/// is promoted to a vector. It also returns the LoadSDNode by reference if
3407/// required.
3408static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3409  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3410    return false;
3411  N = N->getOperand(0).getNode();
3412  if (!ISD::isNON_EXTLoad(N))
3413    return false;
3414  if (LD)
3415    *LD = cast<LoadSDNode>(N);
3416  return true;
3417}
3418
3419/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3420/// match movlp{s|d}. The lower half elements should come from lower half of
3421/// V1 (and in order), and the upper half elements should come from the upper
3422/// half of V2 (and in order). And since V1 will become the source of the
3423/// MOVLP, it must be either a vector load or a scalar load to vector.
3424static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3425                               ShuffleVectorSDNode *Op) {
3426  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3427    return false;
3428  // Is V2 is a vector load, don't do this transformation. We will try to use
3429  // load folding shufps op.
3430  if (ISD::isNON_EXTLoad(V2))
3431    return false;
3432
3433  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3434
3435  if (NumElems != 2 && NumElems != 4)
3436    return false;
3437  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3438    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3439      return false;
3440  for (unsigned i = NumElems/2; i != NumElems; ++i)
3441    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3442      return false;
3443  return true;
3444}
3445
3446/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3447/// all the same.
3448static bool isSplatVector(SDNode *N) {
3449  if (N->getOpcode() != ISD::BUILD_VECTOR)
3450    return false;
3451
3452  SDValue SplatValue = N->getOperand(0);
3453  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3454    if (N->getOperand(i) != SplatValue)
3455      return false;
3456  return true;
3457}
3458
3459/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3460/// to an zero vector.
3461/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3462static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3463  SDValue V1 = N->getOperand(0);
3464  SDValue V2 = N->getOperand(1);
3465  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3466  for (unsigned i = 0; i != NumElems; ++i) {
3467    int Idx = N->getMaskElt(i);
3468    if (Idx >= (int)NumElems) {
3469      unsigned Opc = V2.getOpcode();
3470      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3471        continue;
3472      if (Opc != ISD::BUILD_VECTOR ||
3473          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3474        return false;
3475    } else if (Idx >= 0) {
3476      unsigned Opc = V1.getOpcode();
3477      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3478        continue;
3479      if (Opc != ISD::BUILD_VECTOR ||
3480          !X86::isZeroNode(V1.getOperand(Idx)))
3481        return false;
3482    }
3483  }
3484  return true;
3485}
3486
3487/// getZeroVector - Returns a vector of specified type with all zero elements.
3488///
3489static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3490                             DebugLoc dl) {
3491  assert(VT.isVector() && "Expected a vector type");
3492
3493  // Always build SSE zero vectors as <4 x i32> bitcasted
3494  // to their dest type. This ensures they get CSE'd.
3495  SDValue Vec;
3496  if (VT.getSizeInBits() == 128) {  // SSE
3497    if (HasSSE2) {  // SSE2
3498      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3499      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3500    } else { // SSE1
3501      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3502      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3503    }
3504  } else if (VT.getSizeInBits() == 256) { // AVX
3505    // 256-bit logic and arithmetic instructions in AVX are
3506    // all floating-point, no support for integer ops. Default
3507    // to emitting fp zeroed vectors then.
3508    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3509    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3510    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3511  }
3512  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3513}
3514
3515/// getOnesVector - Returns a vector of specified type with all bits set.
3516///
3517static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3518  assert(VT.isVector() && "Expected a vector type");
3519
3520  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3521  // type.  This ensures they get CSE'd.
3522  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3523  SDValue Vec;
3524  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3525  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3526}
3527
3528
3529/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3530/// that point to V2 points to its first element.
3531static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3532  EVT VT = SVOp->getValueType(0);
3533  unsigned NumElems = VT.getVectorNumElements();
3534
3535  bool Changed = false;
3536  SmallVector<int, 8> MaskVec;
3537  SVOp->getMask(MaskVec);
3538
3539  for (unsigned i = 0; i != NumElems; ++i) {
3540    if (MaskVec[i] > (int)NumElems) {
3541      MaskVec[i] = NumElems;
3542      Changed = true;
3543    }
3544  }
3545  if (Changed)
3546    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3547                                SVOp->getOperand(1), &MaskVec[0]);
3548  return SDValue(SVOp, 0);
3549}
3550
3551/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3552/// operation of specified width.
3553static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3554                       SDValue V2) {
3555  unsigned NumElems = VT.getVectorNumElements();
3556  SmallVector<int, 8> Mask;
3557  Mask.push_back(NumElems);
3558  for (unsigned i = 1; i != NumElems; ++i)
3559    Mask.push_back(i);
3560  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3561}
3562
3563/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3564static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3565                          SDValue V2) {
3566  unsigned NumElems = VT.getVectorNumElements();
3567  SmallVector<int, 8> Mask;
3568  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3569    Mask.push_back(i);
3570    Mask.push_back(i + NumElems);
3571  }
3572  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3573}
3574
3575/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3576static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3577                          SDValue V2) {
3578  unsigned NumElems = VT.getVectorNumElements();
3579  unsigned Half = NumElems/2;
3580  SmallVector<int, 8> Mask;
3581  for (unsigned i = 0; i != Half; ++i) {
3582    Mask.push_back(i + Half);
3583    Mask.push_back(i + NumElems + Half);
3584  }
3585  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3586}
3587
3588/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3589static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3590  EVT PVT = MVT::v4f32;
3591  EVT VT = SV->getValueType(0);
3592  DebugLoc dl = SV->getDebugLoc();
3593  SDValue V1 = SV->getOperand(0);
3594  int NumElems = VT.getVectorNumElements();
3595  int EltNo = SV->getSplatIndex();
3596
3597  // unpack elements to the correct location
3598  while (NumElems > 4) {
3599    if (EltNo < NumElems/2) {
3600      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3601    } else {
3602      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3603      EltNo -= NumElems/2;
3604    }
3605    NumElems >>= 1;
3606  }
3607
3608  // Perform the splat.
3609  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3610  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3611  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3612  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3613}
3614
3615/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3616/// vector of zero or undef vector.  This produces a shuffle where the low
3617/// element of V2 is swizzled into the zero/undef vector, landing at element
3618/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3619static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3620                                             bool isZero, bool HasSSE2,
3621                                             SelectionDAG &DAG) {
3622  EVT VT = V2.getValueType();
3623  SDValue V1 = isZero
3624    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3625  unsigned NumElems = VT.getVectorNumElements();
3626  SmallVector<int, 16> MaskVec;
3627  for (unsigned i = 0; i != NumElems; ++i)
3628    // If this is the insertion idx, put the low elt of V2 here.
3629    MaskVec.push_back(i == Idx ? NumElems : i);
3630  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3631}
3632
3633/// getShuffleScalarElt - Returns the scalar element that will make up the ith
3634/// element of the result of the vector shuffle.
3635SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
3636                            unsigned Depth) {
3637  if (Depth == 6)
3638    return SDValue();  // Limit search depth.
3639
3640  SDValue V = SDValue(N, 0);
3641  EVT VT = V.getValueType();
3642  unsigned Opcode = V.getOpcode();
3643
3644  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3645  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3646    Index = SV->getMaskElt(Index);
3647
3648    if (Index < 0)
3649      return DAG.getUNDEF(VT.getVectorElementType());
3650
3651    int NumElems = VT.getVectorNumElements();
3652    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3653    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
3654  }
3655
3656  // Recurse into target specific vector shuffles to find scalars.
3657  if (isTargetShuffle(Opcode)) {
3658    int NumElems = VT.getVectorNumElements();
3659    SmallVector<unsigned, 16> ShuffleMask;
3660    SDValue ImmN;
3661
3662    switch(Opcode) {
3663    case X86ISD::SHUFPS:
3664    case X86ISD::SHUFPD:
3665      ImmN = N->getOperand(N->getNumOperands()-1);
3666      DecodeSHUFPSMask(NumElems,
3667                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
3668                       ShuffleMask);
3669      break;
3670    case X86ISD::PUNPCKHBW:
3671    case X86ISD::PUNPCKHWD:
3672    case X86ISD::PUNPCKHDQ:
3673    case X86ISD::PUNPCKHQDQ:
3674      DecodePUNPCKHMask(NumElems, ShuffleMask);
3675      break;
3676    case X86ISD::UNPCKHPS:
3677    case X86ISD::UNPCKHPD:
3678      DecodeUNPCKHPMask(NumElems, ShuffleMask);
3679      break;
3680    case X86ISD::PUNPCKLBW:
3681    case X86ISD::PUNPCKLWD:
3682    case X86ISD::PUNPCKLDQ:
3683    case X86ISD::PUNPCKLQDQ:
3684      DecodePUNPCKLMask(NumElems, ShuffleMask);
3685      break;
3686    case X86ISD::UNPCKLPS:
3687    case X86ISD::UNPCKLPD:
3688      DecodeUNPCKLPMask(NumElems, ShuffleMask);
3689      break;
3690    case X86ISD::MOVHLPS:
3691      DecodeMOVHLPSMask(NumElems, ShuffleMask);
3692      break;
3693    case X86ISD::MOVLHPS:
3694      DecodeMOVLHPSMask(NumElems, ShuffleMask);
3695      break;
3696    case X86ISD::PSHUFD:
3697      ImmN = N->getOperand(N->getNumOperands()-1);
3698      DecodePSHUFMask(NumElems,
3699                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
3700                      ShuffleMask);
3701      break;
3702    case X86ISD::PSHUFHW:
3703      ImmN = N->getOperand(N->getNumOperands()-1);
3704      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3705                        ShuffleMask);
3706      break;
3707    case X86ISD::PSHUFLW:
3708      ImmN = N->getOperand(N->getNumOperands()-1);
3709      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3710                        ShuffleMask);
3711      break;
3712    case X86ISD::MOVSS:
3713    case X86ISD::MOVSD: {
3714      // The index 0 always comes from the first element of the second source,
3715      // this is why MOVSS and MOVSD are used in the first place. The other
3716      // elements come from the other positions of the first source vector.
3717      unsigned OpNum = (Index == 0) ? 1 : 0;
3718      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
3719                                 Depth+1);
3720    }
3721    default:
3722      assert("not implemented for target shuffle node");
3723      return SDValue();
3724    }
3725
3726    Index = ShuffleMask[Index];
3727    if (Index < 0)
3728      return DAG.getUNDEF(VT.getVectorElementType());
3729
3730    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
3731    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
3732                               Depth+1);
3733  }
3734
3735  // Actual nodes that may contain scalar elements
3736  if (Opcode == ISD::BIT_CONVERT) {
3737    V = V.getOperand(0);
3738    EVT SrcVT = V.getValueType();
3739    unsigned NumElems = VT.getVectorNumElements();
3740
3741    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
3742      return SDValue();
3743  }
3744
3745  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
3746    return (Index == 0) ? V.getOperand(0)
3747                          : DAG.getUNDEF(VT.getVectorElementType());
3748
3749  if (V.getOpcode() == ISD::BUILD_VECTOR)
3750    return V.getOperand(Index);
3751
3752  return SDValue();
3753}
3754
3755/// getNumOfConsecutiveZeros - Return the number of elements of a vector
3756/// shuffle operation which come from a consecutively from a zero. The
3757/// search can start in two diferent directions, from left or right.
3758static
3759unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
3760                                  bool ZerosFromLeft, SelectionDAG &DAG) {
3761  int i = 0;
3762
3763  while (i < NumElems) {
3764    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
3765    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
3766    if (!(Elt.getNode() &&
3767         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
3768      break;
3769    ++i;
3770  }
3771
3772  return i;
3773}
3774
3775/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
3776/// MaskE correspond consecutively to elements from one of the vector operands,
3777/// starting from its index OpIdx. Also tell OpNum which source vector operand.
3778static
3779bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
3780                              int OpIdx, int NumElems, unsigned &OpNum) {
3781  bool SeenV1 = false;
3782  bool SeenV2 = false;
3783
3784  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
3785    int Idx = SVOp->getMaskElt(i);
3786    // Ignore undef indicies
3787    if (Idx < 0)
3788      continue;
3789
3790    if (Idx < NumElems)
3791      SeenV1 = true;
3792    else
3793      SeenV2 = true;
3794
3795    // Only accept consecutive elements from the same vector
3796    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
3797      return false;
3798  }
3799
3800  OpNum = SeenV1 ? 0 : 1;
3801  return true;
3802}
3803
3804/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
3805/// logical left shift of a vector.
3806static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3807                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3808  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3809  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3810              false /* check zeros from right */, DAG);
3811  unsigned OpSrc;
3812
3813  if (!NumZeros)
3814    return false;
3815
3816  // Considering the elements in the mask that are not consecutive zeros,
3817  // check if they consecutively come from only one of the source vectors.
3818  //
3819  //               V1 = {X, A, B, C}     0
3820  //                         \  \  \    /
3821  //   vector_shuffle V1, V2 <1, 2, 3, X>
3822  //
3823  if (!isShuffleMaskConsecutive(SVOp,
3824            0,                   // Mask Start Index
3825            NumElems-NumZeros-1, // Mask End Index
3826            NumZeros,            // Where to start looking in the src vector
3827            NumElems,            // Number of elements in vector
3828            OpSrc))              // Which source operand ?
3829    return false;
3830
3831  isLeft = false;
3832  ShAmt = NumZeros;
3833  ShVal = SVOp->getOperand(OpSrc);
3834  return true;
3835}
3836
3837/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
3838/// logical left shift of a vector.
3839static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3840                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3841  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3842  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3843              true /* check zeros from left */, DAG);
3844  unsigned OpSrc;
3845
3846  if (!NumZeros)
3847    return false;
3848
3849  // Considering the elements in the mask that are not consecutive zeros,
3850  // check if they consecutively come from only one of the source vectors.
3851  //
3852  //                           0    { A, B, X, X } = V2
3853  //                          / \    /  /
3854  //   vector_shuffle V1, V2 <X, X, 4, 5>
3855  //
3856  if (!isShuffleMaskConsecutive(SVOp,
3857            NumZeros,     // Mask Start Index
3858            NumElems-1,   // Mask End Index
3859            0,            // Where to start looking in the src vector
3860            NumElems,     // Number of elements in vector
3861            OpSrc))       // Which source operand ?
3862    return false;
3863
3864  isLeft = true;
3865  ShAmt = NumZeros;
3866  ShVal = SVOp->getOperand(OpSrc);
3867  return true;
3868}
3869
3870/// isVectorShift - Returns true if the shuffle can be implemented as a
3871/// logical left or right shift of a vector.
3872static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3873                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3874  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
3875      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
3876    return true;
3877
3878  return false;
3879}
3880
3881/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3882///
3883static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3884                                       unsigned NumNonZero, unsigned NumZero,
3885                                       SelectionDAG &DAG,
3886                                       const TargetLowering &TLI) {
3887  if (NumNonZero > 8)
3888    return SDValue();
3889
3890  DebugLoc dl = Op.getDebugLoc();
3891  SDValue V(0, 0);
3892  bool First = true;
3893  for (unsigned i = 0; i < 16; ++i) {
3894    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3895    if (ThisIsNonZero && First) {
3896      if (NumZero)
3897        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3898      else
3899        V = DAG.getUNDEF(MVT::v8i16);
3900      First = false;
3901    }
3902
3903    if ((i & 1) != 0) {
3904      SDValue ThisElt(0, 0), LastElt(0, 0);
3905      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3906      if (LastIsNonZero) {
3907        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3908                              MVT::i16, Op.getOperand(i-1));
3909      }
3910      if (ThisIsNonZero) {
3911        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3912        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3913                              ThisElt, DAG.getConstant(8, MVT::i8));
3914        if (LastIsNonZero)
3915          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3916      } else
3917        ThisElt = LastElt;
3918
3919      if (ThisElt.getNode())
3920        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3921                        DAG.getIntPtrConstant(i/2));
3922    }
3923  }
3924
3925  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3926}
3927
3928/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3929///
3930static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3931                                     unsigned NumNonZero, unsigned NumZero,
3932                                     SelectionDAG &DAG,
3933                                     const TargetLowering &TLI) {
3934  if (NumNonZero > 4)
3935    return SDValue();
3936
3937  DebugLoc dl = Op.getDebugLoc();
3938  SDValue V(0, 0);
3939  bool First = true;
3940  for (unsigned i = 0; i < 8; ++i) {
3941    bool isNonZero = (NonZeros & (1 << i)) != 0;
3942    if (isNonZero) {
3943      if (First) {
3944        if (NumZero)
3945          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3946        else
3947          V = DAG.getUNDEF(MVT::v8i16);
3948        First = false;
3949      }
3950      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3951                      MVT::v8i16, V, Op.getOperand(i),
3952                      DAG.getIntPtrConstant(i));
3953    }
3954  }
3955
3956  return V;
3957}
3958
3959/// getVShift - Return a vector logical shift node.
3960///
3961static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3962                         unsigned NumBits, SelectionDAG &DAG,
3963                         const TargetLowering &TLI, DebugLoc dl) {
3964  EVT ShVT = MVT::v2i64;
3965  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3966  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3967  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3968                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3969                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3970}
3971
3972SDValue
3973X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3974                                          SelectionDAG &DAG) const {
3975
3976  // Check if the scalar load can be widened into a vector load. And if
3977  // the address is "base + cst" see if the cst can be "absorbed" into
3978  // the shuffle mask.
3979  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3980    SDValue Ptr = LD->getBasePtr();
3981    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3982      return SDValue();
3983    EVT PVT = LD->getValueType(0);
3984    if (PVT != MVT::i32 && PVT != MVT::f32)
3985      return SDValue();
3986
3987    int FI = -1;
3988    int64_t Offset = 0;
3989    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3990      FI = FINode->getIndex();
3991      Offset = 0;
3992    } else if (Ptr.getOpcode() == ISD::ADD &&
3993               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3994               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3995      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3996      Offset = Ptr.getConstantOperandVal(1);
3997      Ptr = Ptr.getOperand(0);
3998    } else {
3999      return SDValue();
4000    }
4001
4002    SDValue Chain = LD->getChain();
4003    // Make sure the stack object alignment is at least 16.
4004    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4005    if (DAG.InferPtrAlignment(Ptr) < 16) {
4006      if (MFI->isFixedObjectIndex(FI)) {
4007        // Can't change the alignment. FIXME: It's possible to compute
4008        // the exact stack offset and reference FI + adjust offset instead.
4009        // If someone *really* cares about this. That's the way to implement it.
4010        return SDValue();
4011      } else {
4012        MFI->setObjectAlignment(FI, 16);
4013      }
4014    }
4015
4016    // (Offset % 16) must be multiple of 4. Then address is then
4017    // Ptr + (Offset & ~15).
4018    if (Offset < 0)
4019      return SDValue();
4020    if ((Offset % 16) & 3)
4021      return SDValue();
4022    int64_t StartOffset = Offset & ~15;
4023    if (StartOffset)
4024      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4025                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4026
4027    int EltNo = (Offset - StartOffset) >> 2;
4028    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4029    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4030    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4031                             LD->getPointerInfo().getWithOffset(StartOffset),
4032                             false, false, 0);
4033    // Canonicalize it to a v4i32 shuffle.
4034    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
4035    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4036                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4037                                            DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4038  }
4039
4040  return SDValue();
4041}
4042
4043/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4044/// vector of type 'VT', see if the elements can be replaced by a single large
4045/// load which has the same value as a build_vector whose operands are 'elts'.
4046///
4047/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4048///
4049/// FIXME: we'd also like to handle the case where the last elements are zero
4050/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4051/// There's even a handy isZeroNode for that purpose.
4052static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4053                                        DebugLoc &DL, SelectionDAG &DAG) {
4054  EVT EltVT = VT.getVectorElementType();
4055  unsigned NumElems = Elts.size();
4056
4057  LoadSDNode *LDBase = NULL;
4058  unsigned LastLoadedElt = -1U;
4059
4060  // For each element in the initializer, see if we've found a load or an undef.
4061  // If we don't find an initial load element, or later load elements are
4062  // non-consecutive, bail out.
4063  for (unsigned i = 0; i < NumElems; ++i) {
4064    SDValue Elt = Elts[i];
4065
4066    if (!Elt.getNode() ||
4067        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4068      return SDValue();
4069    if (!LDBase) {
4070      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4071        return SDValue();
4072      LDBase = cast<LoadSDNode>(Elt.getNode());
4073      LastLoadedElt = i;
4074      continue;
4075    }
4076    if (Elt.getOpcode() == ISD::UNDEF)
4077      continue;
4078
4079    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4080    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4081      return SDValue();
4082    LastLoadedElt = i;
4083  }
4084
4085  // If we have found an entire vector of loads and undefs, then return a large
4086  // load of the entire vector width starting at the base pointer.  If we found
4087  // consecutive loads for the low half, generate a vzext_load node.
4088  if (LastLoadedElt == NumElems - 1) {
4089    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4090      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4091                         LDBase->getPointerInfo(),
4092                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4093    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4094                       LDBase->getPointerInfo(),
4095                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4096                       LDBase->getAlignment());
4097  } else if (NumElems == 4 && LastLoadedElt == 1) {
4098    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4099    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4100    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4101                                              Ops, 2, MVT::i32,
4102                                              LDBase->getMemOperand());
4103    return DAG.getNode(ISD::BIT_CONVERT, DL, VT, ResNode);
4104  }
4105  return SDValue();
4106}
4107
4108SDValue
4109X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4110  DebugLoc dl = Op.getDebugLoc();
4111  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4112  // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4113  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4114  // is present, so AllOnes is ignored.
4115  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4116      (Op.getValueType().getSizeInBits() != 256 &&
4117       ISD::isBuildVectorAllOnes(Op.getNode()))) {
4118    // Canonicalize this to <4 x i32> (SSE) to
4119    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4120    // eliminated on x86-32 hosts.
4121    if (Op.getValueType() == MVT::v4i32)
4122      return Op;
4123
4124    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4125      return getOnesVector(Op.getValueType(), DAG, dl);
4126    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4127  }
4128
4129  EVT VT = Op.getValueType();
4130  EVT ExtVT = VT.getVectorElementType();
4131  unsigned EVTBits = ExtVT.getSizeInBits();
4132
4133  unsigned NumElems = Op.getNumOperands();
4134  unsigned NumZero  = 0;
4135  unsigned NumNonZero = 0;
4136  unsigned NonZeros = 0;
4137  bool IsAllConstants = true;
4138  SmallSet<SDValue, 8> Values;
4139  for (unsigned i = 0; i < NumElems; ++i) {
4140    SDValue Elt = Op.getOperand(i);
4141    if (Elt.getOpcode() == ISD::UNDEF)
4142      continue;
4143    Values.insert(Elt);
4144    if (Elt.getOpcode() != ISD::Constant &&
4145        Elt.getOpcode() != ISD::ConstantFP)
4146      IsAllConstants = false;
4147    if (X86::isZeroNode(Elt))
4148      NumZero++;
4149    else {
4150      NonZeros |= (1 << i);
4151      NumNonZero++;
4152    }
4153  }
4154
4155  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4156  if (NumNonZero == 0)
4157    return DAG.getUNDEF(VT);
4158
4159  // Special case for single non-zero, non-undef, element.
4160  if (NumNonZero == 1) {
4161    unsigned Idx = CountTrailingZeros_32(NonZeros);
4162    SDValue Item = Op.getOperand(Idx);
4163
4164    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4165    // the value are obviously zero, truncate the value to i32 and do the
4166    // insertion that way.  Only do this if the value is non-constant or if the
4167    // value is a constant being inserted into element 0.  It is cheaper to do
4168    // a constant pool load than it is to do a movd + shuffle.
4169    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4170        (!IsAllConstants || Idx == 0)) {
4171      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4172        // Handle SSE only.
4173        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4174        EVT VecVT = MVT::v4i32;
4175        unsigned VecElts = 4;
4176
4177        // Truncate the value (which may itself be a constant) to i32, and
4178        // convert it to a vector with movd (S2V+shuffle to zero extend).
4179        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4180        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4181        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4182                                           Subtarget->hasSSE2(), DAG);
4183
4184        // Now we have our 32-bit value zero extended in the low element of
4185        // a vector.  If Idx != 0, swizzle it into place.
4186        if (Idx != 0) {
4187          SmallVector<int, 4> Mask;
4188          Mask.push_back(Idx);
4189          for (unsigned i = 1; i != VecElts; ++i)
4190            Mask.push_back(i);
4191          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4192                                      DAG.getUNDEF(Item.getValueType()),
4193                                      &Mask[0]);
4194        }
4195        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
4196      }
4197    }
4198
4199    // If we have a constant or non-constant insertion into the low element of
4200    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4201    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4202    // depending on what the source datatype is.
4203    if (Idx == 0) {
4204      if (NumZero == 0) {
4205        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4206      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4207          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4208        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4209        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4210        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4211                                           DAG);
4212      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4213        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4214        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4215        EVT MiddleVT = MVT::v4i32;
4216        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4217        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4218                                           Subtarget->hasSSE2(), DAG);
4219        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
4220      }
4221    }
4222
4223    // Is it a vector logical left shift?
4224    if (NumElems == 2 && Idx == 1 &&
4225        X86::isZeroNode(Op.getOperand(0)) &&
4226        !X86::isZeroNode(Op.getOperand(1))) {
4227      unsigned NumBits = VT.getSizeInBits();
4228      return getVShift(true, VT,
4229                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4230                                   VT, Op.getOperand(1)),
4231                       NumBits/2, DAG, *this, dl);
4232    }
4233
4234    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4235      return SDValue();
4236
4237    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4238    // is a non-constant being inserted into an element other than the low one,
4239    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4240    // movd/movss) to move this into the low element, then shuffle it into
4241    // place.
4242    if (EVTBits == 32) {
4243      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4244
4245      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4246      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4247                                         Subtarget->hasSSE2(), DAG);
4248      SmallVector<int, 8> MaskVec;
4249      for (unsigned i = 0; i < NumElems; i++)
4250        MaskVec.push_back(i == Idx ? 0 : 1);
4251      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4252    }
4253  }
4254
4255  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4256  if (Values.size() == 1) {
4257    if (EVTBits == 32) {
4258      // Instead of a shuffle like this:
4259      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4260      // Check if it's possible to issue this instead.
4261      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4262      unsigned Idx = CountTrailingZeros_32(NonZeros);
4263      SDValue Item = Op.getOperand(Idx);
4264      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4265        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4266    }
4267    return SDValue();
4268  }
4269
4270  // A vector full of immediates; various special cases are already
4271  // handled, so this is best done with a single constant-pool load.
4272  if (IsAllConstants)
4273    return SDValue();
4274
4275  // Let legalizer expand 2-wide build_vectors.
4276  if (EVTBits == 64) {
4277    if (NumNonZero == 1) {
4278      // One half is zero or undef.
4279      unsigned Idx = CountTrailingZeros_32(NonZeros);
4280      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4281                                 Op.getOperand(Idx));
4282      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4283                                         Subtarget->hasSSE2(), DAG);
4284    }
4285    return SDValue();
4286  }
4287
4288  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4289  if (EVTBits == 8 && NumElems == 16) {
4290    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4291                                        *this);
4292    if (V.getNode()) return V;
4293  }
4294
4295  if (EVTBits == 16 && NumElems == 8) {
4296    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4297                                      *this);
4298    if (V.getNode()) return V;
4299  }
4300
4301  // If element VT is == 32 bits, turn it into a number of shuffles.
4302  SmallVector<SDValue, 8> V;
4303  V.resize(NumElems);
4304  if (NumElems == 4 && NumZero > 0) {
4305    for (unsigned i = 0; i < 4; ++i) {
4306      bool isZero = !(NonZeros & (1 << i));
4307      if (isZero)
4308        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4309      else
4310        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4311    }
4312
4313    for (unsigned i = 0; i < 2; ++i) {
4314      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4315        default: break;
4316        case 0:
4317          V[i] = V[i*2];  // Must be a zero vector.
4318          break;
4319        case 1:
4320          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4321          break;
4322        case 2:
4323          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4324          break;
4325        case 3:
4326          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4327          break;
4328      }
4329    }
4330
4331    SmallVector<int, 8> MaskVec;
4332    bool Reverse = (NonZeros & 0x3) == 2;
4333    for (unsigned i = 0; i < 2; ++i)
4334      MaskVec.push_back(Reverse ? 1-i : i);
4335    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4336    for (unsigned i = 0; i < 2; ++i)
4337      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4338    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4339  }
4340
4341  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4342    // Check for a build vector of consecutive loads.
4343    for (unsigned i = 0; i < NumElems; ++i)
4344      V[i] = Op.getOperand(i);
4345
4346    // Check for elements which are consecutive loads.
4347    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4348    if (LD.getNode())
4349      return LD;
4350
4351    // For SSE 4.1, use insertps to put the high elements into the low element.
4352    if (getSubtarget()->hasSSE41()) {
4353      SDValue Result;
4354      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4355        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4356      else
4357        Result = DAG.getUNDEF(VT);
4358
4359      for (unsigned i = 1; i < NumElems; ++i) {
4360        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4361        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4362                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4363      }
4364      return Result;
4365    }
4366
4367    // Otherwise, expand into a number of unpckl*, start by extending each of
4368    // our (non-undef) elements to the full vector width with the element in the
4369    // bottom slot of the vector (which generates no code for SSE).
4370    for (unsigned i = 0; i < NumElems; ++i) {
4371      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4372        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4373      else
4374        V[i] = DAG.getUNDEF(VT);
4375    }
4376
4377    // Next, we iteratively mix elements, e.g. for v4f32:
4378    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4379    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4380    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4381    unsigned EltStride = NumElems >> 1;
4382    while (EltStride != 0) {
4383      for (unsigned i = 0; i < EltStride; ++i) {
4384        // If V[i+EltStride] is undef and this is the first round of mixing,
4385        // then it is safe to just drop this shuffle: V[i] is already in the
4386        // right place, the one element (since it's the first round) being
4387        // inserted as undef can be dropped.  This isn't safe for successive
4388        // rounds because they will permute elements within both vectors.
4389        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4390            EltStride == NumElems/2)
4391          continue;
4392
4393        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4394      }
4395      EltStride >>= 1;
4396    }
4397    return V[0];
4398  }
4399  return SDValue();
4400}
4401
4402SDValue
4403X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4404  // We support concatenate two MMX registers and place them in a MMX
4405  // register.  This is better than doing a stack convert.
4406  DebugLoc dl = Op.getDebugLoc();
4407  EVT ResVT = Op.getValueType();
4408  assert(Op.getNumOperands() == 2);
4409  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4410         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4411  int Mask[2];
4412  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
4413  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4414  InVec = Op.getOperand(1);
4415  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4416    unsigned NumElts = ResVT.getVectorNumElements();
4417    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4418    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4419                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4420  } else {
4421    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
4422    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4423    Mask[0] = 0; Mask[1] = 2;
4424    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4425  }
4426  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4427}
4428
4429// v8i16 shuffles - Prefer shuffles in the following order:
4430// 1. [all]   pshuflw, pshufhw, optional move
4431// 2. [ssse3] 1 x pshufb
4432// 3. [ssse3] 2 x pshufb + 1 x por
4433// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4434SDValue
4435X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4436                                            SelectionDAG &DAG) const {
4437  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4438  SDValue V1 = SVOp->getOperand(0);
4439  SDValue V2 = SVOp->getOperand(1);
4440  DebugLoc dl = SVOp->getDebugLoc();
4441  SmallVector<int, 8> MaskVals;
4442
4443  // Determine if more than 1 of the words in each of the low and high quadwords
4444  // of the result come from the same quadword of one of the two inputs.  Undef
4445  // mask values count as coming from any quadword, for better codegen.
4446  SmallVector<unsigned, 4> LoQuad(4);
4447  SmallVector<unsigned, 4> HiQuad(4);
4448  BitVector InputQuads(4);
4449  for (unsigned i = 0; i < 8; ++i) {
4450    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4451    int EltIdx = SVOp->getMaskElt(i);
4452    MaskVals.push_back(EltIdx);
4453    if (EltIdx < 0) {
4454      ++Quad[0];
4455      ++Quad[1];
4456      ++Quad[2];
4457      ++Quad[3];
4458      continue;
4459    }
4460    ++Quad[EltIdx / 4];
4461    InputQuads.set(EltIdx / 4);
4462  }
4463
4464  int BestLoQuad = -1;
4465  unsigned MaxQuad = 1;
4466  for (unsigned i = 0; i < 4; ++i) {
4467    if (LoQuad[i] > MaxQuad) {
4468      BestLoQuad = i;
4469      MaxQuad = LoQuad[i];
4470    }
4471  }
4472
4473  int BestHiQuad = -1;
4474  MaxQuad = 1;
4475  for (unsigned i = 0; i < 4; ++i) {
4476    if (HiQuad[i] > MaxQuad) {
4477      BestHiQuad = i;
4478      MaxQuad = HiQuad[i];
4479    }
4480  }
4481
4482  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4483  // of the two input vectors, shuffle them into one input vector so only a
4484  // single pshufb instruction is necessary. If There are more than 2 input
4485  // quads, disable the next transformation since it does not help SSSE3.
4486  bool V1Used = InputQuads[0] || InputQuads[1];
4487  bool V2Used = InputQuads[2] || InputQuads[3];
4488  if (Subtarget->hasSSSE3()) {
4489    if (InputQuads.count() == 2 && V1Used && V2Used) {
4490      BestLoQuad = InputQuads.find_first();
4491      BestHiQuad = InputQuads.find_next(BestLoQuad);
4492    }
4493    if (InputQuads.count() > 2) {
4494      BestLoQuad = -1;
4495      BestHiQuad = -1;
4496    }
4497  }
4498
4499  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4500  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4501  // words from all 4 input quadwords.
4502  SDValue NewV;
4503  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4504    SmallVector<int, 8> MaskV;
4505    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4506    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4507    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4508                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4509                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4510    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4511
4512    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4513    // source words for the shuffle, to aid later transformations.
4514    bool AllWordsInNewV = true;
4515    bool InOrder[2] = { true, true };
4516    for (unsigned i = 0; i != 8; ++i) {
4517      int idx = MaskVals[i];
4518      if (idx != (int)i)
4519        InOrder[i/4] = false;
4520      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4521        continue;
4522      AllWordsInNewV = false;
4523      break;
4524    }
4525
4526    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4527    if (AllWordsInNewV) {
4528      for (int i = 0; i != 8; ++i) {
4529        int idx = MaskVals[i];
4530        if (idx < 0)
4531          continue;
4532        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4533        if ((idx != i) && idx < 4)
4534          pshufhw = false;
4535        if ((idx != i) && idx > 3)
4536          pshuflw = false;
4537      }
4538      V1 = NewV;
4539      V2Used = false;
4540      BestLoQuad = 0;
4541      BestHiQuad = 1;
4542    }
4543
4544    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4545    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4546    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4547      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4548      unsigned TargetMask = 0;
4549      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4550                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4551      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4552                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4553      V1 = NewV.getOperand(0);
4554      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4555    }
4556  }
4557
4558  // If we have SSSE3, and all words of the result are from 1 input vector,
4559  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4560  // is present, fall back to case 4.
4561  if (Subtarget->hasSSSE3()) {
4562    SmallVector<SDValue,16> pshufbMask;
4563
4564    // If we have elements from both input vectors, set the high bit of the
4565    // shuffle mask element to zero out elements that come from V2 in the V1
4566    // mask, and elements that come from V1 in the V2 mask, so that the two
4567    // results can be OR'd together.
4568    bool TwoInputs = V1Used && V2Used;
4569    for (unsigned i = 0; i != 8; ++i) {
4570      int EltIdx = MaskVals[i] * 2;
4571      if (TwoInputs && (EltIdx >= 16)) {
4572        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4573        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4574        continue;
4575      }
4576      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4577      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4578    }
4579    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4580    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4581                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4582                                 MVT::v16i8, &pshufbMask[0], 16));
4583    if (!TwoInputs)
4584      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4585
4586    // Calculate the shuffle mask for the second input, shuffle it, and
4587    // OR it with the first shuffled input.
4588    pshufbMask.clear();
4589    for (unsigned i = 0; i != 8; ++i) {
4590      int EltIdx = MaskVals[i] * 2;
4591      if (EltIdx < 16) {
4592        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4593        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4594        continue;
4595      }
4596      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4597      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4598    }
4599    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4600    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4601                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4602                                 MVT::v16i8, &pshufbMask[0], 16));
4603    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4604    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4605  }
4606
4607  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4608  // and update MaskVals with new element order.
4609  BitVector InOrder(8);
4610  if (BestLoQuad >= 0) {
4611    SmallVector<int, 8> MaskV;
4612    for (int i = 0; i != 4; ++i) {
4613      int idx = MaskVals[i];
4614      if (idx < 0) {
4615        MaskV.push_back(-1);
4616        InOrder.set(i);
4617      } else if ((idx / 4) == BestLoQuad) {
4618        MaskV.push_back(idx & 3);
4619        InOrder.set(i);
4620      } else {
4621        MaskV.push_back(-1);
4622      }
4623    }
4624    for (unsigned i = 4; i != 8; ++i)
4625      MaskV.push_back(i);
4626    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4627                                &MaskV[0]);
4628
4629    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4630      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4631                               NewV.getOperand(0),
4632                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4633                               DAG);
4634  }
4635
4636  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4637  // and update MaskVals with the new element order.
4638  if (BestHiQuad >= 0) {
4639    SmallVector<int, 8> MaskV;
4640    for (unsigned i = 0; i != 4; ++i)
4641      MaskV.push_back(i);
4642    for (unsigned i = 4; i != 8; ++i) {
4643      int idx = MaskVals[i];
4644      if (idx < 0) {
4645        MaskV.push_back(-1);
4646        InOrder.set(i);
4647      } else if ((idx / 4) == BestHiQuad) {
4648        MaskV.push_back((idx & 3) + 4);
4649        InOrder.set(i);
4650      } else {
4651        MaskV.push_back(-1);
4652      }
4653    }
4654    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4655                                &MaskV[0]);
4656
4657    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4658      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4659                              NewV.getOperand(0),
4660                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4661                              DAG);
4662  }
4663
4664  // In case BestHi & BestLo were both -1, which means each quadword has a word
4665  // from each of the four input quadwords, calculate the InOrder bitvector now
4666  // before falling through to the insert/extract cleanup.
4667  if (BestLoQuad == -1 && BestHiQuad == -1) {
4668    NewV = V1;
4669    for (int i = 0; i != 8; ++i)
4670      if (MaskVals[i] < 0 || MaskVals[i] == i)
4671        InOrder.set(i);
4672  }
4673
4674  // The other elements are put in the right place using pextrw and pinsrw.
4675  for (unsigned i = 0; i != 8; ++i) {
4676    if (InOrder[i])
4677      continue;
4678    int EltIdx = MaskVals[i];
4679    if (EltIdx < 0)
4680      continue;
4681    SDValue ExtOp = (EltIdx < 8)
4682    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4683                  DAG.getIntPtrConstant(EltIdx))
4684    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4685                  DAG.getIntPtrConstant(EltIdx - 8));
4686    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4687                       DAG.getIntPtrConstant(i));
4688  }
4689  return NewV;
4690}
4691
4692// v16i8 shuffles - Prefer shuffles in the following order:
4693// 1. [ssse3] 1 x pshufb
4694// 2. [ssse3] 2 x pshufb + 1 x por
4695// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4696static
4697SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4698                                 SelectionDAG &DAG,
4699                                 const X86TargetLowering &TLI) {
4700  SDValue V1 = SVOp->getOperand(0);
4701  SDValue V2 = SVOp->getOperand(1);
4702  DebugLoc dl = SVOp->getDebugLoc();
4703  SmallVector<int, 16> MaskVals;
4704  SVOp->getMask(MaskVals);
4705
4706  // If we have SSSE3, case 1 is generated when all result bytes come from
4707  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4708  // present, fall back to case 3.
4709  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4710  bool V1Only = true;
4711  bool V2Only = true;
4712  for (unsigned i = 0; i < 16; ++i) {
4713    int EltIdx = MaskVals[i];
4714    if (EltIdx < 0)
4715      continue;
4716    if (EltIdx < 16)
4717      V2Only = false;
4718    else
4719      V1Only = false;
4720  }
4721
4722  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4723  if (TLI.getSubtarget()->hasSSSE3()) {
4724    SmallVector<SDValue,16> pshufbMask;
4725
4726    // If all result elements are from one input vector, then only translate
4727    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4728    //
4729    // Otherwise, we have elements from both input vectors, and must zero out
4730    // elements that come from V2 in the first mask, and V1 in the second mask
4731    // so that we can OR them together.
4732    bool TwoInputs = !(V1Only || V2Only);
4733    for (unsigned i = 0; i != 16; ++i) {
4734      int EltIdx = MaskVals[i];
4735      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4736        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4737        continue;
4738      }
4739      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4740    }
4741    // If all the elements are from V2, assign it to V1 and return after
4742    // building the first pshufb.
4743    if (V2Only)
4744      V1 = V2;
4745    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4746                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4747                                 MVT::v16i8, &pshufbMask[0], 16));
4748    if (!TwoInputs)
4749      return V1;
4750
4751    // Calculate the shuffle mask for the second input, shuffle it, and
4752    // OR it with the first shuffled input.
4753    pshufbMask.clear();
4754    for (unsigned i = 0; i != 16; ++i) {
4755      int EltIdx = MaskVals[i];
4756      if (EltIdx < 16) {
4757        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4758        continue;
4759      }
4760      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4761    }
4762    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4763                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4764                                 MVT::v16i8, &pshufbMask[0], 16));
4765    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4766  }
4767
4768  // No SSSE3 - Calculate in place words and then fix all out of place words
4769  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4770  // the 16 different words that comprise the two doublequadword input vectors.
4771  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4772  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4773  SDValue NewV = V2Only ? V2 : V1;
4774  for (int i = 0; i != 8; ++i) {
4775    int Elt0 = MaskVals[i*2];
4776    int Elt1 = MaskVals[i*2+1];
4777
4778    // This word of the result is all undef, skip it.
4779    if (Elt0 < 0 && Elt1 < 0)
4780      continue;
4781
4782    // This word of the result is already in the correct place, skip it.
4783    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4784      continue;
4785    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4786      continue;
4787
4788    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4789    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4790    SDValue InsElt;
4791
4792    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4793    // using a single extract together, load it and store it.
4794    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4795      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4796                           DAG.getIntPtrConstant(Elt1 / 2));
4797      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4798                        DAG.getIntPtrConstant(i));
4799      continue;
4800    }
4801
4802    // If Elt1 is defined, extract it from the appropriate source.  If the
4803    // source byte is not also odd, shift the extracted word left 8 bits
4804    // otherwise clear the bottom 8 bits if we need to do an or.
4805    if (Elt1 >= 0) {
4806      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4807                           DAG.getIntPtrConstant(Elt1 / 2));
4808      if ((Elt1 & 1) == 0)
4809        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4810                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4811      else if (Elt0 >= 0)
4812        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4813                             DAG.getConstant(0xFF00, MVT::i16));
4814    }
4815    // If Elt0 is defined, extract it from the appropriate source.  If the
4816    // source byte is not also even, shift the extracted word right 8 bits. If
4817    // Elt1 was also defined, OR the extracted values together before
4818    // inserting them in the result.
4819    if (Elt0 >= 0) {
4820      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4821                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4822      if ((Elt0 & 1) != 0)
4823        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4824                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4825      else if (Elt1 >= 0)
4826        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4827                             DAG.getConstant(0x00FF, MVT::i16));
4828      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4829                         : InsElt0;
4830    }
4831    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4832                       DAG.getIntPtrConstant(i));
4833  }
4834  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4835}
4836
4837/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4838/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
4839/// done when every pair / quad of shuffle mask elements point to elements in
4840/// the right sequence. e.g.
4841/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
4842static
4843SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4844                                 SelectionDAG &DAG, DebugLoc dl) {
4845  EVT VT = SVOp->getValueType(0);
4846  SDValue V1 = SVOp->getOperand(0);
4847  SDValue V2 = SVOp->getOperand(1);
4848  unsigned NumElems = VT.getVectorNumElements();
4849  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4850  EVT NewVT;
4851  switch (VT.getSimpleVT().SimpleTy) {
4852  default: assert(false && "Unexpected!");
4853  case MVT::v4f32: NewVT = MVT::v2f64; break;
4854  case MVT::v4i32: NewVT = MVT::v2i64; break;
4855  case MVT::v8i16: NewVT = MVT::v4i32; break;
4856  case MVT::v16i8: NewVT = MVT::v4i32; break;
4857  }
4858
4859  int Scale = NumElems / NewWidth;
4860  SmallVector<int, 8> MaskVec;
4861  for (unsigned i = 0; i < NumElems; i += Scale) {
4862    int StartIdx = -1;
4863    for (int j = 0; j < Scale; ++j) {
4864      int EltIdx = SVOp->getMaskElt(i+j);
4865      if (EltIdx < 0)
4866        continue;
4867      if (StartIdx == -1)
4868        StartIdx = EltIdx - (EltIdx % Scale);
4869      if (EltIdx != StartIdx + j)
4870        return SDValue();
4871    }
4872    if (StartIdx == -1)
4873      MaskVec.push_back(-1);
4874    else
4875      MaskVec.push_back(StartIdx / Scale);
4876  }
4877
4878  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4879  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4880  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4881}
4882
4883/// getVZextMovL - Return a zero-extending vector move low node.
4884///
4885static SDValue getVZextMovL(EVT VT, EVT OpVT,
4886                            SDValue SrcOp, SelectionDAG &DAG,
4887                            const X86Subtarget *Subtarget, DebugLoc dl) {
4888  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4889    LoadSDNode *LD = NULL;
4890    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4891      LD = dyn_cast<LoadSDNode>(SrcOp);
4892    if (!LD) {
4893      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4894      // instead.
4895      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4896      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
4897          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4898          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4899          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4900        // PR2108
4901        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4902        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4903                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4904                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4905                                                   OpVT,
4906                                                   SrcOp.getOperand(0)
4907                                                          .getOperand(0))));
4908      }
4909    }
4910  }
4911
4912  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4913                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4914                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4915                                             OpVT, SrcOp)));
4916}
4917
4918/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4919/// shuffles.
4920static SDValue
4921LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4922  SDValue V1 = SVOp->getOperand(0);
4923  SDValue V2 = SVOp->getOperand(1);
4924  DebugLoc dl = SVOp->getDebugLoc();
4925  EVT VT = SVOp->getValueType(0);
4926
4927  SmallVector<std::pair<int, int>, 8> Locs;
4928  Locs.resize(4);
4929  SmallVector<int, 8> Mask1(4U, -1);
4930  SmallVector<int, 8> PermMask;
4931  SVOp->getMask(PermMask);
4932
4933  unsigned NumHi = 0;
4934  unsigned NumLo = 0;
4935  for (unsigned i = 0; i != 4; ++i) {
4936    int Idx = PermMask[i];
4937    if (Idx < 0) {
4938      Locs[i] = std::make_pair(-1, -1);
4939    } else {
4940      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4941      if (Idx < 4) {
4942        Locs[i] = std::make_pair(0, NumLo);
4943        Mask1[NumLo] = Idx;
4944        NumLo++;
4945      } else {
4946        Locs[i] = std::make_pair(1, NumHi);
4947        if (2+NumHi < 4)
4948          Mask1[2+NumHi] = Idx;
4949        NumHi++;
4950      }
4951    }
4952  }
4953
4954  if (NumLo <= 2 && NumHi <= 2) {
4955    // If no more than two elements come from either vector. This can be
4956    // implemented with two shuffles. First shuffle gather the elements.
4957    // The second shuffle, which takes the first shuffle as both of its
4958    // vector operands, put the elements into the right order.
4959    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4960
4961    SmallVector<int, 8> Mask2(4U, -1);
4962
4963    for (unsigned i = 0; i != 4; ++i) {
4964      if (Locs[i].first == -1)
4965        continue;
4966      else {
4967        unsigned Idx = (i < 2) ? 0 : 4;
4968        Idx += Locs[i].first * 2 + Locs[i].second;
4969        Mask2[i] = Idx;
4970      }
4971    }
4972
4973    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4974  } else if (NumLo == 3 || NumHi == 3) {
4975    // Otherwise, we must have three elements from one vector, call it X, and
4976    // one element from the other, call it Y.  First, use a shufps to build an
4977    // intermediate vector with the one element from Y and the element from X
4978    // that will be in the same half in the final destination (the indexes don't
4979    // matter). Then, use a shufps to build the final vector, taking the half
4980    // containing the element from Y from the intermediate, and the other half
4981    // from X.
4982    if (NumHi == 3) {
4983      // Normalize it so the 3 elements come from V1.
4984      CommuteVectorShuffleMask(PermMask, VT);
4985      std::swap(V1, V2);
4986    }
4987
4988    // Find the element from V2.
4989    unsigned HiIndex;
4990    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4991      int Val = PermMask[HiIndex];
4992      if (Val < 0)
4993        continue;
4994      if (Val >= 4)
4995        break;
4996    }
4997
4998    Mask1[0] = PermMask[HiIndex];
4999    Mask1[1] = -1;
5000    Mask1[2] = PermMask[HiIndex^1];
5001    Mask1[3] = -1;
5002    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5003
5004    if (HiIndex >= 2) {
5005      Mask1[0] = PermMask[0];
5006      Mask1[1] = PermMask[1];
5007      Mask1[2] = HiIndex & 1 ? 6 : 4;
5008      Mask1[3] = HiIndex & 1 ? 4 : 6;
5009      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5010    } else {
5011      Mask1[0] = HiIndex & 1 ? 2 : 0;
5012      Mask1[1] = HiIndex & 1 ? 0 : 2;
5013      Mask1[2] = PermMask[2];
5014      Mask1[3] = PermMask[3];
5015      if (Mask1[2] >= 0)
5016        Mask1[2] += 4;
5017      if (Mask1[3] >= 0)
5018        Mask1[3] += 4;
5019      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5020    }
5021  }
5022
5023  // Break it into (shuffle shuffle_hi, shuffle_lo).
5024  Locs.clear();
5025  SmallVector<int,8> LoMask(4U, -1);
5026  SmallVector<int,8> HiMask(4U, -1);
5027
5028  SmallVector<int,8> *MaskPtr = &LoMask;
5029  unsigned MaskIdx = 0;
5030  unsigned LoIdx = 0;
5031  unsigned HiIdx = 2;
5032  for (unsigned i = 0; i != 4; ++i) {
5033    if (i == 2) {
5034      MaskPtr = &HiMask;
5035      MaskIdx = 1;
5036      LoIdx = 0;
5037      HiIdx = 2;
5038    }
5039    int Idx = PermMask[i];
5040    if (Idx < 0) {
5041      Locs[i] = std::make_pair(-1, -1);
5042    } else if (Idx < 4) {
5043      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5044      (*MaskPtr)[LoIdx] = Idx;
5045      LoIdx++;
5046    } else {
5047      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5048      (*MaskPtr)[HiIdx] = Idx;
5049      HiIdx++;
5050    }
5051  }
5052
5053  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5054  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5055  SmallVector<int, 8> MaskOps;
5056  for (unsigned i = 0; i != 4; ++i) {
5057    if (Locs[i].first == -1) {
5058      MaskOps.push_back(-1);
5059    } else {
5060      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5061      MaskOps.push_back(Idx);
5062    }
5063  }
5064  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5065}
5066
5067static bool MayFoldVectorLoad(SDValue V) {
5068  if (V.hasOneUse() && V.getOpcode() == ISD::BIT_CONVERT)
5069    V = V.getOperand(0);
5070  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5071    V = V.getOperand(0);
5072  if (MayFoldLoad(V))
5073    return true;
5074  return false;
5075}
5076
5077// FIXME: the version above should always be used. Since there's
5078// a bug where several vector shuffles can't be folded because the
5079// DAG is not updated during lowering and a node claims to have two
5080// uses while it only has one, use this version, and let isel match
5081// another instruction if the load really happens to have more than
5082// one use. Remove this version after this bug get fixed.
5083// rdar://8434668, PR8156
5084static bool RelaxedMayFoldVectorLoad(SDValue V) {
5085  if (V.hasOneUse() && V.getOpcode() == ISD::BIT_CONVERT)
5086    V = V.getOperand(0);
5087  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5088    V = V.getOperand(0);
5089  if (ISD::isNormalLoad(V.getNode()))
5090    return true;
5091  return false;
5092}
5093
5094/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5095/// a vector extract, and if both can be later optimized into a single load.
5096/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5097/// here because otherwise a target specific shuffle node is going to be
5098/// emitted for this shuffle, and the optimization not done.
5099/// FIXME: This is probably not the best approach, but fix the problem
5100/// until the right path is decided.
5101static
5102bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5103                                         const TargetLowering &TLI) {
5104  EVT VT = V.getValueType();
5105  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5106
5107  // Be sure that the vector shuffle is present in a pattern like this:
5108  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5109  if (!V.hasOneUse())
5110    return false;
5111
5112  SDNode *N = *V.getNode()->use_begin();
5113  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5114    return false;
5115
5116  SDValue EltNo = N->getOperand(1);
5117  if (!isa<ConstantSDNode>(EltNo))
5118    return false;
5119
5120  // If the bit convert changed the number of elements, it is unsafe
5121  // to examine the mask.
5122  bool HasShuffleIntoBitcast = false;
5123  if (V.getOpcode() == ISD::BIT_CONVERT) {
5124    EVT SrcVT = V.getOperand(0).getValueType();
5125    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5126      return false;
5127    V = V.getOperand(0);
5128    HasShuffleIntoBitcast = true;
5129  }
5130
5131  // Select the input vector, guarding against out of range extract vector.
5132  unsigned NumElems = VT.getVectorNumElements();
5133  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5134  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5135  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5136
5137  // Skip one more bit_convert if necessary
5138  if (V.getOpcode() == ISD::BIT_CONVERT)
5139    V = V.getOperand(0);
5140
5141  if (ISD::isNormalLoad(V.getNode())) {
5142    // Is the original load suitable?
5143    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5144
5145    // FIXME: avoid the multi-use bug that is preventing lots of
5146    // of foldings to be detected, this is still wrong of course, but
5147    // give the temporary desired behavior, and if it happens that
5148    // the load has real more uses, during isel it will not fold, and
5149    // will generate poor code.
5150    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5151      return false;
5152
5153    if (!HasShuffleIntoBitcast)
5154      return true;
5155
5156    // If there's a bitcast before the shuffle, check if the load type and
5157    // alignment is valid.
5158    unsigned Align = LN0->getAlignment();
5159    unsigned NewAlign =
5160      TLI.getTargetData()->getABITypeAlignment(
5161                                    VT.getTypeForEVT(*DAG.getContext()));
5162
5163    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5164      return false;
5165  }
5166
5167  return true;
5168}
5169
5170static
5171SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5172  EVT VT = Op.getValueType();
5173
5174  // Canonizalize to v2f64.
5175  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, V1);
5176  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5177                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5178                                          V1, DAG));
5179}
5180
5181static
5182SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5183                        bool HasSSE2) {
5184  SDValue V1 = Op.getOperand(0);
5185  SDValue V2 = Op.getOperand(1);
5186  EVT VT = Op.getValueType();
5187
5188  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5189
5190  if (HasSSE2 && VT == MVT::v2f64)
5191    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5192
5193  // v4f32 or v4i32
5194  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5195}
5196
5197static
5198SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5199  SDValue V1 = Op.getOperand(0);
5200  SDValue V2 = Op.getOperand(1);
5201  EVT VT = Op.getValueType();
5202
5203  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5204         "unsupported shuffle type");
5205
5206  if (V2.getOpcode() == ISD::UNDEF)
5207    V2 = V1;
5208
5209  // v4i32 or v4f32
5210  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5211}
5212
5213static
5214SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5215  SDValue V1 = Op.getOperand(0);
5216  SDValue V2 = Op.getOperand(1);
5217  EVT VT = Op.getValueType();
5218  unsigned NumElems = VT.getVectorNumElements();
5219
5220  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5221  // operand of these instructions is only memory, so check if there's a
5222  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5223  // same masks.
5224  bool CanFoldLoad = false;
5225
5226  // Trivial case, when V2 comes from a load.
5227  if (MayFoldVectorLoad(V2))
5228    CanFoldLoad = true;
5229
5230  // When V1 is a load, it can be folded later into a store in isel, example:
5231  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5232  //    turns into:
5233  //  (MOVLPSmr addr:$src1, VR128:$src2)
5234  // So, recognize this potential and also use MOVLPS or MOVLPD
5235  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5236    CanFoldLoad = true;
5237
5238  if (CanFoldLoad) {
5239    if (HasSSE2 && NumElems == 2)
5240      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5241
5242    if (NumElems == 4)
5243      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5244  }
5245
5246  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5247  // movl and movlp will both match v2i64, but v2i64 is never matched by
5248  // movl earlier because we make it strict to avoid messing with the movlp load
5249  // folding logic (see the code above getMOVLP call). Match it here then,
5250  // this is horrible, but will stay like this until we move all shuffle
5251  // matching to x86 specific nodes. Note that for the 1st condition all
5252  // types are matched with movsd.
5253  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5254    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5255  else if (HasSSE2)
5256    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5257
5258
5259  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5260
5261  // Invert the operand order and use SHUFPS to match it.
5262  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5263                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5264}
5265
5266static inline unsigned getUNPCKLOpcode(EVT VT) {
5267  switch(VT.getSimpleVT().SimpleTy) {
5268  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5269  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5270  case MVT::v4f32: return X86ISD::UNPCKLPS;
5271  case MVT::v2f64: return X86ISD::UNPCKLPD;
5272  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5273  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5274  default:
5275    llvm_unreachable("Unknow type for unpckl");
5276  }
5277  return 0;
5278}
5279
5280static inline unsigned getUNPCKHOpcode(EVT VT) {
5281  switch(VT.getSimpleVT().SimpleTy) {
5282  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5283  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5284  case MVT::v4f32: return X86ISD::UNPCKHPS;
5285  case MVT::v2f64: return X86ISD::UNPCKHPD;
5286  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5287  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5288  default:
5289    llvm_unreachable("Unknow type for unpckh");
5290  }
5291  return 0;
5292}
5293
5294static
5295SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5296                               const TargetLowering &TLI,
5297                               const X86Subtarget *Subtarget) {
5298  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5299  EVT VT = Op.getValueType();
5300  DebugLoc dl = Op.getDebugLoc();
5301  SDValue V1 = Op.getOperand(0);
5302  SDValue V2 = Op.getOperand(1);
5303
5304  if (isZeroShuffle(SVOp))
5305    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5306
5307  // Handle splat operations
5308  if (SVOp->isSplat()) {
5309    // Special case, this is the only place now where it's
5310    // allowed to return a vector_shuffle operation without
5311    // using a target specific node, because *hopefully* it
5312    // will be optimized away by the dag combiner.
5313    if (VT.getVectorNumElements() <= 4 &&
5314        CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5315      return Op;
5316
5317    // Handle splats by matching through known masks
5318    if (VT.getVectorNumElements() <= 4)
5319      return SDValue();
5320
5321    // Canonicalize all of the remaining to v4f32.
5322    return PromoteSplat(SVOp, DAG);
5323  }
5324
5325  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5326  // do it!
5327  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5328    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5329    if (NewOp.getNode())
5330      return DAG.getNode(ISD::BIT_CONVERT, dl, VT, NewOp);
5331  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5332    // FIXME: Figure out a cleaner way to do this.
5333    // Try to make use of movq to zero out the top part.
5334    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5335      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5336      if (NewOp.getNode()) {
5337        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5338          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5339                              DAG, Subtarget, dl);
5340      }
5341    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5342      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5343      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5344        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5345                            DAG, Subtarget, dl);
5346    }
5347  }
5348  return SDValue();
5349}
5350
5351SDValue
5352X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5353  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5354  SDValue V1 = Op.getOperand(0);
5355  SDValue V2 = Op.getOperand(1);
5356  EVT VT = Op.getValueType();
5357  DebugLoc dl = Op.getDebugLoc();
5358  unsigned NumElems = VT.getVectorNumElements();
5359  bool isMMX = VT.getSizeInBits() == 64;
5360  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5361  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5362  bool V1IsSplat = false;
5363  bool V2IsSplat = false;
5364  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5365  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5366  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5367  MachineFunction &MF = DAG.getMachineFunction();
5368  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5369
5370  // Shuffle operations on MMX not supported.
5371  if (isMMX)
5372    return Op;
5373
5374  // Vector shuffle lowering takes 3 steps:
5375  //
5376  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5377  //    narrowing and commutation of operands should be handled.
5378  // 2) Matching of shuffles with known shuffle masks to x86 target specific
5379  //    shuffle nodes.
5380  // 3) Rewriting of unmatched masks into new generic shuffle operations,
5381  //    so the shuffle can be broken into other shuffles and the legalizer can
5382  //    try the lowering again.
5383  //
5384  // The general ideia is that no vector_shuffle operation should be left to
5385  // be matched during isel, all of them must be converted to a target specific
5386  // node here.
5387
5388  // Normalize the input vectors. Here splats, zeroed vectors, profitable
5389  // narrowing and commutation of operands should be handled. The actual code
5390  // doesn't include all of those, work in progress...
5391  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5392  if (NewOp.getNode())
5393    return NewOp;
5394
5395  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5396  // unpckh_undef). Only use pshufd if speed is more important than size.
5397  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5398    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5399      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5400  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5401    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5402      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5403
5404  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5405      RelaxedMayFoldVectorLoad(V1))
5406    return getMOVDDup(Op, dl, V1, DAG);
5407
5408  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
5409    return getMOVHighToLow(Op, dl, DAG);
5410
5411  // Use to match splats
5412  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
5413      (VT == MVT::v2f64 || VT == MVT::v2i64))
5414    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5415
5416  if (X86::isPSHUFDMask(SVOp)) {
5417    // The actual implementation will match the mask in the if above and then
5418    // during isel it can match several different instructions, not only pshufd
5419    // as its name says, sad but true, emulate the behavior for now...
5420    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5421        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5422
5423    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5424
5425    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5426      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5427
5428    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5429      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5430                                  TargetMask, DAG);
5431
5432    if (VT == MVT::v4f32)
5433      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5434                                  TargetMask, DAG);
5435  }
5436
5437  // Check if this can be converted into a logical shift.
5438  bool isLeft = false;
5439  unsigned ShAmt = 0;
5440  SDValue ShVal;
5441  bool isShift = getSubtarget()->hasSSE2() &&
5442    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5443  if (isShift && ShVal.hasOneUse()) {
5444    // If the shifted value has multiple uses, it may be cheaper to use
5445    // v_set0 + movlhps or movhlps, etc.
5446    EVT EltVT = VT.getVectorElementType();
5447    ShAmt *= EltVT.getSizeInBits();
5448    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5449  }
5450
5451  if (X86::isMOVLMask(SVOp)) {
5452    if (V1IsUndef)
5453      return V2;
5454    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5455      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5456    if (!X86::isMOVLPMask(SVOp)) {
5457      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5458        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5459
5460      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5461        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5462    }
5463  }
5464
5465  // FIXME: fold these into legal mask.
5466  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5467    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5468
5469  if (X86::isMOVHLPSMask(SVOp))
5470    return getMOVHighToLow(Op, dl, DAG);
5471
5472  if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5473    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5474
5475  if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5476    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5477
5478  if (X86::isMOVLPMask(SVOp))
5479    return getMOVLP(Op, dl, DAG, HasSSE2);
5480
5481  if (ShouldXformToMOVHLPS(SVOp) ||
5482      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5483    return CommuteVectorShuffle(SVOp, DAG);
5484
5485  if (isShift) {
5486    // No better options. Use a vshl / vsrl.
5487    EVT EltVT = VT.getVectorElementType();
5488    ShAmt *= EltVT.getSizeInBits();
5489    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5490  }
5491
5492  bool Commuted = false;
5493  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
5494  // 1,1,1,1 -> v8i16 though.
5495  V1IsSplat = isSplatVector(V1.getNode());
5496  V2IsSplat = isSplatVector(V2.getNode());
5497
5498  // Canonicalize the splat or undef, if present, to be on the RHS.
5499  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5500    Op = CommuteVectorShuffle(SVOp, DAG);
5501    SVOp = cast<ShuffleVectorSDNode>(Op);
5502    V1 = SVOp->getOperand(0);
5503    V2 = SVOp->getOperand(1);
5504    std::swap(V1IsSplat, V2IsSplat);
5505    std::swap(V1IsUndef, V2IsUndef);
5506    Commuted = true;
5507  }
5508
5509  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5510    // Shuffling low element of v1 into undef, just return v1.
5511    if (V2IsUndef)
5512      return V1;
5513    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5514    // the instruction selector will not match, so get a canonical MOVL with
5515    // swapped operands to undo the commute.
5516    return getMOVL(DAG, dl, VT, V2, V1);
5517  }
5518
5519  if (X86::isUNPCKLMask(SVOp))
5520    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
5521
5522  if (X86::isUNPCKHMask(SVOp))
5523    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
5524
5525  if (V2IsSplat) {
5526    // Normalize mask so all entries that point to V2 points to its first
5527    // element then try to match unpck{h|l} again. If match, return a
5528    // new vector_shuffle with the corrected mask.
5529    SDValue NewMask = NormalizeMask(SVOp, DAG);
5530    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5531    if (NSVOp != SVOp) {
5532      if (X86::isUNPCKLMask(NSVOp, true)) {
5533        return NewMask;
5534      } else if (X86::isUNPCKHMask(NSVOp, true)) {
5535        return NewMask;
5536      }
5537    }
5538  }
5539
5540  if (Commuted) {
5541    // Commute is back and try unpck* again.
5542    // FIXME: this seems wrong.
5543    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5544    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5545
5546    if (X86::isUNPCKLMask(NewSVOp))
5547      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
5548
5549    if (X86::isUNPCKHMask(NewSVOp))
5550      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
5551  }
5552
5553  // Normalize the node to match x86 shuffle ops if needed
5554  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5555    return CommuteVectorShuffle(SVOp, DAG);
5556
5557  // The checks below are all present in isShuffleMaskLegal, but they are
5558  // inlined here right now to enable us to directly emit target specific
5559  // nodes, and remove one by one until they don't return Op anymore.
5560  SmallVector<int, 16> M;
5561  SVOp->getMask(M);
5562
5563  if (isPALIGNRMask(M, VT, HasSSSE3))
5564    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
5565                                X86::getShufflePALIGNRImmediate(SVOp),
5566                                DAG);
5567
5568  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
5569      SVOp->getSplatIndex() == 0 && V2IsUndef) {
5570    if (VT == MVT::v2f64)
5571      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
5572    if (VT == MVT::v2i64)
5573      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
5574  }
5575
5576  if (isPSHUFHWMask(M, VT))
5577    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
5578                                X86::getShufflePSHUFHWImmediate(SVOp),
5579                                DAG);
5580
5581  if (isPSHUFLWMask(M, VT))
5582    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
5583                                X86::getShufflePSHUFLWImmediate(SVOp),
5584                                DAG);
5585
5586  if (isSHUFPMask(M, VT)) {
5587    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5588    if (VT == MVT::v4f32 || VT == MVT::v4i32)
5589      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
5590                                  TargetMask, DAG);
5591    if (VT == MVT::v2f64 || VT == MVT::v2i64)
5592      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
5593                                  TargetMask, DAG);
5594  }
5595
5596  if (X86::isUNPCKL_v_undef_Mask(SVOp))
5597    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5598      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5599  if (X86::isUNPCKH_v_undef_Mask(SVOp))
5600    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5601      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5602
5603  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5604  if (VT == MVT::v8i16) {
5605    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5606    if (NewOp.getNode())
5607      return NewOp;
5608  }
5609
5610  if (VT == MVT::v16i8) {
5611    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5612    if (NewOp.getNode())
5613      return NewOp;
5614  }
5615
5616  // Handle all 4 wide cases with a number of shuffles.
5617  if (NumElems == 4)
5618    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5619
5620  return SDValue();
5621}
5622
5623SDValue
5624X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5625                                                SelectionDAG &DAG) const {
5626  EVT VT = Op.getValueType();
5627  DebugLoc dl = Op.getDebugLoc();
5628  if (VT.getSizeInBits() == 8) {
5629    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5630                                    Op.getOperand(0), Op.getOperand(1));
5631    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5632                                    DAG.getValueType(VT));
5633    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5634  } else if (VT.getSizeInBits() == 16) {
5635    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5636    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5637    if (Idx == 0)
5638      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5639                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5640                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5641                                                 MVT::v4i32,
5642                                                 Op.getOperand(0)),
5643                                     Op.getOperand(1)));
5644    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5645                                    Op.getOperand(0), Op.getOperand(1));
5646    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5647                                    DAG.getValueType(VT));
5648    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5649  } else if (VT == MVT::f32) {
5650    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5651    // the result back to FR32 register. It's only worth matching if the
5652    // result has a single use which is a store or a bitcast to i32.  And in
5653    // the case of a store, it's not worth it if the index is a constant 0,
5654    // because a MOVSSmr can be used instead, which is smaller and faster.
5655    if (!Op.hasOneUse())
5656      return SDValue();
5657    SDNode *User = *Op.getNode()->use_begin();
5658    if ((User->getOpcode() != ISD::STORE ||
5659         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5660          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5661        (User->getOpcode() != ISD::BIT_CONVERT ||
5662         User->getValueType(0) != MVT::i32))
5663      return SDValue();
5664    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5665                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
5666                                              Op.getOperand(0)),
5667                                              Op.getOperand(1));
5668    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
5669  } else if (VT == MVT::i32) {
5670    // ExtractPS works with constant index.
5671    if (isa<ConstantSDNode>(Op.getOperand(1)))
5672      return Op;
5673  }
5674  return SDValue();
5675}
5676
5677
5678SDValue
5679X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5680                                           SelectionDAG &DAG) const {
5681  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5682    return SDValue();
5683
5684  if (Subtarget->hasSSE41()) {
5685    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5686    if (Res.getNode())
5687      return Res;
5688  }
5689
5690  EVT VT = Op.getValueType();
5691  DebugLoc dl = Op.getDebugLoc();
5692  // TODO: handle v16i8.
5693  if (VT.getSizeInBits() == 16) {
5694    SDValue Vec = Op.getOperand(0);
5695    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5696    if (Idx == 0)
5697      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5698                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5699                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5700                                                 MVT::v4i32, Vec),
5701                                     Op.getOperand(1)));
5702    // Transform it so it match pextrw which produces a 32-bit result.
5703    EVT EltVT = MVT::i32;
5704    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5705                                    Op.getOperand(0), Op.getOperand(1));
5706    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5707                                    DAG.getValueType(VT));
5708    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5709  } else if (VT.getSizeInBits() == 32) {
5710    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5711    if (Idx == 0)
5712      return Op;
5713
5714    // SHUFPS the element to the lowest double word, then movss.
5715    int Mask[4] = { Idx, -1, -1, -1 };
5716    EVT VVT = Op.getOperand(0).getValueType();
5717    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5718                                       DAG.getUNDEF(VVT), Mask);
5719    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5720                       DAG.getIntPtrConstant(0));
5721  } else if (VT.getSizeInBits() == 64) {
5722    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5723    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5724    //        to match extract_elt for f64.
5725    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5726    if (Idx == 0)
5727      return Op;
5728
5729    // UNPCKHPD the element to the lowest double word, then movsd.
5730    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5731    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5732    int Mask[2] = { 1, -1 };
5733    EVT VVT = Op.getOperand(0).getValueType();
5734    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5735                                       DAG.getUNDEF(VVT), Mask);
5736    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5737                       DAG.getIntPtrConstant(0));
5738  }
5739
5740  return SDValue();
5741}
5742
5743SDValue
5744X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5745                                               SelectionDAG &DAG) const {
5746  EVT VT = Op.getValueType();
5747  EVT EltVT = VT.getVectorElementType();
5748  DebugLoc dl = Op.getDebugLoc();
5749
5750  SDValue N0 = Op.getOperand(0);
5751  SDValue N1 = Op.getOperand(1);
5752  SDValue N2 = Op.getOperand(2);
5753
5754  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5755      isa<ConstantSDNode>(N2)) {
5756    unsigned Opc;
5757    if (VT == MVT::v8i16)
5758      Opc = X86ISD::PINSRW;
5759    else if (VT == MVT::v16i8)
5760      Opc = X86ISD::PINSRB;
5761    else
5762      Opc = X86ISD::PINSRB;
5763
5764    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5765    // argument.
5766    if (N1.getValueType() != MVT::i32)
5767      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5768    if (N2.getValueType() != MVT::i32)
5769      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5770    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5771  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5772    // Bits [7:6] of the constant are the source select.  This will always be
5773    //  zero here.  The DAG Combiner may combine an extract_elt index into these
5774    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
5775    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
5776    // Bits [5:4] of the constant are the destination select.  This is the
5777    //  value of the incoming immediate.
5778    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
5779    //   combine either bitwise AND or insert of float 0.0 to set these bits.
5780    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5781    // Create this as a scalar to vector..
5782    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5783    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5784  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5785    // PINSR* works with constant index.
5786    return Op;
5787  }
5788  return SDValue();
5789}
5790
5791SDValue
5792X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5793  EVT VT = Op.getValueType();
5794  EVT EltVT = VT.getVectorElementType();
5795
5796  if (Subtarget->hasSSE41())
5797    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5798
5799  if (EltVT == MVT::i8)
5800    return SDValue();
5801
5802  DebugLoc dl = Op.getDebugLoc();
5803  SDValue N0 = Op.getOperand(0);
5804  SDValue N1 = Op.getOperand(1);
5805  SDValue N2 = Op.getOperand(2);
5806
5807  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5808    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5809    // as its second argument.
5810    if (N1.getValueType() != MVT::i32)
5811      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5812    if (N2.getValueType() != MVT::i32)
5813      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5814    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
5815  }
5816  return SDValue();
5817}
5818
5819SDValue
5820X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5821  DebugLoc dl = Op.getDebugLoc();
5822
5823  if (Op.getValueType() == MVT::v1i64 &&
5824      Op.getOperand(0).getValueType() == MVT::i64)
5825    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5826
5827  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5828  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
5829         "Expected an SSE type!");
5830  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5831                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
5832}
5833
5834// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5835// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5836// one of the above mentioned nodes. It has to be wrapped because otherwise
5837// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5838// be used to form addressing mode. These wrapped nodes will be selected
5839// into MOV32ri.
5840SDValue
5841X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5842  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5843
5844  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5845  // global base reg.
5846  unsigned char OpFlag = 0;
5847  unsigned WrapperKind = X86ISD::Wrapper;
5848  CodeModel::Model M = getTargetMachine().getCodeModel();
5849
5850  if (Subtarget->isPICStyleRIPRel() &&
5851      (M == CodeModel::Small || M == CodeModel::Kernel))
5852    WrapperKind = X86ISD::WrapperRIP;
5853  else if (Subtarget->isPICStyleGOT())
5854    OpFlag = X86II::MO_GOTOFF;
5855  else if (Subtarget->isPICStyleStubPIC())
5856    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5857
5858  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5859                                             CP->getAlignment(),
5860                                             CP->getOffset(), OpFlag);
5861  DebugLoc DL = CP->getDebugLoc();
5862  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5863  // With PIC, the address is actually $g + Offset.
5864  if (OpFlag) {
5865    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5866                         DAG.getNode(X86ISD::GlobalBaseReg,
5867                                     DebugLoc(), getPointerTy()),
5868                         Result);
5869  }
5870
5871  return Result;
5872}
5873
5874SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5875  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5876
5877  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5878  // global base reg.
5879  unsigned char OpFlag = 0;
5880  unsigned WrapperKind = X86ISD::Wrapper;
5881  CodeModel::Model M = getTargetMachine().getCodeModel();
5882
5883  if (Subtarget->isPICStyleRIPRel() &&
5884      (M == CodeModel::Small || M == CodeModel::Kernel))
5885    WrapperKind = X86ISD::WrapperRIP;
5886  else if (Subtarget->isPICStyleGOT())
5887    OpFlag = X86II::MO_GOTOFF;
5888  else if (Subtarget->isPICStyleStubPIC())
5889    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5890
5891  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5892                                          OpFlag);
5893  DebugLoc DL = JT->getDebugLoc();
5894  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5895
5896  // With PIC, the address is actually $g + Offset.
5897  if (OpFlag) {
5898    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5899                         DAG.getNode(X86ISD::GlobalBaseReg,
5900                                     DebugLoc(), getPointerTy()),
5901                         Result);
5902  }
5903
5904  return Result;
5905}
5906
5907SDValue
5908X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5909  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5910
5911  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5912  // global base reg.
5913  unsigned char OpFlag = 0;
5914  unsigned WrapperKind = X86ISD::Wrapper;
5915  CodeModel::Model M = getTargetMachine().getCodeModel();
5916
5917  if (Subtarget->isPICStyleRIPRel() &&
5918      (M == CodeModel::Small || M == CodeModel::Kernel))
5919    WrapperKind = X86ISD::WrapperRIP;
5920  else if (Subtarget->isPICStyleGOT())
5921    OpFlag = X86II::MO_GOTOFF;
5922  else if (Subtarget->isPICStyleStubPIC())
5923    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5924
5925  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5926
5927  DebugLoc DL = Op.getDebugLoc();
5928  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5929
5930
5931  // With PIC, the address is actually $g + Offset.
5932  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5933      !Subtarget->is64Bit()) {
5934    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5935                         DAG.getNode(X86ISD::GlobalBaseReg,
5936                                     DebugLoc(), getPointerTy()),
5937                         Result);
5938  }
5939
5940  return Result;
5941}
5942
5943SDValue
5944X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5945  // Create the TargetBlockAddressAddress node.
5946  unsigned char OpFlags =
5947    Subtarget->ClassifyBlockAddressReference();
5948  CodeModel::Model M = getTargetMachine().getCodeModel();
5949  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5950  DebugLoc dl = Op.getDebugLoc();
5951  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5952                                       /*isTarget=*/true, OpFlags);
5953
5954  if (Subtarget->isPICStyleRIPRel() &&
5955      (M == CodeModel::Small || M == CodeModel::Kernel))
5956    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5957  else
5958    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5959
5960  // With PIC, the address is actually $g + Offset.
5961  if (isGlobalRelativeToPICBase(OpFlags)) {
5962    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5963                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5964                         Result);
5965  }
5966
5967  return Result;
5968}
5969
5970SDValue
5971X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5972                                      int64_t Offset,
5973                                      SelectionDAG &DAG) const {
5974  // Create the TargetGlobalAddress node, folding in the constant
5975  // offset if it is legal.
5976  unsigned char OpFlags =
5977    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5978  CodeModel::Model M = getTargetMachine().getCodeModel();
5979  SDValue Result;
5980  if (OpFlags == X86II::MO_NO_FLAG &&
5981      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5982    // A direct static reference to a global.
5983    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
5984    Offset = 0;
5985  } else {
5986    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
5987  }
5988
5989  if (Subtarget->isPICStyleRIPRel() &&
5990      (M == CodeModel::Small || M == CodeModel::Kernel))
5991    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5992  else
5993    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5994
5995  // With PIC, the address is actually $g + Offset.
5996  if (isGlobalRelativeToPICBase(OpFlags)) {
5997    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5998                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5999                         Result);
6000  }
6001
6002  // For globals that require a load from a stub to get the address, emit the
6003  // load.
6004  if (isGlobalStubReference(OpFlags))
6005    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6006                         MachinePointerInfo::getGOT(), false, false, 0);
6007
6008  // If there was a non-zero offset that we didn't fold, create an explicit
6009  // addition for it.
6010  if (Offset != 0)
6011    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6012                         DAG.getConstant(Offset, getPointerTy()));
6013
6014  return Result;
6015}
6016
6017SDValue
6018X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6019  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6020  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6021  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6022}
6023
6024static SDValue
6025GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6026           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6027           unsigned char OperandFlags) {
6028  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6029  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6030  DebugLoc dl = GA->getDebugLoc();
6031  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6032                                           GA->getValueType(0),
6033                                           GA->getOffset(),
6034                                           OperandFlags);
6035  if (InFlag) {
6036    SDValue Ops[] = { Chain,  TGA, *InFlag };
6037    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6038  } else {
6039    SDValue Ops[]  = { Chain, TGA };
6040    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6041  }
6042
6043  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6044  MFI->setAdjustsStack(true);
6045
6046  SDValue Flag = Chain.getValue(1);
6047  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6048}
6049
6050// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6051static SDValue
6052LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6053                                const EVT PtrVT) {
6054  SDValue InFlag;
6055  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6056  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6057                                     DAG.getNode(X86ISD::GlobalBaseReg,
6058                                                 DebugLoc(), PtrVT), InFlag);
6059  InFlag = Chain.getValue(1);
6060
6061  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6062}
6063
6064// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6065static SDValue
6066LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6067                                const EVT PtrVT) {
6068  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6069                    X86::RAX, X86II::MO_TLSGD);
6070}
6071
6072// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6073// "local exec" model.
6074static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6075                                   const EVT PtrVT, TLSModel::Model model,
6076                                   bool is64Bit) {
6077  DebugLoc dl = GA->getDebugLoc();
6078
6079  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6080  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6081                                                         is64Bit ? 257 : 256));
6082
6083  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6084                                      DAG.getIntPtrConstant(0),
6085                                      MachinePointerInfo(Ptr), false, false, 0);
6086
6087  unsigned char OperandFlags = 0;
6088  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6089  // initialexec.
6090  unsigned WrapperKind = X86ISD::Wrapper;
6091  if (model == TLSModel::LocalExec) {
6092    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6093  } else if (is64Bit) {
6094    assert(model == TLSModel::InitialExec);
6095    OperandFlags = X86II::MO_GOTTPOFF;
6096    WrapperKind = X86ISD::WrapperRIP;
6097  } else {
6098    assert(model == TLSModel::InitialExec);
6099    OperandFlags = X86II::MO_INDNTPOFF;
6100  }
6101
6102  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6103  // exec)
6104  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6105                                           GA->getValueType(0),
6106                                           GA->getOffset(), OperandFlags);
6107  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6108
6109  if (model == TLSModel::InitialExec)
6110    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6111                         MachinePointerInfo::getGOT(), false, false, 0);
6112
6113  // The address of the thread local variable is the add of the thread
6114  // pointer with the offset of the variable.
6115  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6116}
6117
6118SDValue
6119X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6120
6121  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6122  const GlobalValue *GV = GA->getGlobal();
6123
6124  if (Subtarget->isTargetELF()) {
6125    // TODO: implement the "local dynamic" model
6126    // TODO: implement the "initial exec"model for pic executables
6127
6128    // If GV is an alias then use the aliasee for determining
6129    // thread-localness.
6130    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6131      GV = GA->resolveAliasedGlobal(false);
6132
6133    TLSModel::Model model
6134      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6135
6136    switch (model) {
6137      case TLSModel::GeneralDynamic:
6138      case TLSModel::LocalDynamic: // not implemented
6139        if (Subtarget->is64Bit())
6140          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6141        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6142
6143      case TLSModel::InitialExec:
6144      case TLSModel::LocalExec:
6145        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6146                                   Subtarget->is64Bit());
6147    }
6148  } else if (Subtarget->isTargetDarwin()) {
6149    // Darwin only has one model of TLS.  Lower to that.
6150    unsigned char OpFlag = 0;
6151    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6152                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6153
6154    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6155    // global base reg.
6156    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6157                  !Subtarget->is64Bit();
6158    if (PIC32)
6159      OpFlag = X86II::MO_TLVP_PIC_BASE;
6160    else
6161      OpFlag = X86II::MO_TLVP;
6162    DebugLoc DL = Op.getDebugLoc();
6163    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6164                                                getPointerTy(),
6165                                                GA->getOffset(), OpFlag);
6166    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6167
6168    // With PIC32, the address is actually $g + Offset.
6169    if (PIC32)
6170      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6171                           DAG.getNode(X86ISD::GlobalBaseReg,
6172                                       DebugLoc(), getPointerTy()),
6173                           Offset);
6174
6175    // Lowering the machine isd will make sure everything is in the right
6176    // location.
6177    SDValue Args[] = { Offset };
6178    SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1);
6179
6180    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6181    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6182    MFI->setAdjustsStack(true);
6183
6184    // And our return value (tls address) is in the standard call return value
6185    // location.
6186    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6187    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6188  }
6189
6190  assert(false &&
6191         "TLS not implemented for this target.");
6192
6193  llvm_unreachable("Unreachable");
6194  return SDValue();
6195}
6196
6197
6198/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
6199/// take a 2 x i32 value to shift plus a shift amount.
6200SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
6201  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6202  EVT VT = Op.getValueType();
6203  unsigned VTBits = VT.getSizeInBits();
6204  DebugLoc dl = Op.getDebugLoc();
6205  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6206  SDValue ShOpLo = Op.getOperand(0);
6207  SDValue ShOpHi = Op.getOperand(1);
6208  SDValue ShAmt  = Op.getOperand(2);
6209  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6210                                     DAG.getConstant(VTBits - 1, MVT::i8))
6211                       : DAG.getConstant(0, VT);
6212
6213  SDValue Tmp2, Tmp3;
6214  if (Op.getOpcode() == ISD::SHL_PARTS) {
6215    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6216    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6217  } else {
6218    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6219    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6220  }
6221
6222  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6223                                DAG.getConstant(VTBits, MVT::i8));
6224  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6225                             AndNode, DAG.getConstant(0, MVT::i8));
6226
6227  SDValue Hi, Lo;
6228  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6229  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6230  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6231
6232  if (Op.getOpcode() == ISD::SHL_PARTS) {
6233    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6234    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6235  } else {
6236    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6237    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6238  }
6239
6240  SDValue Ops[2] = { Lo, Hi };
6241  return DAG.getMergeValues(Ops, 2, dl);
6242}
6243
6244SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6245                                           SelectionDAG &DAG) const {
6246  EVT SrcVT = Op.getOperand(0).getValueType();
6247
6248  if (SrcVT.isVector())
6249    return SDValue();
6250
6251  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6252         "Unknown SINT_TO_FP to lower!");
6253
6254  // These are really Legal; return the operand so the caller accepts it as
6255  // Legal.
6256  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6257    return Op;
6258  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6259      Subtarget->is64Bit()) {
6260    return Op;
6261  }
6262
6263  DebugLoc dl = Op.getDebugLoc();
6264  unsigned Size = SrcVT.getSizeInBits()/8;
6265  MachineFunction &MF = DAG.getMachineFunction();
6266  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6267  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6268  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6269                               StackSlot,
6270                               MachinePointerInfo::getFixedStack(SSFI),
6271                               false, false, 0);
6272  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6273}
6274
6275SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6276                                     SDValue StackSlot,
6277                                     SelectionDAG &DAG) const {
6278  // Build the FILD
6279  DebugLoc DL = Op.getDebugLoc();
6280  SDVTList Tys;
6281  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6282  if (useSSE)
6283    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
6284  else
6285    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6286
6287  unsigned ByteSize = SrcVT.getSizeInBits()/8;
6288
6289  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6290  MachineMemOperand *MMO =
6291    DAG.getMachineFunction()
6292    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6293                          MachineMemOperand::MOLoad, ByteSize, ByteSize);
6294
6295  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6296  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
6297                                           X86ISD::FILD, DL,
6298                                           Tys, Ops, array_lengthof(Ops),
6299                                           SrcVT, MMO);
6300
6301  if (useSSE) {
6302    Chain = Result.getValue(1);
6303    SDValue InFlag = Result.getValue(2);
6304
6305    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6306    // shouldn't be necessary except that RFP cannot be live across
6307    // multiple blocks. When stackifier is fixed, they can be uncoupled.
6308    MachineFunction &MF = DAG.getMachineFunction();
6309    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
6310    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
6311    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6312    Tys = DAG.getVTList(MVT::Other);
6313    SDValue Ops[] = {
6314      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6315    };
6316    MachineMemOperand *MMO =
6317      DAG.getMachineFunction()
6318      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6319                            MachineMemOperand::MOStore, SSFISize, SSFISize);
6320
6321    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
6322                                    Ops, array_lengthof(Ops),
6323                                    Op.getValueType(), MMO);
6324    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
6325                         MachinePointerInfo::getFixedStack(SSFI),
6326                         false, false, 0);
6327  }
6328
6329  return Result;
6330}
6331
6332// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6333SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6334                                               SelectionDAG &DAG) const {
6335  // This algorithm is not obvious. Here it is in C code, more or less:
6336  /*
6337    double uint64_to_double( uint32_t hi, uint32_t lo ) {
6338      static const __m128i exp = { 0x4330000045300000ULL, 0 };
6339      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6340
6341      // Copy ints to xmm registers.
6342      __m128i xh = _mm_cvtsi32_si128( hi );
6343      __m128i xl = _mm_cvtsi32_si128( lo );
6344
6345      // Combine into low half of a single xmm register.
6346      __m128i x = _mm_unpacklo_epi32( xh, xl );
6347      __m128d d;
6348      double sd;
6349
6350      // Merge in appropriate exponents to give the integer bits the right
6351      // magnitude.
6352      x = _mm_unpacklo_epi32( x, exp );
6353
6354      // Subtract away the biases to deal with the IEEE-754 double precision
6355      // implicit 1.
6356      d = _mm_sub_pd( (__m128d) x, bias );
6357
6358      // All conversions up to here are exact. The correctly rounded result is
6359      // calculated using the current rounding mode using the following
6360      // horizontal add.
6361      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6362      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
6363                                // store doesn't really need to be here (except
6364                                // maybe to zero the other double)
6365      return sd;
6366    }
6367  */
6368
6369  DebugLoc dl = Op.getDebugLoc();
6370  LLVMContext *Context = DAG.getContext();
6371
6372  // Build some magic constants.
6373  std::vector<Constant*> CV0;
6374  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6375  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6376  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6377  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6378  Constant *C0 = ConstantVector::get(CV0);
6379  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6380
6381  std::vector<Constant*> CV1;
6382  CV1.push_back(
6383    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6384  CV1.push_back(
6385    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6386  Constant *C1 = ConstantVector::get(CV1);
6387  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6388
6389  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6390                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6391                                        Op.getOperand(0),
6392                                        DAG.getIntPtrConstant(1)));
6393  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6394                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6395                                        Op.getOperand(0),
6396                                        DAG.getIntPtrConstant(0)));
6397  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6398  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6399                              MachinePointerInfo::getConstantPool(),
6400                              false, false, 16);
6401  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6402  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
6403  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6404                              MachinePointerInfo::getConstantPool(),
6405                              false, false, 16);
6406  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6407
6408  // Add the halves; easiest way is to swap them into another reg first.
6409  int ShufMask[2] = { 1, -1 };
6410  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6411                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
6412  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6413  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6414                     DAG.getIntPtrConstant(0));
6415}
6416
6417// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6418SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6419                                               SelectionDAG &DAG) const {
6420  DebugLoc dl = Op.getDebugLoc();
6421  // FP constant to bias correct the final result.
6422  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6423                                   MVT::f64);
6424
6425  // Load the 32-bit value into an XMM register.
6426  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6427                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6428                                         Op.getOperand(0),
6429                                         DAG.getIntPtrConstant(0)));
6430
6431  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6432                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
6433                     DAG.getIntPtrConstant(0));
6434
6435  // Or the load with the bias.
6436  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6437                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6438                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6439                                                   MVT::v2f64, Load)),
6440                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6441                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6442                                                   MVT::v2f64, Bias)));
6443  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6444                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
6445                   DAG.getIntPtrConstant(0));
6446
6447  // Subtract the bias.
6448  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6449
6450  // Handle final rounding.
6451  EVT DestVT = Op.getValueType();
6452
6453  if (DestVT.bitsLT(MVT::f64)) {
6454    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6455                       DAG.getIntPtrConstant(0));
6456  } else if (DestVT.bitsGT(MVT::f64)) {
6457    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6458  }
6459
6460  // Handle final rounding.
6461  return Sub;
6462}
6463
6464SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6465                                           SelectionDAG &DAG) const {
6466  SDValue N0 = Op.getOperand(0);
6467  DebugLoc dl = Op.getDebugLoc();
6468
6469  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6470  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6471  // the optimization here.
6472  if (DAG.SignBitIsZero(N0))
6473    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6474
6475  EVT SrcVT = N0.getValueType();
6476  EVT DstVT = Op.getValueType();
6477  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6478    return LowerUINT_TO_FP_i64(Op, DAG);
6479  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6480    return LowerUINT_TO_FP_i32(Op, DAG);
6481
6482  // Make a 64-bit buffer, and use it to build an FILD.
6483  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6484  if (SrcVT == MVT::i32) {
6485    SDValue WordOff = DAG.getConstant(4, getPointerTy());
6486    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6487                                     getPointerTy(), StackSlot, WordOff);
6488    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6489                                  StackSlot, MachinePointerInfo(),
6490                                  false, false, 0);
6491    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6492                                  OffsetSlot, MachinePointerInfo(),
6493                                  false, false, 0);
6494    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6495    return Fild;
6496  }
6497
6498  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6499  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6500                                StackSlot, MachinePointerInfo(),
6501                               false, false, 0);
6502  // For i64 source, we need to add the appropriate power of 2 if the input
6503  // was negative.  This is the same as the optimization in
6504  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6505  // we must be careful to do the computation in x87 extended precision, not
6506  // in SSE. (The generic code can't know it's OK to do this, or how to.)
6507  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6508  MachineMemOperand *MMO =
6509    DAG.getMachineFunction()
6510    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6511                          MachineMemOperand::MOLoad, 8, 8);
6512
6513  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6514  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6515  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
6516                                         MVT::i64, MMO);
6517
6518  APInt FF(32, 0x5F800000ULL);
6519
6520  // Check whether the sign bit is set.
6521  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6522                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6523                                 ISD::SETLT);
6524
6525  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6526  SDValue FudgePtr = DAG.getConstantPool(
6527                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6528                                         getPointerTy());
6529
6530  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6531  SDValue Zero = DAG.getIntPtrConstant(0);
6532  SDValue Four = DAG.getIntPtrConstant(4);
6533  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6534                               Zero, Four);
6535  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6536
6537  // Load the value out, extending it from f32 to f80.
6538  // FIXME: Avoid the extend by constructing the right constant pool?
6539  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
6540                                 FudgePtr, MachinePointerInfo::getConstantPool(),
6541                                 MVT::f32, false, false, 4);
6542  // Extend everything to 80 bits to force it to be done on x87.
6543  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6544  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6545}
6546
6547std::pair<SDValue,SDValue> X86TargetLowering::
6548FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6549  DebugLoc DL = Op.getDebugLoc();
6550
6551  EVT DstTy = Op.getValueType();
6552
6553  if (!IsSigned) {
6554    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
6555    DstTy = MVT::i64;
6556  }
6557
6558  assert(DstTy.getSimpleVT() <= MVT::i64 &&
6559         DstTy.getSimpleVT() >= MVT::i16 &&
6560         "Unknown FP_TO_SINT to lower!");
6561
6562  // These are really Legal.
6563  if (DstTy == MVT::i32 &&
6564      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6565    return std::make_pair(SDValue(), SDValue());
6566  if (Subtarget->is64Bit() &&
6567      DstTy == MVT::i64 &&
6568      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6569    return std::make_pair(SDValue(), SDValue());
6570
6571  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
6572  // stack slot.
6573  MachineFunction &MF = DAG.getMachineFunction();
6574  unsigned MemSize = DstTy.getSizeInBits()/8;
6575  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6576  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6577
6578
6579
6580  unsigned Opc;
6581  switch (DstTy.getSimpleVT().SimpleTy) {
6582  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
6583  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
6584  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
6585  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
6586  }
6587
6588  SDValue Chain = DAG.getEntryNode();
6589  SDValue Value = Op.getOperand(0);
6590  EVT TheVT = Op.getOperand(0).getValueType();
6591  if (isScalarFPTypeInSSEReg(TheVT)) {
6592    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
6593    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
6594                         MachinePointerInfo::getFixedStack(SSFI),
6595                         false, false, 0);
6596    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
6597    SDValue Ops[] = {
6598      Chain, StackSlot, DAG.getValueType(TheVT)
6599    };
6600
6601    MachineMemOperand *MMO =
6602      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6603                              MachineMemOperand::MOLoad, MemSize, MemSize);
6604    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
6605                                    DstTy, MMO);
6606    Chain = Value.getValue(1);
6607    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6608    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6609  }
6610
6611  MachineMemOperand *MMO =
6612    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6613                            MachineMemOperand::MOStore, MemSize, MemSize);
6614
6615  // Build the FP_TO_INT*_IN_MEM
6616  SDValue Ops[] = { Chain, Value, StackSlot };
6617  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
6618                                         Ops, 3, DstTy, MMO);
6619
6620  return std::make_pair(FIST, StackSlot);
6621}
6622
6623SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
6624                                           SelectionDAG &DAG) const {
6625  if (Op.getValueType().isVector())
6626    return SDValue();
6627
6628  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
6629  SDValue FIST = Vals.first, StackSlot = Vals.second;
6630  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
6631  if (FIST.getNode() == 0) return Op;
6632
6633  // Load the result.
6634  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6635                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
6636}
6637
6638SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
6639                                           SelectionDAG &DAG) const {
6640  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
6641  SDValue FIST = Vals.first, StackSlot = Vals.second;
6642  assert(FIST.getNode() && "Unexpected failure");
6643
6644  // Load the result.
6645  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6646                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
6647}
6648
6649SDValue X86TargetLowering::LowerFABS(SDValue Op,
6650                                     SelectionDAG &DAG) const {
6651  LLVMContext *Context = DAG.getContext();
6652  DebugLoc dl = Op.getDebugLoc();
6653  EVT VT = Op.getValueType();
6654  EVT EltVT = VT;
6655  if (VT.isVector())
6656    EltVT = VT.getVectorElementType();
6657  std::vector<Constant*> CV;
6658  if (EltVT == MVT::f64) {
6659    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
6660    CV.push_back(C);
6661    CV.push_back(C);
6662  } else {
6663    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
6664    CV.push_back(C);
6665    CV.push_back(C);
6666    CV.push_back(C);
6667    CV.push_back(C);
6668  }
6669  Constant *C = ConstantVector::get(CV);
6670  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6671  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6672                             MachinePointerInfo::getConstantPool(),
6673                             false, false, 16);
6674  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
6675}
6676
6677SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
6678  LLVMContext *Context = DAG.getContext();
6679  DebugLoc dl = Op.getDebugLoc();
6680  EVT VT = Op.getValueType();
6681  EVT EltVT = VT;
6682  if (VT.isVector())
6683    EltVT = VT.getVectorElementType();
6684  std::vector<Constant*> CV;
6685  if (EltVT == MVT::f64) {
6686    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
6687    CV.push_back(C);
6688    CV.push_back(C);
6689  } else {
6690    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
6691    CV.push_back(C);
6692    CV.push_back(C);
6693    CV.push_back(C);
6694    CV.push_back(C);
6695  }
6696  Constant *C = ConstantVector::get(CV);
6697  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6698  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6699                             MachinePointerInfo::getConstantPool(),
6700                             false, false, 16);
6701  if (VT.isVector()) {
6702    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6703                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
6704                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6705                                Op.getOperand(0)),
6706                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
6707  } else {
6708    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
6709  }
6710}
6711
6712SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6713  LLVMContext *Context = DAG.getContext();
6714  SDValue Op0 = Op.getOperand(0);
6715  SDValue Op1 = Op.getOperand(1);
6716  DebugLoc dl = Op.getDebugLoc();
6717  EVT VT = Op.getValueType();
6718  EVT SrcVT = Op1.getValueType();
6719
6720  // If second operand is smaller, extend it first.
6721  if (SrcVT.bitsLT(VT)) {
6722    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
6723    SrcVT = VT;
6724  }
6725  // And if it is bigger, shrink it first.
6726  if (SrcVT.bitsGT(VT)) {
6727    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
6728    SrcVT = VT;
6729  }
6730
6731  // At this point the operands and the result should have the same
6732  // type, and that won't be f80 since that is not custom lowered.
6733
6734  // First get the sign bit of second operand.
6735  std::vector<Constant*> CV;
6736  if (SrcVT == MVT::f64) {
6737    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
6738    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6739  } else {
6740    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
6741    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6742    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6743    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6744  }
6745  Constant *C = ConstantVector::get(CV);
6746  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6747  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6748                              MachinePointerInfo::getConstantPool(),
6749                              false, false, 16);
6750  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6751
6752  // Shift sign bit right or left if the two operands have different types.
6753  if (SrcVT.bitsGT(VT)) {
6754    // Op0 is MVT::f32, Op1 is MVT::f64.
6755    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6756    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6757                          DAG.getConstant(32, MVT::i32));
6758    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
6759    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6760                          DAG.getIntPtrConstant(0));
6761  }
6762
6763  // Clear first operand sign bit.
6764  CV.clear();
6765  if (VT == MVT::f64) {
6766    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6767    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6768  } else {
6769    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6770    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6771    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6772    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6773  }
6774  C = ConstantVector::get(CV);
6775  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6776  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6777                              MachinePointerInfo::getConstantPool(),
6778                              false, false, 16);
6779  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6780
6781  // Or the value with the sign bit.
6782  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6783}
6784
6785/// Emit nodes that will be selected as "test Op0,Op0", or something
6786/// equivalent.
6787SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6788                                    SelectionDAG &DAG) const {
6789  DebugLoc dl = Op.getDebugLoc();
6790
6791  // CF and OF aren't always set the way we want. Determine which
6792  // of these we need.
6793  bool NeedCF = false;
6794  bool NeedOF = false;
6795  switch (X86CC) {
6796  default: break;
6797  case X86::COND_A: case X86::COND_AE:
6798  case X86::COND_B: case X86::COND_BE:
6799    NeedCF = true;
6800    break;
6801  case X86::COND_G: case X86::COND_GE:
6802  case X86::COND_L: case X86::COND_LE:
6803  case X86::COND_O: case X86::COND_NO:
6804    NeedOF = true;
6805    break;
6806  }
6807
6808  // See if we can use the EFLAGS value from the operand instead of
6809  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6810  // we prove that the arithmetic won't overflow, we can't use OF or CF.
6811  if (Op.getResNo() != 0 || NeedOF || NeedCF)
6812    // Emit a CMP with 0, which is the TEST pattern.
6813    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6814                       DAG.getConstant(0, Op.getValueType()));
6815
6816  unsigned Opcode = 0;
6817  unsigned NumOperands = 0;
6818  switch (Op.getNode()->getOpcode()) {
6819  case ISD::ADD:
6820    // Due to an isel shortcoming, be conservative if this add is likely to be
6821    // selected as part of a load-modify-store instruction. When the root node
6822    // in a match is a store, isel doesn't know how to remap non-chain non-flag
6823    // uses of other nodes in the match, such as the ADD in this case. This
6824    // leads to the ADD being left around and reselected, with the result being
6825    // two adds in the output.  Alas, even if none our users are stores, that
6826    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
6827    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
6828    // climbing the DAG back to the root, and it doesn't seem to be worth the
6829    // effort.
6830    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6831           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6832      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6833        goto default_case;
6834
6835    if (ConstantSDNode *C =
6836        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6837      // An add of one will be selected as an INC.
6838      if (C->getAPIntValue() == 1) {
6839        Opcode = X86ISD::INC;
6840        NumOperands = 1;
6841        break;
6842      }
6843
6844      // An add of negative one (subtract of one) will be selected as a DEC.
6845      if (C->getAPIntValue().isAllOnesValue()) {
6846        Opcode = X86ISD::DEC;
6847        NumOperands = 1;
6848        break;
6849      }
6850    }
6851
6852    // Otherwise use a regular EFLAGS-setting add.
6853    Opcode = X86ISD::ADD;
6854    NumOperands = 2;
6855    break;
6856  case ISD::AND: {
6857    // If the primary and result isn't used, don't bother using X86ISD::AND,
6858    // because a TEST instruction will be better.
6859    bool NonFlagUse = false;
6860    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6861           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6862      SDNode *User = *UI;
6863      unsigned UOpNo = UI.getOperandNo();
6864      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6865        // Look pass truncate.
6866        UOpNo = User->use_begin().getOperandNo();
6867        User = *User->use_begin();
6868      }
6869
6870      if (User->getOpcode() != ISD::BRCOND &&
6871          User->getOpcode() != ISD::SETCC &&
6872          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6873        NonFlagUse = true;
6874        break;
6875      }
6876    }
6877
6878    if (!NonFlagUse)
6879      break;
6880  }
6881    // FALL THROUGH
6882  case ISD::SUB:
6883  case ISD::OR:
6884  case ISD::XOR:
6885    // Due to the ISEL shortcoming noted above, be conservative if this op is
6886    // likely to be selected as part of a load-modify-store instruction.
6887    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6888           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6889      if (UI->getOpcode() == ISD::STORE)
6890        goto default_case;
6891
6892    // Otherwise use a regular EFLAGS-setting instruction.
6893    switch (Op.getNode()->getOpcode()) {
6894    default: llvm_unreachable("unexpected operator!");
6895    case ISD::SUB: Opcode = X86ISD::SUB; break;
6896    case ISD::OR:  Opcode = X86ISD::OR;  break;
6897    case ISD::XOR: Opcode = X86ISD::XOR; break;
6898    case ISD::AND: Opcode = X86ISD::AND; break;
6899    }
6900
6901    NumOperands = 2;
6902    break;
6903  case X86ISD::ADD:
6904  case X86ISD::SUB:
6905  case X86ISD::INC:
6906  case X86ISD::DEC:
6907  case X86ISD::OR:
6908  case X86ISD::XOR:
6909  case X86ISD::AND:
6910    return SDValue(Op.getNode(), 1);
6911  default:
6912  default_case:
6913    break;
6914  }
6915
6916  if (Opcode == 0)
6917    // Emit a CMP with 0, which is the TEST pattern.
6918    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6919                       DAG.getConstant(0, Op.getValueType()));
6920
6921  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6922  SmallVector<SDValue, 4> Ops;
6923  for (unsigned i = 0; i != NumOperands; ++i)
6924    Ops.push_back(Op.getOperand(i));
6925
6926  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6927  DAG.ReplaceAllUsesWith(Op, New);
6928  return SDValue(New.getNode(), 1);
6929}
6930
6931/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6932/// equivalent.
6933SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6934                                   SelectionDAG &DAG) const {
6935  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6936    if (C->getAPIntValue() == 0)
6937      return EmitTest(Op0, X86CC, DAG);
6938
6939  DebugLoc dl = Op0.getDebugLoc();
6940  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6941}
6942
6943/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6944/// if it's possible.
6945SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6946                                     DebugLoc dl, SelectionDAG &DAG) const {
6947  SDValue Op0 = And.getOperand(0);
6948  SDValue Op1 = And.getOperand(1);
6949  if (Op0.getOpcode() == ISD::TRUNCATE)
6950    Op0 = Op0.getOperand(0);
6951  if (Op1.getOpcode() == ISD::TRUNCATE)
6952    Op1 = Op1.getOperand(0);
6953
6954  SDValue LHS, RHS;
6955  if (Op1.getOpcode() == ISD::SHL)
6956    std::swap(Op0, Op1);
6957  if (Op0.getOpcode() == ISD::SHL) {
6958    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6959      if (And00C->getZExtValue() == 1) {
6960        // If we looked past a truncate, check that it's only truncating away
6961        // known zeros.
6962        unsigned BitWidth = Op0.getValueSizeInBits();
6963        unsigned AndBitWidth = And.getValueSizeInBits();
6964        if (BitWidth > AndBitWidth) {
6965          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6966          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6967          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6968            return SDValue();
6969        }
6970        LHS = Op1;
6971        RHS = Op0.getOperand(1);
6972      }
6973  } else if (Op1.getOpcode() == ISD::Constant) {
6974    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6975    SDValue AndLHS = Op0;
6976    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6977      LHS = AndLHS.getOperand(0);
6978      RHS = AndLHS.getOperand(1);
6979    }
6980  }
6981
6982  if (LHS.getNode()) {
6983    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
6984    // instruction.  Since the shift amount is in-range-or-undefined, we know
6985    // that doing a bittest on the i32 value is ok.  We extend to i32 because
6986    // the encoding for the i16 version is larger than the i32 version.
6987    // Also promote i16 to i32 for performance / code size reason.
6988    if (LHS.getValueType() == MVT::i8 ||
6989        LHS.getValueType() == MVT::i16)
6990      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6991
6992    // If the operand types disagree, extend the shift amount to match.  Since
6993    // BT ignores high bits (like shifts) we can use anyextend.
6994    if (LHS.getValueType() != RHS.getValueType())
6995      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6996
6997    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6998    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6999    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7000                       DAG.getConstant(Cond, MVT::i8), BT);
7001  }
7002
7003  return SDValue();
7004}
7005
7006SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7007  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7008  SDValue Op0 = Op.getOperand(0);
7009  SDValue Op1 = Op.getOperand(1);
7010  DebugLoc dl = Op.getDebugLoc();
7011  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7012
7013  // Optimize to BT if possible.
7014  // Lower (X & (1 << N)) == 0 to BT(X, N).
7015  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7016  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7017  if (Op0.getOpcode() == ISD::AND &&
7018      Op0.hasOneUse() &&
7019      Op1.getOpcode() == ISD::Constant &&
7020      cast<ConstantSDNode>(Op1)->isNullValue() &&
7021      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7022    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7023    if (NewSetCC.getNode())
7024      return NewSetCC;
7025  }
7026
7027  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
7028  if (Op0.getOpcode() == X86ISD::SETCC &&
7029      Op1.getOpcode() == ISD::Constant &&
7030      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7031       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7032      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7033    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7034    bool Invert = (CC == ISD::SETNE) ^
7035      cast<ConstantSDNode>(Op1)->isNullValue();
7036    if (Invert)
7037      CCode = X86::GetOppositeBranchCondition(CCode);
7038    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7039                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7040  }
7041
7042  bool isFP = Op1.getValueType().isFloatingPoint();
7043  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7044  if (X86CC == X86::COND_INVALID)
7045    return SDValue();
7046
7047  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
7048
7049  // Use sbb x, x to materialize carry bit into a GPR.
7050  if (X86CC == X86::COND_B)
7051    return DAG.getNode(ISD::AND, dl, MVT::i8,
7052                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
7053                                   DAG.getConstant(X86CC, MVT::i8), Cond),
7054                       DAG.getConstant(1, MVT::i8));
7055
7056  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7057                     DAG.getConstant(X86CC, MVT::i8), Cond);
7058}
7059
7060SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7061  SDValue Cond;
7062  SDValue Op0 = Op.getOperand(0);
7063  SDValue Op1 = Op.getOperand(1);
7064  SDValue CC = Op.getOperand(2);
7065  EVT VT = Op.getValueType();
7066  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7067  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7068  DebugLoc dl = Op.getDebugLoc();
7069
7070  if (isFP) {
7071    unsigned SSECC = 8;
7072    EVT VT0 = Op0.getValueType();
7073    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7074    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7075    bool Swap = false;
7076
7077    switch (SetCCOpcode) {
7078    default: break;
7079    case ISD::SETOEQ:
7080    case ISD::SETEQ:  SSECC = 0; break;
7081    case ISD::SETOGT:
7082    case ISD::SETGT: Swap = true; // Fallthrough
7083    case ISD::SETLT:
7084    case ISD::SETOLT: SSECC = 1; break;
7085    case ISD::SETOGE:
7086    case ISD::SETGE: Swap = true; // Fallthrough
7087    case ISD::SETLE:
7088    case ISD::SETOLE: SSECC = 2; break;
7089    case ISD::SETUO:  SSECC = 3; break;
7090    case ISD::SETUNE:
7091    case ISD::SETNE:  SSECC = 4; break;
7092    case ISD::SETULE: Swap = true;
7093    case ISD::SETUGE: SSECC = 5; break;
7094    case ISD::SETULT: Swap = true;
7095    case ISD::SETUGT: SSECC = 6; break;
7096    case ISD::SETO:   SSECC = 7; break;
7097    }
7098    if (Swap)
7099      std::swap(Op0, Op1);
7100
7101    // In the two special cases we can't handle, emit two comparisons.
7102    if (SSECC == 8) {
7103      if (SetCCOpcode == ISD::SETUEQ) {
7104        SDValue UNORD, EQ;
7105        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7106        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7107        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7108      }
7109      else if (SetCCOpcode == ISD::SETONE) {
7110        SDValue ORD, NEQ;
7111        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7112        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7113        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7114      }
7115      llvm_unreachable("Illegal FP comparison");
7116    }
7117    // Handle all other FP comparisons here.
7118    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7119  }
7120
7121  // We are handling one of the integer comparisons here.  Since SSE only has
7122  // GT and EQ comparisons for integer, swapping operands and multiple
7123  // operations may be required for some comparisons.
7124  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7125  bool Swap = false, Invert = false, FlipSigns = false;
7126
7127  switch (VT.getSimpleVT().SimpleTy) {
7128  default: break;
7129  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7130  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7131  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7132  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7133  }
7134
7135  switch (SetCCOpcode) {
7136  default: break;
7137  case ISD::SETNE:  Invert = true;
7138  case ISD::SETEQ:  Opc = EQOpc; break;
7139  case ISD::SETLT:  Swap = true;
7140  case ISD::SETGT:  Opc = GTOpc; break;
7141  case ISD::SETGE:  Swap = true;
7142  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
7143  case ISD::SETULT: Swap = true;
7144  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7145  case ISD::SETUGE: Swap = true;
7146  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7147  }
7148  if (Swap)
7149    std::swap(Op0, Op1);
7150
7151  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
7152  // bits of the inputs before performing those operations.
7153  if (FlipSigns) {
7154    EVT EltVT = VT.getVectorElementType();
7155    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7156                                      EltVT);
7157    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7158    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7159                                    SignBits.size());
7160    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7161    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7162  }
7163
7164  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7165
7166  // If the logical-not of the result is required, perform that now.
7167  if (Invert)
7168    Result = DAG.getNOT(dl, Result, VT);
7169
7170  return Result;
7171}
7172
7173// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7174static bool isX86LogicalCmp(SDValue Op) {
7175  unsigned Opc = Op.getNode()->getOpcode();
7176  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7177    return true;
7178  if (Op.getResNo() == 1 &&
7179      (Opc == X86ISD::ADD ||
7180       Opc == X86ISD::SUB ||
7181       Opc == X86ISD::SMUL ||
7182       Opc == X86ISD::UMUL ||
7183       Opc == X86ISD::INC ||
7184       Opc == X86ISD::DEC ||
7185       Opc == X86ISD::OR ||
7186       Opc == X86ISD::XOR ||
7187       Opc == X86ISD::AND))
7188    return true;
7189
7190  return false;
7191}
7192
7193SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7194  bool addTest = true;
7195  SDValue Cond  = Op.getOperand(0);
7196  DebugLoc dl = Op.getDebugLoc();
7197  SDValue CC;
7198
7199  if (Cond.getOpcode() == ISD::SETCC) {
7200    SDValue NewCond = LowerSETCC(Cond, DAG);
7201    if (NewCond.getNode())
7202      Cond = NewCond;
7203  }
7204
7205  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
7206  SDValue Op1 = Op.getOperand(1);
7207  SDValue Op2 = Op.getOperand(2);
7208  if (Cond.getOpcode() == X86ISD::SETCC &&
7209      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
7210    SDValue Cmp = Cond.getOperand(1);
7211    if (Cmp.getOpcode() == X86ISD::CMP) {
7212      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
7213      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7214      ConstantSDNode *RHSC =
7215        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
7216      if (N1C && N1C->isAllOnesValue() &&
7217          N2C && N2C->isNullValue() &&
7218          RHSC && RHSC->isNullValue()) {
7219        SDValue CmpOp0 = Cmp.getOperand(0);
7220        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7221                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7222        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
7223                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7224      }
7225    }
7226  }
7227
7228  // Look pass (and (setcc_carry (cmp ...)), 1).
7229  if (Cond.getOpcode() == ISD::AND &&
7230      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7231    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7232    if (C && C->getAPIntValue() == 1)
7233      Cond = Cond.getOperand(0);
7234  }
7235
7236  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7237  // setting operand in place of the X86ISD::SETCC.
7238  if (Cond.getOpcode() == X86ISD::SETCC ||
7239      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7240    CC = Cond.getOperand(0);
7241
7242    SDValue Cmp = Cond.getOperand(1);
7243    unsigned Opc = Cmp.getOpcode();
7244    EVT VT = Op.getValueType();
7245
7246    bool IllegalFPCMov = false;
7247    if (VT.isFloatingPoint() && !VT.isVector() &&
7248        !isScalarFPTypeInSSEReg(VT))  // FPStack?
7249      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7250
7251    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7252        Opc == X86ISD::BT) { // FIXME
7253      Cond = Cmp;
7254      addTest = false;
7255    }
7256  }
7257
7258  if (addTest) {
7259    // Look pass the truncate.
7260    if (Cond.getOpcode() == ISD::TRUNCATE)
7261      Cond = Cond.getOperand(0);
7262
7263    // We know the result of AND is compared against zero. Try to match
7264    // it to BT.
7265    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7266      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7267      if (NewSetCC.getNode()) {
7268        CC = NewSetCC.getOperand(0);
7269        Cond = NewSetCC.getOperand(1);
7270        addTest = false;
7271      }
7272    }
7273  }
7274
7275  if (addTest) {
7276    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7277    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7278  }
7279
7280  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7281  // condition is true.
7282  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
7283  SDValue Ops[] = { Op2, Op1, CC, Cond };
7284  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
7285}
7286
7287// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7288// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7289// from the AND / OR.
7290static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7291  Opc = Op.getOpcode();
7292  if (Opc != ISD::OR && Opc != ISD::AND)
7293    return false;
7294  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7295          Op.getOperand(0).hasOneUse() &&
7296          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7297          Op.getOperand(1).hasOneUse());
7298}
7299
7300// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7301// 1 and that the SETCC node has a single use.
7302static bool isXor1OfSetCC(SDValue Op) {
7303  if (Op.getOpcode() != ISD::XOR)
7304    return false;
7305  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7306  if (N1C && N1C->getAPIntValue() == 1) {
7307    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7308      Op.getOperand(0).hasOneUse();
7309  }
7310  return false;
7311}
7312
7313SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7314  bool addTest = true;
7315  SDValue Chain = Op.getOperand(0);
7316  SDValue Cond  = Op.getOperand(1);
7317  SDValue Dest  = Op.getOperand(2);
7318  DebugLoc dl = Op.getDebugLoc();
7319  SDValue CC;
7320
7321  if (Cond.getOpcode() == ISD::SETCC) {
7322    SDValue NewCond = LowerSETCC(Cond, DAG);
7323    if (NewCond.getNode())
7324      Cond = NewCond;
7325  }
7326#if 0
7327  // FIXME: LowerXALUO doesn't handle these!!
7328  else if (Cond.getOpcode() == X86ISD::ADD  ||
7329           Cond.getOpcode() == X86ISD::SUB  ||
7330           Cond.getOpcode() == X86ISD::SMUL ||
7331           Cond.getOpcode() == X86ISD::UMUL)
7332    Cond = LowerXALUO(Cond, DAG);
7333#endif
7334
7335  // Look pass (and (setcc_carry (cmp ...)), 1).
7336  if (Cond.getOpcode() == ISD::AND &&
7337      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7338    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7339    if (C && C->getAPIntValue() == 1)
7340      Cond = Cond.getOperand(0);
7341  }
7342
7343  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7344  // setting operand in place of the X86ISD::SETCC.
7345  if (Cond.getOpcode() == X86ISD::SETCC ||
7346      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7347    CC = Cond.getOperand(0);
7348
7349    SDValue Cmp = Cond.getOperand(1);
7350    unsigned Opc = Cmp.getOpcode();
7351    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7352    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7353      Cond = Cmp;
7354      addTest = false;
7355    } else {
7356      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7357      default: break;
7358      case X86::COND_O:
7359      case X86::COND_B:
7360        // These can only come from an arithmetic instruction with overflow,
7361        // e.g. SADDO, UADDO.
7362        Cond = Cond.getNode()->getOperand(1);
7363        addTest = false;
7364        break;
7365      }
7366    }
7367  } else {
7368    unsigned CondOpc;
7369    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7370      SDValue Cmp = Cond.getOperand(0).getOperand(1);
7371      if (CondOpc == ISD::OR) {
7372        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7373        // two branches instead of an explicit OR instruction with a
7374        // separate test.
7375        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7376            isX86LogicalCmp(Cmp)) {
7377          CC = Cond.getOperand(0).getOperand(0);
7378          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7379                              Chain, Dest, CC, Cmp);
7380          CC = Cond.getOperand(1).getOperand(0);
7381          Cond = Cmp;
7382          addTest = false;
7383        }
7384      } else { // ISD::AND
7385        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7386        // two branches instead of an explicit AND instruction with a
7387        // separate test. However, we only do this if this block doesn't
7388        // have a fall-through edge, because this requires an explicit
7389        // jmp when the condition is false.
7390        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7391            isX86LogicalCmp(Cmp) &&
7392            Op.getNode()->hasOneUse()) {
7393          X86::CondCode CCode =
7394            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7395          CCode = X86::GetOppositeBranchCondition(CCode);
7396          CC = DAG.getConstant(CCode, MVT::i8);
7397          SDNode *User = *Op.getNode()->use_begin();
7398          // Look for an unconditional branch following this conditional branch.
7399          // We need this because we need to reverse the successors in order
7400          // to implement FCMP_OEQ.
7401          if (User->getOpcode() == ISD::BR) {
7402            SDValue FalseBB = User->getOperand(1);
7403            SDNode *NewBR =
7404              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7405            assert(NewBR == User);
7406            (void)NewBR;
7407            Dest = FalseBB;
7408
7409            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7410                                Chain, Dest, CC, Cmp);
7411            X86::CondCode CCode =
7412              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7413            CCode = X86::GetOppositeBranchCondition(CCode);
7414            CC = DAG.getConstant(CCode, MVT::i8);
7415            Cond = Cmp;
7416            addTest = false;
7417          }
7418        }
7419      }
7420    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7421      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7422      // It should be transformed during dag combiner except when the condition
7423      // is set by a arithmetics with overflow node.
7424      X86::CondCode CCode =
7425        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7426      CCode = X86::GetOppositeBranchCondition(CCode);
7427      CC = DAG.getConstant(CCode, MVT::i8);
7428      Cond = Cond.getOperand(0).getOperand(1);
7429      addTest = false;
7430    }
7431  }
7432
7433  if (addTest) {
7434    // Look pass the truncate.
7435    if (Cond.getOpcode() == ISD::TRUNCATE)
7436      Cond = Cond.getOperand(0);
7437
7438    // We know the result of AND is compared against zero. Try to match
7439    // it to BT.
7440    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7441      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7442      if (NewSetCC.getNode()) {
7443        CC = NewSetCC.getOperand(0);
7444        Cond = NewSetCC.getOperand(1);
7445        addTest = false;
7446      }
7447    }
7448  }
7449
7450  if (addTest) {
7451    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7452    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7453  }
7454  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7455                     Chain, Dest, CC, Cond);
7456}
7457
7458
7459// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7460// Calls to _alloca is needed to probe the stack when allocating more than 4k
7461// bytes in one go. Touching the stack at 4K increments is necessary to ensure
7462// that the guard pages used by the OS virtual memory manager are allocated in
7463// correct sequence.
7464SDValue
7465X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7466                                           SelectionDAG &DAG) const {
7467  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
7468         "This should be used only on Windows targets");
7469  DebugLoc dl = Op.getDebugLoc();
7470
7471  // Get the inputs.
7472  SDValue Chain = Op.getOperand(0);
7473  SDValue Size  = Op.getOperand(1);
7474  // FIXME: Ensure alignment here
7475
7476  SDValue Flag;
7477
7478  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7479
7480  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
7481  Flag = Chain.getValue(1);
7482
7483  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
7484
7485  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
7486  Flag = Chain.getValue(1);
7487
7488  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7489
7490  SDValue Ops1[2] = { Chain.getValue(0), Chain };
7491  return DAG.getMergeValues(Ops1, 2, dl);
7492}
7493
7494SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7495  MachineFunction &MF = DAG.getMachineFunction();
7496  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7497
7498  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7499  DebugLoc DL = Op.getDebugLoc();
7500
7501  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
7502    // vastart just stores the address of the VarArgsFrameIndex slot into the
7503    // memory location argument.
7504    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7505                                   getPointerTy());
7506    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
7507                        MachinePointerInfo(SV), false, false, 0);
7508  }
7509
7510  // __va_list_tag:
7511  //   gp_offset         (0 - 6 * 8)
7512  //   fp_offset         (48 - 48 + 8 * 16)
7513  //   overflow_arg_area (point to parameters coming in memory).
7514  //   reg_save_area
7515  SmallVector<SDValue, 8> MemOps;
7516  SDValue FIN = Op.getOperand(1);
7517  // Store gp_offset
7518  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
7519                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
7520                                               MVT::i32),
7521                               FIN, MachinePointerInfo(SV), false, false, 0);
7522  MemOps.push_back(Store);
7523
7524  // Store fp_offset
7525  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7526                    FIN, DAG.getIntPtrConstant(4));
7527  Store = DAG.getStore(Op.getOperand(0), DL,
7528                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
7529                                       MVT::i32),
7530                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
7531  MemOps.push_back(Store);
7532
7533  // Store ptr to overflow_arg_area
7534  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7535                    FIN, DAG.getIntPtrConstant(4));
7536  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7537                                    getPointerTy());
7538  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
7539                       MachinePointerInfo(SV, 8),
7540                       false, false, 0);
7541  MemOps.push_back(Store);
7542
7543  // Store ptr to reg_save_area.
7544  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7545                    FIN, DAG.getIntPtrConstant(8));
7546  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
7547                                    getPointerTy());
7548  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
7549                       MachinePointerInfo(SV, 16), false, false, 0);
7550  MemOps.push_back(Store);
7551  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
7552                     &MemOps[0], MemOps.size());
7553}
7554
7555SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
7556  assert(Subtarget->is64Bit() &&
7557         "LowerVAARG only handles 64-bit va_arg!");
7558  assert((Subtarget->isTargetLinux() ||
7559          Subtarget->isTargetDarwin()) &&
7560          "Unhandled target in LowerVAARG");
7561  assert(Op.getNode()->getNumOperands() == 4);
7562  SDValue Chain = Op.getOperand(0);
7563  SDValue SrcPtr = Op.getOperand(1);
7564  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7565  unsigned Align = Op.getConstantOperandVal(3);
7566  DebugLoc dl = Op.getDebugLoc();
7567
7568  EVT ArgVT = Op.getNode()->getValueType(0);
7569  const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
7570  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
7571  uint8_t ArgMode;
7572
7573  // Decide which area this value should be read from.
7574  // TODO: Implement the AMD64 ABI in its entirety. This simple
7575  // selection mechanism works only for the basic types.
7576  if (ArgVT == MVT::f80) {
7577    llvm_unreachable("va_arg for f80 not yet implemented");
7578  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
7579    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
7580  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
7581    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
7582  } else {
7583    llvm_unreachable("Unhandled argument type in LowerVAARG");
7584  }
7585
7586  if (ArgMode == 2) {
7587    // Sanity Check: Make sure using fp_offset makes sense.
7588    assert(!UseSoftFloat &&
7589           !(DAG.getMachineFunction()
7590                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
7591           Subtarget->hasSSE1());
7592  }
7593
7594  // Insert VAARG_64 node into the DAG
7595  // VAARG_64 returns two values: Variable Argument Address, Chain
7596  SmallVector<SDValue, 11> InstOps;
7597  InstOps.push_back(Chain);
7598  InstOps.push_back(SrcPtr);
7599  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
7600  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
7601  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
7602  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
7603  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
7604                                          VTs, &InstOps[0], InstOps.size(),
7605                                          MVT::i64,
7606                                          MachinePointerInfo(SV),
7607                                          /*Align=*/0,
7608                                          /*Volatile=*/false,
7609                                          /*ReadMem=*/true,
7610                                          /*WriteMem=*/true);
7611  Chain = VAARG.getValue(1);
7612
7613  // Load the next argument and return it
7614  return DAG.getLoad(ArgVT, dl,
7615                     Chain,
7616                     VAARG,
7617                     MachinePointerInfo(),
7618                     false, false, 0);
7619}
7620
7621SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
7622  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
7623  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
7624  SDValue Chain = Op.getOperand(0);
7625  SDValue DstPtr = Op.getOperand(1);
7626  SDValue SrcPtr = Op.getOperand(2);
7627  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
7628  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7629  DebugLoc DL = Op.getDebugLoc();
7630
7631  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
7632                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
7633                       false,
7634                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
7635}
7636
7637SDValue
7638X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
7639  DebugLoc dl = Op.getDebugLoc();
7640  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7641  switch (IntNo) {
7642  default: return SDValue();    // Don't custom lower most intrinsics.
7643  // Comparison intrinsics.
7644  case Intrinsic::x86_sse_comieq_ss:
7645  case Intrinsic::x86_sse_comilt_ss:
7646  case Intrinsic::x86_sse_comile_ss:
7647  case Intrinsic::x86_sse_comigt_ss:
7648  case Intrinsic::x86_sse_comige_ss:
7649  case Intrinsic::x86_sse_comineq_ss:
7650  case Intrinsic::x86_sse_ucomieq_ss:
7651  case Intrinsic::x86_sse_ucomilt_ss:
7652  case Intrinsic::x86_sse_ucomile_ss:
7653  case Intrinsic::x86_sse_ucomigt_ss:
7654  case Intrinsic::x86_sse_ucomige_ss:
7655  case Intrinsic::x86_sse_ucomineq_ss:
7656  case Intrinsic::x86_sse2_comieq_sd:
7657  case Intrinsic::x86_sse2_comilt_sd:
7658  case Intrinsic::x86_sse2_comile_sd:
7659  case Intrinsic::x86_sse2_comigt_sd:
7660  case Intrinsic::x86_sse2_comige_sd:
7661  case Intrinsic::x86_sse2_comineq_sd:
7662  case Intrinsic::x86_sse2_ucomieq_sd:
7663  case Intrinsic::x86_sse2_ucomilt_sd:
7664  case Intrinsic::x86_sse2_ucomile_sd:
7665  case Intrinsic::x86_sse2_ucomigt_sd:
7666  case Intrinsic::x86_sse2_ucomige_sd:
7667  case Intrinsic::x86_sse2_ucomineq_sd: {
7668    unsigned Opc = 0;
7669    ISD::CondCode CC = ISD::SETCC_INVALID;
7670    switch (IntNo) {
7671    default: break;
7672    case Intrinsic::x86_sse_comieq_ss:
7673    case Intrinsic::x86_sse2_comieq_sd:
7674      Opc = X86ISD::COMI;
7675      CC = ISD::SETEQ;
7676      break;
7677    case Intrinsic::x86_sse_comilt_ss:
7678    case Intrinsic::x86_sse2_comilt_sd:
7679      Opc = X86ISD::COMI;
7680      CC = ISD::SETLT;
7681      break;
7682    case Intrinsic::x86_sse_comile_ss:
7683    case Intrinsic::x86_sse2_comile_sd:
7684      Opc = X86ISD::COMI;
7685      CC = ISD::SETLE;
7686      break;
7687    case Intrinsic::x86_sse_comigt_ss:
7688    case Intrinsic::x86_sse2_comigt_sd:
7689      Opc = X86ISD::COMI;
7690      CC = ISD::SETGT;
7691      break;
7692    case Intrinsic::x86_sse_comige_ss:
7693    case Intrinsic::x86_sse2_comige_sd:
7694      Opc = X86ISD::COMI;
7695      CC = ISD::SETGE;
7696      break;
7697    case Intrinsic::x86_sse_comineq_ss:
7698    case Intrinsic::x86_sse2_comineq_sd:
7699      Opc = X86ISD::COMI;
7700      CC = ISD::SETNE;
7701      break;
7702    case Intrinsic::x86_sse_ucomieq_ss:
7703    case Intrinsic::x86_sse2_ucomieq_sd:
7704      Opc = X86ISD::UCOMI;
7705      CC = ISD::SETEQ;
7706      break;
7707    case Intrinsic::x86_sse_ucomilt_ss:
7708    case Intrinsic::x86_sse2_ucomilt_sd:
7709      Opc = X86ISD::UCOMI;
7710      CC = ISD::SETLT;
7711      break;
7712    case Intrinsic::x86_sse_ucomile_ss:
7713    case Intrinsic::x86_sse2_ucomile_sd:
7714      Opc = X86ISD::UCOMI;
7715      CC = ISD::SETLE;
7716      break;
7717    case Intrinsic::x86_sse_ucomigt_ss:
7718    case Intrinsic::x86_sse2_ucomigt_sd:
7719      Opc = X86ISD::UCOMI;
7720      CC = ISD::SETGT;
7721      break;
7722    case Intrinsic::x86_sse_ucomige_ss:
7723    case Intrinsic::x86_sse2_ucomige_sd:
7724      Opc = X86ISD::UCOMI;
7725      CC = ISD::SETGE;
7726      break;
7727    case Intrinsic::x86_sse_ucomineq_ss:
7728    case Intrinsic::x86_sse2_ucomineq_sd:
7729      Opc = X86ISD::UCOMI;
7730      CC = ISD::SETNE;
7731      break;
7732    }
7733
7734    SDValue LHS = Op.getOperand(1);
7735    SDValue RHS = Op.getOperand(2);
7736    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
7737    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
7738    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
7739    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7740                                DAG.getConstant(X86CC, MVT::i8), Cond);
7741    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7742  }
7743  // ptest and testp intrinsics. The intrinsic these come from are designed to
7744  // return an integer value, not just an instruction so lower it to the ptest
7745  // or testp pattern and a setcc for the result.
7746  case Intrinsic::x86_sse41_ptestz:
7747  case Intrinsic::x86_sse41_ptestc:
7748  case Intrinsic::x86_sse41_ptestnzc:
7749  case Intrinsic::x86_avx_ptestz_256:
7750  case Intrinsic::x86_avx_ptestc_256:
7751  case Intrinsic::x86_avx_ptestnzc_256:
7752  case Intrinsic::x86_avx_vtestz_ps:
7753  case Intrinsic::x86_avx_vtestc_ps:
7754  case Intrinsic::x86_avx_vtestnzc_ps:
7755  case Intrinsic::x86_avx_vtestz_pd:
7756  case Intrinsic::x86_avx_vtestc_pd:
7757  case Intrinsic::x86_avx_vtestnzc_pd:
7758  case Intrinsic::x86_avx_vtestz_ps_256:
7759  case Intrinsic::x86_avx_vtestc_ps_256:
7760  case Intrinsic::x86_avx_vtestnzc_ps_256:
7761  case Intrinsic::x86_avx_vtestz_pd_256:
7762  case Intrinsic::x86_avx_vtestc_pd_256:
7763  case Intrinsic::x86_avx_vtestnzc_pd_256: {
7764    bool IsTestPacked = false;
7765    unsigned X86CC = 0;
7766    switch (IntNo) {
7767    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7768    case Intrinsic::x86_avx_vtestz_ps:
7769    case Intrinsic::x86_avx_vtestz_pd:
7770    case Intrinsic::x86_avx_vtestz_ps_256:
7771    case Intrinsic::x86_avx_vtestz_pd_256:
7772      IsTestPacked = true; // Fallthrough
7773    case Intrinsic::x86_sse41_ptestz:
7774    case Intrinsic::x86_avx_ptestz_256:
7775      // ZF = 1
7776      X86CC = X86::COND_E;
7777      break;
7778    case Intrinsic::x86_avx_vtestc_ps:
7779    case Intrinsic::x86_avx_vtestc_pd:
7780    case Intrinsic::x86_avx_vtestc_ps_256:
7781    case Intrinsic::x86_avx_vtestc_pd_256:
7782      IsTestPacked = true; // Fallthrough
7783    case Intrinsic::x86_sse41_ptestc:
7784    case Intrinsic::x86_avx_ptestc_256:
7785      // CF = 1
7786      X86CC = X86::COND_B;
7787      break;
7788    case Intrinsic::x86_avx_vtestnzc_ps:
7789    case Intrinsic::x86_avx_vtestnzc_pd:
7790    case Intrinsic::x86_avx_vtestnzc_ps_256:
7791    case Intrinsic::x86_avx_vtestnzc_pd_256:
7792      IsTestPacked = true; // Fallthrough
7793    case Intrinsic::x86_sse41_ptestnzc:
7794    case Intrinsic::x86_avx_ptestnzc_256:
7795      // ZF and CF = 0
7796      X86CC = X86::COND_A;
7797      break;
7798    }
7799
7800    SDValue LHS = Op.getOperand(1);
7801    SDValue RHS = Op.getOperand(2);
7802    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
7803    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
7804    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7805    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7806    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7807  }
7808
7809  // Fix vector shift instructions where the last operand is a non-immediate
7810  // i32 value.
7811  case Intrinsic::x86_sse2_pslli_w:
7812  case Intrinsic::x86_sse2_pslli_d:
7813  case Intrinsic::x86_sse2_pslli_q:
7814  case Intrinsic::x86_sse2_psrli_w:
7815  case Intrinsic::x86_sse2_psrli_d:
7816  case Intrinsic::x86_sse2_psrli_q:
7817  case Intrinsic::x86_sse2_psrai_w:
7818  case Intrinsic::x86_sse2_psrai_d:
7819  case Intrinsic::x86_mmx_pslli_w:
7820  case Intrinsic::x86_mmx_pslli_d:
7821  case Intrinsic::x86_mmx_pslli_q:
7822  case Intrinsic::x86_mmx_psrli_w:
7823  case Intrinsic::x86_mmx_psrli_d:
7824  case Intrinsic::x86_mmx_psrli_q:
7825  case Intrinsic::x86_mmx_psrai_w:
7826  case Intrinsic::x86_mmx_psrai_d: {
7827    SDValue ShAmt = Op.getOperand(2);
7828    if (isa<ConstantSDNode>(ShAmt))
7829      return SDValue();
7830
7831    unsigned NewIntNo = 0;
7832    EVT ShAmtVT = MVT::v4i32;
7833    switch (IntNo) {
7834    case Intrinsic::x86_sse2_pslli_w:
7835      NewIntNo = Intrinsic::x86_sse2_psll_w;
7836      break;
7837    case Intrinsic::x86_sse2_pslli_d:
7838      NewIntNo = Intrinsic::x86_sse2_psll_d;
7839      break;
7840    case Intrinsic::x86_sse2_pslli_q:
7841      NewIntNo = Intrinsic::x86_sse2_psll_q;
7842      break;
7843    case Intrinsic::x86_sse2_psrli_w:
7844      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7845      break;
7846    case Intrinsic::x86_sse2_psrli_d:
7847      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7848      break;
7849    case Intrinsic::x86_sse2_psrli_q:
7850      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7851      break;
7852    case Intrinsic::x86_sse2_psrai_w:
7853      NewIntNo = Intrinsic::x86_sse2_psra_w;
7854      break;
7855    case Intrinsic::x86_sse2_psrai_d:
7856      NewIntNo = Intrinsic::x86_sse2_psra_d;
7857      break;
7858    default: {
7859      ShAmtVT = MVT::v2i32;
7860      switch (IntNo) {
7861      case Intrinsic::x86_mmx_pslli_w:
7862        NewIntNo = Intrinsic::x86_mmx_psll_w;
7863        break;
7864      case Intrinsic::x86_mmx_pslli_d:
7865        NewIntNo = Intrinsic::x86_mmx_psll_d;
7866        break;
7867      case Intrinsic::x86_mmx_pslli_q:
7868        NewIntNo = Intrinsic::x86_mmx_psll_q;
7869        break;
7870      case Intrinsic::x86_mmx_psrli_w:
7871        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7872        break;
7873      case Intrinsic::x86_mmx_psrli_d:
7874        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7875        break;
7876      case Intrinsic::x86_mmx_psrli_q:
7877        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7878        break;
7879      case Intrinsic::x86_mmx_psrai_w:
7880        NewIntNo = Intrinsic::x86_mmx_psra_w;
7881        break;
7882      case Intrinsic::x86_mmx_psrai_d:
7883        NewIntNo = Intrinsic::x86_mmx_psra_d;
7884        break;
7885      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7886      }
7887      break;
7888    }
7889    }
7890
7891    // The vector shift intrinsics with scalars uses 32b shift amounts but
7892    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7893    // to be zero.
7894    SDValue ShOps[4];
7895    ShOps[0] = ShAmt;
7896    ShOps[1] = DAG.getConstant(0, MVT::i32);
7897    if (ShAmtVT == MVT::v4i32) {
7898      ShOps[2] = DAG.getUNDEF(MVT::i32);
7899      ShOps[3] = DAG.getUNDEF(MVT::i32);
7900      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7901    } else {
7902      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7903// FIXME this must be lowered to get rid of the invalid type.
7904    }
7905
7906    EVT VT = Op.getValueType();
7907    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7908    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7909                       DAG.getConstant(NewIntNo, MVT::i32),
7910                       Op.getOperand(1), ShAmt);
7911  }
7912  }
7913}
7914
7915SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7916                                           SelectionDAG &DAG) const {
7917  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7918  MFI->setReturnAddressIsTaken(true);
7919
7920  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7921  DebugLoc dl = Op.getDebugLoc();
7922
7923  if (Depth > 0) {
7924    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7925    SDValue Offset =
7926      DAG.getConstant(TD->getPointerSize(),
7927                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7928    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7929                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7930                                   FrameAddr, Offset),
7931                       MachinePointerInfo(), false, false, 0);
7932  }
7933
7934  // Just load the return address.
7935  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7936  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7937                     RetAddrFI, MachinePointerInfo(), false, false, 0);
7938}
7939
7940SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7941  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7942  MFI->setFrameAddressIsTaken(true);
7943
7944  EVT VT = Op.getValueType();
7945  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7946  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7947  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7948  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7949  while (Depth--)
7950    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
7951                            MachinePointerInfo(),
7952                            false, false, 0);
7953  return FrameAddr;
7954}
7955
7956SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7957                                                     SelectionDAG &DAG) const {
7958  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7959}
7960
7961SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
7962  MachineFunction &MF = DAG.getMachineFunction();
7963  SDValue Chain     = Op.getOperand(0);
7964  SDValue Offset    = Op.getOperand(1);
7965  SDValue Handler   = Op.getOperand(2);
7966  DebugLoc dl       = Op.getDebugLoc();
7967
7968  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
7969                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7970                                     getPointerTy());
7971  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7972
7973  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
7974                                  DAG.getIntPtrConstant(TD->getPointerSize()));
7975  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7976  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
7977                       false, false, 0);
7978  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7979  MF.getRegInfo().addLiveOut(StoreAddrReg);
7980
7981  return DAG.getNode(X86ISD::EH_RETURN, dl,
7982                     MVT::Other,
7983                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7984}
7985
7986SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7987                                             SelectionDAG &DAG) const {
7988  SDValue Root = Op.getOperand(0);
7989  SDValue Trmp = Op.getOperand(1); // trampoline
7990  SDValue FPtr = Op.getOperand(2); // nested function
7991  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7992  DebugLoc dl  = Op.getDebugLoc();
7993
7994  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7995
7996  if (Subtarget->is64Bit()) {
7997    SDValue OutChains[6];
7998
7999    // Large code-model.
8000    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
8001    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8002
8003    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
8004    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
8005
8006    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8007
8008    // Load the pointer to the nested function into R11.
8009    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8010    SDValue Addr = Trmp;
8011    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8012                                Addr, MachinePointerInfo(TrmpAddr),
8013                                false, false, 0);
8014
8015    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8016                       DAG.getConstant(2, MVT::i64));
8017    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8018                                MachinePointerInfo(TrmpAddr, 2),
8019                                false, false, 2);
8020
8021    // Load the 'nest' parameter value into R10.
8022    // R10 is specified in X86CallingConv.td
8023    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8024    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8025                       DAG.getConstant(10, MVT::i64));
8026    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8027                                Addr, MachinePointerInfo(TrmpAddr, 10),
8028                                false, false, 0);
8029
8030    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8031                       DAG.getConstant(12, MVT::i64));
8032    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8033                                MachinePointerInfo(TrmpAddr, 12),
8034                                false, false, 2);
8035
8036    // Jump to the nested function.
8037    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8038    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8039                       DAG.getConstant(20, MVT::i64));
8040    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8041                                Addr, MachinePointerInfo(TrmpAddr, 20),
8042                                false, false, 0);
8043
8044    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8045    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8046                       DAG.getConstant(22, MVT::i64));
8047    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8048                                MachinePointerInfo(TrmpAddr, 22),
8049                                false, false, 0);
8050
8051    SDValue Ops[] =
8052      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8053    return DAG.getMergeValues(Ops, 2, dl);
8054  } else {
8055    const Function *Func =
8056      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8057    CallingConv::ID CC = Func->getCallingConv();
8058    unsigned NestReg;
8059
8060    switch (CC) {
8061    default:
8062      llvm_unreachable("Unsupported calling convention");
8063    case CallingConv::C:
8064    case CallingConv::X86_StdCall: {
8065      // Pass 'nest' parameter in ECX.
8066      // Must be kept in sync with X86CallingConv.td
8067      NestReg = X86::ECX;
8068
8069      // Check that ECX wasn't needed by an 'inreg' parameter.
8070      const FunctionType *FTy = Func->getFunctionType();
8071      const AttrListPtr &Attrs = Func->getAttributes();
8072
8073      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8074        unsigned InRegCount = 0;
8075        unsigned Idx = 1;
8076
8077        for (FunctionType::param_iterator I = FTy->param_begin(),
8078             E = FTy->param_end(); I != E; ++I, ++Idx)
8079          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8080            // FIXME: should only count parameters that are lowered to integers.
8081            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8082
8083        if (InRegCount > 2) {
8084          report_fatal_error("Nest register in use - reduce number of inreg"
8085                             " parameters!");
8086        }
8087      }
8088      break;
8089    }
8090    case CallingConv::X86_FastCall:
8091    case CallingConv::X86_ThisCall:
8092    case CallingConv::Fast:
8093      // Pass 'nest' parameter in EAX.
8094      // Must be kept in sync with X86CallingConv.td
8095      NestReg = X86::EAX;
8096      break;
8097    }
8098
8099    SDValue OutChains[4];
8100    SDValue Addr, Disp;
8101
8102    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8103                       DAG.getConstant(10, MVT::i32));
8104    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8105
8106    // This is storing the opcode for MOV32ri.
8107    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8108    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
8109    OutChains[0] = DAG.getStore(Root, dl,
8110                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8111                                Trmp, MachinePointerInfo(TrmpAddr),
8112                                false, false, 0);
8113
8114    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8115                       DAG.getConstant(1, MVT::i32));
8116    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8117                                MachinePointerInfo(TrmpAddr, 1),
8118                                false, false, 1);
8119
8120    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8121    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8122                       DAG.getConstant(5, MVT::i32));
8123    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8124                                MachinePointerInfo(TrmpAddr, 5),
8125                                false, false, 1);
8126
8127    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8128                       DAG.getConstant(6, MVT::i32));
8129    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8130                                MachinePointerInfo(TrmpAddr, 6),
8131                                false, false, 1);
8132
8133    SDValue Ops[] =
8134      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8135    return DAG.getMergeValues(Ops, 2, dl);
8136  }
8137}
8138
8139SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8140                                            SelectionDAG &DAG) const {
8141  /*
8142   The rounding mode is in bits 11:10 of FPSR, and has the following
8143   settings:
8144     00 Round to nearest
8145     01 Round to -inf
8146     10 Round to +inf
8147     11 Round to 0
8148
8149  FLT_ROUNDS, on the other hand, expects the following:
8150    -1 Undefined
8151     0 Round to 0
8152     1 Round to nearest
8153     2 Round to +inf
8154     3 Round to -inf
8155
8156  To perform the conversion, we do:
8157    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8158  */
8159
8160  MachineFunction &MF = DAG.getMachineFunction();
8161  const TargetMachine &TM = MF.getTarget();
8162  const TargetFrameInfo &TFI = *TM.getFrameInfo();
8163  unsigned StackAlignment = TFI.getStackAlignment();
8164  EVT VT = Op.getValueType();
8165  DebugLoc DL = Op.getDebugLoc();
8166
8167  // Save FP Control Word to stack slot
8168  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8169  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8170
8171
8172  MachineMemOperand *MMO =
8173   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8174                           MachineMemOperand::MOStore, 2, 2);
8175
8176  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8177  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8178                                          DAG.getVTList(MVT::Other),
8179                                          Ops, 2, MVT::i16, MMO);
8180
8181  // Load FP Control Word from stack slot
8182  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8183                            MachinePointerInfo(), false, false, 0);
8184
8185  // Transform as necessary
8186  SDValue CWD1 =
8187    DAG.getNode(ISD::SRL, DL, MVT::i16,
8188                DAG.getNode(ISD::AND, DL, MVT::i16,
8189                            CWD, DAG.getConstant(0x800, MVT::i16)),
8190                DAG.getConstant(11, MVT::i8));
8191  SDValue CWD2 =
8192    DAG.getNode(ISD::SRL, DL, MVT::i16,
8193                DAG.getNode(ISD::AND, DL, MVT::i16,
8194                            CWD, DAG.getConstant(0x400, MVT::i16)),
8195                DAG.getConstant(9, MVT::i8));
8196
8197  SDValue RetVal =
8198    DAG.getNode(ISD::AND, DL, MVT::i16,
8199                DAG.getNode(ISD::ADD, DL, MVT::i16,
8200                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8201                            DAG.getConstant(1, MVT::i16)),
8202                DAG.getConstant(3, MVT::i16));
8203
8204
8205  return DAG.getNode((VT.getSizeInBits() < 16 ?
8206                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8207}
8208
8209SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8210  EVT VT = Op.getValueType();
8211  EVT OpVT = VT;
8212  unsigned NumBits = VT.getSizeInBits();
8213  DebugLoc dl = Op.getDebugLoc();
8214
8215  Op = Op.getOperand(0);
8216  if (VT == MVT::i8) {
8217    // Zero extend to i32 since there is not an i8 bsr.
8218    OpVT = MVT::i32;
8219    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8220  }
8221
8222  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8223  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8224  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
8225
8226  // If src is zero (i.e. bsr sets ZF), returns NumBits.
8227  SDValue Ops[] = {
8228    Op,
8229    DAG.getConstant(NumBits+NumBits-1, OpVT),
8230    DAG.getConstant(X86::COND_E, MVT::i8),
8231    Op.getValue(1)
8232  };
8233  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8234
8235  // Finally xor with NumBits-1.
8236  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
8237
8238  if (VT == MVT::i8)
8239    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8240  return Op;
8241}
8242
8243SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
8244  EVT VT = Op.getValueType();
8245  EVT OpVT = VT;
8246  unsigned NumBits = VT.getSizeInBits();
8247  DebugLoc dl = Op.getDebugLoc();
8248
8249  Op = Op.getOperand(0);
8250  if (VT == MVT::i8) {
8251    OpVT = MVT::i32;
8252    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8253  }
8254
8255  // Issue a bsf (scan bits forward) which also sets EFLAGS.
8256  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8257  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
8258
8259  // If src is zero (i.e. bsf sets ZF), returns NumBits.
8260  SDValue Ops[] = {
8261    Op,
8262    DAG.getConstant(NumBits, OpVT),
8263    DAG.getConstant(X86::COND_E, MVT::i8),
8264    Op.getValue(1)
8265  };
8266  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8267
8268  if (VT == MVT::i8)
8269    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8270  return Op;
8271}
8272
8273SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
8274  EVT VT = Op.getValueType();
8275  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
8276  DebugLoc dl = Op.getDebugLoc();
8277
8278  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8279  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8280  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8281  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8282  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8283  //
8284  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8285  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8286  //  return AloBlo + AloBhi + AhiBlo;
8287
8288  SDValue A = Op.getOperand(0);
8289  SDValue B = Op.getOperand(1);
8290
8291  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8292                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8293                       A, DAG.getConstant(32, MVT::i32));
8294  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8295                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8296                       B, DAG.getConstant(32, MVT::i32));
8297  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8298                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8299                       A, B);
8300  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8301                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8302                       A, Bhi);
8303  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8304                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8305                       Ahi, B);
8306  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8307                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8308                       AloBhi, DAG.getConstant(32, MVT::i32));
8309  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8310                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8311                       AhiBlo, DAG.getConstant(32, MVT::i32));
8312  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
8313  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
8314  return Res;
8315}
8316
8317SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
8318  EVT VT = Op.getValueType();
8319  DebugLoc dl = Op.getDebugLoc();
8320  SDValue R = Op.getOperand(0);
8321
8322  LLVMContext *Context = DAG.getContext();
8323
8324  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
8325
8326  if (VT == MVT::v4i32) {
8327    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8328                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8329                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
8330
8331    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
8332
8333    std::vector<Constant*> CV(4, CI);
8334    Constant *C = ConstantVector::get(CV);
8335    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8336    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8337                                 MachinePointerInfo::getConstantPool(),
8338                                 false, false, 16);
8339
8340    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
8341    Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, Op);
8342    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
8343    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
8344  }
8345  if (VT == MVT::v16i8) {
8346    // a = a << 5;
8347    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8348                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8349                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
8350
8351    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
8352    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
8353
8354    std::vector<Constant*> CVM1(16, CM1);
8355    std::vector<Constant*> CVM2(16, CM2);
8356    Constant *C = ConstantVector::get(CVM1);
8357    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8358    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8359                            MachinePointerInfo::getConstantPool(),
8360                            false, false, 16);
8361
8362    // r = pblendv(r, psllw(r & (char16)15, 4), a);
8363    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8364    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8365                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8366                    DAG.getConstant(4, MVT::i32));
8367    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8368                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8369                    R, M, Op);
8370    // a += a
8371    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8372
8373    C = ConstantVector::get(CVM2);
8374    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8375    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8376                    MachinePointerInfo::getConstantPool(),
8377                    false, false, 16);
8378
8379    // r = pblendv(r, psllw(r & (char16)63, 2), a);
8380    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8381    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8382                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8383                    DAG.getConstant(2, MVT::i32));
8384    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8385                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8386                    R, M, Op);
8387    // a += a
8388    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8389
8390    // return pblendv(r, r+r, a);
8391    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8392                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8393                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
8394    return R;
8395  }
8396  return SDValue();
8397}
8398
8399SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
8400  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8401  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8402  // looks for this combo and may remove the "setcc" instruction if the "setcc"
8403  // has only one use.
8404  SDNode *N = Op.getNode();
8405  SDValue LHS = N->getOperand(0);
8406  SDValue RHS = N->getOperand(1);
8407  unsigned BaseOp = 0;
8408  unsigned Cond = 0;
8409  DebugLoc dl = Op.getDebugLoc();
8410
8411  switch (Op.getOpcode()) {
8412  default: llvm_unreachable("Unknown ovf instruction!");
8413  case ISD::SADDO:
8414    // A subtract of one will be selected as a INC. Note that INC doesn't
8415    // set CF, so we can't do this for UADDO.
8416    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8417      if (C->getAPIntValue() == 1) {
8418        BaseOp = X86ISD::INC;
8419        Cond = X86::COND_O;
8420        break;
8421      }
8422    BaseOp = X86ISD::ADD;
8423    Cond = X86::COND_O;
8424    break;
8425  case ISD::UADDO:
8426    BaseOp = X86ISD::ADD;
8427    Cond = X86::COND_B;
8428    break;
8429  case ISD::SSUBO:
8430    // A subtract of one will be selected as a DEC. Note that DEC doesn't
8431    // set CF, so we can't do this for USUBO.
8432    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8433      if (C->getAPIntValue() == 1) {
8434        BaseOp = X86ISD::DEC;
8435        Cond = X86::COND_O;
8436        break;
8437      }
8438    BaseOp = X86ISD::SUB;
8439    Cond = X86::COND_O;
8440    break;
8441  case ISD::USUBO:
8442    BaseOp = X86ISD::SUB;
8443    Cond = X86::COND_B;
8444    break;
8445  case ISD::SMULO:
8446    BaseOp = X86ISD::SMUL;
8447    Cond = X86::COND_O;
8448    break;
8449  case ISD::UMULO:
8450    BaseOp = X86ISD::UMUL;
8451    Cond = X86::COND_B;
8452    break;
8453  }
8454
8455  // Also sets EFLAGS.
8456  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
8457  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
8458
8459  SDValue SetCC =
8460    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
8461                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
8462
8463  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8464  return Sum;
8465}
8466
8467SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
8468  DebugLoc dl = Op.getDebugLoc();
8469
8470  if (!Subtarget->hasSSE2()) {
8471    SDValue Chain = Op.getOperand(0);
8472    SDValue Zero = DAG.getConstant(0,
8473                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8474    SDValue Ops[] = {
8475      DAG.getRegister(X86::ESP, MVT::i32), // Base
8476      DAG.getTargetConstant(1, MVT::i8),   // Scale
8477      DAG.getRegister(0, MVT::i32),        // Index
8478      DAG.getTargetConstant(0, MVT::i32),  // Disp
8479      DAG.getRegister(0, MVT::i32),        // Segment.
8480      Zero,
8481      Chain
8482    };
8483    SDNode *Res =
8484      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
8485                          array_lengthof(Ops));
8486    return SDValue(Res, 0);
8487  }
8488
8489  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
8490  if (!isDev)
8491    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
8492
8493  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8494  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8495  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
8496  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
8497
8498  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
8499  if (!Op1 && !Op2 && !Op3 && Op4)
8500    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
8501
8502  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
8503  if (Op1 && !Op2 && !Op3 && !Op4)
8504    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
8505
8506  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
8507  //           (MFENCE)>;
8508  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
8509}
8510
8511SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8512  EVT T = Op.getValueType();
8513  DebugLoc DL = Op.getDebugLoc();
8514  unsigned Reg = 0;
8515  unsigned size = 0;
8516  switch(T.getSimpleVT().SimpleTy) {
8517  default:
8518    assert(false && "Invalid value type!");
8519  case MVT::i8:  Reg = X86::AL;  size = 1; break;
8520  case MVT::i16: Reg = X86::AX;  size = 2; break;
8521  case MVT::i32: Reg = X86::EAX; size = 4; break;
8522  case MVT::i64:
8523    assert(Subtarget->is64Bit() && "Node not type legal!");
8524    Reg = X86::RAX; size = 8;
8525    break;
8526  }
8527  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
8528                                    Op.getOperand(2), SDValue());
8529  SDValue Ops[] = { cpIn.getValue(0),
8530                    Op.getOperand(1),
8531                    Op.getOperand(3),
8532                    DAG.getTargetConstant(size, MVT::i8),
8533                    cpIn.getValue(1) };
8534  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8535  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
8536  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
8537                                           Ops, 5, T, MMO);
8538  SDValue cpOut =
8539    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
8540  return cpOut;
8541}
8542
8543SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
8544                                                 SelectionDAG &DAG) const {
8545  assert(Subtarget->is64Bit() && "Result not type legalized?");
8546  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8547  SDValue TheChain = Op.getOperand(0);
8548  DebugLoc dl = Op.getDebugLoc();
8549  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8550  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
8551  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
8552                                   rax.getValue(2));
8553  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
8554                            DAG.getConstant(32, MVT::i8));
8555  SDValue Ops[] = {
8556    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
8557    rdx.getValue(1)
8558  };
8559  return DAG.getMergeValues(Ops, 2, dl);
8560}
8561
8562SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op,
8563                                            SelectionDAG &DAG) const {
8564  EVT SrcVT = Op.getOperand(0).getValueType();
8565  EVT DstVT = Op.getValueType();
8566  assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
8567          Subtarget->hasMMX() && !DisableMMX) &&
8568         "Unexpected custom BIT_CONVERT");
8569  assert((DstVT == MVT::i64 ||
8570          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
8571         "Unexpected custom BIT_CONVERT");
8572  // i64 <=> MMX conversions are Legal.
8573  if (SrcVT==MVT::i64 && DstVT.isVector())
8574    return Op;
8575  if (DstVT==MVT::i64 && SrcVT.isVector())
8576    return Op;
8577  // MMX <=> MMX conversions are Legal.
8578  if (SrcVT.isVector() && DstVT.isVector())
8579    return Op;
8580  // All other conversions need to be expanded.
8581  return SDValue();
8582}
8583SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
8584  SDNode *Node = Op.getNode();
8585  DebugLoc dl = Node->getDebugLoc();
8586  EVT T = Node->getValueType(0);
8587  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
8588                              DAG.getConstant(0, T), Node->getOperand(2));
8589  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
8590                       cast<AtomicSDNode>(Node)->getMemoryVT(),
8591                       Node->getOperand(0),
8592                       Node->getOperand(1), negOp,
8593                       cast<AtomicSDNode>(Node)->getSrcValue(),
8594                       cast<AtomicSDNode>(Node)->getAlignment());
8595}
8596
8597/// LowerOperation - Provide custom lowering hooks for some operations.
8598///
8599SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8600  switch (Op.getOpcode()) {
8601  default: llvm_unreachable("Should not custom lower this!");
8602  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
8603  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
8604  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
8605  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
8606  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
8607  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
8608  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8609  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
8610  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
8611  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
8612  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
8613  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
8614  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
8615  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
8616  case ISD::SHL_PARTS:
8617  case ISD::SRA_PARTS:
8618  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
8619  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
8620  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
8621  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
8622  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
8623  case ISD::FABS:               return LowerFABS(Op, DAG);
8624  case ISD::FNEG:               return LowerFNEG(Op, DAG);
8625  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
8626  case ISD::SETCC:              return LowerSETCC(Op, DAG);
8627  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
8628  case ISD::SELECT:             return LowerSELECT(Op, DAG);
8629  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
8630  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
8631  case ISD::VASTART:            return LowerVASTART(Op, DAG);
8632  case ISD::VAARG:              return LowerVAARG(Op, DAG);
8633  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
8634  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
8635  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
8636  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
8637  case ISD::FRAME_TO_ARGS_OFFSET:
8638                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
8639  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
8640  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
8641  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
8642  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
8643  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
8644  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
8645  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
8646  case ISD::SHL:                return LowerSHL(Op, DAG);
8647  case ISD::SADDO:
8648  case ISD::UADDO:
8649  case ISD::SSUBO:
8650  case ISD::USUBO:
8651  case ISD::SMULO:
8652  case ISD::UMULO:              return LowerXALUO(Op, DAG);
8653  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
8654  case ISD::BIT_CONVERT:        return LowerBIT_CONVERT(Op, DAG);
8655  }
8656}
8657
8658void X86TargetLowering::
8659ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
8660                        SelectionDAG &DAG, unsigned NewOp) const {
8661  EVT T = Node->getValueType(0);
8662  DebugLoc dl = Node->getDebugLoc();
8663  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
8664
8665  SDValue Chain = Node->getOperand(0);
8666  SDValue In1 = Node->getOperand(1);
8667  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8668                             Node->getOperand(2), DAG.getIntPtrConstant(0));
8669  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8670                             Node->getOperand(2), DAG.getIntPtrConstant(1));
8671  SDValue Ops[] = { Chain, In1, In2L, In2H };
8672  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8673  SDValue Result =
8674    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
8675                            cast<MemSDNode>(Node)->getMemOperand());
8676  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
8677  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8678  Results.push_back(Result.getValue(2));
8679}
8680
8681/// ReplaceNodeResults - Replace a node with an illegal result type
8682/// with a new node built out of custom code.
8683void X86TargetLowering::ReplaceNodeResults(SDNode *N,
8684                                           SmallVectorImpl<SDValue>&Results,
8685                                           SelectionDAG &DAG) const {
8686  DebugLoc dl = N->getDebugLoc();
8687  switch (N->getOpcode()) {
8688  default:
8689    assert(false && "Do not know how to custom type legalize this operation!");
8690    return;
8691  case ISD::FP_TO_SINT: {
8692    std::pair<SDValue,SDValue> Vals =
8693        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
8694    SDValue FIST = Vals.first, StackSlot = Vals.second;
8695    if (FIST.getNode() != 0) {
8696      EVT VT = N->getValueType(0);
8697      // Return a load from the stack slot.
8698      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
8699                                    MachinePointerInfo(), false, false, 0));
8700    }
8701    return;
8702  }
8703  case ISD::READCYCLECOUNTER: {
8704    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8705    SDValue TheChain = N->getOperand(0);
8706    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8707    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
8708                                     rd.getValue(1));
8709    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
8710                                     eax.getValue(2));
8711    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
8712    SDValue Ops[] = { eax, edx };
8713    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
8714    Results.push_back(edx.getValue(1));
8715    return;
8716  }
8717  case ISD::ATOMIC_CMP_SWAP: {
8718    EVT T = N->getValueType(0);
8719    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
8720    SDValue cpInL, cpInH;
8721    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8722                        DAG.getConstant(0, MVT::i32));
8723    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8724                        DAG.getConstant(1, MVT::i32));
8725    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
8726    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
8727                             cpInL.getValue(1));
8728    SDValue swapInL, swapInH;
8729    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8730                          DAG.getConstant(0, MVT::i32));
8731    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8732                          DAG.getConstant(1, MVT::i32));
8733    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
8734                               cpInH.getValue(1));
8735    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
8736                               swapInL.getValue(1));
8737    SDValue Ops[] = { swapInH.getValue(0),
8738                      N->getOperand(1),
8739                      swapInH.getValue(1) };
8740    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8741    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
8742    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
8743                                             Ops, 3, T, MMO);
8744    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
8745                                        MVT::i32, Result.getValue(1));
8746    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
8747                                        MVT::i32, cpOutL.getValue(2));
8748    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
8749    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8750    Results.push_back(cpOutH.getValue(1));
8751    return;
8752  }
8753  case ISD::ATOMIC_LOAD_ADD:
8754    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
8755    return;
8756  case ISD::ATOMIC_LOAD_AND:
8757    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
8758    return;
8759  case ISD::ATOMIC_LOAD_NAND:
8760    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
8761    return;
8762  case ISD::ATOMIC_LOAD_OR:
8763    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
8764    return;
8765  case ISD::ATOMIC_LOAD_SUB:
8766    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
8767    return;
8768  case ISD::ATOMIC_LOAD_XOR:
8769    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
8770    return;
8771  case ISD::ATOMIC_SWAP:
8772    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
8773    return;
8774  }
8775}
8776
8777const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
8778  switch (Opcode) {
8779  default: return NULL;
8780  case X86ISD::BSF:                return "X86ISD::BSF";
8781  case X86ISD::BSR:                return "X86ISD::BSR";
8782  case X86ISD::SHLD:               return "X86ISD::SHLD";
8783  case X86ISD::SHRD:               return "X86ISD::SHRD";
8784  case X86ISD::FAND:               return "X86ISD::FAND";
8785  case X86ISD::FOR:                return "X86ISD::FOR";
8786  case X86ISD::FXOR:               return "X86ISD::FXOR";
8787  case X86ISD::FSRL:               return "X86ISD::FSRL";
8788  case X86ISD::FILD:               return "X86ISD::FILD";
8789  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
8790  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
8791  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
8792  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
8793  case X86ISD::FLD:                return "X86ISD::FLD";
8794  case X86ISD::FST:                return "X86ISD::FST";
8795  case X86ISD::CALL:               return "X86ISD::CALL";
8796  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
8797  case X86ISD::BT:                 return "X86ISD::BT";
8798  case X86ISD::CMP:                return "X86ISD::CMP";
8799  case X86ISD::COMI:               return "X86ISD::COMI";
8800  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
8801  case X86ISD::SETCC:              return "X86ISD::SETCC";
8802  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
8803  case X86ISD::CMOV:               return "X86ISD::CMOV";
8804  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
8805  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
8806  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
8807  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
8808  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
8809  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
8810  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
8811  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
8812  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
8813  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
8814  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
8815  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
8816  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
8817  case X86ISD::FMAX:               return "X86ISD::FMAX";
8818  case X86ISD::FMIN:               return "X86ISD::FMIN";
8819  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
8820  case X86ISD::FRCP:               return "X86ISD::FRCP";
8821  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
8822  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
8823  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
8824  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
8825  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
8826  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
8827  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
8828  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
8829  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
8830  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
8831  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
8832  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
8833  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
8834  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
8835  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
8836  case X86ISD::VSHL:               return "X86ISD::VSHL";
8837  case X86ISD::VSRL:               return "X86ISD::VSRL";
8838  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
8839  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
8840  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
8841  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
8842  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
8843  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
8844  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
8845  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
8846  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
8847  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
8848  case X86ISD::ADD:                return "X86ISD::ADD";
8849  case X86ISD::SUB:                return "X86ISD::SUB";
8850  case X86ISD::SMUL:               return "X86ISD::SMUL";
8851  case X86ISD::UMUL:               return "X86ISD::UMUL";
8852  case X86ISD::INC:                return "X86ISD::INC";
8853  case X86ISD::DEC:                return "X86ISD::DEC";
8854  case X86ISD::OR:                 return "X86ISD::OR";
8855  case X86ISD::XOR:                return "X86ISD::XOR";
8856  case X86ISD::AND:                return "X86ISD::AND";
8857  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
8858  case X86ISD::PTEST:              return "X86ISD::PTEST";
8859  case X86ISD::TESTP:              return "X86ISD::TESTP";
8860  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
8861  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
8862  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
8863  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
8864  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
8865  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
8866  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
8867  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
8868  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
8869  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
8870  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
8871  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
8872  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
8873  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
8874  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
8875  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
8876  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
8877  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
8878  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
8879  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
8880  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
8881  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
8882  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
8883  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
8884  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
8885  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
8886  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
8887  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
8888  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
8889  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
8890  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
8891  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
8892  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
8893  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
8894  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
8895  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
8896  }
8897}
8898
8899// isLegalAddressingMode - Return true if the addressing mode represented
8900// by AM is legal for this target, for a load/store of the specified type.
8901bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
8902                                              const Type *Ty) const {
8903  // X86 supports extremely general addressing modes.
8904  CodeModel::Model M = getTargetMachine().getCodeModel();
8905  Reloc::Model R = getTargetMachine().getRelocationModel();
8906
8907  // X86 allows a sign-extended 32-bit immediate field as a displacement.
8908  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
8909    return false;
8910
8911  if (AM.BaseGV) {
8912    unsigned GVFlags =
8913      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
8914
8915    // If a reference to this global requires an extra load, we can't fold it.
8916    if (isGlobalStubReference(GVFlags))
8917      return false;
8918
8919    // If BaseGV requires a register for the PIC base, we cannot also have a
8920    // BaseReg specified.
8921    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
8922      return false;
8923
8924    // If lower 4G is not available, then we must use rip-relative addressing.
8925    if ((M != CodeModel::Small || R != Reloc::Static) &&
8926        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
8927      return false;
8928  }
8929
8930  switch (AM.Scale) {
8931  case 0:
8932  case 1:
8933  case 2:
8934  case 4:
8935  case 8:
8936    // These scales always work.
8937    break;
8938  case 3:
8939  case 5:
8940  case 9:
8941    // These scales are formed with basereg+scalereg.  Only accept if there is
8942    // no basereg yet.
8943    if (AM.HasBaseReg)
8944      return false;
8945    break;
8946  default:  // Other stuff never works.
8947    return false;
8948  }
8949
8950  return true;
8951}
8952
8953
8954bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
8955  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8956    return false;
8957  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8958  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8959  if (NumBits1 <= NumBits2)
8960    return false;
8961  return true;
8962}
8963
8964bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8965  if (!VT1.isInteger() || !VT2.isInteger())
8966    return false;
8967  unsigned NumBits1 = VT1.getSizeInBits();
8968  unsigned NumBits2 = VT2.getSizeInBits();
8969  if (NumBits1 <= NumBits2)
8970    return false;
8971  return true;
8972}
8973
8974bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
8975  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8976  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
8977}
8978
8979bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8980  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8981  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
8982}
8983
8984bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
8985  // i16 instructions are longer (0x66 prefix) and potentially slower.
8986  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
8987}
8988
8989/// isShuffleMaskLegal - Targets can use this to indicate that they only
8990/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8991/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8992/// are assumed to be legal.
8993bool
8994X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
8995                                      EVT VT) const {
8996  // Very little shuffling can be done for 64-bit vectors right now.
8997  if (VT.getSizeInBits() == 64)
8998    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
8999
9000  // FIXME: pshufb, blends, shifts.
9001  return (VT.getVectorNumElements() == 2 ||
9002          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
9003          isMOVLMask(M, VT) ||
9004          isSHUFPMask(M, VT) ||
9005          isPSHUFDMask(M, VT) ||
9006          isPSHUFHWMask(M, VT) ||
9007          isPSHUFLWMask(M, VT) ||
9008          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
9009          isUNPCKLMask(M, VT) ||
9010          isUNPCKHMask(M, VT) ||
9011          isUNPCKL_v_undef_Mask(M, VT) ||
9012          isUNPCKH_v_undef_Mask(M, VT));
9013}
9014
9015bool
9016X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
9017                                          EVT VT) const {
9018  unsigned NumElts = VT.getVectorNumElements();
9019  // FIXME: This collection of masks seems suspect.
9020  if (NumElts == 2)
9021    return true;
9022  if (NumElts == 4 && VT.getSizeInBits() == 128) {
9023    return (isMOVLMask(Mask, VT)  ||
9024            isCommutedMOVLMask(Mask, VT, true) ||
9025            isSHUFPMask(Mask, VT) ||
9026            isCommutedSHUFPMask(Mask, VT));
9027  }
9028  return false;
9029}
9030
9031//===----------------------------------------------------------------------===//
9032//                           X86 Scheduler Hooks
9033//===----------------------------------------------------------------------===//
9034
9035// private utility function
9036MachineBasicBlock *
9037X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
9038                                                       MachineBasicBlock *MBB,
9039                                                       unsigned regOpc,
9040                                                       unsigned immOpc,
9041                                                       unsigned LoadOpc,
9042                                                       unsigned CXchgOpc,
9043                                                       unsigned notOpc,
9044                                                       unsigned EAXreg,
9045                                                       TargetRegisterClass *RC,
9046                                                       bool invSrc) const {
9047  // For the atomic bitwise operator, we generate
9048  //   thisMBB:
9049  //   newMBB:
9050  //     ld  t1 = [bitinstr.addr]
9051  //     op  t2 = t1, [bitinstr.val]
9052  //     mov EAX = t1
9053  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9054  //     bz  newMBB
9055  //     fallthrough -->nextMBB
9056  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9057  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9058  MachineFunction::iterator MBBIter = MBB;
9059  ++MBBIter;
9060
9061  /// First build the CFG
9062  MachineFunction *F = MBB->getParent();
9063  MachineBasicBlock *thisMBB = MBB;
9064  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9065  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9066  F->insert(MBBIter, newMBB);
9067  F->insert(MBBIter, nextMBB);
9068
9069  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9070  nextMBB->splice(nextMBB->begin(), thisMBB,
9071                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9072                  thisMBB->end());
9073  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9074
9075  // Update thisMBB to fall through to newMBB
9076  thisMBB->addSuccessor(newMBB);
9077
9078  // newMBB jumps to itself and fall through to nextMBB
9079  newMBB->addSuccessor(nextMBB);
9080  newMBB->addSuccessor(newMBB);
9081
9082  // Insert instructions into newMBB based on incoming instruction
9083  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9084         "unexpected number of operands");
9085  DebugLoc dl = bInstr->getDebugLoc();
9086  MachineOperand& destOper = bInstr->getOperand(0);
9087  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9088  int numArgs = bInstr->getNumOperands() - 1;
9089  for (int i=0; i < numArgs; ++i)
9090    argOpers[i] = &bInstr->getOperand(i+1);
9091
9092  // x86 address has 4 operands: base, index, scale, and displacement
9093  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9094  int valArgIndx = lastAddrIndx + 1;
9095
9096  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9097  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
9098  for (int i=0; i <= lastAddrIndx; ++i)
9099    (*MIB).addOperand(*argOpers[i]);
9100
9101  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
9102  if (invSrc) {
9103    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
9104  }
9105  else
9106    tt = t1;
9107
9108  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9109  assert((argOpers[valArgIndx]->isReg() ||
9110          argOpers[valArgIndx]->isImm()) &&
9111         "invalid operand");
9112  if (argOpers[valArgIndx]->isReg())
9113    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
9114  else
9115    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
9116  MIB.addReg(tt);
9117  (*MIB).addOperand(*argOpers[valArgIndx]);
9118
9119  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
9120  MIB.addReg(t1);
9121
9122  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
9123  for (int i=0; i <= lastAddrIndx; ++i)
9124    (*MIB).addOperand(*argOpers[i]);
9125  MIB.addReg(t2);
9126  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9127  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9128                    bInstr->memoperands_end());
9129
9130  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9131  MIB.addReg(EAXreg);
9132
9133  // insert branch
9134  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9135
9136  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9137  return nextMBB;
9138}
9139
9140// private utility function:  64 bit atomics on 32 bit host.
9141MachineBasicBlock *
9142X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
9143                                                       MachineBasicBlock *MBB,
9144                                                       unsigned regOpcL,
9145                                                       unsigned regOpcH,
9146                                                       unsigned immOpcL,
9147                                                       unsigned immOpcH,
9148                                                       bool invSrc) const {
9149  // For the atomic bitwise operator, we generate
9150  //   thisMBB (instructions are in pairs, except cmpxchg8b)
9151  //     ld t1,t2 = [bitinstr.addr]
9152  //   newMBB:
9153  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
9154  //     op  t5, t6 <- out1, out2, [bitinstr.val]
9155  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
9156  //     mov ECX, EBX <- t5, t6
9157  //     mov EAX, EDX <- t1, t2
9158  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
9159  //     mov t3, t4 <- EAX, EDX
9160  //     bz  newMBB
9161  //     result in out1, out2
9162  //     fallthrough -->nextMBB
9163
9164  const TargetRegisterClass *RC = X86::GR32RegisterClass;
9165  const unsigned LoadOpc = X86::MOV32rm;
9166  const unsigned NotOpc = X86::NOT32r;
9167  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9168  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9169  MachineFunction::iterator MBBIter = MBB;
9170  ++MBBIter;
9171
9172  /// First build the CFG
9173  MachineFunction *F = MBB->getParent();
9174  MachineBasicBlock *thisMBB = MBB;
9175  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9176  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9177  F->insert(MBBIter, newMBB);
9178  F->insert(MBBIter, nextMBB);
9179
9180  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9181  nextMBB->splice(nextMBB->begin(), thisMBB,
9182                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9183                  thisMBB->end());
9184  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9185
9186  // Update thisMBB to fall through to newMBB
9187  thisMBB->addSuccessor(newMBB);
9188
9189  // newMBB jumps to itself and fall through to nextMBB
9190  newMBB->addSuccessor(nextMBB);
9191  newMBB->addSuccessor(newMBB);
9192
9193  DebugLoc dl = bInstr->getDebugLoc();
9194  // Insert instructions into newMBB based on incoming instruction
9195  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
9196  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
9197         "unexpected number of operands");
9198  MachineOperand& dest1Oper = bInstr->getOperand(0);
9199  MachineOperand& dest2Oper = bInstr->getOperand(1);
9200  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9201  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
9202    argOpers[i] = &bInstr->getOperand(i+2);
9203
9204    // We use some of the operands multiple times, so conservatively just
9205    // clear any kill flags that might be present.
9206    if (argOpers[i]->isReg() && argOpers[i]->isUse())
9207      argOpers[i]->setIsKill(false);
9208  }
9209
9210  // x86 address has 5 operands: base, index, scale, displacement, and segment.
9211  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9212
9213  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9214  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
9215  for (int i=0; i <= lastAddrIndx; ++i)
9216    (*MIB).addOperand(*argOpers[i]);
9217  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9218  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
9219  // add 4 to displacement.
9220  for (int i=0; i <= lastAddrIndx-2; ++i)
9221    (*MIB).addOperand(*argOpers[i]);
9222  MachineOperand newOp3 = *(argOpers[3]);
9223  if (newOp3.isImm())
9224    newOp3.setImm(newOp3.getImm()+4);
9225  else
9226    newOp3.setOffset(newOp3.getOffset()+4);
9227  (*MIB).addOperand(newOp3);
9228  (*MIB).addOperand(*argOpers[lastAddrIndx]);
9229
9230  // t3/4 are defined later, at the bottom of the loop
9231  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
9232  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
9233  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
9234    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
9235  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
9236    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
9237
9238  // The subsequent operations should be using the destination registers of
9239  //the PHI instructions.
9240  if (invSrc) {
9241    t1 = F->getRegInfo().createVirtualRegister(RC);
9242    t2 = F->getRegInfo().createVirtualRegister(RC);
9243    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
9244    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
9245  } else {
9246    t1 = dest1Oper.getReg();
9247    t2 = dest2Oper.getReg();
9248  }
9249
9250  int valArgIndx = lastAddrIndx + 1;
9251  assert((argOpers[valArgIndx]->isReg() ||
9252          argOpers[valArgIndx]->isImm()) &&
9253         "invalid operand");
9254  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
9255  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
9256  if (argOpers[valArgIndx]->isReg())
9257    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
9258  else
9259    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
9260  if (regOpcL != X86::MOV32rr)
9261    MIB.addReg(t1);
9262  (*MIB).addOperand(*argOpers[valArgIndx]);
9263  assert(argOpers[valArgIndx + 1]->isReg() ==
9264         argOpers[valArgIndx]->isReg());
9265  assert(argOpers[valArgIndx + 1]->isImm() ==
9266         argOpers[valArgIndx]->isImm());
9267  if (argOpers[valArgIndx + 1]->isReg())
9268    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
9269  else
9270    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
9271  if (regOpcH != X86::MOV32rr)
9272    MIB.addReg(t2);
9273  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
9274
9275  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9276  MIB.addReg(t1);
9277  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
9278  MIB.addReg(t2);
9279
9280  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
9281  MIB.addReg(t5);
9282  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
9283  MIB.addReg(t6);
9284
9285  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
9286  for (int i=0; i <= lastAddrIndx; ++i)
9287    (*MIB).addOperand(*argOpers[i]);
9288
9289  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9290  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9291                    bInstr->memoperands_end());
9292
9293  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
9294  MIB.addReg(X86::EAX);
9295  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
9296  MIB.addReg(X86::EDX);
9297
9298  // insert branch
9299  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9300
9301  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9302  return nextMBB;
9303}
9304
9305// private utility function
9306MachineBasicBlock *
9307X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
9308                                                      MachineBasicBlock *MBB,
9309                                                      unsigned cmovOpc) const {
9310  // For the atomic min/max operator, we generate
9311  //   thisMBB:
9312  //   newMBB:
9313  //     ld t1 = [min/max.addr]
9314  //     mov t2 = [min/max.val]
9315  //     cmp  t1, t2
9316  //     cmov[cond] t2 = t1
9317  //     mov EAX = t1
9318  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9319  //     bz   newMBB
9320  //     fallthrough -->nextMBB
9321  //
9322  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9323  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9324  MachineFunction::iterator MBBIter = MBB;
9325  ++MBBIter;
9326
9327  /// First build the CFG
9328  MachineFunction *F = MBB->getParent();
9329  MachineBasicBlock *thisMBB = MBB;
9330  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9331  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9332  F->insert(MBBIter, newMBB);
9333  F->insert(MBBIter, nextMBB);
9334
9335  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9336  nextMBB->splice(nextMBB->begin(), thisMBB,
9337                  llvm::next(MachineBasicBlock::iterator(mInstr)),
9338                  thisMBB->end());
9339  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9340
9341  // Update thisMBB to fall through to newMBB
9342  thisMBB->addSuccessor(newMBB);
9343
9344  // newMBB jumps to newMBB and fall through to nextMBB
9345  newMBB->addSuccessor(nextMBB);
9346  newMBB->addSuccessor(newMBB);
9347
9348  DebugLoc dl = mInstr->getDebugLoc();
9349  // Insert instructions into newMBB based on incoming instruction
9350  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9351         "unexpected number of operands");
9352  MachineOperand& destOper = mInstr->getOperand(0);
9353  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9354  int numArgs = mInstr->getNumOperands() - 1;
9355  for (int i=0; i < numArgs; ++i)
9356    argOpers[i] = &mInstr->getOperand(i+1);
9357
9358  // x86 address has 4 operands: base, index, scale, and displacement
9359  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9360  int valArgIndx = lastAddrIndx + 1;
9361
9362  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9363  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
9364  for (int i=0; i <= lastAddrIndx; ++i)
9365    (*MIB).addOperand(*argOpers[i]);
9366
9367  // We only support register and immediate values
9368  assert((argOpers[valArgIndx]->isReg() ||
9369          argOpers[valArgIndx]->isImm()) &&
9370         "invalid operand");
9371
9372  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9373  if (argOpers[valArgIndx]->isReg())
9374    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
9375  else
9376    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
9377  (*MIB).addOperand(*argOpers[valArgIndx]);
9378
9379  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9380  MIB.addReg(t1);
9381
9382  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
9383  MIB.addReg(t1);
9384  MIB.addReg(t2);
9385
9386  // Generate movc
9387  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9388  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
9389  MIB.addReg(t2);
9390  MIB.addReg(t1);
9391
9392  // Cmp and exchange if none has modified the memory location
9393  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
9394  for (int i=0; i <= lastAddrIndx; ++i)
9395    (*MIB).addOperand(*argOpers[i]);
9396  MIB.addReg(t3);
9397  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9398  (*MIB).setMemRefs(mInstr->memoperands_begin(),
9399                    mInstr->memoperands_end());
9400
9401  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9402  MIB.addReg(X86::EAX);
9403
9404  // insert branch
9405  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9406
9407  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
9408  return nextMBB;
9409}
9410
9411// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
9412// or XMM0_V32I8 in AVX all of this code can be replaced with that
9413// in the .td file.
9414MachineBasicBlock *
9415X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
9416                            unsigned numArgs, bool memArg) const {
9417
9418  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
9419         "Target must have SSE4.2 or AVX features enabled");
9420
9421  DebugLoc dl = MI->getDebugLoc();
9422  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9423
9424  unsigned Opc;
9425
9426  if (!Subtarget->hasAVX()) {
9427    if (memArg)
9428      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
9429    else
9430      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
9431  } else {
9432    if (memArg)
9433      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
9434    else
9435      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
9436  }
9437
9438  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
9439
9440  for (unsigned i = 0; i < numArgs; ++i) {
9441    MachineOperand &Op = MI->getOperand(i+1);
9442
9443    if (!(Op.isReg() && Op.isImplicit()))
9444      MIB.addOperand(Op);
9445  }
9446
9447  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
9448    .addReg(X86::XMM0);
9449
9450  MI->eraseFromParent();
9451
9452  return BB;
9453}
9454
9455MachineBasicBlock *
9456X86TargetLowering::EmitVAARG64WithCustomInserter(
9457                   MachineInstr *MI,
9458                   MachineBasicBlock *MBB) const {
9459  // Emit va_arg instruction on X86-64.
9460
9461  // Operands to this pseudo-instruction:
9462  // 0  ) Output        : destination address (reg)
9463  // 1-5) Input         : va_list address (addr, i64mem)
9464  // 6  ) ArgSize       : Size (in bytes) of vararg type
9465  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
9466  // 8  ) Align         : Alignment of type
9467  // 9  ) EFLAGS (implicit-def)
9468
9469  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
9470  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
9471
9472  unsigned DestReg = MI->getOperand(0).getReg();
9473  MachineOperand &Base = MI->getOperand(1);
9474  MachineOperand &Scale = MI->getOperand(2);
9475  MachineOperand &Index = MI->getOperand(3);
9476  MachineOperand &Disp = MI->getOperand(4);
9477  MachineOperand &Segment = MI->getOperand(5);
9478  unsigned ArgSize = MI->getOperand(6).getImm();
9479  unsigned ArgMode = MI->getOperand(7).getImm();
9480  unsigned Align = MI->getOperand(8).getImm();
9481
9482  // Memory Reference
9483  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
9484  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
9485  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
9486
9487  // Machine Information
9488  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9489  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
9490  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
9491  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
9492  DebugLoc DL = MI->getDebugLoc();
9493
9494  // struct va_list {
9495  //   i32   gp_offset
9496  //   i32   fp_offset
9497  //   i64   overflow_area (address)
9498  //   i64   reg_save_area (address)
9499  // }
9500  // sizeof(va_list) = 24
9501  // alignment(va_list) = 8
9502
9503  unsigned TotalNumIntRegs = 6;
9504  unsigned TotalNumXMMRegs = 8;
9505  bool UseGPOffset = (ArgMode == 1);
9506  bool UseFPOffset = (ArgMode == 2);
9507  unsigned MaxOffset = TotalNumIntRegs * 8 +
9508                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
9509
9510  /* Align ArgSize to a multiple of 8 */
9511  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
9512  bool NeedsAlign = (Align > 8);
9513
9514  MachineBasicBlock *thisMBB = MBB;
9515  MachineBasicBlock *overflowMBB;
9516  MachineBasicBlock *offsetMBB;
9517  MachineBasicBlock *endMBB;
9518
9519  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
9520  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
9521  unsigned OffsetReg = 0;
9522
9523  if (!UseGPOffset && !UseFPOffset) {
9524    // If we only pull from the overflow region, we don't create a branch.
9525    // We don't need to alter control flow.
9526    OffsetDestReg = 0; // unused
9527    OverflowDestReg = DestReg;
9528
9529    offsetMBB = NULL;
9530    overflowMBB = thisMBB;
9531    endMBB = thisMBB;
9532  } else {
9533    // First emit code to check if gp_offset (or fp_offset) is below the bound.
9534    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
9535    // If not, pull from overflow_area. (branch to overflowMBB)
9536    //
9537    //       thisMBB
9538    //         |     .
9539    //         |        .
9540    //     offsetMBB   overflowMBB
9541    //         |        .
9542    //         |     .
9543    //        endMBB
9544
9545    // Registers for the PHI in endMBB
9546    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
9547    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
9548
9549    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9550    MachineFunction *MF = MBB->getParent();
9551    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9552    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9553    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9554
9555    MachineFunction::iterator MBBIter = MBB;
9556    ++MBBIter;
9557
9558    // Insert the new basic blocks
9559    MF->insert(MBBIter, offsetMBB);
9560    MF->insert(MBBIter, overflowMBB);
9561    MF->insert(MBBIter, endMBB);
9562
9563    // Transfer the remainder of MBB and its successor edges to endMBB.
9564    endMBB->splice(endMBB->begin(), thisMBB,
9565                    llvm::next(MachineBasicBlock::iterator(MI)),
9566                    thisMBB->end());
9567    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9568
9569    // Make offsetMBB and overflowMBB successors of thisMBB
9570    thisMBB->addSuccessor(offsetMBB);
9571    thisMBB->addSuccessor(overflowMBB);
9572
9573    // endMBB is a successor of both offsetMBB and overflowMBB
9574    offsetMBB->addSuccessor(endMBB);
9575    overflowMBB->addSuccessor(endMBB);
9576
9577    // Load the offset value into a register
9578    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
9579    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
9580      .addOperand(Base)
9581      .addOperand(Scale)
9582      .addOperand(Index)
9583      .addDisp(Disp, UseFPOffset ? 4 : 0)
9584      .addOperand(Segment)
9585      .setMemRefs(MMOBegin, MMOEnd);
9586
9587    // Check if there is enough room left to pull this argument.
9588    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
9589      .addReg(OffsetReg)
9590      .addImm(MaxOffset + 8 - ArgSizeA8);
9591
9592    // Branch to "overflowMBB" if offset >= max
9593    // Fall through to "offsetMBB" otherwise
9594    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
9595      .addMBB(overflowMBB);
9596  }
9597
9598  // In offsetMBB, emit code to use the reg_save_area.
9599  if (offsetMBB) {
9600    assert(OffsetReg != 0);
9601
9602    // Read the reg_save_area address.
9603    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
9604    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
9605      .addOperand(Base)
9606      .addOperand(Scale)
9607      .addOperand(Index)
9608      .addDisp(Disp, 16)
9609      .addOperand(Segment)
9610      .setMemRefs(MMOBegin, MMOEnd);
9611
9612    // Zero-extend the offset
9613    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
9614      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
9615        .addImm(0)
9616        .addReg(OffsetReg)
9617        .addImm(X86::sub_32bit);
9618
9619    // Add the offset to the reg_save_area to get the final address.
9620    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
9621      .addReg(OffsetReg64)
9622      .addReg(RegSaveReg);
9623
9624    // Compute the offset for the next argument
9625    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
9626    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
9627      .addReg(OffsetReg)
9628      .addImm(UseFPOffset ? 16 : 8);
9629
9630    // Store it back into the va_list.
9631    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
9632      .addOperand(Base)
9633      .addOperand(Scale)
9634      .addOperand(Index)
9635      .addDisp(Disp, UseFPOffset ? 4 : 0)
9636      .addOperand(Segment)
9637      .addReg(NextOffsetReg)
9638      .setMemRefs(MMOBegin, MMOEnd);
9639
9640    // Jump to endMBB
9641    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
9642      .addMBB(endMBB);
9643  }
9644
9645  //
9646  // Emit code to use overflow area
9647  //
9648
9649  // Load the overflow_area address into a register.
9650  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
9651  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
9652    .addOperand(Base)
9653    .addOperand(Scale)
9654    .addOperand(Index)
9655    .addDisp(Disp, 8)
9656    .addOperand(Segment)
9657    .setMemRefs(MMOBegin, MMOEnd);
9658
9659  // If we need to align it, do so. Otherwise, just copy the address
9660  // to OverflowDestReg.
9661  if (NeedsAlign) {
9662    // Align the overflow address
9663    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
9664    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
9665
9666    // aligned_addr = (addr + (align-1)) & ~(align-1)
9667    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
9668      .addReg(OverflowAddrReg)
9669      .addImm(Align-1);
9670
9671    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
9672      .addReg(TmpReg)
9673      .addImm(~(uint64_t)(Align-1));
9674  } else {
9675    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
9676      .addReg(OverflowAddrReg);
9677  }
9678
9679  // Compute the next overflow address after this argument.
9680  // (the overflow address should be kept 8-byte aligned)
9681  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
9682  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
9683    .addReg(OverflowDestReg)
9684    .addImm(ArgSizeA8);
9685
9686  // Store the new overflow address.
9687  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
9688    .addOperand(Base)
9689    .addOperand(Scale)
9690    .addOperand(Index)
9691    .addDisp(Disp, 8)
9692    .addOperand(Segment)
9693    .addReg(NextAddrReg)
9694    .setMemRefs(MMOBegin, MMOEnd);
9695
9696  // If we branched, emit the PHI to the front of endMBB.
9697  if (offsetMBB) {
9698    BuildMI(*endMBB, endMBB->begin(), DL,
9699            TII->get(X86::PHI), DestReg)
9700      .addReg(OffsetDestReg).addMBB(offsetMBB)
9701      .addReg(OverflowDestReg).addMBB(overflowMBB);
9702  }
9703
9704  // Erase the pseudo instruction
9705  MI->eraseFromParent();
9706
9707  return endMBB;
9708}
9709
9710MachineBasicBlock *
9711X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
9712                                                 MachineInstr *MI,
9713                                                 MachineBasicBlock *MBB) const {
9714  // Emit code to save XMM registers to the stack. The ABI says that the
9715  // number of registers to save is given in %al, so it's theoretically
9716  // possible to do an indirect jump trick to avoid saving all of them,
9717  // however this code takes a simpler approach and just executes all
9718  // of the stores if %al is non-zero. It's less code, and it's probably
9719  // easier on the hardware branch predictor, and stores aren't all that
9720  // expensive anyway.
9721
9722  // Create the new basic blocks. One block contains all the XMM stores,
9723  // and one block is the final destination regardless of whether any
9724  // stores were performed.
9725  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9726  MachineFunction *F = MBB->getParent();
9727  MachineFunction::iterator MBBIter = MBB;
9728  ++MBBIter;
9729  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
9730  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
9731  F->insert(MBBIter, XMMSaveMBB);
9732  F->insert(MBBIter, EndMBB);
9733
9734  // Transfer the remainder of MBB and its successor edges to EndMBB.
9735  EndMBB->splice(EndMBB->begin(), MBB,
9736                 llvm::next(MachineBasicBlock::iterator(MI)),
9737                 MBB->end());
9738  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
9739
9740  // The original block will now fall through to the XMM save block.
9741  MBB->addSuccessor(XMMSaveMBB);
9742  // The XMMSaveMBB will fall through to the end block.
9743  XMMSaveMBB->addSuccessor(EndMBB);
9744
9745  // Now add the instructions.
9746  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9747  DebugLoc DL = MI->getDebugLoc();
9748
9749  unsigned CountReg = MI->getOperand(0).getReg();
9750  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
9751  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
9752
9753  if (!Subtarget->isTargetWin64()) {
9754    // If %al is 0, branch around the XMM save block.
9755    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
9756    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
9757    MBB->addSuccessor(EndMBB);
9758  }
9759
9760  // In the XMM save block, save all the XMM argument registers.
9761  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
9762    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
9763    MachineMemOperand *MMO =
9764      F->getMachineMemOperand(
9765          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
9766        MachineMemOperand::MOStore,
9767        /*Size=*/16, /*Align=*/16);
9768    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
9769      .addFrameIndex(RegSaveFrameIndex)
9770      .addImm(/*Scale=*/1)
9771      .addReg(/*IndexReg=*/0)
9772      .addImm(/*Disp=*/Offset)
9773      .addReg(/*Segment=*/0)
9774      .addReg(MI->getOperand(i).getReg())
9775      .addMemOperand(MMO);
9776  }
9777
9778  MI->eraseFromParent();   // The pseudo instruction is gone now.
9779
9780  return EndMBB;
9781}
9782
9783MachineBasicBlock *
9784X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
9785                                     MachineBasicBlock *BB) const {
9786  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9787  DebugLoc DL = MI->getDebugLoc();
9788
9789  // To "insert" a SELECT_CC instruction, we actually have to insert the
9790  // diamond control-flow pattern.  The incoming instruction knows the
9791  // destination vreg to set, the condition code register to branch on, the
9792  // true/false values to select between, and a branch opcode to use.
9793  const BasicBlock *LLVM_BB = BB->getBasicBlock();
9794  MachineFunction::iterator It = BB;
9795  ++It;
9796
9797  //  thisMBB:
9798  //  ...
9799  //   TrueVal = ...
9800  //   cmpTY ccX, r1, r2
9801  //   bCC copy1MBB
9802  //   fallthrough --> copy0MBB
9803  MachineBasicBlock *thisMBB = BB;
9804  MachineFunction *F = BB->getParent();
9805  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9806  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9807  F->insert(It, copy0MBB);
9808  F->insert(It, sinkMBB);
9809
9810  // If the EFLAGS register isn't dead in the terminator, then claim that it's
9811  // live into the sink and copy blocks.
9812  const MachineFunction *MF = BB->getParent();
9813  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
9814  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
9815
9816  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
9817    const MachineOperand &MO = MI->getOperand(I);
9818    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
9819    unsigned Reg = MO.getReg();
9820    if (Reg != X86::EFLAGS) continue;
9821    copy0MBB->addLiveIn(Reg);
9822    sinkMBB->addLiveIn(Reg);
9823  }
9824
9825  // Transfer the remainder of BB and its successor edges to sinkMBB.
9826  sinkMBB->splice(sinkMBB->begin(), BB,
9827                  llvm::next(MachineBasicBlock::iterator(MI)),
9828                  BB->end());
9829  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9830
9831  // Add the true and fallthrough blocks as its successors.
9832  BB->addSuccessor(copy0MBB);
9833  BB->addSuccessor(sinkMBB);
9834
9835  // Create the conditional branch instruction.
9836  unsigned Opc =
9837    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
9838  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
9839
9840  //  copy0MBB:
9841  //   %FalseValue = ...
9842  //   # fallthrough to sinkMBB
9843  copy0MBB->addSuccessor(sinkMBB);
9844
9845  //  sinkMBB:
9846  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9847  //  ...
9848  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
9849          TII->get(X86::PHI), MI->getOperand(0).getReg())
9850    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
9851    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
9852
9853  MI->eraseFromParent();   // The pseudo instruction is gone now.
9854  return sinkMBB;
9855}
9856
9857MachineBasicBlock *
9858X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
9859                                          MachineBasicBlock *BB) const {
9860  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9861  DebugLoc DL = MI->getDebugLoc();
9862
9863  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
9864  // non-trivial part is impdef of ESP.
9865  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
9866  // mingw-w64.
9867
9868  const char *StackProbeSymbol =
9869      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
9870
9871  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
9872    .addExternalSymbol(StackProbeSymbol)
9873    .addReg(X86::EAX, RegState::Implicit)
9874    .addReg(X86::ESP, RegState::Implicit)
9875    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
9876    .addReg(X86::ESP, RegState::Define | RegState::Implicit)
9877    .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
9878
9879  MI->eraseFromParent();   // The pseudo instruction is gone now.
9880  return BB;
9881}
9882
9883MachineBasicBlock *
9884X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
9885                                      MachineBasicBlock *BB) const {
9886  // This is pretty easy.  We're taking the value that we received from
9887  // our load from the relocation, sticking it in either RDI (x86-64)
9888  // or EAX and doing an indirect call.  The return value will then
9889  // be in the normal return register.
9890  const X86InstrInfo *TII
9891    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
9892  DebugLoc DL = MI->getDebugLoc();
9893  MachineFunction *F = BB->getParent();
9894
9895  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
9896  assert(MI->getOperand(3).isGlobal() && "This should be a global");
9897
9898  if (Subtarget->is64Bit()) {
9899    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9900                                      TII->get(X86::MOV64rm), X86::RDI)
9901    .addReg(X86::RIP)
9902    .addImm(0).addReg(0)
9903    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9904                      MI->getOperand(3).getTargetFlags())
9905    .addReg(0);
9906    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
9907    addDirectMem(MIB, X86::RDI);
9908  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
9909    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9910                                      TII->get(X86::MOV32rm), X86::EAX)
9911    .addReg(0)
9912    .addImm(0).addReg(0)
9913    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9914                      MI->getOperand(3).getTargetFlags())
9915    .addReg(0);
9916    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9917    addDirectMem(MIB, X86::EAX);
9918  } else {
9919    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9920                                      TII->get(X86::MOV32rm), X86::EAX)
9921    .addReg(TII->getGlobalBaseReg(F))
9922    .addImm(0).addReg(0)
9923    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9924                      MI->getOperand(3).getTargetFlags())
9925    .addReg(0);
9926    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9927    addDirectMem(MIB, X86::EAX);
9928  }
9929
9930  MI->eraseFromParent(); // The pseudo instruction is gone now.
9931  return BB;
9932}
9933
9934MachineBasicBlock *
9935X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
9936                                               MachineBasicBlock *BB) const {
9937  switch (MI->getOpcode()) {
9938  default: assert(false && "Unexpected instr type to insert");
9939  case X86::WIN_ALLOCA:
9940    return EmitLoweredWinAlloca(MI, BB);
9941  case X86::TLSCall_32:
9942  case X86::TLSCall_64:
9943    return EmitLoweredTLSCall(MI, BB);
9944  case X86::CMOV_GR8:
9945  case X86::CMOV_FR32:
9946  case X86::CMOV_FR64:
9947  case X86::CMOV_V4F32:
9948  case X86::CMOV_V2F64:
9949  case X86::CMOV_V2I64:
9950  case X86::CMOV_GR16:
9951  case X86::CMOV_GR32:
9952  case X86::CMOV_RFP32:
9953  case X86::CMOV_RFP64:
9954  case X86::CMOV_RFP80:
9955    return EmitLoweredSelect(MI, BB);
9956
9957  case X86::FP32_TO_INT16_IN_MEM:
9958  case X86::FP32_TO_INT32_IN_MEM:
9959  case X86::FP32_TO_INT64_IN_MEM:
9960  case X86::FP64_TO_INT16_IN_MEM:
9961  case X86::FP64_TO_INT32_IN_MEM:
9962  case X86::FP64_TO_INT64_IN_MEM:
9963  case X86::FP80_TO_INT16_IN_MEM:
9964  case X86::FP80_TO_INT32_IN_MEM:
9965  case X86::FP80_TO_INT64_IN_MEM: {
9966    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9967    DebugLoc DL = MI->getDebugLoc();
9968
9969    // Change the floating point control register to use "round towards zero"
9970    // mode when truncating to an integer value.
9971    MachineFunction *F = BB->getParent();
9972    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
9973    addFrameReference(BuildMI(*BB, MI, DL,
9974                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
9975
9976    // Load the old value of the high byte of the control word...
9977    unsigned OldCW =
9978      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
9979    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
9980                      CWFrameIdx);
9981
9982    // Set the high part to be round to zero...
9983    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
9984      .addImm(0xC7F);
9985
9986    // Reload the modified control word now...
9987    addFrameReference(BuildMI(*BB, MI, DL,
9988                              TII->get(X86::FLDCW16m)), CWFrameIdx);
9989
9990    // Restore the memory image of control word to original value
9991    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
9992      .addReg(OldCW);
9993
9994    // Get the X86 opcode to use.
9995    unsigned Opc;
9996    switch (MI->getOpcode()) {
9997    default: llvm_unreachable("illegal opcode!");
9998    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
9999    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
10000    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
10001    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
10002    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
10003    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
10004    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
10005    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
10006    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
10007    }
10008
10009    X86AddressMode AM;
10010    MachineOperand &Op = MI->getOperand(0);
10011    if (Op.isReg()) {
10012      AM.BaseType = X86AddressMode::RegBase;
10013      AM.Base.Reg = Op.getReg();
10014    } else {
10015      AM.BaseType = X86AddressMode::FrameIndexBase;
10016      AM.Base.FrameIndex = Op.getIndex();
10017    }
10018    Op = MI->getOperand(1);
10019    if (Op.isImm())
10020      AM.Scale = Op.getImm();
10021    Op = MI->getOperand(2);
10022    if (Op.isImm())
10023      AM.IndexReg = Op.getImm();
10024    Op = MI->getOperand(3);
10025    if (Op.isGlobal()) {
10026      AM.GV = Op.getGlobal();
10027    } else {
10028      AM.Disp = Op.getImm();
10029    }
10030    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
10031                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
10032
10033    // Reload the original control word now.
10034    addFrameReference(BuildMI(*BB, MI, DL,
10035                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10036
10037    MI->eraseFromParent();   // The pseudo instruction is gone now.
10038    return BB;
10039  }
10040    // String/text processing lowering.
10041  case X86::PCMPISTRM128REG:
10042  case X86::VPCMPISTRM128REG:
10043    return EmitPCMP(MI, BB, 3, false /* in-mem */);
10044  case X86::PCMPISTRM128MEM:
10045  case X86::VPCMPISTRM128MEM:
10046    return EmitPCMP(MI, BB, 3, true /* in-mem */);
10047  case X86::PCMPESTRM128REG:
10048  case X86::VPCMPESTRM128REG:
10049    return EmitPCMP(MI, BB, 5, false /* in mem */);
10050  case X86::PCMPESTRM128MEM:
10051  case X86::VPCMPESTRM128MEM:
10052    return EmitPCMP(MI, BB, 5, true /* in mem */);
10053
10054    // Atomic Lowering.
10055  case X86::ATOMAND32:
10056    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10057                                               X86::AND32ri, X86::MOV32rm,
10058                                               X86::LCMPXCHG32,
10059                                               X86::NOT32r, X86::EAX,
10060                                               X86::GR32RegisterClass);
10061  case X86::ATOMOR32:
10062    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
10063                                               X86::OR32ri, X86::MOV32rm,
10064                                               X86::LCMPXCHG32,
10065                                               X86::NOT32r, X86::EAX,
10066                                               X86::GR32RegisterClass);
10067  case X86::ATOMXOR32:
10068    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
10069                                               X86::XOR32ri, X86::MOV32rm,
10070                                               X86::LCMPXCHG32,
10071                                               X86::NOT32r, X86::EAX,
10072                                               X86::GR32RegisterClass);
10073  case X86::ATOMNAND32:
10074    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10075                                               X86::AND32ri, X86::MOV32rm,
10076                                               X86::LCMPXCHG32,
10077                                               X86::NOT32r, X86::EAX,
10078                                               X86::GR32RegisterClass, true);
10079  case X86::ATOMMIN32:
10080    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
10081  case X86::ATOMMAX32:
10082    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
10083  case X86::ATOMUMIN32:
10084    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
10085  case X86::ATOMUMAX32:
10086    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
10087
10088  case X86::ATOMAND16:
10089    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10090                                               X86::AND16ri, X86::MOV16rm,
10091                                               X86::LCMPXCHG16,
10092                                               X86::NOT16r, X86::AX,
10093                                               X86::GR16RegisterClass);
10094  case X86::ATOMOR16:
10095    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
10096                                               X86::OR16ri, X86::MOV16rm,
10097                                               X86::LCMPXCHG16,
10098                                               X86::NOT16r, X86::AX,
10099                                               X86::GR16RegisterClass);
10100  case X86::ATOMXOR16:
10101    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
10102                                               X86::XOR16ri, X86::MOV16rm,
10103                                               X86::LCMPXCHG16,
10104                                               X86::NOT16r, X86::AX,
10105                                               X86::GR16RegisterClass);
10106  case X86::ATOMNAND16:
10107    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10108                                               X86::AND16ri, X86::MOV16rm,
10109                                               X86::LCMPXCHG16,
10110                                               X86::NOT16r, X86::AX,
10111                                               X86::GR16RegisterClass, true);
10112  case X86::ATOMMIN16:
10113    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
10114  case X86::ATOMMAX16:
10115    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
10116  case X86::ATOMUMIN16:
10117    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
10118  case X86::ATOMUMAX16:
10119    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
10120
10121  case X86::ATOMAND8:
10122    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10123                                               X86::AND8ri, X86::MOV8rm,
10124                                               X86::LCMPXCHG8,
10125                                               X86::NOT8r, X86::AL,
10126                                               X86::GR8RegisterClass);
10127  case X86::ATOMOR8:
10128    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
10129                                               X86::OR8ri, X86::MOV8rm,
10130                                               X86::LCMPXCHG8,
10131                                               X86::NOT8r, X86::AL,
10132                                               X86::GR8RegisterClass);
10133  case X86::ATOMXOR8:
10134    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
10135                                               X86::XOR8ri, X86::MOV8rm,
10136                                               X86::LCMPXCHG8,
10137                                               X86::NOT8r, X86::AL,
10138                                               X86::GR8RegisterClass);
10139  case X86::ATOMNAND8:
10140    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10141                                               X86::AND8ri, X86::MOV8rm,
10142                                               X86::LCMPXCHG8,
10143                                               X86::NOT8r, X86::AL,
10144                                               X86::GR8RegisterClass, true);
10145  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
10146  // This group is for 64-bit host.
10147  case X86::ATOMAND64:
10148    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10149                                               X86::AND64ri32, X86::MOV64rm,
10150                                               X86::LCMPXCHG64,
10151                                               X86::NOT64r, X86::RAX,
10152                                               X86::GR64RegisterClass);
10153  case X86::ATOMOR64:
10154    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
10155                                               X86::OR64ri32, X86::MOV64rm,
10156                                               X86::LCMPXCHG64,
10157                                               X86::NOT64r, X86::RAX,
10158                                               X86::GR64RegisterClass);
10159  case X86::ATOMXOR64:
10160    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
10161                                               X86::XOR64ri32, X86::MOV64rm,
10162                                               X86::LCMPXCHG64,
10163                                               X86::NOT64r, X86::RAX,
10164                                               X86::GR64RegisterClass);
10165  case X86::ATOMNAND64:
10166    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10167                                               X86::AND64ri32, X86::MOV64rm,
10168                                               X86::LCMPXCHG64,
10169                                               X86::NOT64r, X86::RAX,
10170                                               X86::GR64RegisterClass, true);
10171  case X86::ATOMMIN64:
10172    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
10173  case X86::ATOMMAX64:
10174    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
10175  case X86::ATOMUMIN64:
10176    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
10177  case X86::ATOMUMAX64:
10178    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
10179
10180  // This group does 64-bit operations on a 32-bit host.
10181  case X86::ATOMAND6432:
10182    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10183                                               X86::AND32rr, X86::AND32rr,
10184                                               X86::AND32ri, X86::AND32ri,
10185                                               false);
10186  case X86::ATOMOR6432:
10187    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10188                                               X86::OR32rr, X86::OR32rr,
10189                                               X86::OR32ri, X86::OR32ri,
10190                                               false);
10191  case X86::ATOMXOR6432:
10192    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10193                                               X86::XOR32rr, X86::XOR32rr,
10194                                               X86::XOR32ri, X86::XOR32ri,
10195                                               false);
10196  case X86::ATOMNAND6432:
10197    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10198                                               X86::AND32rr, X86::AND32rr,
10199                                               X86::AND32ri, X86::AND32ri,
10200                                               true);
10201  case X86::ATOMADD6432:
10202    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10203                                               X86::ADD32rr, X86::ADC32rr,
10204                                               X86::ADD32ri, X86::ADC32ri,
10205                                               false);
10206  case X86::ATOMSUB6432:
10207    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10208                                               X86::SUB32rr, X86::SBB32rr,
10209                                               X86::SUB32ri, X86::SBB32ri,
10210                                               false);
10211  case X86::ATOMSWAP6432:
10212    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10213                                               X86::MOV32rr, X86::MOV32rr,
10214                                               X86::MOV32ri, X86::MOV32ri,
10215                                               false);
10216  case X86::VASTART_SAVE_XMM_REGS:
10217    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
10218
10219  case X86::VAARG_64:
10220    return EmitVAARG64WithCustomInserter(MI, BB);
10221  }
10222}
10223
10224//===----------------------------------------------------------------------===//
10225//                           X86 Optimization Hooks
10226//===----------------------------------------------------------------------===//
10227
10228void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
10229                                                       const APInt &Mask,
10230                                                       APInt &KnownZero,
10231                                                       APInt &KnownOne,
10232                                                       const SelectionDAG &DAG,
10233                                                       unsigned Depth) const {
10234  unsigned Opc = Op.getOpcode();
10235  assert((Opc >= ISD::BUILTIN_OP_END ||
10236          Opc == ISD::INTRINSIC_WO_CHAIN ||
10237          Opc == ISD::INTRINSIC_W_CHAIN ||
10238          Opc == ISD::INTRINSIC_VOID) &&
10239         "Should use MaskedValueIsZero if you don't know whether Op"
10240         " is a target node!");
10241
10242  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
10243  switch (Opc) {
10244  default: break;
10245  case X86ISD::ADD:
10246  case X86ISD::SUB:
10247  case X86ISD::SMUL:
10248  case X86ISD::UMUL:
10249  case X86ISD::INC:
10250  case X86ISD::DEC:
10251  case X86ISD::OR:
10252  case X86ISD::XOR:
10253  case X86ISD::AND:
10254    // These nodes' second result is a boolean.
10255    if (Op.getResNo() == 0)
10256      break;
10257    // Fallthrough
10258  case X86ISD::SETCC:
10259    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
10260                                       Mask.getBitWidth() - 1);
10261    break;
10262  }
10263}
10264
10265unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
10266                                                         unsigned Depth) const {
10267  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
10268  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
10269    return Op.getValueType().getScalarType().getSizeInBits();
10270
10271  // Fallback case.
10272  return 1;
10273}
10274
10275/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
10276/// node is a GlobalAddress + offset.
10277bool X86TargetLowering::isGAPlusOffset(SDNode *N,
10278                                       const GlobalValue* &GA,
10279                                       int64_t &Offset) const {
10280  if (N->getOpcode() == X86ISD::Wrapper) {
10281    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
10282      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
10283      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
10284      return true;
10285    }
10286  }
10287  return TargetLowering::isGAPlusOffset(N, GA, Offset);
10288}
10289
10290/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
10291/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
10292/// if the load addresses are consecutive, non-overlapping, and in the right
10293/// order.
10294static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
10295                                     const TargetLowering &TLI) {
10296  DebugLoc dl = N->getDebugLoc();
10297  EVT VT = N->getValueType(0);
10298
10299  if (VT.getSizeInBits() != 128)
10300    return SDValue();
10301
10302  SmallVector<SDValue, 16> Elts;
10303  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
10304    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
10305
10306  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
10307}
10308
10309/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
10310/// generation and convert it from being a bunch of shuffles and extracts
10311/// to a simple store and scalar loads to extract the elements.
10312static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
10313                                                const TargetLowering &TLI) {
10314  SDValue InputVector = N->getOperand(0);
10315
10316  // Only operate on vectors of 4 elements, where the alternative shuffling
10317  // gets to be more expensive.
10318  if (InputVector.getValueType() != MVT::v4i32)
10319    return SDValue();
10320
10321  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
10322  // single use which is a sign-extend or zero-extend, and all elements are
10323  // used.
10324  SmallVector<SDNode *, 4> Uses;
10325  unsigned ExtractedElements = 0;
10326  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
10327       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
10328    if (UI.getUse().getResNo() != InputVector.getResNo())
10329      return SDValue();
10330
10331    SDNode *Extract = *UI;
10332    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10333      return SDValue();
10334
10335    if (Extract->getValueType(0) != MVT::i32)
10336      return SDValue();
10337    if (!Extract->hasOneUse())
10338      return SDValue();
10339    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
10340        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
10341      return SDValue();
10342    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
10343      return SDValue();
10344
10345    // Record which element was extracted.
10346    ExtractedElements |=
10347      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
10348
10349    Uses.push_back(Extract);
10350  }
10351
10352  // If not all the elements were used, this may not be worthwhile.
10353  if (ExtractedElements != 15)
10354    return SDValue();
10355
10356  // Ok, we've now decided to do the transformation.
10357  DebugLoc dl = InputVector.getDebugLoc();
10358
10359  // Store the value to a temporary stack slot.
10360  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
10361  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
10362                            MachinePointerInfo(), false, false, 0);
10363
10364  // Replace each use (extract) with a load of the appropriate element.
10365  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
10366       UE = Uses.end(); UI != UE; ++UI) {
10367    SDNode *Extract = *UI;
10368
10369    // Compute the element's address.
10370    SDValue Idx = Extract->getOperand(1);
10371    unsigned EltSize =
10372        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
10373    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
10374    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
10375
10376    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
10377                                     StackPtr, OffsetVal);
10378
10379    // Load the scalar.
10380    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
10381                                     ScalarAddr, MachinePointerInfo(),
10382                                     false, false, 0);
10383
10384    // Replace the exact with the load.
10385    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
10386  }
10387
10388  // The replacement was made in place; don't return anything.
10389  return SDValue();
10390}
10391
10392/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
10393static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
10394                                    const X86Subtarget *Subtarget) {
10395  DebugLoc DL = N->getDebugLoc();
10396  SDValue Cond = N->getOperand(0);
10397  // Get the LHS/RHS of the select.
10398  SDValue LHS = N->getOperand(1);
10399  SDValue RHS = N->getOperand(2);
10400
10401  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
10402  // instructions match the semantics of the common C idiom x<y?x:y but not
10403  // x<=y?x:y, because of how they handle negative zero (which can be
10404  // ignored in unsafe-math mode).
10405  if (Subtarget->hasSSE2() &&
10406      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
10407      Cond.getOpcode() == ISD::SETCC) {
10408    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
10409
10410    unsigned Opcode = 0;
10411    // Check for x CC y ? x : y.
10412    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
10413        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
10414      switch (CC) {
10415      default: break;
10416      case ISD::SETULT:
10417        // Converting this to a min would handle NaNs incorrectly, and swapping
10418        // the operands would cause it to handle comparisons between positive
10419        // and negative zero incorrectly.
10420        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10421          if (!UnsafeFPMath &&
10422              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10423            break;
10424          std::swap(LHS, RHS);
10425        }
10426        Opcode = X86ISD::FMIN;
10427        break;
10428      case ISD::SETOLE:
10429        // Converting this to a min would handle comparisons between positive
10430        // and negative zero incorrectly.
10431        if (!UnsafeFPMath &&
10432            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
10433          break;
10434        Opcode = X86ISD::FMIN;
10435        break;
10436      case ISD::SETULE:
10437        // Converting this to a min would handle both negative zeros and NaNs
10438        // incorrectly, but we can swap the operands to fix both.
10439        std::swap(LHS, RHS);
10440      case ISD::SETOLT:
10441      case ISD::SETLT:
10442      case ISD::SETLE:
10443        Opcode = X86ISD::FMIN;
10444        break;
10445
10446      case ISD::SETOGE:
10447        // Converting this to a max would handle comparisons between positive
10448        // and negative zero incorrectly.
10449        if (!UnsafeFPMath &&
10450            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
10451          break;
10452        Opcode = X86ISD::FMAX;
10453        break;
10454      case ISD::SETUGT:
10455        // Converting this to a max would handle NaNs incorrectly, and swapping
10456        // the operands would cause it to handle comparisons between positive
10457        // and negative zero incorrectly.
10458        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10459          if (!UnsafeFPMath &&
10460              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10461            break;
10462          std::swap(LHS, RHS);
10463        }
10464        Opcode = X86ISD::FMAX;
10465        break;
10466      case ISD::SETUGE:
10467        // Converting this to a max would handle both negative zeros and NaNs
10468        // incorrectly, but we can swap the operands to fix both.
10469        std::swap(LHS, RHS);
10470      case ISD::SETOGT:
10471      case ISD::SETGT:
10472      case ISD::SETGE:
10473        Opcode = X86ISD::FMAX;
10474        break;
10475      }
10476    // Check for x CC y ? y : x -- a min/max with reversed arms.
10477    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
10478               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
10479      switch (CC) {
10480      default: break;
10481      case ISD::SETOGE:
10482        // Converting this to a min would handle comparisons between positive
10483        // and negative zero incorrectly, and swapping the operands would
10484        // cause it to handle NaNs incorrectly.
10485        if (!UnsafeFPMath &&
10486            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
10487          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10488            break;
10489          std::swap(LHS, RHS);
10490        }
10491        Opcode = X86ISD::FMIN;
10492        break;
10493      case ISD::SETUGT:
10494        // Converting this to a min would handle NaNs incorrectly.
10495        if (!UnsafeFPMath &&
10496            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
10497          break;
10498        Opcode = X86ISD::FMIN;
10499        break;
10500      case ISD::SETUGE:
10501        // Converting this to a min would handle both negative zeros and NaNs
10502        // incorrectly, but we can swap the operands to fix both.
10503        std::swap(LHS, RHS);
10504      case ISD::SETOGT:
10505      case ISD::SETGT:
10506      case ISD::SETGE:
10507        Opcode = X86ISD::FMIN;
10508        break;
10509
10510      case ISD::SETULT:
10511        // Converting this to a max would handle NaNs incorrectly.
10512        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10513          break;
10514        Opcode = X86ISD::FMAX;
10515        break;
10516      case ISD::SETOLE:
10517        // Converting this to a max would handle comparisons between positive
10518        // and negative zero incorrectly, and swapping the operands would
10519        // cause it to handle NaNs incorrectly.
10520        if (!UnsafeFPMath &&
10521            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
10522          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10523            break;
10524          std::swap(LHS, RHS);
10525        }
10526        Opcode = X86ISD::FMAX;
10527        break;
10528      case ISD::SETULE:
10529        // Converting this to a max would handle both negative zeros and NaNs
10530        // incorrectly, but we can swap the operands to fix both.
10531        std::swap(LHS, RHS);
10532      case ISD::SETOLT:
10533      case ISD::SETLT:
10534      case ISD::SETLE:
10535        Opcode = X86ISD::FMAX;
10536        break;
10537      }
10538    }
10539
10540    if (Opcode)
10541      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
10542  }
10543
10544  // If this is a select between two integer constants, try to do some
10545  // optimizations.
10546  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
10547    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
10548      // Don't do this for crazy integer types.
10549      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
10550        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
10551        // so that TrueC (the true value) is larger than FalseC.
10552        bool NeedsCondInvert = false;
10553
10554        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
10555            // Efficiently invertible.
10556            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
10557             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
10558              isa<ConstantSDNode>(Cond.getOperand(1))))) {
10559          NeedsCondInvert = true;
10560          std::swap(TrueC, FalseC);
10561        }
10562
10563        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
10564        if (FalseC->getAPIntValue() == 0 &&
10565            TrueC->getAPIntValue().isPowerOf2()) {
10566          if (NeedsCondInvert) // Invert the condition if needed.
10567            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10568                               DAG.getConstant(1, Cond.getValueType()));
10569
10570          // Zero extend the condition if needed.
10571          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
10572
10573          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10574          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
10575                             DAG.getConstant(ShAmt, MVT::i8));
10576        }
10577
10578        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
10579        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10580          if (NeedsCondInvert) // Invert the condition if needed.
10581            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10582                               DAG.getConstant(1, Cond.getValueType()));
10583
10584          // Zero extend the condition if needed.
10585          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10586                             FalseC->getValueType(0), Cond);
10587          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10588                             SDValue(FalseC, 0));
10589        }
10590
10591        // Optimize cases that will turn into an LEA instruction.  This requires
10592        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10593        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10594          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10595          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10596
10597          bool isFastMultiplier = false;
10598          if (Diff < 10) {
10599            switch ((unsigned char)Diff) {
10600              default: break;
10601              case 1:  // result = add base, cond
10602              case 2:  // result = lea base(    , cond*2)
10603              case 3:  // result = lea base(cond, cond*2)
10604              case 4:  // result = lea base(    , cond*4)
10605              case 5:  // result = lea base(cond, cond*4)
10606              case 8:  // result = lea base(    , cond*8)
10607              case 9:  // result = lea base(cond, cond*8)
10608                isFastMultiplier = true;
10609                break;
10610            }
10611          }
10612
10613          if (isFastMultiplier) {
10614            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10615            if (NeedsCondInvert) // Invert the condition if needed.
10616              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10617                                 DAG.getConstant(1, Cond.getValueType()));
10618
10619            // Zero extend the condition if needed.
10620            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10621                               Cond);
10622            // Scale the condition by the difference.
10623            if (Diff != 1)
10624              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10625                                 DAG.getConstant(Diff, Cond.getValueType()));
10626
10627            // Add the base if non-zero.
10628            if (FalseC->getAPIntValue() != 0)
10629              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10630                                 SDValue(FalseC, 0));
10631            return Cond;
10632          }
10633        }
10634      }
10635  }
10636
10637  return SDValue();
10638}
10639
10640/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
10641static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
10642                                  TargetLowering::DAGCombinerInfo &DCI) {
10643  DebugLoc DL = N->getDebugLoc();
10644
10645  // If the flag operand isn't dead, don't touch this CMOV.
10646  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
10647    return SDValue();
10648
10649  // If this is a select between two integer constants, try to do some
10650  // optimizations.  Note that the operands are ordered the opposite of SELECT
10651  // operands.
10652  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
10653    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10654      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
10655      // larger than FalseC (the false value).
10656      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
10657
10658      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
10659        CC = X86::GetOppositeBranchCondition(CC);
10660        std::swap(TrueC, FalseC);
10661      }
10662
10663      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
10664      // This is efficient for any integer data type (including i8/i16) and
10665      // shift amount.
10666      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
10667        SDValue Cond = N->getOperand(3);
10668        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10669                           DAG.getConstant(CC, MVT::i8), Cond);
10670
10671        // Zero extend the condition if needed.
10672        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
10673
10674        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10675        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
10676                           DAG.getConstant(ShAmt, MVT::i8));
10677        if (N->getNumValues() == 2)  // Dead flag value?
10678          return DCI.CombineTo(N, Cond, SDValue());
10679        return Cond;
10680      }
10681
10682      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
10683      // for any integer data type, including i8/i16.
10684      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10685        SDValue Cond = N->getOperand(3);
10686        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10687                           DAG.getConstant(CC, MVT::i8), Cond);
10688
10689        // Zero extend the condition if needed.
10690        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10691                           FalseC->getValueType(0), Cond);
10692        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10693                           SDValue(FalseC, 0));
10694
10695        if (N->getNumValues() == 2)  // Dead flag value?
10696          return DCI.CombineTo(N, Cond, SDValue());
10697        return Cond;
10698      }
10699
10700      // Optimize cases that will turn into an LEA instruction.  This requires
10701      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10702      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10703        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10704        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10705
10706        bool isFastMultiplier = false;
10707        if (Diff < 10) {
10708          switch ((unsigned char)Diff) {
10709          default: break;
10710          case 1:  // result = add base, cond
10711          case 2:  // result = lea base(    , cond*2)
10712          case 3:  // result = lea base(cond, cond*2)
10713          case 4:  // result = lea base(    , cond*4)
10714          case 5:  // result = lea base(cond, cond*4)
10715          case 8:  // result = lea base(    , cond*8)
10716          case 9:  // result = lea base(cond, cond*8)
10717            isFastMultiplier = true;
10718            break;
10719          }
10720        }
10721
10722        if (isFastMultiplier) {
10723          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10724          SDValue Cond = N->getOperand(3);
10725          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10726                             DAG.getConstant(CC, MVT::i8), Cond);
10727          // Zero extend the condition if needed.
10728          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10729                             Cond);
10730          // Scale the condition by the difference.
10731          if (Diff != 1)
10732            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10733                               DAG.getConstant(Diff, Cond.getValueType()));
10734
10735          // Add the base if non-zero.
10736          if (FalseC->getAPIntValue() != 0)
10737            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10738                               SDValue(FalseC, 0));
10739          if (N->getNumValues() == 2)  // Dead flag value?
10740            return DCI.CombineTo(N, Cond, SDValue());
10741          return Cond;
10742        }
10743      }
10744    }
10745  }
10746  return SDValue();
10747}
10748
10749
10750/// PerformMulCombine - Optimize a single multiply with constant into two
10751/// in order to implement it with two cheaper instructions, e.g.
10752/// LEA + SHL, LEA + LEA.
10753static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
10754                                 TargetLowering::DAGCombinerInfo &DCI) {
10755  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10756    return SDValue();
10757
10758  EVT VT = N->getValueType(0);
10759  if (VT != MVT::i64)
10760    return SDValue();
10761
10762  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10763  if (!C)
10764    return SDValue();
10765  uint64_t MulAmt = C->getZExtValue();
10766  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
10767    return SDValue();
10768
10769  uint64_t MulAmt1 = 0;
10770  uint64_t MulAmt2 = 0;
10771  if ((MulAmt % 9) == 0) {
10772    MulAmt1 = 9;
10773    MulAmt2 = MulAmt / 9;
10774  } else if ((MulAmt % 5) == 0) {
10775    MulAmt1 = 5;
10776    MulAmt2 = MulAmt / 5;
10777  } else if ((MulAmt % 3) == 0) {
10778    MulAmt1 = 3;
10779    MulAmt2 = MulAmt / 3;
10780  }
10781  if (MulAmt2 &&
10782      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
10783    DebugLoc DL = N->getDebugLoc();
10784
10785    if (isPowerOf2_64(MulAmt2) &&
10786        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
10787      // If second multiplifer is pow2, issue it first. We want the multiply by
10788      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
10789      // is an add.
10790      std::swap(MulAmt1, MulAmt2);
10791
10792    SDValue NewMul;
10793    if (isPowerOf2_64(MulAmt1))
10794      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
10795                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
10796    else
10797      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
10798                           DAG.getConstant(MulAmt1, VT));
10799
10800    if (isPowerOf2_64(MulAmt2))
10801      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
10802                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
10803    else
10804      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
10805                           DAG.getConstant(MulAmt2, VT));
10806
10807    // Do not add new nodes to DAG combiner worklist.
10808    DCI.CombineTo(N, NewMul, false);
10809  }
10810  return SDValue();
10811}
10812
10813static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
10814  SDValue N0 = N->getOperand(0);
10815  SDValue N1 = N->getOperand(1);
10816  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
10817  EVT VT = N0.getValueType();
10818
10819  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
10820  // since the result of setcc_c is all zero's or all ones.
10821  if (N1C && N0.getOpcode() == ISD::AND &&
10822      N0.getOperand(1).getOpcode() == ISD::Constant) {
10823    SDValue N00 = N0.getOperand(0);
10824    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
10825        ((N00.getOpcode() == ISD::ANY_EXTEND ||
10826          N00.getOpcode() == ISD::ZERO_EXTEND) &&
10827         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
10828      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
10829      APInt ShAmt = N1C->getAPIntValue();
10830      Mask = Mask.shl(ShAmt);
10831      if (Mask != 0)
10832        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
10833                           N00, DAG.getConstant(Mask, VT));
10834    }
10835  }
10836
10837  return SDValue();
10838}
10839
10840/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
10841///                       when possible.
10842static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
10843                                   const X86Subtarget *Subtarget) {
10844  EVT VT = N->getValueType(0);
10845  if (!VT.isVector() && VT.isInteger() &&
10846      N->getOpcode() == ISD::SHL)
10847    return PerformSHLCombine(N, DAG);
10848
10849  // On X86 with SSE2 support, we can transform this to a vector shift if
10850  // all elements are shifted by the same amount.  We can't do this in legalize
10851  // because the a constant vector is typically transformed to a constant pool
10852  // so we have no knowledge of the shift amount.
10853  if (!Subtarget->hasSSE2())
10854    return SDValue();
10855
10856  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
10857    return SDValue();
10858
10859  SDValue ShAmtOp = N->getOperand(1);
10860  EVT EltVT = VT.getVectorElementType();
10861  DebugLoc DL = N->getDebugLoc();
10862  SDValue BaseShAmt = SDValue();
10863  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
10864    unsigned NumElts = VT.getVectorNumElements();
10865    unsigned i = 0;
10866    for (; i != NumElts; ++i) {
10867      SDValue Arg = ShAmtOp.getOperand(i);
10868      if (Arg.getOpcode() == ISD::UNDEF) continue;
10869      BaseShAmt = Arg;
10870      break;
10871    }
10872    for (; i != NumElts; ++i) {
10873      SDValue Arg = ShAmtOp.getOperand(i);
10874      if (Arg.getOpcode() == ISD::UNDEF) continue;
10875      if (Arg != BaseShAmt) {
10876        return SDValue();
10877      }
10878    }
10879  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
10880             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
10881    SDValue InVec = ShAmtOp.getOperand(0);
10882    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
10883      unsigned NumElts = InVec.getValueType().getVectorNumElements();
10884      unsigned i = 0;
10885      for (; i != NumElts; ++i) {
10886        SDValue Arg = InVec.getOperand(i);
10887        if (Arg.getOpcode() == ISD::UNDEF) continue;
10888        BaseShAmt = Arg;
10889        break;
10890      }
10891    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
10892       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
10893         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
10894         if (C->getZExtValue() == SplatIdx)
10895           BaseShAmt = InVec.getOperand(1);
10896       }
10897    }
10898    if (BaseShAmt.getNode() == 0)
10899      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
10900                              DAG.getIntPtrConstant(0));
10901  } else
10902    return SDValue();
10903
10904  // The shift amount is an i32.
10905  if (EltVT.bitsGT(MVT::i32))
10906    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
10907  else if (EltVT.bitsLT(MVT::i32))
10908    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
10909
10910  // The shift amount is identical so we can do a vector shift.
10911  SDValue  ValOp = N->getOperand(0);
10912  switch (N->getOpcode()) {
10913  default:
10914    llvm_unreachable("Unknown shift opcode!");
10915    break;
10916  case ISD::SHL:
10917    if (VT == MVT::v2i64)
10918      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10919                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10920                         ValOp, BaseShAmt);
10921    if (VT == MVT::v4i32)
10922      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10923                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10924                         ValOp, BaseShAmt);
10925    if (VT == MVT::v8i16)
10926      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10927                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10928                         ValOp, BaseShAmt);
10929    break;
10930  case ISD::SRA:
10931    if (VT == MVT::v4i32)
10932      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10933                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10934                         ValOp, BaseShAmt);
10935    if (VT == MVT::v8i16)
10936      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10937                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10938                         ValOp, BaseShAmt);
10939    break;
10940  case ISD::SRL:
10941    if (VT == MVT::v2i64)
10942      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10943                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10944                         ValOp, BaseShAmt);
10945    if (VT == MVT::v4i32)
10946      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10947                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10948                         ValOp, BaseShAmt);
10949    if (VT ==  MVT::v8i16)
10950      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10951                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10952                         ValOp, BaseShAmt);
10953    break;
10954  }
10955  return SDValue();
10956}
10957
10958static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
10959                                TargetLowering::DAGCombinerInfo &DCI,
10960                                const X86Subtarget *Subtarget) {
10961  if (DCI.isBeforeLegalizeOps())
10962    return SDValue();
10963
10964  EVT VT = N->getValueType(0);
10965  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
10966    return SDValue();
10967
10968  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
10969  SDValue N0 = N->getOperand(0);
10970  SDValue N1 = N->getOperand(1);
10971  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
10972    std::swap(N0, N1);
10973  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
10974    return SDValue();
10975  if (!N0.hasOneUse() || !N1.hasOneUse())
10976    return SDValue();
10977
10978  SDValue ShAmt0 = N0.getOperand(1);
10979  if (ShAmt0.getValueType() != MVT::i8)
10980    return SDValue();
10981  SDValue ShAmt1 = N1.getOperand(1);
10982  if (ShAmt1.getValueType() != MVT::i8)
10983    return SDValue();
10984  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
10985    ShAmt0 = ShAmt0.getOperand(0);
10986  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
10987    ShAmt1 = ShAmt1.getOperand(0);
10988
10989  DebugLoc DL = N->getDebugLoc();
10990  unsigned Opc = X86ISD::SHLD;
10991  SDValue Op0 = N0.getOperand(0);
10992  SDValue Op1 = N1.getOperand(0);
10993  if (ShAmt0.getOpcode() == ISD::SUB) {
10994    Opc = X86ISD::SHRD;
10995    std::swap(Op0, Op1);
10996    std::swap(ShAmt0, ShAmt1);
10997  }
10998
10999  unsigned Bits = VT.getSizeInBits();
11000  if (ShAmt1.getOpcode() == ISD::SUB) {
11001    SDValue Sum = ShAmt1.getOperand(0);
11002    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
11003      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
11004      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
11005        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
11006      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
11007        return DAG.getNode(Opc, DL, VT,
11008                           Op0, Op1,
11009                           DAG.getNode(ISD::TRUNCATE, DL,
11010                                       MVT::i8, ShAmt0));
11011    }
11012  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
11013    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
11014    if (ShAmt0C &&
11015        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
11016      return DAG.getNode(Opc, DL, VT,
11017                         N0.getOperand(0), N1.getOperand(0),
11018                         DAG.getNode(ISD::TRUNCATE, DL,
11019                                       MVT::i8, ShAmt0));
11020  }
11021
11022  return SDValue();
11023}
11024
11025/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
11026static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
11027                                   const X86Subtarget *Subtarget) {
11028  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
11029  // the FP state in cases where an emms may be missing.
11030  // A preferable solution to the general problem is to figure out the right
11031  // places to insert EMMS.  This qualifies as a quick hack.
11032
11033  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
11034  StoreSDNode *St = cast<StoreSDNode>(N);
11035  EVT VT = St->getValue().getValueType();
11036  if (VT.getSizeInBits() != 64)
11037    return SDValue();
11038
11039  const Function *F = DAG.getMachineFunction().getFunction();
11040  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
11041  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
11042    && Subtarget->hasSSE2();
11043  if ((VT.isVector() ||
11044       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
11045      isa<LoadSDNode>(St->getValue()) &&
11046      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
11047      St->getChain().hasOneUse() && !St->isVolatile()) {
11048    SDNode* LdVal = St->getValue().getNode();
11049    LoadSDNode *Ld = 0;
11050    int TokenFactorIndex = -1;
11051    SmallVector<SDValue, 8> Ops;
11052    SDNode* ChainVal = St->getChain().getNode();
11053    // Must be a store of a load.  We currently handle two cases:  the load
11054    // is a direct child, and it's under an intervening TokenFactor.  It is
11055    // possible to dig deeper under nested TokenFactors.
11056    if (ChainVal == LdVal)
11057      Ld = cast<LoadSDNode>(St->getChain());
11058    else if (St->getValue().hasOneUse() &&
11059             ChainVal->getOpcode() == ISD::TokenFactor) {
11060      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
11061        if (ChainVal->getOperand(i).getNode() == LdVal) {
11062          TokenFactorIndex = i;
11063          Ld = cast<LoadSDNode>(St->getValue());
11064        } else
11065          Ops.push_back(ChainVal->getOperand(i));
11066      }
11067    }
11068
11069    if (!Ld || !ISD::isNormalLoad(Ld))
11070      return SDValue();
11071
11072    // If this is not the MMX case, i.e. we are just turning i64 load/store
11073    // into f64 load/store, avoid the transformation if there are multiple
11074    // uses of the loaded value.
11075    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
11076      return SDValue();
11077
11078    DebugLoc LdDL = Ld->getDebugLoc();
11079    DebugLoc StDL = N->getDebugLoc();
11080    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
11081    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
11082    // pair instead.
11083    if (Subtarget->is64Bit() || F64IsLegal) {
11084      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
11085      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
11086                                  Ld->getPointerInfo(), Ld->isVolatile(),
11087                                  Ld->isNonTemporal(), Ld->getAlignment());
11088      SDValue NewChain = NewLd.getValue(1);
11089      if (TokenFactorIndex != -1) {
11090        Ops.push_back(NewChain);
11091        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11092                               Ops.size());
11093      }
11094      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
11095                          St->getPointerInfo(),
11096                          St->isVolatile(), St->isNonTemporal(),
11097                          St->getAlignment());
11098    }
11099
11100    // Otherwise, lower to two pairs of 32-bit loads / stores.
11101    SDValue LoAddr = Ld->getBasePtr();
11102    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
11103                                 DAG.getConstant(4, MVT::i32));
11104
11105    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
11106                               Ld->getPointerInfo(),
11107                               Ld->isVolatile(), Ld->isNonTemporal(),
11108                               Ld->getAlignment());
11109    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
11110                               Ld->getPointerInfo().getWithOffset(4),
11111                               Ld->isVolatile(), Ld->isNonTemporal(),
11112                               MinAlign(Ld->getAlignment(), 4));
11113
11114    SDValue NewChain = LoLd.getValue(1);
11115    if (TokenFactorIndex != -1) {
11116      Ops.push_back(LoLd);
11117      Ops.push_back(HiLd);
11118      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11119                             Ops.size());
11120    }
11121
11122    LoAddr = St->getBasePtr();
11123    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
11124                         DAG.getConstant(4, MVT::i32));
11125
11126    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
11127                                St->getPointerInfo(),
11128                                St->isVolatile(), St->isNonTemporal(),
11129                                St->getAlignment());
11130    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
11131                                St->getPointerInfo().getWithOffset(4),
11132                                St->isVolatile(),
11133                                St->isNonTemporal(),
11134                                MinAlign(St->getAlignment(), 4));
11135    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
11136  }
11137  return SDValue();
11138}
11139
11140/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
11141/// X86ISD::FXOR nodes.
11142static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
11143  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
11144  // F[X]OR(0.0, x) -> x
11145  // F[X]OR(x, 0.0) -> x
11146  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11147    if (C->getValueAPF().isPosZero())
11148      return N->getOperand(1);
11149  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11150    if (C->getValueAPF().isPosZero())
11151      return N->getOperand(0);
11152  return SDValue();
11153}
11154
11155/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
11156static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
11157  // FAND(0.0, x) -> 0.0
11158  // FAND(x, 0.0) -> 0.0
11159  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11160    if (C->getValueAPF().isPosZero())
11161      return N->getOperand(0);
11162  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11163    if (C->getValueAPF().isPosZero())
11164      return N->getOperand(1);
11165  return SDValue();
11166}
11167
11168static SDValue PerformBTCombine(SDNode *N,
11169                                SelectionDAG &DAG,
11170                                TargetLowering::DAGCombinerInfo &DCI) {
11171  // BT ignores high bits in the bit index operand.
11172  SDValue Op1 = N->getOperand(1);
11173  if (Op1.hasOneUse()) {
11174    unsigned BitWidth = Op1.getValueSizeInBits();
11175    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
11176    APInt KnownZero, KnownOne;
11177    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
11178                                          !DCI.isBeforeLegalizeOps());
11179    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11180    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
11181        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
11182      DCI.CommitTargetLoweringOpt(TLO);
11183  }
11184  return SDValue();
11185}
11186
11187static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
11188  SDValue Op = N->getOperand(0);
11189  if (Op.getOpcode() == ISD::BIT_CONVERT)
11190    Op = Op.getOperand(0);
11191  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
11192  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
11193      VT.getVectorElementType().getSizeInBits() ==
11194      OpVT.getVectorElementType().getSizeInBits()) {
11195    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
11196  }
11197  return SDValue();
11198}
11199
11200static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
11201  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
11202  //           (and (i32 x86isd::setcc_carry), 1)
11203  // This eliminates the zext. This transformation is necessary because
11204  // ISD::SETCC is always legalized to i8.
11205  DebugLoc dl = N->getDebugLoc();
11206  SDValue N0 = N->getOperand(0);
11207  EVT VT = N->getValueType(0);
11208  if (N0.getOpcode() == ISD::AND &&
11209      N0.hasOneUse() &&
11210      N0.getOperand(0).hasOneUse()) {
11211    SDValue N00 = N0.getOperand(0);
11212    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
11213      return SDValue();
11214    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11215    if (!C || C->getZExtValue() != 1)
11216      return SDValue();
11217    return DAG.getNode(ISD::AND, dl, VT,
11218                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
11219                                   N00.getOperand(0), N00.getOperand(1)),
11220                       DAG.getConstant(1, VT));
11221  }
11222
11223  return SDValue();
11224}
11225
11226SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
11227                                             DAGCombinerInfo &DCI) const {
11228  SelectionDAG &DAG = DCI.DAG;
11229  switch (N->getOpcode()) {
11230  default: break;
11231  case ISD::EXTRACT_VECTOR_ELT:
11232                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
11233  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
11234  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
11235  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
11236  case ISD::SHL:
11237  case ISD::SRA:
11238  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
11239  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
11240  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
11241  case X86ISD::FXOR:
11242  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
11243  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
11244  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
11245  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
11246  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
11247  case X86ISD::SHUFPS:      // Handle all target specific shuffles
11248  case X86ISD::SHUFPD:
11249  case X86ISD::PALIGN:
11250  case X86ISD::PUNPCKHBW:
11251  case X86ISD::PUNPCKHWD:
11252  case X86ISD::PUNPCKHDQ:
11253  case X86ISD::PUNPCKHQDQ:
11254  case X86ISD::UNPCKHPS:
11255  case X86ISD::UNPCKHPD:
11256  case X86ISD::PUNPCKLBW:
11257  case X86ISD::PUNPCKLWD:
11258  case X86ISD::PUNPCKLDQ:
11259  case X86ISD::PUNPCKLQDQ:
11260  case X86ISD::UNPCKLPS:
11261  case X86ISD::UNPCKLPD:
11262  case X86ISD::MOVHLPS:
11263  case X86ISD::MOVLHPS:
11264  case X86ISD::PSHUFD:
11265  case X86ISD::PSHUFHW:
11266  case X86ISD::PSHUFLW:
11267  case X86ISD::MOVSS:
11268  case X86ISD::MOVSD:
11269  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
11270  }
11271
11272  return SDValue();
11273}
11274
11275/// isTypeDesirableForOp - Return true if the target has native support for
11276/// the specified value type and it is 'desirable' to use the type for the
11277/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
11278/// instruction encodings are longer and some i16 instructions are slow.
11279bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
11280  if (!isTypeLegal(VT))
11281    return false;
11282  if (VT != MVT::i16)
11283    return true;
11284
11285  switch (Opc) {
11286  default:
11287    return true;
11288  case ISD::LOAD:
11289  case ISD::SIGN_EXTEND:
11290  case ISD::ZERO_EXTEND:
11291  case ISD::ANY_EXTEND:
11292  case ISD::SHL:
11293  case ISD::SRL:
11294  case ISD::SUB:
11295  case ISD::ADD:
11296  case ISD::MUL:
11297  case ISD::AND:
11298  case ISD::OR:
11299  case ISD::XOR:
11300    return false;
11301  }
11302}
11303
11304/// IsDesirableToPromoteOp - This method query the target whether it is
11305/// beneficial for dag combiner to promote the specified node. If true, it
11306/// should return the desired promotion type by reference.
11307bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
11308  EVT VT = Op.getValueType();
11309  if (VT != MVT::i16)
11310    return false;
11311
11312  bool Promote = false;
11313  bool Commute = false;
11314  switch (Op.getOpcode()) {
11315  default: break;
11316  case ISD::LOAD: {
11317    LoadSDNode *LD = cast<LoadSDNode>(Op);
11318    // If the non-extending load has a single use and it's not live out, then it
11319    // might be folded.
11320    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
11321                                                     Op.hasOneUse()*/) {
11322      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
11323             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
11324        // The only case where we'd want to promote LOAD (rather then it being
11325        // promoted as an operand is when it's only use is liveout.
11326        if (UI->getOpcode() != ISD::CopyToReg)
11327          return false;
11328      }
11329    }
11330    Promote = true;
11331    break;
11332  }
11333  case ISD::SIGN_EXTEND:
11334  case ISD::ZERO_EXTEND:
11335  case ISD::ANY_EXTEND:
11336    Promote = true;
11337    break;
11338  case ISD::SHL:
11339  case ISD::SRL: {
11340    SDValue N0 = Op.getOperand(0);
11341    // Look out for (store (shl (load), x)).
11342    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
11343      return false;
11344    Promote = true;
11345    break;
11346  }
11347  case ISD::ADD:
11348  case ISD::MUL:
11349  case ISD::AND:
11350  case ISD::OR:
11351  case ISD::XOR:
11352    Commute = true;
11353    // fallthrough
11354  case ISD::SUB: {
11355    SDValue N0 = Op.getOperand(0);
11356    SDValue N1 = Op.getOperand(1);
11357    if (!Commute && MayFoldLoad(N1))
11358      return false;
11359    // Avoid disabling potential load folding opportunities.
11360    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
11361      return false;
11362    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
11363      return false;
11364    Promote = true;
11365  }
11366  }
11367
11368  PVT = MVT::i32;
11369  return Promote;
11370}
11371
11372//===----------------------------------------------------------------------===//
11373//                           X86 Inline Assembly Support
11374//===----------------------------------------------------------------------===//
11375
11376static bool LowerToBSwap(CallInst *CI) {
11377  // FIXME: this should verify that we are targetting a 486 or better.  If not,
11378  // we will turn this bswap into something that will be lowered to logical ops
11379  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
11380  // so don't worry about this.
11381
11382  // Verify this is a simple bswap.
11383  if (CI->getNumArgOperands() != 1 ||
11384      CI->getType() != CI->getArgOperand(0)->getType() ||
11385      !CI->getType()->isIntegerTy())
11386    return false;
11387
11388  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
11389  if (!Ty || Ty->getBitWidth() % 16 != 0)
11390    return false;
11391
11392  // Okay, we can do this xform, do so now.
11393  const Type *Tys[] = { Ty };
11394  Module *M = CI->getParent()->getParent()->getParent();
11395  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
11396
11397  Value *Op = CI->getArgOperand(0);
11398  Op = CallInst::Create(Int, Op, CI->getName(), CI);
11399
11400  CI->replaceAllUsesWith(Op);
11401  CI->eraseFromParent();
11402  return true;
11403}
11404
11405bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
11406  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
11407  InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
11408
11409  std::string AsmStr = IA->getAsmString();
11410
11411  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
11412  SmallVector<StringRef, 4> AsmPieces;
11413  SplitString(AsmStr, AsmPieces, ";\n");
11414
11415  switch (AsmPieces.size()) {
11416  default: return false;
11417  case 1:
11418    AsmStr = AsmPieces[0];
11419    AsmPieces.clear();
11420    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
11421
11422    // bswap $0
11423    if (AsmPieces.size() == 2 &&
11424        (AsmPieces[0] == "bswap" ||
11425         AsmPieces[0] == "bswapq" ||
11426         AsmPieces[0] == "bswapl") &&
11427        (AsmPieces[1] == "$0" ||
11428         AsmPieces[1] == "${0:q}")) {
11429      // No need to check constraints, nothing other than the equivalent of
11430      // "=r,0" would be valid here.
11431      return LowerToBSwap(CI);
11432    }
11433    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
11434    if (CI->getType()->isIntegerTy(16) &&
11435        AsmPieces.size() == 3 &&
11436        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
11437        AsmPieces[1] == "$$8," &&
11438        AsmPieces[2] == "${0:w}" &&
11439        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
11440      AsmPieces.clear();
11441      const std::string &Constraints = IA->getConstraintString();
11442      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
11443      std::sort(AsmPieces.begin(), AsmPieces.end());
11444      if (AsmPieces.size() == 4 &&
11445          AsmPieces[0] == "~{cc}" &&
11446          AsmPieces[1] == "~{dirflag}" &&
11447          AsmPieces[2] == "~{flags}" &&
11448          AsmPieces[3] == "~{fpsr}") {
11449        return LowerToBSwap(CI);
11450      }
11451    }
11452    break;
11453  case 3:
11454    if (CI->getType()->isIntegerTy(64) &&
11455        Constraints.size() >= 2 &&
11456        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
11457        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
11458      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
11459      SmallVector<StringRef, 4> Words;
11460      SplitString(AsmPieces[0], Words, " \t");
11461      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
11462        Words.clear();
11463        SplitString(AsmPieces[1], Words, " \t");
11464        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
11465          Words.clear();
11466          SplitString(AsmPieces[2], Words, " \t,");
11467          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
11468              Words[2] == "%edx") {
11469            return LowerToBSwap(CI);
11470          }
11471        }
11472      }
11473    }
11474    break;
11475  }
11476  return false;
11477}
11478
11479
11480
11481/// getConstraintType - Given a constraint letter, return the type of
11482/// constraint it is for this target.
11483X86TargetLowering::ConstraintType
11484X86TargetLowering::getConstraintType(const std::string &Constraint) const {
11485  if (Constraint.size() == 1) {
11486    switch (Constraint[0]) {
11487    case 'R':
11488    case 'q':
11489    case 'Q':
11490    case 'f':
11491    case 't':
11492    case 'u':
11493    case 'y':
11494    case 'x':
11495    case 'Y':
11496      return C_RegisterClass;
11497    case 'a':
11498    case 'b':
11499    case 'c':
11500    case 'd':
11501    case 'S':
11502    case 'D':
11503    case 'A':
11504      return C_Register;
11505    case 'I':
11506    case 'J':
11507    case 'K':
11508    case 'L':
11509    case 'M':
11510    case 'N':
11511    case 'G':
11512    case 'C':
11513    case 'e':
11514    case 'Z':
11515      return C_Other;
11516    default:
11517      break;
11518    }
11519  }
11520  return TargetLowering::getConstraintType(Constraint);
11521}
11522
11523/// Examine constraint type and operand type and determine a weight value.
11524/// This object must already have been set up with the operand type
11525/// and the current alternative constraint selected.
11526TargetLowering::ConstraintWeight
11527  X86TargetLowering::getSingleConstraintMatchWeight(
11528    AsmOperandInfo &info, const char *constraint) const {
11529  ConstraintWeight weight = CW_Invalid;
11530  Value *CallOperandVal = info.CallOperandVal;
11531    // If we don't have a value, we can't do a match,
11532    // but allow it at the lowest weight.
11533  if (CallOperandVal == NULL)
11534    return CW_Default;
11535  const Type *type = CallOperandVal->getType();
11536  // Look at the constraint type.
11537  switch (*constraint) {
11538  default:
11539    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
11540  case 'R':
11541  case 'q':
11542  case 'Q':
11543  case 'a':
11544  case 'b':
11545  case 'c':
11546  case 'd':
11547  case 'S':
11548  case 'D':
11549  case 'A':
11550    if (CallOperandVal->getType()->isIntegerTy())
11551      weight = CW_SpecificReg;
11552    break;
11553  case 'f':
11554  case 't':
11555  case 'u':
11556      if (type->isFloatingPointTy())
11557        weight = CW_SpecificReg;
11558      break;
11559  case 'y':
11560      if (type->isX86_MMXTy() && !DisableMMX && Subtarget->hasMMX())
11561        weight = CW_SpecificReg;
11562      break;
11563  case 'x':
11564  case 'Y':
11565    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1())
11566      weight = CW_Register;
11567    break;
11568  case 'I':
11569    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
11570      if (C->getZExtValue() <= 31)
11571        weight = CW_Constant;
11572    }
11573    break;
11574  case 'J':
11575    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11576      if (C->getZExtValue() <= 63)
11577        weight = CW_Constant;
11578    }
11579    break;
11580  case 'K':
11581    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11582      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
11583        weight = CW_Constant;
11584    }
11585    break;
11586  case 'L':
11587    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11588      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
11589        weight = CW_Constant;
11590    }
11591    break;
11592  case 'M':
11593    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11594      if (C->getZExtValue() <= 3)
11595        weight = CW_Constant;
11596    }
11597    break;
11598  case 'N':
11599    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11600      if (C->getZExtValue() <= 0xff)
11601        weight = CW_Constant;
11602    }
11603    break;
11604  case 'G':
11605  case 'C':
11606    if (dyn_cast<ConstantFP>(CallOperandVal)) {
11607      weight = CW_Constant;
11608    }
11609    break;
11610  case 'e':
11611    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11612      if ((C->getSExtValue() >= -0x80000000LL) &&
11613          (C->getSExtValue() <= 0x7fffffffLL))
11614        weight = CW_Constant;
11615    }
11616    break;
11617  case 'Z':
11618    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11619      if (C->getZExtValue() <= 0xffffffff)
11620        weight = CW_Constant;
11621    }
11622    break;
11623  }
11624  return weight;
11625}
11626
11627/// LowerXConstraint - try to replace an X constraint, which matches anything,
11628/// with another that has more specific requirements based on the type of the
11629/// corresponding operand.
11630const char *X86TargetLowering::
11631LowerXConstraint(EVT ConstraintVT) const {
11632  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
11633  // 'f' like normal targets.
11634  if (ConstraintVT.isFloatingPoint()) {
11635    if (Subtarget->hasSSE2())
11636      return "Y";
11637    if (Subtarget->hasSSE1())
11638      return "x";
11639  }
11640
11641  return TargetLowering::LowerXConstraint(ConstraintVT);
11642}
11643
11644/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
11645/// vector.  If it is invalid, don't add anything to Ops.
11646void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11647                                                     char Constraint,
11648                                                     std::vector<SDValue>&Ops,
11649                                                     SelectionDAG &DAG) const {
11650  SDValue Result(0, 0);
11651
11652  switch (Constraint) {
11653  default: break;
11654  case 'I':
11655    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11656      if (C->getZExtValue() <= 31) {
11657        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11658        break;
11659      }
11660    }
11661    return;
11662  case 'J':
11663    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11664      if (C->getZExtValue() <= 63) {
11665        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11666        break;
11667      }
11668    }
11669    return;
11670  case 'K':
11671    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11672      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
11673        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11674        break;
11675      }
11676    }
11677    return;
11678  case 'N':
11679    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11680      if (C->getZExtValue() <= 255) {
11681        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11682        break;
11683      }
11684    }
11685    return;
11686  case 'e': {
11687    // 32-bit signed value
11688    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11689      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
11690                                           C->getSExtValue())) {
11691        // Widen to 64 bits here to get it sign extended.
11692        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
11693        break;
11694      }
11695    // FIXME gcc accepts some relocatable values here too, but only in certain
11696    // memory models; it's complicated.
11697    }
11698    return;
11699  }
11700  case 'Z': {
11701    // 32-bit unsigned value
11702    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11703      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
11704                                           C->getZExtValue())) {
11705        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11706        break;
11707      }
11708    }
11709    // FIXME gcc accepts some relocatable values here too, but only in certain
11710    // memory models; it's complicated.
11711    return;
11712  }
11713  case 'i': {
11714    // Literal immediates are always ok.
11715    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
11716      // Widen to 64 bits here to get it sign extended.
11717      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
11718      break;
11719    }
11720
11721    // In any sort of PIC mode addresses need to be computed at runtime by
11722    // adding in a register or some sort of table lookup.  These can't
11723    // be used as immediates.
11724    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
11725      return;
11726
11727    // If we are in non-pic codegen mode, we allow the address of a global (with
11728    // an optional displacement) to be used with 'i'.
11729    GlobalAddressSDNode *GA = 0;
11730    int64_t Offset = 0;
11731
11732    // Match either (GA), (GA+C), (GA+C1+C2), etc.
11733    while (1) {
11734      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
11735        Offset += GA->getOffset();
11736        break;
11737      } else if (Op.getOpcode() == ISD::ADD) {
11738        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
11739          Offset += C->getZExtValue();
11740          Op = Op.getOperand(0);
11741          continue;
11742        }
11743      } else if (Op.getOpcode() == ISD::SUB) {
11744        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
11745          Offset += -C->getZExtValue();
11746          Op = Op.getOperand(0);
11747          continue;
11748        }
11749      }
11750
11751      // Otherwise, this isn't something we can handle, reject it.
11752      return;
11753    }
11754
11755    const GlobalValue *GV = GA->getGlobal();
11756    // If we require an extra load to get this address, as in PIC mode, we
11757    // can't accept it.
11758    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
11759                                                        getTargetMachine())))
11760      return;
11761
11762    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
11763                                        GA->getValueType(0), Offset);
11764    break;
11765  }
11766  }
11767
11768  if (Result.getNode()) {
11769    Ops.push_back(Result);
11770    return;
11771  }
11772  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11773}
11774
11775std::vector<unsigned> X86TargetLowering::
11776getRegClassForInlineAsmConstraint(const std::string &Constraint,
11777                                  EVT VT) const {
11778  if (Constraint.size() == 1) {
11779    // FIXME: not handling fp-stack yet!
11780    switch (Constraint[0]) {      // GCC X86 Constraint Letters
11781    default: break;  // Unknown constraint letter
11782    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
11783      if (Subtarget->is64Bit()) {
11784        if (VT == MVT::i32)
11785          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
11786                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
11787                                       X86::R10D,X86::R11D,X86::R12D,
11788                                       X86::R13D,X86::R14D,X86::R15D,
11789                                       X86::EBP, X86::ESP, 0);
11790        else if (VT == MVT::i16)
11791          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
11792                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
11793                                       X86::R10W,X86::R11W,X86::R12W,
11794                                       X86::R13W,X86::R14W,X86::R15W,
11795                                       X86::BP,  X86::SP, 0);
11796        else if (VT == MVT::i8)
11797          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
11798                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
11799                                       X86::R10B,X86::R11B,X86::R12B,
11800                                       X86::R13B,X86::R14B,X86::R15B,
11801                                       X86::BPL, X86::SPL, 0);
11802
11803        else if (VT == MVT::i64)
11804          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
11805                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
11806                                       X86::R10, X86::R11, X86::R12,
11807                                       X86::R13, X86::R14, X86::R15,
11808                                       X86::RBP, X86::RSP, 0);
11809
11810        break;
11811      }
11812      // 32-bit fallthrough
11813    case 'Q':   // Q_REGS
11814      if (VT == MVT::i32)
11815        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
11816      else if (VT == MVT::i16)
11817        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
11818      else if (VT == MVT::i8)
11819        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
11820      else if (VT == MVT::i64)
11821        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
11822      break;
11823    }
11824  }
11825
11826  return std::vector<unsigned>();
11827}
11828
11829std::pair<unsigned, const TargetRegisterClass*>
11830X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
11831                                                EVT VT) const {
11832  // First, see if this is a constraint that directly corresponds to an LLVM
11833  // register class.
11834  if (Constraint.size() == 1) {
11835    // GCC Constraint Letters
11836    switch (Constraint[0]) {
11837    default: break;
11838    case 'r':   // GENERAL_REGS
11839    case 'l':   // INDEX_REGS
11840      if (VT == MVT::i8)
11841        return std::make_pair(0U, X86::GR8RegisterClass);
11842      if (VT == MVT::i16)
11843        return std::make_pair(0U, X86::GR16RegisterClass);
11844      if (VT == MVT::i32 || !Subtarget->is64Bit())
11845        return std::make_pair(0U, X86::GR32RegisterClass);
11846      return std::make_pair(0U, X86::GR64RegisterClass);
11847    case 'R':   // LEGACY_REGS
11848      if (VT == MVT::i8)
11849        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
11850      if (VT == MVT::i16)
11851        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
11852      if (VT == MVT::i32 || !Subtarget->is64Bit())
11853        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
11854      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
11855    case 'f':  // FP Stack registers.
11856      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
11857      // value to the correct fpstack register class.
11858      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
11859        return std::make_pair(0U, X86::RFP32RegisterClass);
11860      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
11861        return std::make_pair(0U, X86::RFP64RegisterClass);
11862      return std::make_pair(0U, X86::RFP80RegisterClass);
11863    case 'y':   // MMX_REGS if MMX allowed.
11864      if (!Subtarget->hasMMX()) break;
11865      return std::make_pair(0U, X86::VR64RegisterClass);
11866    case 'Y':   // SSE_REGS if SSE2 allowed
11867      if (!Subtarget->hasSSE2()) break;
11868      // FALL THROUGH.
11869    case 'x':   // SSE_REGS if SSE1 allowed
11870      if (!Subtarget->hasSSE1()) break;
11871
11872      switch (VT.getSimpleVT().SimpleTy) {
11873      default: break;
11874      // Scalar SSE types.
11875      case MVT::f32:
11876      case MVT::i32:
11877        return std::make_pair(0U, X86::FR32RegisterClass);
11878      case MVT::f64:
11879      case MVT::i64:
11880        return std::make_pair(0U, X86::FR64RegisterClass);
11881      // Vector types.
11882      case MVT::v16i8:
11883      case MVT::v8i16:
11884      case MVT::v4i32:
11885      case MVT::v2i64:
11886      case MVT::v4f32:
11887      case MVT::v2f64:
11888        return std::make_pair(0U, X86::VR128RegisterClass);
11889      }
11890      break;
11891    }
11892  }
11893
11894  // Use the default implementation in TargetLowering to convert the register
11895  // constraint into a member of a register class.
11896  std::pair<unsigned, const TargetRegisterClass*> Res;
11897  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
11898
11899  // Not found as a standard register?
11900  if (Res.second == 0) {
11901    // Map st(0) -> st(7) -> ST0
11902    if (Constraint.size() == 7 && Constraint[0] == '{' &&
11903        tolower(Constraint[1]) == 's' &&
11904        tolower(Constraint[2]) == 't' &&
11905        Constraint[3] == '(' &&
11906        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
11907        Constraint[5] == ')' &&
11908        Constraint[6] == '}') {
11909
11910      Res.first = X86::ST0+Constraint[4]-'0';
11911      Res.second = X86::RFP80RegisterClass;
11912      return Res;
11913    }
11914
11915    // GCC allows "st(0)" to be called just plain "st".
11916    if (StringRef("{st}").equals_lower(Constraint)) {
11917      Res.first = X86::ST0;
11918      Res.second = X86::RFP80RegisterClass;
11919      return Res;
11920    }
11921
11922    // flags -> EFLAGS
11923    if (StringRef("{flags}").equals_lower(Constraint)) {
11924      Res.first = X86::EFLAGS;
11925      Res.second = X86::CCRRegisterClass;
11926      return Res;
11927    }
11928
11929    // 'A' means EAX + EDX.
11930    if (Constraint == "A") {
11931      Res.first = X86::EAX;
11932      Res.second = X86::GR32_ADRegisterClass;
11933      return Res;
11934    }
11935    return Res;
11936  }
11937
11938  // Otherwise, check to see if this is a register class of the wrong value
11939  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
11940  // turn into {ax},{dx}.
11941  if (Res.second->hasType(VT))
11942    return Res;   // Correct type already, nothing to do.
11943
11944  // All of the single-register GCC register classes map their values onto
11945  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
11946  // really want an 8-bit or 32-bit register, map to the appropriate register
11947  // class and return the appropriate register.
11948  if (Res.second == X86::GR16RegisterClass) {
11949    if (VT == MVT::i8) {
11950      unsigned DestReg = 0;
11951      switch (Res.first) {
11952      default: break;
11953      case X86::AX: DestReg = X86::AL; break;
11954      case X86::DX: DestReg = X86::DL; break;
11955      case X86::CX: DestReg = X86::CL; break;
11956      case X86::BX: DestReg = X86::BL; break;
11957      }
11958      if (DestReg) {
11959        Res.first = DestReg;
11960        Res.second = X86::GR8RegisterClass;
11961      }
11962    } else if (VT == MVT::i32) {
11963      unsigned DestReg = 0;
11964      switch (Res.first) {
11965      default: break;
11966      case X86::AX: DestReg = X86::EAX; break;
11967      case X86::DX: DestReg = X86::EDX; break;
11968      case X86::CX: DestReg = X86::ECX; break;
11969      case X86::BX: DestReg = X86::EBX; break;
11970      case X86::SI: DestReg = X86::ESI; break;
11971      case X86::DI: DestReg = X86::EDI; break;
11972      case X86::BP: DestReg = X86::EBP; break;
11973      case X86::SP: DestReg = X86::ESP; break;
11974      }
11975      if (DestReg) {
11976        Res.first = DestReg;
11977        Res.second = X86::GR32RegisterClass;
11978      }
11979    } else if (VT == MVT::i64) {
11980      unsigned DestReg = 0;
11981      switch (Res.first) {
11982      default: break;
11983      case X86::AX: DestReg = X86::RAX; break;
11984      case X86::DX: DestReg = X86::RDX; break;
11985      case X86::CX: DestReg = X86::RCX; break;
11986      case X86::BX: DestReg = X86::RBX; break;
11987      case X86::SI: DestReg = X86::RSI; break;
11988      case X86::DI: DestReg = X86::RDI; break;
11989      case X86::BP: DestReg = X86::RBP; break;
11990      case X86::SP: DestReg = X86::RSP; break;
11991      }
11992      if (DestReg) {
11993        Res.first = DestReg;
11994        Res.second = X86::GR64RegisterClass;
11995      }
11996    }
11997  } else if (Res.second == X86::FR32RegisterClass ||
11998             Res.second == X86::FR64RegisterClass ||
11999             Res.second == X86::VR128RegisterClass) {
12000    // Handle references to XMM physical registers that got mapped into the
12001    // wrong class.  This can happen with constraints like {xmm0} where the
12002    // target independent register mapper will just pick the first match it can
12003    // find, ignoring the required type.
12004    if (VT == MVT::f32)
12005      Res.second = X86::FR32RegisterClass;
12006    else if (VT == MVT::f64)
12007      Res.second = X86::FR64RegisterClass;
12008    else if (X86::VR128RegisterClass->hasType(VT))
12009      Res.second = X86::VR128RegisterClass;
12010  }
12011
12012  return Res;
12013}
12014